
Searching for i-Good Lemmas
to Accelerate Safety Model Checking

Yechuan Xia1, Anna Becchi2, Alessandro Cimatti2, Alberto Griggio2,
Jianwen Li1(B), and Geguang Pu1,3(B)

1 East China Normal University, Shanghai, China
{jwli,ggpu}@sei.ecnu.edu.cn

2 Fondazione Bruno Kessler, Trento, Italy
{abecchi,cimatti,griggio}@fbk.eu

3 Shanghai Trusted Industrial Control Platform Co., Ltd., Shanghai, China

Abstract. IC3/PDR and its variants have been the prominent
approaches to safety model checking in recent years. Compared to the
previous model-checking algorithms like BMC (Bounded Model Check-
ing) and IMC (Interpolation Model Checking), IC3/PDR is attractive due
to its completeness (vs. BMC) and scalability (vs. IMC). IC3/PDR main-
tains an over-approximate state sequence for proving the correctness.
Although the sequence refinement methodology is known to be crucial
for performance, the literature lacks a systematic analysis of the prob-
lem. We propose an approach based on the definition of i- good lemmas,
and the introduction of two kinds of heuristics, i.e., branching and refer-
skipping, to steer the search towards the construction of i-good lemmas.
The approach is applicable to IC3 and its variant CAR (Complementary
Approximate Reachability), and it is very easy to integrate within exist-
ing systems. We implemented the heuristics into two open-source model
checkers, IC3Ref and SimpleCAR, as well as into the mature nuXmv plat-
form, and carried out an extensive experimental evaluation on HWMCC
benchmarks. The results show that the proposed heuristics can effec-
tively compute more i-good lemmas, and thus improve the performance
of all the above checkers.

1 Introduction

Safety model checking is a fundamental problem in verification. The goal is to
prove that all the reachable states of the transition system 〈I, T 〉 satisfy a prop-
erty P. The field has been dominated by SAT-based techniques since the intro-
duction of Bounded Model Checking (BMC) [9]. The first wave of SAT-based
model-checking algorithms, including BMC, k-induction [31] and Interpolation-
based Model Checking [25] have been superseded by the research deriving
from the seminal work of Bradley [11]. The IC3 algorithm maintains an over-
approximate state sequence for proving the correctness; it avoids unrolling the
transition relation by localizing reasoning to frames, used to incrementally build
an inductive invariant by discovering inductive clauses.
c© The Author(s) 2023
C. Enea and A. Lal (Eds.): CAV 2023, LNCS 13965, pp. 288–308, 2023.
https://doi.org/10.1007/978-3-031-37703-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37703-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-37703-7_14


Searching for i-Good Lemmas to Accelerate Safety Model Checking 289

IC3 (also known as PDR [17]) has spawned several variants, including those
that attempt to combine forward and backward search [29]. Particularly relevant
in this paper is CAR (Complementary Approximate Reachability), which com-
bines the forward overapproximation with a backward underapproximation [23].

It has been noted that different ways to refine the over-approximating sequence
can impact the performance of the algorithm. For example, [21] attempts to dis-
cover good lemmas, that can be “pushed to the top” since they are inductive. In
this paper, we propose an alternative way to drive the refinement of the over-
approximating sequence. We identify i- good lemmas, i.e. lemmas that are induc-
tive with respect to the i-th overapproximating level. The intuition is that such
i-good lemmas are useful in the search since they are fundamental to reach a fix
point in the safe case. In order to guide the search towards the discovery of i-good
lemmas, we propose a heuristic approach based on two key insights, i.e., branching
and refer-skipping. First, with branching we try to control the way the SAT solver
extracts unsatisfiable cores by privileging variables occurring in i-good lemmas.
Second, we control lemma generalization by avoiding dropping literals occurring
in a subsuming lemma in the previous layer (refer-skipping).

The proposed approach is applicable both to IC3/PDR and CAR, and it is
very simple to implement. Yet, it appears to be quite effective in practice. We
implemented the i-good lemma heuristics in two open-source implementations
of IC3 and CAR, and also in the mature, state-of-the-art IC3 implementation
available inside the nuXmv model checker [12], and we carried out an extensive
experimental evaluation on Hardware Model Checking Competition (HWMCC)
benchmarks. Analysis of the results suggests that increasing the ratio of i-good
lemmas leads to an increase in performance, and the heuristics appear to be quite
effective in driving the search towards i-good lemmas. In terms of performance,
this results in significant improvements for all the tools when equipped with the
proposed approach.

This paper is structured as follows. In Sect. 2 we present the problem and the
IC3/PDR and CAR algorithms. In Sect. 3 we present the intuition underlying i-
good lemmas and the algorithms to find them. In Sect. 4 we overview the related
work. In Sect. 5 we present the experimental evaluation. In Sect. 6 we draw some
conclusions and present directions for future work.

2 Preliminaries

2.1 Boolean Transition System

A Boolean transition system Sys is a tuple 〈X,Y, I, T 〉, where X and X ′ denote
the set of state variables in the present state and the next state, respectively,
and Y denotes the set of input variables. The state space of Sys is the set of
possible assignments to X. I(X) is a Boolean formula corresponding to the set
of initial states, and T (X,Y,X ′) is a Boolean formula representing the transition
relation. State s2 is a successor of state s1 with input y iff s1 ∧y ∧s′

2 |= T, which
is also denoted by (s1, y, s2) ∈ T . In the following, we will also write (s1, s2) ∈ T
meaning that (s1, y, s2) ∈ T for some assignment y to the input variables. A path
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of length k is a finite state sequence s1, s2, . . . , sk, where (si, si+1) ∈ T holds for
(1 ≤ i ≤ k−1). A state t is reachable from s in k steps if there is a path of length
k from s to t. Let S be a set of states in Sys. We overload T and denote the
set of successors of states in S as T (S) = {t | (s, t) ∈ T, s ∈ S}. Conversely, we
define the set of predecessors of states in S as T−1(S) = {s | (s, t) ∈ T, t ∈ S}.
Recursively, we define T 0(S) = S and T i+1(S) = T (T i(S)) where i ≥ 0; the
notation T−i(S) is defined analogously. In short, T i(S) denotes the states that
are reachable from S in i steps, and T−i(S) denotes the states that can reach S
in i steps.

2.2 Safety Checking and Reachability Analysis

Given a transition system Sys = 〈X,Y, I, T 〉 and a safety property P , which
is a Boolean formula over X, a model checker either proves that P holds for
any state reachable from an initial state in I, or disproves P by producing a
counterexample. In the former case, we say that the system is safe, while in the
latter case, it is unsafe. A counterexample is a finite path from an initial state
s to a state t violating P , i.e., t ∈ ¬P , and such a state is called a bad state.
In symbolic model checking, safety checking is reduced to symbolic reachabil-
ity analysis. Reachability analysis can be performed in a forward or backward
search. Forward search starts from initial states I and searches for bad states
by computing T i(I) with increasing values of i, while backward search begins
with states in ¬P and searches for initial states by computing T−i(¬P ) with
increasing values of i. Table 1 gives the corresponding formal definitions.

Table 1. Exact reachability analysis.

Forward Backward

Base F0 = I B0 = ¬P
Induction Fi+1 = T (Fi) Bi+1 = T−1(Bi)

Safe Check Fi+1 ⊆ ⋃
0≤j≤i Fj Bi+1 ⊆ ⋃

0≤j≤i Bj

Unsafe Check Fi ∩ ¬P �= ∅ Bi ∩ I �= ∅

For forward search, Fi denotes the set of states that are reachable from I
within i steps, which is computed by iteratively applying T . At each iteration,
we first compute a new Fi, and then perform safe checking and unsafe checking. If
the safe/unsafe checking hits, the search terminates. Intuitively, unsafe checking
Fi ∩ ¬P 	= ∅ indicates some bad states are within Fi and safe checking Fi+1 ⊆⋃

0≤j≤i Fj indicates that all reachable states from I have been checked and none
of them violate P . For backward search, Bi is the set of states that can reach
¬P in i steps, and the search procedure is analogous to the forward one.

Notations. A literal is an atomic variable or its negation. If l is a literal, we
denote its corresponding variable with var(l). A cube (resp. clause) is a conjunc-
tion (resp. disjunction) of literals. The negation of a clause is a cube and vice
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versa. A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses.
For simplicity, we also treat a CNF formula φ as a set of clauses and make no
difference between the formula and its set representation. Similarly, a cube or a
clause c can be treated as a set of literals or a Boolean formula, depending on
the context.

We say a CNF formula φ is satisfiable if there exists an assignment of its
Boolean variables, called a model, that makes φ true; otherwise, φ is unsatisfiable.
A SAT solver is a tool that can decide the satisfiability of a CNF formula φ. In
addition to providing a yes/no answer, modern SAT solvers can also produce
models for satisfiable formulas, and unsatisfiable cores (UC), i.e. a reason for
unsatisfiability, for unsatisfiable ones. More precisely, in the following we shall
assume to have a SAT solver that supports the following API (which is standard
in state-of-the-art SAT solvers based on the CDCL algorithm [24]):

– is SAT(φ,A) checks the satisfiability of φ under the given assumptions A,
which is a list of literals. This is logically equivalent to checking the satisfia-
bility of φ ∧ ∧ A, but is typically more efficient;

– get UC() retrieves an UC of the assumption literals of the previous SAT call
when the formula φ ∧ ∧ A is unsatisfiable. That is, the result is a set uc ⊆ A
such that φ ∧ ∧

uc is unsatisfiable;
– get model() retrieves the model of the formula φ∧∧A of the previous SAT

call, if the formula is satisfiable.

2.3 Overview of IC3 and CAR

IC3 is a SAT-based and complete safety model checking algorithm proposed
in [11], which only needs to unroll the system at most once. PDR [17] is a re-
implementation of IC3 which optimizes the original version in different aspects.
To prove the correctness of a given system Sys = 〈X,Y, I, T 〉 w.r.t. the safety
property P , IC3/PDR maintains a monotone over-approximate state sequence O
such that (1) O0 = I and (2) Oi+1 ⊇ Oi ∪T (Oi) for i ≥ 0. From the perspective
of reachability analysis, IC3 performs as shown in the left part of Table 2. Since
O is monotone, the states search can converge as soon as Oi+1 = Oi holds for
some i ≥ 0. Otherwise, a state path (counterexample) starting from I to some
state in ¬P can be detected (T−i(¬P ) ∩ I 	= ∅).

Table 2. A high-level description of IC3 (left) and (Forward) CAR (right).

Over-approximate Under-approximate

Base O0 = I -

Induction Oi+1 ⊇ Oi ∪ T (Oi) -

Safe Check ∃i · Oi+1 = Oi -

Unsafe Check - ∃i · T−i(¬P ) ∩ I �= ∅

Over-approximate Under-approximate

Base O0 = I U0 = ¬P
Induction Oi+1 ⊇ T (Oi) Ui+1 ⊆ T−1(Ui)

Safe Check ∃i · Oi+1 ⊆ ⋃
0≤j≤i Oj -

Unsafe Check - ∃i · Ui ∩ I �= ∅

CAR [23] is a recently proposed algorithm, which can be considered as a
general version of IC3. The main points CAR differs from IC3 are as follows:



292 Y. Xia et al.

Algorithm 1. Overview of IC3
1: procedure IC3(I, T , P )
2: if is SAT(I ∧ ¬P ) then // unsafe check of initial state
3: return unsafe
4: O0 := I, k := 1, Ok := �
5: while true do
6: while is SAT(Ok ∧ ¬P ) do
7: s := get model() // s |= Ok ∧ ¬P
8: if UnsafeCheck(s, k − 1) then
9: return unsafe // counterexample found

10: k := k + 1, Ok := �
11: if SafeCheck(k) then
12: return safe // property proved

13:
14: function Unsafecheck(s, i)
15: while is SAT(Oi ∧ ¬s ∧ T , s′) do
16: if i = 0 then
17: return true
18: t :=get predecessor(s, i) // (t, s) ∈ T , see Algorithm 4
19: if UnsafeCheck(t, i − 1) then
20: return true
21: c := generalize({l|l′ ∈ get UC()}, i) // c ⊆ s, see Algorithm 3
22: Oj := Oj ∩ ¬c, 1 ≤ j ≤ i + 1
23: return false
24:
25: function Safecheck(k)
26: propagation(k) // see Algorithm 4
27: i := 0
28: while i < k do
29: if Oi = Oi+1 then
30: return true
31: return false

– The over-approximate state sequence O in CAR is not necessarily monotone.
Therefore, CAR has to apply the standard invariant-checking approach, i.e.,
finding a position i ≥ 0 such that Oi+1 ⊆ ⋃

0≤j≤i Oj holds, as shown in the
right part of Table 2.

– Besides the O sequence, CAR also maintains an under-approximate state
sequence U that stores reachable (real) states from ¬P , see Table 2. The
motivation to introduce the U sequence is to re-use the intermediate states
that are computed during proving. Although it is straightforward for IC3 to
introduce such a sequence, the effect on the performance remains unknown.

– CAR can be performed in both forward, i.e., proving from I while search-
ing states back from ¬P , and backward, i.e., proving back from ¬P while
searching states from I. Although Backward CAR is not good at proving, it is
advantageous in finding bugs, i.e., checking unsafety [16,22]. Relevant work on
reverse IC3/PDR [28], which corresponds to Backward CAR, has been studied
but the results did not clearly support its advantage on bug-finding.

An overview of IC3 and (forward) CAR is shown in Algorithm 1 and Algo-
rithm 2 respectively. At a high level, both algorithms have a similar structure,
consisting of an alternation of two phases: unsafe check and safe check. The
unsafe check (line 14 of Algorithm 1, line 14 of Algorithm 2) tries to find a state
sequence that is a path between I and ¬P ; if such a sequence can be found,
then it is a counterexample witnessing the violation of P ; otherwise, the Oi are
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Algorithm 2. Overview of CAR
1: procedure CAR forward(I, T , P )
2: if is SAT(I ∧ ¬P ) then // unsafe check of initial state
3: return unsafe
4: O0 := I, U := {¬P}, k := 0
5: while true do
6: while is SAT(U) do
7: s := get model() // s ∈ U
8: if UnsafeCheck(s, k) then
9: return unsafe // counterexample found

10: if SafeCheck(k) then
11: return safe // property proved

12: k := k + 1, Ok := �
13:
14: function Unsafecheck(s, i)
15: while is SAT(Oi ∧ T , s′) do
16: if i = 0 then
17: return true
18: t := get predecessor(s, i) // (t, s) ∈ T , see Algorithm 5
19: U := U ∪ {t}
20: if UnsafeCheck(t, i − 1) then
21: return true
22: c := generalize({l|l′ ∈ get UC()}, i) // c ⊆ s, see Algorithm 3
23: Oi+1 := Oi+1 ∩ ¬c
24: return false
25:
26: function Safecheck(k)
27: propagation(k) // see Algorithm 5
28: i := 0
29: while i < k do
30: if not is SAT(Oi+1 ∧ ¬(

∨
0≤j≤i Oj)) then

31: return true
32: return false

strengthened with additional clauses until Ok is strong enough to imply P .1 The
safe check (line 25 of Algorithm 1, line 26 of Algorithm 2) tries to propagate the
clauses in Oi to Oi+1 and check if a fixpoint is reached. If so then the algorithm
terminates. Both algorithms make use of similar additional procedures, which
will be detailed in the following section, when we introduce our novel heuristics.

3 Finding i-Good Lemmas

In this section, we introduce the concept of i-good lemmas, define the heuristics to
steer the search towards i-good lemmas and describe the IC3 and CAR algorithms
enhanced with i-good lemmas. For the sake of convenient description, we fix the
input system Sys = 〈X,Y, I, T 〉 and the property P to be verified. In describing
the implementation of our heuristics, we shall necessarily assume that the reader
has some familiarity with the low-level details of IC3 and CAR, for which we
refer to [11,17,23]. Specifically, we shall use pseudo-code descriptions of the main
components of the algorithms (Algorithm 3, 4, and 5), in which the modifications
required to implement our heuristics are highlighted in blue.
1 Note that in the unsafe check, the meaning of the SAT query is SAT(Oi ∧ T , s′) is

different between CAR and IC3 (line 15 Algorithm 2) so that when it is unsatisfiable
the obtained clauses have different semantics.
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3.1 What Are i-good Lemmas

The over-approximate state sequence O in IC3 (resp. CAR) is a finite sequence, in
which every element Oi (0 ≤ i < |O|), namely frame i, is an over-approximation
of the states of the system that are reachable in up to (resp. exactly) i steps
from I, and which is strong enough to imply P . Such sequence O has the form
of P ∧ C, where C is a CNF, and each clause in C is called a lemma. For both
algorithms, the goal is that of transforming the sequence O to construct an
over-approximation of all the reachable states of the system (over an unbounded
horizon) that still implies P . When this happens, such over-approximation is an
inductive invariant that proves P . The key idea, common to both IC3 and to
CAR, is to construct the invariant incrementally and by reasoning in a localized
manner, by (i) considering increasingly-long sequences of overapproximations,
and by (ii) trying to propagate forward individual lemmas from a frame Oi to
its successor Oi+1, until a fixpoint is reached2. The forward propagation proce-
dure is crucial for ensuring the convergence of the algorithm in practice: for IC3
(resp. CAR), it checks whether a lemma c at frame i represents also an overap-
proximation of all the states reachable in up to (resp. exactly) i + 1 steps, and
therefore can be added to frame i + 1. It is immediate to see that the successful
propagation of all lemmas from i to i+1, for some i, is a sufficient condition for
the termination of both IC3 and CAR with a safe result. In fact, for IC3, this is
also a necessary condition.

We now introduce the notion of i-good lemma.

Definition 1 (i-Good Lemma). Let c be a lemma that was added at frame
i by IC3/CAR (at some previous step in the execution of the algorithm), i.e.
Oi |= c. We say that c is i-good if c now holds also at frame i+1, i.e. Oi+1 |= c.

The following theorems are then consequences of the definition.

Theorem 1. IC3 terminates with safe at frame i (i > 0), if and only if every
lemma at frame i is i-good.

Theorem 2. CAR terminates with safe at frame i (i > 0), if every lemma at
frame i is i-good.

Such theorems provide the theoretical foundation on which we base our main
conjecture: the computation of i-good lemmas can be helpful for both IC3 and
CAR to accelerate the convergence in proving properties. Intuitively, an i-good
lemma shows the promise of being independent of the reachability layer, and
hence holds in general.

2 The algorithms differ in the way they check reaching the fixpoint, but this difference
will be ignored unless otherwise stated.
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3.2 Searching for i-good Lemmas

Our conjecture is that there exists, on average, a positive correlation between
the ratio of i-good lemmas vs the total amount of lemmas computed by IC3/CAR
during generalization and the efficiency of the algorithm.

Ensuring that only i-good lemmas are produced is as hard as solving the
verification problem itself, since this is essentially equivalent to synthesizing an
inductive invariant which implies P . However, there are two situations in which
it is easy to identify i-good lemmas, for both IC3 and CAR:

1. In the propagation procedure, if a lemma c can be successfully pushed from
frame i to frame i + 1, then c is i-good;

2. In the generalize procedure, if the current lemma c at frame i is generalized
to a lemma p ⊆ c such that p ∈ Oi−1, then p is (i − 1)-good; additionally,
if we can guide the generalization of c so that it produces p, then p becomes
(i − 1)-good.

Therefore, we do not attempt to compute only i-good lemmas, but rather,
our main idea is to use some (cheap) heuristics to increase the probability of
producing i-good lemmas during the normal execution of IC3 and CAR.

We exploit the above observations to design two heuristics that try to bias
the search for lemmas towards those that are more likely to be i-good, which we
call respectively branching and refer-skipping.

Branching. The branching strategy [26] is an important feature of modern
CDCL (Conflict-Driven Clause Learning) SAT solvers [7]. Traditional scoring
schemes for branching such as VSIDS and EVSIDS have been extensively evalu-
ated in [10]. In CDCL SAT solvers, decision variables are selected according to
their priority. Whenever a conflict occurs, the priority of each variable in the
clause is increased. To this end, variables that have recently been involved in
conflicts are more likely to be selected as decision variables.

We adopt a similar idea in our branching heuristic for IC3/CAR to bias the
unsatisfiable cores produced by the SAT solver, by ordering the assumptions in
SAT queries according to their score. This is based on the fact that modern SAT
solvers based on CDCL apply the assumption literals in the order given by the
user, and (as a consequence of how CDCL works) the unsatisfiable core produced
when the formula is unsatisfiable depends on such order, with literals occurring
earlier in the assumption list being more likely to be included in the core. For
example, assume the SAT query is is SAT(¬1 ∧ (2 ∨ ¬3), 1 ∧ ¬2 ∧ 3), which is
unsatisfiable, then the returned UC from the SAT solver, e.g., Minisat [5,18], will
be {1}. If the order of assumptions is changed to 3 ∧ ¬2 ∧ 1, then the UC will be
{3,¬2}.

Since UCs are the source for lemmas in both IC3 and CAR, the first idea of
our branching heuristic is that of sorting the assumption literals in SAT queries
according to how often they occur in recent i- good lemmas. Concretely, this is
implemented as follows:

– We introduce a mapping S[v] : v → scorev, v ∈ X from each variable to its
score (priority). Initially, all variables have the same score of 0.
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– Before each SAT query in which a (negated) lemma c (or its next-state version
c′) is part of the assumptions, c is sorted in descending order of S[var(l)], where
l ∈ c, to give higher priority to assumption literals with higher scores. This
corresponds to the calls to the function sort(c) in the pseudo-code description
of the main components of IC3 and CAR: at the beginning of Unsafecheck
(Algorithm 1 and 2), in Get predecessor (line 6 of Algorithm 4, line 6 of
Algorithm 5), and in Generalization (line 25 of Algorithm 4, line 23 of
Algorithm 5).

– Whenever IC3 or CAR discovers an i-good lemma c, all the variables in c are
rewarded by increasing their score. A lemma c is determined to be i-good
either when it is propagated forward from frame i to frame i + 1 (function
propagation of Algorithm 4 and 5) or when c is the result of a generaliza-
tion from d ⊇ c at frame i + 1 such that c is already in frame i (function
generalize, Algorithm 3). In the pseudo-code, the reward steps correspond
to the calls to the function reward(c) at line 12 of Algorithm 3, line 42 of
Algorithm 4, and line 37 of Algorithm 5. The reward function first decays
the scores of all the variables in S[v] by a small amount (we multiply by 0.99
in our implementation), and then increments the score of all the variables in
c (by 1 in our implementation).
In order to determine whether generalize produced an i-good lemma, we
also use the function get parentnode(c) (line 3 of Algorithm 3), which
returns a cube p in frame i − 1 such that p ⊆ c when c belongs to frame i. (If
multiple such p exist, the one with the highest score is returned).

– When performing inductive generalization of a lemma c at frame i (Algo-
rithm 3), in which c is strengthened by trying to drop literals from it as long
as the result is still a valid lemma for frame i, the literals of c are sorted in
increasing order of S[var(l)], with l ∈ c. This corresponds to the call to the
function reverse sort(c) at line 2 of Algorithm 3 in the pseudo-code.

Algorithm 3. Lemma Generalization of IC3/CAR
1: function generalize(c, i, rec lvl = 1)
2: reversed sort(c) // sort literals in c in increasing order of priority
3: ¬p :=get parentnode(¬c) // ¬p ∈ Fi−1(Oi−1) and p ⊆ c
4: req := p // skip literals in p
5: for each l ∈ c and l �∈ req do
6: cm := c \ {l}
7: if down(cm, i, rec lvl, req) then // CTG-based dropping, see Algorithm 4 and 5
8: c := cm
9: else

10: req := req ∪ {l} // failed to drop l

11: if c \ p = ∅ then // whether c is a good lemma
12: reward(c) // raise priority of variables in c

13: return c

Skipping Literals by Reference. Lemma generalization is a crucial process
in IC3/CAR that affects performance significantly. Given the original lemma c
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Algorithm 4. Auxiliary functions for IC3
1: function get predecessor(s, i) // generalization of predecessors
2: assert(is SAT(Oi ∧ ¬s ∧ T , s′)) // precondition: ∃t that (t, s) ∈ T
3: µ := get model()
4: in := {l ∈ µ|var(l) ∈ Y }
5: t := {l ∈ µ|var(l) ∈ X}
6: sort(t) // sort literals in s in descending order of priority
7: while not is SAT(Oi ∧ in ∧ ¬s′, t) do
8: if t =get UC() then
9: break

10: t :=get UC()

11: return t
12:
13: function down(c, i, rec lvl, req) // CTG-based dropping literals
14: cex num := 0
15: while true do
16: if is SAT(I ∧ c) then
17: return false
18: if not is SAT(Oi ∧ ¬c ∧ T , c′) then
19: c :={l|l′ ∈ get UC()}
20: return true
21: else if rec lvl > MAX REC LVL then // MAX REC LVL = 3
22: return false
23: else
24: cex := get predecessor(c, i) // cex as a counter-example of generalization
25: sort(cex) // sort literals in s in descending order of priority
26: if cex num < MAX CEX NUM and i > 0 and not is SAT(Oi−1 ∧ ¬cex ∧ T , cex′)

and not is SAT(I ∧ cex) then // MAX CEX NUM = 3
27: ccex :=generalize({l|l′ ∈ get UC()}, i − 1, rec lvl + 1)
28: Ok := Ok ∩ ¬ccex, 1 ≤ k ≤ i − 1
29: cex num + +
30: else
31: cex num := 0
32: if (c \ cex) ∩ req �= ∅ then
33: return false
34: c := c ∩ cex
35:
36: function propagation(k)
37: i := 1
38: for i < k do
39: for ¬c ∈ Oi do
40: if not SAT(Oi ∧ ¬c ∧ T, c′) then
41: Oi+1 := Oi+1 ∩ ¬c
42: reward(c) // raise priority of variables in c

to be added into frame i (i > 0), the generalize procedure tries to compute a
new lemma g such that g ⊆ c and g is also valid to be added to frame i (Oi).
The main idea of generalization is to try to drop literals in the original lemma
one by one, to see whether the left part can still be a valid lemma.

There are several generalization algorithms with different trade-offs between
efficiency (in terms of the number of SAT queries) and effectiveness (in terms
of the potential reduction in the size of the generalized lemma), e.g. [11,17,20].
More in general, there might be multiple different ways in which a lemma c can
be generalized, with results of uncomparable strength (i.e. there might be both
g1 ⊆ c and g2 ⊆ c such that g1 	⊆ g2 and g2 	⊆ g1).

The main idea of the refer-skipping heuristic is to bias the generalization to
increase the likelihood that the result g is a (i − 1)-good lemma. Consider the
generalization of lemma c = ¬1 ∨ 2 ∨ ¬3 at frame i (i > 1). If there is already a
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Algorithm 5. Auxiliary functions for CAR
1: function get predecessor(s, i) // generalization of predecessors
2: assert(is SAT(Oi ∧ T , s′)) // precondition: ∃t that (t, s) ∈ T
3: µ := get model()
4: in := {l ∈ µ|var(l) ∈ Y }
5: t := {l ∈ µ|var(l) ∈ X}
6: sort(t) // sort literals in s in descending order of priority
7: while not is SAT(Oi ∧ in ∧ ¬s′, t) do
8: if t =get UC() then
9: break

10: t :=get UC()

11: return t
12:
13: function down(c, i, rec lvl) // CTG-based dropping literals
14: cex num := 0
15: while true do
16: if not is SAT(Oi ∧ T , c′) then
17: c :={l|l′ ∈ get UC()}
18: return true
19: else if rec lvl > MAX REC LVL then // MAX REC LVL = 3
20: return false
21: else
22: cex := get predecessor(c, i)
23: sort(cex) // sort literals in s in descending order of priority
24: if cex num < MAX CEX NUM and i > 0

and not is SAT(Oi−1 ∧ T , cex) then // MAX CEX NUM = 3
25: ccex :=generalize({l|l′ ∈ get UC()}, i − 1, rec lvl + 1)
26: Oi−1 := Oi−1 ∩ ¬ccex
27: cex num + +
28: else
29: return false
30:
31: function propagation(k)
32: i := 1
33: for i < k do
34: for ¬c ∈ Oi do
35: if not SAT(Oi ∧ T, c′) then
36: Oi+1 := Oi+1 ∩ ¬c
37: reward(c) // raise priority of variables in c

lemma g = ¬1∨¬3 at frame i−1, we say that g is a candidate (i−1)-good lemma
for the generalization of c. In order to drive the generalization of c towards g, we
blacklist the literals of g, so that generalize will never attempt to drop them
from c. As such, we call g a reference for skipping generalization. In general,
there might be multiple references for a given lemma. Currently, our strategy in
refer-skipping is to just pick the one first found.

The implementation of refer-skipping is based on existing generalization algo-
rithms and only needs to add less than 10 lines in the pseudo-code (see line 4-10
of Algorithm 3). As shown in the algorithm, a variable set req is maintained to
store variables that fail to be dropped so that they are not tried to be removed
again later. In order to use refer-skipping, we simply initialize req with the vari-
ables occurring in the candidate (i − 1)-good lemma that is returned by the
get parentnode procedure (line 3 of Algorithm 3).

Finally, note that although in our pseudo-code (and in our implementation)
we use the CTG algorithm of [20], the idea discussed here can be applied also
to the other variants of generalization just as easily.
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4 Related Work

In the field of safety model checking, after the introduction of IC3 [11], several
variants have been presented: [20] presents the counterexample-guided general-
ization (CTG) of a lemma by blocking states that interfere with it, which sig-
nificantly improves the performance of IC3; AVY [33] introduces the ideas of IC3
into IMC (Interpolant Model Checking) [25] to induce a better model checking
algorithm; its upgrade version kAVY [32] uses k-induction to guide the interpola-
tion and IC3/PDR generalization inside; [28] proposes to combine IC3/PDR with
reverse IC3/PDR; the subsequent work [29] interleaves a forward and a back-
ward execution of IC3 and strengthens one frame sequence by leveraging the
proof-obligations from the other; IC3-INN [15] enables IC3 to leverage the inter-
nal signal information of the system to induce a variant of IC3 that can perform
better on certain industrial benchmarks; [30] introduces under-approximation in
PDR to improve the performance of bug-finding.

The importance of discovering inductive lemmas for improving convergence is
first noted in [17]. In PDR terminology, inductive lemmas are the ones belonging
to frame O∞, as they represent an over-approximation of all the reachable states.

The most relevant related work is [21], where a variant of IC3 named QUIP
is proposed for implementing the pushing of the discovered lemmas to O∞. At
its essence, QUIP adds the negation of a discovered lemma c as a may-proof-
obligation, hence trying to push c to the next frame. Counterexamples of may-
proof-obligations represent an under-approximation of the reachable states and
are stored to disprove the inductiveness of other lemmas. In QUIP terminology,
such lemmas are classified as bad lemmas, as they have no chance of being part
of the inductive invariant. Since the pushing is not limited to the current number
of frames, inductive lemmas are discovered when all the clauses of a frame can
be pushed (Ok \ Ok+1 = ∅ for a level k), and then added in O∞. In QUIP
terminology, lemmas belonging to O∞ are classified as good lemmas, and are
always kept during the algorithm. Observe that the concept of good lemma in
[21] is a stronger version of Definition 1, which instead is local to a frame i and
characterizes lemmas that can be propagated one frame ahead.

Both QUIP and our heuristic try to accomplish a similar task, which is prior-
itizing the use of already discovered lemmas during the generalization. There
are however several differences: QUIP proceeds by adding additional proof-
obligations to the queue and by progressively proving the inductiveness of a
lemma relative to any frame. Our approach, on the other hand, is based on a
cheap heuristic strategy that locally guides the generalization prioritizing the
locally good lemmas. Some i-good lemmas computed may not be part of the
final invariant and can not be pushed later; in QUIP, such lemmas would not be
considered good. In our view, pushing them is not necessarily a waste of effort,
because they still strengthen the frames and their presence might be necessary
to deduce the final invariant. Finally, it is worth mentioning that our heuristic
is much simpler to implement and integrate into different PDR-based engines.

The idea of ordering literals when performing inductive generalization is
already proposed in [11] and adopted, as a default strategy, in several imple-
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mentations of IC3 [3,17,19], yielding modest improvements on HWMCC bench-
marks, however without clear trends identified (see [17,19]). Compared to such
works, our approach has two main differences. First, these heuristics favor literals
occurring more frequently in all previous frames, whereas our approach is driven
by the role of lemmas and prefers the variables occurring only in those are i-
good. Second, our use of ordering heuristics is more pervasive: unlike in previous
works, where variable ordering heuristics are only used during the lemma gen-
eralization, we use ordering everywhere the SAT results affect search direction,
which makes it more effective to bias the search.

5 Evaluation

5.1 Experimental Setup

We integrated the branching and refer-skipping heuristics into three systems: the
IC3Ref [3] and SimpleCAR [6] (open-source) model checkers, which implement
the IC3 and (Forward and Backward3) CAR algorithms respectively, and the
mature, state-of-the-art implementation of IC3 available inside the nuXmv model
checker [12]. We make our implementations and data for reproducing the exper-
iments available at https://github.com/youyusama/i-Good Lemmas MC.

Since our approach is related to QUIP [21], we include the evaluation of
QUIP, and IC3 (mainly as the baseline for QUIP), as implemented4 in IIMC [4].
We also consider the PDR implementation in the ABC model checker [1], which
is state-of-the-art in hardware model checking.

Table 3. Tools and algorithms evaluated in the experiments.

Tools Algorithms Available Flags

IC3Ref [3] IC3 (ic3) -br | -rs | -sh

SimpleCAR [6] Forward CAR (fcar) -br | -rs | -sh

nuXmv [12] IC3 (nuXmv) -br | -rs | -sh

IIMC [4] QUIP (iimc-quip) –

IIMC [4] IC3 (iimc-ic3) –

ABC [1] PDR (abc-pdr) –

Table 3 summarizes the tested tools, algorithms, and their flags. We use the
flag “-br” to enable the branching heuristic and “-rs” to enable refer-skipping.
Furthermore, we evaluate also another configuration (denoted as “-sh”), in which
the calls to sort() functions in Algorithms 4 and 5 are replaced by random
3 Although there is an implementation of Backward CAR in SimpleCAR, this method-

ology corresponds to reverse IC3. As a result, we did not include Backward CAR in
this paper and left the evaluation in future work.

4 As far as we know, this is the only publicly available QUIP implementation.

https://github.com/youyusama/i-Good_Lemmas_MC
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shuffles, thus simulating a strategy that orders variables randomly. When no flag
is active, IC3Ref runs the instances with its own strategy of sorting variables,
present in the original implementation.

We evaluate all the tools on 749 benchmarks, in aiger format, of the SINGLE
safety property track of the 2015 and 2017 editions of HWMCC [8]5. We ran the
experiments on a cluster, which consists of 2304 2.5GHz CPUs in 240 nodes
running RedHat 4.8.5 with a total of 96GB RAM. For each test, we set the
memory limit to 8GB and the time limit to 5 h. During the experiments, each
model-checking run has exclusive access to a dedicated node.

To increase our confidence in the correctness of the results, we compare the
results of the solvers to make sure they are all consistent (modulo timeouts).
For the cases with unsafe results, we also check the provided counterexample
with the aigsim tool from the Aiger package [2]. We have no discrepancies in the
results, and all unsafe cases successfully pass the aigsim check.

5.2 Experimental Results

Overview. The results of the experimental evaluation are discussed below. We
first consider the aggregated results, as reported in Table 4. For each tool, we
group the results obtained with the various configurations; we report the total
number of benchmarks solved, distinguishing between safe and unsafe bench-
marks; we also report the benchmarks gained and lost by the configurations with
branching and/or refer-skipping active, relative to the baseline where branching
and refer-skipping are not active. We can draw the following conclusions.

– The proposed heuristics are in general effective in improving performance.
Each of the model checkers, with at least one of branching and refer-skipping
active, consistently outperforms the respective baseline in terms of the number
of benchmarks solved.

– The same holds within the safe instances, with the exception of refer-skipping
in nuXmv that solves two safe benchmarks less than the baseline.

– The heuristics also yield a uniform improvement over the baseline in the
unsafe instances.

– The combination of branching and refer-skipping gives further improvements
over a single technique, with the exception of nuXmv with branching, which
cumulatively solves 5 more benchmarks than nuXmv with branching and refer-
skipping.

– The gain is not uniform across the instances. For example, nuXmv with branch-
ing gains 52 benchmarks (44 safe and 8 unsafe) that are not solved by nuXmv
baseline, while losing 13 (safe) benchmarks. This level of variability can be
expected, given a heuristic approach, but further investigation is needed to
assess the underlying phenomena.

5 From HWMCC 2019, the official format used in the competition is switched from
Aiger to Btor2 [27], a format for word-level model checking. As a result, we did not
include those instances in our experiments.
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– The performance of using the heuristics guided by random variable ordering
does not differ significantly from the baseline in terms of aggregate results.
There are some differences (as expected) at the level of individual instances,
especially for CAR, but no clear trend emerges overall.

– The comparison also shows that the considered systems compare well against
the state-of-the-art system ABC, and QUIP; QUIP turns out to be quite inef-
ficient and is disregarded in the following. Note that the original implemen-
tation of QUIP is not available; the fact that the available version of QUIP
implemented on top of IIMC does not seem to achieve the same improvements
reported in the original paper [21] (the code for which is unfortunately not
available) suggests that the QUIP is far from trivial to implement. As the
reference, QUIP performs even worse than the IC3 implementation in IIMC,
whose performance is similar to the IC3Ref baseline, see Table 4.

Table 4. Summary of overall results among different configurations.

Configuration #Solved #Safe #Unsafe Gained(safe/unsafe) Lost(safe/unsafe)

ic3 -br -rs 439 313 126 25(18/7) 6(4/2)

ic3 -br 428 302 126 22(15/7) 14(12/2)

ic3 -rs 430 308 122 21(17/4) 11(8/3)

ic3 -sh 420 299 121 – –

ic3 417 297 120 9(7/2) 12(9/3)

fcar -br -rs 444 319 125 54(43/11) 1(0/1)

fcar -br 429 308 121 43(33/10) 5(1/4)

fcar -rs 410 295 115 23(22/1) 4(3/1)

fcar -sh 394 277 117 31(22/9) 28(21/7)

fcar 391 276 115 – –

nuXmv -br -rs 497 353 144 49(39/10) 15(15/0)

nuXmv -br 502 360 142 52(44/8) 13(13/0)

nuXmv -rs 473 333 140 26(19/7) 16(15/1)

nuXmv -sh 464 327 137 7(4/3) 6(6/0)

nuXmv 463 329 134 – –

abc-pdr 430 315 115 – –

iimc-ic3 418 307 111 – –

iimc-quip 377 281 96 – –

Similar insights can be obtained from Fig. 1, which clearly shows the positive
effect of improvements in performance.

Detailed Statistics. As shown in Table 4 and Fig. 1, nuXmv is highly optimized
and has a much better performance than other open-source IC3 implementa-
tions, but enabling both heuristics is still useful to improve its overall perfor-
mance by solving 34 more instances. For IC3Ref and SimpleCAR, the increased
numbers of solved cases are 19 and 53, respectively. Moreover, from Table 4,
nuXmv/IC3Ref/SimpleCAR is able to solve 24/14/43 more safe and 10/5/10 more
unsafe instances with both heuristics.
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A comparison of the performance of the tools with and without the heuristics
is shown in Fig. 2. All three solvers are able to reduce their time cost when equip-
ping with branching and refer-skipping (see the last row of the figure). Explicitly,
67.8% of the instances cost less or equal to check by ‘nuXmv -br -rs’, and the
corresponding portions for ‘ic3 -br -rs’ and ‘fcar -br -rs’ are 77.9% and 87.0%.
The variability occurs when considering only a single heuristic, which needs to
be explored in the future. For example, ‘fcar -br’ and ‘nuXmv -rs’ generally cost
slightly more time than ‘fcar’ and ‘nuXmv’, respectively.

Fig. 1. Comparisons among the implementations of IC3, PDR and CAR under different
configurations. (To make the figure more readable, we skip the results with a single
heuristic, which are still shown in Table 4.)

According to Table 4, either branching or refer-skipping is effective for improv-
ing nuXmv, IC3Ref, and SimpleCAR. For nuXmv and SimpleCAR, branching is
more useful, considering that ‘nuXmv -br’ (resp. ‘fcar -br’) solves 39 (resp. 38)
more instances than ‘nuXmv’ (resp. ‘fcar’), with 31 (resp. 32) safe and 8 (resp.
6) unsafe. For IC3Ref, the improvement with either heuristic seems relatively
modest, i.e., ‘ic3 -br’ solves 8 more instances than ‘ic3’, with 3 safe and 5 unsafe,
while ‘ic3 -rs’ solves 10 more instances than ‘ic3’, with 9 safe and 1 unsafe.

As listed above, ‘ic3 -br -rs’ loses only 6 instances that are solved by ‘ic3’,
while ‘fcar -br -rs’ even loses only 1 instance that is solved by ‘fcar’, which
indicates the performance domination of ‘fcar -br -rs’ over ‘fcar’. For ‘nuXmv -br
-rs’, the number of lost cases is 15, which is still modest when compared to the
gain of 49. So enabling branching and refer-skipping together makes the checkers
pay a limited cost. The same applies to the situations when equipping with only
one single heuristic for the checkers, see Table 4.

5.3 Why Do branching and refer-skipping Work?

To measure why branching and refer-skipping work, we introduce sr, i.e. the
success rate in computing i-good lemmas. Formally, sr = Ng/N where Ng is
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Fig. 2. Time comparison between IC3/CAR with and without two heuristics on safe-
unsafe cases. The baseline is always on the y-axis. Points above the diagonal indicate
better performance with the heuristics active. Points on the borders indicate timeouts
(18000 s).

Fig. 3. Comparison on the success rate (sr) to compute i-good lemmas between
IC3/CAR with and without branching and refer-skipping.
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the number of generalizations that successfully return i-good lemmas, while N
is the total number of generalization calls. We instrumented the two open-source
checkers IC3Ref and SimpleCAR in order to compute sr for each terminating run
(including each run with/without a returned result at timeout).

– Consider the results presented in Fig. 3. The figure shows the comparison
of the success rate in computing i-good lemmas between IC3/CAR with and
without the heuristics. ‘ic3 -br -rs’ computes more i-good lemmas than ‘ic3’
on 54% tested instances, while ‘fcar -br -rs’ computes more i-good lemmas
than ‘fcar’ on 67% tested instances, the portion of which is even higher.
This supports the conjecture that enabling branching and refer-skipping makes
IC3/CAR compute more i-good lemmas.

– Now consider Fig. 4. The figure shows the comparison between the deviation
of success rate to compute i-good lemmas (Y axis) and the deviation of check-
ing (CPU) time (X axis) for IC3/CAR with and without the heuristics. The
meaning of each point in the plot is explained in the title of the figure. In
general, the more points located in the first quadrant, the better our claim
can be supported.
Clearly, the plot for both IC3 and CAR in Fig. 4 supports the conjecture
that searching more i-good lemmas can help achieve better model-checking
performance (time cost).

Fig. 4. Comparison between the deviation of the success rate (sr) to compute i-good
lemmas (Y axis) and the deviation of checking (CPU) time (X axis) for IC3/CAR with
and without the heuristics. For each instance, let the checking time of ‘ic3’/‘fcar’ be
t and that of ‘ic3 -br -rs’/‘fcar -br -rs’ be t′. Each point has t − t′ as the x value and
sr′ − sr as the y value.

Finally, we argue that computing as many i-good lemmas as possible is the
direction to take to improve the performance of IC3 and its variants. branching
and refer-skipping are two heuristics that can enable IC3/CAR to compute more
i-good lemmas. However, there can be more efficient ways to compute i-good
lemmas, which is left for our future work.
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6 Conclusions and Future Work

In this paper, we proposed a heuristic-based approach to improve the perfor-
mance of IC3-based safety model checking. The idea is to steer the search of the
over-approximation sequence towards i-good lemmas, i.e. lemmas that can be
pushed from frame i to frame i + 1. On the one side, we attempt to control the
way the SAT solver extracts the unsat cores, by privileging variables occurring
in i-good lemmas (branching); on the other, we control lemma generalization
by avoiding dropping literals that occur in a subsuming lemma in the previ-
ous layer (refer-skipping). The approach is very simple to implement and has
been integrated into two open-source model checkers and an industrial-strength,
closed-source model checker. The experimental evaluation, carried out on a wide
set of benchmarks, shows that the approach yields computational benefits on all
the implementations. Further analysis shows a correlation between i-good lem-
mas and performance improvements and suggests that the proposed heuristics
are effective in finding more i-good lemmas.

In the future, we plan to investigate the reasons for performance improve-
ment/degradation at the level of the single benchmarks. We will also attempt
to integrate the proposed ideas with the ideas in QUIP, explore different kinds
of heuristics, and lift this approach to the safety checking of infinite-state sys-
tems [13,14].
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