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Foreword

InOctober 2022, theComputational Social ScienceSociety of theAmericas convened
in Santa Fe, NM, for its first in-person conference since the start of the pandemic.
As in years past, the aim of the conference was twofold. First, it was to provide a
venue to present and discuss cutting-edge work in computational social science. We
view computational social science broadly, i.e., it is the theory-driven, nontrivial
use of computational methods to analyze, model, simulation, and explore social
systems. In this sense, we explicitly expand beyond the simple analysis of large data
gathered from a social system and explore how these signals correspond to social
science theory andoften explore the viability of hypothesized generatingmechanisms
underlying these social dynamics via agent-based simulation. Secondly, it was to
create an open dialog among computational social scientists to discuss the current
state and future direction of the field. The first, as you will find in the following
pages, was as dynamic, broad, and exciting as ever. In the discussions that took
place, the second came to light. While not represented in the papers contained in
these proceedings, it seems the consensus among the society is that the current state
of the field is strong with great future potential. Having said that, many felt the
field could have a broader impact—a topic we plan to explicitly address at the 2023
Conference.

It was an exciting event and great to see so many regulars and newmembers arrive
at the Drury Hotel ready to engage with one another face-to-face after such a long
break. In addition to our society members, we were joined by two fantastic keynote
speakers. During our evening banquet Dr. Patrick Grim discussed the wisdom of
crowds and the role of diversity and expertise in problem solving, diving into the
details of the concepts popularized by Dr. Page over the past few years. Over lunch
Dr. Stephanie Forrest discussed the biology of computation, highlighting many
features of biologic systems that shed light on the problem-solving capabilities of
human systems. If you missed these talks, check the society’s YouTube.com channel
for the recordings.

As usual, the breadth of the conference was impressive, spanning from land use to
dirty bomb evacuation and from reconceptualizing flocking algorithms to the belief
dynamics of a classroom. The discussions at receptions and meals were equally
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vi Foreword

energetic and wide-ranging. The papers contained in these proceedings demonstrate
the passion and extent of expertise of our society’s members, as well as that of
the field more generally. Among the papers, you will find novel analytic methods
to describe and characterize social systems from a numeric perspective and from
a linguistic perspective. You will also find many examples of sophisticated agent-
based simulations used to explore potential generating mechanisms exploited by
social systems to solve problems or mitigate external perturbations.

It is our hope that youwill find these papers as energizing to read aswe found them
to discuss. If so, you are invited to join the society and become more involved with
this vibrant community of academic, governmental, and private sector researchers
focused on the nontrivial use of computation to better understand social systems and
address the hard problems facing our planet and our species.

Matthew Koehler
The Computational Social Science

Society of the Americas
Santa Fe, NM, USA
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AMethod to Differentiate ‘Fringe’
and ‘Mainstream’ Beliefs, and Its
Application to Narratives on Russia,
Ukraine, and Putin’s 2022 War

Peter A. Chew, Matthew H. Fort, and Jonathan A. G. Chew

Abstract We introduce and describe an unsupervised text-analytic method which
we hypothesize could help an analyst seeking to make sense of the information
landscape to be able to pinpoint, from a high level, the sources of fringe narratives
and beliefs. The method is premised on the idea set forth in [1] that cults can often be
recognized ‘in the wild’ through their distinctive vocabulary. Building on concepts
from unsupervised learning, we generalize this idea to posit that even if we did not
know a priori which particular ‘distinctive vocabulary’ identified an as-yet unknown
‘fringe belief’, the textswhich are representative of ‘fringe’ beliefs should, in general,
stand out from the ‘mainstream’ of text when anomaly detection techniques are
applied. We test our hypothesis first by constructing an artificial dataset in which we
hand-select 27 snippets of text representative of a set of ‘fringe’ beliefs about Russia
and approximately the length of Twitter posts, add approximately 20,000 Twitter
posts gathered using ‘neutral’ words relevant to the topic of the 27 texts, and then
applying our technique while withholding from it which source each text came from.
We find that the technique can indeed direct the attention of the analyst to the 27
texts, the ‘needle in the haystack’. We then test the hypothesis again by applying the
technique to 2,838 articles from Russian-language media sources in 2022, including
three based inMoscow, and one which relocated to Latvia in 2014 to escape Kremlin
control and censorship. We hypothesize that in the Russian news media landscape,
the independent media organization should appear as ‘fringe’. Again, our hypothesis
is confirmed. There were also some surprises in the results, which we discuss—along
with how related techniques can also pinpoint what about the ‘fringe’ in each case
differentiates it from the mainstream.

P. A. Chew (B) · M. H. Fort · J. A. G. Chew
Galisteo Consulting Group, Inc., 4004 Carlisle Blvd NE Suite H, Albuquerque, NM 87107-4566,
USA
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2 P. A. Chew et al.

1 Background

‘First they ignore you, then they laugh at you, then they fight you, then youwin.’ This
quote, attributed (but maybe misattributed) toMahatma Gandhi, neatly demonstrates
the facets of a ‘fringe’ belief or theory. Copernicus’s heliocentric model of the Solar
System was, at one point, a fringe belief in the sense that it was not held to in the
mainstream. Indeed, Galileo was subjected to an Inquisition by the Catholic Church
which maintained that heliocentrism was heretical since it allegedly contradicted
the Bible. Today, Copernicanism has become uncontroversial; indeed, mainstream
(including Catholic and other mainstream religious) thought has no trouble simul-
taneously holding in mind the concept of a Solar System in which the Sun is at the
center, but also a galaxy in which the Sun is not at the center.

Though it turned out that Copernicus was onto something with his ‘fringe beliefs’,
it would be just as much of a mistake to think that those on the fringe are inevitably
those who are on the right side of history, as it would be to think that the fringe is, by
definition, ‘lunatic’. There is also such a thing as deception which can take hold on
the fringe just as easily as it can in the mainstream. The insurrectionists who stormed
the U.S. Capitol on January 6, 2021 were motivated by a set of beliefs, including
false beliefs, which—though shared by the President of the United States—were not,
we believe it is safe to say, representative of a majority of Americans.

We must also note that what is fringe relative to one group may be mainstream
relative to another. Galileo’s contretemps with the Catholic Church of course had a
religious dimension, and there were those among the January 6 insurrectionists who
also, like the seventeenth-century Catholic mainstream, assumed a religious mantle.
Suppose, for the sake of argument, that among some particular Bible-believing reli-
gious group in America, that 80% supported the fringe ideas motivating January 6,
but 20% did not; if that were true, then what is on the ‘fringe’ nationally would be
‘mainstream’ within that group, but what would be fringe for the group might then
align with the national mainstream. To determine ‘fringe’, one must have some kind
of ‘mainstream’ to act as a point of reference.

The point of all this is that whether an idea is ‘fringe’ now says nothing about
whether it is ‘fringe’ for all time, and it does not say anything, necessarily, about
whether that idea is true or false, good or bad, safe or dangerous to society. Ensuring
we set the terms of discussion narrowly like this helps set the stage for a productive
and highly general application of unsupervised learning to distinguishing the fringe
from the mainstream. But a deliberately narrow statement of our terms of reference
does more than that. It enables us to be precise about what problem we are setting
out to solve, in terms that will make sense to an intelligence analyst seeking to make
sense of the information environment. We are, in effect, focusing on a problem of
helping the analyst make sense of the forest and not get distracted by the trees. An
analyst will want to know broadly what in a dataset (for example of social media
posts) is representative of a mainstream set of beliefs, and what is representative
of the fringe, irrespective of which side of that divide ‘hostile’ and ‘friendly’ fall.
The contribution of this paper, then, is to demonstrate a method to let the data itself
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(and we focus on natural language data) tell us the answer to this, without knowing
anything a priori about the data.

2 Prior Literature

Our work here was against the background of our general immersion in unsupervised
data analytics as applied to natural language. It was specifically motivated, however,
by reading ‘Cultish: the Language of Fanaticism’ [1], which is not a work from
the field of data analytics at all, but is more of a general-interest discussion by a
linguist, Amanda Montell, about how cults1 are often recognizable by the distinctive
vocabulary they use—often quite deliberately.

Through examples of cults ranging from multilevel marketing (MLM) to fitness
to Scientology tomainstreamAmerican evangelical Christianity,Montell documents
how cults are consistently associated with specific and distinctive vocabulary—for
example, ‘#BossBabe’ (MLM), ‘change your body’ (fitness), ‘enturbulated’ (Scien-
tology), ‘on my heart’ (evangelicalism). Montell points out that the use of such
language is deliberate in that it helps cult members delineate between the in-group
and the out-group (ibid, pp. 42–43) and sometimes is even enshrined, as in Scien-
tology (ibid, p. 139), as a prerequisite to being considered a bona fide member of the
cult. In common with us, Montell does not assume that cults need take on sinister
dimensions, but a recurring thread throughout Montell’s discussion, nevertheless, is
the danger that these distinctive vocabularies can be used tomanipulate cultmembers,
often for pecuniary gain.

We focus in this paper just on Montell’s notion that each cult is recognizable ‘in
the wild’ by its distinctive vocabulary (and that distinctiveness would be assessed
relative to the background noise of howwords are used by themainstream of society).
We set aside as out of our own scope the potential manipulative use of language in
cults (though assuming we could come up with a way of identifying cults through
their use of language, manipulativeness could be something an intelligence analyst
would then be in a better position to assess). How could unsupervised machine
learning help with this? And it is one thing to identify a fringe belief we already
know about (like Scientology), but there is a harder related problem: supposing a
new cult were emerging that we were unaware of. Could machine learning identify
the ‘unknown unknown’ in the information landscape, through unknown but still
distinctive new combinations of words? For these, we can turn to existing work in
the field of unsupervised machine learning.

In the IEEE VAST Challenge 2009 [4], the following problem was posed to
participants:

1 We deliberately leave quite open the question of how to define ‘cult’, which for us is less central
an issue than it may be for Montell. Montell’s book simply provides a springboard for our work,
which centers in the end around ‘fringe’ versus ‘mainstream’. This allows generalization of our
research to finding any sociocultural entity or group that stands out from the crowd.



4 P. A. Chew et al.

There are problems at the U.S. Embassy in Flovania... The network security team recently
found irregularities while reviewing Embassy network traffic logs.

Finding no security issues that could explain the anomalies, they notified the Embassy
Counterintelligence Officer. Upon further investigation, the CI officer identified certain
espionage. You have been requested to help him with the investigation...

A month’s worth of network traffic logs is available. Each employee has been assigned a
desktop computer with a static IP address for use in their daily duties. The network traffic log
data consists of the computer IP address, the employee number of the assigned user, outgoing
and incoming activity from the computer including destination site, payload (request and
response data) and port number.

A neat machine learning solution to this problem [2] assumed that the over-
whelming majority of unproblematic network traffic—for which the entire dataset,
including anomalies, can be thought of as an approximation—represented back-
ground noise, and that against this backdrop, the instances of data exfiltration would
then be identifiable as anomalies in the overall data landscape. Using unsupervised
analysis, Robinson [ibid] identified 19 network events out of the total of 115,414
that appeared anomalous, and this was the result he submitted to the Data Chal-
lenge. Of these nineteen, it turned out that eighteen were the answer that IEEE had
predetermined to be the correct answer (representing the counterintelligence threat).
There was an interesting twist to the VAST data challenge story, though, that brings
to mind the observation attributed to Gandhi, and suggests that even the world of
data science today has its ‘mainstream’ and ‘fringe’. Robinson shared with us in
personal communication that one reviewer had stated that he did not understand
Robinson’s math, while another, incredulous that the 18 anomalous events could
have been detected so easily, insinuated that Robinson’s solution must have involved
cheating. We, however, are confident that it was not so.

In detail, Robinson’s approach [2] is to treat the network events as if they were
‘documents’ and the characteristics of those events (IP addresses, etc.) as if they
were words in the documents—in effect, to treat the network traffic data like natural
language data. A Latent Dirichlet Allocation is then computed on the ‘term-by-
document’ matrix, and pairwise distances between each pair of network events
computed. The landscape can then be analyzed via heatmaps and/or dendrograms,
and it was via this method that Robinson found ‘the needle in the haystack’: the
19 network events were easily identifiable as the anomalous cluster in the overall
landscape.

3 Application of Unsupervised Analysis to Identifying
Fringe Beliefs

Building upon Montell’s insights [1], we can make one or two tentative assumptions
that allow us then to frame, and solve, the problem of differentiating between fringe
and mainstream beliefs in very similar terms to those of Robinson [2], whose goal
is to differentiate between anomalous and background network traffic. Here, our
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approach differs from most previous research on comparative text analysis, where
set dictionaries [13] or extrinsic information [14, 15] are often required to identify
outliers. Our tentative assumptions are:

(1) that the language used in text such as newspaper articles, Twitter posts, etc., at
some level reflects the beliefs of the writer. This is a very loose assumption and it
should be emphasized that we expect the machine learning methods we employ
to take in stride any dual meanings, codewords that may be encountered;

(2) that beliefs significantly outside the mainstream would then be reflected as
anomalous within the data, without our even having to know in advance which
specific words go with which beliefs (e.g. ‘enturbulated’—Scientology)—just
as Robinson did not have to know in advance, for example, which specific IP
addresses were associated with data exfiltration. To the extent assumption (1) is
invalid, we should then find that out if the results diverge from those we might
expect.

Note that we need not assume in any of this that the fringe represents a threat,
as it did in the data exfiltration instance. All we need assume is that unsupervised
analysis is capable of identifying the fringe because of its differentness as reflected
in the data.

Our approach proceeds similarly to [2], although (out of personal preference) we
choose to use Singular Value Decomposition (SVD) [12] instead of Latent Dirichlet
Allocation (LDA), and several other small changes flow from that decision. From a
collection of texts, we perform the following steps:

1. Calculate how many occurrences of each word are in each text and populate the
cells of a term-by-text matrix with those values. Each cell (i, j) in this matrix will
then represent the f (i, j), the frequency of word i in text j.

2. Weight the values in the matrix using Pointwise Mutual Information weighting,
in which:

pmi(i, j) = log
p(i, j)

p(i)p( j)
= log

p(i | j)
p(i)

3. L2-normalize the values in the matrix column-wise (document-wise), such that
the sum of the squared values in each column is 1.0. The effect of this step is to
balance the information contribution of each text to the overall signal.

4. Compute the SVD of the matrix output from step 3. The SVD factorization is as
follows:

X = U · S · V H =
r∑

i=1

si · ui · vH
i

5. Calculate pairwise similarities between each pair of texts, based on the output of
SVD. (Whereas Hellinger distance is used in [2], which is appropriate for LDA
given that the output of LDA represents probability distributions, we use cosine
here.)
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6. Plot heatmaps and/or dendrograms to identify clusters of outliers among the texts.
7. Use additional analytic techniques to characterize differences between the

mainstream and the fringe clusters—in terms of the vocabulary they use.

All the above can be implemented relatively straightforwardly in a Jupyter Python
notebook [3].

We then test the hypothesis that this approach can indeed differentiate usefully
between ‘fringe’ and ‘mainstream’ in two ways, each with a different dataset. First,
we artificially introduce a set of a few ‘fringe belief’ texts into a ‘mainstream’ of
general Twitter traffic, and assess the usefulness of the approach in differentiating
the two. We then hypothesize that independent Russian media should be represented
as a ‘fringe’ in the overall Russian-language media landscape dominated by Kremlin
narratives and censorship. To test this hypothesis, we assess the extent to which the
output of the approach above indeed suggests that independent Russian media are
fringe. We also use the unsupervised framework flesh out what ‘fringe’ means in this
case, drawing uponMontell’s ideas [1], to identify specific differences in vocabulary
between the Russian fringe and mainstream.

4 Application (1): ‘Gog and Magog’

4.1 What is ‘Gog and Magog’?

Obi-Wan Kenobi: With all due respect, Master, is he not the Chosen One? Is he not to
destroy the Sith and bring balance to the Force?

Mace Windu: So the prophecy says.

Yoda: A prophecy that misread could have been.

It was 1993, and the author (Chew), who had grown up, lived and studied in the
United Kingdom, and never spent any significant time in the United States, spent a
summer volunteering at an evangelical summer camp in upstate New York. While
there, I spent my spare time leafing through the books at the camp bookstore. I had
recently completed an undergraduate degree in Russian language and literature, with
a year living in the USSR, and one book caught my attention: ‘The Beginning of the
End’ [5]. In this book, the author LaHaye made a claim that riveted me: that chap-
ters 38 and 39 in the Biblical book of Ezekiel prophesied a literal, still-future attack
by the Soviet Union, which LaHaye claimed was referred to by Ezekiel as ‘Gog’
and/or ‘Magog’, on a country to its south, Israel. To me, this was a fringe belief—
something I had never encountered before—but a fascinating one. I later learned that
Ronald Reagan subscribed to essentially the same belief. Reagan reportedly raised
some eyebrows at a 1971 dinner with California legislators where he said:

Ezekiel says that fire and brimstone will be rained upon the enemies of God’s people. That
must mean that they’ll be destroyed by nuclear weapons. They exist now, and they never
did in the past. Ezekiel tells us that Gog, the nation that will lead all of the other powers of
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darkness against Israel, will come out of the north. Biblical scholars have been saying for
generations that Gog must be Russia. What other powerful nation is to the north of Israel?
None. But it didn’t seem to make sense before the Russian revolution, when Russia was a
Christian country. Now it does, now that Russia has become communistic and atheistic, now
that Russia has set itself against God. Now it fits the description of Gog perfectly. [6, 7]

As it turns out, of course, both LaHaye and Reagan must have been off the mark
at least in one respect: in 1991, the ‘communistic and atheistic’ Soviet Union ceased
to exist, so at the very least, Ezekiel 38–39 was ‘a prophecy that misread could
have been’. Still, I also later learned that this interpretation of Ezekiel 38–39 did not
start with LaHaye, Reagan, or even LaHaye’s mentor in the American evangelical
world, Hal Lindsey, but has actually been reappearing in one form or another for
centuries, in different religious traditions, and in Europe and the Middle East as
well as America; and while the idea of ‘Russia = Gog and/or Magog’ may always
have been on the fringe, it was also unlikely to die along with the Soviet Union,
given its long pedigree. Indeed, a Haaretz article [8] referencing this idea dates from
as recently as 2014, mentioning Gog and Magog in connection with the Russian
annexation of Crimea.

The very names, ‘Gog andMagog’, suggest that the ‘Russia=Gog and/orMagog’
idea is a good candidate for the type of unsupervised analysis we propose, because
‘Gog’ and ‘Magog’ are highly distinctive words in English, quite specific in combi-
nation to their application to this particular fringe belief. It would seem that these,
as well as other associated words used by LaHaye, Reagan and other (‘brimstone’,
‘nuclearweapons’, ‘atheistic’) should standout,marking the texts inwhich theyoccur
as anomalous compared to a background of texts which might relate more generally
to Russia and war. This is our hypothesis: does an implementation of unsupervised
anomaly detection support it?

4.2 Curation of Dataset

To test the hypothesis, we selected a sample of 27 snippets of text, each between
101 and 267 characters long (to approximate to tweet-length text), each consisting
of at least one complete sentence, from (1) Reagan’s 1971 speech quoted above, (2)
LaHaye’s discussion of Russia and Magog [5], (3) Hal Lindsey’s discussion of the
same subject [9] (quoted at length in [5]), and (4) excerpts from what the Vilna Gaon
was reported to have said [8]. We then ran a simple analysis to count the number of
occurrences of each distinct word represented in the 27 text snippets and determine
whichwords occurredmost frequently. Among themost frequent were the following:

Russia—20 occurrences.

nations—5 occurrences.

allies—3 occurrences.

war—3 occurrences.
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Russian—3 occurrences.

countries—2 occurrences.
These words can be thought of as a ‘bridge’ between the general topic area of this

particular fringe belief, and mainstream ideas on the same topic.
To obtain the ‘mainstream’ portion of the dataset, we then used combinations of

the above words to return a total of 33,470 tweets using the Twitter Developer API,
which we then randomly downsampled using selective percentages of each set of
search results, to end up with approximately 20,000 tweets, made up as follows:

Twitter API query # Results returned Downsampling (%) Selected tweets

Russian allies 452 0 –

Russia countries 18,000 50 9,000

Russia war 10,469 75 7,852

Russia nations 2,940 100 2,940

Russia countries 1,609 50 805

Total 33,470 20,597

Some tweets were returned by multiple different queries above and duplicates
were eliminated, reducing the 20,597 to 20,114. The hand-curated 27 snippets of
‘fringe belief’ text were then mixed into the Twitter dataset to create a new dataset
of 20,141 texts.

4.3 Analytical Results

First, to give a sense of the analytical results, in Fig. 1 we present a heatmap showing
inter-text similarities. In this heatmap, for presentation purposes, we further down-
sample the 20,141× 20,141 adjacency matrix to a 527× 527 matrix, to include just
the first 500 Twitter texts plus the 27 ‘Gog and Magog’ texts.

The color scheme in this heatmap represents pairs of identical texts (in a bag-of-
words sense) as yellow points, and dissimilar texts as purple, with a continuum in
between. There is an art to interpreting the heatmap and other outputs, but this does
not imply interpretation of the outputs is a completely subjective matter–one might
compare reading these heatmaps to how two skilled radiologists might read X-rays
or CT scans and arrive at similar diagnostic conclusions.

Here, the yellow square near the center of the heatmap represents a cluster of
identical texts, which in the context of Twitter, are likely to be retweeted content.
This is of less interest than the blue cluster at the bottom right, which represents a
group of thematically similar, but not identical, texts. It turns out that this cluster is
the 27 ‘Gog and Magog’ texts. We therefore have good prima facie evidence that the
technique can successfully distinguish between ‘fringe’ and ‘mainstream’. However,
the evidence is not conclusive, because in a sense this heatmap made identification
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Fig. 1 Heatmap of inter-text similarities, Twitter plus ‘Gog and Magog’ texts

of the anomaly easier by ordering the tweets first and the ‘Gog and Magog’ texts
second. A more conclusive piece of evidence is provided by, in effect, randomizing
the order of the texts and then applying hierarchical clustering, which it is possible to
do straightforwardly in a Jupyter notebook using the Python ‘plotly’ library to plot a
heatmap and dendrogram together,2 to determine if the cluster of fringe belief texts
can still be identified. This output is presented in Fig. 2.

Within this heatmap, again, the bright yellow clusters are of less interest because
these are clusters of identical or near-identical texts, which we expect to find in
Twitter in the form of retweeted content. In texts representing fringe beliefs, one
would expect to find more ‘noise’. In this regard, the cluster highlighted on both
the horizontal and vertical axes with a red brace (note that the right-to-left ordering
on the horizontal axis is identical to the top-to-down ordering on the vertical axis)
catches our attention, both because the hierarchical clustering represented in the
dendrogram captures its anomalous nature, and because the associated part of the
heatmap indicates the texts in this group are similar to one another, but not identical
or near-identical. Using the Jupyter notebook, we can zoom in on the dendrogram
(Fig. 3) to determine which texts are in this group and determine that the indices of

2 See https://plotly.com/python/dendrogram/. (Retrieved on 6/20/2022.).

https://plotly.com/python/dendrogram/
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Fig. 2 Heatmap + dendrogram of ‘Gog and Magog’ + Twitter dataset

these documents are 135, 320, 500, 502, 504–506, 509–510, 512–516, 519, and 524.
Indices 0–499 correspond to the general Twitter data, and 500–526 correspond to
the ‘Gog and Magog’ texts. In other words, within the anomalous cluster we were
able to identify visually, 14 of the 27 ‘Gog and Magog’ texts are present, plus two
others. Interestingly, of those two others, text 320 reads: ‘Those Countries which
Russia considers Sovereign will be re annexed by Russia thrusting the world into
WW3’—not completely out of the ‘ballpark’, perhaps, for the ‘Gog and Magog’
fringe belief.

One objection may be that 14 out of 27 is only just above 50% recall (not as good
as Robinson’s in [2], possibly reflecting that this problem is a harder one given the
specifics of the data), but considering that our objective was only to differentiate the
fringe belief from the mainstream, not necessarily to retrieve all texts relating to the
fringe belief, we think it is still reasonable for us to claim that Fig. 2 demonstrates
that that objective has been achieved. Note that greater precision could potentially
be achieved by a bootstrapping process. Having found the ‘tip of the iceberg’ of the
Gog/Magog cluster, finding other similar documents is a well-understood and easily
solvable problem in text analytics.
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Fig. 3 Detail of anomalous cluster from Fig. 2

5 Application (2): Russian-Language Media Landscape
in 2022

5.1 The Russian Media Landscape in 2022

2022has been a pivotal year inRussia,with the February 24, 2022 invasion ofUkraine
by Russia, the resulting Western sanctions placed on Russia, the flight of Western
capital and firms from Russia, and increasingly stringent control by the Russian
State over the media in the country. Emblematic of this control is the March 4, 2022
law passed by the Russian Duma [10] which subjects anyone who spreads what the
Kremlin considers ‘fake’ information about Russian armed forces and the war in
Ukraine to fines or prison terms of up to 15 years. One of the most reported-upon
aspects in Western media of the Russian government’s control over the portrayal of
thewar inUkraine is that Russianmedia are not allowed to use the term ‘war’ butmust
instead refer to Russian involvement in Ukraine as a ‘special military operation’.

In reality, State control over information in modern Russia has been consolidating
for some time, as evidenced by a 2014 statement by Galina Timchenko. Timchenko
was fired in 2014 from her job as chief editor of Lenta.ru, an online Russian news
source based in Moscow. However, with some Lenta.ru colleagues, Timchenko relo-
cated to Latvia and set up an independent Russian-language news organization called
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Meduza. At the time, Timchenko explained her decision as follows: ‘It’s just the way
it is: right now, in Latvia one can set up an independent Russian-language publication,
but not in Russia’ (‘Ppocto tak vyxlo, qto v Latvii ce�qac mo�no cdelat�
nezavicimoe pyccko�zyqnoe izdanie, a v Poccii net.’) [11]. To the present
day, Meduza continues to publish, in Russian, from its headquarters in Latvia.

Amidst theKremlin’s attempts to exert tight control over theRussian-language—a
level of control which, as Timchenko said, does not reach into Latvia, albeit a neigh-
boring country and former Soviet republic—our hypothesis is that the ‘mainstream’
of Russian-language media would be represented by sources based on Russian terri-
tory, and Meduza would, relative to that mainstream, appear to be on the fringe. To
remind the reader, by referring to one type of source as ‘mainstream’ and another
as ‘fringe’, we are not necessarily implying agreement either with the former or the
latter. An intelligence analyst might disagree vehemently with the positions taken
by Russian mainstream media, but still find it valuable to be able to characterize
the Russian-language information environment and understand what that looks like
from the perspective of residents of the Russian Federation.

5.2 Curation of Dataset

To test this hypothesis, we apply the same technique as for the ‘Gog andMagog’ and
Twitter data. We collected close to 2,838 news articles from four different Russian
news sources: three based in Russia, which we can assume to be more or less subject
to the control over information exerted by the Kremlin, and Meduza.

We targeted collection of data towards articles posted from January 1, 2022
onwards, using a web scraper (a free, Chrome-extension version of Web Scraper,
https://webscraper.io/), and we aimed to collect articles posted on each Monday in
the period.3 We hoped this would result in a somewhat representative sample of news
articles, assuming a roughly weekly news cycle.

These procedures resulted in the following data collected:

Data source Description Number of
articles

1tv.ru Russia’s ‘Channel One’ (Pepvy� kanal), a Russian
state-controlled television channel, based in Moscow

407

gazeta.ru A Russian news website based in Moscow and owned by the
state-owned company Sberbank

1087

meduza.io An independent Russian-language news website based in Latvia 611

rt.com Also known as RT (formerly Russia Today), a Russian
state-controlled international television network, likely intended to
compete with Western cable news such as CNN or BBC World

733

(continued)

3 Thiswas tomanage the amount ofwork in collecting and pre-processing data, not the core analytics
which can easily scale to huge volumes of data.

https://webscraper.io/
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(continued)

Data source Description Number of
articles

Total 2838

5.3 Analytical Results

With the approach we followed in Sect. 4.3, we wanted to test the hypothesis that
our technique could find a ‘needle in a haystack’−27 ‘fringe belief’ texts where we
hid the labeling of those texts from the unsupervised anomaly detection technique.
Here, because the four news sources are known to us a priori, it may make more
sense to order the heatmap by news source, as in Fig. 4.

FromFig. 4, we see a lack of the bright-yellow clusters thatwe saw in Fig. 1, which
is expected given that we are now looking at Russian news articles, not Twitter. It
would be surprising if there were near-matches between articles, as this would point

1tv Gazeta.ru Meduza RT

1tv
G

azeta.ru
M

eduza
RT

Fig. 4 Heatmap of inter-text similarities, Russian news
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Fig. 5 Heatmap +
dendrogram showing clusters
and outliers

Gazeta/RT 
dominated: 
See Figure 6

Meduza 
dominated:
See Figure 7

Meduza 
dominated:
See Figure 8

to plagiarism. In Fig. 4 we do see that Meduza is differentiated from the other news
sources, in that the shading is a brighter blue in theMeduza/Meduza quadrant than in
any other of the 16 quadrants. The heatmap also reveals that Meduza is more similar
to Gazeta.ru than it is to either 1tv.ru or RT.com (a result which was surprising to
us), and it also reveals inter-source similarities or relationships between RT.com and
Gazeta.ru.

It is also possible in effect to randomize the ordering of articles, and let the
ordering implied by the hierarchical clustering reveal its own patterns, which we do
in Fig. 5. Here, again, the skilled reader of the output will be looking for areas of
the plot which show evidence both of anomalous clustering, and anomalous patterns
of similarity compared to the background noise. Clusters that stand out for their
anomalous or homogeneous characteristics (respectively) are shown in Figs. 6, 7 and
8. Zooming in to the axis labels, we discover that some of the more homogeneous
clusters (Figs. 6, 7 and 8) consist of a large proportion of RT.com and Gazeta.ru
articles; the more anomalous (more variegated) clusters (Figs. 7 and 8) consist of a
relatively large number of Meduza articles. This lends support to our hypothesis that
the technique is successful in distinguishing between ‘mainstream’ and ‘fringe’, and,
in line with expectations, that Meduza is often an outlier—part of the ‘fringe’—in
the Russian-language news landscape.4

4 Though Meduza is based in Latvia, not Russia, regional dialect can safely be ruled out as a factor
in its anomalousness. This is partly because the staff of Meduza relocated from Russia to Latvia
to escape media suppression, and partly because Russian dialects around the former USSR in any
case tend to vary much less than English dialects.
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Fig. 6 Detail of homogeneous clusters, highly dominated by Gazeta (g) and RT (r)5

5.4 Digging Deeper

Setting aside SVD and its application to anomaly detection in this section, we can
dig deeper and discover statistically what, specifically, makesMeduza different from
the other Russian-language sources. A Keyness Relative Frequency analysis is one
of the best ways to determine differences in relative vocabulary frequency between
sets of ‘target’ and ‘reference’ documents. To compute the Keyness score for a given
word, four numbers are needed: the frequency of the word in the target corpus, the
frequency of the word in the reference corpus, and the number of other words in both
sets of documents (see Table 1).

5 Y-axis labels in this and subsequent figures are tabulated to aid in distinguishing which are ‘1’
(1TV), ‘g’ (Gazeta), ‘m’ (Meduza) and ‘r’ (RT) where the labels overlap.
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Fig. 7 Detail of anomalous cluster, more dominated by Meduza (m)

The Chi-squared Keyness value is then given by the following formula, where
higher values represent increased relative frequency in the target corpus:

χ = N (ad − bc)2

(a + b)(c + d)(a + c)(b + d)

Here, we selected just Meduza and RT. Keyness analyses reveal clear differences
between the independent and State-controlled sources (Fig. 9).

This entirely statistical analysis was fully in line with our expectations, given the
Kremlin’s restrictions on how the war in Ukraine is reported. Among word n-grams
most associated with RT, the source based in Russia, we find forms of the words
for ‘special operation Ukraine’ (cpecopepaci� Ukpaine), whereas for Meduza,
forms of the word for ‘war’ (vo�na) are in each of the top 5 n-grams. The statistics
confirm very clearly that Kremlin control over the information space has tangible and
measurable effects. The independent source Meduza is, in terms of Russian media,
‘fringe’, and it is fringe in exactly the way we would expect.



A Method to Differentiate ‘Fringe’ and ‘Mainstream’ Beliefs, and Its … 17

Fig. 8 Detail of anomalous clusters, many dominated by Meduza (m)

Table 1 Word frequencies used in Keyness analysis

Target corpus Reference corpus Total

Word w a b a + b

Not word w c d c + d

Total a + c b + d N = a + b + c + d



18 P. A. Chew et al.
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Fig. 9 Keyness analysis of RT (blue) versus Meduza (gray): Article Titles, Bigrams

6 Conclusion

In this paper we have demonstrated a novel application of unsupervised anomaly
detection which we have shown can distinguish between ‘mainstream’ and ‘fringe’
beliefs, even when we do not know what particular needle we are looking for in
the haystack of information. Our method draws upon the insight of Montell [1] that
cults (understood broadly) tend to have their own distinctive vocabularies, and that
is because language frames how people think about issues, and can even be used
to manipulate thought patterns of large groups of people. We emphasized that the
‘fringe’ and the ‘mainstream’ are determined here by the data itself, not by extrinsic
or a priori ideas about what should be accepted and what should not. By casting the
problem in this way, we play to the strengths of unsupervised analysis; but we also
appropriately leave it to the judgment of a human analyst whether the ‘fringe’ has it
‘right’ and the ‘mainstream’ does not—or vice versa.

Weapplied this technique to twodatasets (both relating toRussia) and showed that,
as expected, the technique is able to draw the analyst’s attention to text representing
a fringe belief about Russia; and that the technique also tends to confirm that in
the Russian media landscape where the Kremlin exerts its sway, an independent
Russian-language news source is indeed an outlier on the ‘fringe’.
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Nothing about the technique, fundamentally, is geared towards any particular
dataset and it could be applied very generally to text data in different languages and
from different domains. In this respect, we see this technique as being of general use
and valuable to intelligence analysts seeking tomake sense of unfamiliar information
environments, looking for ‘unknownunknowns’, and trying togain a top-downunder-
standing of different information ‘landscapes’. The technique focuses the analyst’s
attention on what the data itself tells us is ‘mainstream’ and ‘fringe’, and allows the
analyst to proceed from there to dig deeper and understand what differentiates one
from the other.
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Evaluating a Crowd Logistics Network
Using Agent-Based Modeling

Preetam Kulkarni and Caroline Krejci

Abstract Crowd logistics is a part of the sharing economy in which individual
carriers offer to transport and deliver items for other individuals or businesses for a
fee via an online platform.While crowd logistics platforms have the potential to offer
more flexible and responsive delivery services for much lower rates than traditional
logistics providers, it is challenging for platforms to achieve a critical mass of partici-
pants on both sides (senders and carriers) to allow the service to grow and thrive. This
research uses agent-based modeling to explore the effects of participant behavior on
the performance of a two-sided crowd-sourced logistics platform. Preliminary exper-
imentation with the model tests the effects of heterogeneous agent decision logic
on platform performance, including service level and network growth over time.
Results demonstrate significant differences in performance between heterogeneous
and homogeneous decision rule assignment and suggest that agent-basedmodeling is
a particularly suitable method for studying the behavior of crowdsourced platforms.

1 Introduction and Background

Crowd logistics is a part of the sharing economy in which individuals (carriers) offer
to transport and deliver items for other individuals or businesses (senders) for a fee. It
is a novel way of providing logistics services that taps into the underutilized logistics
resources and capabilities of individuals, using mobile applications and web-based
platforms [3]. Carriers often use their personal vehicles for transport, and deliveries
do not necessarily require an additional trip for them—they may instead leverage
their existing travel patterns to earn additional income, such as dropping off a package
while commuting to work [11]. For senders, the primary advantage of crowd logistics
is the ability to get better service at a lower price than traditional logistics providers
can offer, including same-day deliveries.
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A platform is successful and self-sustaining only when its network of partici-
pants either grows in size or at least remains constant after a period of growth. This
requires participation of a minimum number of participants on both sides, which is
referred to as critical mass [14]. Based on the behavior of the participants, it can be
very difficult to achieve critical mass. Thus, it is important to understand the moti-
vations of both carriers and senders to ensure the success and growth of a crowd
logistics platform. The more attractive the logistics value proposition is for users
in terms of proximity, speed, adaptability, or accessibility, the stronger the growth
of the initiative [3]. Furthermore, for a sender it is important to know when the
goods are delivered and that the delivery process is safe [8]. However, research on
sharing economy platforms indicates that there can be a wide variety of other motiva-
tions. [2] identifiedmaterialism, sociability, and volunteering as predictors of sharing
motives in different sharing contexts. [13] identified desire for payment, competence/
skill development, and social affiliation to be motivators for crowdsourcing platform
participation. [1] found economic and social motivators (i.e., making/saving money;
meeting newpeople) for both the customer and service provider, while hedonic value,
reduced risk, and environmental benefits also motivated customer participation, and
entrepreneurial freedom appealed to service providers.

While analytical and statistical models have been used to explain/predict partici-
pation of carriers in crowd logistics platforms (e.g., [6]), such models cannot capture
the dynamics of two-sided participation, especially network effects, and they cannot
discern the conditions that may lead to achieving (or failing to achieve) a critical
mass of participants. Agent-based modeling (ABM) is useful for this purpose. For
example, [15] modeled the relationships among properties of tasks, characteristics
of workers, and performance metrics of a crowd-sourcing platform via ABM. The
model was validated by running experiments with real human workers on Amazon
Mechanical Turk. However, the authors did not use the model to examine macro-
level metrics like platform growth over time. [5] modeled the effects of game theory
experience on humans’ strategic behavior by creating a two-sided dynamic interac-
tive simulation in ABM and studied the macro level outcome i.e., coalition structure.
ABM was also used by [4] to evaluate service levels and asset utilization in a crowd
logistics platform, however, only the behavior of carriers who deliver the packages
was modeled. By contrast, [12] created an ABM of a food rescue program that
captures the behavior of both the senders (restaurants) and carriers (volunteers) who
deliver food to people in need. Experimentation with the model demonstrated that
one of the important factors for the success of a platform is to have sufficient partic-
ipating carriers available when the platform is initially launched, as well as ensuring
that sender and carrier participation remains balanced as the platform grows over
time.

This paper describes an agent-based model that represents a stylized crowd logis-
tics system in which heterogeneous carrier and sender agents decide on a daily basis
if they will participate in the system, and if so, how many jobs they will participate
in and which ones. Experimentation with the model demonstrates the effects of deci-
sion rule heterogeneity on carrier and sender participation in the system over time,
as well as total number of successfully completed jobs. The next section provides a
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description of the model, followed by a description of experimentation and results,
and finally a discussion of results and a plan for future research.

2 Model Description

The ABM was developed using NetLogo 6.2.2 and is described using Overview,
Design Concepts and Details (ODD) protocol [9]. The updated protocol which fixed
the issues and ambiguities of the original protocol was followed [10].

2.1 Purpose

The objective of this model is to perform exploratory research on the factors that
influence network effects in a two-sided crowd logistics platformwith heterogeneous
participants. The long-term intent of this model is to use it to gain a better under-
standing of how the features and affordances of a crowd logistics platform should be
designed to encourage participation from carriers and senders, such that the platform
grows and sustains itself. Of particular interest are systems that are not intended for
purely commercial goals, e.g., systems with humanitarian or community-supporting
aims.

2.2 Entities, State Variables and Scales

Entities include senders, carriers, and destinations. Senders participate in the platform
to ship packages to specific destinations, while carriers are trying to earn income by
delivering the packages on behalf of the senders. There are 250 agents that can take
on a sender’s role, 250 agents that can work as carriers, and 8 destinations. It is
assumed that an agent can participate in the platform only in its assigned role—it
can be a sender or a carrier, but not both. Table 1 summarizes the key attributes and
state variables of all three agent classes.

2.3 Process Overview and Scheduling

At the beginning of each day (tick), all sender agents that are participating in the
platform generate delivery requests. A participating carrier is then chosen randomly
to bid on a randomly selected delivery request. If the sender accepts the bid, the carrier
executes the delivery and then waits at that destination for its next opportunity to
bid on a delivery request. Another carrier is then randomly selected to evaluate a
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Table 1 Attributes of sender and carrier agents

Agent class Attribute Description Possible values

Sender and
carrier

Identification
number (ID)

Unique identifier [1–500]

Sender and
carrier

Participation
status

Participation status of an agent on a
given day of the simulation

Y/N

Sender and
carrier

Participation
history

List of number of delivery requests
fulfilled (senders) or number of deliveries
completed (carriers) in each tick

Varies by tick

Sender and
carrier

Number of
friends

Length of the list of IDs of agents that
are “friends”

Normal (7, 2)

Sender and
carrier

Participation
evaluation
period

# of days after which a sender or a carrier
agent evaluates its participation decision

Experimentally
varied

Sender and
carrier

Participation
decision rule

# of friends that need to participate
during evaluation for the agent to join the
platform

Experimentally
varied

Sender and
carrier

Continued
participation
decision rule

Min. # of deliveries/trips per day needed
for the agent to continue participation

2

Sender No. of pickup
requests

Number of pickup requests by sender
agents each day

Uniform (1, 8)

Sender Pickup request
list

List of who # of destinations Varies by tick

Sender Assigned
carriers ID

List of carrier IDs who matched with a
sender on a day

Varies by tick

Carrier Home
coordinates

Carrier returns to initial coordinates
every day after deliveries

X: [-33, 33]
Y: [-33, 33]

Carrier Target sender
ID

List of sender IDs that matched with a
carrier on a day

Varies by tick

Carrier Target
destination

List of who numbers of destinations Varies by tick

Carrier Total trip
distance

List of distances traveled for each trip in
the current tick

Varies by tick

Carrier Total trip
income

List of income earned for each trip in the
current tick

Varies by tick

Carrier Daily trip limit Limit on # of trips that a carrier agent is
willing to complete

Experimentally
varied

Carrier Trip profit
percentage

Percentage of the trip cost that is charged
by the carrier as profit

Normal (12, 2)

Destination Visitors List of IDs of carriers that visit a
destination

Varies by tick
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delivery request, and this process continues until all carriers have reached their daily
trip limits and/or all requests have been fulfilled.

The participation history of each sender and carrier is then updated. Based on this
history and the participation of other agents in their social network (i.e., friends), the
agents make decisions about future participation: whether to continue participating
in the platform, leave the platform, or join the platform if they are currently not
participating.

2.4 Design Concepts

• Basic principles—Agents decide whether or not they will join the platform based
on the participation levels of their social networks. Carriers and Senders bid and
accept/reject bids, respectively, based on an evaluation of the estimated monetary
value of the job, in terms of transportation cost and time. They decide whether to
continue participating in the platform based on their ability to successfully match
with a sender/carrier over time.

• Emergence—The number of participants on the platform, the number of successful
deliveries, the percentage of carriers working at full capacity, and the percentage
of senders whose delivery requests are fulfilled are all emergent performance
metrics.

• Adaptation—The sender agents respond to the lack of carrier agents to send their
packages by quitting the platform. Similarly, carrier agents respond to the lack
of opportunities to earn income on the platform by quitting the platform. The
participants also decide to rejoin the platform if enough of their friends say that
they are participating and satisfied with the platform.

• Objectives—The objective of the senders is to be able to find an affordable alter-
native to send packages to a particular destination (i.e., rather than making the
delivery itself), whereas the carrier’s objective is to be able to earn an acceptable
amount of profit by making trips to deliver sender agents packages.

• Interaction—Senders and carriers interact via the platform by placing and
accepting bids for delivery jobs, respectively.

• Stochasticity—Some agent attributes are stochastic; see Tables 1 and 2.
• Observation—Crowd logistics system performance metrics include the number

of successful deliveries, the number of participating carriers and senders, the
percentage of carriers working at maximum capacity, and the senders who find a
match for all of their request’s help. These values are captured over the length of
the simulation runs (i.e., in each tick).
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2.5 Initialization

At the beginning of each simulation run, the home coordinates and IDs of all 250
senders and 250 carriers are read from a text file. The senders and carriers are then
created and positioned on their home coordinates. Participation status of a subset
of randomly selected senders and carriers is changed to “Yes”; the sizes of these
subsets are experimentally varied (see Table 2). Each sender and carrier then build’s
its social network by selecting friends of their own kind, i.e., senders select other
senders as friends and carriers select other carriers as friends. The initial values of
all other agent attributes (Tables 1 and 2) are then assigned.

2.6 Input Data

The model does not use input data to represent time-varying processes [10].

2.7 Sub-Models

The model contains three sub-models, which are described below.

Sub-model 1—Join or leave the platform

After waiting for Participation evaluation period number of ticks, each sender and
carrier that is not currently participating in the platform will evaluate whether or
not they want to join. The decision to join the platform is taken by the participant
if the number of its friends currently participating is at least equal to Participation
decision rule. After participating for at least theParticipation evaluation period, each
participating sender and carrier evaluates whether it wants to continue participating.
The agent will decide to leave the platform if the number of times its delivery request/
bid was accepted in the most recent Participation evaluation period is less than
Continued participation decision rulemultiplied by Participation evaluation period.
Otherwise, the agent will continue participating for another tick.

Sub-model 2—Delivery requests, bids and matching

First, all participating senders generate their lists of delivery requests for the day. A
delivery request consists of the who number of the destination. Then, each partici-
pating carrier is selected in a random order to review a randomly selected delivery
request. The carrier calculates the Euclidean distances between the carrier’s current
location, the sender’s location (for pickup), and the delivery destination. The carrier
then calculates the cost of making this trip and the amount it will charge to make its
desired profit, and it shares this bid with the sender. The sender will only accept the
bid if the amount the carrier charges for the trip is less than or equal to the sender’s
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cost of performing the delivery itself. If the sender accepts, the carrier executes the
trip by moving from its current location to the sender’s location and then to the desti-
nation to make the delivery. This process is repeated for each participating carrier.
In each tick, the maximum number of deliveries that a carrier can make is equal to
itsDaily trip limit. Once this limit is reached, the carrier will no longer place bids on
delivery requests. Furthermore, if a carrier is unable to find a match with any of the
senders, the carrier is not picked randomly for the match process again during the
remainder of the day. This process is summarized in the flowchart shown in Fig. 1.

Sub-model 3—Update participation history

After the bidding process is completed, each carrier records the number of successful
trips it completed, and each sender records the number of its delivery requests that
were fulfilled.

3 Experimentation and Results

A preliminary set of experiments was performed to determine the effects of agent
heterogeneity on platform performance over time. First, a baseline scenario was run
(Scenario 1), in which all agents’ participation evaluation periodwas set to 7 ticks, all
carriers’ daily trip limits were set to 10 trips, and the participation decision rule for all
agents was defined as having a minimum of 3 friends participating before joining. In
reality, however, participants are likely to have heterogeneous participation criteria.
To capture this, two additional experiments were performed, in which the values
defining participation evaluation period, participation decision rule, and daily trip
limits were assigned to agents randomly during model initialization, using a uniform
distribution (Scenario 2) and a normal distribution (Scenario 3). For these three
scenarios, themodelwas initializedwith 22 participating carriers and 20 participating
senders. To examine the impact of a platform’s start-up conditions on its performance
over time, the model was also run with 9 carriers and 8 senders initially participating
(Scenario 4). Table 2 summarizes the experimental conditions for all four scenarios.

For each scenario, the model was run for 100 ticks, and the following platform
performance measures were captured in each tick:

• Number of senders and carriers participating
• Number of senders and carriers that were able to find at least one match
• Percentage of carriers that were fully utilized (i.e., the number of completed

deliveries was equal to the agent’s daily trip limit)
• Percentage of senders with all delivery requests met
• Total number of successfully completed deliveries

Figure 2 shows an example of typical results over 100 ticks for Scenario 1. Results
indicate that the platform is unable to attract new participants, and participation of
both senders and carriers gradually but steadily declines and is unlikely to be sufficient
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Table 2 Experimental scenarios

Scenario # # Of initial
participating
carriers

# Of initial
participating
senders

Participation
evaluation
period (ticks)

Carrier daily
trip limit
(trips)

Participation
decision rule
(min # friends)

1 22 20 7 10 3

2 22 20 Uniform (2, 7) Uniform (1,
10)

Uniform (1, 3)

3 22 20 Normal (4.5,
2)

Normal (5, 2) Normal (3, 2)

4 9 8 Normal (4.5,
2)

Normal (5, 2) Normal (3, 2)

to maintain the platform in the long run. Participation never gains momentum, likely
because the participation evaluation period of all agents is long (i.e., 7 ticks), and
agents must see at least 3 of their friends participating before joining, such that early
platform growth via network effects is stifled.

By contrast, in Scenario 2 there is a rapid increase in sender and carrier partici-
pation, with all agents continuing to participate for the remainder of the simulation
run. The most likely reason for this early and rapid increase is because there are
relatively many participants that have a short evaluation period (i.e., 2 or 3 ticks)
and a low barrier to joining (i.e., only requiring one friend to be a participant). Once
the platform has this critical mass of early participants, network effects allow it to
continue growing very quickly via the agents’ social networks and to continue to
sustain itself, since participants can easily satisfy their continued participation rule
(i.e., a minimum of 2 pickup requests filled/bids accepted per tick on average over
the evaluation period). The participation levels off after 15 days with all or nearly
all agents participating. As a result, Scenario 2 typically yields around 20 times as
many successful deliveries per day as Scenario 1. Half of all carriers are being fully

Fig. 2 Example output of Scenario 1
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utilized at the end of the run, and more than a third of all senders have all of their
delivery requests filled (Fig. 3).

In Scenario 3, participation also increases and eventuallymaintains itself, although
the rate of increase is not nearly as rapid as in Scenario 2. As seen in Fig. 4, it
took around 40 days for the platform to level off at 200 carriers/senders. This is
probably because many agents’ evaluation period is concentrated around the mean
participation evaluation period of 5 ticks, such that it takes longer for most agents
to decide to join. However, the platform does not decline as it does in Scenario 1,
probably because there are enough agents with low participation evaluation period/
decision rule values to ensure that there are sufficient participants in the early stages
to attract and retain others.

Fig. 3 Example output of Scenario 2

Fig. 4 Example output for Scenario 3
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Fig. 5 Example output for Scenario 4

Figure 5 shows the results of Scenario 4, in which the participation rules are
again assigned to agents via a normal distribution, but the numbers of initial senders
and carriers participating are reduced from 20 and 22 to 8 and 9, respectively. As
in Scenario 3, the number of participants increases over time; however, the rate of
increase is much more gradual, with growth peaking and leveling off at around 75
days and the percentage of participants fully utilized/served drops to 30% for carriers
and 26% for senders. This result indicates the importance of initial participation for
platform growth over time, which was similarly observed in [12].

Figures 6 and 7 summarize the average values of the performance metrics at the
end of the 100th tick for Scenarios 1, 2, and 3 over 30 replications. In Fig. 6, it can
be seen that the participation and number of successfully completed deliveries are
greater when the platform participation rules are randomly assigned to agents using
a uniform distribution (Scenario 2) as compared with rule assignment via a normal
distribution (Scenario 3). This result is likely due to the carrier daily trip limit in
Scenario 2 being assigned to agents evenly across a range of 1 to 10 trips, whereas
in Scenario 3 the carriers’ daily trip limit is centered around a mean of 5 trips, such
that carrier trip limit is limiting the system’s capacity to make deliveries. While the
performance of the platform is poor in Scenario 1, this result might not hold true if
the platform had more initial participants from both sides and the evaluation period
was less.

Figure 7 indicates that the percentage of fully-utilized carriers and fully-served
senders is also highest when participation rules are distributed uniformly (Scenario
2), likely because overall participation in Scenario 2 is higher than in Scenarios 1
and 3. However, the values of these metrics are only slightly lower if participation
rules are distributed normally (Scenario 3). The percentage of fully-utilized carriers
is slightly higher than the percentage of fully-served senders in both Scenarios 2 and
3, probably because there are more jobs for the carriers to take than their trip limits.
Hence, there are more fully utilized carriers than senders who are fully served. This
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trend is the opposite when the decision rules have a constant value. Owing to the
higher participation of senders than carriers who have a high daily trip limit, carriers
are not fully utilized whereas the senders find a match for their jobs more often and
are fully served.

4 Conclusion

This paper described an agent-based model of a stylized crowd logistics system in
which sender’s delivery requests are matched with carrier agents on a daily basis.
The model was used to perform preliminary experimentation to explore the effects
of heterogeneous assignment of platform participation decision rules to agents on
the platform’s ability to grow and sustain itself over time. The relationship between
the number of initial participants and the growth of platform participation is also
examined.

Ongoing experimentation with this model explores platform behavior for a wide
range of parameter settings for sensitivity analysis. The output of this model will
also be compared with analytical models that predict critical mass and platform
growth (e.g., the models described by [7]. Future research will involve empirical
human behavior data collection from actual crowd logistics platform participants via
participatory ABM techniques; this data will then be incorporated into the model in
an effort to create a valid representation of a crowd logistics system.

Acknowledgements This material is based upon work supported by The National Science
Foundation under Award No. 2046632.
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Introducing Land Constraints to
Macroeconomic Agent-Based Models

Jacob Kelter, Uri Wilensky, and Joseph Potvin

Abstract We present a macroeconomic agent-based model that incorporates land
to constrain maximum agricultural production. The model contains three types of
agents: firms, households, and land plots. Firms employ households to produce con-
sumer goods which household then buy from firms. The maximum production of
firms is limited by the area of land available to them. Varying the availability of
land and investigating the results on unemployment, wage rates, firm turnover rates,
profits, and inequality among households and firms shows that the interests of firms
and households conflict regarding the ideal amount of land available for production.

1 Introduction

Agent-based models (ABMs) can reproduce many stylized facts of the economy
including business cycles, endogenous fluctuations and correlations in macro-level
economic variables, firm-size distributions and more [1–3]. Increasingly over the
past three decades, ABM literature has addressed the intersection of economics and
the environment, including energy technology markets [4, 5], and climate-economy
interactions [6, 7]. There have also been sector-oriented investigations of agricul-
ture and land-use practices and their interactions with the economy [8, 9]. However,
these models are oriented to a specific sector. Macroeconomic ABMs have not inte-

License: CC-by 4.0 International.

J. Kelter (B) · U. Wilensky
Northwestern University, 633 Clark St, Evanston, IL 60208, USA
e-mail: jacobkelter@u.northwestern.edu
URL: https://xalgorithms.org

U. Wilensky
e-mail: uri@northwestern.edu

J. Potvin
Xalgorithms Foundation, Ottaw, ON, Canada
e-mail: jpotvin@xalgorithms.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Yang and S. Núñez-Corrales (eds.), Proceedings of the 2022 Conference
of The Computational Social Science Society of the Americas, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-031-37553-8_3

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37553-8_3&domain=pdf
jacobkelter@u.northwestern.edu
 854 48568 a 854 48568 a
 
mailto:jacobkelter@u.northwestern.edu
https://xalgorithms.org
 331 49675 a 331 49675 a
 
https://xalgorithms.org
uri@northwestern.edu
 854 52553
a 854 52553 a
 
mailto:uri@northwestern.edu
jpotvin@xalgorithms.org
 854
56538 a 854 56538 a
 
mailto:jpotvin@xalgorithms.org
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3
https://doi.org/10.1007/978-3-031-37553-8_3


36 J. Kelter et al.

grated “Land” as a primary factor of production along with the other three factors
emphasized by classical economics: “Labor”, “Capital” and “Organization” [10].

The ABM presented in this paper lays the groundwork for investigating feedback
loops between the economyand ecological integrity of land. This is part of an ongoing
modeling project of wider scope, but the aspect of the model presented here focuses
only on how availability of productive Land impacts the economy.

2 The Model

2.1 Model Structure

The model,1 implemented in the NetLogo agent-based modeling environment [11],
contains three classes of agents: firms, households, and land. Figure 1 represents
the relationships between the different types of agents. We take a pure agent-based
approach—as opposed to representing labor and consumption at an aggregate level
as in the Dosi et al. [3, 12] family of models—so that we can explore the effects of
various parameters on wealth distribution and the effects of various frictions in the
labor market on the overall economy.

Firms produce homogeneous consumer goods on plots of land and sell them to
households. A firm’s output is constrained by the area of land available to it and
the land’s productive capacity per unit area. In the experiments reported here, the
productive capacity of land per unit area is held fixed across all experiments and
the area of land available is held fixed within experiments but varied across them.
In future work, the activity of a firm will increase or decrease the land’s productive
capacity over time depending on the quality of its land management practices. This
is depicted in Fig. 1 with a grey dotted line since it is part of the model design but
not used in this preliminary paper.

The model is initialized with a set of households, firms, and plots of land. Each
firm is associated with a single plot of land. We abstract from land markets, and
therefore land is not bought or sold. Households begin with an initial amount of
currency liquidity, they each supply their Labor to a single firm, and they have links
to several firms as consumers. Firms raise initial start-up funds from one or more
households as investors (described in more detail below). To keep the model simple,
there is no banking sector, finance, or credit in the model. Firm entry is funded
directly by households rather than through banks as in the Delli Gatti et al. [2] family
of models. The present model holds money supply fixed, resulting in zero inflation;
a subsequent version of the model will have a dynamic monetary system.

1 Model code available at https://github.com/jzkelter/tabular-standards/wiki/How-do-download-
and-use-the-model.
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Fig. 1 The structure of the
model. Firms each have a
plot of land. Households and
firms have three types of
relationships: employment,
consumption, and equity
(investment)

2.2 Sequence of Events

The model uses discrete time steps, and the sequence of events in each period is as
follows:

1. At the start of the period, firms without enough liquidity to pay a single worker
go bankrupt and are replaced.

2. Firms, to plan the upcoming period:

(a) Estimate demand in the upcoming period
(b) Adjust wage rates based on success/failure in filling job positions
(c) Plan output based on previous sales (constrained by land) and adjust price
(d) Adjust desired labor (lay off workers or posts job openings)

3. Households:

(a) Update consumer links
(b) Adjust reservation wage
(c) Search for employment



38 J. Kelter et al.

4. Firms:

(a) Pay wages (happens at the beginning of the month to simplify firm planning
and after households have searched for employment so new hires get paid)

(b) Distribute profits fromprior period (this can only happen after payingwages)

5. Households set consumption for the month
6. Firms produce output goods
7. Households buy and consume goods.

Each of these events is described in more detail below. In most cases, when
describing procedures that involve parameters, we use the parameter name from the
model’s code directly instead of translating the parameter names from the code to
mathematical symbols, which would then need to be translated back again by anyone
who reads the code. To further ease reading, we usually describe the model using the
concrete values for parameters used in simulations and footnote what the relevant
parameter name is in the code. We do use mathematical notation in select cases
when we think it facilitates communication. For full specification of the model, see
the online supplemental documentation2 based on the Dahlem guidelines [13].

2.3 Bankruptcy and Firm Replacement (Step 1)

At the beginning of each period, if a firmdoes not have enough liquidity to pay a single
worker, it goes bankrupt. Any remaining liquidity it has is returned to shareholders.
A new firm is then created which raises start-up capital from households.3 The new
firm asks households in a random order for funds. Households are willing to invest
up to half of their current liquidity in the new firm, but their investment is only
accepted if it represents at least 10% of the total value the firm is raising. In this way,
there is an emergent class of capitalists based on wealth rather than a hard-coded
class of capitalists as in [1]. Households own a fraction of the firm in proportion
to what fraction of the startup funds they provided. The firm is initialized with 20
consumer-links,4 otherwise, it would usually fail to sell anything the first period and
immediately go out of business. These initial consumer links can be thought of as
being due to an initial advertising campaign. The new firm is also automatically given
the plot of the land that the bankrupt firm vacated.

2 https://github.com/jzkelter/tabular-standards/blob/main/Main%20Model/Dahlem_Description.
md.
3 The amount is equal to the parameter STARTUP-LIQUIDITY.
4 INITIAL-CONSUMER-LINKS.
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2.4 Firms Estimate Demand (Step 2a)

Firms estimate demand based on a rolling average of past sales, .Save(t) which is
updated by the sales of the previous period by the following equation:

Save(t) = mSave(t − 1) + (1− m)s(t)

where .s(t) is sales in the time period, .t , that just passed and .m is a “memory”
constant5 between 0 and 1 that determines how much the firm remembers/weights
previous average sales compared to the prior period’s sales.

2.5 Firms Adjust Wage Rates (Step 2b)

Firms adjust wages based on their success or failure in hiring. If a firm wanted to
hire a worker last month and failed, it increases its wage to attract workers. On the
other hand, if a firm has had no vacancies for the past 12 months,6 the firm decreases
wages. In either case, the increase/decrease is by a random fraction chosen uniformly
between 0 and 20%.7

2.6 Firms Adjust Planned Output and Price (Step 2c)

Ideally, firms want to fully satisfy their expected demand. Since demand may exceed
expectations, firms try to keep a buffer stock of 50% of expected demand.8 So, after
production and prior to selling goods, firms aim to have 150% of expected demand in
stock. Goods are non-perishable in the model. This means that if a firm has already
built up its buffer, it rarely has to produce much more than expected demand. Firms
may not be able to produce enough to have 150% of expected demand in stock before
sales begin due to limited land, liquidity, or failure to hire adequate workers. As this is
the planning stage, only the first two limitations come into play, and they determine
how many workers the firm will aim to have this period. The number of workers
a firm desires is equal to target production divided by the “tech-parameter” which
determines labor productivity. This assumes that production is a linear function of
labor (no changing returns to scale). For the purpose of this paper, tech-parameter
is uniform across firms and held constant (i.e., there is no technological innovation).
The pseudo-code in Algorithm 1 describes the process of firms to plan output and
their desired number of workers.

5 FIRM-MEMORY-CONSTANT.
6 MONTHS-TO-LOWER-WAGE.
7 MAX-WAGE-CHANGE.
8 DESIRED-BUFFER-FRAC.
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Algorithm 1 Firm process to plan output
1: set target_production = 1.5 * expected_demand - current_inventory
2: if target_production > total productive capacity of land then
3: set target_production = total productive capacity of land
4: end if
5: set target_n_workers = target_production / tech_parameter
6: if liquidity < target_n_workers * wage-rate then
7: reduce target_n_workers to maximum that can be afforded given liquidity
8: end if

After planned output has been decided, the firm adjusts its price. Following [2], a
firm will not increase both output and price. A firm will raise prices only if all three
of the following conditions are met:

1. Demand was higher than expected last period (which means expected demand
this period is higher than last period)

2. The firm is unable to satisfy expected demand this period (either due to lack of
liquidity to hire workers, or due to reaching the maximum productive capacity
of the land).

3. The firm’s price is less than the average price of other firms

The rationale for these conditions is that firms aim to increase market share before
increasing unit profits. If condition 1 is met but not 2, this means the firm will try to
meet the increased expected demand at the current price. If conditions 1 and 2 are
both true but not 3, the firm will not risk losing market share by raising prices further
above the average price of other firms.

A firm will decrease price if the following three conditions are met:

1. Demand was significantly less than expected last period, as measured by inven-
tory being 120%9 or more of the ideal buffer amount

2. The firm has enough liquidity to meet expected demand this period
3. The firm’s price is more than the average price of other firms.

Condition 1 guarantees there is surplus. Condition 2 checks that the firm is able
to fulfill expected demand, which suggests there will probably still be surplus. If this
is true and the firm’s price is above the current average, the firm decreases price to
try to gain market share.

In the case of either raising or lowering price, the firm increases or decreases its
price by a random percentage between 0 and 20%.10

9 BUFFER%-TO-LOWER-PRICE.
10 MAX-PRICE-CHANGE.
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2.7 Firms Adjust Labor (Step 2d)

If a firm has fewer workers than desired, it automatically has a job opening(s) avail-
able. It is then left to households searching for jobs to find these firms. If a firm has
more workers than desired, it will attempt to lay off workers. Rather than keep track
of labor contract lengths for each worker, we instead allow firms to lay off work-
ers probabilistically. The firm attempts to lay off each worker it does not want and
succeeds with probability equal to the parameter LAYOFF-PROBABILITY. A low
layoff probability is equivalent to long labor contracts and a high layoff probability
is equivalent to short labor contracts.

In addition, a firm that cannot afford to pay its current number of workers lays off
as many workers as needed so that it will be able to afford the wage bill.

2.8 Households Update Consumer Links (Step 3a)

Households have 7 consumer links.11 If they have fewer than this (due to a firm
going out of business) they create new trading links. If a household has more than 7
consumer links, it randomly deletes one.

After guaranteeing they have enough consumer links, households probabilistically
search for more desirable trading links. With a 25% probability,12 the household will
pick a random firm and, if its price is cheaper than the household’s most expensive
current consumer link, will delete its most expensive consumer link and create one
with the cheaper firm. If a household has a consumer link with a firm that failed to
satisfy its demand last period, with a 50% probability13 the household will replace it
with the randomly selected firm. In both cases, randomly selected firms are chosen
from the set of firms the household does not currently have a consumer link with
and their chance of selection is weighted by the number of consumer links they have
(larger firms are more likely to be selected).

2.9 Households Adjust Reservation Wage (Step 3b)

A household’s reservation wage is the minimum wage it is willing to accept for
employment. If a household is unemployed, it decreases its current reservation wage
to 90%14 of its current value. If the household is employed and its current wage is
above its reservation wage, it increases its reservation wage to equal its current wage.

11 N-TRADING-LINKS.
12 PROB-REPLACE-FIRM-PRICE.
13 PROB-REPLACE-FIRM-QUANT.
14 RES-WAGE-CHANGE.
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2.10 Households Search for Employment (Step 3c)

An unemployed household checks five15 randomly chosen firms for job openings
and takes a job with the first one that offers a wage above the household’s reservation
wage. An employed household will check one random firm for a better paying job
if its wage is below its reservation wage or with probability equal to 10%.16 If the
randomly chosen firm has a job opening at a better wage, the household switches
jobs.

2.11 Firms Pay Wages and Distribute Profits (Step 4)

At this point, all employment is set for the month and firms pay their workers at their
current wages. In case sales are lower than expected, firms keep some liquidity in
reserve equal to 30% of current labor costs. Whatever liquidity remains is distributed
to households with equity in the firm in proportion to their equity.

2.12 Households Set Consumption for the Month (Step 5)

Households, having been paid, set their consumption for the month based on the
equation:

C = Lα

where .C is planned consumption, .L is the household’s current liquidity, and .α is a
parameter17 determining diminishing marginal utility of consumption. Based on this
equation, consumption always increases with increased liquidity, but unless .α = 1,
the increase is sub-linear. The simulations in this paper use .α = 0.6.

2.13 Firms Produce Output Goods (Step 6)

Firms produce output based on the number of workers they have and land constraints.
Output is linear with the number ofworkers (output = n-workers * tech-parameter) up
until the total productive capacity of the landwhich equals land area times productive
capacity per area. This is equivalent to an assumption that each worker can work a
certain area of land and there is no benefit from additional labor applied to the land.

15 SEARCH-N.
16 SEARCH-BETTER-JOB-PROB.
17 DIMINISHING-UTILITY-CONSTANT.
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We assume productive capacity per area of 1 such that the total productive capacity
is equivalent to the area of land available.

2.14 Households Buy and Consume Goods (Step 7)

Households visit the firms they have consumer links with one at a time in a random
order18 and attempt to satisfy their demand by buying from that firm. If the firm
runs out of inventory, the household visits the next consumer firm up until it either
satisfies its demand or runs out of consumer links.

3 Simulations

3.1 Simulation Setup

The simulations were designed to explore the effect of altering the availability of land
on the aggregate economy.Themainvariable varied is available land area per capita,19

denoted here as .Apc. It is expressed per capita (per household) to make simulations
with different numbers of households comparable. Each run can be thought of as a
parallel universe with more or less available land. In the real world, available land per
capita can vary due to population growth/decline, ecological degradation/restoration,
or changes in land-use.

Productivity of land per unit area was assumed to be 1. The tech-parameter was
chosen to be 1 as well—meaning that one unit of labor can work one unit of land
and produce one unit of output per period. So, when .Apc = 1 all households could
theoretically be productively employed. When .Apc < 1, the total amount of land is
less than the overall labor capacity. .Apc was varied between 0.2 and 10 with varying
increments20 depending on how close the value of .Apc was to the critical value of
1. The simulations were run with 1000 households and 60 firms for a total of 500
periods after a 500 period “burn-in” time to allow the model to reach a steady state.
Based on visual inspection, themodel reaches a steady state after around 200 periods;
a 500-period burn-in was chosen to safely reach themodel’s steady state. The number
of households in the model is arbitrary but similar to prior macroeconomic ABM
research [2, 14]. The ratio of firms to household is chosen to roughly match a typical
firm in the United States. In the United States, 85% of employers have 19 or fewer
employees [15], and the average firm in the model will have around 15 workers

18 PICK-CHEAPEST-FIRM? = false. If households do sort firms based on price, results are similar
in most parameter settings. A full discussion of the impact of households sorting firm by price is
beyond the scope of this paper.
19 LAND-AREA-PER-CAPITA.
20 All values used are: [0.2 0.4 0.6 0.8 1 1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 6 8 10].
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when unemployment is low. Of course, in the real economy there is a small number
of massive employers, but this is ignored in the model. The appendix lists all the
parameters used in the simulations and their values.

3.2 Results

To give an initial sense of the output of the model, Fig. 2 shows time series of unem-
ployment, mean wage, and mean profits for .Apc = 1 (blue) and .Apc = 3 (orange).
Wages and profits are expressed as a fraction of average consumer good price because
monetary units in the model are arbitrary. Dividing by the price of goods gives a mea-
sure of actual purchasing power. The time series show500 periods ofmodel execution
starting after the 500 period “burn-in” to allow the model to stabilize. For both values
of .Apc, all three variables fluctuate around a mean. When .Apc = 1, unemployment
is high, wages are low, and profits are high. When .Apc = 3, unemployment is low,
wages are high, and profits are low. We now turn to a systematic analysis of how
changing.Apc affects households and firms according to several important variables.

Increasing .Apc benefits both household and firms up to around .Apc = 1. After
that, increasing .Apc favors households over the interests of firms. When.Apc is low,
unemployment is very high, as can be seen in Fig. 3a. High unemployment correlates
with low wages as seen in Fig. 3b, and inequality between households is very high
as seen in the graph of the Gini coefficient in Fig. 3e (blue line). The extremely
high inequality when .Apc is low results from three factors: (1) many households
are unemployed, (2) even among those who are employed, wages are very low, and
(3) a very small number of households end up owning the majority of the equity in
firms and therefore collect the vast majority of profits. As.Apc increases from below
1 to slightly above 1, unemployment drops rapidly and then slowly rises again with
higher .Apc, leveling off at around 13%. This slow increase in unemployment with
higher.Apc is likely due to more firms going out of business, as discussed in the next
paragraph. Wage rate increases rapidly with increasing .Apc, leveling off at around
0.75. This means that under conditions of high.Apc, households are paid about 75%
of what they produce, the remaining 25% being kept as profits. Due to relatively
low unemployment and higher wages, the Gini coefficient for households drops
with increasing .Apc and levels off around 0.42. To summarize, as .Apc increases,
unemployment decreases rapidly and then slowly increases, wages increase, and
household inequality decreases.

The story is different for firms. They also benefit as.Apc increases from below 1 to
slightly above 1 as seen in the decreasing turnover rate (Fig. 3c) and increasing profits
(Fig. 3d). However, as .Apc continues to increase, turnover rates increase and profits
decrease. As a result, inequality among firms increases with increasing .Apc (Fig.
3e). The reason for these patterns is that when.Apc is low, even if demand increases,
a firm cannot produce more due to the limited amount of land. So, a firm will not
hire workers away from other firms, and competition between firms remains low.
As .Apc increases, firms can produce more and therefore compete more for market
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Fig. 2 Time series of unemployment, mean wage rate, and mean profits for two values of.Apc

share. Such competition decreases their rates of profit and increases turnover rate. To
summarize, firm profits and turnover rate improve as.Apc increases to around 1 when
all households can be productively employed but as.Apc increases further, profits sag
and turnover increases.

4 Conclusion

The results of the model show a basic conflict between the interests of households
and firms regarding the availability of productive land. When there is a surplus of
labor compared to available land, wages are suppressed, and unemployment is high.
When labor and land availability approximately balance, unemployment is low, but
wages are low aswell. This is because firms have no incentive to compete for workers
since they do not have extra land with which to increase production. Such a situation
favors firms, resulting in low turnover rates and high profits. This results in low
inequality between firms but extreme inequality among households, because over
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Fig. 3 The effect of changing.Apc on both households and firms. The solid lines represent the mean
and the shaded area one standard deviation. Households can each work one unit of land per period,
so.Apc = 1means that, in theory, all households could be productively employed.Wages and Profits
are expressed as a fraction of average price of goods to give a measure of actual purchasing power

time a small number of households come to own the large majority of firm equity
and wages for remaining households are low. As the available land increases, firms
have an incentive to increase production to compete for market share, leading them to
compete for workers which drives up wages. Inequality among households decreases
while inequality and turnover among firms increases.

The model presented here fills a gap in extant macroeconomic ABMs by connect-
ing the productive capacity of the economy to the underlying productive capacity
of the Earth. As such, it lays the foundation for a number of future dynamic mod-
eling interactions between the economy and ecosystems. The immediate next step
is to model firms impacting the productivity of the land due to either degenerative
or regenerative farming practices as discussed in Sect. 2.1. Beyond this, we plan to
model more complex economies with a supply network ofmultiple types of firms and
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introduce indexed pricing schemes designed to stabilize economic fluctuations and
align free market incentives with sustained ecological integrity as a passive emergent
effect.

Acknowledgements Thank you to Jacob Wit and William Conboy for their contributions to the
code of the ABM presented in this paper.

Appendix—Simulation Parameters

The following is a complete list of the parameters used in the simulations reported
in this paper as they would appear in a NetLogo Behavior Space experiment:

["setup-structure" "Single-PG&CG-TC=1.json"]
["LAND-AREA-PER-CAPITA" 0.2 0.4 0.6 0.8 1 1.1 1.2 1.3 1.4 1.6 1.8 2 3 4 6 8 10]
["MIN-WAGE-RATE" 2.5]
["DIMINISHING-UTILITY-CONSTANT" 0.6]
["pick-cheapest-firm?" false]
["delli-gatti-consumer-search?" false]
["N-TRADING-LINKS" 7]
["MONTHS-TO-LOWER-WAGE" 12]
["layoff-probability" 0.5]
["n-households" 1000]
["n-firms" 60]
["SEARCH-N" 5]
["fix-n-framework-agreements?" false]
["PROB-REPLACE-FIRM-PRICE" 0.25]
["framework-duration" 24]
["MAX-PRICE-CHANGE" 0.2]
["index-in-use" "no index"]
["SEARCH-BETTER-JOB-PROB" 0.1]
["mean-new-agreements-per-month" 2]
["firm-memory-constant" 0.8]
["min-wage-80\%-of-tech-param?" false]
["STARTUP-LIQUIDITY" 100]
["primary-good-prod-function" "linear"]
["alpha" 1]
["transactions-per-month" 1]
["DESIRED-BUFFER-FRAC" 0.5]
["RES-WAGE-CHANGE" 0.9]
["N-FRAMEWORK-AGREEMENTS" 7]
["s" 0.1]
["BUFFER-LABOR-FRACTION" 0.3]
["firm-competency" 0]
["MAX-WAGE-CHANGE" 0.2]
["PROB-REPLACE-FIRM-QUANT" 0.5]
["BACKGROUND-IMPROVEMENT" "10"]
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Interactions, Model Mechanisms
and Behavioral Attractors in Complex
Social Systems

H Van Dyke Parunak and Santiago Núñez-Corrales

Abstract In social modeling, a computational environment runs amodel that repre-
sents the world. The states the model explores (its behavioral attractor) are typi-
cally fewer than its description suggests. The mapping between model and attractor
depends not only on its parameters (exploring variants of the world) and its conven-
tions (imposed by the computing environment), but also itsmechanisms (components
of the model representing selected dimensions of the world). This paper equates
mechanisms with sets of coupled interaction classes, thus connecting the relative
richness of possible choices of agent behaviors to the size of the state space sampled
by computational procedures. We illustrate the impact of different mechanisms on
the attractor with a specific simulation platform, SCAMP. In our case, in general,
the more mechanisms one implements, the smaller the attractor, but with unexpected
twists. We discuss the implications of the richness of the corresponding repertoire
of interactions available to agents during simulation for the apparent combinatorial
explosion of future possible states in agent collectives. We finally observe how some
of these twists appear to correspond with the existence of constraints, hinting at
underlying conservation laws in silico and ideally in real systems these intend to
portray.

1 Introduction

The user of an agent-based social model (ABM) is largely occupied with imputing
observed behaviors to underlying social mechanisms, either internal to individual
agents or collective, and interrogating social models drives most of the research prag-
matics. How many distinct behaviors can agents manifest? How does their spatial

H. V. D. Parunak (B)
Parallax Advanced Research, Beavercreek, OH 45431, USA
e-mail: van.parunak@parallaxresearch.org

S. Núñez-Corrales
National Center for Supercomputing Applications, University of Illinois, Champaign, IL 61801,
USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
Z. Yang and S. Núñez-Corrales (eds.), Proceedings of the 2022 Conference
of The Computational Social Science Society of the Americas, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-031-37553-8_4

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37553-8_4&domain=pdf
http://orcid.org/0000-0002-3434-5088
http://orcid.org/0000-0003-4342-6223
mailto:van.parunak@parallaxresearch.org
https://doi.org/10.1007/978-3-031-37553-8_4


50 H. V. D. Parunak and S. Núñez-Corrales

distribution vary over time? Can we relate changes in the number and classes of
behaviors to corresponding changes in the resulting macroscale patterns of organi-
zation? These questions translate to the underlying search for general mechanisms
connecting behaviors to classes of interactions, and then for more fundamental prin-
ciples that constrain their action. This article discusses this relation explicitly using
a concrete example.

2 Behaviors, Mechanisms and Interactions

The primary purpose of an ABM is enacting mechanisms and observing micro- and
macroscale consequences across scales, with an emphasis on systems observed or
expected to display emergent properties. Mechanisms that operate at the microscale
often relate to intensive quantities in a system, those pertaining to individual agents,
while extensive quantities characterize the entire system. Traces of these quantities
reflect behaviors, which can be described as modes of operation of a system, or
of its parts, whose composition and aggregation manifest as temporal patterns. For
instance, in organization theory, organizational routines play the role of behaviors that
explain flexibility and change within organizations [8]. Combinatorially, the more
behaviors per actor anABMcaptures, themore possible worlds it formally describes.
However, the range of possible worlds actually visited (the model’s behavioral
attractor) is usually much smaller than the static model suggests.

The mapping between model and attractor depends on parameters, conventions,
and mechanisms. Each of these describes a different component of the modeling
enterprise, in which a computational environment runs a model that represents
the world (Fig. 1). Parameters capture how varying the architecture of the world
being simulated changes its static and dynamical shape, conventions dictate how
the abstract model executes on a computer to generate an attractor, and mechanisms
are the abstract building blocks driving the time evolution resulting in behaviors
that leave traces. Therefore, behaviors are simultaneously composite and compos-
able, suggesting that the size of the behavioral attractor depends on some small set
of primitives at or below the level of mechanisms. An example is the attempt to
connect sequence data efficiently to the structure, function and history of proteins to
a simple amino acid alphabet simultaneously approximate and informative, and with
low computational cost compared to protein folding calculations [9].

ABM models similarly attempt to reflect and explain reality with a limited reper-
toire of mechanistic building blocks. This agenda assumes that a model with fewer
mechanisms than the world’s facets can still give useful information. Most modeling
frameworks offer few alternative mechanisms, seducing modelers to ignore the
impact of mechanism choice at the expense of either hiding or constraining both
simulation relevance and fidelity in favor of intellectual tractability of the resulting
model traces. New perspectives, methods and tools are needed in the ABM commu-
nity to overcome difficulties originating in the intrinsic combinatorics involved in
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Fig. 1 Sources of variability
in an ABM
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the analysis of complex systems, particularly when agents have several mechanisms
at their disposal.

Agents can be endowed with multiple mechanisms. SCAMP (Social Causality
using Agents with Multiple Perspectives) [20], for example, is an ABM frame-
work offering agentsmultiple independentmechanisms. ABM frameworks generally
describe mechanisms in three main ways: interactions of an agent with its internal
state, interactions between agents and their environment, and interactions among
agents themselves. Furthermore, interaction patterns yield recognizable spatial,
temporal or causal structures.We define an interaction as a localized event where two
agents exchange information, degrees of freedom, in ways that modify their internal
states, spanning a joint ensemble of possible future states depending on the agents’
local contexts, and for which knowledge about exact details is constrained collec-
tively and individually by intrinsic and combinatorially originating uncertainties
[17].

We describemechanisms as collections of similar interactions regardless of where
and when they occur, suggesting the existence of interaction classes. Thus, the
dynamical description of a model is the collection of interaction classes present at
any given moment. As a system evolves in time, the number of its interaction classes
determines the expected number of possible mechanisms and behaviors, which we
call the system’s abstract state potential. However, not all possible interactions are
realized in any given system, whether in the real world or in a model.

Interactions at one scale emerge from laws governing more fundamental scales,
posing effective dynamical constraints that reshape emergent properties generated
by interactions under special circumstances. Thus, the combinatorial explosion
produced by introducingmore mechanisms, i.e., more tightly coupled sets of interac-
tion classes, is simultaneously pruned by the hard boundaries provided by governing
laws, some of which can be stated in the form of conservation laws.

For example, ABM simulations are often constrained by an abstract form of
conservation of mass. Consider the minimum number of copper atoms required
for conductivity to arise (~104) versus the far fewer individuals required for proto-
institutions to emerge [14]. Conductivity, produced by the cooperative effect of elec-
tron holes in crystalline lattices, is constrained by conservation laws via Maxwell’s
equations. Proto-institutions, produced by the cooperative effect of actors aligning
their goals and needs, are constrained by social norms and individual human behav-
iors. Recent work [15] found an (exponentially) inverse relation between the number
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of entities in a system and the number of interaction classes needed for new emergent
laws to appear at the next thermodynamic scale of the system.

Conservation laws can illumine our understanding of the behavioral attractor of a
model. They are tied to analogues of energy for a given ABM, suggesting some form
of the principle of least action. In the presence of stochastic events within complex
systems, this entails the existence of a multiplicity of paths to reach an arbitrary state,
with at least one path that is optimal in some sense (e.g., minimal distance to move
to another location, greatest proximity to satisfying a goal). The latter means that not
only is the behavioral attractor itself determined by the number and variety of mech-
anisms, but the trajectories to reach the attractor are also dynamically constrained.
That is, in the language of path integrals, the probability of following a certain path
is determined by the form of the interactions, privileging some over others.

To summarize: in general, the more mechanisms in an ABM, the smaller the
attractor (“the more you model, the less you see”), but interactions among mech-
anisms lead to anomalies, or generative effects [1]. Also, by the law of requisite
variety [2], we expect the computational machinery required to be significantly
more complex. For instance, a more constrained attractor may lie partly outside
less constrained ones with the same conventions and parameters. Adding mecha-
nisms can not only sharpen the model’s focus, but also shift its location and alter
the requirements for emergent behavior to appear in terms of the number of neces-
sary entities. Parameters control how interaction classes operate between actors and
their environment, conventions match interaction classes present in real systems to
interaction classes available in the computational machinery, and mechanisms link
interactions and behaviors.

3 Related and Prior Work

Behavior varies with model parameters, widely studied in agent-based systems (e.g.,
[4, 5, 7, 28]), including studies of tipping points (parameter values where behavior
changes discontinuously, leading to a phase shift) and lever points (parameters whose
change has a lasting, directed effect) [3, 23]. Wolfram [27] identified four distinct
classes of one-dimensional 0–1 nearest-neighbor cellular automata, varying only
the update rule, the key model parameter. Verification methods such as sensitivity
analysis [10] (p. 24) or comparison of agent trajectories with observed data also
explore behavioral changes when parameters change, but not the impact of changing
conventions or mechanisms.

Studies of different computational conventions are less common, but revealing.
For example, a differential equation model and an agent-based model can yield
qualitatively different results for the same parameters [24, 25]. Among agent-based
models, different scheduling disciplines for entities that in reality execute concur-
rently lead to different results [11, 13]. An extensive literature discusses scheduler
synchrony [16].



Interactions, Model Mechanisms and Behavioral Attractors in Complex … 53

This study focuses neither on the parameters that vary the world explored by a
model nor on the conventions imposed by computation, but on differing sets ofmech-
anisms that the model uses to represent facets of the world and on their interpretation
in the broader context of interactions. Naively, one hopes that even a primitive model
will be useful, and that addingmoremechanisms will addmore detail to the results of
the initial model. Unexpectedly, such refinements can also move the focus, and cause
other anomalies. This effect has not been explored previously becausemostmodeling
frameworks do not offer multiple mechanisms that can be activated independently
of one another.

4 Experimental Methodology

SCAMP is a causal language and simulator for social scenarios with multiple mech-
anisms that can be activated independently of one another. Events and goals in the
simulation are represented by networks. A causal event graph (CEG) is a directed
graph whose nodes represent types of events in which agents can participate, and
whose agency edges show allowed agent movement from one event type to another.
A hierarchical goal network (HGN) is a directed acyclic graph that models the goals
of a group of agents and how those goals are related to participation on events in the
CEG. Leaf nodes in the HGN are linked, or zipped, to event nodes that either support
or block them [6, 20, 21] give further details.

SCAMP uses polyagents [18], representing each domain entity by a single avatar
that deploys a swarmof ghosts. The ghosts explore their avatar’s possible next choices
by looking ahead a fixed distance. At each step, they choose probabilistically among
the nodes in the CEG that are immediate successors to their current node, and incre-
ment a variable on the node proportional to the value of the position reach. The avatar
chooses its next step by choosing probabilistically based on the features deposited
by its ghosts. This mechanism simulates the well-documented psychological process
of evaluating actions by mental simulation of possible outcomes [12].

From the perspective of a social scientist, SCAMPmodels high-level mechanisms
such as choice influenced by tactical preferences and strategic goals. These mech-
anisms are composed from lower-level interactions (Fig. 2), and these interactions
make SCAMP an ideal platform for exploring the application of a generalized theory
of interactions to behavioral dynamics.

We base our experiments on a model of civil strife inspired by recent history in
Syria. The CEG in this model includes 460 event nodes with 1106 agency edges
and 400 influence edges. The six HGNs, one for each group, include 122 goals or
subgoals 77 leaf goals are zipped to 177 event nodes. Our methodology has three
parts.
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Fig. 2 Every SCAMP
mechanism is a subnetwork
of entity interactions

4.1 Define Behavior Space

We interrogate the resulting SCAMP model for node coverage and overlap. Node
coverage has three forms: the number of nodes visited by avatars or ghosts, and the
number of successors considered by ghosts. We measure these values for at least six
runs of each configuration. LetQ and R be the sets of nodes for two runs of the same
configuration. Then the overlap betweenQ andR is |Q ∩ R|/(|Q| + |R| − |Q ∩ R|).

We hypothesize that as we add mechanisms, and by extension interaction classes,
node coverage in each category will drop (the attractors will shrink) while overlaps
will increase, because the system will be attracted into the same region of state
space. In terms of the theoretical framework of interactions [15], thanks to repertoire
sufficiency fewer agents are needed for anomalies to arise.

4.2 Select Active Mechanisms

SCAMP offers a variety of mechanisms.
Structure of the CEG. The CEG constraints agents’ behavioral trajectories. Even

for random walks, the branching factors differ along different paths, so that nodes
only accessible along highly branched paths will have a lower probability of being
sampled in a run of a given length than those with less ramified approaches. In our
example, the average node degree in the CEG is 4.74, close to an infinite square
lattice, yet highly variable. The kurtosis of node degree is 8.7, reflecting a tail of
nodes with high degree.

For comparison, we do a random walk over a rectangular directed lattice of 21 *
22 = 462 nodes, with both ghost and avatar determinism set to 0. A random walk on
a regular lattice with restart will visit every node if it runs long enough. We expect
the CEG to perform similarly. We also do a random walk over the CEG model itself,
augmented with a single START and a single STOP node.
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Fig. 3 Configuration lattice:
001 = influences, 010 =
HGN, 100 = preferences

Psychological preference. A feature space defines agent preferences and event
features. Without preferences, ghosts perform a random walk in laying down the
presence features that guide avatars. With preferences, ghosts stochastically favor
some nodes over others, using a roulette constructed from the features of accessible
nodes. We expect (a) agents using preferences will explore fewer nodes than those
walking randomly, (b) overlap across runs will be greater with preferences than
without, and (c) the longer the model runs, the more nodes will be visited.

Strategic reasoning. EachHGNmonitors the recent participation on event types to
which it is zipped to assess its current satisfaction, then computes the urgency feature
of each of these events. Agents respond to urgency according to their preferences.
If an agent is running without preferences, the HGN is irrelevant. But if preferences
are active, we expect HGNs to focus the agents’ attention, reducing the number of
nodes explored and increasing their overlap.

Influence edgesmodel causal influences among event types between which agents
do not move directly, modulating the probability of destination nodes dynamically
based on participation levels on source nodes. Again, this mechanism should reduce
the number of nodes visited and increase their overlap.

A configuration is a binary string indicating active mechanisms. The first position
shows whether (1) or not (0) preferences are active. The second position shows
HGNs, and the third, the use of influence edges. Thus in 000, the only mechanism
is the structure of the CEG, 100 indicates the use of preferences alone, 110 adds
HGNs, and 001 is the use of influence edges alone. The decimal values of these
strings identify configurations 0 (nomechanisms active) to 7 (all mechanisms active).
Configurations 2 and 3 (HGNs without preferences) violate the model and are not
included. Configurations 4–7 include preferences, configurations 6 and 7 include
HGNs, and odd configurations include influence edges. Our configurations thus form
a partial lattice (Fig. 3). All configurations use the same parameters and run with the
same conventions.

4.3 Establish Random Baseline

In addition to a space in which the attractor is defined and mechanisms that might
impact it, we provide two baselines: L (the 21 * 22 lattice) and R (the CEG), with
both ghosts and avatars ignoring the roulette entirely. In configuration 0, unlike R,
avatars follow their (randomly moving) ghosts.
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5 Results

Our experiments [21] illustrate how studying the behavioral attractor as a function
of model mechanisms can confirm or correct our intuitions and highlight behaviors,
mechanisms and interactions that invite further study.

5.1 Adding Mechanisms Increases Ghost Selectivity
at the Expense of Overlaps

Figure 4 compares the coverage and overlap of avatar visits (av), ghost visits (gv),
and successors considered by ghosts (sc) for the baseline configuration (000 ~ 0)
and the most constrained (111 ~ 7). Ghosts visit fewer nodes than they consider, and
avatars visit fewer than those visited by ghosts. Added mechanisms focus ghosts’
attention, as expected, but the number of nodes visited by avatars is unchanged.
However broadly or narrowly the ghosts explore, an avatar chooses one path, and
in a run of fixed length visits only a limited number of nodes. The avatar nodes are
not the same in the two configurations, but the coverage is the same size. We expect
overlap to increase with mechanisms, as agents focus their attention on fewer nodes.
Figure 4 confirms this intuition for avatar visits, but overlaps for gv and sc actually
decrease, as discussed in Sect. 5.3.

In a regular directed lattice, coverage would increase with run length. Figure 5
shows the effect of increasing run length from 1000 to 2000 Repast ticks, comparing
configuration 0 with 4. In x-axis labels, the first digit (0, 4) is configuration, and the
second (1, 2) is run length in k-ticks. Coverage increases for avatar visits, and for
gv and sc in configuration 0. But for configuration 4, preferences lead the system to
converge, and longer runs do not increase gv or sc. Convergence results from new
constraints over interaction classes that preferentially select some behaviors above
others.

5.2 Mechanisms Modulate Attractor Size and Location

In Fig. 4, sc and gv are fewer with all mechanisms than with the CEG alone. Figure 6
shows sc for intermediate configurations. Gv shows the same pattern.

In the baselines, randomwalk on a lattice (configurationL) offers fewer successors
to consider (and thus lower gv) than on the CEG (configuration R), reflecting the
long tail in the CEG’s degree distribution.

Both sc and gv tend to decrease as we add mechanisms. The difference between
configurations 0–1 and 4–7 suggests preferences have more effect than HGNs or
influence edges. Also, configuration 6 appears to be lower than the more highly
constrained 7, revealing a realistic interaction between two HGNs and influence



Interactions, Model Mechanisms and Behavioral Attractors in Complex … 57

Fig. 4 Nodes visited (Top) and overlaps (Bottom) by types and configurations

Fig. 5 Effect of run length
on coverage

Fig. 6 Successors by
configuration
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edges. An agent’s goals guide its actions by identifying high-priority events in which
the agent should participate, and the usefulness of goals will decrease if influence
edges block access to those urgent events.

Adding constraints not only decreases attractor size (for gv and sc), but also
shifts its location. Define the alignment of two configurations as the percent of
nodes in the attractor of the more constrained configuration that are also in less
constrained configuration. Figure 7 shows the alignment and size ratio for six pairs
of configurations, two for each metric. In each case, one pair compares the attractor
for configuration 0 with that for configuration 7 (0 → 7), while the other compares
configuration 7 with a less constrained configuration (6→ 7 or 1→ 7), but still more
constrained than 0. Note:

• As expected, the size ratio is smallest for the greatest increase in constraints (0
→ 7). The more constrained the system becomes, the smaller the accessible state
space, and the less the attractor shrinks.

• Contrary to expectation, increasing constraints reduces the alignment between
attractors. This effect is greatest not in moving from 0 to 7, but from intermediate
configurations to 7. Importantly, it is greatest for avatars, whose trajectoriesmodel
physical entities and are most likely to be used for policy recommendations. This
result challenges the common assumption that ignoring facets of the real world
gives a fuzzier but still essentially correct outcome. In fact, adding mechanisms
for these facets can shift the model’s output.

In terms of our theoretical framework, under the hood, interaction classes with
matching signatures compose instead of aggregate, leading to significantly different
behavioral landscapes.

Fig. 7 Alignment versus
Size ratio of attractors as
constraints increase
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5.3 Increasing Mechanisms Generates Causal Entropic
Forces

In addition to monitoring node coverage (estimating a configuration’s attractor), it is
also useful to study variation among the nodes visited in different runs of the same
configuration. Intuitively, we expect overlap to increase with number ofmechanisms.
This intuition must be qualified.

With significance p = 2E–16, sc has the most overlap, followed by gv and then
av.. This difference probably reflects the fact (Fig. 4.) that for a fixed number of
nodes, av < gv < sc. Higher coverage of the CEG leaves fewer nodes on which runs
can differ with each other.

Figure 8 showshowavand sc overlaps varywith configuration.Avoverlap satisfies
our intuition that more mechanisms guide agents into similar regions of the CEG,
increasing overlap. Consistent with this dynamic, configurations L andR, where both
ghosts and avatars execute random walks, have the lowest overlaps. Configuration 6
yields the highest overlap.Adding influence edges in configuration 7 reduces overlap,
reflecting their interaction with HGNs.

Overlaps in sc are more complex. Setting aside L and R, sc overlaps decrease
with added mechanisms! As with sc and gv coverage, there is a sharp drop with

Fig. 8 Overlaps by configuration
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configuration 4, when preferences become active. Again, the power of HGNs in
drawing agents together is clear in the increased overlap in configuration 6, but faces
interference from influence edges in configuration 7.

The overall negative correlation between sc overlap and number of mechanisms
is surprising. Perhaps the mechanisms lead the agents into parts of the CEG that
they otherwise would not visit. Preferences in particular can lead agents to prefer
highly branching regions that otherwise would be relatively inaccessible. In such a
region with high node degree, SCAMP’s roulette selection can push different runs
in different directions, increasing sc coverage and thus reducing overlap. Modelers
who assign favorable features to some events may focus more attention on them and
ramify the paths to which they lead more than for other events, a form of modeling
bias.

Let us reinterpret these results in terms of interaction classes. Avatars outsource
future state discovery to ghosts, which explore the feasibility of successors. We
propose that interactions between avatars and ghosts, and interactions between ghosts
and successors are fundamentally different, and that such difference explains the
counterintuitive outcomes observed here. Low overlap for highly constrained config-
urations relative to unconstrained ones reflects the information gained by increasing
the number of mechanisms available to agents, leading in turn to sampling a more
diverse behavior space with the same resources (ghosts), since having a larger reper-
toire of interaction classes lets agents collectively explore new, otherwise inaccessible
regions of the behavioral attractor. Interactions between avatars and ghosts appear
to be more constrained since ghosts reduce uncertainty and random variation. These
interactions appear more information-like in the sense that they abstract details about
future paths to keep the computational cost of avatars relatively constant, and their
coverage sufficiently high.

The stochastic exploration of ghosts has the signature of an entropic force, a
force that arises out of thermodynamic (hence stochastic) systems as they tend to
maximize their entropy [22]. Ghosts then filter information to avatars by selecting
paths that maximize future freedom of action. This is the definition of causal entropic
forces [26], which have been theorized to have a significant role in how we define
intelligence.

6 Discussion and Future Work

While our specific results are of great interest to users of SCAMP, our message
is important for the responsible use of any ABM framework, in two ways. First,
modelers have a sense of the range of possibilities covered by their models, based on
the static structure of those models. The attractor visited by the running model may
be significantly smaller. Users need to understand a model’s coverage under different
conditions, and modelers need to understand how adding mechanisms may impact
that coverage. Sometimes users will want to increase coverage to consider more
possible outcomes; in other cases they will want to decrease it to focus on the most
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plausible outcomes. Second, adding mechanisms to capture more dimensions of the
realworld can not only provide amore focused result, but also shift its location in state
space. Third, translating fundamental aspects of the ABM world into the language
of interactions and interaction classes clarifies how parameters, conventions and
mechanisms intersect at deeper levels of analysis.

This translation leads in several directions.

1. We need a more rigorous exploration of the counterintuitive behaviors described
above. This exploration will also help validate the hypotheses we suggest, and is
particularly challenging at the start-up of the simulation, identifiable by plotting
the entropy of each agent’s roulette over time [19].

2. Two theoretical avenues are apparent.

a. Translating the current model into the generalized theory of interactions can
reveal connections between behaviors, mechanisms and interactions with
higher intellectual efficiency both in formal and graphical manners.

b. Since interaction classes for a model are related to the structure of CEGs
and HGNs, we are exploring spectral graph methods to untangle interaction
motifs connected to the mechanisms described here to make the underlying
complexity of SCAMP’s results tractable.
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Modeling Farmers’ Adoption Potential
to New Bioenergy Crops:
An Agent-Based Approach

Kazi Ullah and Andrew Crooks

Abstract The use of fossil fuels is the primary source of greenhouse gas emissions
but there are alternatives to these especially in the form of biofuels, fuels derived from
bioenergy crops. This paper aims to determine farmers’ potential adoption rates of
newly introduced bioenergy crops with a specific example of carinata in the state of
Georgia. The determination is done using an agent-based modeling technique with
two principal assumptions—farmers are profit maximizer and they are influenced
by neighboring farmers. Two diffusion parameters (traditional and expansion) are
followed along with two willingness (high and low) scenarios to switch at varying
production economics to carinata and other prominent traditional field crops (cotton,
peanuts, corn) in the study region.We find that a contract prices around $9, $8 and $7
can be a viable option for encouraging farmers to adopt carinata in low, average, and
high profit conditions, respectively. Expansion diffusion (that diffuses all over the
geographical area), rather than centered to the few places like traditional diffusion
at the early stage of adoption in conjunction with higher willingness conditions
influences higher adoption rates in the short-term. As such, the model can be used
to understand the behavioral economics of carinata in Georgia and beyond, as well
as offering a potential tool to study similar bioenergy crops.
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1 Introduction

The uses of fossil fuels such as petroleum, natural gas, and coal is the primary source
of greenhouse gas (GHG) emissions. Globally, about 65% ofGHG emissions in 2010
occurred due to burning fossil fuels and currently, commercial aviation is responsible
for 2.6% of annual global CO2 emissions [19]. Therefore, the mitigation strategies to
combat climate change impacts are gaining attention from all sorts of transportation
sectors, including that of the aviation industry. Utilizing biofuels can be the prime
strategy in the goal to reduce GHG emissions. For example, it has been suggested
that advanced biofuels produced from energy crops could reduce GHG emissions
by as much as 50% when compared to fossil fuels [11]. In addition to this, bioen-
ergy crops usually have high yield potentials; they can be grown productively on
low-quality, fallow and marginal lands; they can increase soil carbon and reduce soil
erosion (e.g., [35]), and are promising alternatives for rural economic development
[29]. However, there is a great deal of economic, behavioral, and environmental
challenges associated with adopting bioenergy crops, such as price and yield risks
[24], lack of an established market [12], inexperience with new management prac-
tices, and cost of new crop-specific equipment [23]. For the last two decades several
studies have tried to capture these challenges using several farm-scale modeling
techniques ranging from agent-based models (e.g., [18]); choice experiment models
(e.g., [23]); and mathematical programming models (e.g., [8]) to analyze different
policy scenarios. Among those available modeling techniques, agent-based models
have been argued to be an elegant tool for farm-scale modeling. The rationale for
this is that farmers are heterogenous in their attitudes towards adopting bioenergy
crops [30]. This heterogenous behavior is easily captured in such style of models [9],
and it has been shown that agent-based modeling can capture farmers’ heterogenous
behaviors and their interaction with the biophysical environment and with other
farmers [25]. These characteristics of agent-based models overcome some of the
limitations of traditional econometric-based or theoretical microeconomic models
which struggled incorporate heterogeneous behavior and spatial interactions [5]. It
has also been argued that agent-based models can imitate the reality of farming and
can be used more closely to understand the adoption pattern of a newly introduced
bioenergy crops, where farmers’ individual attitudes have large impact on overall
adoption rates (e.g., [2, 20]).

However, to date there has only been a handful agent-based models that have
explored bioenergy crop adoption (e.g., [2, 10, 15, 18, 20]). More recent work by
Ullah and Dwivedi [30] tried to address two gaps from previous studies. The first
was the joint determination of farmers’ profitability, neighborhood influences and
risk preferences to build a case in the field of computational social and behavioral
science to study the perspective of farmers’ attitude toward bioenergy crop adop-
tion. Secondly, their work moved away from a hypothetical grid space and created
a realistic but simple environmental landscape utilizing actual biophysical infor-
mation to build farmers’ interaction with the environment. Furthermore, Ullah and
Dwivedi’s [30] study applied three sub-modeling techniques under three principal
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assumptions:—(1) farmers are profit maximizers [3], (2) farmers are influenced by
their neighboring farmers [18], and (3) farmers are risk averse [24]. However, Ullah
and Dwivedi’s [30] study was limited to a small-scale watershed level (e.g., 650
farmer agents with 19,622 acre of farmland). Another major limitation in that study
was how neighborhood influences where assigned. Their study represented only one
neighborhood which was not connected to the surrounding neighborhoods. Thus, the
adoption of the crop diffused over the simulation period monotonically by consid-
ering the previous adoption rates same for all the farmers over the study area. There-
fore, in that study, farmers were influenced by only other neighboring farmers in
the same community. Information sharing from other neighboring communities was
missing, which is something that has been witnessed in reality (e.g., [4]). As a result,
the diffusion of crop adoption could not be simulated to a greater geographical area.

This paper significantly extends the work Ullah and Dwivedi [30] by incorpo-
rating a greater regional study area, making it geographically explicit and assigning
neighborhood influences on the farmers within their communities along with the
surrounding communities. Thus, this study aims to model the adoption potential of
bioenergy crops, where the case study is adopting carinata (an oilseed crop) as a
newly introduced energy crop in context of Georgia, United States (US). In what
follows, we first present the methodology and rationale for choosing the study area
(Sect. 2) before presenting the results of the model in Sect. 3 and finally in Sect. 4
we provide a summary of the paper and areas of further work.

2 Methodology

Whilewe present ourmodel in the following sections,we also provide amore detailed
Overview, Design concepts and Details (ODD) protocol [14] along with the model
and the data needed to run the model at https://www.comses.net/codebase-release/
5c2c06f0-3f6d-4f8d-b198-ce24b55feb2f/. This additional material allows for amore
in-depth description of the model, as well as facilitates the replication of results or
extension of the model.

2.1 Study Area and Purpose

Brassica carinata, or simply carinata, is a promising annual oilseed crop for the
commercial production of sustainable aviation fuel (SAF [28]). As a cover crop,
carinata can provide several ecosystem services by reducing soil erosion, nutrient
leaching, increasing soil organic matter, and retaining moisture [17]. In the South-
east (SE) US, carinata can be potentially cultivated on about 3.4 million acres of
fallow agricultural land during the winter season [1]. The SE is also home to the
world’s busiest airport, the Hartsfield-Jackson Atlanta International Airport, located
in Georgia which consumes around 3.9 million tons of conventional aviation fuel

https://www.comses.net/codebase-release/5c2c06f0-3f6d-4f8d-b198-ce24b55feb2f/
https://www.comses.net/codebase-release/5c2c06f0-3f6d-4f8d-b198-ce24b55feb2f/


66 K. Ullah and A. Crooks

(CAF) per year, which is around 5.2% of the total CAF consumption in the US [31].
Therefore, the large supply of carinata feedstock could meet the immediate demand
of SAF in Georgia and beyond. However, much of the contemporary research on
promoting carinata in the US South has been done only at the experimental level
[13]. The challenges in adopting carinata at a regional level is yet unknown. To
address this challenge one of the first steps is to explore the farmers’ attitudes towards
adopting energy cropswhile still ensuring feedstock availability. Therefore, this study
determines the potential adoption rates of carinata under different crop economics,
behavioral and diffusion scenarios.

Building upon how Atlanta airport could utilize carinata for SAF, for a case study
region we chose Georgia. Georgia is a state in the SE region of the US having an
area of 95,635.24 sq. miles which agriculture/pasture make up 20% (US Department
of Agriculture (USDA)/National Agricultural Statistics Service (NASS) [32]). With
respect to agricultural lands, there are threemajor field crops: cotton, peanut and corn
[22], however the vast majority of agricultural land occupied by these crops remains
fallow in the winter season [1]. This provides opportunities for alternative crops in
the winter. For example, it is estimated that around 1.9 million acres of these fallow
lands could be utilized for cultivating carinata [1]. Figure 1 shows the county-wise
potential land availability for producing carinata seeds [13] and the purpose of our
study to understand how the diffusion of carinata adoption would take place. Our aim
is to determine the future adoption rates of carinata as a newly introduced bioenergy
crop in Georgia for producing SAF.

2.2 Entities, State Variables, and Scales

The agents in our model represent farmers. Each farmer is an agent who owns 247
acre of crop land, which is average farm size in Georgia [33] and follow either one of
the three most popular three years crop rotations in Georgia: Cotton-Cotton-Cotton;
Cotton-Cotton-Peanuts; Cotton-Cotton-Corn. These three rotations represent at least
95% of field crops in Georgia [22]. In each county, three types of farmer agents are
randomly created according to their respective crop rotation’s ratio of total farmlands
estimated from the total crop areas divided by the average area of crop land.Wewould
argue that the creation of farmer agents in this manner is a good approximation
for giving farmers aggregated information at county level, while at the same time
preserving privacy of farmers which is often done in other agricultural agent-based
models like AgriPoliS [16].

Agents’ attitudes towards cultivation of certain row crops (e.g., corn, cotton,
peanuts and carinata) on farmlands are defined by several profit maximizing vari-
ables and neighborhood influences’ parameters. The profit maximization variables
(i.e., yield, production cost and price) determine the crop production economics at
the discounted value to evaluate the profitability of integration of carinata into the
major traditional crop rotations. While the production costs involve operating costs
for producing a crop, including seeds, fertilizer, irrigation, fuels, and other similar
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Fig. 1 County-wise land availability for carinata production (adopted from [13])

services. The allotted overhead costs, such as costs of labor, machinery and equip-
ment, taxes, insurance, and other general farming overheads, are not included in net
return estimations. As carinata is a row crop, it does not require any new machinery
and equipment when being introduced into a new area. Therefore, considering only
operating costs have no biasness for profit comparisons. Dedicated energy crops,
which have no food value, are cultivated by the farmers as a cash crop in aspiration
of making profit [23]. Therefore, without making profit farmers are not motivated for
cultivating energy crops. The neighborhood influence parameters ascertain the adop-
tion rate of rotations with carinata in the neighborhood that includes the county that a
farmer belong and the surrounding adjacent counties. Each farmer has his own adop-
tion threshold, which reflects how positive a farmer is for adopting carinata compared
to the adoption rate [2, 4]. The adoption threshold parameters with different stan-
dard deviations shows whether the initial willingness on adopting carinata among
the farmers are high or low.

Typically, it is suggested that carinata should be produced as double crop, once in
every three years with two-years rotation gap [27]. To account for this in this model,
the rotational period is three years for farm-scale modeling, which is extended up
to 33 years (2018–2050) for long-term planning so that biorefinery investors can
observe the feasibility of supply in the long run. Each tick or time step (t) of the
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model therefore represents three years (due to crop rotations). The model is spatially
explicit in terms of aggregating individual agents’ decisions to the county level.
However, decisions are made at the farm level.

2.3 Process Overview and Scheduling

Farmer agents’ adoption decisions of carinata are reflected in two sub-models of profit
modeling, and diffusion modeling (see supplementary material at https://www.com
ses.net/codebase-release/5c2c06f0-3f6d-4f8d-b198-ce24b55feb2f for more details).
The profit modeling evaluates farmers’ profits of row crop rotations with and
without carinata.While the diffusionmodeling determines farmers’ attitudes towards
adopting carinata under neighborhood influences. Farmers decide to adopt carinata
for the current period only when they find their profit with carinata rotation is greater
than without carinata rotation in the previous period, and the neighborhood influ-
ences from the same previous period build a positive outlook for adoption. For each
farmer, the adoption behavior of the current period is updated and feeds into the next
time step. Thus, the model works in a recursive manner until the end of the simula-
tion period. Figure 2 shows the flow of farmers’ decision-making framework spread
across two sub-models. How farmers decisions are reflected in both sub-models is
discussed at detail in the supplementary material.

2.4 Initialization

At the farm level, three categories of farmer agents are created in each county with
specific crop rotations:—(1) cotton-cotton-cotton farmers; (2) cotton-cotton-peanut
farmers; and (3) cotton-cotton-corn farmers. The number of farmer agent in each
category under a particular county was created according to the ratio of those three
major crop rotations among the total field crop area of the county for the year of
2015–2017. The total farmland and the ratios of major rotations of each county were
captured from the Crop Data Layer (CDL) [32]. The creation of farmer agents from
actual crop rotation histories enabled us to build a more spatially and temporarily
informed agent-based model compared to existing models in the context of energy
crop adoption (e.g., [7, 20, 26]). By utilizing this temporally and spatially explicit
crop distribution attribute, we can more realistically estimate farmers’ profits and
the potential integration of carinata into traditional rotations according to the agro-
nomic conditions (e.g., the herbicide effect for cultivating carinata after peanuts)
[27]. The adoption thresholds of the farmers are set using two normal distributions,
which ultimately create a high and a low initial willingness scenario. Initial adoption
rate (AR) is assigned zero at the start of the simulation period. The AR value is a
neighborhood level value (which is discussed further below), however, all the farmers

https://www.comses.net/codebase-release/5c2c06f0-3f6d-4f8d-b198-ce24b55feb2f
https://www.comses.net/codebase-release/5c2c06f0-3f6d-4f8d-b198-ce24b55feb2f
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Fig. 2 Process, overview
and scheduling

in their respective neighborhoods are equally informed about that value, hence, the
parameter is assigned as a farmers’ attribute for simulation purposes.

At the global level, crop yields, prices, and farming costs are set at the initialization
of the model. The crop economics data is acquired from USDA, Economic Research
Service at the Southern Seaboard regional level [34]. The initial contract price of
carinata is fixed by analyzing historical crop rotations and by comparing with the
best profitable scenarios of traditional crop rotations in previous three years period
from base year (see [30] for more details).

Twodiffusion types are selected—(1)Traditional and (2) Expansion diffusion [21]
as shown in Fig. 3. The rationale for exploring these different diffusion processes
is to explore how carinata might defuse over the area. These could be considered
as two different policy options—one in which a pilot study is focused on a small
geographical location, and one in which farmers are selected from across the state
(i.e., the entire Georgia for this study). Traditional diffusion, which can also be
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Fig. 3 Adoption scenarios at time step 1 where Red agents (i.e., farmers) are the early adopters:
a traditional b expansion diffusion exam

considered as contiguous diffusion, (e.g., [21]) starts from pilot site in a single or
few adjacent counties located at Experimental Little RiverWatershed,which contains
around 2.5–5% farmers of the whole Georgia. This part of Little River Watershed is
the most prominent place in Georgia for doing experimental and field research led
by universities and relevant agricultural extension departments [6]. Starting at this
watershed, the adoption behavior is diffused from early adopters to the neighboring
farmers and subsequently, it spreads all over Georgia throughout the simulation
period. In case of expansion diffusion, the early adopters are spread all over Georgia
at the initial stage rather than located within a single small geographical area; and
then, other neighboring farmers learn from their experiences, thus, the adoption
behavior is diffused over the study area.

3 Results

Before presenting the results of the model, we applied several verification processes
to ensure that the model matches its design. We achieved model verification using
iterative design review (i.e., code walkthroughs), visual debugging and parameter
testing via sensitivity analysis. Once we were satisfied the model was verified, we
then moved onto scenarios exploration. The model is simulated under three profits
(low, average, high), two diffusions and two willingness scenarios on adoption with
the contract prices of carinata at $7, $8, $9 and $ 10. The low profit scenario is defined
with lowest yield (40 bu/acre) and highest production cost ($280/acre) of carinata.
The average profit is determined with average yield (50 bu/acre) and production
cost ($270/acre). The high profit is calculated using highest yield (60 bu/acre) and
lowest production cost ($260). Each scenario of the model is run for 10 times and
the average results are presented in this paper.
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According to Fig. 4, there is virtually no profit outcomes at price, $7, hence, there
are very low adoption rates in the long run (e.g., only 3.3% by 2050 on average, and
less than 5% for any scenarios). Adoption rates go considerably higher from $8 to $9
and $10. For instances, 7,408 (41.2%), 16,585 (92.2%), and 17,232 (95.8%) farmers
adopted carinata by 2032 at a price of $8, $9 and $10, respectively under traditional
and low initial willingness scenario (Fig. 4a). However, the adoption rates fluctuate at
the price of $9 and $10, and there is no significant difference between them for long
term adoptions. For example, in 2044, the adoption rate under expansion diffusion
and high willingness scenario was 80% at a price of $10 and that adoption rate under
the similar scenario was 94.5% at the price of $9 (Fig. 4d). By 2050, the adoption
rate at $10 was higher than that of $9. From investors perspective, they would rather
offer a contract price of $9 to the farmers rather than fixing it more than that, because
investors will get almost equal adoption rates at this price. The overall adoption rates
in the long run remain almost similar for all the scenarios, but adoption rates are
higher at the year of 2026 for high initial willingness scenarios, and for expansion
diffusion with high willingness scenarios, that figure is highest at any given contract
price.

Carinata could be a profitable enterprise even at a price of $7 in an average yield
and production cost as shown in Fig. 5. A high adoption rate appeared at $7 under any
condition of average profit scenarios. However, the adoption rates get more stable
at $8. Therefore, investors may look for getting carinata seeds at that contract price.
Similar to Figs. 4 and 5 also shows the higher adoption rates (e.g., 60.7% and 65.6%
at price $8) in short term (before 2026) in higher initial willingness scenarios (Fig. 5b,
d) and highest in case of expansion diffusion (Fig. 5d). The same findings are also
reflected with Fig. 6 in the high profit scenarios. However, in high profit scenarios,
a contract price of $7 can be enough to maintain the desirable adoption rates in the

Fig. 4 Number of farmers who adopt carinata in specific rotation years with low profit condition
(carinata yield = 40 bu/acre, carinata production cost = $280/acre)
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Fig. 5 Number of farmers who adopt carinata in the rotation years with average profit condition
(carinata yield = 50 bu/acre, carinata production cost = $270/acre)

Fig. 6 Number of farmers who adopt carinata in the rotation years with high profit condition
(carinata yield = 60 bu/acre, carinata production cost = $260/acre)

long run, such as the adoption rates ranged between 93.2 and 97.3% by 2050 for all
the scenarios at that price.

4 Summary

The aim of this paper was to explore how farmersmight adopt bioenergy crops across
a large geographical area. Results from our model suggest that a viable contract price
made by investors can persuade farmers to adopt carinata. Similar to what one might



Modeling Farmers’ Adoption Potential to New Bioenergy Crops … 73

observe in the real world (e.g., [4]), the adoption rate for this newly introduced crop
remains low at first but changing the dynamics of initial willingness on adoption
can speed up the rate of this new bioenergy crop, especially under the expansion
diffusion scenario. Therefore, it could be suggested that if there was a campaign to
promote the adoption of this bioenergy crop, policy makers should consider its initial
dispersion of pilot sites over a large geographical region and provide a reasonably
high contract price.

Looking towards future work, all models have their limitations, and this model is
no different. One such area is that of the farmers’ risk aversion, which is currently not
accounted for in this model, but it might impact their land allocation decisions (e.g.,
[2]). Therefore, one might want to explore the usefulness of risk portfolio estimation
methods (e.g., mean–variance optimization, statistical dominance analysis), which
could be embeddedwithin the farmers individual decisionmaking. In addition to this,
the current model does not consider dynamic environmental factors such as weather
conditions that can affect crop yield or how yield variations across the counties due
to different soil conditions and the environmental benefits or loss that can accrue for
cultivating bioenergy crops. To fulfill this gap, our futuremodelingworkwill consider
frost event frequencies based on past events along with potential yield variations and
net soil organic carbon stocks which can be estimated from other models such as the
DayCent model [13]. Even with these limitations and areas of further work this paper
offers a new way to explore how farmers might adopt bioenergy fuels and through
the provision of the source code and data allows others to extend or adapt the model
to their own biomass and bioenergy study fields which could be used as a tool to
reduce greenhouse gas emissions from fossil fuels.
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Investigating Emergency Responders’
Roles in a Dirty Bomb Event
with an Agent-Based Model

Ellie Q. Chen and William G. Kennedy

Abstract Dirty bombs, formally known as radiological dispersal devices (RDDs),
pose a new and potentially significant threat to the populace. They can be used by
terrorists to cause explosions that would expose nearby civilians to radiation, result-
ing in injuries of varying severities, including death. The assistance of emergency
respondersmaymitigate the negative consequences of dirty bomb events.We used an
agent-based model to simulate what happens when emergency responders respond
to a dirty bomb exploding in a public metropolitan place. Through our study, we
confirmed the positive impact of emergency responders in a dirty bomb event and
raised possible concerns for the safety of emergency responders.

1 Introduction

When the Russia-Ukraine war began this year, the fear of a nuclear confrontation
arose in the world. In July of this year, New York even released a public service
announcement in the case of a nuclear attack [3]. A news article from Science, the
journal of the American Association for the Advancement of Science, states that in
March, ingredients needed to construct a dirty bomb were lost, presumably stolen,
from a Chornobyl Nuclear Power Plant monitoring lab and that “Chornobyl is not
the only Ukrainian nuclear installation at risk in the war” [17], indicating concern
regarding the loss of control of nuclear materials. The consternation caused by this
incident shows the danger of RDDs and the necessity to study the inner workings
and outcomes of dirty bomb events.
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Emergency responders, also known interchangeably as first responders, are
licensed and trained personnel including but not limited to law enforcement officers,
emergency medical technicians (EMTs), and firefighters and are vital to dirty bomb
events. According to the Occupational Safety and Health Administration (OSHA),
emergency responders are responsible in the case of radiation emergencies [13]. The
International Atomic Energy Agency (IAEA) provides a Manual for First Respon-
ders to a Radiological Emergency that defines a radiological emergency as “emergen-
cies involving radioactive material that can occur anywhere and include... malicious
threats/acts” [8]. By this definition, the detonation of a dirty bomb is a radiologi-
cal emergency and would call for the assistance of first responders before resources
from national organizations, such as the Department of Energy (DOE), Department
of Homeland Security (DHS), and the FBI, respond. In such an emergency, first
responders would save lives and guide civilians to safe areas away from radiation,
and their role is therefore especially important.

The presence of first responders can thus lessen the negative consequences of
dirty bomb explosions. Because first responders are a valuable and potent resource,
it is essential that we study their role in dirty bomb events and similarly perilous
situations. First responders are especially exposed to radiation and other hazards
while undertaking their tasks [13], so it is imperative that we confirm their safety in
radiological emergencies. Our study aims to investigate and report the impact of the
presence of first responders on civilians’ wellbeing as well as examine the wellbeing
of first responders themselves in a dirty bomb event.

Our main contributions: (i) built an agent-based model whose framework can be
used to create other models of dirty bomb events in metropolitan areas; (ii) provided
potential to extend the model to include other types of agents and agent behav-
iors, especially interactions between agents (e.g. family members); (iii) conducted
research through an experiment of the impact of on-site first responders in dirty
bomb events, through which we obtained and discussed results for the sake of better
preparedness in a real-life dirty bomb event.

2 Background

The sun provides all of us some exposure to natural radiation. It is a very large
radioactive source at an average distance of 93 million miles away. With too much
exposure, we can get a sunburn, usually mild but potentially a serious second-degree
burn. Radiation from a nearby radiological source is worse. The amount of radiation
received is dependent on the strength of the source, the distance from the source,
whether there is any shielding between us and the source, and finally, the length of
time we are exposed. That last factor can be under our control. Generally, radiation
spreads out in all directions and its effects decrease with the square of the distance
from the source and whether there is any shielding [12].

A basic thumb rule for determining the amount of radiation received is the Curie-
Meter-REM rule [4]. It is that 1 Curie of radioactive material at 1 m results in a
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dose rate of 1 REM per hour. A REM (Roentgen Equivalent in Man) is a unit of the
radiation effects on a person. The dose can be scaled directly based on different source
strengths, inversely by the square of the distance in meters, and directly based on
the duration of the exposure. Therefore, a basic part of the guidance on minimizing
the dose received is to get away from the source as quickly as possible, thereby
increasing the distance and decreasing the exposure time.

The pocket guide issued by the Center for Disease Control and Prevention (CDC)
for clinicians [2] describes dangerous doses, i.e., more than about 800 REM as a
lethal dose with vomiting expected within ten minutes and death within a day or two.
People trained to work with radioactive sources are allowed to receive a maximum
of 5 REM per year and the general public protected such that they should not receive
more than half a REM per year [12]. However, there have been some radiological
accidents with exposures above these limits [9].

One of the worst accidents or incidents was in 1987 in Goiânia, Brazil. A radio-
therapy institute’s machine was in the process of being decommissioned when the
process was held up by a legal dispute. During the delay, the radioactive Cesium
source used in a therapy unit, approximately 1,400 Curies (Ci), was left unprotected
and two thieves scavenged it and exposed themselves and others to lethal doses over
a few days of close contact with the radioactive material. The incident was reported
to the IAEA and they issued a report [7].

A major study of radiological dispersal devices (RDDs) (the formal name of a
dirty bomb) was conducted in 2007 [16]. They considered the risks and economic
impact of three dozen scenarios involving up to spent fuel rods from nuclear reactors
and industrial irradiators for sterilization and food preservation can be upwards of
2-4 million Curies and disrupting the seaport of Los Angeles. The handling of such
“hot” sources requires special equipment and processes to protect those handling such
sources. The source in the Brazilian incident was at the upper end of the sources used
in radiotherapy.

There are many studies on modeling dirty bomb events. Some, however, do not
consider metropolitan tourist areas, e.g. Manley et al. [10] concerns airport settings,
Pereira and Delgado [15] examines the Olympia village, Duan et al. [6] regards
subway settings. Some do not model individual-level behaviors [1, 14, 18]. In most
existing literature, including the aforementioned, first responders are not the focus
of the research. As commented in [19], “emergency responders have not been ade-
quately studied.” Our paper models individual-level behaviors in a dirty bomb event
in a metropolitan area and focuses on first responders.

Last year, a study considered the effects of a Brazilian-scale source in a dirty
bomb on the National Mall in Washington, DC. That study was reported at the
Annual Meeting of the Computational Social Science Society of the Americas [23]
and discussed the impacts of a dirty bomb at a crowded public gathering such as the
4th of July. The model discovered that only those injured by the bomb’s explosion
and unable to get away from the source on their own received significant doses. In
this extension of that study, we have included modeling the roles of first responders.



80 E. Q. Chen and W. G. Kennedy

3 Methodology

3.1 About Emergency Responders

The Department of Homeland Security (DHS) provides a document titled “Radio-
logical Dispersal Device Response Guidance: Planning for the First 100Minute” [5],
which supplies a timeline (Annex 7) for actions that emergency responders take after
the dirty bomb explosion. According to the timeline, twominutes after the explosion,
emergency responders would begin “lifesaving rescue operations”; by five minutes,
they would “confirm the presence of radiation” and subsequently establish a Hot
Zone, first defined as areas within 250 m of the explosion, and Shelter-In-Place
Zone, first defined as areas within 250–500 m of the explosion [5]. Civilians are
expected to leave the Hot Zone and shelter in buildings in the Shelter-In-Place Zone.

Our model makes two assumptions and deviations from the information provided
by official sources: (i) we assumed that exit points for civilian evacuation, which
could also provide a quick screening and decontamination, would be set up at five
minutes after the explosion; (ii) we assumed that civilians will not be sheltering in
place. The second assumption is based on the fact that buildings in the National Mall
are closed to visitor entry. Thus, all modeled victims avoid entering buildings as they
move. Otherwise, we have followed the aforementioned sequence of events in our
simulation.

3.2 About the Previous Model

Our model is built on a previous model [23]. That model simulated civilians fleeing
from a dirty bomb explosion in the National Mall (an area in Washington, D.C.)
and recorded the numbers of those injured or killed and each person’s amount of
radiation received, considering the number of civilians present and the power of the
bomb. The previous and new models were created using NetLogo [22].

In the previous model, civilians were represented by moving agents, the layout
of the National Mall was represented by patches with a resolution of five meters,
and the passing of time was represented by ticks representing ten seconds each. The
previous model utilized a map of the National Mall, which can be seen in Fig. 1,
1000 m long and 500 mwide, with light green patches representing grass, dark green
patches representing the picnic area, black patches representing buildings, and white
patches representing roads. The model set up a number of civilians randomly spread
out on the picnic area. After a dirty bomb detonates on a set coordinate in the picnic
area, civilians flee on foot away from the explosion. Depending on their distance
from the explosion, they have a delay in detecting the danger. Some civilians hesitate
before running for zero to six ticks (zero to sixty seconds), discretely; the duration of
their hesitance varies. The model continues running for another sixty ticks after the
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Fig. 1 Map of the National Mall used in our simulation (courtesy of Xiong and Kennedy)

detonation. To this model, we added both a variation of speed among the population
and the assistance of emergency responders.

3.3 About Our Model

Our model used various components from the previous model, with a few important
distinctions:

1. Modeled different agent types using different classes.
2. Used a set of scaling factors to regulate variations in speed between individuals

and among different conditions.
3. Distributed civilians on grass patches instead of limiting them to the picnic area.
4. Improved the direction-finding algorithm.
5. Allowed civilians to flee on or off the roads.
6. Wrote detailed data during the simulation to files for analysis.

3.3.1 Modeling Victims and First Responders

There are four types of agents within the model, the first of which is civilians. These
are pedestrians walking around the area. The other three types, denoted rescuers,
ushers, and exit locations, are different types of emergency responders conducting
different tasks.Rescuers are responsible for lifesaving rescueoperations; ushersmove
along in the area and tell mobile, uninjured civilians which direction to head; exit
locations are stationary points to which civilians are guided to undergo screening and
decontamination-they are also the only type of agents that doesn’t represent humans.
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3.3.2 Simulation Timeline and First Responder Behavior

According to Wikipedia, the preferred walking speed for humans is 1.42 m/s [20].
The National Mall park receives around 32 million visitors each year [11], so we
estimated that around 1000 civilians would be present at any moment on a normal
day. Before the explosion, a population of 1000 civilians are modeled as walking on
the grass (the dark and light green patches) at a base walking speed of 1.5 m/s, which
is three 5 m patches each 10 s tick. To account for heterogeneity in mobility among
the population due to age, health, and other factors, we added an individual-level
scaling factor on the base speed, sampled from a uniform distribution .U (0.5, 1.5).

Suddenly, the detonation, with a source of 13800 Curies, occurs. Civilians within
one patch (5 m) of the center of the blast are killed instantaneously and civilians
within five patches (25m) are severely injured. Both of these groups are consequently
modeled as unable to move. The rest, after realizing the explosion and hesitating,
flee at a base running speed of 2.0 m/s (4.0 patches/tick) [21], and the same mobility-
based scaling factor applies to the base running speed. We added three other scaling
factors to account for differences in speed among victims due to injury, moving
on different surfaces (grass versus roads), and congestion. In the previous model,
civilians would stay on the road once they had fled onto it. In our model, they were
not restricted to this behavior.

Twominutes (12 ticks) after the explosion, in accordance to the timeline provided
by the DHS, rescuers arrive in the area, each one entering through one of four exit
locations: those four locations are places where exits are to be set up. While ignoring
the victims who have already died, the rescuers pair up with each other to carry
out injured victims to the exit from which they set out. Their initial speed is set
to the product of the highest scaling factor (1.5) and the base running speed (4.0
patches/tick); they are effectively the fastest agents at the site, moving at 3.0 m/s (6.0
patches/tick), since we assume that first responders performing search-and-rescue
operations would be more physically fit than average. When the rescuers pick up a
victim and carry them, however, they move at the base rescue speed, which is 1.0
patches/tick, or 0.5m/s. Rescuers are affected by congestion-based and surface-based
scaling factors.

Five minutes (30 ticks) after the explosion, the exits are established and ushers
are dispatched. Four exits are set up at fixed coordinates around the area near the
outer edges, one in each corner of a rectangle. Civilians queue at these exits while
arriving and go through a quick screening and decontamination at a processing rate
of one person per tick. Ushers each enter from a random exit and run throughout
the area, and when they see fleeing, mobile civilians, they tell them to head toward
the nearest exit. That civilian would then head toward that exit while maneuvering
around buildings. Ushers are affected by congestion-based and surface-based scaling
factors.

The simulation ends 100 min (600 ticks) after the explosion. This is substantially
longer than the previous model [23]. According to the DHS, during this time, “it is
unlikely that federal and state support is on scene” [5], so assistance of first responders
is especially crucial.
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3.3.3 Direction-Finding Algorithm for Agents

After the explosion, each agent has a target direction, either toward or away from
the explosion. A civilian always runs away from the explosion site. A rescuer first
runs towards the Hot Zone and, after picking up the injured victim, runs towards the
exit location from which they set out. An usher, however, runs at a random direction
throughout the simulation. When an agent encounters a building, they adjust their
direction temporarily so that they can keep moving while maintaining their target
direction.

To model this behavior, we used the following algorithm: connecting the agent
with the explosion location, finding the two possible directions after having turned the
minimum turn that allows them to keepmoving, computing the two angles formulated
by the two directions and the direction of the explosion location, and choosing the one
that maintains their target direction. If the target direction is away from explosion,
they choose the direction with a larger angle, and vice versa.

4 Results

4.1 Experimental Design

To investigate the role of first responders in a dirty bomb event and to consider
potential policy changes, we have designed the following experiment, in which we
studied these two key variables:

• Presence of first responders. We examined two scenarios, one with first responders
and onewithout, while setting all other parameters constant.We reported the effect
of the assistance of first responders on the average andmaximumdoses of radiation
received by civilians. We hypothesized that the presence of first responders would
lower those values.

• Arrival time of exits and ushers. We swept the arrival time of exits and ushers
between 2 and 10 min, discretely, after the explosion and reported the average and
maximum doses of radiation received by civilians. We hypothesized that if the
exits were set up sooner, the average and maximum doses of radiation received by
civilians would be lower than otherwise. While there would be a cost to quicken
the dispatching of first responders, it might be beneficial for the wellbeing of the
populace.

In all cases in which first responders are present, we also reported the maximum and
average doses of radiation that first responders receive.
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4.2 Observations and Explanations

We ran our model in two different ways: (i) running 100 trials per scenario, each trial
with a different seed, and reporting the median values of them; (ii) setting a fixed
random seed and running that once. Overall, the results demonstrated the benefits of
the presence of first responders.

Note: After 25 min, the vast majority of civilians have evacuated the area, with the
exception of a few people injured in the initial blast. Therefore, some of the following
figures only depict data for up to 25 min after the explosions, as the graphs plateau
afterward.

4.2.1 Benefits of First Responders

From Fig. 2, we find that with first responders, the average dose a civilian receives
over time increases sublinearly after ushers arrive and exits are set up. In fact, the
average dose reaches an upper bound of about 0.18 REM 20 min after the explosion.
On the contrary,without first responders, the averagedose a civilian receives increases
linearly. This is likely because immobile civilians in the Hot Zone are rescued and
taken away at around 20 min after the explosion. The average dose received by
civilians thus plateaus afterward.

Without rescuers, the civilians injured by the blast stay near the source and receive
constant rates of exposure, which dominate the decreasing doses received by the flee-
ing civilians. Rescuers move these civilians away from radioactive material. Since
the marginal dose received by all civilians decreases as they move away from the
radioactive source, the blue curve in Fig. 2 shows a decreasing slope that approaches
zero when all living civilians are far enough from the source of radiation. This sug-
gests that rescuers have a particularly crucial role to keep civilian radiation exposure
under a safe threshold.

Figure 3 supports our findings from Fig. 2, but from the perspective of the max-
imum dose of radiation. When first responders provide assistance, living civilians
receive a dose of around 60 REM at most, which is considered a “mild” dose. With-
out the help of first responders, some civilians receive a steadily-growing dose of
radiation, and eventually, they could receive a much more severe or even “lethal”
dose. Therefore, first responders are important to avoid unnecessary casualties.

Figures 4, 5, 6 and 7 display results of a simulation under a single run with a fixed
seed. Figures 4 and 5, comparing scenarios with and without the assistance of first
responders, affirm the findings from Figs. 2 and 3. On the other hand, Figs. 6 and 7
measure the risk undertaken and exposure received by first responders.

Figure 6 features a few cusps in the curve, as labeled. After the rescuers are
dispatched at two minutes after the explosion, their distance to the source decreases
over time. While observing the simulation, we saw that the rescuers arrived at those
injured civilians made immobile by the blast in three different “batches.” The slope
of the curve in Fig. 6 is the average rate at which first responders receive radiation.
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Fig. 2 Average dose of radiation received by civilians over time from the explosion to 25 min after,
with and without the presence of first responders. The values plotted are the median of 100 trials

Fig. 3 Maximum dose of radiation received by civilians over time from the explosion to 25 min
after with and without the presence of first responders. The values plotted are the median of 100
trials

We found that the sharp cusps where the curve suddenly becomes steep represent
the moments at which each batch of rescuers approached the injured civilians; the
rescuers’ dose rate increases as they get closer to the source. As the rescuers retrieve
injured civilians and bring them out, they continue to receive radiation but move at a
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Fig. 4 Average dose radiation received by civilians over time for 100 min after the explosion with
and without the presence of first responders. The values plotted are from the fixed seed run

Fig. 5 Maximum dose of radiation received by civilians over time for 100 min after the explosion
with and without the presence of first responders. The values plotted are from the fixed seed run

substantially slower speed due to the civilians they are carrying. If there was a way
for rescuers to leave the area more quickly after having rescued injured civilians, that
would be beneficial.

As shown in Fig. 7, the maximum dose first responders receive went up to 6.37
REM, more than the dose that people working with radioactive sources are allowed
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Fig. 6 Average dose of radiation received by first responders over time for 25 min after the explo-
sion. The values plotted are from the fixed seed run

Fig. 7 Maximum dose of radiation received by first responders over time for 25 min after the
explosion. The values plotted are from the fixed seed run

to receive in a year. While observing the simulation, we found that the emergency
responder receiving the most radiation was an usher who happened to cross through
the Hot Zone-at one point, they were less than 1 patch away from the source-while
moving in the area. This result is a limitation of the model, but it also emphasizes
the importance of thorough training for first responders and prompt communication
to first responders of the location of the explosion in a real life dirty bomb event.
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4.2.2 Arrival Time of First Responders

Figures 8 and 9 both suggest that it would be best if first responders were able to
arrive and begin providing assistance four minutes after the explosion, since that is
the scenario in which both civilians and first responders receive the least average
dose of radiation.

The disadvantage of first responders arriving sooner is that more civilians are
queued up at exits, and the process of screening and decontamination takes time,
subjecting civilians to more exposure within the first 100 min. The process of screen-
ing and decontamination is crucial, since without it, civilians may suffer continued
radiation from radioactive dust lingering on their clothing and skin. Arriving too late
would put civilians made immobile by the blast at risk of severe injury and death.
To avoid subsequent continuing exposure, we should screen and decontaminate as
many civilians at site as possible. For this purpose, it helps to set up exit locations
and dispatch ushers as soon as possible.

Fig. 8 Average dose of civilians accumulated up to 100 min after the explosion when varying the
time of setting up exits and dispatching ushers. The median value over 100 runs is plotted

Fig. 9 Average dose of first responders accumulated up to 100min after the explosionwhen varying
the time of setting up exits and dispatching ushers. The median value over 100 runs is graphed
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Interestingly, Fig. 9 shows that first responders receive a greater dose of radiation
when arriving before than at four minutes after the explosion. First responders are
impeded by congestion, as when they arrive sooner, there are more civilians at the
scene. Therefore, the time they spend executing their tasks is longer than in situations
where they arrive later.

Figures 8 and 9 demonstrate a tradeoff between the wellbeing of first responders
and the wellbeing of civilians, a potent subject for consideration.

5 Conclusion

The presence of first responders substantially decreases both the average and the
maximum doses of radiation civilians receive. Without first responders, the average
dose civilians receive can go up to half a REM, which is the borderline maximum
amount of radiation civilians are allowed to receive per year [12]. With first respon-
ders at the scene, however, the average dose civilians receive is significantly lower.
As seen in Figs. 3 and 5, the maximum dose civilians receive is also significantly
lower when first responders provide assistance.

In the fixed seed run, the maximum dose received by first responders went up to
over 6 REM, which is greater than the amount that people working with radioactive
sources are permitted to receive per year [12]. If more than one dirty bomb event
were to happen in a year, one emergency responder would not be able to respond to
multiple events. This suggests a need for concern regarding the safety of emergency
responders in dirty bomb events.

Subjects for consideration include: (i) the tradeoff between the wellbeing of civil-
ians and that of emergency responders; (ii) the potency of training and on-site com-
munication.

Although these results pertain specifically to the National Mall area in Washing-
ton, D.C., our model can be easily applied to other metropolitan areas.

5.1 Limitations and Further Research

Many pathways are available to expand our model:
Victim volunteers. A variable this model did not consider is victim volunteers,

i.e., “civilians” in the explosion who may be off-duty professionals or may possess
medical training and will try to help the people around them. It could be interesting to
study whether the presence of victim volunteers would impact the severity of injuries
or rate of evacuation.

Allocation of resources. The proportion of search-and-rescue responders and exit-
monitoring responders is an intriguing topic, as not every combination of respon-
ders would have the same level of success. With first responders being an essential
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resource, it is important to know how to assign tasks among that resource for the
most benefit.

Hiding behind buildings. Civilians attempting to create a solid barrier between
themselves and the explosion may flee into the “shadow” of the Washington Monu-
ment. Modeling the fleeing of civilians behind buildings and the protection buildings
offer from radiation would be challenging.

Size of area. The area in the National Mall that this model is based on is only one
thousand meters by five hundred meters, which is rather small. Civilians may flee
beyond this area, and decontamination stations may also be set up outside of this
area. An excellent route for further study is expanding the size of the area covered
by our model.

Effect of communication. Having some form of communication among first
responders or between first responders and civilians might reduce their work or
amplify their impact.
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Replacing Diamond-Dybvig

John S. Schuler

Abstract Diamond andDybvig 1983 is a now classic model of banking failure. This
model and the considerable ancilliary literature studies two equilibria: the “good”
equilibrium of bank stability and the “bad” equilibrium of bank failure. A major
limitation of these models is that while they acknowledge the fact of these two
equilibria, they are silent on how a system in the desired equilibrium suddenly moves
into the run equilibrium. Agentization refers to the process of taking usually classic
models, economic or otherwise, and representing them in agent-based simulations
that hopefully reproduce those model’s central features. I consider an agentized
Diamond-Dybvigmodel that reveals somemajor conceptual limitations in Diamond-
Dybvig that limits its utility as the foundation of agent-based studies of bank runs.
Then I present an alternative bank run model that may provide such a basis not only
for the study of bank runs but also for broader models of financial contagion.

1 Introduction

Diamond and Dybvig [2] is a classic model of bank runs and often cited as a jus-
tification for government deposit insurance. Bank runs are an obvious example of
the economic problem of self-fulfilling prophecies and present major external costs.
Further, the Diamond-Dybvig model is often used as an argument for “inherent bank
fragility”. One challenge in the study of bank runs is that it has often been sug-
gested they have a psychological elements; that is, so long as depositors believe
they can get their money, the don’t want it. This fits uncomfortably with traditional
economic conceptions of agents. On the other hand, this can be taken as a simple
fact of agent behavior and so modeled. We will see that perhaps techniques based on
Von-Neumann- Morgenstern expected utility are not the best modeling tool for this
purpose.
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2 A Brief Description of the Diamond-Dybvig Model

It is challenging to fit the concept of a bank run into a traditional economic framework.
Diamond-Dybvig represents an important attempt to do this. Simplified presentations
of the Diamond-Dybvig model can be found in [1] or [3]. My brief exposition will
be based on [3]. The model has two periods of time. Agents initially have a certain
endowment that they wish to invest in some production technology with a known
return at.t = 2. Agents come in two types, 1 and 2 according to whether they will live
until.t = 2. Neither the agents nor the bank know their type. Thus, the “bank” in this
model also serves as an insurance agency in the sense that the agents that will not live
until .t = 2 may withdraw their deposit plus some agreed upon premium. However,
this comes at the expense of the return the agents receive at .t = 2. Since the agents
do not know how long they will live, they accept this lower return as an insurance
premium. The difficulty comes when too many agents withdraw in at.t = 1. If agents
believe that there will be nothing left at .t = 2, they will also withdraw early. Thus,
the model contains two equilibria. If all other agents are withdrawing, it is always
rational for the agent to also withdraw and gamble on a favorable place in line. On the
other hand, if only the short-lived agents withdraw, all other agents stay the course.

3 Price Theoretic Criticisms of the Model

White criticizes this model in [3] from a price theoretic point of view. Firstly, the
investment is an odd hybrid of debt and equity. I will return to this. The DD bank has
no separate class of equity holders which can insulate depositors from losses. Its total
debts always exceed its equity. This is relevant as there are actual historical examples
of bank failures where all depositors were paid in full. Further, real world banks can
suspend note redemption. In Diamond-Dybvig this interferes with consumption.
In the real world it may or may not. Note though that these are criticisms of the
model’s policy implications. They do not address the aptness of Diamond-Dybvig as
a description of bank-run dynamics.

4 Limitations of Price Theoretic Banking Models

In the real world, assuming the bank run is a self-fulflling prophecy, the bank is sound
until it ceases to be and this is a sudden phase change. Price theoretic models can
describe multiple equilibria but the relevant modeling question is how banks move
from one equilibrium to the other. Within an equilibrium setting, one can distinguish
between an illiquid bank and an insolvent one. In a broader financial crisis, the bank’s
assets no longer have a well-defined value. To study banking and financial crises, it
is necessary to move beyond equilibrium models. Agentization is a way to proceed.
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5 The Agentized Diamond-Dybvig Model

Since the agentized Diamong-Dybvig model is not the core topic of this short piece,
it is sufficient to discuss what the agentization revealed. The Diamong-Dybvig ABM
shows that the insurance aspects of the model are what actual drive the behavior.
This extends the previously-mentioned debt-equity hybrid.While it is true that agents
prefer to wait for the investment to mature, once some agents have withdrawn, agents
often prefer to gamble on their place in line rather than the investment return. In real
life banking, interest acrues and there is no bonus for withdrawing. Thus, this model
artifact is driving the behavior. More fundamentally, agents are not buying debt or
an equity; rather they are buying an option.

6 A Replacement Bank Run Model

In economics, it takes a model to beat a model. I have argued both the necessity
of bank run ABM’s and that the classical Diamond-Dybvig Model is not a good
basis for the same. Thus, it is necessary to provide another model, ideally similar
to the Diamond-Dybvig model but without the artifact driving the behavior. Before
launching into themodel description, it is useful to reconsider the process of banking.

Depositors want to borrow long-term and lend short-term. This is only possible
where another entity is willing to take the other side of that deal. The result is an entity
with short-term liabilities and long term assets. Let us attempt to adhere as closely
as possible for the Diamond-Dybvig framework; accepting the investment aspect as
well as endowing agents with a Von-Neumann-Morgenstern utility function. On the
other hand, for the sake of simplicity, it is useful to ignore cash flow around the
economy. Thus, agents will save for retirement and earn interest but will not borrow.

6.1 Brief Model Description

The replacementmodel has two types of agents.Both agents have a target endowment.
Some agents are savers aiming to retire at 70 ticks. While their spending behavior
displays some randomness, they have a target endowment calculated on the basis
of the ability to consume from age 70–100. There is no uncertainty in agent life-
spans. Other agents are spenders who do not save for retirement and have a target
endowment that is constant over their lifetime. They earn their income their entire
life. In both cases, agents earn interest on deposits. The savers build weath over time.
The spenders do not. This is intended to capture a realistic aspect of depositors. Not
all depositors have the same time horizon.

In each tick, agents run simulations to decide whether they are better off, in expec-
tation, staying in the bank orwithdrawing. There is no initial periodwhere they decide
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how much to deposit as there is no distinction between deposits and endowments.
Whenever an agent withdraws, all other agents reconsider their position. The tick
ends either with a bank failure or with the remaining agents acruing and interest
payment. At the next tick, all agents resume banking. Thus, the cost for those who
withdrew is one tick worth of interest payment.

6.2 Model Pseudo-Code

Initialize Agents
For 1 to Agent Count

initialize Agent with endowment, risk preference, and
probability parameter

Initialize Model

continue = TRUE

while continue

Random Sort Agents

continue = FALSE

agents withdraw exogenously

for agent in remaining agents

agent decides whether or not to withdraw

if withdraw continue=TRUE

for agent in remaining agents

pay interest

for agent in all agents

if agent is spender then pay income

if agent is saver and age <=70 then pay income

spend money

age agent one year

if agent age is 100, remove agent and generate new agent

6.3 Model Behavior and Lessons

In this particular model, there is almost always a bank run within a few ticks. The
spending agents in particular face a very consequential ruin probability. This raises
an interesting question: to the extent agents do not use banks to build wealth, there
must be a greater downside to banking. This is consistent with the fact that poorer
people are much more likely to not use banks. It also suggests that a follow up model
should be even simpler than this model. Such a model would not involve incomes or
interest payments but simply model the marginal decision of each agent to withdraw
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or not. Then, the background parameters associated with various equilibria can be
studied as part of nesting this model in a richer model.

7 Conclusion

These models both feature a single isolated bank but the techniques developed could
be extended to networks of banks. The main requirement to extending this to a
broader financial system is to explicitly model cash flow and lending behavior; per-
haps borrowing tools from percolation theory. However, keeping such rich models
in a kind of equilirbium is a challenge. The way forward is to associate desireable
equilbria with a set of initial parameters and then make use of machine learning
methods to calibrate the richer model toward a model realization consistent with the
initial parameter space of the simpler model.
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Higher-Order Interactions in ABM: A
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Topologically-Perturbed Voter Models
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Abstract Using variants of the voter model, and inspired by simulations of such
models on networks, we studied a variety of ABM implementations using a ran-
dom activation scheduler incorporating dyadic and higher-order interactions. Our
results provide evidence about the dependency of various observables on whether
state updates are simultaneous or staggered per model step (i.e., matrix vs. ABM),
if interactions are pairwise or higher-order, or if the underlying topology changes
even when the abstract specification of the voter model is the same: simulation fea-
tures usually thought of as computational—even intuitively innocuous- prove to be
phenomenologically impactful.We found that averagemagnetization is largelymod-
ulated by the initial state in dyadic voter models, that exit probability is controlled
by network and simulation types, and that interaction types divide consensus times
except for 2D regular lattices, which exhibit surprising sensibility to these perturba-
tions. In addition, regular lattices appear to contain spatio-temporal alternatingmotifs
once certain magnetization values are reached, similar to gliders in Conway’s Game
of Life. Our findings suggest that ABM simulation workflows must incorporate mul-
tiple interaction types and spatial configurations in order to tease our robust findings
from either implementation-dependent artifacts or misspecified models, guided by
robust statistical physics principles.
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1 Introduction

Simulations of dynamical systems rely on the availability of numerical recipes. Such
recipes are either constructed by applied mathematicians using mathematically rig-
orous schemes built upon foundations in approximation theory, or by scientists and
engineers using ad-hoc ansatzes and schemes that are not mathematically accurate
butmeet empirical rigor. Typically, the two approaches refine each other’s techniques,
with scientists and engineers developing more easy-to-use versions of formal meth-
ods, and applied mathematicians developing rigorous proofs and justifications of
heuristic procedures. Our current work takes a first step to do something similar for
agent-based simulations.

Specifically, we focus in this article on how different types of interactions and
different implementations of state update policies per time stepmodify the trajectories
and final states of the voter model. To tease out differences, we perturb these variants
of votermodels by changing the initial state of the systemand the underlying topology
connecting the agents. We compare this dependency on choice of interaction and
update types in ABM simulations to choice of numerical approximation schemes
used in simulations of stochastic and deterministic dynamical systems, and contend
that ABM simulation workflows consciously involving variation of multiple features
willmake the simulationsmore robust, and increasing the chances of retainingfidelity
to social phenomena under consideration.

In the next section, we provide motivating background and our main conceptual
argument. Following this, we present a variant of majority rule-based voter model,
and embed it in both regular lattices as well as heterogeneous networks.We introduce
alternative voter model implementations that update agent states synchronously, as
well as higher-order action based on three-way interactions among a focal agent and
its neighbors; all variants of the voter model utilize random activation scheduling.
Later, we present the simulation protocol and present our results in terms of average
magnetization, exit probability and consensus time. The discussion section provides
our current hypotheses for the observed differences. Finally, our conclusions explore
future experiments, implications of our findings, and the necessity of incorporat-
ing multiple computational and phenomenological features into ABM simulation
workflows guided by robust experimental designs.

2 Background and Rationale

The computational roots of ABM [32] and its wide user-base make what we set
ourselves to do difficult. On the foundational side, unlike models based on ordinary
differential equations (ODEs) and stochastic differential equations (SDEs), ABMs
are computational beasts. In such models, achieving rigor entails a coherent and inte-
grated approximation theory that is not onlymathematically sound, but also conforms
to theories of programming languages and computation. On the pragmatic side, the
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interdisciplinary community relies on an improvisational approach that defies sys-
tematization, but is broadly anchored around whether the models are simulated on
a particular platform (for example, NetLogo [31]) or are custom-built in a general
purpose programming language. Here, we focus on one particular aspect of simula-
tion workflows: the choice of features thought of as computational, or usually safe
to vary. Schedulers, activation rules, interaction types and the topology of the space
exemplify some of the possible choices.

The particular arguments made here build upon past work (see references cited
in [28]) and are part of our on-going project to build a new ABM platform [21]. The
main thrust of our project is to build an elastic and scalable ABM platform that is
capable of maintaining fidelity to social processes underlying observed macroscopic
phenomena. Of relevance here are issues surrounding fidelity to social reality, which
demands that the depth of detail of real-world social processes is matched in simu-
lations, being enabled by the platforms running those simulations. At the modeling
level, simulation platforms must allow specifying various aspects of social processes
like synchronicity, asynchronicity, parallelism, concurrency, etc.—some parts or all
of which are handled by the simulation scheduler. This fact is typically acknowledged
by developers of ABM platforms (see our discussion in [21]), and more prominently
for NetLogo in [32]; however, it is not acknowledged that schedulers can indirectly
specify interactions.

For example, most practitioners use default random activation-based schedulers
to run their simulations. In such schedulers, the platform randomly picks a focal
agent, updates its states according to the model specified rules, and moves on to the
next randomly chosen agent. Typically, updates to a focal agent are dependent on
another agent’s state and possibly on the environment and other agents in the agent’s
neighborhood. The scheduler the moves onto the next randomly chosen agent. Once
all the agents’ have been activated and acted upon, the scheduler repeats another cycle
- these cycle continue until a pre-specified condition (e.g., certain number of time
steps have been completed, a certain state of equilibrium in the agent-environment has
been reached, etc. For a scheduling protocol towork, several properties of agent-agent
interactions and agent-environment interactions have to hold: the initial randomly-
chosen order of agents does not matter; the interactions are simple enough to remain
homogeneous in time; simultaneous updates of more than one agent is disallowed by
the interactions; multiple agents don’t participate in higher-order interactions; and
so on.

To put it in concrete sociological terms, this scheduler assumes that the social
interaction protocol is of a certain kind, in contrast to documented, i.e., real-world bio-
logical and social processes (See references cited in [21]), where some agents update
their states concurrently, while some others update their states asynchronously. Some
platforms offer options for staggered activation schedules [18]. Usually, the default
provided by a particular platform, where the simulation is implemented, is chosen
and alternative schedulers are not tested for whether they generate any meaningful
differences in the end results. Users of ABM platforms, in using a default scheduler,
may not realize that that their models may be approximated or misspecified, rather
than faithfully implemented by the platform.



102 S. Núñez-Corrales et al.

In other dynamical systems simulation literature, analogs of such problems and
resolutions of brittleness of numerical recipes exist (See references cited in [21]).
For example, for certain classes of stiff differential equations, special numerical
recipes are used instead of Runge-Kutta family of techniques; for certain SDEs,
depending on the specific nature of the problem, either Ito-based or Stratanovich-
based calculus is used for developing numerical algorithms; and also for certain
SDEs, the precise nature of the noise term decides the specific algorithms used; and
finally, in spatio-temporally extended stochastic dynamic systems, update rules are
provided by following the rules of the system’s underlying graphical models [19].

As evidence of the non-triviality of the problem, and partly continuing past work
[28], we present a simulation study using variants of voter models on regular and
heterogeneous lattices (networks). As we report in the subsequent sections, even
when the state space and the dynamics are simple, interaction and implementation
choices under a random activation scheduler lead to dynamics that are unpredictable
not only for the same lattice structure, but also for different parameters within the
same lattice type.

3 Dyadic and Higher-Order Voter Models

The classic voter model [24] is an interacting particle system [2] where .N agents
(voters) reside on a complete graph—agents can communicate and interact with the
entire population of voters. Each agent has one of two states .{−1,+1}, an opinion,
which they update by: (a) picking an agent uniformly at random, (b) adopting the
state of this random neighbor, and (c) repeating the steps until consensus is reached.
One such variant is the majority rule, where the voter adopts the state of the majority
opinions among its neighbors.We adopt a variant of majority-rule-based voter model
by restricting ourselves to picking a fixed subset of neighbors, and adopting the
majority opinion of the subset with a pre-specified probability.

The basic observables of this model correspond to the average magnetization
.〈M〉, the exit probability .E(m0) that the entire population reaches the.+1 consensus
as a function of initial magnetization .m0 ≡ (N+1 − N−1)/N , where .N+1 and .N−1

are the initial number of .+1 and .−1 voters respectively, and the consensus time
.T (m0), the average time for each consensus as a function of .m0. Computationally,
an agent.i agents undergoes discrete time-dependent transformations of its state.si (t).
To facilitate computation of observables described above, .si (t) follows the mapping

+1 �→ 1

−1 �→ 0. (1)
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Our interest in this work is to determine whether the observables of simple dyadic
and higher-order voter models behave differently under different topological and
implementation perturbations.

3.1 Dyadic Voter Model

In a dyadic voter model, agents interact pairwise depending on the adjacency matrix
that captures the topology of the network containing them. We are then interested in
two main quantities: the average predominance of a +1 opinion with .N agents

〈 f (t)〉 = 1

N

N∑

i=1

si (t) (2)

and the predominance of opinion +1 across the neighborhood of an agent .i ,

fi (t) = 1

ni

∑

j∈ni
s j (t). (3)

Using (2), one can recover the average magnetization of a particular voter model
by computing

〈M(t)〉 = 2〈 f (t)〉 − 1, (4)

which ensures .〈M(t)〉 ∈ [−1,+1].
For our majority voting strategy .σ for time .t + 1, we define the state transition

function

si (t + 1) =
{
1, fi (t) ≥ 0.5

0, fi (t) < 0.5.
(5)

As observed from (3) and (5), this model definition pertains exclusively to dyadic
interaction models, similar to how inter-atomic potentials are computed in classical
molecular dynamics [30].

3.2 Higher-Order Voter Model

Recent literature has shown significant model differences depending onwhether sim-
ulations portray dyadic and higher-order interactions [22]. Consequently, we explore
in this work the effects of higher-order interactions on the observables described
above. To do so, we rework (5) by assuming that partitioning the set of .N agents
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by .k—albeit possibly imperfectly- leads to .	N/k
 random groups during each time
stepwhose opinionwill be updated simultaneously, according to an updatedmajority
rule. Each .k-set of agents is therefore a hyperedge in a corresponding hypergraph.
Contrary to the work of Papanikolaou et al. [22], our model is not adaptive, since
it assumes that hyperedges remain the same size across simulation time (i.e., no
coalescence of hyperedges with homogeneous opinions). Hence, (5) becomes

sα(t + 1) =
{
1, sα(t) + fα(t) ≥ 0.5

0, sα(t) + fα(t) < 0.5.
(6)

where .α denotes the centroid of the .�-th .k-group of voter agents and .sα the
simultaneity of the update for all agents connected to the hyperedge centered at .α,
.� ∈ {1, · · · , 	N/k
}.

4 Case Study: Differences Under Various Perturbations

Given the simple nature of the models above, we focused on two types of pertur-
bations: (a) changing the underlying topology that defines neighborhoods, and (b)
changing the implementation of the simulation based on adjacency matrices and
state vectors, and a fully-fledged ABM. In this section, we review the experimental
context and the results obtained with our code base.

4.1 Software Implementation

During software development, we built a minimal code base that follows research
software engineering principles and practices [9] as a way to ensure code trans-
parency, reproducibility and extensibility. Our code was implemented using Python
3.9, and benefited from networkx to simulate various topologies of interest [13]
and Mesa as the core ABM framework [18]. The code base is open source, available
on GitHub, and our analysis is fully reproducible.1

Structurally, the AbstractVoterModel class defines the properties andmeth-
ods any voter model must implement and/or call in the course of a single experimen-
tal run. The NetworkEnsembleFactory class generates ensembles of networks
that share the same specification and are used to then produce ensemble computa-
tions by the ModelDriver class. Instead of storing information in memory or in
a CSV file, we opted for database storage as a means to (a) prototype future data
storage designs for SPEC-ABM [21], and (b) facilitate data analysis using R [23].We
used SQLite [6, 15] as our database engine due to the small size of our simulations
and the convenience for users. Data storage for agents, ensembles and simulations

1 See: https://github.com/SPEC-collab/CSSSA2022.

https://github.com/SPEC-collab/CSSSA2022
https://github.com/SPEC-collab/CSSSA2022
https://github.com/SPEC-collab/CSSSA2022
https://github.com/SPEC-collab/CSSSA2022
https://github.com/SPEC-collab/CSSSA2022
https://github.com/SPEC-collab/CSSSA2022
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Fig. 1 Software architecture for voter model simulations. Entities in gray indicate specializations,
while entities in blue constitute primary classes

is managed by the Database class. Figure 1 depicts the resulting software archi-
tecture.

The simulation proceeds as follows. Based on input parameters, the Model
Driver connects to a new or existing database, stores the parameters as a new simu-
lationwith auniqueuuid as its identifier. Then, theNetworkEnsembleFactory
produces an ensemble of size .K with .N nodes corresponding to agents in the voter
network. Once the network ensemble is available, the ModelDriver iteratively
instantiates a model implementing the AbstractVoterModel corresponding
to the parameters controlling for interaction type and matrix/ABM implementa-
tion. During each simulation step, AbstractVoterModel commits fine-grained,
individual agent information to the database (i.e., Record objects), and individual
observables (i.e., Summary objects) are stored. As each ensemble point finalizes
its execution, the ModelDriver commits observables. In order to avoid excessive
computation, each ensemble point executes until it has converged. Convergence time
is tested dynamically by identifying the time-step when the corresponding trace has
not varied during the last five consecutive steps.

Our implementation makes use of the random activation scheduler for all classes
of simulation as away tomaintain comparability of analysis. However, amajor differ-
ence exists between matrix and ABM implementations. In matrix implementations,
agent changes are buffered for each time step, and updated simultaneously once all
agents update their state. In ABM implementations, no buffering is provided, and
agents update their state in the sequence in which the random activation function dic-
tates. Our rationale for this decision is to make explicit and challenge the assumption
that, at least for simple cases, ABMs and matrix implementations should produce
similar outcomes.

4.2 Experimental Design

Our central aim in this study was to elicit potential differences across various imple-
mentations of voter models. Given that our models produce ensemble computations,
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Table 1 List of parameters for the voter model.

Parameter Range

simulation_type Matrix-based (matrix) or ABM-based (abm)

network_type Regular 2D grid (l2dr, periodic), hypercube
(hc), power-law cluster network (pl), or
Erdös-Rényi (er)

interaction Dyadic (dyn) or higher order (hord)

.N Population size (1024)

interactants Agents per hyperedge (3)

max_steps Maximum number of steps per ensemble point
(500)

ensemble_size Number of ensemble points (100)

initial_state Initial number of agents with +1 opinion
(0.25, 0.5, 0.75, 0.8, 0.9,
0.95)

and that observable of network ensembles vary significantly depending on the type
of network [1], we hypothesized that varying the network constituted a significant
perturbation capable ofmaximizing the observed differences since a votermodel cor-
responds to a diffusion process across a lattice, whether ordered or disordered [14].
Such differences manifest, for example, for the lattice Boltzmann equation when
irregular lattices are introduced; the irregularity plays the role of a modulator of vis-
cosity [20], and we suspect an analogous phenomenon for voter models manifests,
based on prior work on social viscosity using ABM [25]. Similarly, since the value
of .m0 determines the initial set point of the system, we hypothesized that exploring
a relatively wide range of values would also maximize such differences. The value
of .N where differences manifest sufficiently, while yielding tractable computation
times, was found to be 1024. Population sizes are expected to be of the form.N = 22p

for .p > 1 such that square lattices and hypercubes are correctly generated. Table 1
summarizes parameter choices and their variation.

4.3 Results

Computational experiments were executed in a MacBook Pro, 2.3 GHz 8-Core Intel
Core i9 with 32 GB 2667 MHz DDR4 under base memory usage. We observed that
Mesa-based implementationwas 40x times slower, on average, than thematrix-based
implementation using the same simulation structure.
Variety in .〈M(t)〉 response is maximized by .m0 = 0.50 and dyadic interactions.
Computation of average magnetization and subsequent faceting reveal a wide diver-
sity of outcomes. First, convergence is modulated by.m0 as expected, yet the magni-
tude of the response over.〈M(t)〉 shows unexpected variation between 0.50 and 0.80
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(Fig. 2). Noticeably, simulations using a 2D regular lattice consistently exhibit longer
convergence times. For most network types, higher-order interactions (green, purple)
and dyadic voter models group together. This is not the case, however, for power-
law clustered networks, in which the simultaneity (teal, purple) or non-simultaneity
(green, red) of updates partitions final state convergence for the case with the maxi-
mally mixed state.

Focusing on the structure of the 2D regular lattice (Fig. 3), convergence time for
the matrix dyadic model increases with .m0; while the same appears to occur for the
ABMdyadic simulation as well, up to.m0 = 0.8. Remarkably,.m0 = 0.50maximizes
the convergence time for higher-order models in the 2D regular lattice, and for the
matrix dyadic model in the hypercube. Dyadic interactions maximize the diversity of
average convergence curves (Fig. 4). Finally, we observe that for the relatively low
value of.m0 = 0.50, average magnetization oscillates in power-law cluster networks
(yellow curve in Fig. 4a, b) with opposite final average magnetization.
Exit probability depends drastically upon network and simulation typesWenow
turn our attention to the exit probability .E(m0) as described by the distribution of
.M(m0) once it reaches consensus. First, consider .m0 = 0.50 as a point of maximal
initial mixing of voter states and hence maximum entropy (Fig. 5). For each one of
the simulation types, changing the underlying topology yields significant changes in
the final outcome. Dyadic and higher-order models partition data into two different
categories of outputs. Regular grids (2D, hypercube) produce almost unimodal dis-
tributions for dyadic models, while the rest of the combinations yield multimodal
distributions.Higher-ordermodels produce bimodal, (almost) balanced distributions,
while four cases yield trimodal ones (i.e., two of them for higher-order models in 2D
regular grids, one for the ABM dyadic model in a power-law clustered network, one
for the hypercube with a matrix dyadic model).

To better understand these differences across simulation types, we studied the
effect of increasing values of .m0 across multiple network types (Fig. 6). Consensus
to the +1 state occurs for all simulation types and most networks at .m0 = 0.75,
except the 2D regular lattice. As expected, .m0 = 0.50 contains a collection of final
state mixtures, with non-regular networks producing distributions biased toward the
–1 final state. Higher-order models in the same initial state exhibit a uniformly
distributed mixture of final states. Again, the deceivingly simple structure of the 2D
regular lattice shows unexpected variation at or near thresholds depending on the
implementation (Fig. 7).
Interaction type separates consensus times except for 2D regular lattices Sim-
ulation data indicate that lattice structures (i.e., 2D lattice, hypercube) yield shorter
consensus times than power-lawclustered andErdös-Rényi networks (Fig. 8).Dyadic
and higher-order models exhibit a clear separation, except for the 2D lattice in which
consensus times become mixed between 0.50 and 0.90, with non-normal distribu-
tions for all simulation types. This fact, alongside the prior analysis, suggests that 2D
regular lattices induce a significantly more complex response than expected, despite
being one of the most frequent network type used across ABM research. For non-
regular network types,.m0 modulates the average and standard deviation of consensus
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(a) m0 = 0.25 (b) m0 = 0.50

(c) m0 = 0.75 (d) m0 = 0.90

Fig. 2 Averagemagnetization.〈M(t)〉 per initial state.m0. Color key: teal—matrix dyadic, purple—
matrix higher-order, red—abm dyadic, green—abm higher-order. Vertical facets correspond to
network types. Plots for.m0 = 0.8 and.m0 = 0.95 available in GitHub repository

times in a possibly symmetrical manner (e.g., see.m0 = 0.25 versus.m0 = 0.75) with
maximum dispersion at .m0 = 0.50.
Regular lattices induce band structures for matrix dyadic voter models Figure
4a contained an intriguing feature that deemed a closer look. The variance for the
average magnetization remained constant for the entire 500 simulation steps in the
2D regular lattice at .m0 = 0.80 and the hypercube at .m0 = 0.50, instead of varying
due to some ensemble points achieving consensus earlier than others. The outcome
revealed individual agents that could not achieve consensus, yet the magnetization
value remained constant in matrix dyadic voter models (Fig. 9). While these trajec-
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Fig. 3 Average magnetization .〈M(t)〉 for the 2D regular lattice. Color key: teal—matrix dyadic,
purple—matrix higher-order, red—abm dyadic, green—abm higher-order. Vertical facets corre-
spond to.m0

(a) Matrix dyadic (b) ABM dyadic

Fig. 4 Average magnetization .〈M(t)〉 for dyadic models. Color key: red—0.25, yellow—0.50,
green—0.75, teal—0.8, blue—0.90, magenta—0.95. Vertical facets correspond to network types.
Plots for higher-order interaction models available on GitHub
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Fig. 5 Exit probability distribution.E(m0) for.m0 = 0.50.Color key: teal—matrix dyadic, purple—
matrix higher-order, red—abm dyadic, green—abm higher-order. Vertical facets correspond to.m0

(a) Matrix dyadic (b) Matrix higher-order

(c) ABM dyadic (d) ABM higher-order

Fig. 6 Exit probability distribution .E(m0) per simulation type .m0. Vertical facets correspond to
network types
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Fig. 7 Exit probability distribution .E(m0) for the 2D regular lattice at .m0 = 0.50. Color key:
teal—matrix dyadic, purple—matrix higher-order, red—abm dyadic, green—abm higher-order

(a) 2D regular lattice (b) Hypercube

(c) Power-law clustered iynéR-södrE)d(

Fig. 8 Average consensus timeper simulation type.Color key: teal—matrix dyadic, purple—matrix
higher-order, red—abm dyadic, green—abm higher-order. Vertical facets correspond to values of
.m0
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(a) l2dr, m0 = 0.80 (b) hc, m0 = 0.50

Fig. 9 Magnetization trajectories for the 2D regular lattice at.m0 = 0.80 and the hypercube at.m0 =
0.50. Color key: teal—matrix dyadic, purple—matrix higher-order, red—abm dyadic, green—abm
higher-order

tories are far more numerous for the 2D regular lattice, they appear to form band gap
structures around certain magnetization values.

4.4 Discussion

The experimental results obtained here reveal unexpected and unpredictable simu-
lation differences originating from relatively small changes, most of which give the
impression of being innocuous to the trajectory and final outcomes of ensembles and
individual points in them. The richness of response to these changes of the 2D regular
lattice was most surprising of all since (a) it tends to be the most frequent geometry
for spatially-dependent simulations, (b) its constrained structure intuitively suggests
that changes in how the simulation is implemented should at most change conver-
gence time but not exit probabilities—2D voter models at the macroscale behave
at the thermodynamic limit as a reaction-diffusion system [10, 17], hence changes
altering the diffusion coefficient .D-, and (c) its structure is strongly constrained,
periodic and with a small number of degrees of freedom per lattice site. Consensus
timewas the only observable for which these differences were less clear acrossmodel
implementations (Fig. 8a). The only expected feature was slower consensus times on
average due to fewer degrees of freedom than the other network used. For the ABM
modeling community, these results suggest the need to rigorously evaluate when
2D regular lattices are used under various types of interactions, implementations,
schedulers and initial conditions. For this, identifying which parameters are suitable
for sensitivity analyses becomes a strategic concern.

In most simulations, dyadic versus higher-order became easily distinguishable
(Fig. 6). Introducing higher-order interactions to voter models produced different
outcomes for the three observables of interest in our study. Power-law clustered net-
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works, however, constitute an exception around the .m0 = 0.50 threshold. First, the
dominant feature becomes the implementation (i.e., matrix vs. ABM) instead of the
interaction for final average magnetization value (Fig. 2b). Even more striking, final
average magnetization reverses entirely between matrix and ABM implementations
of the dyadic voter model. We hypothesize that the peculiar structure of the power-
law clustered network leads to limited percolation of +1 states when simultaneous
matrix updates translating into a single diffusion front, in contrast to deeper perco-
lation by individual agents in the ABM which becomes a fractal-like diffusion front
[26]. In turn, the latter leads to stronger state correlations as local +1 hubs form
progressively in ABM implementations [12]. Moreover, the non-universality [7] and
local dependence of diffusion exponents [11] can help explain the pattern observed
in Fig. 2b, in which and initially low average magnetization reaches a local maxima,
then a local minima, and converges finally to the +1 state; its matrix counterpart
exhibits a contrary motion in time. Our results provide an insight into discrete pro-
cesses analogous or equal to reaction-diffusion in networks whose structure is closer
to those present in real social systems.

We observe that the main effect of using ABM versus matrix implementations
appears to be one of time compression (Fig. 8): even with mixed results found in the
2D regular lattice for .m0 = 0.75 and .m0 = 0.80, ABM simulations reached shorter
consensus times than matrix implementations. On the one hand, simultaneous global
updates give the impression of deciding the fate of the system sooner due to an all-or-
non local update. Nevertheless, this is not the case. ABM models with incremental
agent updates per simulation step suggest that topological dependencies in network
structures induce emergent synchronization across the network [3] due to the inter-
play between structure (i.e., the computation of . fi with respect to each agent’s local
topology) and function (i.e., computation of.si (t + 1) in the context of other updates).
We hypothesize that simultaneous global state updates, particularly for higher-order
interaction models in which hyperedges are randomly selected and thus some agents
may not participate in the update rule, may produce alternating opinion motifs that
take longer to converge to either –1 or +1 due to varying coverage around certain
key agents. Despite the fact that the present study only makes use of the random
activation scheduler for the agents, the simultaneity of the update rule suffices to
imprint differences across relevant observables in the various voter models.

Finally, the band structures that emerge in regular lattices (Fig. 9) present an
interesting challenge. After looking at all ensembles, band structures appear for
.m0 ≥ 0.8 in the 2D regular lattice, and only for .m0 = 0.50 for the hypercube, and
only occurs for specific values of.M . Even when the value of magnetization is fixed,
the models do not achieve consensus. We looked carefully at the implementation,
and could not find any systematic error capable of reproducing the band structure
without altering other results. We thus hypothesize that such band structure results
from the appearance of spatio-temporal alternating motifs that, while preventing
convergence, allow the simulation to remain at a stable trajectory. Since this particular
model is implemented using pairwise interactions and the agent states are minimally
simple (i.e., one bit), we believe that these motifs resemble entities such as gliders
in Conway’s Game of Life, which is know to exhibit self-organized criticality [4].
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Contrary to Game of Life, however, voter models do exhibit various conservation
laws [8, 16, 27, 29], belonging to a different class of universality in this sense. The
difference in the range of values of .m0 in which the band structure occurs for 2D
regular lattices versus hypercubes appears much simpler to explain, as the hypercube
provides more topological degrees of freedom for agents to avoid becoming trapped
in these motifs except when state mixing is at its maximum.We also hypothesize that
our observations may be also explained as a result of the distribution of eigenvalues
in the Markov transition matrix corresponding to each voter model implementation.
Clearly, elucidating the origin and properties of this particular feature requires further
experimentation and analysis.

5 Conclusion

In this study, we provide strong evidence indicating that voter model observables
vary widely depending on whether state updates are simultaneous or staggered per
model step (i.e., matrix vs. ABM), if interactions are pairwise or higher-order, or if
the underlying topology changes even when the abstract specification of the voter
model is the same. Contrary to common intuition, the largest variation occurs when
2D regular lattices describe the underlying topology of interactions: this observation
suggests that voter-like models, and reaction-diffusion models more generally must
undergo significant scrutiny. Our approach suggests that, particularly for complex
models, experimental design leading to a robust sensitivity analysis becomes essen-
tial; this is particularly when the simulation aims to reconstruct social systems with
some degree of fidelity to reality.

Our experiments pose several questions for future research. First and foremost,
our voter models can be further perturbed by choosing different schedulers, in line
with prior research performed by SPEC [28]; based on our current results, we expect
new kinds of differences to appear when event ordering per each time step deviates
from that provided by random activation. Increasing the number of interactants per
hyperedge is required to understand the effect of larger random partitions of the
network per time step in higher-order models. Achieving more resolution between
.m0 = 0.50 and .m0 = 0.75 is needed to understand the sharp transition observed
across exit probability distributions for networks other than the 2D regular lattice. H
Van Dyke Parunak (personal commucation) has suggested compting similar results
with triangular and hexagonal lattices, since these have interesting properties in Ising
models when rescaled by an appropriate renormalization group. Exploring parameter
spaces of current and newnon-regular network ensemblesmust be performed in order
to better understand percolation differences betweenmatrix and ABMmodels. Other
voter model variants become available by changing number of possible (discrete)
opinions agents can have, as well as allowing continuous opinion values. Finally, our
voter models can be extended to continuous time using the Gillespie algorithm [5].

Regarding the relation between our experiments and existing theory, we found
connections to reaction-diffusion phenomena, fractal dynamics, correlation expo-
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nents across regular and non-regular networks, percolation theory, network synchro-
nization, cellular automata and self-organized criticality. The unexpected richness
of the space spanned by our study on voter models suggests that devising ABM
simulations for social phenomena of the sort explored here (and others) remains a
challenging task even for relatively simple cases. The latter indicates that agent states
and their interactions are insufficient to derive intuitions about the dynamics of an
ABM, and that even with complete information about how a model operates it may
not be possible to do so. As the complexity of an ABM increases, computational
experiments sample decreasing portions of all possible model trajectories, making
brute force approaches much less successful. Hence, our view –and current research
direction- is that tighter integration between what is usually thought of as computa-
tional in ABM research and statistical physics is not only desirable in principle, but
inevitable in practice.

We thank the reviewers and participants inCSS2022 for their insightful comments
and suggestions.
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Modeling Macaque Fighting Dynamics
with the Evolutionary Model Discovery
Framework to Understand Its
Application and Utility

Alex Isherwood, Melanie Jutras, Matthew Koehler, David Slater,
William Thompson, and Maria Yelenick

Abstract In this study we use a simple case study of macaque fighting dynamics to
develop and use the Evolutionary Model Discovery (EMD) framework [7, 8]. Rather
than focus on the macaque populations EMD created, we will focus on our use of
the EMD framework. Application of the EMD framework is not straight forward and
involves making many decisions that may ultimately impact one’s results. Here we
highlight many of these and explain how we navigated this process.

1 Introduction

Since Axelrod [1] highlighted the utility of simulation within the social sciences,
its use has continued to grow. Social systems are, after all, complex; therefore, an
efficient way to explore their potential future state is through simulation [3]. Further-
more, the most natural way to capture the important components of a social system
is via an agent-based model (ABM) or simulation [2, 5]. This has been character-
ized as social science from the ground up [6]. However, this process has usually
taken the form of a single implementations of “hand crafted” formulations tuned
and tweaked until they resemble the social phenomena of interest. This, of course,
begs the question: would other model formations also generate the phenomena of
interest?

Anewfield is coalescing to address this criticism: inverse generative social science
(iGSS, www.igss-workshop.org). iGSS attempts to create families of models that all
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generate the social phenomena of interest directly from data, from a combination of
data and theory, or an articulation of plausible behaviors derived from theory.1

In this work we examine one of the iGSS techniques: Evolutionary Model
Discovery. This technique was first described by Gunaratne [7] and again by
Gunaratne and Garibay [8]. It uses genetic algorithms to build up collections of
agent behavior via a genetic program that optimize a fitness function or create output
data that closely resembles a reference dataset. Moreover, by utilizing a genetic algo-
rithm, this systemcreates a population of candidate agent behavior rules thatmay then
be analyzed to highlight commonalities, uniqueness, and other interesting features.
This technique will be discussed in more details can be found in our supplementary
materials. In order to better understand the maturity of the approach, the impact of
stochasticity, as well as other challenges and pitfalls we construct an experiment
for which we define the ground truth(s) explicitly and examine how the technique
performs relative to this defined ground truth.

We begin with a discussion of related work in this nascent field which draws
from a variety of academic research areas. Next, we outline our approach and the
methodology based on the pioneering work of the Evolutionary Model Discovery
[7] technique. The agent-based model and our design of experiments are described
in Sect. 5. In the remainder of the paper we present experiment results, as well as
discussion and topics for future work.

2 Related Work

Inverse Generative Social Science (iGSS) is a nascent academic field, themost recent
work in this space can be found at: www.igss-workshop.org. iGSS is an emerging
academic discipline aimed at addressing one of the major criticisms of simulation-
based analyses, and specifically of agent-based models of social phenomena. More
specifically, most ABM-based studies detail a single set of agent behaviors that repli-
cate some social phenomena of interest, which begs the question, “how many other
sets of agent behaviors would also replicate the phenomena?” iGSS tries to answer
that question by automatically discovering many sets of behaviors that replicate a
given referent phenomena. More information on iGSS may be found at www.igss-
workshop.org.

There is a potential danger here, however. The blind combination of agent rules
may be able to recreate a given phenomenon, but they may be meaningless theo-
retically. Especially in the case of simulating human systems, the defined potential
behavior rules should be grounded in theory, be human readable, and the resulting
combinations should be evaluated by how well the recreate the phenomena in ques-
tion and by how theoretically plausible they are. This is discussed in more detail by
Rand [10].

1 ©2021 The MITRE Corporation. ALL RIGHTS RESERVED. Approved for Public Release;
Distribution Unlimited. Release Case Number 21-3259.

http://www.igss-workshop.org
http://www.igss-workshop.org
http://www.igss-workshop.org
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2.1 Rule Induction

Rule induction leverages machine learning techniques such as Class Association
Rules (CAR) to build a connection between agent characteristics and behaviors/
decisions. For example, as discussed by Rand [10], one application related agent
demographic characteristics to decisions about how to commute. This technique
differs from EMD as the universe of behavior options is known a priori. What is not
known is how to assign agents to decisions, that is wheremachine learning algorithms
such as CAR come in.

2.2 Computational Abduction

Computational Abduction is an implementation of the abductive loop to inform the
development and iterative refinement of agent-based models, especially as applied
to human socio-behavioral phenomena. The process as described by Ren et al. [11]
involves first analyzing experimental data to create a theory of the underlying gener-
ating mechanism. The theory is then tested and refined via simulation. The process
is repeated until the researcher is satisfied they have articulated the best explanation.

2.3 Inductive Game Theory

Inductive Game Theory (IGT) is a technique developed by DeDeo, Krakauer
and Flack [4] that introduced an analytic technique to infer agent strategies from
microlevel interaction data. Specifically, the authors collected data on 1096 fights
taking place over a 158 h period within a pigtailed macaque primate population.
The data was, essentially, which primates joined each fight over time. Using this
micro-level interaction data, the authors sought to infer the decision rules used by
the primates regarding whether or not to join an ongoing fight. To begin this process
the authors assumed that an individual macaque’s decisions about whether or not to
join a fight was a function of whom they saw previously fighting. They then analyzed
the temporal correlations between macaques fighting at time t and the correlations
with those fighting at t–1. These correlations were then used to generate a new distri-
bution of fight sizes and the one with the best fit to the original fight distribution was
assumed to be correct.
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3 Motivation for the Current Study

Inspired by the original EMD concepts, MITRE is building an open source toolkit
(https://github.com/mitre/strategy-mining) in Java that supportsmultiple agent-based
model frameworks (currently supportingNetLogoandMASON).Weaim toprovide a
standardizedway to explore the impact of perturbations to the system across plausible
rulesets. This will include the development of standard measures and metrics.

Anothermotivation for this workwas to lower the barriers to entry for using EMD.
Some users coming from a social science background may be interested in the tool
but have no prior Python or Java experience—only a model written in NetLogo.With
our new toolkit, all standard evolutionary model settings are set to commonly-used
default values and can be edited in a parameters text file. Advanced users who need
more complex functionality can write custom Java functions to meet their needs.

Goals for the toolkit are:

• Easy parallelization both on a single machine and across nodes in a high-
performance cluster

• Noneed to create a scheduler, spin up jobs, orwork across programming languages
• Hello World examples to guide the user in using the tool
• Default implementations and templates for customizing required EMD functions
• Factors, setup commands, and fitness metrics.

In other words, a user with an existingMASON or NetLogo model should be able
to use the tool without needing to know any other programming language than the
one their model is written in. The setup should be minimal, and the output should be
easy to interpret and use with a researcher’s tool of choice.

Finally, wewished to explore EMD as a process. In other words, how does one use
it to answer specific questions. How does one analyze collections of rules? How is
the optimization process that underlies EMD impacted by the stochasticity so often
inherent in an agent-based model? A thorough analysis of the EMD process has not
yet been described in the literature but is critical if it is to be used to answer significant
questions. It is this last piece that we focus on for the remainder of this paper.

4 The Model

To test this tool and process, we created a simple agent-based model. This model was
created as part of an initial evaluation of a different iGSS technique, Inductive Game
Theory (IGT) [4]. IGTwas used to induce the rules macaques used to decide whether
or not to join a fight. Inspired by this work, we created a simulation of macaques
fighting. The simulation was relatively simple but could still support many different
decision rules (see Table 1, below).

The simulation consists of a population of 50 macaques each of whom has a
randomly assigned social rank, size, and social network. If no macaques are fighting,

https://github.com/mitre/strategy-mining
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Table 1 Macaque decision rules

Simulation rule Decision Impact

Minority fighting Returns true if less than 50% of the macaque population is currently fighting

Majority fighting Returns true if more than 50% of the macaque population is currently
fighting

Majority links
fighting

Returns true if more than 50% of the macaques in the particular macaque’s
social network are fighting

Minority links
fighting

Returns true if less than 50% of the macaques in the particular macaque’s
social network are fighting

Size in threshold Returns true if the macaques currently fighting are within a user specified
threshold of the particular macaque’s size

Rank in threshold Returns true if the macaques currently fighting are within a user specified
threshold of the particular macaque’s social rank

then two are chosen at random to fight. While the number of macaques fighting is
greater than 0, all macaques are given the option to join the fight (if they are not
fighting) or leave the fight (if they are fighting). This continues until the fight size
stabilizes, at which point all macaques are “deactivated” and the process starts over.

When deciding to join or leave the fight, the macaques use some combination of
logical criteria (shown in Table 1). These rules may be combined with either AND
or OR (note this is not XOR). If the combination of decision rules returns true, then
the macaque will fight, otherwise it will not.

5 Design of Experiments

The nature of genetic programming requires creating and evolving new rule trees. For
this reason, and in order to explore a vast search space, our experimentswere designed
tobe easily parallelizednot onlyon a singlemachine, but also across nodes in a cluster.
The high-performance computing system we utilized for the experiments described
herein uses Slurm to schedule jobs across a Linux (CentOS) cluster computer.

As discussed above, EMD uses genetic programming to build up new agent
behavior rules. This requires a way to measure fitness. This is typically done by
comparing the results of the evolved system to a referent. Usually, this referent
is a real-world phenomena or another simulation. In order to explore the EMD
process thoroughly, before the experiment, we ran the genetic program and stored
75 randomly generated rules which were later used as our design point referents,
specifically the distribution of fight sizes they created. For each of those 75 design
points, we performed 30 replications of a genetic program experiment which had
30 generations of 30 individual simulations. In total, over two million (2,025,000)
individual rule trees were created and evaluated. For this experiment, we minimized
the Kruskal–Wallis test statistic as the fitness measure between the “true” underlying
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referent data and the generated simulation data. The experiment took approximately
8 h to run.

6 Results

6.1 Comparing Simulation Output

Each of the 75 design points showed different performance in terms of the median
fitness and the variation in fitness. Figure 1 shows a boxplot of the fitness distribution
for each of the 75 unique design points (each boxplot contains all rules evaluated in
all replications). Some design points were so easy to fit that their entire middle 50%
fitness range is not visible due to its proximity to zero on the graph. For other design
points, the genetic program tried many rules with bad fitnesses.

Similarly, Fig. 2 shows a boxplot with the percent of replicationswithmean fitness
less than 1.32 for each of the design points (smaller is better). The datawas aggregated
by replication so that each replication had 900 data points: one for each individual
simulation in each generation. The threshold fitness of 1.32 was chosen because it
is the median fitness of all rules across all design points in generation 30, the final
generation. This threshold is used to classify the performance of a rule as “good” or
“bad” for all design points. Once again, some design points were consistently able
to find rules with good fitnesses. The large variation in the location and size of these
boxplots confirms that for some design points it is easier to discover well performing
rules.

The genetic program is a heuristic optimization technique. As such, each gener-
ation should show an improvement in terms of the fitness distribution. Some design
points find new “good” rules in all generations, as shown in Fig. 3. To be labeled as
a new rule, it must have not been present in prior generations within that replication.
The same threshold for “good” rules is used here (1.32). Once again, some design
points find a small set of “good” rules at the end of their 30 generations and others

Fig. 1 Fitness distribution for each design point. This distribution includes individuals from all
30 generations in all 30 replications of the experiment. A lower fitness indicates a more similar
distribution in ape fight sizes
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Fig. 2 Percentage of replications with mean fitness less than 1.32 for each design point

find amuch larger set. This graph indicates that running the experiment for more than
30 generations may lead to the discovery of even more new “good” rules. Figure 4
shows that the range of fitnesses at each generation is constant, which indicates that
each generation is still trying “bad” rules, even as it improves its middle 50% of
fitnesses and continues to discover new “good” rules.

The distribution of fitnesses will vary based on the fitness metric used and the
experiment setup. For this experiment, the fitness distribution is nearly log-normal,
as shown in Fig. 5. The range of fitnesses is approximately [0, 1200], with most of

Fig. 3 Cumulative count of unique rules with fitness less than 1.32. Each colored line represents
one of the 75 design points
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Fig. 4 The range and middle 50% of fitnesses for each generation

the fitnesses falling in the [0, 100] range. The sharp spikes in this plot are likely
attributed to a small set of non-stochastic (or less stochastic) rules.

During the analysis of our experiment data, and after realizing the degree that
stochasticity affects the fitness calculation, we ran an additional experiment to
generate data with each design point being measured against itself. For each rule,
we ran the model once to generate data, then ran the model nearly 200 times and
calculated the fitness of the data against the original “ground truth” data generated

Fig. 5 The distribution of all fitnesses, shown with a logarithmic x-scale
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Fig. 6 The distribution of fitnesses when a rule was run 1225 times against itself

by the same rule. We expected that the fitnesses should be very close to or exactly
zero. This data was generated for each design point. Figure 8 shows the distribution
of fitnesses from the results of this experiment on just one design point. For this
design point, only 12% of the fitnesses fell below the 1.32 threshold used in Figs. 2
and 3, even though all of them were generated from the same rule.

We combined this data with the original dataset and separated it to differentiate
rules that were actually identical or different. Figure 6 shows the risk that even the
“true” rule can have a bad fitness. For example, a fitness of 5 corresponds to an
approximately 70% chance that the rule is identical. A fitness of 250 corresponds
to a 50% likelihood that the rule is identical, and a fitness near 500 has a near-zero
likelihood of coming from an identical rule.

Figure 6 also demonstrates that the Kruskal–Wallis test statistic used as the fitness
should not be interpreted as a “true” test statistic. A test statistic greater than 5 is
statistically significant atα = 0.05with onedegree of freedom, but in our experiment,
the likelihood of the distributions coming from identical rules crosses 0.05 at a fitness
greater than 400. The metric chosen does not have to be interpreted in a statistical
sense; it merely needs to be able to quantify a performance comparison, i.e., to
say that one rule performed better than another, in this case measure the difference
between two distributions (Fig. 7).

6.2 Comparing Generated Rules

Comparing simulation output to a referent is relatively straight forward and well
defined. Trying to compare the sets of generated rules, on the other hand, is not at
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Fig. 7 Normalized stacked area plot showing the portion of the data at each fitness value coming
from identical (orange) or different (blue) rules

all clear. This task is important to understand as the output of iGSS are the rules,
essentially the agents, rather than the simulation output data. In the present case
this task is somewhat simplified because all the rules are combinations of booleans;
therefore, all rulesmay be expressed as a set of 0’s and 1’s combined byANDandOR.
As initially defined, EMD uses a random forest regression to calculate the relative
contribution of each atomic behavior rule to overall performance. While this is an
effectivemeans, it potentially misses combinations of behaviors that have synergistic
effects on fitness. We are particularly interested in producing an analysis akin to that
defined by Wagner [9] where metabolic genotype and phenotype are mapped into a
fitness landscape and mutation-based movement across the landscape characterizes
the “robustness” of the organism tomutation. Here, of course, we are not dealingwith
gene expression or the like. Rather, we want to explore changes to sets of rules and
their impact on simulation fitness relative to a referent. This requires a well-defined
measure of distance among rules.

As discussed above, in order to compare the simplest form of a distance between
rules, we examined a distance matrix based on fitness. While we chose to use the
Kruskal statistic, it should be noted that we used it simply as a method for comparing
distributions and not strictly as a statistic. In order to compare not only simulation
performance but also agent behavior rules, we attempted to find a way to measure
differences in rules that corresponded with differences in performance. As the rules
in this simulation were exclusively boolean, we examined Hamming distance and
tree edit distance. There was little correlation between fitness distance (as measured
by the KS statistic) and rule space distance (measured by either tree edit distance
or Hamming distance). This is likely due to the lack of correlation between the
expression and behavior of a rule within the simulation.

We found a similar resultwith clustering.Weclustered the rules and then examined
the relationship between clustermembership and performance. Once again, we found
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little relationship between cluster membership and performance. However, the test
case discussed here might not be generalizable. Here all the rules are boolean, which
is likely not going to be the case with many other ABMs. However, we chose to do
this as we felt it would make the analysis of the rules themselves somewhat easier.
Even with this stylized, simplified test case we were unable to find an appropriate
way to analyze the rule our EMD system created beyond a relatively basic frequency
of subcomponents analysis and the factor regression described by Gunaratne and
Garibay [8].

7 Conclusions

EMD is a very promising, efficient methodology for discovering combinations of
agent rules that create a particular output. We were able to reproduce the EMD
functionality as originally specified by Gunaratne and Garibay [8] in a fully Java
framework; thus, creating an easier to use and maintain implementation. We then
undertook a study to explore the overall EMD process. Our major findings include:

• All components of agent behavior must be expressible and expressed a priori
• The EMD system can find combinations of agent behaviors that produce

simulation dynamics “close” to a referent
• The typically inherent stochasticity of agent models may create a problem with

the signal to noise ratio complicating the GP heuristic search process
• Rules are not consistently tested (some are run once other are run thousands of

times)
• The EMD framework only test agent rules, it does not explore rules and parameter

values, this could be an issue if rule performance is impacted by the parameter
space.

EMD has proven to be a very effective method for discovering families of agent
behaviors that create a simulation that generate dynamics that are “close” to a referent.
It is, however, not without its nuances that should be fully understood by researchers
using it. As shown in Fig. 6, evenwhen comparing a simulation to itself awide variety
of results may be obtained. This complicates the analysis of results and highlights
the need to run multiple replicates of a simulation. In particular, if EMD is evaluating
fitness based on similarity to non-EMD-generated output data, e.g., the “real world,”
then it may be trying to fit to an outlier, again, complicating the use of the EMD
system.

We intend to continue to develop our EMD implementation and explore how best
to utilize and understand the EMD process. Future work should include recommen-
dations of the best ways to answer experimental questions, best ways to measure
rule complexity, best ways to measure rule similarity (distance metrics), and how to
finetune experimental parameters.

For citations of references, we prefer the use of square brackets and consecutive
numbers. Citations using labels or the author/year convention are also acceptable.
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The following bibliography provides a sample reference list with entries for journal
articles [1], an LNCS chapter [2], a book [3], proceedings without editors [4], as well
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Flocking with Only Two Parameters

Dashiell Bhattacharyya and William G. Kennedy

Abstract The boids flocking model, an agent based model simulating bird flocking
behavior, relies on four parameters: the rates of alignment, separation, cohesion,
and the vision radius of the birds. Only certain combinations of these parameters
result in the birds flocking together. Reliance upon fewer parameters would result
in a more efficient and faster modeling process along with clarifying the concepts
behind the model’s behavior. It was hypothesized that separation and cohesion could
be combined into a single parameter and vision radius removed without affecting
the resulting behavior. To test this hypothesis, these simplified models were created,
run, and the result of every combination of parameters distilled to a set of numeric
metrics. It was shown that a simplified model combining cohesion and separation
to their ratio, termed friendliness, as well as fixing vision radius, was able to result
in a functionally equivalent model, demonstrating that the two parameter model is a
successful substitute for the original four parameter one.

1 Introduction

The boids flocking model is a classic agent-based model that simulates biological
flocking behavior in a 2D grid. The birds, fish, or other agents act in relation to their
neighbors, defined as the set of agents whose distance to a specific agent is below a
certain threshold, the vision radius. The vision radius is also known as neighborhood
distance and neighborhood radius. We will be using birds as representative agents.
The birds traditionally move according to three rules.

• Rule 1: Separation: Birds turn away from their neighbors if they are too close.
The rate at which these birds turn is dictated by the separation parameter, also
referred to as avoidance, and scaled by the proximity of nearby birds.
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• Rule 2: Cohesion: Birds turn towards their neighbors. The rate at which these
birds turn is dictated by the cohesion parameter. The combination of cohesion and
separation results in the birds attempting to maintain a constant distance from each
other.

• Rule 3: Alignment: Birds turn towards the same direction their neighbors are
moving. The rate at which these birds turn is dictated by the alignment parameter,
also referred to as consistency. The resulting effect of this rule is that birds in the
same flock move in the same direction.

Neighborhood radius, separation, cohesion, and alignment are the four parameters
needed for the classic boids model to function. Variations in the parameters modify
the flocking behavior of the birds, and certain combinations of parameters remove
the ability of the birds to form flocks altogether.

2 Background

Ever since Craig Reynolds [1] created the boids model it has been widely used to
model not only bird flocking behavior but also employed in the field of robotics and
for swarm intelligence [2]. Its uses have continued into artificial life simulations [3],
particle physics [4], and data visualization [5]. Christopher Hartman and Bedrich
Benes [6] provided a mathematical explanation for each of the three rules of the
model. Separation was defined as the negative sum of the vectors to all nearby birds.
Cohesion was defined as the vector towards the center of mass of all nearby birds.
The center of mass was calculated by averaging the birds’ positions. Finally, align-
ment was calculated as the average direction vector of all nearby birds. These three
vectors were then weighted, summed, and normalized to the magnitude of a set con-
stant speed. This implementation allows for all the functionality of Craig Reynolds’s
original paper. In Hartman and Benes’s paper, the model was also extended to con-
tain an additional rule; however, we will be working only with the original 3-rule
model. It is clear from the model’s widespread array of uses that attempts to simplify
or optimize it would be beneficial. The model in past has been optimized for GPUs
[7], and parameters of boids have also been optimized using genetic algorithms [8].
Despite extensive research and use, no attempt to simplify the model has been made
to our knowledge.

3 Experiment 1

The goal of the first experiment was to determine an optimal number of steps for the
rest of the experiments. All birds start in random positions, and a certain amount of
time must have elapsed before their positions are determined by the parameters.



Flocking with Only Two Parameters 131

3.1 Methodology

For the purpose of the first experiment, 300 birds were used in a 500 unit by 500 unit
grid, each with neighborhood radius set constant at 10 units. Separation, alignment,
and cohesion parameters were all set to 1, as these are their default values and result
in flocking behavior.1 The environment was a 2D grid with wrapping edges, and all
distance calculations accounted for this.

A way to define a model in terms of quantified metrics was also needed. Two
metrics were created: the average distance between each bird and its neighbors, and
the average number of neighbors per bird with a radius of 10. It was hypothesized
that a graph of thesemetrics over time as amodel was runwould plateau once enough
steps had elapsed for birds to be in a position dependent on their parameters. If so,
the number of steps for the metrics to remain constant could be used in the following
experiments to get the reliable data.

To find the reasonable minimum number of steps, the model with default param-
eters was run for 2000 steps, and the two metrics calculated at each step. The data
collected from this was then output to a data file.

3.2 Results

Both the distance between neighbors and the number of neighbors plateau by step
1000, so that is a practical number of steps required to determine a complete assess-
ment of the effect of the parameters on the state (see Figs. 1 and 2).

All further experiments therefore were calculated for 1000 steps.

3.3 Analysis

The graphs Figs. 1 and 2 plateau by approximately 1000 steps, and therefore the
model does not need to be run for longer for all behaviors to have emerged.

These conclusions can be observed visually. Between 0 and 1000 steps, the flock-
ing of the agents changes over time, but from 1000 to 1500 no more changes can be
observed. From 1000 on, the approximate number of flocks and visual organization
of the birds remains constant (see Fig. 3). These conclusions were also observed to

1 Flocking behavior is defined by the following: First, most birds must have multiple neighbors
with which they generally stay. Second, the birds must be moving in the same direction as the
others in their flock. Finally, birds in a flock must have space between them, such that they are not
consistently colliding. If a model was observed not to flock by this definition, it does not achieve the
fundamental purpose of the algorithm, organic flocking, and therefore is not relevant in determining
if two versions of the flockers model are functionally equivalent. For all experiments, it was tested in
a modifed version of MASON’s Flockers with UI and visually analyzed under the aforementioned
three conditions.
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Fig. 1 Graph of the average number of neighbors over step count, run on a model of all weights at
1 and neighborhood radius at 10

Fig. 2 Graph of the average distance between neighbors over step count, run on a model of all
weights at 1 and neighborhood radius at 10
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Fig. 3 Boids model visualization at 0, 500, 1000, and 1500 steps, done using MASON’s Flockers
with UI

apply to other combinations of parameters. It is unknown if 1000 is the optimal step
count for other grid sizes or numbers of birds, but as all all further experiments are
run in a 500 unit by 500 unit grid containing 300 birds, this is not a concern.

For the purpose of the future experiments, 300 birds were used in a 500 unit
by 500 unit grid. Initial bird positions and rotations were random; however, across
multiple trials, initial positions scarcely affected resultant metrics. Birds who flew
out of the bounds of the grid wrapped around to the other side, and all distance
calculations accounted for this. Experiments were run for 1000 steps as the standard
for comparisons.

4 Experiment 2

The goal of the second experiment was to determine whether or not combining
cohesion and separation into the single new parameter named friendliness prevented
certain flocking behaviors from being possible.

We define the friendliness parameter as a combination of separation and cohesion.
The individual bird’s movement calculation is the same, but the rate at which the
bird coheres is scaled by the new friendliness parameter, and the rate at which the
bird separates is scaled by the inverse of the friendliness parameter. Therefore, the
friendliness parameter acts as the ratio between coherence and separation.

4.1 Methodology

Two versions of the boids model were created. One, the original boids model,
where alignment separation and cohesion were scaled by their respective values,
and another, where alignment was scaled by its weight, cohesion was scaled by the
friendliness parameter, and separation was inversely scaled by friendliness. Neigh-
borhood radius was held constant throughout the whole experiment at 10.
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The original boids model was run on every value of cohesion from [0, 6) with
an increment of 0.5, along with the additional value of 0.25 (i.e. 0.25, 0.5, 1, 1.5
... 5.5). With each of these values for cohesion, the model was run on every value
of separation with the same range of values. Finally, it was run on every alignment
value [0, 5) with an increment of 1 (i.e. 1, 2, 3, 4). These ranges were selected based
on visual analysis of the range of parameters which resulted in flocking behavior.
With these 3 parameters, the model was run for the number of steps determined in
Experiment 1, and then evaluated on the two metrics. Then the cohesion weight,
separation weight, alignment weight, average number of neighbors, and average
distance between neighbors was output to a data file for analysis.

Themodified 2 parametermodelwas run from every friendliness value from [0.25,
8) with an increment of 0.25 (ie 0.25, 0.5, 0.75 ... 7.75), and for each friendliness
parameter, the model was run on every alignment value [0, 5) with an increment of 1.
These numbers were likewise selected based on the range of values which resulted in
flocking behavior. The model was run for the same number of steps, then evaluated
on the same metrics, and the friendliness, consistency, average number of neighbors,
and average distance between neighbors was output to a data file.

4.2 Results

After 1000 steps, the second experiment had models of various parameters forming
three regions (see Fig. 4). The first region included both 4-parameter and 3-parameter
models, very few neighbors per bird and a relatively small average distance per
neighbor. Models in this region had relatively high separation and low cohesion (see
Figs. 5 and 6), or low friendliness (see Fig. 9), and birds did not flock together due
to insufficient cohesion and too much separation.

The second region on Fig. 4 had both types of models, relatively high neighbors
per bird, and a wide range of number of neighbors. Upon testing several models in
this region, it was determined that most models in the second region had flocking
behavior.2 The models in this region had a relatively wide range of parameters;
however, cohesion was always greater than 1, likely because sufficient cohesion is
necessary in order to have flocking by our definition (see Fig. 6). While birds with
alignment values of zero were present in second region, they did not always flock
(see Figs. 7 and 8), due to the birds in a flock not moving in the same direction.

Finally, the third region on Fig. 4 only had the original models with a high average
number of neighbors, but extremely low average distance per neighbor. The birds

2 Models in this region were tested under the assumption that models with similar metrics behaved
similarly. Because of this reasoning, the extremes of each region were prioritized, and the centers
tested in an even distribution. The assumption that similar parameters result in similar results was
also made.
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Fig. 4 Both the 4 parameter and 3 parameter models graphed in terms of both metrics, the mean
distance between neighbors and the average number of neighbors. The graph was split into three
regions, 1, 2, and 3, each expressing similar behavior

Fig. 5 The scatterplot of the original 4 parameter model colored by avoidance parameter over the
range 0–5 units

here clustered together very compactly, and flocking was not achieved. The models
in this region had little separation weight (see Fig. 5), and the birds clustered too
tightly.
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4.3 Analysis

In addition to these results, it can be observed that the models with extremely high
separation often had a very low average number of neighbors per bird, although
the average distance between those neighbors varied depending on cohesion (see
Fig. 4). Region 1 tends to have low cohesion, which with high separation, results
in the behavior of independent non-flocking birds. Despite the upper left corner of
region 2 having high separation, the high cohesion seems to compensate for this
effect. Region 3 had relatively high cohesion compared to separation (see Figs. 5
and 6). The effect of alignment on themovement of the birds is less concrete; however,
every flocking combination with extremely low consistency had high cohesion to
preserve flocking behavior. If alignment was too low, flocking behavior was never
achieved (see Fig. 7).

For the 3 parameter model, without sufficient alignment, the birds were not able
to achieve a higher number of neighbors due to the flocks often splitting, and most of
the models without sufficient alignment did not flock (see Fig. 8). The effect of the
ratio between cohesion and separation on this graph is much clearer since models
with insufficient friendliness were not able to flock without high enough alignment
to keep birds together. Higher friendliness allowed for closer neighbors and more
neighbors per bird (see Fig. 9). Overall, the new friendliness parameter has a much
clearer effect on the movement of the boids than either separation or cohesion does.

Fig. 6 The scatterplot of the original 4 parameter model colored by cohesion parameter over the
range 0–6 units
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Fig. 7 The scatterplot of the original 4 parameter model colored by consistency parameter over
the range 0–5 units

Fig. 8 The scatterplot of the 3 parameter model colored by consistency parameter over the range
0–5 units
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Fig. 9 The scatterplot of the 3 parameter model colored by friendliness parameter over the range
0–8 units

Because only region 2 had flocking behavior and included models of both types,
both models are equally capable of producing varying types of flocking behavior.
Therefore, Experiment 2 demonstrates that combining the values of cohesion and
separation into one parameter, friendliness, successfully deparameterizes the model.

5 Experiment 3

The goal of the third experiment was to determine if changes in the neighborhood
radius of the birds could be substituted by changes in the other parameters. If so,
then the neighborhood radius could be held constant, allowing for the removal of an
additional parameter.

5.1 Methodology

For this experiment, a modified version of the friendliness-based model that was
used in Experiment 2 was used. However, this version no longer kept neighborhood
radius constant. This way, a version with and without keeping the neighborhood
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radius constant could be compared, to see if the parameter neighborhood radius was
necessary.

For the purpose of the third experiment, we used the same environment: 300
birds in a 500 unit by 500 unit grid. Birds who flew out of the bounds of the grid
wrapped around to the other side, and all distance calculations accounted for the
screen wrapping.

Thismodelwas runon every combinationof friendliness [0.5, 8)with an increment
of 0.5, alignment [0, 5) with an increment of 1, and neighborhood radius [8, 13) with
an increment of 1, for the same 1000 steps as before. As in Experiment 2, these
ranges selected based on the range of values resulting in flocking. Then, friendliness,
alignment, neighborhood radius, average number of neighbors, and average distance
between neighbors were output to a data file.

These data were compared to the data on the friendliness model from Experiment
2 without a changing neighborhood radius, to see if changes in neighborhood radius
create more flocking combinations of both metrics than the base model.

5.2 Results

InExperiment 3, the version of the 2 parametermodelwith a changingneighbordhood
radius almost exactly followed the model with a constant neighborhood radius (see
Fig. 10).

5.3 Analysis

Increases in neighborhood distance could be compensated by decreases in friendli-
ness and alignment, since models with varying neighborhood distances could have
the same average numbers of neighbors and average distances by adjusting the other
parameters to match (see Figs. 11, 12 and 13).

In addition to these results, it was observed that the only areawhere the 3 parameter
model is solely present in Fig. 10 is with a radius value of 8, too small for flocking
to occur unless an extraordinarily high friendliness is present. As these models here
do not result in flocking by our definition, they can be ignored, and the parameter
can still be removed (see Fig. 11). Models with higher neighborhood radius will
remain in the same region with a lower friendliness. A higher neighborhood radius
increased the strength of cohesion since it acts on more birds, so a lower friendliness
was required to exhibit the same results (see Fig. 12). The trend observed in Fig.
11 repeats itself in Fig. 13: because a higher neighborhood radius causes alignment
to be more powerful, acting on more birds, a high neighborhood radius is almost
always accompanied by a lower alignment in order to preserve the same behavior
(see Fig. 13).
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Fig. 10 A scatterplot of the average distances between neighbors and numbers of neighbors across
the 3 parametermodel done inExperiment 1with changing neighborhood radius, and the 2 parameter
model with constant neighborhood radius, colored green and blue respectively

Fig. 11 A scatterplot of the average distances between neighbors and the number of neighbors of
the 3 parameter model with varying neighborhood radius, colored by neighborhood radius on the
range 8–12
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Fig. 12 A scatterplot of the average distances between neighbors and the number of neighbors of
the 3 parameter model, colored by friendliness on the range 0–8

Fig. 13 A scatterplot of the average distances between neighbors and the number of neighbors of
the 3 parameter model, colored by alignment on the range 0–5
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Because changes in the neighborhood radius parameter can be substituted by
changes in the other parameters, and because all flocking combinations of the number
of neighbors and distances between neighbors can be achieved by both a model with
constant radius and one with varying radius, the parameter neighborhood radius can
be held fixed to 10.

6 Conclusions

Because the 2 parameter model and 3 parameter model with changing neighborhood
radius were shown to be functionally equivalent for flocking combinations, and the
3 parameter model and 4 parameter model with varying neighborhood radius were
determined to be functionally equivalent for flocking combinations, it can be derived
that the boids flocking model, with the 4 parameters separation, consistency, align-
ment, and neighborhood radius, can be reduced to a 2 parameter model model with
the parameters friendliness, alignment, and a constant vision radius.

For the implementation of the simplified boidsmodel, the cohesion and separation
parameters can be replaced by friendliness. Where cohesion is used, friendliness
should be placed, and where separation is used, 1 should be. Neighborhood radius
can be removed as a parameter and set to a constant 10.

To convert between the original 4 parameters to a 2 parameter version with equiv-
alent behavior, substitute increases in neighborhood radius with increases in friend-
liness and alignment, and use the following formula.

friendliness = cohesion

separation

With these tools it is possible to recreate almost all flocking combinations of the
boids model in a simplified 2 parameter version of the model. The model is therefore
comparable to the original with half the parameters, and any instance of modeling
behavior with the boids model can be done more efficiently with fewer parameters
to tune.

Further work would involve a more comprehensive sweep of the 4, 3, and 2
parameter models, to verify the equivalence of the simplified model at the extremes
of parameters, and to fine tune the parameter conversion calculation between mod-
els. Additionally, it would be informative to test the simplified model on existing
applications of the boids model to see if the functional equivalence continues into
more practical applications. It would also be useful to test multiple implementations
of the boids model too see if results hold.

Further mathematical analysis of the model could also be done to determine
significance to flocking behavior itself, derive a numerical relationship between the
models, and determine the necessity and effect of the remaining parameters.
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Understanding Genocide Through
Emotion Detection in Historic Documents

Elizabeth M. von Briesen, Michael Garvin, and Samira Shaikh

Abstract Artificial simulations such as agent-basedmodels provide an environment
in which to explore the dynamics of human behavior, and can contribute to the work
of genocide researchers seeking to understand and prevent this atrocity. Validation
is essential to the development of such models, as it verifies that the simulation can
reproduce expected results. This work explores methods for quantifying emotion in
historic presidential and elite speech data for later use in model validation. Here, data
were collected for cases in which genocide was expected and either did or did not
occur.After digitizationof a subset of the speech archive, early emotion analysis using
a modern lexicon on translated text shows variations in emotions that correspond as
expected to events along the case timeline, thus providing preliminary measures for
historic case comparison in general social science research and appropriate artificial
simulations. Future improvements in analytical technique and digitization processes
will allow for continued work and contributions to the domain of genocide studies.
A repository of digitized files, along with the full set of original texts, are also made
available.

Keywords Natural language processing · Genocide · Computational social
science · Agent-based modeling

1 Introduction

Working to prevent future genocides, historians, social scientists, and others have
probed into the darkest of humanity’s corners to determine its causes. Agent-based
models can assist in this domain by providing an exploratory environment inwhich to
understand the evolution of genocide; however, validation is essential in order to show
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that the model can accurately reproduce known dynamics. This research extends the
work of von Briesen et al. to develop and validate an agent-based model of genocide.
Their model explores the dynamics of genocide from the perspective of individual
bystander motivation to intervene and protect persecuted out-group members, and
includes a variable that allows for global restraining factors that influences micro-
level bystander decision-making. Higher levels of global restraint yield a society in
which the average bystander is more likely to work toward the protection of out-
group members. Given that micro-level data of human emotion and experience has
been sparse until recent years, historic event-validation is especially difficult in this
type of model [4].

Genocide researchers rely on historic records to understand the past and influence
the future for the better. This may include collection and analysis of elite speech
contained in official government records, newspapers, and so on. Returning to the
problem of validation of von Briesen et al’s model [4], one method of obtaining
relevant data is tomine elite speech for emotion, anduse that to bridgeglobal, societal-
level factors and individual motivation and behavior. Expert qualitative analysis of
these types of data is optimal; however, this methodology may not scale sufficiently
with larger data sets.With this inmind,we seek to answer the following question: Can
emotionmining of historic documents across scenarios provide genocide researchers
with useful, quantitative measures to supplement their work, and can such measures
be useful for validation of artificial simulations of genocide?

Scott Straus hypothesizes that there is much to be gained through understanding
why genocide does not occur when it was expected (a negative case), particularly
with respect to how these societies differ from those in which genocide was expected
and did occur (a positive case) [15]. As part of his work, Straus made available a
database of speeches given by presidents and other elite actors fromfive Sub-Saharan
African nations [17].1 In these speeches, he examines long-standing “themes” present
in societies in the years prior to crisis points [16]. The data digitized and analyzed
here are a subset of documents from two cases included in the database: Rwanda
(positive), and Côte d’Ivoire (negative).

This research combines historic context and sentiment analysis to yield quantita-
tive measures of relevant emotions in select historic texts. We compare and contrast
differences in emotion between and within historic cases. We find that despite the
limitations of using a modern lexicon on translated language, we are able to measure
notable differences in emotion before and after significant events in each country.
These results then provide an early starting point for the process of event-validation
in von Briesen et al’s model of genocide [4].

1 Straus’ original website is currently offline. All speeches and digital transcriptions are available
at https://github.com/muniravb/AfricanPresidentialSpeeches. Original speech scans were kindly
provided by Dr. Straus.

https://github.com/muniravb/AfricanPresidentialSpeeches
https://github.com/muniravb/AfricanPresidentialSpeeches
https://github.com/muniravb/AfricanPresidentialSpeeches
https://github.com/muniravb/AfricanPresidentialSpeeches
https://github.com/muniravb/AfricanPresidentialSpeeches
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Fig. 1 Presidential speech document examples. Left: Rwanda, 1-Jul-1969, Right: Côte d’Ivoire,
2-Jan-1979

2 Data Description

Figure 1 shows two samples from Straus’ original database. On the left is a document
that can be digitized with high accuracy by OCR software, while the poor quality
of the document on the right causes a much higher error rate, complicating the
digitization process.

Table 1 details the date ranges and significant events for the selected subset of
Ivorian and Rwandan speeches. The events are notable along each country’s timeline
because they mark a point after which ethnic tensions dramatically increased. This
subset of documents are selected from the database to provide a similar baseline
for comparison. Both cases present elite language from decades-long, post-colonial
presidencies. The main inconsistency between these data is the inclusion of speeches
following the death ofHouphouët-Boigney inCôte d’Ivoire,with no similar data from
Rwanda after Habyarimana’s death. This is due to the constraints of Straus’ original
data set.

Table 2 details the total number of digitized documents obtained for both cases
and descriptive statistics for word counts.2 Documents in the database range from
governmental publications to newspaper articles. The majority of speeches are in
French, with some provided as English translations.

2 Note that there were a few instances in which the original scan contained multiple speeches. These
are split and digitized as separate documents.
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Table 1 Description of selected speeches from Straus’ African Presidential Speech Database [17]

Country Date range Content Significant event

Rwanda 5-July-1973 to
26-Feb-1994

Presidential and other
elite actors’ speeches
during the presidency
of Juvénal
Habyarimana.

October
1990—Rwandan
Patriotic Front begin
invasions of Rwanda
from their base in
Uganda [11]

Côte d’Ivoire 6-Aug-1961 to
30-Oct-2005

Presidential and other
elite actors’ speeches
during the presidency
of Félix
Houphouët-Boigney
through 12 years after
his death

7-Dec-1993—death of
President
Houphouët-Boigney
[12]

Table 2 Descriptive statistics
for presidential speeches
digitized and analyzed

Rwanda Côte d’Ivoire

# Documents 63 60

Min word count 224 122

Max word count 13798 5281

Mean word count 3106 924

Standard dev. 3471 1373

3 Hypothesis

In his research, Straus offers qualitative insights into the speeches he collected. In
Rwanda and other positive cases, Straus finds a common presence of “...ideologi-
cal dominance among the political and military elite of a hierarchical, nationalist
founding narrative” [16, p. 275]. Using Habyarimana’s 7-December-1990 speech as
a example, he states that, “...we see how the founding narrative shapes how Hab-
yarimana interpreted and spoke about the nature of the military. The fight was no
ordinary one. It was between those who would protect the revolution and those
who would destroy it” [16, p. 294]. Contrast this with Straus’ finding that in Côte
d’Ivoire, Houphouët-Boigny advocated for “...unity, dialogue, economic growth,
stability, peace, and multiethnicity...” as core Ivorian values [16, p. 151]. He hypoth-
esizes that these difference were important restraining factors in negative cases of
genocide, as seen in Côte d’Ivoire in the early 2000s.

Straus’ database presents a unique opportunity for the field of natural language
processing to contribute to social science domains. These data contain elite language
from countries that are culturally similar, given all are located in Sub-Saharan Africa,
yet significantly different with respect to their ideological narratives and views of
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identity groups at the points in time reflected in the database. As such, computa-
tional analyses have the potential to quantify measures of sentiment and emotion as
they change over time, both within and between cases, supplementing the work of
researchers like Straus.

At this early stage, we hypothesize that quantification and analysis of the change
in emotion over time in the selected speeches will highlight critical dates and trends.
Crocker and Canevello’s Ecosystem and Egosystem Theory of Motivational Orien-
tation provides a starting framework for determining how affective states correspond
to the motivations of a given individual. They find that emotions such as competitive-
ness, conflict, confusion, and fear are associatedwithwhat they term the “egosystem”
motivational state. Here, a person’s goals are tied to “self-image” as an extension of
the “evolved motivation” for self-preservation. In contrast, “ecosystem” motivation
is characterized by emotions such as cooperativeness, peace, love, and clarity. Here,
the individual’s goals are “compassionate,” and extend from the human need for
species-preservation [5].

Connecting Crocker and Canevello’s theory to Straus’ findings in genocide stud-
ies, we hypothesize that negative emotions like anger and fear can be measured
relative to the positive emotion of joy to quantify the overall motivational orienta-
tion of a given speech. Lower values of anger and fear with respect to joy should
reflect speech that corresponds to compassionate goals, and a more peaceful, less
polarized society. In contrast, higher values should correspond to self-interested goals
and a more polarized society prone to conflict. Note that this hypothesis is grounded
in the assumption that there is more to be gained by examining composite rather than
individual measures of emotion, as this measure tells a larger story of the overall
sentiment and motivations of the speaker.

4 Methods

For each speech, we manually removed any text that was not an elite actor’s speech,
such as additional news articles on the same page. When the document quality was
sufficient to allow for digital transcription, we used ABBYY FineReader to extract
text,manually correcting transcription errors [1]. In some cases, low resolution scans,
background lines, smudging, and blurred text in original documents led to extensive
digitization errors. We manually transcribed these documents to ensure we curated
a complete and accurate set of transcriptions.

As noted above, documents in this data set are in either French or English. Araujo
et al. find that translated text can yield better results if it allows for the use of more
robust analytical tools [2], andWindsor et al. showed that machine translation can be
a stable and reasonably accurate means of reconciling the problem of misalignment
between source language and analytic tools [19]. With this in mind, we chose to use
the Google API to translate all French language to English [7], and then used the
NRC lexicon across all documents to quantify the fraction of words per paragraph
expressing anger, fear, and joy [10]. We took the mean of these paragraph-level
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fractions over each individual document to calculate a document-level score for
each emotion. This process yielded quantification of a discrete set of emotions, by
document, through the selected time-frames of each case.

Returning to our hypothesis regarding the usefulness of a composite emotional
score, we then calculated document-level composite mean scores as follows:

DocScore = (angerD + f earD)− joyD (1)

where .angerD , . f earD , and . joyD , represent the mean score of that emotion for the
document.

5 Results and Analysis

Document-level composite scores for Rwanda and Côte d’Ivoire are shown below in
Figs. 2 and 3 respectively. Note that in both graphs, negative values indicate that the
overall magnitude of joy in a document exceeded the sum of anger and fear. Both
figures are annotated to show the approximate location of the “Significant Event”
(detailed in Table 1) along that country’s timeline. In both cases, anger and fear are
clearly the dominant emotions relative to joy after an event that caused a significant
increase in ethnic tensions within that nation.

Figure 4 shows the mean composite emotion score for documents before and
after the specified event. In both cases, we see a substantial rise in the levels of
anger and fear, and decline in joy, after the event. Of note here is that all emotions
levels measured higher in the Ivorian data than in the Rwandan data, except for
joy in its post-event range. This was unexpected, and requires more work to deter-
mine qualitative variations that may explain this result. Additionally, the absence of
country-specific terms for hate speech in the lexicon may have artificially lowered
the measures of anger and fear, particularly in the Rwandan data.

It is clear that despite many limitations, our methodology does produce a quantifi-
cation of emotion in these texts that corresponds to expected variations given historic
events. The composite measure of document-level emotion from (1) yields expected
and informative patterns along the timeline, and themagnitude ofmean scores shown
in Fig. 4 align with expected changes given significant events.

6 Related Work

Here we address related work as it applies to the limitations of our current method-
ology. First is the issue of using a modern lexicon on historic language. Recent work
in this area has included text annotation and lexicon development with the help of
subject-matter experts, leading to performance evaluation for a variety of sentiment
and emotion analysis techniques [8, 13]. Variations of these methods would allow
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us to determine how closely our measures of emotion fit those of a subject-matter
expert, and if customized lexicons and other advanced approaches improve perfor-
mance. One important goal is to ensure that computational analyses using a lexicon
or other methods align with domain expert analyses.

Next, it is essential to account for the use of hate speech in future work. Current
research focused on hate speech detection and classification provides insight into
methodologies that could be useful [6, 9]. However, given the significance of specific
derogatory terms such as “inyenzi” in Rwanda (translated as “cockroaches and used
to dehumanize Tutsis”) [18, pp. 114–115], a simpler first step would be to customize
the NRC lexicon to include terms of this nature for a specific country and time frame.

Finally, difficulties with digital transcription have delayed further progress in
converting the remaining speeches in the database to text. Smith and Cordell present
an extensive research agenda to address the wide variety of issues that arise when
using OCR on historic texts [14]. We look forward to continued development in this
area, as greater ability to train software to recognize character and document patterns
would reduce the overall time requirement for digitization.

Fig. 2 Rwanda document-level composite emotion scores by date
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Fig. 3 Côte d’Ivoire document-level composite emotion scores by date

Fig. 4 Mean emotion scores segmented by timeline events
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7 Conclusions and Future Work

The research presented here contributes a new approach to analyzing and under-
standing political text from the field of genocide studies. We have drawn from the
work of Scott Straus, digitizing and analyzing the emotional content of a subset of his
database of presidential speeches [3, 16, 17]. These first steps confirm that despite
the limitations of using a modern lexicon on translated text, measures of emotional
content correspond to expected shifts along the historical timeline. However, this
approach did not yield results that were useful for quantifying emotional differences
between the Ivorian and Rwandan cases, which would align Straus’ qualitative find-
ings [16].

Confirming Straus’ qualitative finding of differing sentiment between scenarios
is essential, as the validity of computational results only holds when they align with
the findings of subject-matter experts. Achieving this will also be more useful in
validating von Briesen et al’s model, as this could allow for event-specific calibra-
tion and comparison of outcomes. In order to achieve this goal, future work should
explore including additional emotions in the composite score (see 1), annotation
and evaluation of digitized texts by subject-matter experts to allow for a more care-
ful assessment of analytical accuracy, improved lexicons to measure hate speech
in different cases, adoption of more advanced OCR technologies as they becomes
available, and comparison of results when applying this methodology to modern,
elite speech.
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An Agent-Based Model to Explore Belief
and Behavioural Change in a Classroom

Keegan Fernandes, Daniel Davison, and David Wang

Abstract Astudent classroom is a complex environment of social dynamics through
which instructors attempt to navigate and find ways to improve their students’
behaviour. These complex dynamics make it difficult to predict how a student will
react to an instructor’s interventions. We build an agent-based model to examine
how an individual’s beliefs might spread through a classroom, and how they may
affect behaviour, to be able to identify how an instructor can approach a classroom
with the hopes of encouraging better note taking behaviour. The model is built on
existing psychological models and consists of three parts: a behavioural change com-
ponent in the form of the reasoned action approach, a social influence component,
and an outcome feedback component. The agent’s beliefs determine their behaviour
and are influenced by their peers’ beliefs. The results of this paper show that the
model exhibits expected psychological phenomena such as polarisation and cluster-
ing. Additionally, we explore various possible instructor influence techniques such
as an “all student” technique, an “influencer” technique, a “rotating” technique, and
a more “targeted” technique.

1 Introduction

The student classroom provides an interesting backdrop for social dynamics. There
are many effects at play such as student pressures, instructor feedback, and group
structures, all of which give rise to complex social phenomena. Within this elaborate
environment instructors are constantly trying to find ways to improve student perfor-
mance. One technique often used is to encourage good studying habits such as note
taking, scheduling, and self-regulated learning [12]. Studies show that proper note
taking is very beneficial for recall and allowing people to better process information
[10]. The aim of this paper is to use fundamental psychological and sociological
effects to develop an agent-based model that can simulate the behaviours of stu-
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dents in a classroom setting. More specifically, a scenario where an instructor tries
to encourage their students to take up better note taking habits in order to improve
academic success is used. This model could aid instructors in understanding how
to effectively implement interventions to encourage better study habits and has the
potential of positively impacting students by improving their understanding of course
material.

While instructors have many strategies to try and encourage the use of good
studying behaviours, this paper focuses on four main techniques. The first is the
“all student” technique, where the instructor encourages the class as a whole by
supplying information about a behaviour and its benefits, providing a generalised
intervention [8]. Second, the instructor takes advantage of the class hierarchy to
spend their time encouraging the most influential students in a class with the hopes
that their behaviour will propagate to the rest of the class through social pressures
[16]; this is called the “influencer” approach. Third, the “rotating” technique involves
the instructor rotating daily through different individual students to try and encourage
them to perform the behaviour, providing more specific interventions but at a cost
of spending less time with each student [11]. Lastly, there is a “targeted” approach,
where the instructors identifies the student most likely to change beliefs about the
behaviour and encourages them to do so (see Fig. 1). The goal of this paper is to
be able to identify the effects of these different strategies in a class and perform
simulations to get initial insights into what might happen.

Fig. 1 Top Left: Instructor weakly influencing many students (all student). Top Right: Instructor
interacting with individual students one at a time in rotation, identified by moving underlines
(rotating). Bottom Left: Instructor strongly influencing few students, who in turn influence more
students (influencer). BottomRight: Instructor strongly influencing student on the verge of changing
beliefs (dark red being negative and dark green being positive) (targeted)
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2 Model Components

To simulate how an individual’s behaviour and beliefs evolve in a group setting, the
model incorporates three main components:

• Abehavioural changemodel, in the formof theReasonedActionApproach (RAA),
to explain how and why human behaviours are changed.

• A social influence effect, in the form of conformity and confirmation bias, to
explain how social interactions affect people’s beliefs.

• Outcome feedback, to encapsulate how the outcomes of a person’s actions affects
their beliefs.

2.1 Reasoned Action Approach

The understanding of human behavioural change has been explored by many
researchers and has resulted in models such as the reasoned action approach (RAA)
[2, 8]. RAA states that, given a clearly identified behaviour, a person will choose to
perform this behaviour by implicitly considering underlying information and their
beliefs. These beliefs fall into three categories: behavioural beliefs, normative beliefs,
and control beliefs. Each of these beliefs respectively determine a person’s attitude
towards performing the behaviour, a perceived social norm towards the behaviour,
and a perceived behavioural control with regard to the behaviour. The theory then
states that a person’s attitudes, perceived norms, and perceived behavioural control
help determinewhether they perform a behaviour. A schematic of the reasoned action
approach can be found in Fig. 2.

The frequency that an agent .i performs a behaviour, .Bi ∈ [−1, 1], is determined
by a weighted average of their attitude,.Ai ∈ [−1, 1], perceived norm,.Ni ∈ [−1, 1],
and perceived behavioural control, .Ci ∈ [−1, 1]. When.Bi = −1 the agent does not
perform the behaviour, when .Bi = 1 the agent performs the behaviour frequently
(daily), and when .Bi = 0 the agent performs the behaviour moderately (weekly).
Equations can be found in Appendix A. In the classroom scenario the behaviour
of interest is note taking. The attitude then would be whether a person thinks note
taking is good or bad, the perceived norm is the perception that others think note
taking is good or bad, and the perceived control is whether the person believes they
are capable of note taking.

RAA further states that a person’s attitudes, perceived norms, and perceived
behavioural control can be determined by a weighted sum of the individual’s beliefs
using an expectancy-value model [3, 5, 7]. It states that a person’s behavioural
beliefs, .bi,l , normative beliefs, .nI

i,l and .nD
i,l , and control beliefs, .ci,l , are weighted

by their respective importance and whether they are beneficial or not, .ei,l ,.mI
i,l and

.mD
i,l , and .pi,l . Equations can be found in Appendix A. In the classroom setting the

behavioural beliefs being considered are that note taking improves memory retention
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Fig. 2 Schematic of the reasoned action approach model [8]

and that note takingwill take time away fromother assignments. The normative belief
being considered is that their peers believe that note taking is beneficial. Finally, the
control belief being used is the belief that the person can access the resources neces-
sary to allow them to spend time note taking. Each of these beliefs determines their
respective attitudes, perceived norms, or perceived control.

2.2 Social Influence

Social influence is an aspect of human interaction whereby individuals modify their
opinions, beliefs, attitudes, and behaviour towards that of those they are close to and
interact with [16]. The reasons behind these influences vary from being persuaded
[13] to a social pressure to conformwith social norms [1, 6, 19]. The means of social
influence is studied in the field of social psychology, where one of the key ideas is
that of conformity [4]. Additionally, ideas such as confirmation bias try to explain
why some people tend to have polarised or different opinions [15].
Conformity Conformity is the phenomenon of people changing their behaviour or
beliefs to match those around them [4]. It is a social effect that arises from a norm
being established by a group of individuals. People tend to conform to this norm
rather than their own desires because it is easier to do so, and they are sometimes
persuaded to do so via social pressures [1].

This phenomenon can be represented by an assimilative model which assumes
that all connected individuals can influence each other [9]. This model states that an
individual’s beliefsmove towards, at some convergent rate.μ, theweighted average of
the beliefs of everyone in the system. According to [9], this form of social influence
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Fig. 3 Demonstration of interpretation bias

leads to the eventual consensus of opinion in all individuals in the network, consistent
with the idea of conformity.
Confirmation Bias Social influence theory also includes the idea that not all individ-
uals conform to one another. There are situations in which individuals have differing
opinions and do not necessarily come to a consensus. In the extreme case, individuals
get polarised and have diametrically opposing views. Confirmation bias is a possible
mechanism for this phenomenon. Confirmation bias is the tendency for people to
find evidence that validates their existing beliefs [15]. The form of confirmation bias
implemented in this paper is a biased interpretation. This bias leads individuals, who
are presented the same information, to interpret the information differently based on
their existing beliefs, favouring their view [17]. Figure 3 provides an example where
three individuals, Blue, Red, and Green each believe that note taking (NT) is okay
for you, good for you, and bad for you respectively. Additionally, Blue has a large
interpretation bias, Red has a small bias, and Green has a medium bias. The figure
demonstrates how the interpretation biases can lead to differing opinions.

This bias is included in the model by simply adding an offset when an agent
interprets any information presented to them. This offset is added in the direction
that supports the agent’s underlying belief; for example, it is positive if the agent’s
belief is positive and vice versa.
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2.3 Outcome Feedback

In addition to social influence, the reasoned action approach mentions that certain
attributes such as behavioural beliefs, normative beliefs, and control beliefs are sus-
ceptible to feedback based on the performed behaviour [8]. These beliefs are influ-
enced by an individual’s own behaviour, attitudes, and the outcomes of the behaviour
performed. For example, if agent.i performs the desired behaviour, they can compare
the outcome, .Ri , of the behaviour to their behavioural belief (did note taking result
in improved retention?) and will attempt to match their belief to the outcome. This
results in an agent’s beliefs changing to match the outcome of the behaviour.

2.4 Building the Model

The overall agent model is built by incorporating the RAA model, the conformity
and confirmation bias effects, and outcome feedback together. A simplified diagram
for the case of two agents is shown in Fig. 4.

We can combine all the models presented in this section to get a generalised
model for.n agents. For simplicity, the resulting equations for a two agent system are
listed in Appendix A. The system presented is a discrete-time system where .k is a
step of a day in the classroom where all students have interacted with those in their

Fig. 4 Combined model block diagram for 2 agents
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social circle. For the outcome component, we assume that note taking does result
in increased memory retention as well as time taken from other assignments. This
means that the outcome is equal to the amount the behaviour is performed.

The behavioural component (see Fig. 4) determines how a behaviour will be per-
formed based on a weighted average of the attitudes, perceived norms, and perceived
behavioural control, as discussed in Sect. 2.1.

The attitude component, perceived norm component, and perceived control com-
ponent (see Fig. 4) each explain how one’s behavioural beliefs, normative beliefs,
and control beliefs affect attitude, perceived norm, and perceived behavioural control
respectively. These beliefs are summed and weighted by their value, motivation to
comply, and power respectively.

The next components of behavioural belief, normative belief, and control belief
(see Fig. 4) update their respective beliefs with feedback and social influence effects.
In each of these cases there are two phases involved with updating the core beliefs,
one pertaining to the feedback step, and the other to the effects of social influence.
Both incorporate signed biases in their input signals to account for confirmation bias.

The behavioural belief component is first updated with an outcome feedback
effect, as described in Sect. 2.3. The effects of conformity are then accounted for,
moving the agent’s beliefs towards a weighted average of the connected behavioural
beliefs, as described in Sect. 2.2. The normative belief component is similarly han-
dled in two steps. First, attitudes and behaviours are fed back to the agents. Next,
conformity moves the agents normative beliefs towards the weighted average of all
of those that interact with each other. Lastly, the control belief component is also
handled in the same way. Feedback effects, this time involving behaviour, are first
accounted for. After this, conformity moves the agent’s control beliefs towards the
weighted mean.

In the reasoned action approach, the means of changing peoples’ behaviour are
usually interventions designed to inform an individual about their respective beliefs
[8]. In the model designed in this section, such interventions are initiated by the
instructor andwould appear in the form of additional sources of influence in the belief
components. Therefore, our control inputs would appear as an additional control
agent (i.e., the instructor) in our multi agent system. This control agent would be an
additional source of influence on the other agents. However, the control agent itself is
unaffected by other agents (i.e., students) in the system. In the case of the classroom
example, an instructor would be able to influence the class with their own beliefs
with respect to the behaviour. By informing students of the benefits of note taking,
they may be able to sway the students’ beliefs about the behaviour.

3 Simulation and Results

In this section, the model is first simulated to validate that it reflects existing psy-
chological expectations. The model is then investigated using different forms of
instructor influence. The behaviour being enforced is note taking, and consists of
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two behavioural beliefs (note taking helps with memory retention and that it takes
time away from other tasks), one normative belief (their peers are performing and
believe in the behaviour), and one control belief (they can access resources to achieve
the behaviour). There are 30 students in the system and all students are able to com-
municatewith each other ( it is a fully connected system). The instructor is considered
another agent in the systemwho’s dynamics are unaffected by others andwho’s states
are fully controllable.

3.1 Validation Results

In this section no instructor is included. The simulation was run for 200 time steps
and repeated 100,000 times with parameters and initial conditions for each agent
randomly chosen from a uniform distribution. From observing these results, it is
clear that there are two main types of outcomes with this model, polarisation of
beliefs (Fig. 5), or clustering of beliefs (Fig. 6).

Figure 5 is a sample of one of themany simulations run. From this figurewe can see
that the students beginwith a spread of initial beliefs and behaviours. However, in this
case, the parameters of these studentswere such that the studentswith negative beliefs
eventually overwhelm those with positive beliefs and lead to a negative outcome.
We see that, initially, the students begin to converge in beliefs, moving towards
the average of the class. However, as students begin to change beliefs from being
optimistic about the behaviour to being pessimistic, the effects of confirmation bias
causes significant changes in beliefs as the students begin to interpret information in
a way that suits their new found direction. This confirmation bias leads to students
interpreting that their peers’ beliefs are more negative than they actually are, leading
to a vicious feedback loop that causes beliefs to spiral further and further towards
the negative.

This spiraling behaviour leading to strongly polarised beliefs is reminiscent of
group polarisation [14]. Group polarisation is the tendency for a group of people to
have more extreme behaviours and beliefs than that of the individuals in the group,
leading to the individuals to eventually have a stronger belief than what they stated
with. Group polarisation is sometimes explained by informational influences [18],
where the sharing of new information helps an individual become more convinced
of their initial beliefs. The emergence of this effect is understandable due to the
confirmation bias involved in the model and lends credence to its validity.

Another sample of the simulations, Fig. 6, displays the other dominant outcome,
that of clustered opinions. From the figure we can see that with a mixture of initial
conditions the students eventually get to a point where they have clusters of varying
beliefs forming. The main driving force of this is the confirmation bias in each
student. While there is a convergence effect that causes students to try and reach a
consensus, some students have a large confirmation bias causing them tomisinterpret
their peers’ beliefs. This leads to students having a perceived consensus of beliefs
where in reality they have different beliefs.
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Fig. 5 Polarisation behaviour of a 30 person class
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Fig. 6 Clustering behaviour of a 30 person class
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This clustering of beliefs is reminiscent of what is seen in a real classroom with
groups of students forming varying sets of beliefs about a subject and is reflective of
what would be expected from similarity based social models [9], further validating
the model.

3.2 Instructor Influence

The end purpose of this model is to find techniques to enable instructors to best
influence students to take up good studying habits. With that in mind, we simulate
the effects of four types of influence approaches: influencing all students, focusing
on influential students, focusing on one different student at a time, and focusing
on students that are close to changing opinions. Since, according to the reasoned
action approach [8], behaviour is determined by an individual’s underlying beliefs
and the suggested intervention for changing behaviour is to target these beliefs,
the influence methods stated in this section will focus on changing an individual’s
beliefs. Specifically, we will focus on the first behavioural belief (Note taking helps
with memory retention) and, if successful, this same technique can be used on the
other stated beliefs as well.

Each technique was simulated for 200 time steps and repeated 100,000 times with
random initial conditions and parameter values. This enables us to better understand
which approach is more effective in general. We are interested in increasing the
beliefs of each student in the class, so to measure the performance of each technique
we define a metric equal to the total change of the belief value compared to the no
input case (see (19)). For example, if each of the 30 students increases their belief by
0.2 after the technique has been applied, the metric of the technique would measure
.(0.2 × 30) = 6. Using this metric, the best possible value achievable would be if all
students started with their belief at -1 and ended with belief at +1, leading to a metric
of .(1 − (−1)) × 30 = 60. However, using a uniform distribution initial condition,
we can expect that on average the students will start with a belief of 0. This leads
to an expected best case metric of .(1 − 0) × 30 = 30. A summary of the results is
provided in Figs. 7 and 8.
All Student For the first influence technique, we simulate a case where the instructor
is trying to convince the entire class simultaneously of the benefits of note taking
towards memory retention. By taking this generalised approach the instructor would
have less of an ability to convince any one student in the class. That is, the instructor
has less influence on each student. To account for this, the model reduces the amount
of influence the instructor has proportionally to the number of students they interact
with.

Figure 7 shows that the all student technique, based on 100,000 runs, has a dis-
tribution where.∼30% of the time the metric was greater than 5. This means that the
strategy of the instructor trying to persuade the whole class does, in general, improve
the beliefs of the class. However, it does not have a strong improvement, with each
student’s belief only increasingmarginally on average. There are also some instances
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Fig. 7 Probabilities of instructor techniques going above a metric threshold based on 100,000
random simulations

where this technique, and the other listed techniques as well, can have a negative
metric. This translates to some scenarios where the influence technique causes the
class to end up with a worse belief compared to if no influence was being exerted.
This arises from situations where the student begins to perform the behaviour while
still having a large negative bias towards the belief being beneficial. When this hap-
pens the student interprets the outcome of the behaviour as being overall negative,
and can cause the student to believe that the behaviour is not beneficial. This shows
that is important to implement a technique strategically, as sometimes, the class can
end up worse than if no intervention was applied.

Figure 8b shows a typical sample of the 100,000 simulations run. From this figure,
we can see that the technique was able to improve the belief of the students slightly
when compared to the no input case. The largest contribution to this improvement
comes from a student who flips from having a negative belief to having a positive
belief at.k = 5. When this happens, the now positive confirmation bias of the student
kicks in, and causes the student to quickly increase in their belief. This is a key
observation.
Influencers The second technique examined takes advantage of the existing influ-
ential students in the class to allow the instructor to more easily spread beliefs.
The class simulations are designed with two students that are, on average, twice as
influential as any other student in the class. More influential students can sway the
beliefs of their peers more easily than less influential students. In this technique, the
instructor focuses their energy on only these two students, with the hope that, by
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Fig. 8 Sample of effects of different instructor influence techniques
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more effectively convincing the influential students that the behaviour is beneficial,
these students can then convince their peers of its usefulness. By only approaching
two students, the instructor’s relative influence is kept high, since they are not being
spread thin by 30 students.

Figure 7 shows that the influencer technique has a distributionwith.∼38%of cases
had a metric greater than 5. This is higher than the all student technique, but not by
a lot. However, this technique also has a better chance of achieving higher metrics.
From the sample example shown in Fig. 8c, we see a case where the influencer
technique performs slightly worse than the all student technique, which can happen
but isn’t typical. Similar to the all student case, the students improve in their beliefs,
with the largest contribution happening from a student flipping form negative to
positive belief.
Rotating The third technique is one where the instructor spends time with only
one student each day, repeatedly cycling through all of the students. This allows the
instructor to convince the student to the best of their ability for the one day they
spend with them. However, this poses the risk of the student reverting back to their
original state in the time between visits.

Figure 7 shows that this rotating technique has a much higher probability of
achieving a greater than 5 metric at .∼66%. This result is dramatically higher than
the previous two methods examined and seems like a promising technique. Not only
does it have a higher probability of achieving a metric greater than 5, but it also
has a significantly better chance of achieving metrics greater than 10 and 15 as well.
Figure 8d demonstrates how this technique operates. At first glance this graph is very
noisy, but upon closer inspection, it is clear that there are large, periodic increases
in a student’s belief whenever the instructor spends time with them. The instructor
is able to impart a large amount of influence on a student, causing their belief to
spike. As the instructor moves over to a different student this spike diminishes over
time, until the instructor comes by once again. These large spikes in belief can
occasionally cause students to flip from a negative belief to a positive one leading
to the effects previously demonstrated. With the rotating technique, the instructor’s
large influence is, in general, able to pull more students over from having a negative
belief to a positive belief.
Targeted The final technique being examined is that of identifying and targeting key
students. Inspired by the ideas demonstrated in the previous simulations a technique
is proposed to try andmaximise the number of students that flip from having negative
beliefs to positive beliefs. To achieve these flips, this technique identifies students
that have the negative beliefs but are close to flipping (i.e. the least negative beliefs).
The instructor should, in theory, easily be able to flip these student’s beliefs.

Figure 7 shows that the targeted approach has a large probability of achieving a
greater than 5 metric at .∼72%. This is a large improvement over the other methods
and even has a larger greater than 10 and 15 probabilitywhen compared to the rotating
technique. This technique of targeting those students that are close to flipping beliefs
but haven’t yet seems to be very effective. Figure 8e provides a sample of how this
approach operates. We can see that students quickly switch sides one by one, until
the instructor is stuck with a reluctant student. This leads to a large number of flipped
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beliefs, as evident by the few remaining studentswith negative beliefs. This technique
could further be improved by allowing the instructor to move over to another student
if one seems to be unaffected by the interventions being applied.

4 Conclusion

In this paper we proposed a hypothetical model for simulating the behaviours of
students in a classroom as well as proposed techniques to better encourage students
to take up better note taking habits. The model was able to recreate common psy-
chological phenomena such as polarisation and clustering, lending credence to its
validity. By using this model we can see how students might be influenced to per-
form certain behaviours as well as how beliefs spread within a classroom, and how
to take advantage of these phenomena. We experimented with different influence
techniques to gain insight into how an instructor could try and convince a class to
take up better note taking habits. This exploration reveals the potential benefits of
using such a model to evaluate teaching techniques. It could also allow instructors
to test unintuitive strategies such as the targeted case presented in Sect. 3.2.

This paper has limitations, namely, the model currently does not use real world
data for its parameter values. This model can be further refined by only allowing
parameter values that fall in a distribution of more likely real world possibilities. To
obtain these values we plan on running a survey in the style proposed in the RAA
[8].

Further studies for this research include exploring more efficient influence tech-
niques. One approachwould be to try and find optimal influence techniques that max-
imise the metric of a given class while minimising instructor effort and resources.
Additionally, a strategy of optimising group connections could be tested. It would be
of interest to see how incorporating class groups would affect the spread of beliefs.
By making students form groups the amount of influence their group mates have
should increase relative to their peers; this could be used to encourage students with
negative beliefs to more easily conform to their more positive peers.

A. Agent Model Equations

Equations for a two-agent system are listed here. The outcome component of the
system is as follows,

Ri,l[k] = Bi [k] (1)

where .Ri,l[k] is the outcome component for agent .i associated with belief .l, .B
represents the agent’s behaviour, and .k represents the day.

Next, the behavioural component determines how a behaviour will be performed,
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Bi [k] = λi Ai [k] + βi Ni [k] + γiCi [k], λi + βi + γi = 1 λi ,βi , γi > 0 (2)

where .A represents attitude, .N represents perceived norms, and .C represents per-
ceived behavioural control. .λi ,βi , γi are gains that weight how these components
affect behaviour.

The attitude component, perceived norm component, and perceived control com-
ponent are dictated by the following equations,

Ai [k] =
∑

l bi,l[k]ei,l∑
l

(3)

Ni [k] = 1

2
∑

l

( ∑

l

n I
i,l[k]mI

i,l +
∑

l

nD
i,l[k]mD

i,l

)

(4)

Ci [k] =
∑

l ci,l[k]pi,l∑
l

(5)

where .l is the number of beliefs associated with each perception.
Each of the next components of behavioural belief, normative belief, and control

belief (see Fig. 4) involves two phases when updating the core beliefs, one pertaining
to the feedback step, the next to the effects of social influence with additional signed
biases. The behavioural belief component is as follows,

sat (x) = min(max(x,−1), 1) (6)

Ri,l[k]bias = sat (Ri,l[k] + sgn(bi,l[k])hR), (7)

b̂i,l[k + 1] = bi,l[k] + μAR
i (αAR Ri,l[k]bias − bi,l[k]), (8)

b̂ j,l[k + 1]bias = sat (b̂ j,l[k + 1] + sgn(bi,l[k + 1])hb), (9)

b1,l [k + 1] = b̂1,l [k + 1] + μA
1 (b̂2,l [k + 1]bias − b̂1,l [k + 1])

b2,l [k + 1] = b̂2,l [k + 1] + μA
2 (b̂1,l [k + 1]bias − b̂2,l [k + 1]) (10)

where .b̂[k] is the update step related to feedback effects, while .b[k + 1] is the step
that takes into account the social influence effects, .μ is the rate of convergence.
Additionally,.h is the added offset value to account for confirmation bias and.sat (x) is
used to ensure that values stay bounded. The normative belief component is described
by,

BN
i,l[k]bias = sat (Bi [k] + sgn(nD

i,l[k])hBN ), (11)

nD
1,l [k + 1] = nD

1,l [k] + μNB
1 (αNB BN

2,l [k]bias − nD
1,l [k])

nD
2,l [k + 1] = nD

2 , l[k] + μNB
2 (αNB BN

1,l [k]bias − nD
2,l[k])

(12)
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Ai,l[k]bias = sat (Ai,l[k] + sgn(nI
i,l[k])hA), (13)

nI
1,l [k + 1] = nI

1,l [k] + μN A
1 (αN A A2,l [k]bias − nI

1,l [k])
nI
2,l [k + 1] = nI

2,l [k] + μN A
2 (αN A A1,l[k]bias − nI

2,l [k])
(14)

Finally, the control belief component is described similarly to the behavioural belief
model, as such,

BC
i,l [k]bias = sat (Bi [k] + sgn(ci,l[k])hBC), (15)

ĉ1,l [k + 1] = c1,l[k] + μCB
1 (αCB BC

1,l [k]bias − c1,l [k])
ĉ2,l [k + 1] = c2,l [k] + μCB

2 (αCB BC
2,l [k]bias − c2,l [k])

(16)

ĉ j,l [k + 1]bias = sat (ĉ j,l[k + 1] + sgn(ĉi,l[k + 1])hc), (17)

c1,l [k + 1] = ĉ1,l[k + 1] + μC
1 (ĉ2,l [k + 1]bias − ĉ1,l [k + 1])

c2,l [k + 1] = ĉ2,l [k + 1] + μC
2 (ĉ1,l [k + 1]bias − ĉ2,l [k + 1]) (18)

The metric equation for evaluating the performance of technique .r is as follow,

Metric =
∑

i

(bi − bi,noinput ) (19)

B. Summary ODD

The overall purpose of our model is to predict the behavioural dynamics of students
in a classroom setting. Specifically, we are addressing the following questions: How
does an instructors influence affect the change in student beliefs and behaviour.
to consider our model realistic enough for its purpose, we use patterns of belief
change. The model’s ability to reproduce existing psychological phenomena will be
used to validate the model’s realism.

The model includes the following entity: students. The state variables
characterising these entities are listed in Table 1. Students have a set of beliefs
that that determine their likelihood of or effectiveness at performing a behaviour.
The temporal resolution and extent are 1 day for each time step, with simulations
run for a school year of approximately 200 days.

The most important processes of the model , which are repeated every time step,
are the evolution of student beliefs relative to other students based on conformity
effects as well as the incorporation of feedback from the outcomes of performing a
given behaviour.

The most important design concepts of the model are the way students can incor-
porate outcome feedback into their belief updates, as well as how confirmation bias
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affects their beliefs by encouraging like minded thought.utcome feedback into their
belief updates, as well as how confirmation bias affects their beliefs by encouraging
like minded thought.

Table 1 Important parameters and variables from the combined model

Symbol Description

.B[k] ∈ [−1, 1] State representation of the behaviour of all
individuals in the group,
.B[k] = [B1B2 . . . Bn]T for n individuals in the
group

.A[k] ∈ [−1, 1] State representation of the attitude of all
individuals in the group,
.A[k] = [A1A2 . . . An]T

.N [k] ∈ [−1, 1] State representation of the perceived norm of
all individuals in the group,
.N [k] = [N1N2 . . . Nn]T

.C[k] ∈ [−1, 1] State representation of the perceived
behavioural control of all individuals in the
group,.C[k] = [C1C2 . . .Cn]T

.R[k] ∈ [−1, 1] State representation of the behavioural result of
all individuals in the group,
.R[k] = [R1R2 . . . Rn]T , where.Ri is itself a
state containing all results relevant to
individual.i

.b[k] ∈ [−1, 1] State representation of the behavioural beliefs
of all individuals in the group,
.b[k] = [b1b2 . . . bn]T

.nI [k] ∈ [−1, 1] State representation of the injunctive normative
beliefs of all individuals in the group,
.nI [k] = [nI1nI2 . . . nIn]T

.nD[k] ∈ [−1, 1] State representation of the descriptive
normative beliefs of all individuals in the
group,.b[k] = [nD

1 n
D
2 . . . nD

n ]T
.ei,l ∈ [−1, 1] The associated value of a belief l held by an

individual

.mI
i,l ,m

D
i,l ∈ [0, 1] The associated motivation to comply of a

normative belief l held by an individual

.pi,l ∈ [−1, 1] The associated power of a control belief l held
by an individual

.μ ∈ [0, 1] The rate of convergence for an associated
socially influenced belief

.ωi, j ∈ [0, 1] The impact of an individual. j on another
individual.i

.h ∈ [0, 1) The level of confirmation bias for an associated
agent
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The Role of Communication
and Network Technologies
in the Dynamics of Social Movements

Krystyna Marcinek, Rushil Zutshi, Omair Khan, Justin Grana,
Marek Posard, Todd Helmus, and Aaron Frank

Abstract We investigate the multi-faceted role of information technologies in the
spread and dynamics of social movements. Specifically, we ask two main questions:
(1) howdo communication and network technologies impact the number and connec-
tivity of movement participants, and (2) how does more efficient and more accurate
surveillance technology impact an authority’s ability to learn about the movement.
Importantly, our simulationmodel includes both homophily and social influence, two
established tenants of social movements and social relationships more broadly. Our
results show that communication technology that increases spontaneous interaction
helps to ignite social movements, while improvements in networking technology are
more effective at accelerating the growth of social movements in their intermediate
stages. However, when aents are allowed to join the movement, outreach is more
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effective at accelerating the growth of the number of participants. Our results also
show that authority can gain highly accurate beliefs simply by observing network
links (instead of individual actors) in all but the smallest social movements.

The ability to communicate with peers, both proximate and distant, is a central
component of social movements. Historically, American slaves invented codes in the
form of songs [1] and quilts [2] to facilitate communication and escape along the
underground railroad. The advent of coffee shops in 17 and 18th century England is
often acknowledged as an expansion of communication channels and a key contribu-
tor to the Age of Enlightenment [3]. Online communication platforms allowed Hong
Kong protesters “to form small groups to initiate and coordinate their actions [4].”
And in early 2021, political protesters used social media and other internet forums to
share information, which ultimately resulted in violent protests at the U.S. Capitol.

As protesters develop and leverage advances in communication technologies,
the empowered authority also leverages advances in data collection, storage, and
processing technologies to better monitor and subdue the movement. For example,
in the 2011 Syrian Civil Uprising, the Syrian government engaged in “monitoring
and controlling a user’s dynamic web-based activities,” and implemented systems
that were “capable of capturing webcam activity, logging keystrokes, [and] stealing
passwords [5].” This suggests that both protesters and authority figures are leveraging
cutting-edge technologies to achieve their objectives, but it is still unclear how this
technological co-evolution impacts the overall dynamics of social movements.

This work develops and analyzes an agent-basedmodel (ABM) of network forma-
tion to investigate such dynamics. Specifically, we first investigate how an increased
ability to form communication channels impacts the overall growth (both nodes
and links) of social movements. Then, we investigate how improved surveillance
technologies—motivated by technological advances in data collection, storage, and
processing power—impact an authority’s ability to monitor and potentially disrupt
a social movement. Ultimately, we characterize the interaction between the partici-
pants and the authority in the context of their technological endowments.

In order to remain as general as possible, the model examines how changes in
communication technologies impact the number of participants and the connectivity
among themwithout any reference to the ultimate goal of the socialmovement. Alter-
natively put, we abstract away from how—once connected—participants mobilize
and coordinate resources in pursuit of an objective. Instead, we focus on the prelim-
inary step of how the participants coalesce in the first place. The main benefit of this
approach is that the model is agnostic to the participants’ goals and thus provides
general insights into any social movement. Of course, the main drawback is that the
mechanisms through which a group achieves its goal are relevant for understanding
(and predicting) any specific social movement. However, by establishing a frame-
work that explains how social movements grow and connect, the model can serve as
a building block onto larger models that consider both communication and mobiliza-
tion. We also recognize that the surveilling body might not always be a government
or law enforcement agency but may include private corporations or special interest
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groups. However, we use the term “authority” loosely to mean an agent with the
desire and means to monitor a social movement

We follow the same logic for the authority. That is, we abstract away from any
particular goal of the authority and focus on the authority’s need to decide which of
the agents are participants. The value of this approach rests on the assumption that,
except in the most extreme cases, regardless of the authority’s goal, acquiring infor-
mation about who is a participant is a necessary pre-requisite for action. For example,
if an authority wanted to disrupt a social movement by severing communication links
between participant factions, it would need to know which of the citizens are partic-
ipants that serve as links between disparate groups. Again, while this means that our
model does not apply to particular social movements, it serves as a framework for
building models that include the authority’s disruptive action. We also recognize that
the surveilling body might not always be a government or law enforcement agency
but may include private corporations or special interest groups. However, we use the
term “authority” loosely to mean an agent with the desire and means to monitor a
social movement.

In order to ensure that the results are rooted in established principles, we include
both homophily and social influence in the model. Homophily is the notion that sim-
ilar individuals are more likely to have contact than two individuals that are different
[6]. Such phenomena are well documented in domains such as adolescent friendship
formation [7], entrepreneurial relationships [8], and, perhaps unsurprisingly, politi-
cal opinion networks [9]. Social influence is the notion that an individual’s opinions
and beliefs are shaped by their peers [10]. Like homophily, social influence has been
observed in a variety of contexts, including exercise habits [11] and product purchase
decisions [12]. Both homophily and social influence have been observed in social
movements [13–15].

Our model yields several interesting results. It illustrates how a change in com-
munication technologies that increase participants’ ability to contact agents outside
of their immediate network (a term we call outreach) is most effective in igniting a
social movement, both in terms of increasing the number of its supporters, as well as
the accelerating connectivity among them.On the other hand, a change in networking
technologies that increases participants’ ability to contact agents within close net-
work proximity (i.e., friends of friends) is most effective at accelerating the growth
of the social movement through its intermediate stages. The final number of social
movement participants in our model is determined by the underlying characteristics
of the population—social influence, homophily, and the initial seed of themovement.
However, for some sets of population characteristics, the final number of participants
is very difficult to predict—it is possible that no new agent becomes a participant
(that is, the social movement does not grow beyond the initial seed), as well as that
all of them do, turning the entire population into supporters of the social movement.

On the surveillance side, we find that the authority figure is able to form accurate
beliefs about the participation status of agents even when the node observations may
be noisy so long as it can reliably observe the links between agents. Expectedly, we
also find that the accuracy of these beliefs improves when agents are sampled more
frequently. When we then compare improvements in the accuracy of these beliefs
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across these three parameters over different kinds of social movements (based on
size and connectivity), we find that the accuracy of the authority’s beliefs is most
improved when the node observation process is less noisy, but this is less the case as
the social movement becomes larger and more connected. Most of the same results
hold even with social influence, but the dynamic nature of the social movement size
results in lessmonotonic relationships between the accuracy of the authority’s beliefs
and the surveillance parameters.

Communication, Social Movements, and Agent-Based Models

Our work builds on—and incorporates—insights from several traditionally disparate
disciplines. Asmentioned above, our model incorporates homophily and social influ-
ence, two well-established tenants in the sociology of network formation. We quan-
titatively define1 degrees of homophily and social influence and contribute to the
literature by evaluating how changes in such degrees impact the dynamics of a social
movement.

Our work is also related to the vast literature on behavior spread [16] and dynamic
networks [17]. Using both analytical (examples can be found in [18, 19]) and compu-
tational (examples can be found in [20, 21]) methods, the goal is to derive properties
of networks that form according to some underlying stochastic process. Our work
is related to this line of research in that we also propose an underlying stochastic
process for the evolution of the network. However, our work is different in several
ways. First, we are interested in the state of the network as a function of time and
nodes. This contrasts with the dynamic network literature that typically (though not
always) focuses on the limits as time and the number of nodes gets large. Further-
more, we incorporate an authority figure that does not participate in the network but
monitors the network. This is an element that is absent from the study of dynamic
networks.

Ourwork ismost related to other ABMs of communication and socialmovements.
This includes models of political insurgency [22], revolution and technology [23],
civil violence [24–26], radicalization [27] and more [28]. We also build on game
theoretic models of mass action [29]. Our model adds to this literature in several
ways.

First, our model trades intention for generality. That is, we focus specifically on
how well participants can form a network and how well an authority can monitor
the network without any regard for either party’s objectives. This means that our
model is not constrained to a specific social movement but can be used to explain
network formation more generally. Of course, the trade-off is that our work stops
short of expressing how changes in communication technologies affect how well the

1 We do not claim that our quantitative definition of homophily and social influence is the unique
definition, we only claim that it is reasonable in the context of social movements.
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participants achieve their goals, but our model is meant to be modular and can be
included in models that specifically incorporate participants’ goals.

Secondly, we include technological change from both the participants’ and the
authority’s perspectives. Many recent ABMs examine the impact of more accessible
social media on the evolution of a social movement [30]. However, these models
typically ignore that as participants are exposed tomore technologically sophisticated
tools, the authority’s technological endowments are also increasing. So, for example,
while participants are more able to connect, the authority’s increased processing
power and algorithmic advances may also increase its ability to monitor a social
movement and eventually disrupt it. Our model explicitly takes these dynamics into
account.

Third, our model is not only concerned with “steady-state” distributions but
instead asks “how fast” do the participant’s network and the authority’s knowledge
evolve? This contrasts with many ABMs of social movements that focus on the dis-
tribution of end-states [31]. That is not to say that our model is better or more relevant
than those focusing on end-states. Instead, it only illuminates a different aspect of
complex social movements.

Model Overview

In this section, we present a narrative overview of the model. The model overview
suffices for understanding the key components of the model and the results. The full
technical specification—presented in the Appendix—provides the necessary detail
to replicate the model. The model overview followed by the the full technical speci-
fication adhere to the ODD Protocol.

Purpose

The model seeks to understand how changes in communication technologies (the
increased ability for outreach and networking) impact the growth of the number
of participants and the connectivity between them. The first insight tells us how
different communication technologies can influence whether a social movement is a
slowboil, explosive, or some combination of the two.Connectivity is important under
the assumption that regardless of the participants’ goals, havingmore communication
channels facilitates the mobilization of resources towards the participants’ ultimate
goal. The model also focuses on how the authority collects information about the
social movement. The key question we address is how changes in surveillance and
data processing technologies impact how an authority determines which citizens are
participants.
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Entities

Our model is a dynamic model of network formation with both citizens and an
authority. A fixed number of citizens are deemed socialmovement participantswhile
the rest of the citizens are non-participants. Each citizen, either participant or non-
participant, has an additional attribute called its identity. The identity is independent
of whether the citizen is a social movement participant and represents characteristics
of the citizen other than its proclivity to join the movement. For example, it might
capture demographic information, tastes, interests, or education levels. At the start
of the model, all citizens are disconnected, and there are no communication channels
between any two citizens.

Process overview

Participant Link Formation and Evolution

In each time step, an agent is chosen at random to potentially form links with other
agents under two mechanisms, which we label outreach and networking. Outreach
is the process where the agent can survey a fixed number of random agents. If both
agents are participants or both agents are similar enough in identity, they form a
link. This process represents a simple notion of homophily and can be interpreted
as serendipitous networking such as meeting a person at a public park or cafe. As
a digital example, an agent might ‘stumble’ upon another agent’s blog while on the
internet and subsequently connect to that person through a social media platform.

Networking refers to the process where the agent can survey a fixed number of
agents who have connections with its current connections. For example, if agent Alex
is connected to agent Bob and agent Bob is connected to agent Chris, then Alex can
surveyChris because it is connected to Chris throughBob. Again, homophily dictates
that agents under this process form a link if they are either both participants or if their
identities are sufficiently similar. A digital example of the networking mechanism
would be two agents that connect via a closed online group they were both invited
to by a common friend.

The parameters that govern how many agents a given agent can survey in one
time step can be interpreted as the inverse of the communication costs to forming
links. For example, if an agent has a fixed amount of time it can dedicate to commu-
nicating and meeting new people, raising the number of queries an agent can make
to other agents is equivalent to lowering the communication cost. A key feature of
our model is that there are separate parameters that govern outreach and networking,
and thus it is possible to isolate the impacts of advances in networking and advances
in outreach technology. In real-world communication systems, advances in social
media platforms allow providers to suggest connections based on friends of friends
and thus reduce the cost of networking. On the other hand, websites centered around
filling job vacancies facilitate communication between parties that are not otherwise
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linked and thus reduce outreach costs. Ourmodel is able to disentangle the impacts of
these similar but subtly different notions of advances in communication technologies.
The results ultimately show that the relative impact of increasing networking versus
increasing outreach depends on howmuch the movement has already progressed and
the initial prevalence of the social movement.

Finally, we allow agents that were not originally participants to become partici-
pants if they are connected to enough participants. There is a parameter that specifies
the agent’s propensity to become a participant, and that parameter captures the degree
of social influence in the model. While the parameter is the same for every agent, we
run several experiments—including a base case with no social influence—to explore
the impacts of various degrees of social influence.

Authority Observation Process

To form beliefs about which agents are participants, the authority observes a random
subset of agents at regular time intervals. The number of agents per time step (which
can be less than 1) represents the processing power and storage capacity available
to the authority. Specifically, the interpretation is that as the authority’s processing
power and data storage capacities increase, it is able to collect and analyze data on
a wider set of individuals in a given time period. The authority’s observation of a
given agent consists of two components. First, there is a node observation process
where the authority observes a noisy signal of whether a given agent is a participant.
The amount of noise captures the quality of the authority’s surveillance technology,
where a low-noise signal represents a more sophisticated data collection and analysis
technology.

Second, for each agent the authority observes, there is an edge observation process
in which the authority observes a subset of the agent’s personal network. Specifi-
cally, the authority has a fixed probability of observing each of the agent’s existing
edges. This probability represents the quality of the authority’s technology allow-
ing network structure surveillance. A low probability may mean that the authority
can observe connections only under very strict conditions, for example, when two
agents are physically co-located. A high probability could, for example, mean that
the authority can observe connections despite the mode of communication chosen
by the participants, such as social network data mining. Notably, the node and edge
observation technologies are governed by separate parameters. This allows us to dis-
entangle the impacts of increased individual surveillance versus increased network
surveillance, our key comparative statics when analyzing the authority.

A fully rational authority would have a prior belief and use the data from its node
observation process and its edge observation process to compute aBayesian probabil-
ity of each agent being a participant. However, this exact probability is analytically
intractable due to the underlying model of network formation and would require
significant Monte Carlo experiments to estimate. This is exacerbated in models of
social influence where agents can switch from being non-participants to partici-
pants. Since it is unlikely that a real-world authority would be able to compute these
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probabilities accurately, our implementation of an authority adopts a heuristic that,
with infinite samples, can separate participants from non-participants. Intuitively,
the heuristic uses the fact that, on average, participants have more connections than
non-participants (because participants are connected to one another as well as with
those with a similar identity) and thus combines the degree of a node with the node
observation data to assign a numerical value (not a proper probability) to a node
being a participant. With infinite samples, the score of all participants would be
strictly positive, while the score of all non-participants would approach .0. We show
how well this classification process works using a receiver operator curve (ROC) in
the results section of the paper.

Results

This section details themain results.Webeginwith the simplest scenario and examine
the dynamics of the participant network formation without social influence. In these
initial simulations, we focus on the connectivity among participants since the number
of participants is fixed. We then introduce the authority and show how the accuracy
of its beliefs depends on the parameters governing its observation process. We then
repeat the exercise with social influence. Since the number of participants changes
over time, these results focus on the evolution of the number of participants. Finally,
we examine how the social movement growth influences the authority’s ability to
track participants accurately.

Table 1 presents the parameters we vary in the simulations. To ease presentation,
in the subsequent analysis, we refer to the parameter values as “low”, “medium”,
and “high” instead of their precise numerical values as specified in the Appendix.

Table 1 Parameters

Characteristics Parameter

Underlying characteristics of the population Initial seed of movement.p

Inclusivity.c

Social influence.w

Technological capabilities of citizens Outreach technology.L1

Networking technology.L2

Surveillance capacity of the authority Sampling frequency.k

Surveillance accuracy of the authority Noise in node observation.δ

Probability of link observation.γ
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Participant Dynamics without Social Influence

To understand how technology impacts participant connectivity, we show how the
degree of participants evolves over timewhen there is no social influence, and thus the
number of participants is fixed (i.e.,.w = ∞). Figure 1 shows the average degree of a
participant and a non-participant for 40 simulations at the same parameter values. The
key insight is that the average degree of participants (1) converges, (2) is stochastic
and (3) is higher than non-participants. The fact that the quantity is convergent and
higher for participants is not surprising. With infinite samples and without social
influence, each participant will be connected to every other participant and every
non-participant with a similar identity, while non-participants connect exclusively on
the identity. The stochastic nature is also not surprising. Since each agent’s identity
is drawn from a uniform distribution at the start of the simulation, the number of
agents another participant connects to based on identity is random.

Due to the stochastic nature of the participant’s degree, we useMonte Carlo simu-
lations to compute the average degree when holding the parameters fixed. Therefore,
when we later use the term “average degree,” we refer to the average over all partic-
ipants and 40 Monte Carlo simulations for a fixed set of parameters.

Another baseline result is that the final average degree of a participant depends on
two key parameters, the initial number of participants, .p and inclusivity, .c. Figure 2
plots the average participant degree for each of the different parameter sets at the end
of the simulation. For each parameter value, the results group around three values
corresponding to three levels of the other parameter. For example, results for the
parameter sets with low inclusivity—depicted in the most left stack—group around
13, 18, 22.5 for the sets with low, medium, and high initial seed, respectively. The
plots show that the parameter values are such that increasing the initial number of
participants by one category (low to medium, for example) has roughly the same
effect as increasing inclusivity by the same category (also low to medium, for exam-
ple). This is important because it establishes that .c and.p are on a similar scale, and
differences in scale are not driving the results.

In this baseline model, we were particularly interested in the speed of social
movement network formation, i.e., we only investigate connections between partici-
pants. To understand the relative impacts of increasing network and communication
technologies on participant connectivity, we investigate how much faster the partic-
ipants’ network converges to its limits as we increase one technology endowment
versus another.

This result is presented in Fig. 3. The horizontal axis represents the proportion of
links among participants relative to the network’s limit (all participants connected
to one another). The vertical axis represents how much faster that level of conver-
gence is reached due to an increase in outreach versus an increase in networking.
So, for example, in the left plot, when .p is low and .c in medium (blue annotated
line), increasing outreach (.L1) from low to medium means that the proportion of
connections reaches 50% almost 500 time steps sooner than if networking (.L2) were
to increase from low to medium. These graphs provide two high-level insights.
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Fig. 1 Convergence of average participant and non-participant degree for fixed parameters (.L1 =
L2: low,.p: high,.c: low)
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First, the relative benefits of outreach and networking depend on the initial size of
the social movement. With a small number of participants, increasing outreach leads
to faster link formation for any given level of connectivity. However, with a larger
number of participants, increasing networking can lead to faster convergence to the
ultimate network state. Intuitively, if there are very few participants, most of the
connections are formed based on identity. Therefore, it is unlikely that a participant
would find another participant through networking. However, when there are more
participants in the population,more links are initially formed among participants, and
the higher the chance of meeting other participants via one’s existing connections.
In total, this means that in all but the smallest movement size, increasing outreach is
more apt to “ignite” connectivity among participants, whereas increasing networking
is more effective at quickly bringing the participant network to its ultimate potential.

Secondly, the plots show that the relative impact of increasing outreach versus
networking is nonlinear, which is evident from the difference in the height of the lines
in the left and right plots. Specifically, the relative difference in convergence time
from increasing outreach versus networking from low to medium is much more than
an increase from medium to high. This suggests that only in technologically limited
cases do increases in networking and outreach technologies have asymmetric impacts
on network formation. However, as both technologies reach an advanced state, their
impact on participant connectivity becomes indistinguishable.

Surveillance without Social Influence

This section investigates how improvements in different surveillance technologies
impact an authority’s ability to discern participants from non-participants. Since each
participant receives a score from the authority, a key quantity is what participant
score cutoff the authority uses to classify citizens as participants. This score would
ultimately depend on the authority’s cost and benefits of correct and incorrect classi-
fications. In order to gauge the efficacy of the authority’s classification process in the
general sense without reference to the authority’s payoff, we use a Receiver Operator
Curve (ROC) to understand the trade-off between the true positives (benefits) and
false positives (costs).

An example of the ROC graph from our analysis is shown in Fig. 4. The black
line represents a ROC at the beginning of a simulation (.t = 50)—it almost overlaps
with the diagonal (gray dashed line), representing a random guess. As the simula-
tion progresses, the curves shift towards the top left corner, which means that the
authority’s ability to classify and detect participants improves.

Figure 5 shows how the surveillance ability of the authority changes over time
(here for 10 Monte Carlo simulations). Specifically, the figure plots the area under
the curve (AUC) at various time steps. Just like in the participant case, the AUC at
any timestep is stochastic and thus necessitates Monte Carlo simulations. Therefore,
when we use the term “mean AUC” we refer to the average over 40 Monte Carlo
simulations for a fixed set of parameters.
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medium,.γ: low) in 10 Monte Carlo simulations

Noise in Node Observation (.δ) and Probability of Link Observation (.γ)

Figure 6 presents results of the AUC over time for different configurations of the
participant parameters and link and node observation parameters while sampling
frequency is held constant at 1 agent observation per 10 time steps. The figure illus-
trates that even when the authority’s node observation process is very noisy, it still
performs relatively well as long as it observes links with a high probability. This is
best illustrated in the right column where .γ is high. In all but the first row, the red
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Fig. 6 AUC at various time steps for .δ (low, medium, high) over different .γ and 40 Monte Carlo
simulation (.k: medium)

line—representing high noise in the node observation—is relatively close to the blue
line—representing low noise in the node observation process. However, this is not
the case with a low number of initial participants and low communication technolo-
gies, which is the scenario in the first row of plots in Fig. 6. In this case, participants
connect so slowly that network information provides very little information to the
authority, and the authority’s beliefs are driven primarily by its observation of nodes.
Thus when the node observation process is noisy, the authority cannot “fall back”
on the edge observation process to form its beliefs.

Another curious result arising from these plots is that the authoritymay sometimes
have a higher AUC with higher noise in the node observation process, which is the
case when the red line is higher than the yellow line. This could be caused by the
node observation process being effectively ignored when it is too noisy. While this
is undoubtedly an artifact of the heuristic score function, it shows the importance
of correctly aggregating participant data. Of course, this is true from a modeling
perspective but is also true in practice. Data come from disparate sources during real
protests, and with constraints on data sharing, modeling, and processing, authorities
are often required to use heuristics. This result shows how seemingly benign and
innocuous heuristics can lead to counter-intuitive results and reinforces the impor-
tance of an authority taking a principled approach to data analysis.
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Sampling Frequency (.k)

We can compare how changes in the sampling frequency .k impact the authority’s
beliefs at different probabilities of link observation and participant parameters. These
results are summarized succinctly inFig. 7.This depicts an expected trendof a quicker
convergence to AUC = 1 when the sampling frequency increases from sampling a
node every 20 time steps (low sampling frequency) to every 5 time steps (high
sampling frequency).

Finally, we can compare how changes in the sampling frequency .k impact the
authority’s beliefs relative to changes in the noise in its node and link observation
process. These results are summarized succinctly in Fig. 8. This figure shows gains to
AUC over time (averaged for each parameter over all other parameter combinations)
for changes in each of the three authority parameters. The plot shows that the impact
of changing the sampling frequency is independent of the underlying participant
dynamics. This is demonstrated by the relatively small changes in the height of the
lines in the first column of the figure. This is in contrast to noise in the link observation
process, where improvements have the largest impact in large social movements with
fast connectivity (middle column plots are highest in the bottom row) and noise in
the node observation process, where improvements have the largest impact in small
social movements with slow connectivity (third column plots are highest in the top
row).
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Participant Dynamics with Social Influence

In this section, we re-investigate the participant dynamics, allowing non-participants
to become participants via social influence. Specifically, if a non-participant is con-
nected to at least.w participants, it becomes a participant. Importantly, social influence
is a one direction mechanism—participants cannot become non-participants. In the
previous sections without social influence, the number of participants was fixed, so
we focused on the connectivity among participants. With social influence, the num-
ber of participants varies over time, and therefore, we focus our analysis on the size
of the social movement.

Once again, the number of participants is stochastic and convergent. This is illus-
trated in Fig. 9, which shows the change in the number of participants over time for
40 simulations at the same parameter values. In this particular case, all 40 simula-
tions started with 10 participants; however, the final number of participants varies
between 40 and 100.

Similar to the term “average degree”, the term “average number of participants”
refers to the number of participants averaged over 40 Monte Carlo simulations.

Figure 10 shows the distribution of the average number of participants at the
8,000th time step grouped by the inclusivity and the initial number of participants
parameters. For example, the most left stack presents results for the parameter sets
with low inclusivity,where colors signify setswith different levels of social influence;
dots in each color cluster around three different values corresponding to three levels of
the initial number of participants. The plots show that evenwith a highdegree of social
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Fig. 10 Distribution of the average number of participants at the limit, grouped by.c and.p

influence (red dots), it is not guaranteed that everyone will become a participant. For
instance, when both the inclusivity and the initial number of participants are low, the
final number of participants remains low, which is represented on the plot by the red
dots clustered around 5 in the most left stack. This is because even if social influence
is high if .c and.p are low, non-participants do not have the opportunity to connect to
participants and subsequently become participants themselves.

In addition to the number of participants, another relevant quantity is the vari-
ance in the number of participants, as this captures the uncertainty associated with
how large a social movement might ultimately get. To gain insight into this feature,
Fig. 11 presents the standard deviation of the number of participants at the limit for
three different levels of social influence as a function of the inclusivity and the initial
number of participants. As we can see at each level of social influence in this pop-



The Role of Communication and Network Technologies … 191

Low Medium High

H
ig
h

M
ed
iu
m

L
ow

In
cl

us
iv

it
y

(c
)

High social influence

Low Medium High

Initial seed (p)
H
ig
h

M
ed
iu
m

L
ow

Medium social influence

Low Medium High

H
ig
h

M
ed
iu
m

L
ow

Low social influence

0

10

20

30

40

Fig. 11 Standard deviation of the number of participants at the limit

20 40 60 80 100
0

5

10

15

20

25

w : Low, c: High, p: Medium
w : Medium, c: Medium, p: Medium
w : High, c: High, p: Low

Fig. 12 Distribution of participants number at the limit for the highest variance parameter sets

ulation of 100 agents, the standard deviation of the ultimate number of participants
ranges from 0 to 40.

The plot shows that the standard deviation is smallest either when almost every
agent becomes a participant or when almost none does. The former is possible with
high social influence in a population of high inclusivity and considerable size of initial
movement seed (left graph, top row). The latter happens when both social influence
and initial movement size are low (right graph, left column). High uncertainty is in
turn associated with an overlap of these conditions. For example, in a society that
encourages connections (high threshold of .c), even a small number of participants
can spark a social movement growth since the society is well-connected. We can see
this effect in the left graph with high social influence, where we observe the highest
standard deviation when the inclusivity is high, but the initial number of participants
is low.

Interestingly, the cases with the highest variance are, in fact, cases of multimodal
distribution, where either no one becomes a participant or everyone. This result is
presented in Fig. 12. It is especially true for the highest variance parameter sets with
high and low social influence (blue and yellow histograms). With medium influence
(red histogram), the steady-state number of participants can be anywhere between
the initial number of participants (10) and the maximum number of participants
(100). This speaks to the difficulty of predicting the pace of propagation of a social
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Fig. 13 The difference in the average number of participants per timestep resulting from increasing
outreach versus networking (high social influence)

movement. The same characteristics of a movement at the outset can lead to vastly
different popularity over time.

Another interesting question is how fast the social movement grows as a function
of communication and network technologies. As increasing either networking or
outreach technologies will unambiguously speed up the growth of the movement,
the key question is howmuch does an increase in networking technology speed up the
growth of the movement relative to an increase in outreach. Figure 13 demonstrates
this by showing at each time step how many more participants there are (on average)
by increasing outreach instead of networking when the degree of social influence is
high. For example, the red annotated line in the left plot of Fig. 13 says that when
.p and .c are high, increasing outreach ability from low to medium will result in an
average of 27 more participants at time step 700 than if networking were to increase
from low to medium.

Since most of the lines are weakly greater than .0, the plot shows that increasing
outreach appears to almost always lead to a higher number of participants at any given
timestep. That pace ofmovement growth depends on the underlying characteristics of
the population—the higher the inclusivity, the higher the pace. Increasing networking
leads to faster growth in the number of participants only when the initial number of
participants is low (dark blue line on the left graph). This is due to the fact that
when the number of participants is low, it is very unlikely to randomly sample a non-
participant that is already connected to .w participants. The advantage of increasing
outreach instead of networking in all other cases indicates that a social movement
would likely grow faster in societies endowed with better outreach technologies.
The networking, on the other hand, becomes important later in the process, when
members of the movement connect, and thus, the movement recognizes its strength,
as the model without social influence indicated.
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Surveillance with Social Influence

In this section, we return to the analysis of authority’s surveillance capabilities allow-
ing for social influence. As described in the model section in the appendix, the com-
putation of the authority’s belief of citizen i is based on all previous observations of
the citizen node, even though now each citizen’s participant status can change over
time. While results are similar to the case of surveillance without social influence,
there are some important distinctions highlighted below.

Noise in Node Observation (.δ) and Probability of Link Observation (.γ)

Figure 14 presents results of the AUC over time for different configurations of the
participant parameters and probability of link observation parameter while sampling
frequency is held constant at the medium level. As was the case when there was no
social influence, even when the authority’s node observation process is very noisy,
it still performs well as long as the link is observed with high probability. In fact,
in most cases, it performs better than the configuration with the least noise in the
node observation process. Moreover, an important distinction is that in this case, this
result holds even with a relatively low probability link observation process. This is
likely because the noise in the node observation process is exacerbated when agents
can turn into participants. For similar reasons as those outlined in the case without
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Fig. 15 AUC at various time steps for.γ (low, medium, high) over different.δ and 40 Monte Carlo
simulations (.k: medium)

social influence, counterintuitively, the authority may perform better when the noise
in node observation is higher in this case as well.

The convergence of the AUC is also not as monotonic as is in the case without
social influence due to agents turning into participants. This is especially true when
it is easier for “neutral” agents to become participants (rows 1 and 3). Figure 15
presents results of the AUC over time for different configurations of the participant
parameters and noise in node observation parameter while sampling frequency is
held constant at 1 agent observation per 10 time steps. We find that the main result
from the no social influence case holds here—there are still diminishing returns
to the improvements made to the AUC by improving the link observation process.
However, what is different is that the biggest improvements in AUC are made at the
beginning before new agents start becoming participants. Further, if the noise in the
node observation process is low and the networking and outreach parameters are low,
then the improvement in AUC over time is non-monotonic. The AUC starts to dip in
the period of dynamic movement growth and then improves again once the number
of participants stabilizes (Fig. 16).

Sampling Frequency (.k)

Changing sampling frequency fromevery 5 to every 10 time steps (which corresponds
to an average of 16 and 8 observations per node) seems to have a similar effect on
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Fig. 16 AUC at various time steps for.k (low, medium, high) over different.γ and 40 Monte Carlo
simulations (.δ: medium)

increasing time to convergence as changing it from every 10 to every 20 time steps
(which corresponds to an average of 8 and 4 observations per node), just like in the
case of no social influence. The only difference in the trend is due to the dynamic
movement growth, which makes the convergence less monotonic than the no social
influence case.

The results are summarized succinctly in Fig. 17. This figure shows gains to AUC
over time for various changes in each of the three authority parameters. The results
are similar to the case without social influence. The gains from improving technol-
ogy consistently show diminishing returns (especially over longer time horizons)
except in the case of reducing noise in the node observation where we see increasing
returns (i.e., reducing the node observation noise from medium to low shows more
improvement in AUC than reducing it from high to medium).

Summary and Future Work

Communication technologies are not intrinsically good or bad for civil society. They
can be used by violent extremists to coordinate terrorist attacks or by advocates of just
social causes to organize legitimate protests. Governments can use communication
technologies to track and suppress activists or to track and neutralize terrorists. Rather
than focusing on participants’ or authorities’ objectives, this work aims to understand
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Fig. 17 AUC improvement over time for improvements in.k, .γ, and.δ

better the dynamics of technological facilitation of both sides’ goal, whatever they
may be. One of the assumptions of our model is that participants need to recognize
themselves as a group, build a network to support their actions, and recruit new
supporters. We also assume that effective and efficient actions on the authority side
require first recognizing who is a member of the protest and who is only a bystander.
Consequently, we study the impact of communication technologies on the ability to
perform those functions.

Our model yields some interesting results. First, the model reflects a common
observation of sociologists and political scientists who try to predict how much sup-
port a given social movement might receive. Namely, depending on the underlying
characteristics of the population, the final number of participants can significantly
vary. Secondly, themodel indicates that in the initial phase of socialmovement forma-
tion, technologies that enable casting a wide net accelerate both the social movement
growth and the network formation more than those allowing elite, invitation-only
membership. That is, open forums can lead to mobilization faster than closed chat
rooms, even if members of those closed groups might be more direct about their
goals. However, due to the snowball effect, the bigger the network, the bigger the
utility of friend-of-friends networking technologies.

On the other hand, faster network growth enables better classification of agents
by the authority. This is an artifact of the adopted link formation rule allowing
participant to have more links than non-participants, making them stand out in the
population. In real life, this propertymight bemore difficult to observe as participants
might deliberately limit their communication with others, precisely to stay below law
enforcement radar as long as possible.
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On the authority side, our model suggests that ensuring a reliable link observation
process can result in reasonable accuracy even when the node observation process
is noisy. The fact that our model allows the authority to perform better when the
node observation process is noisier signals the importance of having a score function
that correctly aggregates participant data. Further, we find that depending on the size
of the social movement, the authority’s belief formation is made more accurate by
improving a different aspect of the surveillance process. Reducing the noise in node
observation improves accuracy more effectively when there are fewer participants
and lower outreach and networking. On the other hand, the improvements in accu-
racy made from increasing the sampling frequency are fairly independent of social
movement characteristics.

As mentioned several times, one way to view our model is as a building block to
more complex models of social movements that integrate participant and authority
objectives. For that reason, an obvious extension is to integrate our network formation
and surveillance model into a larger model of social movement. This would include
adding participant and authority objectives and actions. For example, one research
question might be the optimal time for which the participants decide to mobilize and
act. From the authority’s perspective, it might choosewhen to disrupt communication
channels by either severing links or removing individuals they believe to be key
participants (such as through incarceration).

It is also possible to build on our baseline model of participant dynamics. For
example, in our model, citizens sample other citizens at random. In the real world,
citizenswill likely sample other citizens strategically in an effort to actively seek con-
nections. Therefore, one extension to ourmodelwould be to incorporatemore sophis-
ticated networking and outreach behavior. Additionally, our model only allowed
agents to switch from non-participants to participants and not switch in the other
direction, which is, of course, possible in real social movements. This is also true of
the authority; the authority may not randomly sample citizens to monitor but might
strategically dedicate resources to monitoring key citizens. Furthermore, in the cur-
rentmodel, the authoritymonitors links regardless of how theywere formed. Strategic
allocation of resources could also account for a difference in costs ofmonitoring open
forums (outreach technologies) versus closed forums (networking technologies).

One hurdle in extending the model to include more complex and strategic behav-
ior is determining how to modify the authority’s belief process. While in this work
we proposed a simple score that uses partial Bayesian updating, this score will likely
be too imprecise to be relevant with more complex stochastic processes. However,
the burgeoning fields of graph embeddings and graph neural networks [32] provide a
promising path forward. Specifically, graph neural networks take as an input observed
graph features (node features, links, etc.) and attempt to predict other features such
as unobserved node characteristics. This is precisely what the authority wants to
accomplish. Specifically, the authority observes noisy links and noisy node features
and attempts to predict whether the node is a participant. Consequently, graph neu-
ral networks provide a promising direction to generalize the process in which the
authority assigns scores as a function of its observations and thus allows the model
to incorporate much more complex network formation dynamics.
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Appendix: Model Design Concepts and Details

Design Concepts

Interaction and Emergence

Over the course of simulation, agents interact surveying each other to create links.
Consequently, a network of agents emerges. To measure the connectivity among
movement participants, we use their degree, i.e., the number of links to other partic-
ipants.

Prediction

Weare interested in an aggregatemeasure that captures the accuracy of the authority’s
belief across all agents. For this, we will use ROC curves and compute the area under
the curve (AUC) [33] as an aggregate measure of the authority’s beliefs. A ROC
graph is a two-dimensional graph with the true positive rate plotted on the y-axis and
the false positive rate plotted on the x-axis, and each point on the graph represents
a different classification threshold. Specifically, the bottom left of the graph (0,0)
represents a strategy of never issuing any positive classifications—so there are no
false positives, but the true positive rate is also zero. Conversely, the upper right (1, 1)
represents a strategy of always issuing positives. The point (0,1) represents a perfect
classifier. The diagonal represents the strategy of randomly guessing a class. As a
rule of thumb, one classification strategy is better than another if it yields a point
that’s located more northwest than the other in the ROC space.

While a ROC graph represents the performance of a classifier in two dimensions
by varying the classification threshold, it may often be helpful to reduce this per-
formance down to a single scalar value to compare the performance of multiple
classifiers. One such method is to calculate the area under the curve (AUC) in a ROC
graph. Since the AUC is some portion of a unit square, its value is always between 0
and 1. However, as mentioned previously, the diagonal line corresponds to a random
guessing strategy, which corresponds to an AUC of 0.5. Consequently, any realistic
classifier should have a value between 0.5 and 1. The AUC has an important interpre-
tation which makes it a reasonable proxy for classifier performance. It is equivalent
to the probability that the classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative instance. Tracking the AUC over time allows
examining the changes in classifier quality throughout a simulation.
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Initialization

The main object of the model is a time-indexed graph .Gt = (V, Et ) where .V is
the set of .N vertices or nodes and .Et is the set of undirected edges at time .t , and
time is discrete.2 Each vertex represents an agent and edge .eti j ∈ Et represents a
communication channel between agent .i and agent . j at time .t .

Each agent.i , (equivalently, a vertex) has two attributes,.βt
i ∈ {0, 1} and.θi ∈ (0, 1).

The binary attribute .βt
i indicates whether the agent is a participant and equals .1 if

the agent is a participant and .0 otherwise. The uniformly distributed attribute .θi
represents an agent’s identity and captures characteristics other than its proclivity to
protest. Again, this may represent the agent’s socioeconomic status or a collection of
interests. While.βt

i can change over time,.θi is fixed. Initially, there are.p participants
in the population of .N agents.

Inputs

None.

Submodels

Participant Link Formation and Evolution

At each time step.t , an agent is selected at uniform random. Denote the agent selected
at time .t as .at . Agent .at can form links in two ways:

• Outreach First, agent .at randomly queries .L1 other agents from the set .V t
at =

{v ∈ V |v �= at , (at , v) /∈ Et }, i.e., any agent that is not already connected to .at .
Let .v ∈ V t

at be any of the.L1 agents that agent .at queries. Then, the edge.(at , v) is
added to .Et if either of the two conditions is met:

1. .βt
at = βt

v = 1
2. .|θat − θv| � c

Intuitively, an edge is formed if either both agents are movement participants or
their value of .θ is sufficiently close.

• Networking Second, agent.at randomly queries.L2 agents from the set.˜V t
at = {v ∈

V |v �= at , (at , v) /∈ Et , (at , j) ∧ ( j, v) ∈ E for some j} and connects according to
the same conditions aswhen it conducts outreach. Intuitively, the set.˜V t

at is all nodes
where the shortest path between .at and a node in .˜V t

at is .2.

2 Since edges are undirected, as a shorthand, we use notation such that the edge.(x, y) = (y, x).
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These two processes define the evolution of .E . Specifically, .Et is the union of .Et−1

and the links that are formed during outreach and networking at time .t .
After all of the links at time.t are formed, agents update their value of .β. Specifi-

cally, if agent .i is connected to at least .w participants and is itself not a participant,
.βt

i switches from .0 to .1. Note that this is an iterative process since the effects of an
individual agent turning into a participant can spread throughout the network if that
agent is connected to several other agents that were previously connected to .w − 1
participants.

The key parameters are .L1, L2, c, p, and .w. Specifically, .L1 controls an agent’s
ability to leverage communication technology for outreach, where.L2 represents the
agent’s ability to leverage communication technology for networking. The param-
eter .w represents how susceptible agents are to social influence. The parameter .p
defines the number of participants at.t = 0, i.e., the initial seed of the movement. The
parameter.c represents inclusivity since it represents how much agents are willing to
include other agents with different identities into their network. Furthermore,.c is the
inverse of homophily. The lower the value of.c, the more agents need to have similar
identities for them to connect. Since we are interested in communication technolo-
gies, our main computational experiments explore how changing .L1 and .L2 impact
the growth of the social movement and how that growth rate depends on.c, w, and.p,
which are measures of homophily, social influence, and the initial movement size,
respectively.

To measure connectivity among the participant, we repeat each computational
experimentwith the same parameter values.40 times, compute the average participant
degree and then compute the average over each of the .40 Monte Carlo simulations.
Specifically

Average participant degree at time t, d̄t = 1

40

40
∑

m=1

1

p

N
∑

i=1

βt,m
i dt,m

i (1)

where the superscript .m corresponds to simulation number .m.
Similarly, the netwrok size is measured as

Average number of participants at time t, p̄t = 1

40

40
∑

m=1

N
∑

i=1

βt,m
i (2)

Authority Observation

The authority agent dynamically observes the network as it forms, but not necessarily
at every time step. Specifically, every.k time-step, the authority observes .m citizens.
The parameter .k represents how fast an authority can process data obtained through
citizens and draw insights, while .m represents how much data an authority can col-
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lect simultaneously. Of course, the actual data collection and processing procedures
are likely asynchronous, but we assume the processes are synchronous to maintain
simplicity.

For each citizen .i of the .m citizens sampled at time .t , the authority has a node
observation process where it observes .yit , which equals .βt

i with probability .1 − δ
and.1 − βt

i with probability.δ. Intuitively, the authority observes the correct value of
whether or not the citizen is a participant with probability .1 − δ but makes an error
with probability .δ.3 The parameter .δ captures yet another notion of surveillance
technology; the lower .δ, the more accurate the surveillance. The authority keeps a
record of these observations.yti = {yi1, yi2...yikt }where.yi j represents the authority’s
. j th observation of citizen.i and.kt represents the total number of times the authority
observed agent .i up to and including time .t .

In addition to the value of .βt
i , for each agent .i of the .m sampled agents, the

authority also completes an edge observation process where it observes .eti j ∈ Et ,
. j ∈ {1, 2...N } with probability .γ. This process represents the authority’s ability to
conduct surveillance on a citizen’s network. If .γ = 0, then the authority cannot
observe network links. If .γ = 1, the authority perfectly observes a citizen’s connec-
tions. The authority also keeps track of the degree of each agent .i , given by

dt
i = |{eti j |∃t such that the authority observes eti j }|

To quantify the authority’s belief on whether a citizen is a participant, it must
combine observations .yi and .di . It does this through the function

sti =(r ti )
α(dt

i )
1−α (3)

where

r ti =
∏kt

t=1(1 − δ)yit δ1−yit p
N

∏kt
t=1(1 − δ)yit δ1−yit p

N + ∏kt
t=1 δyit (1 − δ)1−yit (1 − p

N )
(4)

Intuitively, .r ti is the authority’s Bayesian posterior belief of citizen.i being a partici-
pant if it only completes a node observation process. However, to leverage the data
collected from the edge observation process, it weights this probability by the node’s
degree to obtain.sti . Again, the motivation is that a participant will, on average, have a
higher degree than a non-participant, so raising an agent’s degree would increase an
agent’s score. In the case of social influence, one could expect that if the participant
status of each citizen can change over time, the authority should limit their “memory“
to some number of last observations. However, the experiments conducted for the
model with social influence have shown that constraining memory negatively affects
the classification. Consequently, we allow the authority to form their belief based on
all previous observations of the citizen node.

3 Without loss of generality, we assume.δ � 0.5.
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Table 2 Participants’ parameters

Characteristics Parameter Values

Underlying characteristics of
the population

Population size.N .100

Initial seed of movement.p 5, 10, 15

Inclusivity.c 0.05, 0.075, 0.10

Social influence.w .∞ (no influence), 5, 4, 3

Technological capabilities Outreach technology.L1 1, 2, 3

Networking technology.L2 1, 2, 3

Table 3 Authority’s parameters

Characteristics Parameter Values

Surveillance capacity Sampling frequency.k 20, 10, 5

Surveillance accuracy Noise in node observation.δ 0.1, 0.3, 0.5

Probability of link observation
.γ

0.1, 0.5, 0.9

Parameters

We vary both the quality of technologies themselves and the underlying characteris-
tics of the population, according to the parameter values in Table 2. For the authority
agent,we collapsed sample size and sampling frequency into one parameter reflecting
the frequency of sampling one agent. Parameters defining surveillance technologies
were varied separately for node and edge observation processes, as shown in Table 3.
While the exact values of the parameters are not necessarily of interest, we performed
several robustness checks to ensure our experiments captured the full spectrum of
the parameter space. To ease presentation, in the subsequent analysis, we refer to the
parameter values as “low”, “medium”, and “high” instead of their precise numerical
values as specified in Tables 2 and 3.
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Foraging Games: Ideal and Not

Robin Clark and Steven O. Kimbrough

1 Introduction

Distributions of populations over a landscape are of keen interest in biology andmany
of the social and behavioral sciences, including linguistics, economics, anthropology,
and archeology.Weare interested in exploringhow individual preferences affect these
distributions, in particular how distributions are affected by dynamic preferences
built from the situation at hand. Particularly, in dynamic situations the information
processing abilities and practices of the relevant agents are crucial. Small changes
in their information processing abilities and practices can have large impacts on
behavior and the resulting distributions of the agents.

We begin by raising the fundamental question ofwhether preferences are retrieved
or formulated. Following that, we examine in some detail a foragingmodel built upon
and extending the classic ideal free distribution (IFD)model.We find, through agent-
based modeling, that very slight departures from the stringent IFD assumptions lead
to significant changes in the resulting distribution. The upshot of the paper weighs
in favor of preference construction, both in fact and for modeling.
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2 Preferences

Under a widely received view, decisions (alias choices) are made on the basis of
preferences.1 Given a menu of alternatives, decision makers choose based on what
they prefer, presumably acting so as to choosewhat they prefer themost. Preferences,
moreover, are in this tradition generally thought to be stable, produced frommemory
when needed (either directly by retrieval or indirectly by functional transformation of
retrieved information), and global in the sense that for all possible choices,.ai versus
.a j , the decision maker prefers.ai to.a j (we write.ai � a j ) or prefers.a j to.ai (.a j � ai )
or is indifferent between the two (.ai ∼ a j ∼ ai ).2 Further, it is a fundamental tenant
in models in economics, game theory, and decision theory that agents are rational in
the sense that their preferences conform to the axioms one version of utility theory or
another (e.g., [9, 13, 14, 16]). Together, the bundle of these assumption propositions
constitute the core of Rational Choice Theory (RCT).

The obvious alternative to retrieval of preferences is to view them as constructed
by the agent when needed (and perhaps stored in memory after creation). That is our
focus in this paper. There is by now an extensive behavioral literature establishing
that indeed preferences are, at least often, so constructed. See [20] for a review;
see also [12]. Preferences when empirically studied are often far from stable. They
are subject to priming and environmental conditions. They are (often) constructed
for the occasion rather than retrieved from memory. A fortiori, they are not global;
there simply are not pre-existing preferences for everything. The behavioral and
psychology literature in these regards is by now compelling. That literature, however,
has not developed much more than a rudimentary account of the mechanisms by
which preferences are created or constructed (alias formulated).

Thus, we seek to develop and explore models of preference formation by agents.
Where to begin? Benjamin Franklin’s justly celebrated method, expressed in a letter
to Joseph Priestly, is the kind of account we seek https://www.1000minds.com/
decision-making/benjamin-franklin.

In light of empirical findings about preference construction (noted above), a nat-
ural interpretation of Franklin’s method is that it is an account, both descriptive and
prescriptive, of how preferences may sensibly be constructed (by listing pro and con
factors and striking balanced pairs). Franklin proffers the approach as a way to cir-
cumvent cognitive limitations. When there are very many pros and cons we cannot
keep proper track of them. Franklin thus proposes a physical procedure for making
the comparisons without decision makers having to use more than all of their limited
cognitive resources.

In his letter, Franklin offered a procedure—a “moral or prudential algebra”—by
which to employ data available at the time of decision and arrive at a preferred choice.
What is preferred is discovered or calculated by this procedure, not dredged up from
a stable pool of memories.

1 Terminology is not fully standardized. We do our best to use mainstream senses, but the reader
should understand that there is other terminology floating about.
2 This is an axiom of utility theory. See [20] for an authoritative review.

https://www.1000minds.com/decision-making/benjamin-franklin
https://www.1000minds.com/decision-making/benjamin-franklin
https://www.1000minds.com/decision-making/benjamin-franklin
https://www.1000minds.com/decision-making/benjamin-franklin
https://www.1000minds.com/decision-making/benjamin-franklin
https://www.1000minds.com/decision-making/benjamin-franklin
https://www.1000minds.com/decision-making/benjamin-franklin
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Generalizing Franklin’s letter, the principle involved is one of rule-based prefer-
ence formation. Beginning in the next section, we explore this principle for explana-
tory purposes in the analysis of foraging behavior and preference formation. First,
however, we wish to acknowledge and address an objection to our framing and
approach. In doing so we introduce some nuance, a refinement of the narrative given
so far. The objection is that the distinction between retrieving preferences from
memory and constructing them by recalling rules for generating them is a distinc-
tion without a real difference. “Of course,” the objection goes, “no one thinks that a
forager would have a fixed preference for patch A over patch B. Instead, the forager
has a fixed preference for alternatives that maximize food intake. What is fixed and
stable and recalled from memory is the rule to prefer more food. If you want to call
this preference construction you can, but you are not introducing anything new or
different. What’s stable and retrieved is the rule/preference for more food.”

Our response is first thatmaximizing food intake is a value or goal, not a preference
for how to achieve it (by choosing a patch). Second, if stable and simple rules can be
identified that account for the behavior in question, then the retrieval–or–construction
debate would presumably be resolved in favor of retrieval. But if simple rules are
not sufficient for explaining observed behavior, while rather more complex rules are
sufficient, then at some point of increased complexity, a retrieval account becomes
misleading in a way that a construction account is not. In the end, it matters little
where exactlywe draw the line.Whatmatters is delineating correctly themechanisms
involved.

In what follows we use agent-based modeling to simulate and investigate for-
aging. The ideal free distribution (IFD) hypothesis, explained in the sequel, is the
immediate target of our modeling. Foragers will be distributed as in the IFD under
standard assumptions and Rational Choice Theory. We replicate this finding and
go on to demonstrate that small departures from the IFD assumptions lead to large
departures from IFD behavior. This creates opportunities for foragers to learn and
use revised rules for choosing foraging patches. Whether they do so or not is an
empirical question. But to the extent they do, to that extent at least a construction
account of preference formation is closer to the mark.

3 Ideal Free Ducks

Food and other resources are often patchy, appearing more in one place than in
another, and absent in most places. When this is the case, individuals in a community
are typically faced with a strategic decision problem of where to forage for resources.
Without other individuals involved, foraging at the most productive patch, net of
transit and other costs, would be optimal. The individual, however, is affected by
decisions made by other individuals in its community. Perhaps foraging at a less
productive patch will yield an individual more in return than foraging at a more
productive patch because the less productive patch is comparatively less crowded.
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Thus we have a foraging game. How will it turn out in equilibrium? Fretwell was
the first to investigate this framing of foraging theory. In a series of papers [2, 3, 5]
and a book, [4], Stephen Fretwell investigated this question both theoretically and
empirically. The literature since has blossomed.

Fretwell developed a model he called ideal free distribution (IFD) for predict-
ing the distribution of individuals in a community across a diversity of foraging
patches.3 Assuming ideal rationality and identity of capabilities among the individu-
als, Fretwell posited that at equilibrium individuals would be arrayed among patches
such that each individual would obtain an equal amount of resource per unit of time.
This ideal free distribution (IFD) can be expressed as follows.

Let.Ni be the number of foragers at site.i and.Ri be the level of resources available
at site .i , which the foragers at the site share equally, then the IFD is

Ni
∑

i Ni
= Ri

∑
i Ri

(1)

With just two foraging patches this reduces to

N1

N2
= R1

R2
or equivalently

N1

R1
= N2

R2
and in general

Ni

Ri
= N j

R j
∀i, j (2)

As an aside, note that the relationship between the .Ni s and the .Ri s is exactly that
posited by the matching law of [8], which is widely used in the description of animal
learning. Let the .Bi s be the behavior alternatives, and the .Ri s be the associated
reinforcements; then the matching law says that at convergence of learning, we have:

Bi

B1 + B2 + · · · + Bn
= Ri

R1 + R2 + · · · + Rn
(3)

Although it was not designed for modeling strategic decision making, the associated
hypothesis ofmelioration [8] addresses the dynamics of learning under the matching
law. According to this hypothesis [8, page 77], the adapting/learning agent adjusts
its .Bi s so that:

R1

B1
= R2

B2
= · · · = Rn

Bn
(4)

Returning to Fretwell’s ideal free distribution, it is assumed throughout that the sum
of the .Ri s is fixed, at least comparatively so. In the case of two alternatives, doing
.R1 at a time entails not doing .R2, for example.

3 We focus as does the literature on conspecifics in a single habitat.
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Moreover, Fretwell’s basic model assumes the following properties of Ideal Free
foraging:

• Animals need to forage from patches of varying qualities distributed over a region.
• Animals will tend to distribute themselves over these patches in order to maximize
their individual returns.

• They will therefore tend to distribute themselves so that the resources will be
distributed evenly, taking into account the fecundity of the resource patch and the
number of conspecifics exploiting the patch. This is the insight behind deal free
distributions [2].

• Elaborating on the above point, suppose that some animal is gettingmore resources
than would be expected if the resources were distributed evenly. This means that
some other animal is getting less than expected; the latter animal should, then,
move to the patch where the other animal has more than its share. As the foragers
reshuffle, they should eventually hit an equilibrium point where all animals are
getting the same amount.

• In particular, if .Fi is the fecundity of patch.i , and.ni is the number of conspecifics
at patch .i , then:

Fi
ni

is the return that an individual forager can expect when occupying .i .
• Finally, the basic IFD model assumes that the animals at a patch are dividing
resources evenly, so that they all get the same amount. This need not be the case.
For example, some animals may be more efficient at foraging, or can bully the
other animals, in which case the distribution of resources will not be equal. This
should effect the distribution of animals per patch.

4 IFD Modeled in NetLogo

We constructed a model in NetLogo (IFD-Foraging01.nlogo) of foraging based on
the ideal free distribution with two food sources (patches). Our model is somewhat
more general than the pure IFD model because it allows for the animals to transit
non-instantaneously from one patch to the other. Because we based the model on
experiments by [7] involving ducks wintering at a pond, we will henceforth refer
to the agents (or “animals”) as ducks. The IFD mathematical model supposes that
the ducks can move instantaneously from one food source to another. Our NetLogo
model permits a number of variations, which turn out to be significant, as we shall
see.
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4.1 The Foraging Procedure

The IFD-Foraging01.nlogo model is freely available online and gives full access to
its code.4 Here we sketch in pseudocode the main foraging procedure, occurring at
each time step in the execution of the model.

1. Collect statistics on system state.
2. Ask food sources to distribute food according to their schedules
3. Ask animals to collect and record food and determine if they want to move to a

different patch.
4. if transit? is true

(a) Decrement the transit-counter for all animals in transit;
(b) For animals that have completed transit, place them at their new destination

food source;
(c) Put into transit all animals that have decided to move and set their transit

counters (indicating the amount of time to be in transit).

5. Ask the animals not currently in transit:

(a) Increment the time counter for presence of the food-source they are at;
(b) Determinewhether tomove to a new source immediately; this is implemented

as the procedure move-immediate in the code (see below).
The decision depends on the probability of moving p-move, the number of
animals at the other site and the fecundity of the other site.

(c) If to-move is true and transit? is false, move immediately to the
other site;

(d) If to-move is true and transit? is true, move to a special transit
patch and wait.

(e) Otherwise, the animals stay where they are and wait for more food.

Much of the central intuition of the IFDmodel is captured inmove-immediate
which, in essence, computes the “expected utilities” (values) of the bread5 sources
by looking at the rate at which bread is tossed out versus the number of animals at
the food source. Note that move-immediate returns a Boolean value contingent
on the expected amount of bread at each patch.

1. If the bread per animal (“duck” in the NetLogo model) is larger at the patch
occupied by the duck, return False;

2. Otherwise, if the bread per duck is less at the present patch, return True with
probability p-move; otherwise return False.

4 https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7.
5 We are grateful to Annie Vo for reminding us that ducks should not be fed bread as it messes with
them. Here and hereafter, when we say “bread” let us mean “units of healthy food for ducks.”

https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7
https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7
https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7
https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7
https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7
https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7
https://github.com/stevenokimbrough/sokpapers/commit/3b3d5ccdaf0bce9d71ca86a34c2e05d11b391ad7


Foraging Games: Ideal and Not 211

4.2 Behavior of the Pure IFD Configuration

We constructed a “pure” model of the Ideal Free Distribution. This configuration
is set in the NetLogo model by switching pin-ducks? to off on the Interface
tab (see Fig. 1). The agents (the foraging animals, which we refer to as ducks)
are “ideally rational" They are “free,” meaning they can move instantaneously and
without cost to any food patch; and they are “ideal” in the sense that they have perfect
information about the fecundity of each food patch, which they use to maximize
intake of resources. Furthermore, they know the number of competitors at each food
patch, although they cannot predict the future of how many ducks will be at each
patch. Thus, in this model the ducks should distribute themselves in such a way as
to guarantee that each duck acquires the same amount of food as any other duck, in
equilibrium. When we run the model as a pure IFD system, this is exactly what we
see. The ducks divide themselves over the food patches in such a way that each duck
gets the same amount of food as any other duck, even though the food sources are
differentially productive.

In a typical case, we ran the model for 3500 time steps with an initial sample of
500 time steps, allowing the ducks to observe the rate of bread distribution at the
food patches. The run had (the IFD-Foraging01.nlogo model has) two food patches.
In the run there were 250 ducks, with the rate of bread distribution being 15 units

Fig. 1 Interface of the IFD-Foraging01.nlogo model
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of bread per unit time versus 5 units of bread per unit time. The ducks arranged
themselves in such a way as to yield 0.080 units of bread per unit of time at the more
fecund food patch and 0.079 units of bread per unit time at the less fecund patch,
basically identical yields of food per patch. Since the rate of bread distribution at the
more fecund patch was three times the rate of the less fecund patch, we expect, then,
that three times as many ducks will congregate at the first patch as the number that
congregate at the less fecund patch. Again, that is exactly what we see: 187 ducks
at the first patch to 63 ducks at the second patch. If we look at the mean of the total
bread collected by ducks at the more fecund patch and compare it to the mean of the
total bread collected at the less fecund patch, we expect the former to be three times
the latter, and it is: 180 units collected at the more fecund patch to 60 at the less
fecund patch. In addition, the variance of the total bread collected per food source
should be nearly identical and it is: 30.06 for the more fecund patch versus 29.74 for
the less fecund patch.

Within a narrow margin of statistical error (noise), the behavior of the Pure IFD
NetLogo model (with transit? set to off) conforms exactly to the predictions of
the ideal free distribution.

5 Beyond Purity

The Pure IFDmodel exists in a clockwork universe that is at quite a remove from the
world of actual foragers, who cannot move instantaneously between food sources
and who may not have perfect information about the fecundity of the patches or the
number of competitors at each patch. In the next experiment, we will increase the
cost of moving from one food source to the other; it will no longer be instantaneous
but will rather take some amount of time. We implement this by creating a “transit
patch”where ducks are confined for some number of tickswhen they decide to switch
patches. While confined at the transit patch, the ducks cannot acquire more bread;
that is, the ducks temporarily cease foraging while traveling from patch to patch.
Now, transit? is switched to on.

In the first configuration, when they decide to move from patch to patch, the ducks
must spend 5 time ticks in the transit patch, where they receive no resources. Once
again, we ran the model for 3500 time steps with an initial sample of 500 time steps
for warm up, allowing the ducks to observe the rate of bread distribution at the food
patches. As above, the run had two food patches, 250 ducks and the rate of bread
distribution being 15 units of bread per unit time versus 5 units of bread per unit time.
If we allow the probability of moving to be 1 when a duck decides its yield would be
greater at the other patch, we have a striking result. After an initial apparently chaotic
period, the number of ducks at the more productive patch is 2, while the number of
ducks at the less productive patch is 1. The remaining 247 ducks are in transit and,
therefore, not receiving bread. Thus, the ducks at the more fecund patch get 7.5 units
of bread per unit time (there are 15 units of bread distributed per unit of time); the
single duck at the less fecund patch receives 5 units of bread per unit time. That is,
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of course, the maximum any duck could receive per unit of time at that patch. In
this sense, a true ideal free distribution would be unattainable, due to the hard limit
on the less fecund patch. Of course, an ideal free distribution is out of the question
since the vast majority of ducks receive nothing, because they are incarcerated at the
transit patch.

This is a largely unsurprising result, given the basic mechanics of the decision
making by the foragers and the relative bread rates. A more interesting scenario
is suggested by giving the ducks some commitment to their current patch. We can
change the probability that they will switch patches once they perceive an asymmetry
in the relative distribution of food. Suppose that the probability that a duck will
switch patches is 0.2, that is they will transit only twenty percent of the time once
they perceive the asymmetry. On this experiment, then, the ducks take time to move
from food source to food source but are reluctant to move.6 That is, the conditions—
number of agents, food rates from the sources, and soon—are the sameas the previous
experiment but the probability of a duck moving when it perceives an asymmetry
between the patches is just 0.2. In a typical run the results are that the ducks at the
more fecund patch are getting 0.131 units of bread per time at the patch, while ducks
at the less fecund patch are getting 0.102 units of bread per time. After stopping at the
default of 3,500 time steps, there are 114 ducks at the more fecund patch compared
to 49 ducks at the less fecund patch and 87 ducks in transit.

The results are quite different from those of the pure IFD model, due to the
“friction” created by the temporal constraints onmovement. The underlying decision
rule the ducks are using is the same as in the pure IFD model, but the physical
constraints of the world prevent them from achieving a pure ideal free distribution.
Notice that the count of the number of ducks at the more profitable patch is depressed
compared to the pure IFD model.

The fact that there are fewer ducks at the more profitable patch raises the bread
per duck per unit time at that patch. How is this to be explained? In the mathematical
model of the IFD the assumption is made that time is continuous, with upshot that
each duck makes its decision at an infinitesimal interval that is unique to the duck.
In our agent-based model, time is discrete and ducks at sources make their decisions
independently whether to move during a finite interval and then move en masse, if
they move at all. In consequence, if there’s a more attractive source, while it may
have more ducks in residence, more ducks will move if the less attractive source
is comparatively under-populated. Conversely, at the less productive source, if it
becomes less attractive compared to the other source, fewer ducks will move at any
given time step. The outcome of these considerations is that themore attractive source
will be relatively underpopulated, yielding more bread per duck at that source. This
is exactly what we have seen, above.

In order to investigate this, we developed BehaviorSpace experiments to examine
the relationship between bread rates at the sources and the number of ducks at the
sources. If the distribution were a pure Ideal Free one, the ratio of the number of
ducks at the higher yield patch to the number of ducks at the lower yield patch divided

6 We tried this experiment with the pure IFD model and it made no difference.
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(a) Ideal Free Distribution (b) Ideal Free Model with Transit Costs

Fig. 2 Behavioral comparison with and without transit costs. .A is the count of ducks at the more
fecund food source; .B is the count of ducks at the less fecund food source; .C is the bread rate at
the more fecund food source;.D is the bread rate at the less fecund food source

by the ratio of the rate of bread distribution at the higher patch to the rate of bread
distribution at the lower yield patch should be equal to one. This would be what
happens in the pure IFD case where the ducks distribute themselves in such a way
that they all get the same amount of bread.
Let:

(a) .A is the count of ducks at the more fecund food source;
(b) .B is the count of ducks at the less fecund food source;
(c) .C is the bread rate at the more fecund food source;
(d) .D is the bread rate at the less fecund food source.

The graphs in Fig. 2 compare .C /.D (the x-axis) with (.A/.B)/(.C /.D) (the y-axis).
Under IFD the latter quantity should always be equal to 1, as happens in Fig. 2a, the
Pure IFDmodel where transit costs are 0; there is some slight statistical noise but the
ducks always arrange themselves as expected with the ducks at the two food sources
getting the same amount of bread. When transit from one food source to another
involves a real cost, as in Fig. 2b, we see that the distribution of bread is not equal
across the food sources; in fact, since the ratio is less than 1, there are fewer ducks at
the more fecund food source than we would expect under the IFD. In consequence,
because there is a smaller population at the more fecund source, the bread per duck
should be higher than what would be found at the less fecund source; this is what
we observe. In fact, as a result of there being fewer ducks at the more fecund source,
the bread per duck at that source is higher than we would expect under an ideal free
distribution.

One way to think about the above is that the agent-based model occurs in discrete
time so that, in effect, the agents make their decisions about moving in parallel;
the agents have no information about what other ducks decide at that time step.
Furthermore, once a duck is in transit, it gets no information about the ducks who
were already in transit, the ducks who went in transit with the duck, and the ducks
who go into transit while the duck itself is transiting; in other words, the cost of
transit is to deprive the transitee of information which should condition its choice
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of destination. Even if a duck in transit got information about the real distribution
of ducks, the model provides no way for the duck to use that information while in
transit. The pure IFD, on the other hand, takes place in continuous time (and with
instantaneous movement) so the ducks always have perfect information about the
other ducks and the expected returns of the food sources. In other words, discrete
time imposes a form of bounded rationality by depriving the ducks of information.

The above results used a certain amount of “stickiness” on the part of the ducks;
their probability of moving at any time step is .0.2. If they move immediately when
they are dissatisfied with their current food source, that is the probability of moving
is 1, then the results are muchmore chaotic. In essence, the vast majority of ducks are
always in transit, landing at a food source only long enough to become dissatisfied
and go back into transit. The need for reticence in moving is another illustration of
the real costs of transit and reflects something that should be taken into account when
analyzing real foraging data.

In order to make comparisons more systematically we conducted two Behav-
iorSpace experiments, each with 10 replications. In the first experiment, we used
a Pure IFD configuration (transit? switched to off), varying the bread rate at
food source A and keeping all else constant. The results are shown in Table 1. The
second experiment duplicated the first, except that transit? was switched to on,
violating the Pure IFD assumptions of no travel cost. See Table 2. Comparing the
two experiments confirms what we reported for prototypical experiments of the two
cases. In the Pure IFD computational model, the predicted Pure IFD obtains. As
comparative bread rates change, bread per duck is equal across the two food sources,
and the fraction of ducks at each food source is also as predicted by the IFD theory.
Contrariwise, in the transit? on configuration (with transit cost .> 0) and when
the fecundity level of food source A is higher than B: (i) the bread per duck system-
atically varies between the two food sources with ducks at source A receiving more
food per unit time than ducks at source B; and (ii) the number of ducks present at site
A is lower than it should be under Pure IFD. The effects are robust and systematic.

When IFD conditions obtain, no duck can unilaterally do better by changing
its policy for moving between food sources. This is to say that Nash equilibrium
conditions rule. What happens when movement has costs? It would seem that the
duck’s movement policy may no longer be a Nash equilibrium policy. To investigate
this conjecture we conducted another experiment, in which two ducks, one at source
A and one at Source B, were “pinned.” That is, two ducks were randomly picked at
initialization and made to stay at one or the other of the food sources. Everything
else is as set for the experiment of Table 2.

Table 3 shows the difference between the bread collected by a duck pinned at site
A, whose rate of bread distribution varies from 3 units to 20 units of bread per time
step, a duck pinned at site B, whose rate of bread distribution is held constant at 5
units of bread per time step, and ducks that can freely travel between A and B. The
rates are compared for when temporal penalties for travel are disabled (“False”) and
when temporal penalties, held at 5 units of time, are enabled (“True”). We can see
that the pinned ducks and the free ducks get roughly the same amount of bread when
travel penalties are disabled, the Ideal Free Distribution.When temporal penalties are



216 R. Clark and S. O. Kimbrough

Table 1 Bread rate at site B is a constant 5 units per time step. Bread rate at site A varies from 3
to 20 units per time step. Under IFD, Population at A divided by Population at B should be equal
to Rate A divided by Rate B, which it is to a close approximation. Also under IFD Bread Per Duck
(BPD A) should be equal to BPD B, which it is

Rate A Population at A Population at B BPD A BPD B

3 93.533 156.467 0.032 0.032

5 124.467 125.533 0.040 0.040

10 166.200 83.800 0.060 0.060

15 187.100 62.900 0.080 0.079

20 199.267 50.733 0.100 0.099

Table 2 Bread rate at site B is a constant 5 units per time step. Bread rate at site A varies from 3 to
20 units per time step. Under IFD, Population at A divided by Population at B should be equal to
Rate A divided by Rate B, but in our departure from IFD due to transit time this equivalence fails.
Also under IFD Bread Per Duck (BPD A) should be equal to BPD B, but transit time costs destroy
this equivalence

Rate A Population at A Population at B BPD A BPD B

3 61.633 96.867 0.049 0.052

5 78.800 79.133 0.064 0.063

10 105.367 58.067 0.095 0.087

15 115.033 47.000 0.131 0.111

20 124.567 38.633 0.162 0.138

levied, we see that the pinned ducks, who cannot travel, do systematically better than
the ducks that are allowed to transit. This suggests that the best strategy (the Nash
equilibrium) is actually not to travel, if travel takes time. More precisely, pinning
is shown to be a profitable response when all but one duck, at the other site, are
transiting in the usual way. We also see that the pinned duck at site A, the site with
generally higher rates of bread distribution, does better than the duck pinned at site
B. Table 2 also shows this effect, we think for the same reason. In general, the more
prosperous site is proportionately under-represented, although it has more ducks at
it; this is because the ducks make their decisions in parallel so that more populated
sites will tend to look less attractive. The underlying data shows that the number of
ducks at site A is systematically less than the number at site B, when the rate of bread
distribution at A is greater that that at B. The odds of this happening by chance is
less that one in a billion. The Ideal Free Distribution assumes that ducks make their
decisions sequentially and that transit time is zero.
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6 Discussion of the Models

With any very idealized model there always lurks the danger of over abstraction
and failure of robustness in the fact of plausible and realistic changes to the model.
We have seen this phenomenon at play with respect to travel time and ideal free
distributions. It is hardly surprising that idealized models will fail in the absence of
truth in their assumptions. The most interesting subsequent questions are in regard
to the nature and magnitude of the changes in model behavior in response to changes
in model assumptions. To take one small example, with pinning as in Table 3 and
focusing on the last row, we see that the rewards for the pinned ducks greatly exceed
those of the unpinned ducks following what would be a Nash equilibrium strategy
under IFDconditions. The pinned duck at sourceB, the less fecund of the two sources,
gets 27% more food than the average unpinned duck (281/299), while the pinned
duck at A gets a whopping 60% more (478/299). Exploring these kinds of effects
and confronting them with data lies at the heart of strategic modeling and analysis,
and the subject of our book, decision games.

The study of foraging is a rich and flourishing subfield of ecology, affording ample
vistas of opportunity for modeling and data collection. Our treatment here should
be taken as a point of departure into a great realm of modeling possibilities. We
have demonstrated that agent-based modeling can both duplicate idealized models
and serve as a basis for investigations that relax idealizations in the direction of
verisimilitude.

Table 3 B source is constant at 5; A source is variable. Comparing the average bread collected by a
duck pinned at A, a duck pinned at B, and unpinned ducks. Results are the means of 30 replications
for each setting

(Variable Rate at A,
Transit)

Duck pinned at A Duck pinned at B Average Unpinned

(3, False) 96.121 95.934 96.000

(3, True) 148.402 153.614 95.556

(5, False) 120.483 119.525 120.000

(5, True) 188.659 187.476 119.451

(10, False) 180.390 179.258 180.001

(10, True) 289.287 269.447 179.199

(15, False) 240.396 238.960 240.003

(15, True) 385.391 329.386 239.053

(20, False) 301.332 295.116 300.014

(20, True) 477.940 381.244 298.955
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7 Future Work

There is a great deal of work that remains to be done here. Due to space limitations,
we have not been able to adequately cover recent work that is quite relevant to this
topic, for example [15] (we are grateful to an anonymous referee for pointing this
paper out to us). There are, of course, many other papers that would have to be
systematically reviewed.

Among the most interesting items for future research, identified by anonymous
referees and other discussants, are the following:

• How is the order of events determined? Does order matter?
• Can theABMmodel be reduced to a stochastic differential equationsmodel?What
advantages does an ABM provide versus other approaches, particularly in the pure
model?

• What happens when multiple food sources of similar fecundity are introduced?
What if they have different distributions of fecundity values? Would your results
remain robust then?

8 Bibliographic Note

In the interest of conserving space, we note the following works related to ideal free
distributions related to this paper. [18] is an early landmark development of optimal
foraging theory, which focuses on individual, asocial behavior. Strategic or game
theoretic modeling of foraging, which came to be called social foraging, may be
said to begin with [2, 3, 5] and [4]. [7, 10, 11, 19] address important issues as the
field developed. [6] synthesizes and develops social foraging models. [17] surveys
the field of foraging (social and asocial) 20 years after [18]. [1] is an accessible
treatment of foraging models applied to human hunter-gatherers.

Acknowledgements We are grateful for very useful comments from three anonymous referees for
the conference.
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Entropy-Based Heuristic Approach
For The Quantum-Like Generalization
of Social Contagion

Ece Çiǧdem Mutlu and Ozlem Ozmen Garibay

Abstract Social contagion modeling has recently attracted a great deal of attention
from researchers due to its wide range of applications in network science,multi-agent
systems, information science, and marketing. Since there are reinforcement effects
in social contagion systems, it is necessary to consider the complexity of individuals
in the system in order to understand this phenomenon. This complexity that stems
from the heterogeneity of individuals and the uncertainty in their decision-making
process caused the utilization of more complex social contagion modeling such as
quantum-like approaches. Although these approaches are demonstrated to be able to
portray this complexity and better model the social contagion process, the interfer-
ence term in these models is hard to predict, causing their application very limited.
To address this problem, we propose a belief-entropy-based heuristic approach to
predict interference effect in quantum-like generalization of social contagion. Based
on simulations of uncorrelated random regular networks (RRNs) using the proposed
approach, we concluded that belief entropy is useful for detecting interference in
quantum-like generalizations of social contagion models. These results should lead
to increased use of quantum social contagion models in any application area without
having to deal with calibration issues or time constraints.

1 Introduction

By understanding and improving the modeling of contagion dynamics in complex
networks, researchers can shed light on the mechanisms that underlie the spread
of diseases, microfinance activities, information, harmful emotions, and technology
adoption. Thus, in addition to offering us more effective anti-pathogen strategies
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during epidemics, these developments also give us new theoretical foundations for
predicting social behaviors, and evenmitigates the spread of false information within
social systems. In the context of contagion, researchers have classified these spread-
ing dynamics in different disciplines into two main categories: (i) biological, or
(ii) social contagion. Though dynamics of these spreading mechanisms have very
common properties, social contagion is known for having its own inherent character-
istic, known as the social reinforcement effect [21, 31, 32], compared to biological
spreading. In social contagion, the reinforcement effect changes the simple mecha-
nism of biological contagion, which assumes even one single activated source will
suffice for transmission, into a more complex contagion mechanism. To describe this
complexity in contagion dynamics, Markovian processes are generally used such as
threshold-driven approaches, whereby adoption occurs only if a specific portion of
neighboring nodes has already been adopted, contrary to biological spreading. As
the dynamics of social contagion differ from epidemic contagion in terms of their
complexity, and a variety of disciplines such as marketing and information science
are entangled, we can argue that understanding the dynamics of social contagion is
substantial and unfinished.

Traditionally, mathematical modeling of social contagion is carried out by one of
the three commonly-known approaches: threshold-driven, cascading, and compart-
mental approaches. InGranovetter’s groundbreaking study [6],where amathematical
model of social contagion was first introduced, he proposed a linear threshold model
based on the assumption that individuals’ behavior in a network can be influenced
by their neighbors. In this receiver-centric model, individuals adopt a behavior only
if a certain fraction of neighbors have already adopted the behavior. This model not
only ignores the time delay between adoption and spreading, but it also has a strong
but unrealistic assumption that each adopted individual is willing to spread behavior
in the network. Later, Goldenberg [5] introduced a sender-centric model, called the
independent cascade model, in which each adopted node has a single chance to influ-
ence one of its susceptible neighbors. Since this model is limited by the possibility
of one successful influence at each time step and ignores the social-reinforcement
effect, it also falls short in comprehensive modeling of social contagion dynamics.
Recently, inspired by epidemic models, one of the most commonly used methods
in the literature of social contagion studies is the message passing approach [10], in
which individuals within the target population (or network) are divided into mutually
exclusive compartments based on their current status and their future status at any
time can be predicted based on the predefined rate of contact between compartments
and their certain transition rates. As opposed to the conventional compartmental
models, the reinforcement effect is also included with the existence of a threshold
value for individuals to adopt the behavior. Therefore, the message passing approach
is considered a non-Markovian process, which makes it more realistic in the appli-
cation of real-world complex contagions.

Any of these approaches in the analysis of social contagion faces the challenge of
modeling complexity of individuals, which arises either as a consequence of hetero-
geneity of the individual’s threshold for adoption or the uncertainty in their decision-
making process. Although the former is considered in the recent studies by utilizing
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more complex threshold distributions [4, 9, 31, 34] rather than uniform, the latter has
yet been widely addressed to the best of our knowledge. On the other hand, individ-
uals may show ambiguous characteristics during behavior (information, emotion or
technology) exchange [18, 24, 29, 33] due to subconscious feelings and subjective
biases [16, 27] after they interact with each other. This complexity in decision-
making studies has been addressed with numerous quantum-like approaches [1, 2,
7, 13, 17, 33] to explain the corresponding irrationality and existing paradoxes and
fallacies. In a very recent study [19], it is demonstrated that quantum-like approaches
yield better performances also in the modeling of social contagion dynamics since
interference effects in these models leverage the extant social contagion analyses and
thus better model its nonlinear dynamics even on critical transmission probabilities.
Whereas, the interference term brings an additional complexity that decreases the
time-efficiency of these models. Additionally, this effect can be determined only by
calibration with a real dataset, causing its application harder. In this study, we pro-
pose a belief entropy-based heuristic for the determination of interference effect in
quantum-like generalization of social contagion. Our results show that belief entropy
is a promising approach in the measurement of uncertainty in quantum-like social
contagion analyses and we believe that the results of this study will bring its appli-
cation area more diverse in different disciplines.

2 Background

2.1 Quantum Social Contagion

A complex network, .G〈V, E〉, is graph in which set of vertices (nodes) .(V =
{v1, v2, ..., vn |n ∈ N }) are connected with each other with edges (links) (.Evi ,v j =
(vi , v j )where (.i, j ∈ N ; i �= j). In a network where each entity corresponds to a dif-
ferent individual, the social contagion occurs as a result of interactions of connected
individuals. To exemplify the social contagion mechanism in this study, we integrate
a quantum-like point of view to the classical message-passing approach [10] that
generalizes the well-known susceptible-adopted-recovered (SAR) model, to fully
describe the mechanisms of information (or behavior) spreading on a complex net-
work. In this approach, each individuals of the network of .N nodes and a degree
distribution .P(k) falls into one of three states: susceptible, adopted and recovered.
These states represent:

• An individual in a susceptible state (.S) does not adopt the behavior yet,
• An individual in an adopted state observed the behavior and adopted it already
and tries to transmit it to his susceptible neighbors,

• An individual in a recovered state adopted the behavior once but lose interest and
will not further participate in spreading.

During social contagion, each adopted individual (.A) tries to influence his their
susceptible neighbors with a probability .λ at each time step. Once the influence
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successful, influenced susceptible individual updates his cumulative units of opin-
ion, i.e. .m ⇒ m + 1. Simultaneously, adopted individuals may lose their interest in
spreading and become recovered with a probability.γ. Furthermore, a small number
of .ρ0 is defined to assign the fraction of adopted individuals in the network, and a
steady-state is reached if all individuals in the network become recovered since there
is no chance for individuals to change their current states afterward.

2.2 Quantum Probabilistic Approach

Regardless of using the classical or quantum approach, probabilistic approaches aim
to assign marginal probabilities to each event in the sample space. More fundamen-
tally, the two approaches differ in their representation. The classical approach uses
set-theoretic representation and its sample space is defined as a set of possible events,
e.g. .{m0,m1}. On the other hand, the quantum approach uses vector space represen-
tation and its sample space is a plane space spanned by the orthogonal basis vectors,
e.g. .|m0〉 and .|m1〉. This braket notation is also called Dirac notation and is com-
monly used in the representation of quantum states. The differences in classical and
quantum sample space representations mainly stem from the assumptions that are
used in these approaches. The classic probabilistic theory assumes a sample space
in which the outcome of the events are mutually exclusive, i.e. .Ω = {m0,m1}. In
quantum probabilistic theory, on the other hand, events are modeled as subspaces of
a Hilbert space in which each orthogonal basis vector corresponds to an elementary
outcome, i.e. .|M〉 = m0|0〉 + m1|1〉, where

M =
[
m0

m1

]

An inner product of vector .M is obtained with the multiplication of .|M〉 with its
complex conjugate (.|M〉∗ = 〈M |) as follows:

〈M |M〉 =
(
m0

m1

) (
m0 m1

)

=
( |m0|2 |m0||m1|∗

|m1||m0|∗ |m1|2
)

=
(

ψm0ψm0
∗ ψm0ψm1

∗

ψm1ψm0
∗ ψm1ψm1

∗
) (1)

As we are familiar with, representing the set of outcomes as mutually exclu-
sive events in classical theory enables us to easily define more complex events that
require intersection, union, and/or distribution of individual events. In general, the
conjunction (intersection) of two independent events is represented by .(m0 ∩ m1)

and the disjunction (union) is by .(m0 ∪ m1). Furthermore, a distributive axiom is
also applicable in classical theory, i.e. .m0 ∩ (m1 ∪ m2) = (m0 ∩ m1) ∪ (m0 ∩ m2),
since it obeys a set theory.
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In the quantum approach, on the other hand, mutually exclusive events are repre-
sented by orthonormal basis vectors contained in the Hilbert space. This geometric
approach enables us to define a superposition state which comprises the occurrence
of different events at the same time. The superposition state of happening both events
of .m0 and .m1 and computed as follows:

|S〉 = eθm0√
2

|m0〉 + eθm1√
2

|m1〉 = eθm0√
2

ψm0 + eθm1√
2

ψm1 (2)

Here, the exponential term (.eiθm0 ) is called global phase factor of the quantum
probability amplitude. The probability (.Pr(m0)) is related with a quantum proba-
bility amplitude (.eiθm0 |m0〉) which corresponds to the amplitude of a wave function,
and this relation to the classical probability is obtained by multiplying this amplitude
with its complex conjugate, i.e. .|eiθm0 |2 = eiθm0 |m0〉e−iθm0 |m0〉∗. This connection is
obtained via Born’s rule as follows:

Pr(m0) = |eiθm0 ψm0 |2 (3)

Although the result of an individual event probability in the classical probability
theory converges to that in the quantum approach, the computation of the union of
mutually exclusive events differs in these two methods. The quantum-like approach
yields an extra term, “interference effect”,which does not exist in classical probability
theory. To illustrate, suppose that we aim to obtain the union of three mutually
exclusive events by using classical probability formula, which is given by:

Pr(A ∪ B ∪ C) = Pr(A) + Pr(B) + Pr(C) (4)

The quantum counterpart of the classical probability of the union of threemutually
exclusive events is obtained by using Born’s rule in (3):

Pr(A ∪ B ∪ C) = |eiθAψA + eiθBψB + eiθCψC |2
= eiθAψA.e

−iθAψA + eiθAψA.e
−iθBψB

+ eiθAψA.e
−iθCψC + eiθBψB .e−iθAψA

+ eiθBψB .e−iθBψB + eiθBψB .e−iθCψC

+ eiθCψC .e−iθAψA + eiθCψC .e−iθBψB

+ eiθCψC .e−iθCψC

(5)

Knowing that,

cos(θ1 − θ2) = eθ1−θ2 + e−θ1+θ2

2
(6)
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Equation 5 reduces to:

Pr(A ∪ B ∪ C) = |ψA|2 + |ψB |2 + |ψC |2
+ 2

(|ψA||ψB |cos(θA − θB) + |ψA||ψC |cos(θA − θC)

+ |ψB ||ψC |cos(θB − θC)
) (7)

The additional terms in (7) compared to (4) are called as “interference terms”
which does not exist in classical probability theory [11, 12, 14, 17, 19].

2.3 Entropy-Based Uncertainty Measures of Stochastic
Processes

The second law of thermodynamics states that the total entropy of an isolated system
(the thermal energy per unit temperature that is unavailable for doing useful work)
can never decrease. This concept of entropy was introduced by Rudolf Clausius in
1865 [23] as a term in the field of thermodynamics, later adapted into statistical
physics and information theory to characterize the uncertain, ambiguous, and disor-
dered behavior of stochastic processes [20]. After Clasius’ definition of entropy as a
thermodynamic concept, Shannon [26, 26] argued that this concept can be extended
into different disciplines due to its probabilistic nature in defining the randomness of
stochastic processes, and proposed Shannon entropy [25] as an uncertainty measure.
Later, the entropy measure proposed by Renyi et al. [22], called Renyi entropy, has
been applied in diverse areas including quantum information, information theory,
and fractal theory. Another non-extensive measure of Tsallis entropy which is an
extension of Boltzman entropy [28] has also gained a lot of attention. Recently, a
new entropy named Deng entropy [3] has been proposed to solve the uncertainty of
the stochastic processes based on the given evidence. [15] describes the similarities
and differences of these entropy measures to better explain their use areas.

For a random variable .X over a probability space .Ω , Shannon entropy is defined
for continuous and discrete variables as follows, respectively:

S(X) = −
∫
Ω

p(x)log2(p(x))dx

S(X) = −
∑
x∈Ω

p(x)log2(p(x))
(8)

where.p(x) denotes the probability distribution.Although thismeasure performswell
in the existence of finite storage capacity of transmitting channel in communication,
it falls short in infinite storage capacity. To address this, Renyi [8] proposed a new
measure, called Renyi entropy, which is defined for discrete variables as follows:
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Sα(X) = 1

1 − α
ln

( n∑
k=1

pα
k

)
(9)

where.α �= 1 and.α ≥ 0. When the order of.α equals to 1, Renyi entropy degenerates
into Shannon entropy.

On the contrary of Shannon and Renyi entropy measures which yields expo-
nential equilibrium distribution, Tsallis extended these definitions and proposed a
new entropy measure which can be used with any non-negative real number, which
yields a power-law equilibrium distribution. The formula of Tsallis entropy for a
non-negative real number .q is as follows:

Sq(X) = 1 − ∑n
i=1 p

α
i

q − 1
(10)

where.q �= 1 and.q ≥ 0.When the order of.q equals to 1, Tsallis entropy degenerates
into Shannon entropy.

Belief entropy, named as Deng entropy, on the other hand, can be described as a
combination of a measure of total non-specificity in the basic probability assignment
indicating the degree of belief in .Ai ∈ P(X) and a measure of discord of the mass
function among various focal elements. Its formula is:

Hd = −
∑
i

m(Ai )ln
m(Ai )

2|Ai−1| − 1
(11)

3 Methodology

In this study, we aim to mathematically describe quantum-like social contagion and
show the utilization of belief entropy as a heuristic of interference term inside. Next
sections will give detail explanation for these concepts.

3.1 Edge-Based Compartmental Theory

Here, we employ an edge-based compartmental theory to understand the dynamics
of the quantum social contagion approach inspired by numerous studies [30, 31, 34].
For this, suppose that there are two individuals who are connected to each other in
the network, e.g., .u and .v, .Eu,v �= 0. Among these, .u, (u ∈ V ) is an individual who
is in the susceptible state. Let .θ(t) is the probability that the individual .v has not
transmitted information to the individual.u by time.t , the quantum probability of the
same event can be calculated by using Born’s rule in (3) as follows:
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|√θ(t)eθ(t)|2 = (
√

θ(t)eθ(t)).(
√

θ(t)e−θ(t)) = θ(t) (12)

Then the probability that individual.u with degree.ku has received.m pieces infor-
mation from his distinct neighbors by time .t will be binomially distributed and
computed as:

τm(ku, t) =
(
ku
m

)
θ(t)(ku−m)(1 − θ(t))m (13)

Individual.u’s state depend on the number of information he has obtained from his
neighbors. If he receives enough pieces of information from his distinct neighbors
to exceed his threshold (.φu), i.e. .m ≥ φu , then he will adopt the information and try
to transmit it to his susceptible neighbors in the next time step. Otherwise, he will
keep his susceptible state in the next time step. Thus, the probability of individual .u
with degree .ku being susceptible is:

su(ku, t) =
∑
φu

F(φu)

φu−1∑
m=0

τm(ku, t)

=
∑
φu

F(φu)

φu−1∑
m=0

(
ku
m

)
θ(t)(ku−m)(1 − θ(t))m

(14)

where .F(φu) denotes the information adoption threshold function. To consider the
heterogeneity among individuals, we represented .F(φu) as a binomial distribution
in which individuals may have either a relatively lower threshold (.TA = 1) with
probability .p, or a relatively higher threshold (.TB > 1) with probability .1 − p.

F(φu) =
{
TA, with probability p

TB, with probability 1-p
(15)

Combining (14) and (15), we can obtain the fraction of susceptible individuals at
time .t as follows:

S(t) =
∑
ku

P(ku)su(ku, t)

=
∑
ku

P(ku)
∑
φu

F(φu)

φu−1∑
m=0

(
ku
m

)
θ(t)(ku−m)(1 − θ(t))m

=
∑
ku

P(ku)

[
pθ(t)(ku) + (1 − p)

TB−1∑
m=0

(
ku
m

)
θ(t)(ku−m)(1 − θ(t))m

]
(16)

A similar strategy can be applied to calculate the probability of individual .v

with degree .kv being susceptible state. It should be noted that individual .v’s state is
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unknown; however, it is known that individual .u is in susceptible state and cannot
transmit information. Thus, the individual.v can receive information from his.kv − 1
distinct neighbors. Taking all possible values of receiving .m pieces of cumulative
information and .φv into consideration, we obtain:

sv(kv, t) =
∑
φv

F(φv)

φv−1∑
m=0

τm(kv, t)

=
∑
φv

F(φv)

φv−1∑
m=0

(
kv − 1

m

)
θ(t)(kv−m−1)(1 − θ(t))m

= pθ(t)(kv−1) + (1 − p)
TB−1∑
m=0

(
kv

m

)
θ(t)(kv−m−1)(1 − θ(t))m

(17)

In the message-passing approach, adopted individuals may either try to transmit
information or lose their interest in the transmission process and move into the
recovered state. Thus, the following set of ordinary differential equations (ODEs)
define the time dependence of the individuals in each compartment in the system
described above.

d A(t)

dt
= −dS(t)

dt
− γA(t)

dR(t)

dt
= γA(t)

(18)

In edge-based compartmental theory, we have not made any assumption about the
state of individual .v; therefore, .θ(t) may consist of three possible outcomes which
are mutually exclusive in classical approach:

θ(t) = ξS(t) + ξA(t) + ξR(t) (19)

where .ξS(t), .ξA(t), and .ξR(t) represent the probability that a neighbor .v in the sus-
ceptible, adopted, and recovered states, respectively by time .t . To employ quantum
probability rules, we can use Born’s rule in (3) and write counterpart of (19) as
follows (see (7)):

θ(t) = |eiθψξS (t) + eiθψξA (t) + eiθψξR (t) |2

= |ψξS(t)|2 + |ψξA(t)|2 + |ψξR(t)|2 + 2

[
|ψξS(t)||ψξA(t)|cos(θξS(t) − θξA(t))

+ |ψξS(t)||ψξR(t)|cos(θξS(t) − θξR(t)) + |ψξA(t)||ψξR(t)|cos(θξA(t) − θξR(t))

]

(20)
Here, the amplitude.|ψξS(t)|2 refers to.P(ξS(t)), .|ψξA(t)|2 to.P(ξA(t)) and.|ψξR(t)|2

to .P(ξR(t)). The angle .θξS(t) − θξA(t) corresponds to the phase of the inner product
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between .|ξS(t)| and .|ξA(t)|. Note that there is no direct transition from susceptible
state to recovered state, so.cos(θξS(t) − θξR(t)) will be equal to 0. By recalling inverse
Born’s rule again, we can finalize the relation above as:

θ(t) = ξS(t) + ξA(t) + ξR(t)

+ √
ξS(t)ξA(t)cos(θξS(t) − θξA(t)) + √

ξA(t)ξR(t)cos(θξA(t) − θξR(t))
(21)

Herein, the additional terms compared to (19) are called as interference terms that
does not exist in classical probability theory. Later, we draw from statistical network
science to make the connection between these two individuals .u and .v. In the case
of the existence of an uncorrelated network, the probability of an edge connecting
individual .v with a degree .kv to one of its neighbors, e.g., individual .u with degree
.ku , is equal to .kvP(kv)/〈k〉, where .〈k〉 is the mean degree. Thus, it can be obtained
that:

ξS(t) =
∑

kv
kvP(kv)sv(kv, t)

〈k〉

=
∑

kv
kvP(kv)

∑
φv

F(φv)
∑φv−1

m=0 τm(kv, t)

〈k〉

(22)

.θ(t) is a time-dependent variable, and it will not accomplish its definition after
any successful transmission. Therefore, we need to consider its time-dependence to
fully understand the systems dynamics from the beginning till the steady-state. If we
suppose that an adopted individual transmits behavioral information with probability
.λ, the decrease in .θ(t) can be written as:

dθ(t)

dt
= −λξA(t) (23)

At time.t , the behavioral information is not transmitted with probability.1 − λ and
the adopted individuals move into recovered state with probability.γ, simultaneously.
Then;

dξR(t)

dt
= γ(1 − λ)ξA(t) (24)

Substituting (23) into (24) and integrating it with the initial conditions of.θ(0) = 1
and .ξR(0) = 0, we can obtain:

ξR(t) = γ(1 − λ)[1 − θ(t)]
λ

(25)

When.t → ∞, we find the final adoption size.R(∞) once the degree distribution
is known.
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3.2 Belief Entropy as a Heuristic

In this study, we utilize belief entropy as a heuristic for the calculation of interference
term in (21).

Di j = cos(θi − θ j ) = −
∑
i

m(xi )ln
m(xi )

2|xi−1 − 1 (26)

where .|xi | represents the number of possible actions which is equal to three in our
example since individuals can be in one of three states. .m(.) denotes the function of
belief mass in Dempster-Shafer evidence theory. Accordingly,

DSA = cos(θξS(t) − θξA(t)) = −m(xSA)lnm(xSA) (27)

where

m(xSA) = α

∣∣∣∣ξS(t) + ξS(t) − ξA(t)

ξS(t) + ξA(t) − 1

∣∣∣∣ (28)

It should be noted that masses of all the members of the set add up to a total of 1.
Therefore, .α is used as a normalization parameter.

α

(∣∣∣∣ξS(t) + ξS(t) − ξA(t)

ξS(t) + ξA(t) − 1

∣∣∣∣ +
∣∣∣∣ξA(t) + ξA(t) − ξR(t)

ξA(t) + ξR(t) − 1

∣∣∣∣
)

= 1 (29)

Accordingly, (21) can be rewritten as:

θ(t) = ξS(t) + ξA(t) + ξR(t) + √
ξS(t)ξA(t)DSA + √

ξA(t)ξR(t)DAR

= ξS(t) + ξA(t) + ξR(t) − √
ξS(t)ξA(t)m(xSA)lnm(xSA)

− √
ξA(t)ξR(t)m(xAR)lnm(xAR)

(30)

4 Results

Here, we aim to test the performance of belief entropy as a heuristic of interference
term in (19) and (21). For this purpose, we have performance extensive numerical
simulations on uncorrelated random regular networks (RRNs) with .N = 10, 000,
.〈k〉 = 10 and .γ = 1.0.

Figure 1 shows the dependence of error between .R(∞) numerical simulations
and theoretical analysis by using a quantum-like approach on.cos(θξS(t) − θξA(t)) and
.cos(θξA(t) − θξR(t)) interference terms on different initial probabilities .p. Each data
pint on heat map figures are calculated by taking the squared difference of .R(∞)

versus.λ from 0.01 to 1.00 (0.01 increments) between results obtained via theoretical
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Fig. 1 The dependence of error between.R(∞) numerical simulations and theoretical analysis by
using a quantum-like approach on .cos(θξS (t) − θξA(t)) and .cos(θξA(t) − θξR (t)) interference terms
when a .p = 0.3, b .p = 0.6

analysis and numerical simulations using a quantum-like approach. Since the origin
points representswhen both interference terms are equal to zero, the error degenerates
to the one between numerical simulations and the theoretical analysis when classi-
cal approach is used (.e2p=0.3 = 4.1707 and .e2p=0.6 = 1.7643). Since smaller error
values are obtained when.cos(θξS(t) − θξA(t)) = 0.15 and.cos(θξA(t) − θξR(t)) = 0.16
(.e2p=0.3 = 4.1229 and .e2p=0.6 = 1.7326), we can easily argue that quantum-like
approach in edge-based compartmental model of message passing approach in the
modeling of social contagion performs better compared to the classical method since
it can better predict the final adoption size at close to the critical transmission prob-
abilities.

Furthermore, we observed that the optimum value for both interference terms are
obtained when.cos(θξS(t) − θξA(t)) = 0.15 and.cos(θξA(t) − θξR(t)) = 0.16 regardless
of the changing initial probability. Using belief entropy in (30) when .t → ∞ gives
results of .cos(θξS(t) − θξA(t)) = 0.15 and .cos(θξA(t) − θξR(t)) = 0.17 which shows
that our proposed method can be used in the prediction of interference terms in
quantum-like social contagion.

5 Discussion

Among a group of individuals, social contagion occurs when ideas, attitudes, and
behaviors spread. Even though social contagion used to be regarded as a pathogen in
a biological spreading, empirical studies have shown it to be a complex phenomenon
due to the social, cognitive, and behavioral differences between individuals. This
complexity stems from the heterogeneity of individuals in a social contagion and the
uncertainty in their decision-making during the process. In the literature, the former
is addressed by using more complex threshold functions to resemble the adoption
thresholds of individuals and the latter is challenged with the utilization of quantum-
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like functions to better model human decision-making. Although these models are
able to portray the complexity of individuals and better model a social contagion
process, the interference term brings an additional complexity that decreases the
time-efficiency of these models. Additionally, this effect can be determined only
by calibration with a real dataset, causing its application harder. In this study, we
propose a belief entropy-based heuristic for the determination of interference effect
in quantum-like generalization of social contagion. To test the effectiveness of the
proposed approach, we have performed extensive numerical simulations on uncorre-
lated random regular networks (RRNs) and concluded that belief entropy can be used
to compute the interference effect in the quantum-like generalization of social con-
tagion models. We believe that these results will increase the use of quantum social
contagion models in any application area without having a concern of calibration or
time complexity.
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