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1 Introduction 

Imre Simon [2], a Brazilian mathematician and computer scientist, was the first 
who brought tropical geometry into the literature. French mathematicians coined 
the term “tropical” to recognize Simon’s efforts in applying min-plus algebra to 
optimization theory. In tropical geometry, tropical semirings play a significant role. 
Semirings with an underlying carrier set, that is, a subset of the set of real numbers 
and a binary operation of addition as maximum or minimum, product as addition, 
have been devised and reinvented numerous times in diverse fields of research since 
the late 1950s [3]. There are two tropical semirings, depending on the operation. 
One is the minimum tropical semiring, while the other one is maximum. In the 
minimum tropical semiring, an addition of two elements will be a minimum of that 
two elements and multiplication of two elements obtained by adding them. Min-plus 
semiring is another name for this algebraic structure. Similarly in maximum tropical 
semiring, addition of two elements will be the maximum of two elements, and the 
tropical product is a sum of the elements. It is also called as max-plus semiring [4]. 
Examples of max-plus semirings are .(R ∪ (−∞),

O
,
O

), .(Z+ ∪ (−∞),
O

,
O

). 
The tropical semiring .(Z+ ∪ (−∞),

O
,
O

) was introduced by Simons. Max-plus 
semiring is isomorphic to a min-plus semiring, and both are idempotent semirings 
[5]. Working with tropical semirings is appealing because of its simplicity and 
resemblance to algebraic geometry [9]. As a result, the ease of use and applicability 
might be inspiring. The tropical semiring structure is used in a variety of fields, 
including computer science, linear algebra, number theory, automata theory, etc. 
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[3, 8, 12]. Tropical semirings are also used in language theory, control theory, and 
operation research [3]. Tropical semirings are playing an important role in linear 
algebra, especially in solving the linear systems [10, 11, 13]. We intend to decide the 
behavior of some matrices over the tropical semiring. Tropical addition is denoted 
as . 

O
and the tropical product as . 

O
. In this chapter, we are concentrating on the 

maximum tropical semiring [8]. 

2 Preliminaries 

A semiring S is a non-empty set with two binary operations, say addition and 
multiplication, that guarantees the conditions that, .(S,+) has the identity element 0 
and it is commutative monoid; .(S, ·) is a monoid that has a single identity element 
which is 1; multiplication distributes over addition, that is, . a (b + c) = ab + ac

and .(b + c) a = ba + ca, .∀ .a, b, c ∈ S, .a.0 = 0.a = 0 .∀ a ∈ S; and an 
element 1 is not equal to zero [1, 10]. A semiring S is said to be an idempotent 
semiring if .∀ a ∈ S, a + a = a [5]. A semiring is said to be zero-sum-free if 
.a + b = 0 . =⇒ a = b = 0. The maximum tropical semiring is the semiring 
.R = (S ∪ (−∞),

O
,
O

), since the operations . 
O

and . 
O

denoted the maximum 
tropical addition and maximum tropical multiplication, respectively, since S is a 
semiring and R should satisfy the following properties that commutative under 
the tropical addition, .i.e., .a

O
b = .b

O
a .∀ a, b ∈ R. It satisfies the associative 

property under the tropical addition and tropical multiplication .i.e., . (a
O

b)
O

c =
a

O
(b

O
c) and .(a

O
b)

O
c = a

O
(b

O
c) .∀ a, b, c ∈ R, It satisfies the property 

that multliplication distributes over addition .i.e. . a
O

(b
O

c) = (a
O

b)
O

(a
O

c)

.∀ a, b, c ∈ R, property of existence of additive identity .i.e. . ∃ .e ∈ R, .∀ . a ∈ R

such that .e
O

a = a
O

e = a (since the additive identity is .−∞), and it never 
has an additive inverse [10, 20]. Similarly in minimum tropical semiring, instead of 
maximum we have to choose minimum [11, 19]. Maximum tropical semiring is a 
idempotent semiring, and all idempotent semirings are zero-sum-free [5]. Suppose 
that there is a semiring, say S; we denote the set of all .m × n matrices over the 
semiring as .Mm×n(S) and we denoting every .ij th element of .P ∈ Mm×n(S) matrix 
as . pij ; transpose of the matrix P is denoted as . P T . Let .P = (pij ) ∈ Mm×n(S), 
.Q = (qij ) ∈ Mm×n(S), .T = (tij ) ∈ Mn×l(S) and .α ∈ S. Addition of two matrices 
generally calculated by .P + Q = ((pij ) + (qij ))m×n and similarly product of two 
matrices PT can be calculated by, 

. 

nE

i=1

((pik)(tkj ))m×l

and .αP = (α(pij ))m×n. 
Similarly in the max-plus semiring, addition of two tropical matrices, .P

O
Q, 

can be calculated by .(max((pij ), (qij )))m×l , and the multiplication of two tropical
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matrices P. 
O

T is calculated by 

. max((pik) + (tkj ))m×l

and .α
O

P = (α + (pij ))m×n. A system .P
O

x = q is said to be a tropical system 
if all the entries of the system from the tropical semiring . R = (S ∪ (±∞),

O
,
O

)

[16, 17]. A matrix .P ∈ Mm×n(S) is said to be a tropical matrix if all the elements of 
a matrix from the tropical semiring .R = (S ∪ (±∞),

O
,
O

)[5]. A matrix P is said 
to be maximum tropical matrix if all the elements of the matrix from the maximum 
tropical semiring .R = (S ∪ (−∞),

O
,
O

). A matrix P is said to be minimum 
tropical matrix if all the elements of the matrix from the minimum tropical semiring 
.R = (S ∪ (∞),

O
,
O

). Let .S = R be the extended real number system under 
the max-plus algebra, and let P and Q be .m × n matrices over the extended real 
numbers under the operation of maximum tropical semirings, where . P = (pij )m×n

and .Q = (qij )m×n and .(pij ), .(qij ) are the .ij th entries of P and Q, respectively, 
.P ≤ Q .↔ .(pij ) ≤ (qij ) .∀ i, j [11, 18]. A matrix .P = (pij ) is said to be regular 
if .(pij ) /= ±∞. A vector .b ∈ .Sm is said to be a normal vector or regular vector 
if .bj /= −∞ .∀ j ∈ m [10]. Since we have considered max-plus semiring, if we 
consider the min-plus algebra, then in the regular vector, each entries . bj /= ∞
.∀ j ∈ m [11]. A solution . x∗ of the tropical system .P

O
x = q is called as the 

maximal solution if .x ≤ x∗ for any other solution x [10, 11]. A linear system 
.P

O
x = q is said to be a tropical linear system if the elements of the linear system 

are all from any one of the tropical semirings [14, 15]. 

3 Main Results 

A linear system .P
O

x = q is said to be a maximum if the coefficients of the 
linear systems from the maximum tropical semirings [7]. We know that there are 
different methods to solving the linear equations [6]. In this chapter, we have used 
the method of normalization [10, 11]. Consider the system of equation .P

O
x = q. 

.P = (pij ) ∈ Mm×n .(S/(−∞)), .Q = (qij ) ∈ Mm×n(S/(−∞)) since . (S/(x))

denote all the values of R except x, .q = (qj ) is a regular vector .1 ≤ j ≤ m, 
and .j th column of P matrix denoted as . Pj . We begin this section with some basic 
definitions, and then we discuss the general maximal solution of the particular 
matrices. Let us assume the tropical semirings .T = (Z+ ∪ (−∞),

O
,
O

) where 
.Z

+ denoting the set of all natural numbers, . V=.(R∪ (−∞),
O

,
O

) where . R is a set 
of all real numbers, . W=.(Z ∪ (−∞),

O
,
O

) where . Z is a set of all integers. 

Theorem 1 The linear system .P
O

x = q has solution if and only if every row 
of associated normalized matrix U contains at least one element, which is column 
minimum.
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3.1 Analyzing the Maximal Solution of the Tropical Linear 
Systems with Natural Matrix 

Definition 1 A matrix  P ∈ Mm×n(T) is said to be a natural matrix if the entries of 
the P matrix are continuously written with the natural numbers in the way followed 
by the row or column. Types of natural matrix are: 

– Row natural matrix 
– Column natural matrix 

Definition 2 A matrix  P ∈ Mm×n(T) is said be a row natural matrix if it is in the 
form of 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 . . . .. n

n + 1 n + 2 n + 3 . . . .. 2n

2n + 1 2n + 2 2n + 3 . . . .. 3n

: : : : :
: : : : :
.. .. .. .. m.n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Definition 3 A matrix  P ∈ Mm×n(T) is said be column natural matrix, if it is in 
the below form, 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 m + 1 2m + 1 . . . ..

2 m + 2 2m + 2 . . . ..

3 m + 3 2m + 3 . . . ..

: : : : . . .

: : : : . . .

m 2m 3m .. n.m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Theorem 2 Let P ∈ Mm×m(T/(−∞)) be a column natural matrix and P
O

x = q 
the linear system over the tropical semiring (T/(−∞)). If the  m × 1 regular vector 
q is of the form qi = m2 + i, 1 ≤ i ≤ m, then the linear system P

O
x = q has a 

solution with the maximal solution 

. x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m2

m2 − m

m2 − 2m

m2 − 3m

:
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Proof Given P is a column natural matrix over the tropical semiring T/(−∞)
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. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 m + 1 2m + 1 3m + 1 .. .. m(m − 1) + 1
2 m + 2 2m + 2 3m + 2 .. .. m(m − 1) + 2
3 m + 3 2m + 3 3m + 3 .. .. ..

: : : : .. .. ..

: : : : .. .. ..

m 2m 3m 4m .. m(m − 1) m(m − 1) + m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

:
:

xm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m2 + 1
m2 + 2
m2 + 3

:
:

m2 + m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since P̂1 = m+1 
2 , P̂2 = 3m+1 

2 ,  . . . . . . ,  P̂m = 2m2−m+1 
2 , q̂ = 2m2+m+1 

2 finally U 
matrix is a zero matrix. Clearly every row of U matrix has at least one element, 
which is the minimum element in any one of the columns. By Theorem 1, the given 
system has a solution. The maximal solution of given system obtained by xj

∗ = 
yj

∗ − P̂j + q̂ 

. x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m2

m2 − m

m2 − 2m

m2 − 3m

:
m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Theorem 3 Let P ∈ Mm×m(T/(−∞)) be a row natural matrix and P
O

x = q 
linear system over the tropical semiring (T/(−∞)). Since T = (Z+ ∪ 
(−∞),

O
,
O

). If the  m×1 regular vector q is of the form qi = m2+im, 1 ≤ i ≤ m 
then the linear system P

O
x = q has a solution with the maximal solution 

x∗
i = m2 + m − i, for  1 ≤ i ≤ m. 

Proof Given a row natural matrix 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 2 3 4 .. .. m

m + 1 m + 2 m + 3 m + 4 .. .. 2m

2m + 1 2m + 2 2m + 3 2m + 4 .. .. 3m

: : : : .. .. ..

: : : : .. .. ..

(m − 1)m + 1 (m − 1)m + 2 (m − 1)m + 3 .. .. .. m(m − 1) + m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

x4

:
:

xm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m2 + m

m2 + 2m

m2 + 3m

:
:

2m2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since P̂1 = (m2−m+2 
2 ), P̂2 = (m2−m+4 

2 ), P̂3 = (m2−m+6 
2 ),  . . . . . . ,  P̂m = 

(m2−m+2m 
2 )), q̂ = 3m2+m 

2 , now the matrix U has all of its entries zero =⇒ All the
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rows contain at least one column minimum element. By Theorem 1, given system 
has a solution. The general form of the maximal solution is 

. x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m2 + m − 1
m2 + m − 2
m2 + m − 3
m2 + m − 4

:
m2 + m − m

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

3.2 Analysis of the Maximal Solution of the Tropical Linear 
Systems with J-Matrix 

Definition 4 Let P be a m × n matrix, and it is named as J-matrix if all the entries 
of the P matrix are only j . 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

j j j .. j

j j j .. j

j j j .. j

: : : : j

j j j .. j

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Theorem 4 Let P ∈ Mm×m be a J-matrix and P
O

x = q a linear system over the 
tropical semiring V/(−∞) where V=(R ∪ (−∞),

O
,
O

) with the m × 1 normal 
vector q of the form 

. q =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1

q2

q3

:
:

qm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

then 

1. qi = qj for all 1 ≤ i, j ≤ m if and only if the system has solution. 
2. qi /= qj for some 1 ≤ i, j ≤ m if and only if the system has no solution. 

Proof Given matrix is a J-matrix over the tropical semiring V/(−∞)
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. 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

j j j .. j

j j j .. j

j j j .. j

: : : : j

j j j .. j

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

:
:

xm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q1

q2

q3

:
:

qm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Since we have P̂1 = j , P̂2 = j , P̂3 = j ,  . . . ..,  P̂m = j , q̂ = ( q1+q2+...+qm 
m ) = k. 

In U matrix, all the entries are equal in first row, all the entries are equal in second 
row, and similarly, this condition holds till for the last row. 

1. Assume that qi = qj = k, for all 1 ≤ i, j ≤ m; then 

. q1 − (
q1 + q2 + . . . + qm

m
) = . . . .. = qm − (

q1 + q2 + . . . + qm

m
) = 0

now clearly verify that all the elements are column minimum elements. Since 
every row of U matrix has a column minimum element as 0. By Theorem 1, 
the system has a solution. To prove the converse part, assume that the system 
has a solution. By the method of contradiction, suppose that qi /= qj for some 
1 ≤ i, j ≤ m; then clearly we know that minimum element among qk s where 
1 ≤ k ≤ m can be either qi or qj for some 1 ≤ i, j ≤ m; then that minimum 
element will be placed in the same row. All other rows have no column minimum 
element. By Theorem 1, the system has no solution, which is the contradiction 
to our assumption that system has a solution. So qs 

k should be equal for every 
1 ≤ k ≤ m. The general form of the maximal solution for this case will be 
x∗
i = −j + k,∀ 1 ≤ i ≤ m. 

2. Assume qi /= qj for some 1 ≤ i, j ≤ m; then minimum element can be one of 
the values of qs 

k where 1 ≤ k ≤ m. The column minimum element will be placed 
in any one of the rows of U matrix. Other rows cannot have the column minimum 
element. By Theorem 1, that implies system has no solution. Conversely, let 
us assume that system has no solution. We can say that some row of the U 
matrix does not contain any column minimum element. Suppose qi = qj for 
all i and j; then, by first part of Theorem 4, the system has a solution, which is a 
contradiction. 

3.3 Analysis of the Maximal Solution of the Tropical Linear 
Systems with γ -Diagonal Matrix 

Theorem 5 Let P ∈ Mm×m be a γ -diagonal matrix and P
O

x = q a linear 
systems over the tropical semiring V/(−∞) where V=(R∪ (−∞),

O
,
O

) with the 
normal vector qi = γ,  ∀1 ≤ i ≤ m then U = −  ̃P and the system has a solution.
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Proof Given is a γ -diagonal matrix, 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎣

γ 0 0 .. 0
0 γ 0 .. 0
0 0 γ .. 0
: : : : :
0 0 0 .. γ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

x3

:
:

xm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ

γ

γ

:
:
γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

when we compare the normalized matrix P̃ and associated normalized matrix =⇒ 
U = −  P̃ . Now we want to prove that the system has a solution. Associated 
normalized matrix has only two elements ( γ 

m ) and −(γ − γ 
m ). 

Case 1: 
If ( γ 

m ) <  −(γ − γ 
m ), then ( γ 

m ) is the column minimum element in every column. 
Also we know that every row and every column has an entry ( γ 

m ), so every  
row has atleast one column minimum element. Hence the system always has 
a solution. Now the maximal solution of this system is 

. x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ

γ

γ

γ

:
γ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Case 2: 
If −(γ − γ 

m ) < (  γ 
m ) then −(γ − γ 

m ) be the column minimum element in every 
column. Also we know that every row and every column has an entry −(γ − γ 

m ). 
So that every row has at least one column minimum element =⇒ System has a 
solution. In this case the maximal solution is 

.x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
0
:
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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3.4 Analysis of the Maximal Solution of the Tropical Linear 
Systems with Circulant Matrix 

Theorem 6 Let P ∈ Mm×m(V(−∞)) be a circulant matrix and P
O

x = q a 
linear systems over the tropical semiring V/(−∞) where V=(R ∪ (−∞),

O
,
O

) 
with the m × 1 normal vector q of the form q = Cj , where Cj is a j th  column of 
the circulant matrix; then the following conditions hold: 

1. P̂i = P̂j = q̂, ∀ 1 ≤ i, j ≤ m 
2. P̃ is also circulant matrix. 
3. System has a solution. 
4. x∗ = y∗ 

Proof 

1. Given P ∈ Mm×m is a circulant matrix over the tropical semiring V/(−∞). We  
know that P̂j = ( p1j +p2j +...+pmj 

m ), ∀j ∈ m. Clearly every row of circulant matrix 
has every element from ci s , ∀ 0 ≤ i ≤ m − 1 exactly once and every column of 
the circulant matrix has every element from ci s , ∀ 0 ≤ i ≤ m − 1 exactly once. 
Sum of the entries in every columns is equal. Let the column sum of the circulant 
matrix be r. When calculating the P̂j , the  P̂j = r 

m = k ∀ j ∈ 1, 2, . . . m. So we  

conclude that P̂i = P̂j = q̂ = k, ∀ 1 ≤ i, j ≤ m. 
2. For the given system P

O
x = q, the normalized system is P̃

O
y = q̃ 

We know that by the first part of Theorem 6, we know P̂i = P̂j = q̂. Assume 
that P̂i = P̂j = q̂ = k 

. 

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 − k cm−1 − k cm−2 − k .. c1 − k

c1 − k c0 − k cm−1 − k .. c2 − k

c2 − k c1 − k c0 − k .. c3 − k

: : : : :
: : : : cm−1 − k

cm−1 − k cm−2 − k c2 − k .. c0 − k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1

y2

y3

:
:

ym

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

c0 − q̂

c1 − q̂

c2 − q̂

:
:

cm−1 − q̂

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

This normalized matrix satisfies all the conditions of a circulant matrix. We can 
conclude that P̃ is also a circulant matrix. 

3. After finding the normalized matrix when we are finding the associated normal-
ized matrix, we are getting U matrix as, 

. U =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

q̃1 − (c0 − k) q̃1 − (cm−1 − k) q̃1 − (cm−2 − k) .. q̃1 − (c1 − k)

q̃2 − (c1 − k) q̃2 − (c0 − k) q̃2 − (cm−1 − k) .. q̃2 − (c2 − k)

q̃3 − (c2 − k) q̃3 − (c1 − k) q̃3 − (c0 − k) .. q̃3 − (c3 − k)

: : : : :
: : : : ˜qm−1 − (cm−1 − k)

q̃m − (cm−1 − k) q̃m − (cm−2 − k) q̃m − (c2 − k) .. q̃m − (c0 − k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

if q = Cj , j th  column of U matrix is zero, and in the j th  column, all 
elements are column minimum elements. We have at least one column minimum
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element in every row of the associated normalized matrix U . By Theorem 1, we  
can conclude that the system has a solution. Maximal solution of this system 
depending upon the y∗. For each value of y∗, we can find different maximal 
solution. 

4. We know that 

. x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1
∗ − P̂1 + q̂

y2
∗ − P̂2 + q̂

y3
∗ − P̂3 + q̂

:
yn

∗ − P̂n + q̂

⎤

⎥
⎥
⎥
⎥
⎥
⎦

By the first part of Theorem 6, we have  P̂i = P̂j = q̂, ∀ 1 ≤ i, j ≤ m 

. x∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

y1
∗

y2
∗

y3
∗

:
yn

∗

⎤

⎥
⎥
⎥
⎥
⎥
⎦

= y∗

hence x∗ = y∗. 

Notes and Comments To determine the solutions of tropical linear systems, we 
employed the normalization method in this article. We talked about the conditions 
in tropical systems and came up with a unique solution, many solutions, and no 
solution. We used normalized method to determine the maximal solution of the 
linear equations over the tropical semirings. We worked on some special matrices 
and studied the general form of the maximal solution of that special matrices. We 
have also given several theorems about the general maximal solutions of specific 
linear systems over the tropical semirings. 
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