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Preface 

The Canadian University Dubai, UAE, and United Arab Emirates University, 
UAE, jointly organized the International Conference on Recent Developments 
in Mathematics (ICRDM 2022) during August 24–26, 2022, in Hybrid mode at 
Canadian University Dubai, UAE. The major objective of ICRDM 2022 is to 
promote scientific and educational activities toward the advancement of common 
man’s life by improving the theory and practice of various disciplines of Math-
ematics. The conference was a grand success, and more than 500 participants 
(professors/scholars/students) enriched their knowledge in the wings of mathe-
matics through ICRDM 2022. Over 200 leading researchers worldwide served 
in various capacities to organize ICRDM 2022. Thirty-one eminent speakers 
worldwide delivered the keynote address and invited talks in this conference. 
Three hundred seventy-six researchers submitted their quality research articles to 
ICRDM 2022 through EasyChair. We shortlisted more than 300 research articles 
for oral presentations authored by dynamic researchers around the world. After peer 
review, 119 manuscripts were shortlisted for publication in the Springer book series: 
Trends in Mathematics. We hope that ICRDM 2022 inspired several researchers 
in mathematics; shared research interest and information; and created a forum of 
collaboration to build a trust relationship. We feel honored and privileged to serve 
the best recent developments in the field of mathematics to the readers in two 
volumes. Volume I: Recent Developments in Algebra and Analysis and Volume II: 
Advances in Mathematical Modeling and Scientific Computing. 

This book comprises the recent developments in Algebra and Analysis. A basic 
premise of this book is that the quality assurance is effectively achieved through 
the selection of quality research articles by the scientific committee that consists 
of several potential reviewers worldwide. This book comprises the contribution of 
several dynamic researchers in 37 chapters. Each chapter identifies the existing 
challenges in the areas of Algebra and Analysis and emphasizes the importance of 
establishing new theorems and algorithms to addresses the challenges. Each chapter 
presents a selection of research problem, furnishes theorems and algorithms suitable 
for solving the problem with sufficient mathematical background, and summarizes 
the obtained results to understand the domain of applicability. This book also
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vi Preface

provides a comprehensive literature survey which reveals the challenges, outcomes, 
and developments of higher-level mathematics in this decade. The theoretical 
coverage of this book is relatively at a higher level to meet the global orientation 
of Algebra and Analysis. 

The target audience of this book is postgraduate students and researchers. This 
book promotes a vision of Algebra and Analysis as integral to modern science. 
Each chapter contains important information emphasizing Algebra and Analysis, 
intended for the professionals who already possesses a basic understanding. In this 
book, theoretically oriented readers will find an overview of Algebra and Analysis 
and applications. The readers can make use of the literature survey of this book to 
identify the current trends in Algebra and Analysis. It is our hope and expectation 
that this book will provide an effective learning experience and referenced resource 
for all young mathematicians in the areas of Algebra and Analysis. 

As editors, we would like to express our sincere thanks to all the administrative 
authorities of Canadian University Dubai, UAE, and United Arab Emirates Univer-
sity, UAE, for their motivation and support. We also extend our profound thanks 
to all faculty members and staff members of the institutes. We especially thank all 
the members of the organizing committee of ICRDM 2022 who worked as a team 
by investing their time to make the conference as a grand success. We express our 
sincere gratitude to all the referees for spending their valuable time to review the 
manuscripts which led to substantial improvements and sort out the quality research 
papers for publication. We thank EasyChair platform for providing the manuscript 
submission and review service. We are thankful to the project coordinator and team 
members from Springer Nature for their commitment and dedication toward the 
publication of this book. The organizing committee is grateful to Dr. Chris Eder, 
Associate Editor, Mathematics, Birkhäuser, Springer Nature for his continuous 
encouragement and support toward the publication of this book. 

Al Ain, United Arab Emirates Ho-Hon Leung 
Jalandhar, Punjab, India R. Sivaraj 
Dubai, United Arab Emirates Firuz Kamalov
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Part I 
Algebra



Fuzzy Quotient BM-Algebra 
with Respect to a Fuzzy BM-Ideal 

Julie Thomas and K. Indhira 

Keywords BM-algebra · Fuzzy BM-subalgebra · Fuzzy BM-ideal 

1 Introduction 

We take into consideration a class of abstract algebra known as BM-algebra which 
was introduced by Kim and Kim [1]. This algebraic structure was given the new 
name TM-algebra by Megalai and Tamilarasi [2]. Several authors (see [3–6], and 
[7]) looked at the different characterizations of this structure and the relationship 
between other algebras and them. Zadeh et al. [8] and Ameri et al. [9] stated several 
elementary properties of finite BM-algebras. Application of the fuzzy set concept 
to group theory by Rosenfeld [10] led to the fuzzification of different algebraic 
structures including BM/TM-algebra. Saeid [11] and Megalai and Tamilarasi [12] 
explored the characteristics of the newly created algebraic structure known as fuzzy 
BM/TM-algebra after applying the fuzzy set theory to BM/TM-algebra. After that, 
several fuzzy structures in BM/TM-algebras were considered by many researchers 
(see [13–17], and [18]). Handam [19] considered the quotient structure of TM-
algebra via an ideal. Thus there arises a gap of defining quotient fuzzy structure 
via a fuzzy ideal in BM-algebra, and we found that further research is needed in this 
regard. In this paper, we are trying to generalize the concept of quotient BM-algebra 
in the crisp case defined by Handam [19]. We define a compatible equivalence 
relation using a fuzzy BM-ideal and the constant θ in a BM-algebra X and study 
the quotient structure obtained using this. 

J. Thomas · K. Indhira (o) 
Department of Mathematics, Vellore Institute of Technology, Vellore, Tamil Nadu, India 
e-mail: kindhira@vit.ac.in 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
H.-H. Leung et al. (eds.), Recent Developments in Algebra and Analysis, 
Trends in Mathematics, https://doi.org/10.1007/978-3-031-37538-5_1
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2 Preliminaries 

We are reminded of a few definitions and findings that are necessary for the sections 
that follow. 

Definition 1 A BM-algebra is a triple with the notation (X, ∗, θ)  in which X is a 
non-empty set with a fixed member θ and ∗ is a binary operation so that the two 
criterias 

1. x ∗ θ = x 
2. (x ∗ y) ∗ (x ∗ z) = z ∗ y 

are met for all x, y, z ∈ X. 

Definition 2 A subset S /= φ of X is called a BM-subalgebra of X if x ∗ y ∈ S for 
all x, y ∈ S. A subset I of X is known as a BM-ideal of X if it holds the following 
two criterias: 

1. θ ∈ I . 
2. x ∗ y ∈ I and y ∈ I =⇒ x ∈ I for all x, y ∈ X. 

Definition 3 Consider two BM-algebras (X, ∗, θ)  and (Y, ∗', θ '). If a mapping φ : 
X → Y satisfies φ(x  ∗ y) = φ(x)  ∗' φ(y)  for all x, y ∈ X, then it is called a 
BM-homomorphism. 

Definition 4 The pair (X, μA) in a set  X is considered as a fuzzy set A where the 
function is μA : X → [0, 1] and is named as the membership function of A. The set  
U(μA; α) := {x ∈ X|μA(x) ≥ α} for α ∈ [0, 1] is called an upper level set of A. 

Definition 5 Let f be a mapping defined from X into Y , where A = (X, μA) and 
B = (Y, ηB) be fuzzy sets in X and Y . Consequently f (A)  is a fuzzy set in f (X)  
called the image of A under f , where μf (A) defined as 

. f (μA) (y) =
{

sup {μA (x)| x ∈ f −1 (y) /= φ}
0 if f −1(y) = φ

for all y ∈ f (X). 
Let ηf −1(B) is defined by f −1(ηB)(x) = ηB(f (x)) for all x ∈ X, then the inverse 

image f −1(B) in X is again a fuzzy set in X. 

Definition 6 Let f be any function from X to Y. Membership function μA of X is 
called f -invariant if f (x) = f (y)  implies μA (x) = μA (y) ∀x, y ∈ X. 

Definition 7 A fuzzy subset A = (X, μA) in a BM-algebra X is known as a fuzzy 
BM-ideal of X, if  

(i) μA(θ) ≥ μA(x) 
(ii) μA(x) ≥ min{μA(x ∗ y), μA(y)} 
for all x, y ∈ X.
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Theorem 1 A is a fuzzy BM-ideal iff its level subset μα is a BM-ideal where α ∈ 
Im(μA). 

Theorem 2 If ϕ : X → Y is an epimorphism from BM-algebra (X, ∗, θ)  onto 
another BM-algebra (Y, ∗', θ '), then X/ker(ϕ) ∼= Y . 

3 Construction of a Quotient BM-Algebra Using a Fuzzy 
BM-Ideal 

Let A = (X, μA) be a fuzzy BM-ideal of a BM-algebra (X, ∗, θ). 

Lemma 1 Let x ∼θ y if and only if μA (x ∗ y) = μA (y ∗ x) = μA(θ) for any 
x, y ∈ X. Then ∼θ is an equivalence relation on X. 

Proof Let x, y, z ∈ X. Since μA (x ∗ x) = μA (θ) we get x ∼θ x. Hence ∼θ is 
reflexive. Assume that x ∼θ y. Then we have μA (x ∗ y) = μA (y ∗ x) = μA (θ) 
and hence y ∼θ x which implies ∼θ is symmetric. Now, suppose that x ∼θ y and 
y ∼θ z. We have  μA (x ∗ y) = μA (y ∗ x) = μA (θ) = μA (y ∗ z) = μA (z ∗ y). 
Then 

. μA (x ∗ z) ≥ min {μA ((x ∗ z) ∗ (x ∗ y)) , μA (x ∗ y)}

. = min {μA (y ∗ z) , μA (x ∗ y)}

. = min {μA (θ) , μA (θ)}

. = μA(θ)

Since A is a fuzzy BM-ideal, we have μA (θ) ≥ μA(z ∗ x). Combining both we get 
μA (x ∗ z) = μA(θ). Similarly, μA (z ∗ x) = μA(θ). Thus, x ∼θ z, and hence ∼θ 
is transitive. 

Lemma 2 ∼θ is a congruence relation. 

Proof Assume that x ∼θ y and u ∼θ v, for x, y ∈ X, which implies μA (x ∗ y) = 
μA (y ∗ x) = μA (θ) = μA (u ∗ v) = μA (v ∗ u). Then 

.

μA ((x ∗ u) ∗ (y ∗ v)) ≥ min {μA (((x ∗ u) ∗ (y ∗ v)) ∗ (x ∗ y)) , μA (x ∗ y)}
= min {μA (((x ∗ u) ∗ (x ∗ y)) ∗ (y ∗ v)) , μA (x ∗ y)}
= min {μA ((y ∗ u) ∗ (y ∗ v)) , μA (x ∗ y)}
= min {μA (v ∗ u) , μA (x ∗ y)}
= μA(θ)



6 J. Thomas and K. Indhira

Then by (i) of Definition 7, we get μA ((x ∗ u) ∗ (y ∗ v)) = μA(θ). 
Similarly, it can be shown that μA ((y ∗ v) ∗ (x ∗ u)) = μA(θ). 
Hence, x ∗ u ∼θ y ∗ v, proving that ∼θ is compatible. 

Remark 1 We denote Ax = {y ∈ X| y ∼θ x} for the corresponding equivalence 
class containing the element x and X/A = {Ax | x ∈ X} for the set of equivalence 
classes of X. 

Theorem 3 Let A be a fuzzy BM-ideal of a BM-algebra X. Define a binary 
operation * on X/A by Ax * Ay = Ax∗y for all x, y ∈ X. Then (X/A,*, Aθ ) 
is a BM-algebra called the fuzzy quotient BM-algebra.

Proof Consider any Ax,Ay ∈ X/A. 
Then *

(
Ax,Ay

) = Ax∗y ∈ X/A. 
Also, if Ax = Au and Ay = Av , then Ax∗y = Au∗v . Hence, * is well defined. 
Now it is enough to show that X/A is a BM-algebra. 
For, consider any Ax ∈ X/A. 
We get Ax * Aθ = Ax∗θ = Ax . 
Also, for any Ax,Ay,Az ∈ X/A, we have(
Ax * Ay

)
* (Ax * Az) =

(
Ax∗y * Ax∗z

) = A(x∗y)∗(x∗z) = Az∗y . 
Hence the proof.

Example 1 Consider a BM-algebra (X, ∗, θ)  defined by the following table. 

. 

∗ θ a b c

θ θ a c b

a a θ b c

b b c θ a

c c b a θ

Define μA : X → [0, 1] by μA (θ) = μA (a) = 0.7, μA (b) = μA (c) = 0.4. 
Then μA is a fuzzy BM-ideal. Then a ∼θ θ and b ∼θ c. 
Thus, Aθ = Aa = {θ,  a} and Ab = Ac = {b, c}. Take  X/A = {Aθ,Ab}. 
Then, (X/A,*, Aθ ) is a BM-algebra.

Lemma 3 Let ϕ : X → Y be a homomorphism of BM-algebras. If B = (Y, μB) is 
a fuzzy BM-ideal of Y, then the pre-image ϕ−1 (B) = (X, ϕ−1(μB)) of B under ϕ is 
a fuzzy BM-ideal of X. 

Proof For any x, y ∈ X, 

.

ϕ−1 (μB) (x) = μB (ϕ (x))

≥ min{μB

((
ϕ (x) ∗' ϕ (y)

)
, μB (ϕ (y))

}
= min {μB (ϕ (x ∗ y)) , μB (ϕ (y))}
= min{ϕ−1(μB) (x ∗ y) , ϕ−1 (μB) (y)}
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Hence ϕ−1 (B) is a fuzzy BM-ideal. 

Theorem 4 Let ϕ : X → Y be an epimorphism and B = (Y, μB) be a fuzzy  
BM-ideal of Y . Then X/ϕ−1(B) ∼= Y/B. 

Proof Let A = ϕ−1 (B) = (
X, ϕ−1 (μB)

)
. By Theorem 3 and previous Lemma 3, 

X/A and Y/B  are (fuzzy) BM-algebras. Define η : X/A → Y/B  by η (Ax) = 
Bϕ(x). Assume 

. Ax = Ay =⇒ ϕ−1 (μB) (x ∗ y) = ϕ−1 (μB) (y ∗ x) = ϕ−1 (μB) (θ)

. =⇒ μB (ϕ (x ∗ y)) = μB (ϕ (y ∗ x)) = μB (ϕ (θ))

. =⇒ μB

(
ϕ

(
x) ∗' ϕ(y

)) = μB

(
ϕ

(
y) ∗' ϕ(x

)) = μB

(
θ ')

. =⇒ Bϕ(x) = Bϕ(y)

. =⇒ η (Ax) = η(Ay)

Thus the map η is well defined. Consider 

. η
(
Ax * Ay

) = η
(
Ax∗y

)

. = Bϕ(x∗y)

. = Bϕ(x)∗'ϕ(y)

. = Bϕ(x) *' Bϕ(y)

. = η (Ax) *' η(Ay)

Thus, η is found to be a homomorphism. 
Now, let Bz ∈ Y/B  for z ∈ Y . 
Since ϕ is an onto homomorphism, ∃x ∈ X so that ϕ (x) = z, which implies that 

. η (Ax) = Bϕ(x) = Bz

proving that η is onto. 
Now, assume η (Ax) = η

(
Ay

)

. =⇒ Bϕ(x) = Bϕ(y)

. =⇒ μB

(
ϕ (x) ∗' ϕ (y)

) = μB

(
ϕ (y) ∗' ϕ (x)

) = μB

(
θ ')

. =⇒ μB (ϕ (x ∗ y)) = μB (ϕ (y ∗ x)) = μB (ϕ(θ))
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. =⇒ ϕ−1 (μB) (x ∗ y) = ϕ−1 (μB) (y ∗ x) = ϕ−1 (μB) (θ)

. =⇒ Ax = Ay

Hence the proof. 

Lemma 4 Let A be a fuzzy BM-ideal of X. If the upper level subset μα = 
{x ∈ X| μA (x) ≥ α} /= φ for all α ∈ [0, 1], then μα is found to be a BM-ideal 
of X and μA (θ) = 1. 

Proof Given μ1 /= φ, thus ∃x ∈ μ1 such that μA (x) = 1. 
Since μA (θ) ≥ μA(x), we get μA (θ) = 1 and hence θ ∈ μα for any α ∈ [0, 1]. 
Now, assume x ∗ y ∈ μα and y ∈ μα . 
Thus, we have μA (x ∗ y) ≥ α and μA (y) ≥ α. Then 

. μA (x) ≥ min {μA (x ∗ y) , μA (y)} ≥ α

implying that x ∈ μα . Hence μα is a BM-ideal. 

Theorem 5 Suppose that μα /= φ for a fuzzy BM-ideal A of X, for all α ∈ [0, 1]. 
Then there exists a BM-ideal K of X/A with the property (X/A) 

K 
∼= X/μα . 

Proof From Lemma 4, μα is a BM-ideal of X and μA (θ) = 1. 
Define ϕ : X/A → X/μα by ϕ (Ax) = μαx for all x ∈ X. 
If Ax = Ay , then 
μA (x ∗ y) = μA (y ∗ x) = μA (θ) = 1 
≥ α for all α ∈ [0, 1]. 
Thus, x ∗ y ∈ μα , y ∗ x ∈ μα , which implies μαx = μαy . Hence, ϕ is well 

defined. 
Clearly, ϕ is onto. Now let K = ker (ϕ). 
Then the proof follows by Theorem 2. 

Theorem 6 If A is a fuzzy BM-ideal of X with μ1 /= φ, then X/A ∼= X/μ1. 

Proof It is enough to show that the epimorphism ϕ defined in Theorem 5 is one to 
one. 

For example, let ϕ (Ax) = ϕ(Ay). 

. μ1x = μ1y =⇒ x ∗ y ∈ μ1 and y ∗ x ∈ μ1

. =⇒ μA (x ∗ y) = μA (y ∗ x) = 1 = μA (θ)

. =⇒ Ax = Ay

Hence ϕ : X/A → X/μ1 is an isomorphism. 

Theorem 7 Let ϕ be an epimorphism of BM-algebras from X onto Y and μ1 = 
ker(ϕ). Then X/A ∼= Y where A is a fuzzy BM-ideal of X.
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Proof By Theorem 2, X/ ker(ϕ) ∼= Y . 
i.e., X/μ1 ∼= Y . 
But we have X/A ∼= X/μ1 by Theorem 6. 
Hence X/A ∼= Y . 

Let us try to prove the above theorem in a more general case. 

Theorem 8 Let A be a ϕ-invariant fuzzy BM-ideal of X such that φ /= μ1 ⊆ 
ker(ϕ), where ϕ is an epimorphism of BM-algebras from X onto Y . Then X/A ∼= Y . 

Proof We define η : X/A → Y by η (Ax) = ϕ(x). 
Let Ax = Ay , then μA (x ∗ y) = μA (y ∗ x) = μA (θ) = 1. 

. =⇒ x ∗ y, y ∗ x ∈ μ1 ⊆ ker (ϕ)

. =⇒ ϕ (x ∗ y) = ϕ (y ∗ x) = ϕ (θ) = θ '

. =⇒ ϕ (x) ∗' ϕ (y) = ϕ (y) ∗' ϕ (x) = θ '

. =⇒ ϕ (x) = ϕ(y)

Hence η is well defined. 
Consider η

(
Ax * Ay

) = η
(
Ax∗y

)

. = ϕ (x ∗ y) = ϕ (x) ∗' ϕ (y)

. = η (Ax) ∗' η(Ay)

Thus η is a homomorphism. 
Clearly η is onto, since ϕ is onto. 
Suppose η (Ax) = η

(
Ay

)

. =⇒ ϕ (x) = ϕ (y)

. =⇒ ϕ (x) ∗' ϕ (y) = θ ' = ϕ (y) ∗' ϕ (x)

. =⇒ ϕ (x ∗ y) = ϕ (y ∗ x) = θ ' = ϕ (θ)

=⇒ μA (x ∗ y) = μA (y ∗ x) = μA(θ) since A is ϕ-invariant.
=⇒ Ax = Ay . 

Hence η is an isomorphism. 

Lemma 5 Let A be a fuzzy BM-ideal of X. Then the natural homomorphism πA : 
X → X/A defined by πA (x) = Ax is always an onto map. Analogous to this, if μA 
is the characteristic function χ{θ}, then πA is an isomorphism. 

Proof Clearly, if A is a fuzzy BM-ideal of X, then πA is an epimorphism.
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Now, suppose μA = χ{θ}. If  πA (x) = πA(y), then Ax = Ay for x, y ∈ X.
=⇒ χ{θ} (x ∗ y) = χ{θ} (y ∗ x) = χ{θ} (θ) = 1
=⇒ x ∗ y = θ and y ∗ x = θ
=⇒ x = y, 

proving that πA is one to one. 

Theorem 9 Let ϕ : X → Y be a homomorphism of BM-algebras, and consider 
two fuzzy BM-ideals of X and Y , say  A = (X, μA) and B = (Y, μB), such that 
ϕ (μA) ⊆ μB and μA (θ) ≥ μB(θ '). Then, there exists a homomorphism ϕ∼ : 
X/A → Y/B  with ϕ∼ ◦ πA = πB ◦ ϕ. In other words, the diagram below is 
commutative. 

X

X/A Y/B 

ϕ 

πA πB 

ϕ∼ 

Y  

Proof Since ϕ (μA) ⊆ μB , we have  
μB

(
θ ') ≥ ϕ (μA)

(
θ ') = sup

{
μA

(
ϕ−1

(
θ '))} ≥ μA(θ). 

But we assumed that μB

(
θ ') ≤ μA(θ). 

Hence μA (θ) = μB(θ '). 
Now, define ϕ∼ : X/A → Y/B  by ϕ∼ (Ax) = Bϕ(x). 
Let Ax = Ay . Then 
μA (x ∗ y) = μA (y ∗ x) = μA(θ). 
Now, 
μB

(
ϕ (x) ∗' ϕ (y)

) = μB (ϕ (x ∗ y)) 
≥ ϕ (μA) (ϕ (x ∗ y)) = sup

{
μA

(
ϕ−1 (ϕ (x ∗ y))

)}
≥ μA (x ∗ y) since x ∗ y ∈ f −1 (f (x ∗ y)) 
= μA (θ) 
= μB(θ ') 
Similarly, μB

(
ϕ (y) ∗' ϕ (x)

) = μB(θ ').
=⇒ Aϕ(x) = Aϕ(y)

=⇒ ϕ∼ (Ax) = ϕ∼(Ay). Hence ϕ∼ is well defined. 
Consider ϕ∼ (Ax) *' ϕ

(
Ay

) = Bϕ(x) *' Bϕ(y) 

. = Bϕ(x)∗'ϕ(y)

. = Bϕ(x∗y)

. = ϕ∼
(
Ax∗y

)

. = ϕ∼(Ax * Ay)
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Hence ϕ∼ is a homomorphism. Also for all x ∈ X, 

. (ϕ∼ ◦ πA) (x) = ϕ∼ (πA (x))

. = ϕ∼ (Ax)

. = Bϕ(x)

. = πB(ϕ (x))

. = (πB ◦ ϕ)(x)

4 Conclusion 

We generalized the concept of quotient BM-algebra in the crisp case defined by 
Handam [19], to fuzzy case. We defined a compatible equivalence relation using 
a fuzzy BM-ideal and the constant θ in a BM-algebra X and studied the quotient 
structure obtained using this. This research can be further extended to see how the 
quotients and products behaves in the quotient fuzzy BM-algebra when equipped 
with a fuzzy topology. 
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New Classes of the Quotient Permutation 
BN-Algebras in Permutation 
BN-Algebras 

Enoch Suleiman, Abu Firas Al-Musawi, and Shuker Khalil 

Keywords Cycles · Permutation · BN-algebras · Homomorphism · 
Subalgebra · Quotient 

1 Introduction 

BCK-algebras and BCI-algebras are two types of abstract algebras that were 
introduced by Y. Imai and K. Is’eki [1, 2]. It is well known that the BCK-algebra 
class is a proper subclass of the BCI-algebra class. Next, J. Neggers and H. S. Kim 
[3] suggested and examined a few B-algebra aspects that they believed would be 
of interest. Chang Bum Kim [4] introduced the notion of BN-algebras, which is 
a generalization of B-algebras. Permutation sets are given by Alsalem [5]. Some 
properties and applications for the permutations in symmetric and alternating groups 
are studied [6–13]. A permutation set is as a nonclassical set like fuzzy sets [14– 
20], soft sets [21–26], and nano sets [27]. After that, the notations of permutation 
B-algebra [28], permutation BF-algebra [29], and permutation BH-algebra [30] 
are shown, and some results are studied with their applications using permutation 
sets. We proposed permutation BN-algebras as a new class of BN-algebras and 
listed some of their key characteristics in this study: {1}-commutative, condition 
(D), permutation BN-subalgebra, permutation BN-normal, and permutation BN1-
algebra. Also, the relationships between permutation BN-algebra and other classes 
like permutation BH/B/BF-algebras are given. Moreover, we explored some new 
notions in permutation theory for the first time. We also examined BN-algebra 
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homomorphism, equivalence relations, quotient permutation BN-algebras, and BN-
algebra isomorphism theorems. 

2 Preliminaries 

The fundamental ideas and facts necessary for this subject will be reviewed in this 
section. 

Definition 2.1: [3] Let  X /= ∅ and 0 be a constant with a binary operation ∗. We  
say that (X, ∗ ,∅) is a B-algebra if it satisfies the following conditions: 

(a) x ∗ x = 0, 
(b) x ∗ 0 = x, 
(c) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)), ∀ x, y, z ∈ X. 

Definition 2.2: [4] Let  K(τ ) be the class of all algebras of Type τ = (2, 0). By a BN-
algebra, we mean a system (X; ∗ , 0) in which the following axioms are satisfied: 

1. x ∗ x = 0, ∀x ∈ X. 
2. x ∗ 0 = x, ∀x ∈ X. 
3. (x ∗ y) ∗ z = (0 ∗ z) ∗ (y ∗ x), ∀x, y, z ∈ X. 

We say that 0 is the unit in X. 

Definition 2.3: [31] Let  K(τ ) be the class of all algebras of Type τ = (2, 0). By 
a BF-algebra, we mean a system (X; ∗ , 0) in which the following axioms are 
satisfied: 

4. x ∗ x = 0, ∀x ∈ X. 
5. x ∗ 0 = x, ∀x ∈ X. 
6. 0 ∗ (x ∗ y) = y ∗ x, ∀x, y ∈ X. 

We say that 0 is the unit in X. 

Definition 2.4: [5] 
For any permutation .β = ||c(β)

i=1 λi in a symmetric group Sn, where .{λi}c(β)
i=1 is 

a composite of pairwise disjoint cycles .{λi}c(β)
i=1 where . λi = (

ti1, ti2, . . . , tiαi

)
, 1 ≤

i ≤ c (β), for some 1  ≤ αi, c(β) ≤ n. If  λ = (t1, t2, . . . , tk) is k−cycle in Sn, we  
define β−set as λβ = {t1, t2, . . . , tk} and is called β−set of cycle λ. So the  β−sets 

of .{λi}c(β)
i=1 are defined by. 

{
λ

β
i = {

ti1, ti2, . . . , tiαi

} |1 ≤ i ≤ c (β)
}

.

Definition 2.5: [28] Let .X =
{
λ

β
i

}c(β)

i=1
∪{1} be a collection of β-sets .

{
λ

β
i

}c(β)

i=1
with 

{1}, where β is a permutation in the symmetric group G = Sn. We say (X, ⋕ , {1}) is  
a permutation B-algebra (PB-A), if the binary operation ⋕ : X × X −→ X satisfies 
the following conditions:
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1. . λβ
i ⋕ λ

β
i = {1} ,

2. .λβ
i ⋕ {1} = λ

β
i , 

3. .
(

λ
β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕

(
λ

β
k ⋕

(
{1} ⋕ λ

β
j

))
,∀λ

β
i , λ

β
j , λ

β
k ∈ X. 

Definition 2.6: [29] We say (X, ⋕ , {1}) is a  permutation BF-algebra (PBF-A), 

where β is a permutation in the symmetric group G = Sn and X= .

{
λ

β
i

}c(β)

i=1
∪ {1} , if 

⋕ satisfies the following conditions: 

1. . λβ
i ⋕ λ

β
i = {1} ,

2. .λβ
i ⋕ {1} = λ

β
i ,∀λ

β
i , λ

β
j ∈ X. 

3. .λβ
i ⋕ λ

β
j = {1} and .λβ

j ⋕ λ
β
i = {1} .=⇒ λ

β
i = λ

β
j ,.∀λ

β
i , λ

β
j ∈ X. 

Definition 2.7: [30] Let X be a collection of β-sets .

{
λ

β
i

}c(β)

i=1
, where β is a 

permutation in the symmetric group G = Sn with {1}. Then X= . 

{
λ

β
i

}c(β)

i=1
∪ {1}

with a binary operation ⋕ : X × X −→ X is said to be a permutation BH-algebra 
(PBH − A) if ⋕ satisfies the following condition: 

1. . λβ
i ⋕ λ

β
i = {1} ,

2. .λβ
i ⋕ λ

β
j = {1} and .λβ

j ⋕ λ
β
i = {1} .=⇒ λ

β
i = λ

β
j . 

3. .λβ
i ⋕ {1} = λ

β
i , ∀λ

β
i ,λ

β
j ∈ X. 

Also, we say that {1} is the fixed element in X. It is denoted by (X, ⋕ , {1}). 

3 Permutation BN-Algebras 

In this section, we will look at some of the fundamental characteristics of permuta-
tion BN-algebras (PBN-As) and study some novel implications in the field. 

Definition 3.1: Let .X =
{
λ

β
i

}c(β)

i=1
be a collection of β-sets, where β is a 

permutation in the symmetric group G = Sn. Then X is said to be a permutation 
BN-algebra (PBG-A) if there exists a mapping ⋕ : X × X −→ X such that 

1. . λβ
i ⋕ λ

β
i = {1} , ∀λ

β
i ∈ X

2. . λβ
i ⋕ {1} = λ

β
i , ∀λ

β
i ∈ X

3. .
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k =

(
{1} ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
i

)
, . ∀λ

β
i , λ

β
j , λ

β
k ∈ X.

We say that {1} is the fixed element in X.
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Example 3.2: 

Let (S10,o) be a symmetric group and .β =
(

1 2 3 4 5 6 7 8 9 10 11
4 8 1 9 5 2 7 3 6 11 10

)
be a per-

mutation in S11. Since .β =
(

1 2 3 4 5 6 7 8 9 10 11
4 8 1 9 5 2 7 3 6 11 10

)
= (1496283)(7) (10 11). 

Therefore, we have .X =
{
λ

β
i

}3

i=1
∪ {1} = {{1, 4, 9, 6, 2, 8, 3} , {7} , {10, 11}}. 

Define ⋕ : X × X −→ X by .⋕
(
λ

β
i , λ

β
j

)
= λ

β
i ⋕ λ

β
j = λ

β
k , where . λβ

k

its cycle λk such that λk=.λioλ−1
j , where λi and λj are cycles for .λβ

i and . λβ
i , 

respectively. Here we have (i) .λioλ−1
j = (1) → λ

β
i ⋕ λ

β
j = {1} , and 

. (ii) λio(1)−1 = λi ⇒ λ
β
i ⋕ {1} = λ

β
i ,

(iii) For any .λβ
i , λ

β
j ∈ X, we have  

.

(
λio λ−1

j

)
o λ−1

k =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λio λ−1
j o λ−1

k , if j /= k /= i /= j,

λ−1
k , if j /= k /= i = j,

λ−1
j , if i = k /= j,

λio λ−1
k o λ−1

k , if i /= k = j,

. . . ..(*). 

In other side, we consider that . 
(
(1)oλ−1

k

)
o
((

λjo λ−1
i

))−1 = λk
−1o

(
λioλ−1

j

)
=⎧⎪⎪⎪⎨

⎪⎪⎪⎩

λio λ−1
j o λ−1

k , if j /= k /= i /= j,

λ−1
k , if j /= k /= i = j,

λ−1
j , if i = k /= j,

λio λ−1
k o λ−1

k , if i /= k = j,

....(**) 

By (*) and (**), we have .
(
λio λ−1

j

)
o λ−1

k = .

(
(1)oλ−1

k

)
o
((

λjo λ−1
i

))−1
. 

Hence, .
(
λ

β
i ⋕ λ

β
j

)
⋕

(
{1} ⋕ λ

β
j

)
= λ

β
i , .∀λ

β
i , λ

β
j ∈ X. Then, X is a (PBN-A). 

Proposition 3.3: If (X, ⋕ , {1}) is a (PBN-A), then (X, ⋕ , {1}) is a (PBF-A).  

Proof: Put .λβ
k = {1} in (3) of Definition 3.1; we have that . λβ

i ⋕ λ
β
j = {1} ⋕(

λ
β
j ⋕ λ

β
i

)
. Hence (X, ⋕ , {1}) is a (PBF-A). Note that the opposite is not true in 

all cases. 

Proposition 3.4: If (X, ⋕ , {1}) is a (PBN-A), then  (1) .{1} ⋕
(
{1} ⋕ λ

β
i

)
= λ

β
i , (2) 

.λ
β
j ⋕ λ

β
i =

(
{1} ⋕ λ

β
i

)
⋕

(
{1} ⋕ λ

β
j

)
, (3) . 

(
{1} ⋕ λ

β
i

)
⋕ λ

β
j =

(
{1} ⋕ λ

β
j

)
⋕ λ

β
i ,

(4) .λβ
i ⋕ λ

β
j = {1} =⇒ λ

β
j ⋕ λ

β
i = {1}, (5) . {1} ⋕ λ

β
i = {1} ⋕ λ

β
j =⇒ λ

β
i = λ

β
j ,

(6) . 

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
=

(
λ

β
k ⋕ λ

β
j

)
⋕

(
λ

β
k ⋕ λ

β
i

)
,∀λ

β
i , λ

β
j , λ

β
k ∈ X.

Proof: (1) Put .λβ
j = {1} , λ

β
k = {1} in (3) of Definition 3.1, and then . 

(
λ

β
i ⋕ {1}

)
⋕

{1} = ({1} ⋕ {1}) ⋕
(
{1} ⋕ λ

β
i

)
. By (1) and (2) of Definition 3.1, we have that
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.{1} ⋕
(
{1} ⋕ λ

β
i

)
= λ

β
i . (2) By (2) and (3) of Definition 3.1, we have that  

.λ
β
j ⋕ λ

β
i =

(
λ

β
j ⋕ {1}

)
⋕ λ

β
i =

(
{1} ⋕ λ

β
i

)
⋕

(
{1} ⋕ λ

β
j

)
. (3) By (2) and 

(3) of Definition 3.1, we have that .
(
{1} ⋕ λ

β
i

)
⋕ λ

β
j =

(
{1} ⋕ λ

β
j

)
⋕ λ

β
i . (4) 

If .λβ
i ⋕ λ

β
j = {1}, then . {1} = {1} ⋕ {1} = {1} ⋕

(
λ

β
i ⋕ λ

β
j

)
= λ

β
j ⋕ λ

β
i

[by Proposition (3.3)]. (5) If .{1} ⋕ λ
β
i = {1} ⋕ λ

β
j , then by (1), we have that 

.λ
β
i = {1} ⋕

(
{1} ⋕ λ

β
i

)
= {1} ⋕

(
{1} ⋕ λ

β
j

)
= λ

β
j . (6) By (3) of Definition 3.1 and 

Proposition 3.3, we have that . 
(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
=

(
{1} ⋕

(
λ

β
j ⋕ λ

β
k

))
⋕(

λ
β
k ⋕ λ

β
i

)
=

(
λ

β
k ⋕ λ

β
j

)
⋕

(
λ

β
k ⋕ λ

β
i

)
.

Definition 3.5: Let (X, ⋕ , {1}) be a (PBN-A) which is said to be permutation 

{1}-commutative BN-algebra (P1CBN − A) if . λ
β
i ⋕

(
{1} ⋕ λ

β
j

)
= λ

β
j ⋕(

{1} ⋕ λ
β
i

)
∀λ

β
i , λ

β
j ∈ X.

Proposition 3.6: If (X, ⋕ , {1}) is a (PBN-A), then it is a (P1CBN − A). 

Proof: Let .λβ
i , λ

β
j ∈ X, and then . λβ

i ⋕
(
{1} ⋕ λ

β
j

)
=

(
{1} ⋕

(
{1} ⋕ λ

β
i

))
⋕(

{1} ⋕ λ
β
j

)
(By Proposition 3.4). 

.=
(
{1} ⋕

(
{1} ⋕ λ

β
j

))
⋕

((
λ

β
i ⋕ λ

β
j

)
⋕ {1}

)
(By (3) of Definition 3.1) 

.= λ
β
j ⋕

(
{1} ⋕ λ

β
i

)
(By Proposition 3.4 (1) and (2) of Definition 3.1). 

Proposition 3.7: If (X, ⋕ , {1}) is a (P1CBN − A), then it is a (PBN-A). 

Proof: Let .λβ
i , λ

β
j , λ

β
k ∈ X, and then . 

(
{1} ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
i

)
=

(
{1} ⋕ λ

β
k

)
⋕(

{1} ⋕
(
λ

β
i ⋕ λ

β
j

))

(By (3) of Definition 2.5) .=
(
λ

β
i ⋕ λ

β
j

)
⋕

(
{1} ⋕

(
{1} ⋕ λ

β
k

))
(By Definition 

3.5) 

.=
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k (By (3) of Definition 2.5 and (3) of Definition 3.1). Hence, 

(X, ⋕ , {1}) is a (PBN-A). 

Proposition 3.8: (X, ⋕ , {1}) is a (P1CBN − A) if and only if it is a (PBN-A). 

Proof: If (X, ⋕ , {1}) is a (P1CBN − A), by Proposition 3.7, it is a (PBN-A). 

Conversely, if (X, ⋕ , {1}) is a permutation BN-algebra, then from Proposition 
3.6, it is {1}-commutative. Now it follows by Proposition 3.10 that (X, ⋕ , {1}) is a  
permutation BF-algebra.
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Proposition 3.9: If (X, ⋕ , {1}) is a (P1CBN − A), then . 

(
{1} ⋕ λ

β
i

)
⋕(

{1} ⋕ λ
β
j

)
= λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j ∈ X.

Proposition 3.10: If (X, ⋕ , {1}) is a permutation B-algebra, then . {1} ⋕(
λ

β
i ⋕ λ

β
j

)
= λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j ∈ X.

Corollary 3.11: Every {1}-commutative permutation B-algebra (X, ⋕ , {1}) is a  
(PBN-A). 

Proof: By Proposition 3.8 and Proposition 3.10, we get the proof is hold. 

Note that the converse is not always true. 

Proposition 3.12: Let (X, ⋕ , {1}) be an abelian group. Then (X, ⋕ , {1}) is a (PBN-
A), if 

.λ
β
i ⋕ λ

β
j = λ

β
i oλ

β
j

−1
, ∀λ

β
i , λ

β
j ∈ X. 

Proof: We have .λβ
i ⋕ λ

β
i = λ

β
i oλ

β
i

−1 = {1} and . λβ
i ⋕ {1} = λ

β
i o{1}−1 =

λ
β
i o {1} = λ

β
i . 

Now for all .λβ
i , λ

β
j , λ

β
k ∈ X, . 

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k =

(
λ

β
i oλ

β
j

−1)
oλ

β
k

−1 =
λ

β
k

−1
o

(
λ

β
i oλ

β
j

−1)

. = λ
β
k

−1
o

(
λ

β
j

−1
oλ

β
i

)
= λ

β
k

−1
o
(
λ

β
i

−1
oλ

β
j

)−1
= λ

β
k

−1
⋕

(
λ

β
i

−1
oλ

β
j

)
=(

{1} ⋕ λ
β
k

)
⋕

(
λ

β
j oλ

β
i

−1) =
(
{1} ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
i

)
. Hence, (X, ⋕ , {1}) is  

a (PBN-A). 

Proposition 3.13: Let (X, ⋕ , {1}) be a (PBN-A) with . {1} ⋕
(
{1} ⋕ λ

β
i

)
=

λ
β
i ,∀λ

β
i ∈ X. Then (X, ⋕ , {1}) is (P1CBN − A) if and only if . 

(
{1} ⋕ λ

β
i

)
⋕(

{1} ⋕ λ
β
j

)
= λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j ∈ X.

Proof: If (X, ⋕ , {1}) is (P1CBN − A), then . 
(
{1} ⋕ λ

β
i

)
⋕

(
{1} ⋕ λ

β
j

)
=

λ
β
j ⋕

(
{1} ⋕

(
{1} ⋕ λ

β
i

))
= λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j ∈ X. Conversely, if 

.

(
{1} ⋕ λ

β
i

)
⋕

(
{1} ⋕ λ

β
j

)
= λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j ∈ X. So . λβ

i ⋕
(
{1} ⋕ λ

β
j

)
=(

{1} ⋕
(
{1} ⋕ λ

β
i

))
⋕

(
{1} ⋕ λ

β
j

)
= λ

β
j ⋕

(
{1} ⋕ λ

β
i

)
.

Definition 3.14: A permutation algebra (X, ⋕ , {1}) is said to have  condition (D) if 

. 

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕

(
λ

β
k ⋕ λ

β
j

)
∀λ

β
i , λ

β
j , λ

β
k ∈ X.

Proposition 3.15: If (X, ⋕ , {1}) is a (PBN-A) and satisfies condition (D), then (1) 
.{1} ⋕ λ

β
i = λ

β
i , and (2) .λ

β
i ⋕ λ

β
j = λ

β
j ⋕ λ

β
i , ∀λ

β
i , λ

β
j ∈ X.
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Proof: (1) Put .λβ
i = {1}, .λβ

k = {1} in condition (D), and then we have that . {1} ⋕

λ
β
j = {1} ⋕

(
{1} ⋕ λ

β
j

)
= λ

β
j .By Proposition 3.4 (1). (2) . λβ

i ⋕ λ
β
j = λ

β
i ⋕(

{1} ⋕ λ
β
j

)
= λ

β
j ⋕

(
{1} ⋕ λ

β
i

)
= λ

β
j ⋕ λ

β
i . By Proposition 3.6 and (1). 

Proposition 3.16: If (X, ⋕ , {1}) is a (PBN-A) and satisfies condition (D), then it is 
a (PB-A). 

Proof: Let .λ
β
i , λ

β
j , λ

β
k ∈ X, and then . λ

β
i ⋕

(
λ

β
k ⋕

(
{1} ⋕ λ

β
j

))
= λ

β
i ⋕(

λ
β
k ⋕ λ

β
j

)
(By Proposition 3.15 (1)) 

.=
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k (By condition (D)). Hence, (X, ⋕ , {1}) is (PB-A).  

Proposition 3.17: If (X, ⋕ , {1}) is a (PBN-A) and satisfies condition (D), then 
(X, ⋕ , {1}) is an abelian group. 

Proof: Since (X, ⋕ , {1}) is a (PBN-A), .λβ
i ⋕ λ

β
i = {1} ∀λ

β
i ∈ X. We considered 

. λ
β
i as its own inverse, i.e., .λβ

i

−1 = λ
β
i . Now by (2) of Definition 3.1 and Proposition 

3.15 (1), we have that 

.λ
β
i ⋕ {1} = {1} ⋕ λ

β
i = λ

β
i . That is, {1} is the identity element of X. Since also 

that 
.

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕

(
λ

β
k ⋕ λ

β
j

)
= λ

β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
. 

By Proposition 3.15 (2), the associative law holds. Proposition 3.15 (2) also 
shows that (X, ⋕ , {1}) is an abelian group. 

Proposition 3.18: If (X, ⋕ , {1}) is a (PBN-A) and satisfies condition (D), then it is 
a (PBH-A). 

Proof: Let .λ
β
i ⋕ λ

β
j = {1} and .λ

β
j ⋕ λ

β
i = {1} . Then, by Proposition 3.15, we have  

that . λβ
i = λ

β
i ⋕ {1} = λ

β
i ⋕

(
λ

β
j ⋕ λ

β
i

)
=

(
λ

β
i ⋕ λ

β
i

)
⋕ λ

β
j = {1} ⋕ λ

β
j = λ

β
j .

Hence, (X, ⋕ , {1}) is a (PBH-A). 

Definition 3.19: A permutation coxeter algebra (PCA) is a set X /= ∅ with a 
constant {1} and a binary operation “ ⋕ ” such that (1) .λβ

i ⋕ λ
β
i = {1}, (2) 

.λ
β
i ⋕ {1} = λ

β
i , and (3) .

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
,∀λ

β
i , λ

β
j , λ

β
k ∈ X. 

Proposition 3.20: If (X, ⋕ , {1}) is a (PCA), then (1) .{1} ⋕ λ
β
i = λ

β
i , and (2) 

.λ
β
i ⋕ λ

β
j = λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j ∈ X. 

Proof: (1) For all .λβ
i ∈ X, we have that . λβ

i = λ
β
i ⋕ {1} = λ

β
i ⋕

(
λ

β
i ⋕ λ

β
i

)
=(

λ
β
i ⋕ λ

β
i

)
⋕ λ

β
i = {1} ⋕ λ

β
i , (2) .λ

β
j = {1} ⋕ λ

β
j (By (1))
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. =
[(

λ
β
i ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
j

)]
⋕ λ

β
j =

(
λ

β
i ⋕ λ

β
j

)
⋕

[(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j

]
=(

λ
β
i ⋕ λ

β
j

)
⋕

[
λ

β
i ⋕

(
λ

β
j ⋕ λ

β
j

)]
=

(
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ {1}

)
=

(
λ

β
i ⋕ λ

β
j

)
⋕

λ
β
i . Now multiplying .λ

β
i to the right side, we have that . λ

β
j ⋕ λ

β
i =[(

λ
β
i ⋕ λ

β
j

)
⋕ λ

β
i

]
⋕ λ

β
i =

(
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
i

)
=

(
λ

β
i ⋕ λ

β
j

)
⋕ {1} =

λ
β
i ⋕ λ

β
j

Proposition 3.21: Every (PCA) is a (PBN-A). 

Proof: Let (X, ⋕ , {1}) be a (PCA). For all .λ
β
i , λ

β
j , λ

β
k ∈ X, we have that 

.

(
{1} ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
i

)
=

(
λ

β
j ⋕ λ

β
i

)
⋕

(
{1} ⋕ λ

β
k

)
(By Proposition 3.20 (2)) 

.=
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k (By (3) of Definition 3.1). Hence, (X, ⋕ , {1}) is a (PBN-A). 

Note that the opposite of above proposition is not necessarily always true. 

Proposition 3.22: (X, ⋕ , {1}) is a (PBN-A) and satisfies condition (D) if and only 
if it is a (PCA). 

Proof: For all .λβ
i , λ

β
j , λ

β
k ∈ X, . 

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕

(
λ

β
k ⋕ λ

β
j

)
(Condition)

.(D) = λ
β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
(From Proposition 3.20 (2)). Hence, (X, ⋕ , {1}) is a (PCA). 

Conversely, assume that (X, ⋕ , {1}) is a (PCA). By Proposition 3.12, we only 

need to prove condition (D). For all .λβ
i , λ

β
j , λ

β
k ∈ X, . 

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕(

λ
β
j ⋕ λ

β
k

)
(X being a (PCA))

. = λ
β
i ⋕

(
λ

β
k ⋕ λ

β
j

)
(By Proposition 3.20 (2)) 

Definition 3.23: Let (X, ⋕ , {1}) be a (PBN-A) and let ∅ /= S ⊆ X. S is said to be 
a permutation BN-subalgebra (PBN-SA) of X if .λβ

i ⋕ λ
β
j ∈ S for all . λβ

i , λ
β
j ∈ S.

S, and it is said to be normal of X if .
(
λ

β
i ⋕ λ

β
m

)
⋕

(
λ

β
j ⋕ λ

β
n

)
∈ S whenever 

. λ
β
i ⋕ λ

β
j , λ

β
m ⋕ λ

β
n ∈ S.

Proposition 3.24: Every normal subset S of a (PBN-A) (X, ⋕ , {1}) is a (PBN-SA)  
of X. 

Proof: If .λβ
i , λ

β
j ∈ S, then .λβ

i ⋕ {1} , λ
β
j ⋕ {1} ∈ S. Since S is normal, . λβ

i ⋕ λ
β
j =(

λ
β
i ⋕ λ

β
j

)
⋕ ({1} ⋕ {1}) ∈ S. Thus, S is a (PBN-SA) of X. 

Lemma 3.25: Let S be a normal (PBN-SA) (X, ⋕ , {1}). If .λβ
i ⋕ λ

β
j ∈ S, then 

.λ
β
j ⋕ λ

β
i ∈ S. 

Proof: Let .λβ
i ⋕ λ

β
j ∈ S. Since .λβ

j ⋕ λ
β
j = {1} ∈ S and S normal, then .λβ

j ⋕ λ
β
i =(

λ
β
j ⋕ λ

β
i

)
⋕

(
λ

β
j ⋕ λ

β
j

)
∈ S.
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Definition 3.26: Let (X, ⋕ , {1}) be a (PBN-A) and let S be a normal (PBN-SA) 
of X. Defining a relation ~S on X by .λβ

i ∼Sλ
β
j if and only if .λβ

i ⋕ λ
β
j ∈ S, where 

.λ
β
i , λ

β
j ∈ X. Then, ~S is an equivalence relation on X. We denote the equivalence 

class containing . λβ
i by .

[
λ

β
i

]
S
. i.e., .

[
λ

β
i

]
S

:=
{
λ

β
j ∈ X|λβ

i ∼Sλ
β
j

}
, and let . X/S :={[

λ
β
i

]
S
|λβ

i ∈ X
}

be defined by .
[
λ

β
i

]
S
⋕

[
λ

β
j

]
S

=
[
λ

β
i ⋕ λ

β
j

]
S

, and then X/S is 

said to be the quotient permutation BN-algebra (QPBN-A) of X by S. 

Proposition 3.27: Let S be normal (PBN-SA) of a (PBN-A) (X, ⋕ , {1}). Then X/S 
is a (QPBN-A). 

Proof: If we define .

[
λ

β
i

]
S
⋕

[
λ

β
j

]
S

=
[
λ

β
i ⋕ λ

β
j

]
S

, then the operation “ ⋕ ” is well-

defined, since if .λβ
i ∼Sλ

β
m and .λβ

j ∼Sλ
β
n , then .λβ

i ⋕ λ
β
m ∈ S and .λβ

j ⋕ λ
β
n ∈ S imply 

that .
(
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
m ⋕ λ

β
n

)
∈ S. By normality of S, so .λ

β
i ⋕ λ

β
j ∼Sλ

β
m ⋕ λ

β
n and 

so . 
[
λ

β
i ⋕ λ

β
j

]
S

=
[
λ

β
m ⋕ λ

β
n

]
S
.

Consider . [{1}]S =
{
λ

β
i ∈ X | λ

β
i ∼S {1}

}
=

{
λ

β
i ∈ X | λ

β
i ⋕ {1} ∈ S

}
={

λ
β
i ∈ X | λ

β
i ∈ S

}
= S.

Definition 3.28: Let each of (X, ⋕ , {1}X) and (Y, ⋕ , {1}Y ) be (PBN-A). A 

mapping θ : X −→ Y is called a homomorphism from X to Y if . θ
(
λ

β
i ⋕ λ

β
j

)
=

θ
(
λ

β
i

)
⋕ θ

(
λ

β
j

)
, ∀λ

β
i , λ

β
j ∈ X. Note that θ ({1}X) = {1}Y . Indeed, . θ ({1}X) =

θ
(
λ

β
i ⋕ λ

β
i

)
= θ

(
λ

β
i

)
⋕ θ

(
λ

β
i

)
= {1}Y . The  kernel of the homomorphism 

denoted by .Kerθ =
{
λ

β
i ∈ X|θ

(
λ

β
i

)
= {1}Y

}
. Note that Kerθ is a subset of X. 

Remark 3.29: Let S be a normal (PBN-SA) of a (PBN-A) X. Then the mapping 

γ : X −→ X/S given by .γ
(
λ

β
i

)
:=

[
λ

β
i

]
S

is an epimorphism of permutation BN-

algebras and Kerγ = S. 

Definition 3.30: A (PBN-A) (X, ⋕ , {1}) is called a permutation BN1-algebra 

(PBN1-A) if it satisfies the following condition: . λβ
i =

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j ∀λ

β
i , λ

β
j ∈

X.

Corollary 3.31: Let (X, ⋕ , {1}) be a (PBN1-A). If .λβ
i ⋕ λ

β
j = {1}, then . λβ

i = λ
β
j .

Proof: Substituting .λβ
i := λ

β
j for all .λβ

i , λ
β
j ∈ X in .λβ

i =
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j , we  

have that .λβ
j =

(
λ

β
j ⋕ λ

β
j

)
⋕ λ

β
j = {1} ⋕ λ

β
j . Now taking .λβ

i ⋕ λ
β
j = {1}, we have  

that .λβ
i =

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j = {1} ⋕ λ

β
j = λ

β
j .
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Proposition 3.32: Let θ : X −→ Y be a homomorphism from a (PBN-A) 
(X, ⋕ , {1}X) into a (PBN1-A) (Y, ⋕ , {1}Y ). Then the kernel of θ , Kerθ is a normal 
(PBN-SA) of X. 

Proof: Since {1}X ∈ Kerθ , then Kerθ /= ∅. If .λ
β
i , λ

β
j ∈ Kerθ , then . θ

(
λ

β
i ⋕ λ

β
j

)
=

θ
(
λ

β
i

)
⋕ θ

(
λ

β
j

)
= {1}Y ⋕ {1}Y = {1}Y , i.e., .λβ

i ⋕ λ
β
j ∈ Kerθ . Hence, Kerθ 

is a (PBN-SA) of X. Let .λ
β
i ⋕ λ

β
j , λ

β
m ⋕ λ

β
n ∈ Kerθ . Then . θ

(
λ

β
i ⋕ λ

β
j

)
=

θ
(
λ

β
i

)
⋕ θ

(
λ

β
j

)
= {1}Y and .θ

(
λ

β
m ⋕ λ

β
n

)
= θ

(
λ

β
m

)
⋕ θ

(
λ

β
n

)
= {1}Y . Since 

Y is a (PBN1-A), by Corollary 3.31, .θ
(
λ

β
i

)
= θ

(
λ

β
j

)
and .θ

(
λ

β
m

)
= θ

(
λ

β
n

)
. 

Hence, . θ
((

λ
β
i ⋕ λ

β
m

)
⋕

(
λ

β
j ⋕ λ

β
n

))
= θ

(
λ

β
i ⋕ λ

β
m

)
⋕ θ

(
λ

β
j ⋕ λ

β
n

)
=(

θ
(
λ

β
i

)
⋕ θ

(
λ

β
m

))
⋕

(
θ

(
λ

β
j

)
⋕ θ

(
λ

β
n

))
=

(
θ

(
λ

β
i

)
⋕ θ

(
λ

β
m

))
⋕(

θ
(
λ

β
i

)
⋕ θ

(
λ

β
m

))
= {1}Y . Thus, .

(
λ

β
i ⋕ λ

β
m

)
⋕

(
λ

β
j ⋕ λ

β
n

)
∈ Kerθ . Hence, 

Kerθ is a normal (PBN-SA) of X. 

Corollary 3.33: Let θ : X −→ Y be a homomorphism from a (PBN-A) (X, ⋕ , {1}X) 
into a (PBN1-A) (Y, ⋕ , {1}Y ). Then, X/Kerθ ∼= Imθ . In particular, if θ is surjective, 
then X/Kerθ ∼= Y. 

4 Conclusion 

In this research, some new notions and results are investigated and proven using the 
composition of BN-algebra with permutation sets such as permutation BN-algebras, 
a form of permutation group-derived, permutation BN-subalgebra, and permutation 
BN-normal. In upcoming work, we’ll use the theory of neutrosophic sets to compose 
neutrosophic sets and BN-algebra, after which we’ll think about a few ideas and 
research the outcomes. 
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Interpretation of Skew Ideals 
with Relators in Join Skew Semilattice 

Sri Rama Ravi Kumar E. , Siva Ram Prasad J. , Baby Rani Ch. , 
Nageswar Rao T. , and Venkateswara Rao M. 

Keywords Skew lattice · Distributive semilattice · Ideal · Skew ideal 

1 Introduction 

In the research of algebra, the order structure is crucial. Skew lattice is the most 
common type of lattice. A Hasse diagram can represent the skew lattice with 
order structure, but it cannot represent its algebraic structure. Leech [1] has started 
researching in the coset structure of skew lattices. Characterization for more types of 
skew lattices uses only coset laws [2–4]. Skew ideals of skew lattices were created 
to characterize the skewness of skew lattices, which are inextricably linked to the 
concept of normality as well the natural preorder structure. In the literature, skew 
lattices have received little attention. As a result, they are still a relatively new 
area of study. Semilattices are a branch of nonclassical logic. In review of algebra, 
semilattices, which are related to nonclassical logic, are consistently present. In 
semilattices, there are several notions of distributivity, one of which is the 0-
distributivity concept introduced and investigated by Cvetko-vah. K [5]. Hickman 
R.C. [6] introduced and investigated mildly distributive semilattices, which are 
another interesting class of distributivity. The distributive semilattice is defined as 
a join semilattice (S, ∨) only if x1 ∨ x2 ≥ y, for x1,x2, y ∈ S, the elements z1 and 
z2 exists in S such as x1 ≥ z1, x2 ≥ z2 and y = z1 ∨ z2 [7]. Even skew ideals 
can be obtained from a partial order, but their behavior is more akin to that of 
skew lattices. Costa Pita J [8] investigated ideals in skew lattices. This manuscript 
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introduces and investigates the skew semilattice, as well as its characterization. We 
have the distributive semilattice necessary and sufficient theorem and are working 
on the concept of normal skew semilattice. Skew ideals derived from partial order, 
on the other hand, appear to be more closely related to the unique properties of skew 
lattices. Furthermore, we design an order skew ideal in skew semilattice and prove 
the skew semilattice characterization theorem by defining new through relators. 

2 Distributive Skew Semilattice 

2.1 Skew Lattice 

We define a skew lattice as a non-empty set S supplied by exactly two binary 
operations ∨ (join) and ∧ (meet) and satisfying the following properties: 

Associative:- (g ∨ h) ∨ z = g ∨ (h ∨ z) and (g ∧ h) ∧ z = g ∧ (h ∧ z). 
Idempotent:- g ∨ g = g and g ∧ g = g. 
Absorption:- (h ∧ g) ∨ g = g = g ∨ (g ∧ h) and (h ∨ g) ∧ g = g = g ∧ (g ∨ h). 

2.2 Note 

The skew lattices are defined by absorption dualities because the binary operations 
∨ (join) and ∧ (meet) are associative and idempotent: 

s ∨ t = s assuming and only assuming s ∧ t = t 
s ∨ t = t assuming and only assuming s ∧ t = s 

Skew lattice S has a natural partial ordering ≥, similar to order in lattice, and it 
is defined by f1 ≥ f2 whenever f1 ∧ f2 = f2 = f2 ∧ f1 or dually f1 ∨ f2 = f1 = 
f2 ∨ f1 for f1, f2 ∈ S. Leech J [8]’s Lemma (2.3) on skew lattice ideals is a useful 
observation for skew lattices characterized by regular partial order. 

2.3 Lemma 

In the skew lattice and if p1, q1 ∈ S, then p1 ≥ q1 whenever q1 = p1 ∧ q1 ∧ p1 or 
dually p1 = q1 ∨ p1 ∨ q1.
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Fig. 1 Example of skew 
semilattice 

2.4 Join Skew Semilattice 

A skew semilattice is a set S that is not empty, with (S, ∨) if it is both right join 
skew semilattice and left join skew semilattice. 

2.5 Right Join Skew Semilattice 

Right join skew semilattice is the semilattice S satisfying the identity p1 ∨ q1 ∨ p1 
= q1 ∨ p1 for p1, q1 ∈ S. 

2.6 Left Join Skew Semilattice 

Left skew semilattice is the semilattice S satisfying identity p1 ∨ q1 ∨ p1 = p1 ∨ 
q1, for p1, q1 ∈ S. 

2.7 Example of Skew Semilattice 

In Fig. 1, we observe A ∨ B ∨ C = A ∨ B, and A ∨ B ∨ C = B ∨ C, A ∨ C ∨ A 
= A ∨ C, and A ∨ C ∨ A = C ∨ A; P ∨ A ∨ P = P ∨ A and P ∨ A ∨ P = A ∨ P; 
B ∨ C ∨ B = B ∨ C and B ∨ C ∨ B = C ∨ B; A ∨ Q ∨ A = A ∨ Q and A ∨ Q ∨ 
A = Q ∨ A; B ∨ Q ∨ B = B ∨ Q and B ∨ Q ∨ B = Q ∨ B, C ∨ Q ∨ C = C ∨ Q 
and C ∨ Q ∨ C = Q ∨ C, etc. So the given semilattice S (Fig. 1) is both left skew 
semilattice and right skew semilattice. Therefore, S is skew semilattice. 

The partial order (D12, /) given in Fig. 2 is not skew semilattice, since 1∨2∨4 = 
4/=1∨2 but 1∨2∨4 = 2∨ 4= 4; hence, it is a right skew semilattice but not left skew 
semilattice.
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Fig. 2 Counterexample of 
skew semilattice 

2.8 Distributive Skew Semilattice 

A skew semilattice S is claimed to be distributive if for all g, h, z with g ≤ h ∨ 
z, their exists h1 ≤ h and z1 ≤ z such that g = h1 ∨ z1; it follows an equivalent 
property that g ∨ (h ∧ z) ∨ g = (g ∨ h ∨ g) ∧ (g ∨ z ∨ g) ∀ g, h, z in S. 

2.9 Example 

If S is skew semilattice, then for d, e in S we have d ∨ e ∨ e = d ∨ e and d ∨ e ∨ 
d = e ∨ d, and then, similarly we may have x ∨ (y ∧ z) ∨ x = (y ∧ z) ∨ x = (y ∨ 
x) ∧ (z ∨ x) – (i) and also (x ∨ y ∨ x) ∧ (x ∨ z ∨ x) = (y ∨ b) ∧ (z ∨ x) – (ii); 
therefore, from (i) and (ii), we have x ∨ (y ∧ z) ∨ x = (x ∨ y ∨ x) ∧ (x ∨ z ∨ x); 
therefore, S is a distributive skew semilattice. 

2.10 Skew Normal Semilattice 

The skew semilattice S is said to be normal if it satisfies the property that m ∨ n ∨ 
z ∨ w = m ∨ z ∨ n ∨ w for  m, n, z, w ∈ S. 

2.11 Skew Ideal 

If p ∈ S and q ∈ I, such as q ≥ p, imply p ∈ I, then I is called skew ideal of, where 
I is non-empty subset of a join skew semilattice S. 

Example: A subset I = {a, c, p, q} of skew semilattice S of Fig. 1 is a skew ideal 
of S.
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2.12 Distributive Ideal 

Each ideal I of a join skew semilattice S is known as distributive ideal for all q ≥ p 
and p in I, such that I ∨ (q ∧ z) ∨ I = (I ∨ q) ∧ (I ∨ z). 

2.13 Result 

If k1 and k2 are distributive ideals of skew semilattice S, then k1 ∨ k2 is also 
distributive ideal of S. 

Proof: Assume k1 and k2 are distributive ideals of skew semilattice S. 

Now [(k1 ∨ k2) ∨ (v ∧ z) ∨ (k1 ∨ k2)] = [(p1 ∨ p2)) ∨ (v ∧ z) ∨ (p1 ∨ p2)], 
for (p1 ∨ p2) ∈ k 1 ∨ k2 where p1 ∈ k 1 and p2 ∈ k 2 

= [p1 ∨ (p2 ∨ (v ∧ z)) ∨ (p1 ∨ p2)] 
= [p1 ∨ {  (p2 ∨ v ∨ p2) ∧ (p2 ∨ z ∨ p2)} ∨  (p1 ∨ p2)] 
= [(p1 ∨ {  (p2 ∨ v ∨ p2)} ∧ {  (p2 ∨ z ∨ p2)} ∨ p1) ∨ (p1 ∨ p2)] 
= (p1 ∨ p2 ∨ v ∨ p1 ∨ p2) ∧ (p1 ∨ p2 ∨ z ∨ p1 ∨ p2)] 
= [(k1 ∨ k2) ∨ v ∨ (k1 ∨ k2)] ∧ [(k1 ∨ k2) ∨ z ∨ (k1 ∨ k2)] 

Therefore, k1 ∨ k2 is distributive ideal of S. 

2.14 Theorem 

(S, ≥) is distributive skew semilattice if and only if p1 ∨ q1 ≥ w, for w, p1, q1, p as 
well as q are in S such as p1 ≥ p, q1 ≥ q with w = p ∨ q. 

Proof: (S, ≥) is a distributive skew semilattice, by definition; it follows 

p ∨ (q ∧ z) ∨ p = (p ∨ q ∨ p) ∧ (p ∨ z ∨ p) for all p, q, z in S. To prove that the 
condition p1 ∨ q1 ≥ w, such as p1 ≥ p, q1 ≥ q with w = p ∨ q, for w, p1, q1; p as 
well as q are  in S. 

Consider the elements p, q in S such as p1 ≥ p, q1 ≥ q. 

Now consider (p ∨ q) ∨ (q ∧ z) ∨ (p ∨ q) = [(p ∨ q ∨ q) ∧ (p ∨ q ∨ z)] ∨ (p ∨ q) 
= [(p ∨ q ∨ q) ∨ (p ∨ q)] ∧ [(p ∨ q ∨ z) ∨ (p ∨ q)] 
= (w ∨ q ∨ w) ∧ (w ∨ z ∨ w) for w= (p ∨ q) ∈ S
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Therefore, w ∨ (q ∧ z) ∨ w = (w ∨ q ∨ w) ∧ (w ∨ z ∨ w) for w = (p ∨ q) ∈ S. 
Hence, for w, p1, q1 in S, p and q in S such as p1 ≥ p, q1 ≥ q, then p1 ∨ q1 ≥ p 

∨ q, implies p1 ∨ q1 ≥ w, with w = p ∨ q. 

Conversely: Let the condition p1 ∨ q1 ≥ w, for w, p1, q1 in S, p and q in S such as 
p1 ≥ p, q1 ≥ q with w = p ∨ q. 

Consider (g ∨ h ∨ g) ∧ (g ∨ z ∨ g) = (w ∨ g) ∧ (g ∨ z ∨ g) for w = g ∨ h 

= g ∨ (w ∧ z) = g ∨ ((g ∨ h) ∧ z) 
= g ∨ (g ∧ z ∨ h ∧ z) = g ∨ (g ∧ z) ∨ (h ∧ z) 
= g ∨ (h ∧ z) ∨ g. 

Also p1 ∨ (q ∧ z) ∨ p1 ≥ p ∨ (q ∧ z) ∨ p. 
And also p1 ∨ (q ∧ z) ∨ p1 ≥ p1 ∨ (q1 ∧ z). 

Thus, 

.p1 ∨ (q1 ∧ z) ≥ p ∨ (q ∧ z) ∨ p. (1) 

Also p1 ∨ (q1 ∧ z) = (p1 ∨ q1) ∧ (p1 ∨ z) = (p1 ∨ q1 ∨ p1) ∧ (p1 ∨ z ∨ p1) 
≥ (p ∨ q ∨ p) ∧ (p ∨ z ∨ p). 

Thus, 

.p1 ∨ (q1 ∧ z) ≥ (p ∨ q ∨ p) ∧ (p ∨ z ∨ p) . (2) 

As a result from (1) and (2) p ∨ (q ∧ z) ∨ p = (p ∨ q ∨ p) ∧ (p ∨ z ∨ p) for all 
u, v, z in S. 

Hence, S is a distributive skew semilattice. 

2.15 Result 

All ideals of a skew semilattice form a skew semilattice. 

Proof: Assuming S is a skew semilattice as well as I to be the skew Ideal of S, then 
for all p in S and q in I such as y ≥ x implicit x ∈ I. Now for y ≥ x, implicit x ∨ 
y = y and x ∨ y ∨ x =(x ∨ y) ∨ x = y ∨ x = y. Therefore, x ∨ y ∨ x = y ∨ x, 
with partial order “≥.” Therefore I is right skew semilattice. Similarly, x ∨ y ∨ x = 
x ∨ (y ∨ x) = x ∨ y as y ∨ x = y; thus, the skew ideal I is left skew semilattice. 
Therefore, I is both left and right skew semilattices; hence, every ideal is a skew 
semilattice of a skew semilattice S.
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3 Characterization of Skew Semilattice 

3.1 Increasing Subset 

A subset I ⊆ S is called an increasing subset, if for each z in S, such as z∈ I and z 
≤ v, then v ∈ I. 

3.2 Order Ideal 

If I is an increasing subset and for each m, n ∈ I, k ∈ S, such as m ≥ k and n ≥ k, 
the subset I of the skew semilattice S is then referred to as an order ideal. 

3.3 Theorem 

The skew semilattice S is a distributive only if (i) S is directed below (ii) Id(S) for  
all order ideals of S, a distributive skew semilattice, where Id(S) is set of all proper 
order ideals of S. 

Proof: Let a skew semilattice S be distributive. Let m, n, w ∈ S, then for m ∨ n ≥ 
w, e and f in S such as m ≥ e, n ≥ f and w = e ∨ f. Since m ∨ n ∈ S and m ≤ m ∨ 
n and also e ≤ m, f ≤ n, thus e ∨ f ≤ m ∨ n which implies m = e ∨ f. As f ≤ e ∨ f 
= m, then f in S such as f ≤ m and f ≤ n for all m, n in S. Therefore, S is directed 
below semilattice. Let Id(S) be a set of all proper order ideals of S. 

Now to show that Id(S) is distributive, let I1 ∨ I2 ≥ I3 for all I1, I2, I3 ∈ Id(S) ⊆ 
S, for m ∈ I1, n ∈ I2, and w ∈ I3, and we have m ∨ n ≥ w. However, S is distributive 
e and f in S such as m ≥ e, n ≥ f and w = e ∨ f. Id(S) denotes all order ideals of S 
that are increasing sets; thus in I, the subset of S is an order ideal, and the increasing 
subset I and m, n ∈ I, then probably i ∈ I such as m ≥ i, n ≥ I, which implies m 
∨ n ≥ i and as I ∈ Id(S) are increasing set, and for e ∈ I and f ≥ e, we have f ∈ I. 
Hence, for m ∨ n ≥ e ∨ f = f ∈ I, which implies e ∨ f ∈ I and as m ∨ n = w ∈ I3 ⊆ 
Id(S). Hence, Id(S) is distributive. Let us suppose S is directed below and Id(S) of  
all order ideals of S is distributive; we prove that S is distributive. Let for w in S and 
m, n ∈ I ⊆ S, and consider m ∨ n ≥ w and as I ∈ Id(S) and I is increasing subset as 
i in  I such as m ≥ i and n ≥ i, and then m ∨ n ≥ i. Thus, w = i which is i ∨ i ∈ S. 
Hence, S is distributive.
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3.4 Theorem 

Assume S as a skew semilattice and I ⊆ S and then I as a skew ideal if and only if 
the following equivalence holds: 

For all p1, q1 ∈ S, p1 ∨ q1 ∨ p1 ∈ I if and only if p1, q1 ∈ I. 

Proof: When I ⊆ S, is a skew ideal of S, then for every p1 ∈ S & q1 ∈ I, with q1 ≥ 
p1, which gives p1 ∈ I. Since q1 ≥ p1, q1 ∨ p1 = q1. Now p1 ∨ (q1 ∨ p1) = p1 ∨ q1 
= q1, then p1 ∨ q1 ∨ p1 = q1 ∈ I, implies p1 ∨ q1 ∨ p1 ∈ I for p1, q1 ∈ I. Let p1, q  
∈ S, such as p1 ∨ q1 ∨ p1 ∈ I and as p1 ∨ q1 ∨ p1 ≥ p1 and p1 ∨ q1 ∨ p1 ≥ q1, and 
I is an ideal, implies p1, q1 ∈ I, for p1 ∨ q1 ∨ p1 ∈ I. Conversely, suppose for all p1, 
q1 ∈ S, the equivalence condition holds, for p1, q1 ∈ I if and only if p1 ∨ q1 ∨ p1 ∈ 
I. To prove that I is skew ideal of S, since p1 ∨ q1 ∨ p1 ∈ I, for p1, q1 ∈ I thus I is 
closed under the operation ∨. Let q1 ∈ I and p1 ∈ S such as q1 ≥ p1, also p1 ∨ q1 
∨ p1 = p1 ∨ q1 = q1 ∈ I and p1 ∨ q1 ∨ p1 = q1 ∨ p1 = q1 ∈ I. Therefore, p1 ∈ I. 
Hence, I is a skew ideal of S. 

3.5 Theorem 

If S is skew normal semilattice, then o ∨ p ∨ (o ∨ p ∨ o) = o ∨ p ∨ o for o, p in S. 

Proof: If S is normal skew semilattice, then, o ∨ (p ∨ z) ∨ w = o ∨ (z ∨ p) ∨ w, 
for o, p, z, w in  S. 

Now consider o ∨ p ∨ (o ∨ p ∨ o) = o ∨ p ∨ (p ∨ o)∨ o 
= o ∨ (p ∨ o) ∨ (p ∨ o) 
= (o ∨ p ∨ o) ∨ (p ∨ o) 

Thus, 

.o ∨ p ∨ (o ∨ p ∨ o) = (o ∨ p ∨ o) ∨ (p ∨ o) . (3) 

Similarly o ∨ p ∨ o = o ∨ p ∨ o ∨ o = o ∨ p ∨ p ∨ o ∨ o = o ∨ p ∨ (o ∨ p) ∨ o 
= (o ∨ p ∨ o) ∨ (p ∨ o) 

Thus, 

.o ∨ p ∨ o = (o ∨ p ∨ o) ∨ (p ∨ o) . (4) 

From (3) and (4), we have o ∨ p ∨ (o ∨ p ∨ o) = o ∨ p ∨ o.
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3.6 Preorder Ideal 

If J ⊆ S, then J is called a preorder skew ideal of skew semilattice S, for m ≥ n and 
n ∈ J and if m, n ∈ J, then m ∨ n ∈ J. 

3.7 Relator 

Let S be skew semilattice, for m, n ∈ S, and then the relator <m, n> is that m related 
to n and is defined as <o, p> = {x ∈ S / p ≤ x ∨ o}. 

3.8 Theorem 

The subsequent conditions are analogous for the skew semilattice S. 

(a) S is distributive skew semilattice. 
(b) The set <m, n> ∈ Id(S) for all m, n ∈ S. 
(c) <J, I> ∈ Id(S) for all J ∈ Ji(S) and I ∈ Id(S), where Id(S) is of all proper order 

ideals of S, and Ji(S) is of all preorder ideals of S. 

Proof: Let S be distributive skew semilattice. 

To prove that (a) ⇒ (b), let m, n ∈ S. For p ∈ S, such as p ∈ <m, n> and p ≤ q, 
we have n ≤ p ∨ m ≤ q ∨ m, which implies n ≤ q ∨ m, which implies q ∈ <m, n>. 
Therefore, <m, n> is increasing set. 

Now to show that <m, n> ∈ Id(S), i.e., <m, n> is an order ideal of S. Let x, y ∈ 
<m, n> then n ≤ p ∨ m and n ≤ q ∨ m. Since S is distributive, p1, m1 in S such as p 
≥ p1, m ≥ m1 and n = p1 ∨ m1 in particular, we have n ≥ p1, and then p ∨ m ≥ n 
≥ p1 implies p ∨ m ≥ p1 and again S is distributive and then their exist p2 and m2 
in S such as p ≥ p2 and m ≥ m2 and p1 = p2 ∨ m2. Also p ≥ p1 = p2 ∨ m2, which 
implies p ≥ m2 and q ≥ m2 and p2 ∨ m ≥ p2 ∨ (m1 ∨ m2) = (p2 ∨ m2) ∨ m1 = p1 
∨ m1 = n. Therefore, n ≤ p2 ∨ m ≤ p ∨ m. Therefore, <m, n > is an order ideal of 
S. Hence, <m, n> ∈ Id(S). 

To prove that (b) ⇒ (c), let <m, n> ∈ Id(S) for all m, n ∈ S. To show that <J, I> 
∈ Id(S) for all J is an element of Ji(S) (set of all un-order ideals) and I ∈ Id(S). Let 
p ∈ <J, I> and p ≤ q for any p ∈ S. Then I ≤ p ∨ J ≤ q ∨ J, which implies q ∈ <J, 
I>. Therefore, <J, I> is increasing. Now to show that <J, I> is an order ideal, let m, 
n ∈ <J, I> then (p1, q1) and (p2, q2) ∈ <J, I> such as m ∈ <p1, q1> and n ∈ <p2, 
q2>, and then q1 ≤ m ∨ p1 and q2 ≤ n ∨ p2. Since J is a preorder ideal, then p = p1 
∨ p2 ∈ F; and I is order ideal, q in I such as q1 ≥ q, and q2 ≥ q. Then p ≥ p1 and 
p ≥ p2. Now m ∨ p ≥ m ∨ p1 and n ∨ p ≥ n ∨ p2, which implies m ∨ p ≥ q1 ≥ v 
and n ∨ p ≥ q2 ≥ v; therefore, we have q ≤ m ∨ p and q ≤ n ∨ p. Therefore, m ∈
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<p, q> and n ∈ <p, q>, and therefore, by hypothesis, there exist z ∈ <p, q> such as 
m ≥ z and n ≥ z, where <p, q> ⊆ <J, I>. Hence <J, I> is an order ideal. 

To show that (c) ⇒ (a), let <J, I> represent order ideal. Let m, n, z ∈ S, such as 
m ∨ n ≥ z. Since <m, z> = < (m], (z]> and n, z ∈ <m, z>, by hypothesis an element 
n1 ∈ <m, z>, thus z ≤ n1, which implies n1 ≤ z, and n1 ≤ z ≤ m ∨ n gives n1 ≤ n. 
Then, we have n1 ≤ n and n1 ≤ z. Then, n1 ∨ m ≥ z and z, m ∈ <n1, z>. As <n1, z>  
is representing order Ideal, exists 

Thus, 

.m1 ∈< n1, z > such as z ≥ m1 and m ≥ m1 and z ≤ m1 ∨ n1. (5) 

But 

.z ≥ n1 and z ≥ m1 which gives z ≥ m1 ∨ n1. (6) 

Therefore, from (5) and (6), we have z = m1 ∨ n1. Hence, S is distributive 
semilattice. 

4 Conclusion 

In this paper, we present and investigate the skew semilattice and the distributive 
skew semilattice, as well as the necessary and sufficient theorem of the distributive 
semilattice. We also investigate the notion of normal skew semilattice. In addition, 
we define an order skew ideal in skew semilattice and provide the skew semilattice 
characterization theorem by defining some new through relators. 
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On Certain Semigroups 
of Order-Decreasing Full Contraction 
Mappings of a Finite Chain 

Muhammad Mansur Zubairu, Abdullahi Umar, and Jaafar Abdulkadir Aliyu 

Keywords Order decreasing and order preserving full contractions semigroup · 
Adequate and dense semigroups · Rank properties 

1 Introduction 

Let . [n] be a finite chain say .{1, 2, . . . , n} and denote . Pn (resp., . Tn) to be the partial 
transformation semigroup on the chain . [n] (resp., semigroup of full transformations 
on . [n]). An element .α ∈ Tn is order preserving (resp., order reversing) if (. ∀a, b ∈
[n]) .a ≤ b implies .aα ≤ bα (resp., .aα ≥ bα); order increasing (resp., order 
decreasing) if (.∀a ∈ [n]) .a ≤ aα (resp., .aα ≤ a); and a contraction if (.∀a, b ∈ [n]) 
.|aα − bα| ≤ |a − b|. The collection of all contraction mappings on . [n] denoted by 
.CTn is known as the semigroup of full contraction mappings. The study of various 
semigroup of contractions was first proposed in 2013 by Umar and Alkharousi [12], 
where they give notations for the semigroups. We will also adopt these notations for 
the semigroups considered in this paper. Let 

.DCTn = {α ∈ CTn : for all a ∈ [n], aα ≤ a} (1) 

denote order decreasing full contraction semigroup, 

.ODCTn = {α ∈ DCTn : (for all a, b ∈ [n]) a ≤ b ⇒ aα ≤ bα} (2) 
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denote order preserving and order decreasing full contraction semigroup, 

. OCTn = {α ∈ CTn : (for all a, b ∈ [n]) a ≤ y ⇒ aα ≤ bα}

be order-preserving full contractions semigroup, and 

. ORCTn = OCTn ∪ {α ∈ CTn : (∀a, b ∈ [n]) a ≤ b ⇒ aα ≥ bα }

be order preserving or order reversing full contraction semigroup. It is clear that 
.ORCTn is a subsemigroup of .CTn, whereas .OCTn and .ODCTn are subsemigroups 
of .ORCTn and .DCTn, respectively. A complete characterization of Green’s equiv-
alences for .CTn were obtained by Ali et al., [2]. The combinatorial results for 
.ORCTn,, .OCTn, and .ODCTn were investigated by Adeshola and Umar [1]. Further-
more, the ranks of .OCTn and .ORCTn and the rank of their two-sided ideals were 
obtained by Kemal [10] and Leyla [3], respectively. However, it appears that the 
rank and algebraic properties of the semigroup .DCTn and its subsemigroup . ODCTn

have not been investigated. This chapter intends to study Green’s equivalences, their 
starred analogue, and rank properties of these semigroups. 

In the current section, we give a brief introduction and introduce some basic nota-
tions and definitions. Moreover, we characterize the elements of .DCTn. Section 2 of 
this chapter constitute s characterization of all Green’s equivalence and the regular 
elements in .DCTn and .ODCTn, respectively. In Sect. 3, we characterize the starred 
analogue of Green’s equivalences and show that if .S ∈ {DCTn,ODCTn}, then S is 
left abundant for all n but not right abundant for .n ≥ 3. Moreover, we show that 
the semigroup .DCTn is a dense semigroup with a cover. In Sect. 4, we show that 
.ODCTn is left adequate and also investigate its rank. 

For a contraction . α in .CTn, we shall denote Im. α, rank. α, and id. A to be the 
image of . α, .|Im α|, and identity map on .A ⊆ [n], respectively. For two elements 
say .α, β ∈ CTn, their composition shall be as .a(α ◦ β) = ((a)α)β for all a in . [n], 
the notation . αβ shall be adopted to denote .α ◦ β in our subsequent discussions. For 
a semigroup S, an element .d ∈ S is called an idempotent if .d2 = d. It is known 
that the condition Im. E = F(E) (where .F(E) = {a ∈ [n] : aE = a}) is a necessary 
and sufficient condition for .E ∈ Tn to be an idempotent. If S is a commutative 
semigroup and all its elements are idempotents (i.e., .S = E(S)), then S is said to be 
a semilattice. In this case, for all .v, u ∈ S, .u2 = u, and .vu = uv. For basic concepts 
in semigroup theory, the reader may refer to Howie [7]. 

Next, given any transformation . α in .CTn, the domain of . α is partitioned into 
blocks by the relation ker .α = {(a, b) ∈ [n] × [n] : aα = bα}, so that by Adeshola 
and Umar [[1], Lemma 1.2] . α can be expressed as 

.α =
(

D1 D2 · · · Dr

t + 1 t + 2 · · · t + r

)
(1 ≤ r ≤ n and for some integer t), (3) 

where .Di for all .1 ≤ i ≤ r are equivalence classes of the relation ker . α, i.e., 
.Di = (t + i)α−1 for all .i ∈ {1, . . . , r}. We shall denote the partition of . [n] (by the



Order-Decreasing Full Contraction Mappings 37

relation ker . α) by  Ker .α = {D1,D2, . . . , Dr } so that . [n] = D1 ∪ D2 ∪ . . . ∪ Dr

where .(1 ≤ r ≤ n). Now if .α ∈ OCTn, then we see that .Di < Dj if and only if 
.i < j . 

Elements of .DCTn (.ODCTn) can be expressed as in the following lemma: 

Lemma 1 Every element .α ∈ DCTn (.ODCTn) of rank .r ∈ [n] can be expressed as 

. α =
(

D1 D2 · · · Dr

1 2 · · · r

)
.

Proof Let .α ∈ DCTn (.ODCTn) be as expressed in Eq. (3), i.e., 

. α =
(

D1 D2 · · · Dr

t + 1 t + 2 · · · t + r

)
.

Notice that .t + 1 < t + 2 < . . . < t + r; moreover, since . α is order-decreasing, then 
.t + 1 ≤ a for all .a ∈ D1 ∪ D2 ∪ . . . ∪ Dr . In particular, .t + 1 ≤ 1, which implies 
.t + 1 = 1, and so .t = 0. Thus .Diα = i for .1 ≤ i ≤ r , as required. nu

Let 

.α =
(

D1 D2 · · · Dr

1 2 · · · r

)
and β =

(
B1 B2 · · · Br

1 2 · · · r

)
∈ DCTn (1 ≤ r ≤ n). (4) 

The corollary below follows directly as a consequence of Lemma 1. 

Corollary 1 Let .γ, δ ∈ S ∈ {DCTn,ODCTn}: 
(a) .|Im γ | = |Im δ| ⇔ .Im γ = Im δ; 
(b) .ker γ = ker δ ⇔ γ = δ. 

2 Regularity and Green’s Equivalences 

For a semigroup S, an element .u ∈ S is regular if .u = uvu for some .v ∈ S; S is a 
regular semigroup if all its elements are regular. For definitions of the five Green’s 
equivalences: . L, . D, . R, . J , and . H, the reader may refer to Howie [7]. It is a known 
result that, if S is finite, the equivalence .J = D. The characterizations of Green’s 
relations on various semigroups of transformations were examined and studied by 
many authors (see, e.g., [2, 15]). It is also known that . Cn (where . Cn denotes the 
order-preserving and order-decreasing full transformation semigroup) is .J−trivial 
[9]. Thus, we state and prove the theorem below. 

Theorem 1 Let .DCTn be as in Eq. (1) and let .α, β ∈ DCTn be as expressed in 
Eq. (4). Then 

(i) .(α, β) ∈ R ⇔ β = α; 
(ii) .(α, β) ∈ L ⇔ min iα−1 = min iβ−1 for all .1 ≤ i ≤ r .
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Proof The proof is similar to that of Lemma 1.2 in [11] coupled with the fact that 
Im .α = {1, 2, . . . , r} = Im . β by Lemma 1. nu
Notice that in this case, .DCTn is said to be .R−trivial semigroup. Thus, we have the 
following corollaries: 

Corollary 2 On .DCTn, .H = R and .L = D = J . 

Corollary 3 An element .α ∈ DCTn is regular if and only if . α is an idempotent. 

As a consequence of the above corollary, we now have the following lemma. 

Lemma 2 Let .α ∈ DCTn be as expressed in Eq. (4). Then . α is an idempotent if and 
only if .min iα−1 = i for all .1 ≤ i ≤ r . 

We now give the characterizations of the five Green’s equivalences on .ODCTn. 

Theorem 2 Let .ODCTn be as in Eq. (2). Then .ODCTn is . J−trivial. 

Proof Observe that .ODCTn is a subsemigroup of . Cn, then .ODCTn is .J−trivial.
nu

Consequently, the corollaries below follow. 

Corollary 4 On the semigroup .ODCTn, .L = R = D = H = J . 

Now since .ODCTn is . R trivial, then we have the following: 

Corollary 5 An element .α ∈ ODCTn is regular if and only if . α is an idempotent. 

3 Starred Green’s Equivalences 

The relation . L∗ on S is defined as: .(u, v) ∈ L∗ ⇔ (u, v) ∈ L(P ) (i.e., . (u, v) ∈ L
on a semigroup P ) for some semigroup P , where S is a subsemigroup of P ; . R∗
is defined in a similar way, and .D∗ is the join of the relations .R∗ and L∗, where 
the intersection of the relations .R∗ and L∗ is .H∗. A semigroup S is said to be left 
abundant (resp., right abundant) if every .L∗ − class (resp., every .R∗ − class) 
contains an idempotent, and it is said to be abundant if it is both left and right 
abundant. If .E(S) is a subsemigroup of a left abundant(resp., right abundant) 
semigroup S, then S is called left quasi adequate(resp., right quasi adequate); if 
.E(S) is commutative, then it is said to be left adequate (resp., right adequate); 
and if S is both left and right adequate, it is called adequate (see [5] for more  
details on adequate semigroups). If a semigroup is not regular, then there is a 
need to investigate the class to which the semigroup belongs. To carry out such 
investigation, one would naturally characterize its starred Green’s equivalences. We 
are going to investigate regularity, characterize the starred Green’s equivalences, 
and show that if .S ∈ {DCTn,ODCTn}, then S is left abundant; moreover, we show 
that .ODCTn is left adequate. As in [7], the relations .L∗ and R∗ have the following
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characterizations: 

.L∗ = {(α, β) : (for all μ, λ ∈ S1) αμ = αλ ⇔ βμ = βλ} (5) 

and 

.R∗ = {(α, β) : (for all μ, λ ∈ S1) μα = λα ⇔ μβ = λβ}. (6) 

We now give characterizations of all the Starred Green’s equivalence on . S ∈
{DCTn,ODCTn} in the theorem below. The proof of the theorem is a simplified 
version of the proof of Theorem 1 in [13]. 

Theorem 3 Let .α, β ∈ S ∈ {DCTn,ODCTn}. Then 
(i) .(α, β) ∈ L∗ ⇔ Im α = Im β; 
(ii) .(α, β) ∈ R∗ ⇔ α = β; 
(iii) .H∗ = R∗; 
(iv) .D∗ = L∗. 

Proof 

(i) Let .α, β ∈ S be as expressed in Eq. (4) and suppose .(α, β) ∈ L∗. Notice 

that .Im α = {1, . . . , r}. Now consider . μ =
(

1 · · · {i, . . . , n}
1 · · · i

)
(1 ≤ r ≤

i ≤ n). Then clearly .μ ∈ S and .α ◦
(

1 · · · {i, . . . , n}
1 · · · i

)
= α ◦ id[n] . ⇔

.β ◦
(

1 2 · · · {i, . . . , n}
1 2 · · · i

)
= β ◦ id[n] (by Eq. (5)), which implies that . Im α ⊆

Im β. We can show in a similar way that .Im β ⊆ Im α, as such .Im α = Im β. 
Conversely, suppose .Im α = Im β. Then by Howie ([7], Exercise 2.6.17) 

.αLPnβ and following from the definition that .αL∗β, the result follows. 
(ii) Let .α, β ∈ S be as expressed in Eq. (4). Suppose .(α, β) ∈ R∗. Then . (a, b) ∈

ker α ⇔ .aα = bα ⇐⇒
( [n]

a

)
◦ α =

( [n]
b

)
◦ α . ⇐⇒

( [n]
a

)
◦ β =

( [n]
b

)
◦ β (by Eq. (6)) . ⇐⇒ aβ = bβ ⇐⇒ (a, b) ∈ ker β.

Therefore .ker α = .ker β. Thus by Corollary 1 (b) .β = α. The converse is clear. 
Thus .(α, β) ∈ R∗. 

(iii) The result follows from (i) and (ii). 
(iv) Since S is .R∗ trivial then .L∗ = D∗.

nu
We are now going to show that on .ODCTn, .J ∗ = D∗, but before then we note the 
lemma below.
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Lemma 3 ([5], Lemma 1.7(3)) If .x, y ∈ S. Then .y ∈ J ∗(x) if and only if there 
exist .x0, x1, . . . , xn ∈ S, .a1, a2, . . . , an, b1, b2, . . . , bn ∈ S1 such that .x = x0, 
.y = xn and .(yi, aixi−1bi) ∈ D∗ for .i = 1, 2, . . . , n. 

Now we prove an analogue of [[11], Lemma 2.13.]. 

Lemma 4 Let .β, α ∈ S ∈ {DCTn,ODCTn}. If .α ∈ J ∗(β) then Im. α ⊆ Im β. 

Proof Suppose .α ∈ J ∗(β), (.α, β ∈ S). Thus by Lemma 3, there are 
.β0, β1, . . . , βn ∈ S, .λ1, λ2, . . . , λn, μ1, μ2, . . . , μn ∈ S1 such that . β =
β0, α = βn and .(βi, λiβi−1μi) ∈ D∗ for .i ∈ [n]. Thus using Theorem 3(iv), 
.Im βi = Im λiβi−1μi ⊆ Im βi−1 for .i ∈ [n]. This means that .Im α ⊆ Im β. nu
Lemma 5 For .S ∈ {DCTn,ODCTn}, .J ∗ = D∗∗. 

Proof Let .α, β ∈ S. Clearly .D∗ ⊆ J ∗. Now for .J ∗ ⊆ D∗, let .(α, β) ∈ J ∗, i.e., 
.α ∈ J ∗(β), and .β ∈ J ∗(α). Thus, Lemma 4 ensures that .Im β = Im α. Thus, 
using Theorem 3(i) and (ii), we see that .(α, β) ∈ D∗, as required. nu

Now we show in the lemma below that .S ∈ {DCTn,ODCTn} is left abundant. 

Lemma 6 The semigroup .S ∈ {DCTn,ODCTn} is left abundant. 
Proof Let .α ∈ S be as expressed in Eq. (4) and let .L∗

α be an .L∗-class of . α in S. 

Denote .E =
(

1 2 · · · {r, r + 1, . . . , n}
1 2 · · · r

)
∈ ODCTn, (1 ≤ r ≤ n). Clearly . E is 

an idempotent in S; moreover, .Im α = Im E, and so by Theorem 3(i), we see that 
.(α, E) ∈ L∗, which means .E ∈ L∗

α. Since . L∗
α is an arbitrary .L∗- class of . α in S, then 

S is left abundant, as required. nu
Remark 1 In contrast with [[14], Lemma 1.20], the semigroup . S ∈ {DCTn,ODCTn}
is not right abundant for .n ≥ 3. 

For a counterexample, consider .α =
( {1, 2} 3

1 2

)
∈ S ∈ {DCT3,ODCT3}. It is  

clear that .R∗
α =

{( {1, 2} 3
1 2

)}
has no idempotent. 

However, the semigroup .S ∈ {DCTn,ODCTn} is right abundant for .1 ≤ n ≤ 2, 
which is also in contrast with [[14], Remark 1.21]. 

3.1 The Cover for DCTn 

A semigroup S is an . E−semigroup if .E(S) is a subsemigroup. A subsemigroup K 
of S is said to be dense if for all .s ∈ S, .ss' ∈ K and .s''s ∈ K for some . s' and 
. s'' ∈ S; it is said to be  unitary if .∀t, t ' ∈ K and .a ∈ S, .at ' ∈ K and .ta ∈ K implies 
.a ∈ K [6, 8]. A semigroup S is E unitary if its set of idempotent (i.e., . E(S)) is a  
unitary subsemigroup; it is said to be . E−dense if .E(S) is dense; and it is called . E−
unitary dense if .E(S) is unitary dense subsemigroup. For the semigroups S and K ,
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an epimorphism .ϕ : K → S, which is injective on the idempotents, is said to be a 
covering; as such, K is said to be a cover for S. Many classes of semigroups, regular 
and non-regular, are shown to be dense and/or unitary semigroups; in particular, 
the . E−semigroup has been shown to have a cover in [8]. For basic concepts and 
structural theory of unitary and dense semigroups, we refer the reader to [6, 8]. We 
will show that .DCTn is a dense semigroup with cover with the help of some results 
from Jorge et al., [8]. 

Before we begin our investigation, we first note the following results from [8]. 

Proposition 1 [[8], Proposition. 1.1] For an . E−semigroup S where .E(S) = E, 
the statements below correspond. 

(i) S is an . E−dense semigroup; 
(ii) .∀a ∈ S, .aa' ∈ E for some .a' ∈ S; 
(iii) .∀a ∈ S, .a''a ∈ E for some .a'' ∈ S. 

Theorem 4 [[8], Theorem. 2.1] Let S be a semigroup. Then 

(i) If S is an . E−semigroup, then S has an . E−unitary cover. 
(ii) If S is an . E−dense semigroup, then S has an . E−unitary dense cover. 
(iii) If S is an orthodox semigroup, then S has an . E−unitary orthodox cover. 

We prove the following lemma. 

Lemma 7 .E(DCTn) is a subsemigroup of .DCTn. 

Proof Let .E1 =
(

D1 D2 · · · Dr

1 2 · · · r

)
and .E2 =

(
B1 B2 · · · Bm

1 2 · · · m

)
be idempotents in 

.DCTn. There are two cases to consider, i.e., either .r ≤ m or .m < r . 
Now suppose .r ≤ m. Notice that .iE2 = i for .i = 1, . . . , r ≤ m. Thus, 

. E1E2 =
(

D1 D2 · · · Dr

1 2 · · · r

)
= E1 ∈ E(DCTn).

Now if .m < r . Then .E1E2 =
(

D'
1 D'

2 · · · D'
m

1 2 · · · m

)
, where .D'

i = Di∪B (.1 ≤ i ≤ m) 

for some .B ⊆ {m + 1,m + 2, . . . , r, r + 1, . . . , n}, i.e., the elements in the set 
.{m + 1,m + 2, . . . , r, r + 1, . . . , n} are distributed to the blocks . Di for some . 1 ≤
i ≤ m in the following manner: given any .x ∈ {m + 1,m + 2, . . . , r, r + 1, . . . , n}, 
if .x ∈ Bi (for some .1 ≤ i ≤ m) then .xE2 = i ∈ D'

i . As such x is placed in . D'
i . 

Notice that .i ∈ D'
i for .1 ≤ i ≤ m, as such .E1E2 is an idempotent, as required. nu

The lemma below is a direct consequence of Lemma 7. 

Lemma 8 .DCTn is an .E− semigroup. 

Now, we prove the lemma below. 

Lemma 9 For every .α ∈ DCTn, there exists .β ∈ DCTn such that .αβ ∈ E(DCTn).
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Proof Let .α ∈ DCTn be as expressed in Eq. (7). Now let .β =
( [n]

1

)
∈ DCTn. 

Then .αβ =
( [n]

1

)
which is obviously an idempotent. nu

Consequently we have proved the following theorem by Lemma 8 and 9 and by 
Proposition (1) and Theorem (4), respectively. 

Theorem 5 Let .DCTn be as defined in Eq. (1). Then we have: 

(i) .DCTn is .E− dense. 
(ii) .DCTn has an . E−unitary and . E−unitary dense cover. 

4 Rank of ODCTn 

Let .T ⊆ S (.T /= ∅). The notation .<T > denotes the subsemigroup generated by the 
subset T , which is defined as the intersection of all subsemigroups of S containing 
T . If  T is finite and .<T > = S, then S is called a finitely generated semigroup. 
Moreover, the rank of S is defined and denoted by 

. rank S = min{|T | : <T > = S}.

Now let .Reg(ORCTn) be the collection of regular elements of .ORCTn. Then, 
we first note the following result about idempotents in .ORCTn from [13]. 

Lemma 10 ([13], Lemma 13) Let . E be an idempotent in .(ORCTn). Then . E can be 
expressed as 

. 

( {1, . . . , d + 1} d + 2 · · · d + r − 1 {d + r, . . . , n}
d + 1 d + 2 · · · d + r − 1 d + r

)
.

We now prove the lemma below, crucial to the main result. 

Lemma 11 Every .E ∈ E(ODCTn) can be expressed as 

. E =
(

1 2 · · · {r, r + 1, . . . , n}
1 2 · · · r

)
where r ∈ [n].

Proof The proof follows from Lemmas 10 and 1. nu
We show in the next theorem that the collection of all idempotents in .ODCTn (i.e., 
.E(ODCTn)) is a semilattice. 

Theorem 6 .E(ODCTn) is a semilattice.
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Proof Let .E, η ∈ E(OCDTn). Then by Lemma 11, we may denote . E and . η by 

. E =,

(
1 · · · {m,m + 1, . . . , n}
1 · · · m

)
and η =

(
1 · · · {r, r + 1, . . . , n}
1 · · · r

)

for m, r ∈ [n].

Thus, there are two cases to consider: 

If .m ≤ p. Then . Eη =
(

1 · · · {m,m + 1, . . . , n}
1 · · · m

)
= ηE = E ∈ E(ODCTn).

If .r < m. Then . Eη =
(

1 · · · {r, r + 1, . . . , n}
1 · · · r

)
= ηE = η ∈ E(ODCTn).

Thus .E(ODCTn) is a semilattice. nu
Now by Theorem 6 and Lemma 6, we readily have the result below. 

Theorem 7 Let .ODCTn be as defined in Eq. (2). Then .ODCTn is left adequate. 

Next, we state the following well-known result from [4] as a lemma below.  

Lemma 12 In a finite . J trivial semigroup S, every minimal generating set is 
(unique) minimum. 

Let .Gr = {α ∈ ODCTn : |Im α| = r} and .Kr = {α ∈ ODCTn : |Im α| ≤ r}. 
It is worth noting that .Kr = G1 ∪ G2 ∪ . . . ∪ Gr (1 ≤ r ≤ n). Now we have the  
following lemma. 

Lemma 13 For .1 ≤ r ≤ n − 2, .Gr ⊆ <Gr+1>. nu

Proof Let .α ∈ Gr , then by Lemma 1, we may let .α =
(

D1 · · · Dr

1 · · · r

)
, where 

.1 ≤ r ≤ n − 2. Next now let .D'
r ∪ D''

p = Dr with .D'
r /= ∅, .D''

r /= ∅, . D'
r ∩ D''

r = ∅
and .D'

r < D''
r . Now denote . δ and . ρ as: 

. δ =
(

D1 · · · Dr−1 D'
r D''

r

1 · · · r − 1 p r + 1

)
and ρ =

(
1 · · · r − 1 {r, r + 1} {r + 2, . . . , n}
1 · · · r − 1 r r + 1

)
.

Notice that .δ, ρ ∈ Gr+1. It is easy to see that .α = δρ ∈ <Gr+1>. Hence . Gr ⊆
<Gr+1>. nu

We now have the corollary below. 

Corollary 6 For .1 ≤ k ≤ n − 1, .Gk ⊆ <Gn−1>. 
Proof Suppose .1 ≤ k ≤ n − 1,; then, by Lemma 13, we see that .Gk ⊆ <Gk+1> and 
similarly .Gk+1 ⊆ <Gk+2>, which implies that .<Gk> ⊆ <Gk+2>. Therefore, . Gk ⊆
<Gk+1> ⊆ <Gk+2>. If we continue in this fashion, we see that . Gk ⊆ <Gk+1> ⊆
<Gk+2> ⊆ . . . ⊆ <Gn−2> ⊆ <Gn−1>, as required. nu
Lemma 14 In .ODCTn, .|Gn−1| = n − 1.
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Proof Notice that if .α ∈ Gn−1, then . α is of the form .α =
(

D1 · · · Dn−1

1 · · · n − 1

)
, where 

.Di < Dj if and only if .i < j. It is now clear that the order of .Gn−1 is equal to the 
number of subsets of the set .[n] of the form .{i, i + 1} (.1 ≤ i ≤ n − 1), which is 
.n − 1. nu

The following lemma gives us the rank of .ODCTn \ {idn}. 
Lemma 15 In .ODCTn, rank (.Kn−1) = n − 1. 

Proof To prove that the rank .(Kn−1) = n − 1, it is enough to show that .Gn−1 is a 
minimal generating set of .Kn−1, i.e., .Kn−1 = <Gn−1> and .<Gn−1\{τ }> /= Kn−1 for 
any .τ ∈ Gn−1. It is clear by Corollary 6 that .<Gn−1> = Kn−1. 

Now observe that 

. Gn−1 =
{( {1, 2} 3 · · · n

1 2 · · · n − 1

)
,

(
1, {2, 3} 4 · · · n

1 2 3 · · · n − 1

)
, . . . ,

(
1 · · · n − 2 {n − 1, n}
1 · · · n − 2 n − 1

)}
. (7) 

Take .τi =
(

1 2 · · · {i, i + 1} · · · n − 2 n − 1 n

1 2 · · · i · · · n − 3 n − 2 n − 1

)
∈ Gn−1 for . i = 1, . . . , n −

1. Then one can easily verify that for any .α, β ∈ Gn−1\{τi}, .h(αβ) < n − 1, 
.h(τiα) < n − 1, .h(ατi) < n − 1 and moreover, .ατn−1 = α for all .α ∈ Gn−1. 
Thus .Gn−1 is a minimal generating set for .Kn−1. Thus since S is a finite . J trivial 
semigroup then by Lemma 12, .Gn−1 is the (unique) minimum generating set for 
.Kn−1. nu
Finally the rank of .ODCTn is given in the theorem below. 

Theorem 8 Let .ODCTn be as defined in Eq. (2). Then rank (.ODCTn) = n. 

Proof Notice that .Kn−1 = ODCTn\{id[n]}. Therefore the rank (. ODCTn) =
rank (Kn−1) + 1 = n, as required. nu
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A Novel Concept of Neutrosophic Fuzzy 
Sets in Ẑ-Algebra 

K. P. Shanmugapriya and P. Hemavathi 

Keywords Fuzzy set · Neutrosophic_set · Neutrosophic_subalgebra · 
Ẑ-algebra · Neutrosophic_Ẑ-subalgebra · Neutrosophic_algebraic structures 

1 Introduction 

Zadeh [18] developed the concept of fuzzy sets, which has numerous applica-
tions, particularly throughout dealing with uncertainties. Atanassov initiated the 
intuitionistic fuzzy set as the generalization of fuzzy set, which allocates pairs of 
degrees of membership function and nonmembership function. A fuzzy set with 
interval values represents the degrees of membership, which reflects the uncertainty 
in assigning membership values. Smarandache’s [11] neutrosophic_fuzzy set can 
provide true_membership function(tmf), indeterminacy_membership function(imf), 
and false_membership function(fmf) as extension of each element in any set. The 
neutrosophic_fuzzy set which is applied in different fields like topology, algebra, 
decision-making, biomedicine, and in various parts. Imai and Iseki [3, 4] established 
two new algebraic classes based on propositional logic. In 2017, the basic algebraic 
structure based on propositional logic was proposed by Chandramouleeswaran 
[1], a new concept called Ẑ-algebra. Using a single-valued membership function, 
representing an interval on the membership scale, in 1975 the author created an 
interval_valued_fuzzy_set in [19]. The researcher also demonstrated that the fuzzy 
Ẑ-subalgebras of Cartesian products are also a fuzzy Ẑ-subalgebras [13]. The 
basic principle of a fuzzy Ẑ-subalgebra of Ẑ-algebra and their properties were 
investigated, and it explains how to handle the Ẑ-homomorphism of its image and 
inverse image of fuzzy Ẑ-subalgebras. The basic ideology of a fuzzy Z-ideal of 
a Ẑ-algebra under Ẑ-homomorphisms was evaluated, and some of its properties 
of the Cartesian product of fuzzy Ẑ -ideals have been explored [14]. Fuzzy α-
translations and β-multiplications are extensions of fuzzy Ẑ-subalgebras (fuzzy 
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Ẑ-ideals) of Ẑ-algebras, also given some excellent outcomes [15]. Following that, 
definitions of fuzzy sets, interval-valued fuzzy sets, and Ẑ-ideals in Ẑ-algebras 
have been provided. These characteristics of fuzzy Ẑ-subalgebras and fuzzy Ẑ-
ideals also included the aspects of Ẑ-homomorphism and Cartesian product on 
fuzzy α-translations and fuzzy β-multiplications of Ẑ-algebras [16]. In 2012, Jun 
[6] highlighted and focused the characteristics of a cubic set using a fuzzy set and 
an interval_valued_fuzzy_set. Further, in 2010, Jun [7] explored and researched 
the subject of cubic_subalgebras with cubic_ideals in BCK/BCI-algebras. Jun [5] 
promoted the development of cubic subgroups in 2011 after applying this concept 
of cubic_sets to a group. In [10], the concept of neutrosophic algebra is introduced, 
along with the idea of an ideal within the context of neutrosophic algebra. 
Additionally, the concepts of the kernel and neutrosophic quotient algebra were 
provided. Several key properties of neutrosophic algebra are identified and explored. 
Moreover, demonstrated that every quotient neutrosophic algebra is indeed a 
quotient algebra. The focus of this research is to promote neutrosophic_fuzzy sets in 
Ẑ-algebra through the use of specific theorems and examples, as well as to evaluate 
some of their properties. 

2 Preliminaries 

The below section describes basic definitions of fuzzy sets and Ẑ-algebra, as well as 
their main properties. 

Definition 2.1 [18] The fuzzy set Q from the universal set X is defined to be Q (x): 
X→ [0,1] for each elements x ∈ X, and Q (x) is known as the membership value of 
x. 

Definition 2.2 [9] Let Q1 and Q2 be the fuzzy sets from the universal set X the union 
of Q1 and Q2; is represented as Q1∪ Q2 is defined to be (Q1∪ Q2) (x) = max {Q1 (x),
Q2 (x)} ∀  x ∈ X. 

Definition 2.3 [9] Let Q1 and Q2 be any two fuzzy sets from the universal set X, the 
intersection of Q1 & Q2, it is expressed as Q1 ∩ Q2 is defined to be (Q1 ∩ Q2) (x) = 
min {Q1 (x), Q2 (x)} ∀ x ∈ X. 

Definition 2.4 [9] Let neutrosophic_set in X be in structure of the form ϑ = 
{(x: .QT (x) , QI (x) , QF (x) /x ∈ X } where .QT , QI , QF are fuzzy sets in 
X; which is denoted by .QT (x) is atrue_membership function, .QI (x) isan 
indeterminate_membership function & .QF (x) is an false_membership function 
respectively. 

Definition 2.5 [1] Suppose X be the non-empty subset with binary operation * and 
constant; then, (X, *, 0) is  ̂Z– algebra if 

(i) x * 0 = 0 (ii) 0 * x = x (iii) x * x = x 
(iv) x * ƴ = ƴ * x, when x /= 0 and ƴ /= 0 ∀ x, ƴ ∈ X
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Table 1 Consider the 
example for Ẑ-algebra

* 0 o1 o2 o3 o4 

0 0 o1 o2 o3 o4

o1 0 o1 o3 o4 o2

o2 0 o3 o2 o1 o1

o3 0 o4 o1 o3 o3

o4 0 o2 o1 o3 o4 

Example 2.6 Let X = {0, o1, o2, o3, o4} be the set with 0 as a constant, and a 
binary operation * is to be defined on X by cayley’s table (Table 1). 

Definition 2.7 [1] If X is a non-empty subset of neutrosophic_Ẑ-algebra, it is called 
to be Ẑ-subalgebra of X: 

. x * ƴ ∈ X∀x, ƴ ∈ X

Definition 2.8 [2] Let U be the subset in universe X; the sup property of a fuzzy set
Q is referred to as Q(x0) = .sup

x∈U

Q (x), if ∃ x, x0 ∈ U. 

Definition 2.9 [17] Let the intuitionistic fuzzy set be Q which assigns the member-
ship function μQ as X → [0,1], and τ Q as X → [0,1] is nonmembership function, 
and then it is known to be sup_inf property, and then for any subset U of X then ∃ 
(x0) ∈ U ∃ μQ(x0) = . sup

x∈U

(μQ(x)) and τ Q(x0) = . inf
x∈U

(τ Q(x)). 

Definition 2.10 A neutrosophic_fuzzy set Q in a set X is referred to as an  
sup_sup_inf property if the subset U of X then ∃ x0 ∈ U .∃ QT (x0) = . sup

x∈U

(.QT (x)), 

. QI (x0) = . sup
x∈U

(.QI (x)), . QF (x0) = . inf
x∈U

(.QF (x)). 

Definition 2.11 Let ϑ= {x, .QT ,I ,F (x) / x ∈ X} be the neutrosophic_set in . ̂Z
and ∂ maps from X → . Ỳ then the image of ϑ under ∂ , ∂ (ϑ) represented as 
{ ∂sup(.QT ), ∂sup(.QI ), ∂ inf (.QF ), x ∈ . Ỳ. 

(i) . ∂sup (QT ) (ƴ) =

⎧⎪⎨
⎪⎩

sup
x∈∂−1

(
ƴ
)QT (x) if ∂−1 (ƴ) /= φ

1 otherwise

(ii) ∂sup(. QI )(ƴ) = . 

⎧⎪⎨
⎪⎩

sup
x∈∂−1

(
ƴ
)QI (x) if ∂−1 (ƴ) /= φ

1 otherwise

(iii) ∂ inf(. QF )(ƴ) = .

⎧⎪⎨
⎪⎩

inf
x∈∂−1

(
ƴ
)QF (x) if ∂−1 (ƴ) /= φ

0 otherwise
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Definition 2.12 If .∂ : X → Ỳ be a function. Let .QT1,I1,F1 & .QT2,I2,F2 be two 
neutrosophic_set in X and . Ỳ, respectively, and then the inverse image of . QT ,I ,F
under ∂ is defined by ∂−1 (.QT2,I2,F2 ) = {x, ∂−1 (.QT2 (x)), ∂−1 (.QI2 (x)), ∂−1 

(.QF2 (x)), / x ∈ . ̂Z} such that. ∂−1(QT2 ) ∂ (x) = .QT2 (∂ (x)), .∂−1(QI2 ) ∂(x) = .QI2 (∂ 
(x)), .∂−1(QF2 ) ∂ (x) = .QF2 (∂ (x)). 

Definition 2.13 [16] Let (Ẑ, *,0) and (. ̂Z
'
, *

'
, 0

'
) the two  ̂Z-algebra, and then the 

mapping from ɧ: (Ẑ, *,0) → (. ̂Z'
, *

'
,0

'
) is known as Ẑ-homomorphism of Ẑ-algebra 

if 

. λ (x*ƴ) = λ (x) *
' λ (ƴ) .

Definition 2.14 [16] Let h be an  ̂Z-endomorphism of neutrosophic_Ẑ-algebras and 
.ϑ = {

x, QT ,I ,F (x) /x ∈ X
}

be the neutrosophic_set in X, and then define a new 
fuzzy set Qh in X, as .ϑQh (x) = ϑQ(h(x)) ∀ x ∈ X. 

3 Neutrosophic in Ẑ-Subalgebra 

This section defines neutrosophic Ẑ-algebra and discussed some fascinating results. 

Definition 3.1 Suppose (X, *,0) be the Ẑ-algebra with operation “*” and constant 
0, then the neutrosophic_set ϑ = .{ x : QT , QI , QF /x ∈ X}; it is defined to be 
neutrosophic_Ẑ- subalgebra of X. 

(i) .QT (x * ƴ) ≥ min { .QT (x), .QT (ƴ)} 
(ii) .QI (x * ƴ) ≥ min {.QI (x), .QI (ƴ)} 

(iii) .QF (x * ƴ) ≤max {.QF (x), .QF (ƴ)} 

Example 3.2 Consider Ẑ– algebra defined the Example 2.6. and the following 
neutrosophic_fuzzy set defined on X is a neutrosophic_Ẑ- subalgebra of X. 

. QT ,I ,F =

⎧⎪⎪⎨
⎪⎪⎩

0.5 x = 0 when (x = 0, ƴ /= 0) or (x /= 0, ƴ = 0)

0.8 x = o1,o2

0.4 x = o3,o4

Proposition 3.3 If ϑ = {x, .QT , QI , QF :x .∈ Ẑ } is a neutrosophic_Ẑ– subalgebra 
of X. 

Then .1.QT (0) ≥ QT (x) , . QI (0) ≥ QI (x) , QF (0) ≤ QF (x) ,∀x ∈ X.

2. . QT (0) .≥ QT (x*) .≥ QT (x),. QI (0) ≥ QI
(
x*

) ≥ QI (x) , . QF (0) ≤
QF

(
x*

) ≤ QF (x) , where x* = 0 * x ∀ x ∈ X.
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Proof: For every x ∈X, 

1. . QT (0)= . QT (x*x) 
≥ min { .QT (x), QT (x)} = . QT (x)

.Similarly, QI (0) = . QI (x)

. QF (0)= . QF (x*x) 
.≤ max{ QF (x), .QF (x)} = . QF (x)

2. . QT (x*) = . QT (0 * x) 
.≥ {min( QT (0), .EQT (x))} 

. QT (x*) .= QT (x) 
∴. QT (x*) .≥ QT (x) 

Similarly, .QI (x∗) ≥ QI (x) 
.QF

(
x*

)
. = QF (0*x)

≤ max .{QF (0) *QF (x)} 
Hence, .QF

(
x*

) ≤ QF (x) 

Theorem 3.4 If ϑ = {x: .QT ,I ,F (x) / x  ∈ Ẑ} and. QT1I1F1, QT2I2F2be two 
neutrosophic_Ẑ-subalgebras of X, then the intersection is also a neutrosophic_Ẑ-
subalgebras of X. 

Proof: Let ϑ = {  x, ƴ ∈ .Ẑ, QT ,I ,F (x)/x ∈X}be a neutrosophic_Ẑ-subalgebras of 
X for all x, ƴ ∈X. Then 

(.QT1 ∩ QT2 ) (x * ƴ) = min {.QT1 (x * ƴ), .QT2 (x * ƴ)} 
≥{min{. QT1 (x) , QT1 (ƴ)}, min

{
QT2 (x) , QT2 (ƴ)

}}
= min{.QT1 (x) , QT2 (x)}, min{.QT1 (ƴ), . QT2 (ƴ)}

= min {.QT1∩ .QT2 (x)
}
, .QT1∩ . QT2 (ƴ)

∴ .QT1 ∩ QT2 )(x * ƴ) ≥ min {.(QT1∩ .QT2) (x) , .(QT1∩ .
(
QT2

)
(ƴ)} 

Similarly, (.QI1 ∩ QI2 )(x * ƴ) ≥ min{.(QI1∩ .QI2

)
(x) , .

(
QI1∩ .QI2

)
(ƴ)} 

(.QF1 ∩ QF2 ) (x * ƴ) = max {.QF1 (x * ƴ), .QF2 (x * ƴ)} 
≤{max. 

{
QF1 (x) , QF1 (ƴ)

}
, max

{
ηF2 (x) , QF2 (ƴ)

}}
= max{.QF1 (x) , QF2 (x)}, max{.QF1 (ƴ), . QF2 (ƴ)}
= max {.(QF1∩ .QF2

)
(x) , (.QF1∩ .QF2

)
(ƴ )} 

∴ (.QF1 ∩ ηF2 ) (x * ƴ) ≤max {.(QF1∩ .QF2

)
(x) , (.QF1∩ .QF2

)
(ƴ )} 

Hence, .QT1 and .QT2 are a neutrosophic_Ẑ-subalgebras of X. 

Theorem 3.5 If ϑ = {x, .QT ,I ,F (x) : x ∈X} is the neutrosophic_Ẑ-subalgebra 
of X. If ∃ a sequence {xn} of X . ∃ lim

n→∞QT (xn) = 1, lim
n→∞QI (xn) =

1, lim
n→∞QF (xn) = 0 Then .QT (xn) = 1, .QI (xn) = 1, .QF (xn) = 0. 

Proof: Consider the Proposition 3.3, .QT (0) ≥ .QT (x) ∀x ∈X. 

Then, we have .QT (0) ≥ .QT (x) ∀ x ∈ X 
.QT (0) ≥ . lim

n→∞QT (xn)

Hence, . QT (0) = 1.

Similarly, .QI (0) = 1
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.QF (0) ≤ .QF (x) ∀x ∈ X 

.QF (0) ≤ . lim
n→∞QF (xn)

Hence, .ηF (0) = 0 

Theorem 3.6 If ϑ = .{x : QT ,I ,F / x ∈ X} is the neutrosophic_Ẑ-subalgebra of X, 
then the set .XQT ,I ,F = {x ∈ X / .QT ,I ,F (x) = .QT ,I ,F (0) } is also a subalgebra 
of X. 

Proof: For any x, ƴ . ∈ XQT ,I ,F

.QT (x) = .QT (0) = .QT (ƴ ) 

. QT (Ø * ƴ) ≥ {min (.QT (x), .QT (ƴ )} 
= min {.QT (0), .QT (0)} 
= min . {QT (0)}

Similarly, . QI (Ø * ƴ) = min .{QI ( 0)} 
. QF (Ø * ƴ) ≤ {max (.QF (x), .QF (ƴ )} 

= max{.QF (0), .QF (0)} 
= max . {QF (0)}

∴ .XQT ,I ,F is the subalgebra of X 

Theorem 3.7 Let (X, *, 0) and (X
'
, *

'
, 0

'
) be two  ̂Z-algebras and W: X → X'

be a 
homomorphism. If .QT ,I ,F is a neutrosophic_Ẑ-subalgebra of X, which is defined 
as

W(.QT ,I ,F ) = {x, (.QT ,I ,F (x) = .QT ,I ,F (W(x))} then W(. QT ,I ,F ) is the  
neutrosophic_Ẑ– subalgebra of X. 

Proof: Let x, ƴ ∈ X 

.(QT )W (x * ƴ) = . QT (W (x* ƴ) 
= . QT (W (x) * W (ƴ) 
≥ min {.QT (W (x), . QT (W (ƴ)} 

.(QT )W = min{.(QT )W (x), .(QT )W (ƴ)} 
Similarly, .(QI )W = min{.(QI )W (x), .(QI )W (ƴ)} 
.(QF )W (x * ƴ) = . QF (W (x * ƴ)) 

= . QF (W (x) * W (ƴ)) 
≤ max {. QF (W (x)), . QF (W (ƴ)) 

.(QF )W = max {.(QF )W (x), .(QF )W (ƴ)} 
Therefore, W(.QT ,I ,F ) is the neutrosophic_Ẑ-subalgebra of X

'
. 

Remark 3.8 The set which is denoted by .IQT ,I ,F is also the subalgebra of X 
which is defined to be .IQT ,I ,F = {x ∈ X / .QT ,I ,F (x) = .QT ,I ,F (0)}. 
Theorem 3.9 Let ϑ = {x, .QT ,I ,F (x) : x ∈X} be the neutrosophic_Ẑ-algebra of 
X. Then, ∃ a set .IQT ,I ,F is also the subalgebra of X. 

Proof: Let x, ƴ ∈ .IQT ,I ,F
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Then .QT ,I ,F (x) = .QT ,I ,F (0) = .QT ,I ,F (ƴ). 
Consider 

. QT (x * ƴ) ≥ min {.QT (x), .QT (ƴ )} 
≥ min {.QT (0), .QT (0)} 
= .QT (0) 

∴ .QT (x * ƴ) ≥ .QT (0), 
Consider Proposition 3.3, . QT (x * ƴ) ≥ .QT (0) 
Then, there exist .QT ( (x * ƴ) ≥ .QT (0) or equivalently, (x * ƴ) . ∈ IQT ,I ,F

Similarly, . QI (x * ƴ)≥ .QI (0) 
. QF (x * ƴ) ≤ max {.QF (x), .QF (ƴ )} 

≤ max {.QF (0), .QF (0)} 
= . QF (0) 

∴ . QF (x * ƴ) .≤ QF (0) Using Proposition 3.3 
Thus, .QF ( (x * ƴ) = .QF (0) or x * ƴ . ∈ IQT ,I ,F
Hence, the set .IQT ,I ,F are Ẑ-subalgebras of X. 

4 Homomorphism of Neutrosophic_Ẑ-Subalgebra 

Some interesting results on homomorphism of neutrosophic_Ẑ-subalgebra are 
studied in this section. 

Theorem 4.1 If ∂ : X→ Ỳ is the homomorphism of Ẑ-subalgebra. If . QT ,I ,F
be the neutrosophic_Ẑ -subalgebra of Y, then .∂−1

(
QT ,I ,F

) = {(. ∂−1 (QT ) ,

.∂−1 (QI ) , ∂−1(QF )} is also the neutrosophic_Ẑ-subalgebra of Ỳ, where 

.∂−1 (QT (x)) = .QT ∂ (x), .∂−1 (QI (x)) = .QI ∂ (x), .∂−1 (QF (x)) = .QF ∂ (x), 
for every x ∈ X. 

Proof: Given .QT ,I ,F be the neutrosophic_ Ẑ-subalgebra of . Ỳ
Let, x, ƴ ∈ X. 

Then, .∂−1 (QT (x*ƴ) = . QT ∂ (x*ƴ)
= .QT ∂ (x) * . QT ∂ (ƴ)

≥ min {.∂ (QT (x)) * . ∂ (QT (ƴ))}
= min {.∂−1 (QT (x)) * .∂−1 (QT (ƴ))} 

.∂−1 (QT (x*ƴ) ≥ min {.∂−1 (QT (x)) * .∂−1 (QT (ƴ))} 

.∂−1 (QI ) (x*ƴ) = .QI (∂ (x*ƴ )) 
= .QI (∂ (x) * ∂(ƴ)) 
≥ min { .QI (∂ (x)), . QI (∂ (x))}
= min{.∂−1 (QI (x)), .∂−1 (QI (ƴ))} 

.∂−1 (QF ) (x*ƴ) = .QF (∂ (x* ƴ)) 
= .QF (∂ (x) * ∂(ƴ)) 
≤ max {.QF (∂ (x)), . QF (∂ (x))}
= max {.∂−1 (QF (x)), .∂−1 (QF (ƴ))}
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.∂−1 (QF ) (x*ƴ) ≤ max {.∂−1 (QF (x)), .∂−1 (QF (ƴ))} 
Hence .∂−1

(
QT ,I ,F

) = {(.∂−1 (QT ) , .∂−1 (QI ) , ∂−1 (QF )} is the neutrosophic_Ẑ-
subalgebra of X. 

Theorem 4.2 If ρ : X → Ỳ be the homomorphism from Ẑ-algebra X to Y. If  ϑ 
= (.QT ,I ,F ) be the neutrosophic_Ẑ-algebra of . ̂Z, then the image of ρ (ϑ)= {x, 
ρsup(.QT ) ρsup(.QI ), ρinf (.QF )/ x ∈ X } of ϑ under ρ is also the neutrosophic_Ẑ– 
subalgebra of Y. 

Proof: Let ϑ = (.QT ,I ,F ) be the neutrosophic_Ẑ-subalgebra of . ̂Z and let ƴ1, ƴ2∈ 
Ỳ. 

We know that x1 * x2/x1 ∈ ρ−1(ƴ1) & x2 ∈ ρ−1(ƴ2)⊆{x .∈ Ẑ/x ∈ ρ−1(ƴ1 * ƴ2). 

Now, ρsup(.QT )
((
ƴ1*ƴ2 ) = sup {(.QT ) /x ∈ ρ−1

(
ƴ1*ƴ2 )} 

= sup {(.QT ) x1*x2/x1 ∈ ρ−1
(
ƴ1

)
& x2 ∈ ρ−1

(
ƴ2

)} 
≥sup min{.QT (x1),.ηT (x2)/x1 ∈ ρ−1(y1) & x2 ∈ ρ−1(ƴ2)} 

= min{sup{.QT (x1) /x1 ∈ ρ−1
(
ƴ1

)
, QT (x2)/ x2 ∈ ρ−1(ƴ2)}} 

ρsup(.QT )
((
ƴ1*ƴ2 ) ≥ min {.ρsup (QT

(
ƴ1 )), .ρsup (QT

(
ƴ2 ))} 

ρsup(.QI )
(
ƴ1*ƴ2

) = sup . QI (x)/ x ∈ ρ−1(ƴ1 * ƴ2) 
= sup {(.QI ) x1*x2/x1 ∈ ρ−1

(
ƴ1

)
& x2 ∈ ρ−1

(
ƴ2

)} 
≥sup{min{.QI (x1),.ηI (x2)/x1 ∈ ρ−1(ƴ1) & x2 ∈ ρ−1(ƴ2)} 

= min{sup{.QI (x1) /x1 ∈ ρ−1
(
ƴ1

)
, QI (x2)/ x2 ∈ ρ−1(ƴ2)}} 

= min {.ρsup (QI
(
ƴ1 )), .ρsup (QI

(
ƴ2 ))} 

ρsup(.QI )
(
ƴ1*ƴ2

) ≥ min {.ρsup (QI
(
ƴ1

)
), .ρsup (QI

(
ƴ2 ))} 

ρinf (.QF )
(
ƴ1*ƴ2

) = inf .{QF (x) / x ∈ ρ−1(ƴ1 * ƴ2)} 
≤ inf {(.QF ) x1*x2/x1 ∈ ρ−1

(
ƴ1

)
& x2 ∈ ρ−1

(
ƴ2

)} 
≤inf{max{.QF (x1),.QF (x2)/x1 ∈ ρ−1(ƴ1) & x2 ∈ ρ−1(ƴ2)} 
=max{inf{.QF (x1) /x1 ∈ ρ−1

(
ƴ1

)
, QF (x2)/ x2 ∈ ρ−1(ƴ2)}} 

=max {.ρinf (QF
(
ƴ1 )), .ρinf (QF

(
ƴ2 ))} 

Hence, ρinf (.QF )
(
ƴ1*ƴ2

) ≤ max {.ρinf (QF
(
ƴ1 )), .ρinf (QF

(
ƴ2 ))}. 

Theorem 4.3 Suppose: X → . Ỳ be the homomorphism of Ẑ-subalgebra. If ϑ = 
(.QT ,I ,F ) be the neutrosophic_Ẑ-algebra of Y, then its pre-image of ρ−1(ϑ) = {x; 
.ρ−1

(
QT ,I ,F

)
/x ∈ X} of ϑ under ρ is also a neutrosophic_Ẑ-subalgebra of X. 

Proof: 
.ρ−1 (QT )(x* ƴ) = . QT (ρ (x* ƴ)) 

= . QT (ρ (x) * ρ (ƴ)) 
. ≥ min {QT (x) , QT (ƴ)}
= min {. ρ−1 (QT ) (x) , ρ−1 (QT ) (ƴ)}

∴ .ρ−1 (QT )(x* ƴ) ≥ min {. ρ−1 (QT ) (x) , ρ−1 (QT ) (ƴ)}
Similarly, .ρ−1 (QI )(x* ƴ) ≥ min {. ρ−1 (QI ) (x) , ρ−1 (QI ) (ƴ)}

.ρ−1 (QF )(x* ƴ) = . QF (ρ (x* ƴ)) 
=. QF (ρ (x) * ρ (ƴ))
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. ≤ max {QF (x) , QF (ƴ)}
= max {. ρ−1 (QF ) (x) , ρ−1 (QF ) (ƴ)}

.ρ−1 (QF )(x* ƴ) ≤ max {. ρ−1 (QF ) (x) , ρ−1 (QF ) (ƴ)}
∴ ρ−1(ϑ) = {x, .ρ−1

(
QT ,I ,F

)
/x∈ X } of ϑ under ρ is the neutrosophic_Ẑ-

subalgebra of X. 

Theorem 4.4 Let h be the .Ẑ-endomorphism of (X, * , 0). If  ϑ ={x : .QT ,I ,F / x ∈ 
X} be a neutrosophic_Ẑ-subalgebra of X, then ϑh = {.x : Qh

T ,I ,F / x ∈ Ẑ} is also a 

neutrosophic_Ẑ-subalgebra of X. 

Proof: Given h be an .Ẑ-endomorphism of . ̂Z−algebra (X, * , 0).  

Let ϑ be a neutrosophic_Ẑ-subalgebra of X. 
To prove: ϑh is also a neutrosophic_Ẑ-subalgebra of X. 

Let x, ƴ ∈ X, then 
.QT h(x * ƴ) = . QT (h (x * ƴ) 

= . QT (h (x) * h (ƴ)) 
≥ min{ . QT (h (x), . QT (h (ƴ)} 

.QT h (x * ƴ) ≥ min{.QT h (x), .QT h (ƴ)} 
Similarly, .QI h (x * ƴ) ≥ min{.QI h (x), .QI h (ƴ)} 
.QF h (x * ƴ) = . QF (h (x * ƴ) 

= . QF (h (x) * h (ƴ)) 
≤ max{ . QF (h (x), .QF (h (ƴ)} 

.QF h (x * ƴ) ≤ max{.QF h (x), .QF h (ƴ)} 
Hence, ϑh is also a neutrosophic_Ẑ-subalgebra of X. 

5 Conclusion 

The above research proposal aim is to demonstrate a new approach to neutro-
sophic Z-algebra in various dimensions, and the manuscript outlined the new 
framework of neutrosophic_set in Ẑ-algebra using a single binary operation (*) 
and discussed algebraic structures such as union, intersection, homomorphism, 
endomorphism, and inverse image. In ongoing studies, this could be enhanced 
to other algebraic structures and fuzzy set extensions which include interval-
valued neutrosophic_fuzzy set, interval-valued intuitionistic neutrosophic_set, cubic 
neutrosophic_set, and bipolar neutrosophic_set. 
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Controllable Fuzzy Neutrosophic Soft 
Matrices 

M. Kavitha and P. Murugadas 

Keywords Fuzzy Neutrosophic Soft Matrices (FuNeSoMas) · Controllable Fuzzy 
Neutrosophic Soft Matrices (CoFuNeSoMas) · Nilpotent Fuzzy Neutrosophic Soft 
Matrices (NiFuNeSoMas) · Fuzzy Neutrosophic Soft Relation (FuNeSoRe) · 
Transitivity canonical form 

1 Introduction 

The concept of fuzzy sets was founded by Zadeh [19]. Intuitionistic Fuzzy Sets 
(InFuSes) introduced by Atanassov [2] are appropriate for such a situation. But 
the intuitionistic fuzzy sets can only handle the incomplete information considering 
both the truth-membership (or simply membership) and falsity-membership (or 
non-membership) values. It does not handle the indeterminate and inconsistent 
information, which exists in belief system. Smarandache [16] introduced the 
concept of Neutrosophic Set (NeSe), which is a mathematical tool for handling 
problems involving imprecise, indeterminacy, and inconsistent data. 

In our regular everyday life, we face situations that require procedures allowing 
certain flexibility in information processing capacity. Molodtsov [12] addressed soft 
set theory problems successfully. In their early work, soft set was described purely 
as a mathematical method to model uncertainties. The researchers can pick any 
kind of parameters of any nature they wish in order to facilitate the decision-making 
procedure as there is a varied way of picturing the objects. 

Maji [10] have done further research on soft set theory. Presence of vagueness 
demanded Fuzzy Soft Set (FuSoSe) to come into picture. But satisfactory evaluation 
of membership values is not always possible because of the insufficiency in the 

M. Kavitha 
Department of Mathematics, Bharath Institute of Higher Education and Research, Chennai, India 

P. Murugadas (O) 
Department of Mathematics, Government Arts and Science College Veerapandi, Theni, India 
e-mail: bodi_muruga@yahoo.com 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
H.-H. Leung et al. (eds.), Recent Developments in Algebra and Analysis, 
Trends in Mathematics, https://doi.org/10.1007/978-3-031-37538-5_6

57

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37538-5protect T1	extunderscore 6&domain=pdf

 885 56845 a 885 56845
a
 
mailto:bodi_muruga@yahoo.com
mailto:bodi_muruga@yahoo.com
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6
https://doi.org/10.1007/978-3-031-37538-5_6


58 M. Kavitha and P. Murugadas

available information (besides the presence of vagueness) situation. Evaluation of 
non-membership values is also not always possible for the same reason, and as a 
result, there exists an indeterministic part upon which hesitation survives. Certainly 
fuzzy soft set theory is not suitable to solve such problems. In those situations, 
Intuitionistic Fuzzy Soft Set theory (InFuSoSs) [11] may be more applicable. Now 
in the parlance of soft set theory, there is hardly any limitation to select the nature of 
the criteria, and as most of the parameters or criteria (which are words or sentences) 
are neutrosophic in nature, Maji [9] has been motivated to combine the concept of 
soft set and neutrosophic set to make the new mathematical model neutrosophic soft 
set and has given an algorithm to solve a decision-making problem. 

The theory of a fuzzy matrix is very useful in the discussion of fuzzy relations. 
We can represent basic propositions of the theory of fuzzy relations in terms of 
matrix operations. Furthermore, we can deal with the fuzzy relations in the matrix 
form. In the study of the theory of fuzzy matrix, a canonical form of some fuzzy 
matrices has received increasing attention. For example, Kim and Roush [8] studied 
the Idempotent fuzzy matrices. Xin [18] introduced the idea for Convergence of 
powers of controllable fuzzy matrices. Padder and Murugadas [15] are presented 
the max-min opetarion on InFuMa. Broumi et al. [3] redefined the notion of 
neutrosophic set in a new way and put forward the concept of neutrosophic soft 
matrix and different types of matrices in neutrosophic soft theory. They have 
introduced some new operations and properties on these matrices. The minimal 
solution was done by Kavitha et al. [5], based on the notion of FuNeSoMa given by 
Arokiarani and Sumathi [1]. As time goes, some works on FuNeSoMa were done by 
Kavitha et al. [4–7]. The Monotone interval fuzzy neutrosophic soft eigenproblem, 
and Monotone fuzzy neutrosophic soft eigenspace structures in max-min algebra 
and Solvability of system of neutrosophic soft linear equations were investigated 
by Murugadas et al. [13, 14]. Also, two kinds of fuzzy neutrosophic soft matrices 
presented by Uma et al. [17]. 

In this chapter, we study and prove some properties of controllable and Idom-
potent FuNeSoMas. However, we have developed an algorithm for controllable and 
nilpotent FuNeSoMas and reduce a controllable FuNeSoMa to canonical form. One 
of these results enables us to construct an idempotent and controllable FuNeSoMa 
from a given one, and this is the main result in the chapter. 

2 Preliminaries 

For basic result refer [5, 16–18]. 

2.1 Main Results 

Let .R = <rT
ij , rI

ij , r
F
ij > and .S = <sT

ij , s
I
ij , s

F
ij > be square FuNeSoMa with elements in 

[0,1].
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– . R ∨ S = [<rT
ij , rI

ij , r
F
ij > ∨ <sT

ij , s
I
ij , s

F
ij >],

– . R ∧ S = [<rT
ij , rI

ij , r
F
ij > ∧ <sT

ij , s
I
ij , s

F
ij >],

– . R o S = [<rT
ij , rI

ij , r
F
ij > o <sT

ij , s
I
ij , s

F
ij >],

. <rT
ij , rI

ij , r
F
ij > o <sT

ij , s
I
ij , s

F
ij > :=

{
<rT

ij , rI
ij , r

F
ij > If <rT

ij , rI
ij , r

F
ij > > <sT

ij , s
I
ij , s

F
ij >

<0, 0, 1> If <rT
ij , rI

ij , r
F
ij > ≤ <sT

ij , s
I
ij , s

F
ij >

}

– . R×S = [(<rT
i1, r

I
i1, r

F
i1>∧<sT

1j , s
I
1j , s

F
1j >)∨(<rT

i2, r
I
i2, r

F
i2>∧<sT

2j , s
I
2j , s

F
2j >)∨ . . . ∨

. (<rT
in, r

I
in, r

F
in> ∧ <sT

nj , s
I
nj , s

F
nj >)],

– . Rk+1 = Rk × R, k = {0, 1, 2, . . .},
– . R0 = I,

– .R' = <rT
ji , r

I
ji , r

F
ji> the transpose of . R,

– . ΔR = R o R' = Δ<rT
ij , rI

ij , r
F
ij > = <rT

ij , rI
ij , r

F
ij > o <rT

ji , r
I
ji , r

F
ji>,

– . ∇R = R ∧ R' = ∇<rT
ij , rI

ij , r
F
ij > = <rT

ij , rI
ij , r

F
ij > ∧ <rT

ji , r
I
ji , r

F
ji>,

– .R ≤ S iff . (<rT
ij , rI

ij , r
F
ij > ≤ <sT

ij , s
I
ij , s

F
ij >∀ i, j ∈ {1, 2, . . . , n}),

– .RΨ S iff . (<sT
ij , s

I
ij , s

F
ij > = <0, 0, 1> ⇒ <rT

ij , rI
ij , r

F
ij > = <0, 0, 1> ∀i, j ∈

{1, 2, . . . , n}),
FuNeSoMa R is said to be 

– Transitive if . <rT
ij , rI

ij , r
F
ij >2 ≤ <rT

ij , rI
ij , r

F
ij >;

– Idempotent if . <rT
ij , rI

ij , r
F
ij >2 = <rT

ij , rI
ij , r

F
ij >;

– Nilpotent if . <rT
ij , rI

ij , r
F
ij >n = <0, 0, 1>;

– Symmetric if . <rT
ij , rI

ij , r
F
ij > = <rT

ji , r
I
ji , r

F
ji>;

– ST iff for any index .i, j, k ∈ {1, 2, . . . , n}, with .i /= j, i /= k, j /= k, such 
that .<rT

ik, r
I
ik, r

F
ik> > <rT

ki , r
I
ki , r

F
ki> and .<rT

kj , r
I
kj , r

F
kj > > <rT

jk, r
I
jk, r

F
jk>, we have 

. <rT
ij , rI

ij , r
F
ij > > <rT

ji , r
I
ji , r

F
ji>;

– Strictly Lower (Upper) Triangular (SL(U)T) if . <rT
ij , rI

ij , r
F
ij > = <0, 0, 1>∀i ≤

j (i ≤ j).

Theorem 1 Consider a NiFuNeSoMa N and Symmetric FuNeSoMa (SyFuNe-
SoMa) S. For a FuNeSoMa R given by .R = N ∨ S∃ a Pemutation FuNeSoMa 
(PeFuNeSoMa) .P ∃ . T = <tTij , tIij , t

F
ij > = <pT

ij , p
I
ij , p

F
ij > × <rT

ij , rI
ij , r

F
ij > ×

<pT
ji, p

I
ji , p

F
ji> satisfies .<tTij , tIij , t

F
ij > ≥ <tTji , t

I
j i , t

F
ji> for .i > j.
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Proof . <tTij , tIij , t
F
ij > = <pT

ij , p
I
ij , p

F
ij > × <rT

ij , rI
ij , r

F
ij > × <pT

ji, p
I
ji , p

F
ji>

. = <pT
ij , p

I
ij , p

F
ij > × (<nT

ij , n
I
ij , n

F
ij > ∨ <sT

ij , s
I
ij , s

F
ij >) × <pT

ji, p
I
ji , p

F
ji>

. = (<pT
ij , p

I
ij , p

F
ij >×<nT

ij , n
I
ij , n

F
ij >×<pT

ji, p
I
ji , p

F
ji>)∨(<pT

ij , p
I
ij , p

F
ij >×<sT

ij , s
I
ij , s

F
ij >×

<pT
ji, p

I
ji , p

F
ji>).

Since N is NiFuNeSoMa, .(<pT
ij , p

I
ij , p

F
ij >×<nT

ij , n
I
ij , n

F
ij >×<pT

ji, p
I
ji , p

F
ji>) becomes 

strictly lower triangler for some PeFuNeSoMa . P.

Thus since .(<pT
ij , p

I
ij , p

F
ij > × <nT

ij , n
I
ij , n

F
ij > × <pT

ji, p
I
ji , p

F
ji>) is symmetric, 

T satisfies .<tTij , tIij , t
F
ij > ≥ <tTji , t

I
j i , t

F
ji> for .i > j by choosing such a PeFuNe-

SoMa . P.

Remark 1 If .N = <nT
ij , n

I
ij , n

F
ij > is NiFuNeSoMa, then there exists a PeFuNeSoMa 

P such that .<pT
ij , p

I
ij , p

F
ij > × <nT

ij , n
I
ij , n

F
ij > × <pT

ji, p
I
ji , p

F
ji> is SL(U)T. 

Remark 2 The NiFuNeSoMa, R has not less than a null row and atleast one null 
column. 

Remark 3 If R is NiFuNeSoMa iff .<rT
ii , r

I
ii , r

F
ii >(k) = <0, 0, 1>, to a little . i ∈

In(Index) and little .k ∈ In, for . Rk := [<rT
ij , rI

ij , r
F
ij >(k)].

Theorem 2 For any FuNeSoMa . R, <rT
ij , rI

ij , r
F
ij > = Δ<rT

ij , rI
ij , r

F
ij >∨∇<rT

ij , rI
ij , r

F
ij >.

3 Controllable Fuzzy Neutrosophic Soft Matrices 

Here we establish some basic properties of FuNeSoMas. In the ensuing discussion, 
we pact only with SqFuNeSoMas. 

Proposition 1 For a FuNeSoMa N. If . ∃ a PeFuNeSoMa . P ∃ <pT
ij , p

I
ij , p

F
ij > ×

<nT
ij , n

I
ij , n

F
ij > × <pT

ji, p
I
ji , p

F
ji> is SL(U)T, then N is a NiFuNeSoMa. 

Proof Let 

. S = <pT
ij , p

I
ij , p

F
ij > × <nT

ij , n
I
ij , n

F
ij > × <pT

ji, p
I
ji , p

F
ji> =

⎡
⎢⎣

<0, 0, 1> <0, 0, 1>
. . .

∗ <0, 0, 1>

⎤
⎥⎦

we can prove the direct multiplication that . S2 is also SL(U)T, and consequently 
.S3, S4, . . . all powers of . S. All diagonals are zero in .S, S2, S3, . . . , so by 
Remark 3, S is nilpotent. As . <pT

ij , p
I
ij , p

F
ij > × <pT

ji, p
I
ji , p

F
ji> = <pT

ji, p
I
ji , p

F
ji> ×

<pT
ij , p

I
ij , p

F
ij > = <1, 1, 0>, then multiplying S on the left by .<pT

ij , p
I
ij , p

F
ij >, we get 

.<pT
ji, p

I
ji , p

F
ji> × <sT

ij , s
I
ij , s

F
ij > × <pT

ij , p
I
ij , p

F
ij > = <nT

ij , n
I
ij , n

F
ij >, so we find the .Nn,
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that is . <nT
ij , n

I
ij , n

F
ij >n = <pT

ji, p
I
ji , p

F
ji> × <sT

ij , s
I
ij , s

F
ij > × <pT

ij , p
I
ij , p

F
ij > ×

<pT
ji, p

I
ji , p

F
ji>×<sT

ij , s
I
ij , s

F
ij >×<pT

ij , p
I
ij , p

F
ij >×. . .×<pT

ji, p
I
ji , p

F
ji>×<sT

ij , s
I
ij , s

F
ij >×

<pT
ij , p

I
ij , p

F
ij >

. = <pT
ji, p

I
ji , p

F
ji> × <sT

ij , s
I
ij , s

F
ij >n × <pT

ij , p
I
ij , p

F
ij >

. = <pT
ji, p

I
ji , p

F
ji> × <0, 0, 1> × <pT

ij , p
I
ij , p

F
ij > = <0, 0, 1>.

Theorem 3 A FuNeSoMa N is nilpotent iff . ∃ a PeFuNeSoMa . <pT
ij , p

I
ij , p

F
ij > ∃

<pT
ij , p

I
ij , p

F
ij > × <nT

ij , n
I
ij , n

F
ij > × <pT

ji, p
I
ji , p

F
ji> is SL(U)T. 

Note 1 Let .<rT
ij , rI

ij , r
F
ij > be a FuNeSoMa, .<pT

ij , p
I
ij , p

F
ij > is PeFuNeSoMa. Let . T =

<tTij , tIij , t
F
ij > = <pT

ij , p
I
ij , p

F
ij > × <rT

ij , rI
ij , r

F
ij > × <pT

ji, p
I
ji , p

F
ji>. The element which 

lies in the .(i, j)th entry of R lies next in the .(h, k)th of T iff . <pT
hi, p

I
hi, p

F
hi> =

<pT
kj , p

I
kj , p

F
kj > = <1, 1, 0>.

Theorem 4 Let .R = <rT
ij , rI

ij , r
F
ij > be a FuNeSoMa, .P = <pT

ij , p
I
ij , p

F
ij > is 

PeFuNeSoMa. Then 

. <pT
ij , p

I
ij , p

F
ij > × (Δ<rT

ij , rI
ij , r

F
ij >) × <pT

ji, p
I
ji , p

F
ji> = Δ(<pT

ij , p
I
ij , p

F
ij >

× <rT
ij , rI

ij , r
F
ij >) × <pT

ji, p
I
ji , p

F
ji>, (1) 

. <pT
ij , p

I
ij , p

F
ij > × (∇<rT

ij , rI
ij , r

F
ij >) × <pT

ji, p
I
ji , p

F
ji> = ∇(<pT

ij , p
I
ij , p

F
ij >

× <rT
ij , rI

ij , r
F
ij > × <pT

ji, p
I
ji , p

F
ji>). (2) 

Definition 1 We say a FuNeSoMa R is controllabel from belove (above), if . ∃ a 
PeFuNeSoMa . P ∃ <tTij , tIij , t

F
ij > = <pT

ij , p
I
ij , p

F
ij > × <rT

ij , rI
ij , r

F
ij > × <pT

ji, p
I
ji , p

F
ji>

satisfies .<tTij , tIij , t
F
ij > ≥ <tTji , t

I
j i , t

F
ji> (<tTij , tIij , t

F
ij > ≤ <tTji , t

I
j i , t

F
ji>) a long as . i > j.

A FuNeSoMa .R = <rT
ij , rI

ij , r
F
ij > is said to be controlled from below (above), if 

.<rT
ij , rI

ij , r
F
ij > ≥ <rT

ji , r
I
ji , r

F
ji>(<rT

ij , rI
ij , r

F
ij > ≤ <rT

ji , r
I
ji , r

F
ji>)as long . i > j.

Theorem 5 The next statements are analogous: 

– (1) .<rT
ji , r

I
ji , r

F
ji> is CFB(A). 

– (2) There exists a PeFuNeSoMa .<pT
ij , p

I
ij , p

F
ij > such that . Δ(<pT

ij , p
I
ij , p

F
ij > ×

<rT
ij , rI

ij , r
F
ij > × <pT

ji, p
I
ji , p

F
ji>) is SL(U)T. 

– (3) There exists a PeFuNeSoMa .<pT
ij , p

I
ij , p

F
ij > such that . <pT

ij , p
I
ij , p

F
ij > ×

(Δ<rT
ij , rI

ij , r
F
ij >) × <pT

ji, p
I
ji , p

F
ji>) is SL(U)T. 

– (4). Δ<rT
ij , rI

ij , r
F
ij >

Corollary 1 .<rT
ij , rI

ij , r
F
ij > is CFB iff .<rT

ij , rI
ij , r

F
ij > is CFA.
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Note 2 Let R and S be FuNeSoMas, and P is a PeFuNeSoM. Then .RΨ S iff 
. <pT

ij , p
I
ij , p

F
ij > × <rT

ij , rI
ij , r

F
ij > × <pT

ji, p
I
ji , p

F
ji>Ψ <pT

ij , p
I
ij , p

F
ij > × <sT

ij , s
I
ij , s

F
ij > ×

<pT
ji, p

I
ji , p

F
ji>.

Proof: The proof is obvious. 

Theorem 6 Let .R, S be a FuNeSoMas, and .ΔRΨ ΔS. If S is controllable, then R 
is controllable. 

4 Reduction of Controllable Matrix to Canonical Form 

Lemma 1 Let R = (<rT 
ij , rI 

ij , r
F 
ij >) and S = (<sT 

ij , s
I 
ij , s

F 
ij >) be n × n FuNeSoMa of 

the form 

. R =

⎡
⎢⎢⎣

<0, 0, 1> ... <0, 0, 1> · · · <0, 0, 1>
. . . . . . . . . . . . . .

α
... R1

⎤
⎥⎥⎦ ,

. S =

⎡
⎢⎢⎣

<0, 0, 1> ... <0, 0, 1> · · · <0, 0, 1>
. . . . . . . . . . . . . .

β
... S1

⎤
⎥⎥⎦ ,

where α and β are (n − 1) × 1 FuNeSoMa and R1 and S1 are FuNeSoMa of order 
(n-1). Then 

(i) 

. R × S =

⎡
⎢⎢⎣

<0, 0, 1> ... <0, 0, 1> · · · <0, 0, 1>
. . . . . . . . . . . . . .

R1 × β
... R1 × s1

⎤
⎥⎥⎦

(ii) 

. Rn =

⎡
⎢⎢⎣

<0, 0, 1> ... <0, 0, 1> · · · <0, 0, 1>
. . . . . . . . . . . . . . .

Rn−1
1 × α

... Rn
1

⎤
⎥⎥⎦

(iii) R is NiFuNeSoMa iff R1 is nilpotent.
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Remark 4 Let R = (<rT 
ij , rI 

ij , r
F 
ij >) ∈ FuNeSoMan, and R have no less than one

<0, 0, 1> row (say, the ith  row). Let ith  row → I-row and vice versa and do the same 
for column; then we have 

. R∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

<0, 0, 1> ... <0, 0, 1> · · · <0, 0, 1>
. . . . . . . . . . . . . .

∗ ...
...

...

∗ ... R1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Lemma 2 R is NiFuNeSoMa iff R1 is NiFuNeSoMa. By Lemma 1, we have the 
following for NiFuNeSoMa R. 

Algorithm 1 Step 1. Check R, for a null row and null column; if anyone is missing, 
then R fails to be nilpotent. End. 
Check R for both zero row and zero column. If not, then R is not nilpotent. If R has 
both conditions, then do interchange as mentioned; then, we have 

. <pT
ij , p

I
ij , p

F
ij >1 × R × <pT

ji, p
I
ji , p

F
ji>1 =

⎡
⎢⎢⎣

<0, 0, 1> ... <0, 0, 1> · · · <0, 0, 1>
. . . . . . . . . . . . . .

∗ ... R1

⎤
⎥⎥⎦

where <pT 
ij , p

I 
ij , p

F 
ij >1 = <pT 

ij , p
I 
ij , p

F 
ij >(1, i1). Next step  

Step 2. Check R for both zero row and zero column. If not then R1 is not nilpotent, 
Stop. 
If R1 satisfies desired conditions, i.e., in R1, the  it 2h row is a null row. The new form
<pT 

ij , p
I 
ij , p

F 
ij >2 × <pT 

ij , p
I 
ij , p

F 
ij >1 × R × <pT 

j i , p
I 
j i , p

F 
j i>1 × <pT 

j i , p
I 
j i , p

F 
j i>2 from 

FuNeSoMa <pT 
ij , p

I 
ij , p

F 
ij >1 × R × <pT 

j i , p
I 
j i , p

F 
j i>1 by interchanging the (i2 + 1)-th 

row with II row and (i2 + 1)-th column with the II column such that 

. <pT
ij , p

I
ij , p

F
ij >2 × <pT

ij , p
I
ij , p

F
ij >1 × R × <pT

ji, p
I
ji , p

F
ji>1 × <pT

ji, p
I
ji , p

F
ji>2

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

<0, 0, 1> <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>
∗ <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>

. . . . . . . . . . . . . . . . . .

∗ ∗ ...
...

...
... R2

∗ ∗ ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where <pT 
ij , p

I 
ij , p

F 
ij >2 = <pT 

ij , p
I 
ij , p

F 
ij >(2, i2 + 1). Next step.
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Step 3. Check R2, for a null row and null column. If not, R2 is not nilpotent; thus, 
Lemma 2 implies R1 and R are not nilpotent, stop. 
Else if in R1, the ith  

3 row of R2 is null, the new FuNeSoMa of the form
<pT 

ij , p
I 
ij , p

F 
ij >3 × <pT 

ij , p
I 
ij , p

F 
ij >2 × <pT 

ij , p
I 
ij , p

F 
ij >1 × R × <pT 

j i , p
I 
j i , p

F 
j i>1 ×

<pT 
j i , p

I 
j i , p

F 
j i>2 × <pT 

j i , p
I 
j i , p

F 
j i>3 from matrix <pT 

ij , p
I 
ij , p

F 
ij >2 × <pT 

ij , p
I 
ij , p

F 
ij >1 × 

R × <pT 
j i , p

I 
j i , p

F 
j i>1 × <pT 

j i , p
I 
j i , p

F 
j i>2 then changes the (i3 + 2)-th row with II row 

and (i3 + 2)-th column with the II column ∃, 

. <pT
ij , p

I
ij , p

F
ij >3 × <pT

ij , p
I
ij , p

F
ij >2 × <pT

ij , p
I
ij , p

F
ij >1 × R × <pT

ji, p
I
ji , p

F
ji>1

× <pT
ji, p

I
ji , p

F
ji>2 × <pT

ji, p
I
ji , p

F
ji>3

. =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

<0, 0, 1> <0, 0, 1> <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>
∗ <0, 0, 1> <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>
∗ ∗ <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>

. . . . . . . . . . . . . . . . . . . . . .

∗ ∗ ∗ ...
...

...
...

... R3

∗ ∗ ∗ ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where <pT 
ij , p

I 
ij , p

F 
ij >3 = <pT 

ij , p
I 
ij , p

F 
ij >(3, i3 + 2). Next step. 

Continuing like this, finally we get 

. <pT
ij , p

I
ij , p

F
ij >n × <pT

ij , p
I
ij , p

F
ij >n−1 × . . .

×<pT
ij , p

I
ij , p

F
ij >2 × <pT

ij , p
I
ij , p

F
ij >1 × R × <pT

ji, p
I
ji , p

F
ji>1 × <pT

ji, p
I
ji , p

F
ji>2×

. . . × Pn−1 × <pT
ji, p

I
ji , p

F
ji>n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

<0, 0, 1> <0, 0, 1> <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>
∗ <0, 0, 1> <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>
∗ ∗ <0, 0, 1> ... <0, 0, 1> . . . <0, 0, 1>

. . . . . . . . . . . . . . . . . . . . . .

∗ ∗ ∗ ...
...

...
...

... Rn

∗ ∗ ∗ ...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where <pT 
ij , p

I 
ij , p

F 
ij >m = <pT 

ij , p
I 
ij , p

F 
ij >(m, im + m − 1), m ∈ In.
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In the event if Rn fails to satisfy both the condition, then R is not nilpotent. 
Else, 

. Rn =
⎡
⎢⎣

<0, 0, 1> <0, 0, 1>
. . .

∗ <0, 0, 1>

⎤
⎥⎦

then by Lemma 2, R is nilpotent by the sequence of actions. Then, <pT 
ij , p

I 
ij , p

F 
ij > =

<pT 
ij , p

I 
ij , p

F 
ij >t × <pT 

ij , p
I 
ij , p

F 
ij >t−1 × . . .  × <pT 

ij , p
I 
ij , p

F 
ij >2 × <pT 

ij , p
I 
ij , p

F 
ij >1. 

We obtain, 

. <pT
ij , p

I
ij , p

F
ij > × R × <pT

ji, p
I
ji , p

F
ji> =

⎡
⎢⎣

<0, 0, 1> <0, 0, 1>
. . .

∗ <0, 0, 1>

⎤
⎥⎦

which indeed SLT. Algorithm to curtail CoFuNeSoMa to canonical form. 

Algorithm 2 Step 1. By Algorithm 1, we can check if ΔR is nilpotent or not. Thus 
R is CoFuNeSoMa or not by Theorem 5. 
Step 2. If R is CoFuNeSoMa, then by Step I, we get a permutation matrix P , i.e.,
<pT 

ij , p
I 
ij , p

F 
ij > ×  (ΔR) × <pT 

j i , p
I 
j i , p

F 
j i>, which is SLT. So <pT 

ij , p
I 
ij , p

F 
ij > ×  R ×

<pT 
j i , p

I 
j i , p

F 
j i> is canonical form of R. Stop. 

5 Conclusion 

In this article the controllable fuzzy neutrosophic soft matrix is defined. Further, 
various properties of nilpotent and controllable fuzzy neutrosophic soft matrices 
are showed. We have developed an algorithm for controllable and nilpotent fuzzy 
neutrosophic soft matrices and reduced a controllable fuzzy neutrosophic soft matrix 
to canonical form. 
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An MCDM Based on Neutrosophic Fuzzy 
SAW Method for New Entrepreneurs 
in Organic Farming 

T. Porchudar, A. Merceline Anita, M. Arul Jeya Shalini, and J. Jeba Jesintha 

Keywords Neutrosophic Fuzzy SAW method · Linguistic variables · 
Neutrosophic fuzzy numbers · Organic farming 

1 Introduction 

Multi-criteria decision-making(MCDM) is a significant approach to make a decision 
in accordance with the preference on the people who decide things. At every step in 
our lives, we make decisions to perform all our actions. The theory of decision-
making is just an attempt at codification of our decision-making process in a 
mathematically tractable form [6]. During decision-making in some cases, there 
is no method for assessing the data clearly; it can be easily evaluated in terms of 
linguistic variables. The idea of fuzzy sets, which can be used to improve these 
kind of situations [11], was first introduced by Prof. Lotfi A. Zadeh of University 
of California in 1965. MCDM is a concept that enables us to select the most 
appropriate alternative by evaluating them in terms of many criteria. A widely used 
and popularly known MCDM is simple additive weighting method, which calculates 
the weight values for ranking each alternatives over specific criteria. 

Since India is an Agrarian country, the future of small-scale farming lies in the 
hands of youth as they are considered as potential future farmers. In the recent years, 
we see that the interest in organic farming is booming among youngsters. Many 
IT professionals and other young professionals are leaving their lucrative jobs to 
start organic farming. Though they are interested, most of them were drawn into the 
world of organic farming without knowing the ground reality, and this paves the way 
to face so many difficulties during the initial times. Hence, this problem is taken into 
account and implemented with NFSAW method. The paper is structured as follows: 
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Introduction and historical background of NFSAW method are dealt first, followed 
by basic definitions. An algorithm is presented for our case study with comparative 
analysis, and finally, it’s concluded with the arrived results. 

2 Literature Review 

Churchman and Ackoff introduced the method called simple additive weighting 
(SAW) in 1945, and they utilized SAW method to select the portfolio problem. In 
2005, Modarres and Sadi Nezhad published a paper using preference ratio in fuzzy 
simple additive weighting (FSAW) method. In 2013, Prabhjot Kaur and Sanjay 
Kumar developed fuzzy SAW method into Intuitionistic fuzzy SAW method for 
vendor selection [5]. In 2013, Manish Sagar, Jayaswal, and Kushwah explored fuzzy 
SAW method for maintenance strategy selection [8]. In 2016, E. Roszkowskaa 
and D. Kacprzakb extended the linguistic FSAW and linguistic fuzzy analytical 
hierarchy process (FTOPSIS) techniques [7]. 

In 2016, Budi Praseliyo, Niswah Baroroh, and Dwi Rufiyanti utilized this fuzzy 
SAW Method for taking decisions in human resource recruitment [3]. In 2018, 
Wini Waziana, Rita Irviani, Oktaviani Satria, and Adino Kurniawan have utilized 
this fuzzy simple additive weighting for helping out farmers and to determine the 
recipients in their breeding farm [10]. Further SAW method has also been applied 
in interval valued neutrosophic set for the selection of insurance options [2] and 
in the selection of achieving students in faculty level [4]. In 2019, this fuzzy SAW 
method was extended to neutrosophic fuzzy SAW method by D. Ajay and J. Aldring, 
who proposed an application for this neutrosophic fuzzy SAW method [1]. In 2020, 
Nguyen Tho Thong has extended TOPSIS method, and it has evolved in dynamic 
neutrosophic environment [9]. Earlier, there was no study on using neutrosophic 
sets to solve MCDM problems. Most recently, multiple scholarly approaches are 
emerging in MCDM using neutrosophic sets, which mainly deal with neutrality. 

3 Basic Concepts 

This chapter elaborates some of the fundamental ideas behind the fuzzy set and the 
neutrosophic set. 

Definition 3.1 (Fuzzy Membership [1]) Let . χ be the universal set. The mem-
bership function .μA by which a fuzzy set A is usually defined is in the form 
.μA : χ → [0, 1]; the values obtained are called the membership values. 

Definition 3.2 (Linguistic Variables [1]) In fuzzy logic, a linguistic variable is a 
variable whose values are phrases in either natural or in artificial language.
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Definition 3.3 (Triangular Fuzzy Number [1]) Triangular fuzzy number is a 
triplet .A = {x : (u, v,w)}, where the smallest likely value is “u,” the most 
probable value is “v,” and the largest possible value is “w” of any fuzzy event. 

. μA(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, x ≤ u
x−u
v−u

, u < x ≤ v
w−x
w−v

, v < x < w

0, x ≥ w

Definition 3.4 (Neutrosophic Set [1]) Let U be the universe of discourse and C 
be a subset of U. Each element .b ∈ U has degree of true indeterminacy and false 
membership in C. The neutrosophic set is . CNS = {< b, TC(b), FC(b), IC(b) > :
b ∈ X} where .TC(b), .IC(b), and .FC(b) represent the degree of truth, indeterminacy, 
and falsity membership functions, respectively, which take their values in the unit 
closed interval. We have no restriction on the sum of .TC(b), FC(b), and . IC(b). It  
satisfies the following relation: . 0 ≤ TC(b) + FC(b) + IC(b) ≤ 3.

4 Algorithm 

Step 1 Determine the criteria .Cj from a group of experts .Xk for the decision-
making problem. 

Step 2 Select the relevant truth, false, and indeterminacy membership rating values 
of each criterion in terms of the linguistic variables by the experts. 

Step 3 Fuzzify the linguistic variable of each criterion in terms of fuzzy triangular 
number. 

Step 4 Find the average fuzzy scores Li 
j of triangular fuzzy numbers 

( l1 
1 ,m2 

1, n
3 
1), ( l

1 
2 ,m2 

2, n
3 
2)  .  . . , ( l1 

j ,m2 
j , n

3 
j ) defuzzified values, and normalized 

weight wj for each criterion. 

1. Average fuzzy scores Li 
j = ( li 1+li 2+...+li i ) 

j
, where i = 1, 2, 3. 

2. Defuzzified value (e) = (l+m+n) 
3 , where l = L1 

j ,m  = L2 
j , n  = L3 

j 
3. Normalized values (w) = Defuzzified value of the criteria/sum of all defuzzified 

values. 

Step 5: Find the centroid weight value Wj = (α + 2β + γ )/4, where α, β, γ are 
normalized weighted values of truth, indeterminacy, and false membership function, 
respectively. 

Step 6 Assign the applicable neutrosophic rating values (truth, false, and indeter-
minacy membership values) for each alternative Ai over a criteria Cj as linguistic 
variables by experts’ opinion.
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Step 7 Repeat step 4, and find the average fuzzy score and the defuzzified score of 
each alternative on criteria. 

Step 8 Form normalized decision matrix for truth, indeterminacy, and false mem-
bership function, corresponding to each alternative over all criteria. 

Step 9 Evaluate Nij = 
pij +λqij +(1−λ)rij 

2 , where p is the normalized truth member-
ship value, q is the normalized indeterminacy membership function value, and r is 
the normalized false membership function value. 

Step 10 Find the combined normalized neutrosophic decision matrix. 

Step 11 Calculate the total scores of each alternative using T S  = Nij ∗Wj . Finally, 
the highest score is chosen as the ideal alternative. 

5 Case Study 

This chapter speaks about a real-world issue in the agricultural sector, which is 
applied to the NFSAW method. We choose five experts .(X1, X2, X3, X4, X5) to 
analyze the best alternative for youngsters who urge to be successful entrepreneurs 
in organic farming. Five entrepreneur jobs in organic farming are chosen as alter-
natives. The following alternatives are . A1, beekeeping; . A2, community farming; 
. A3, integrated farming; . A4, organic store; and . A5, millet mill. Seven criteria are 
classified and taken as basic characteristics to be evaluated and checked before an 
entrepreneur starts with his/her idea. The list of criteria taken by an entrepreneur in 
organic farming includes . C1, initial investment rate; . C2, labor/manual support; . C3, 
awareness/training; . C4, youngster’s interest rate; . C5, market demand rate; . C6, profit 
rate; and . C7, additional income rate. The truth membership .(Tm) rating values to 
each criteria assigned by the experts (Table 1) in terms of the linguistic variables. 

Transforming the linguistic variables of truth membership rating values in terms 
of fuzzy triangular number is shown in Table 2, similarly, transforming the linguistic 
variables of false and indeterminacy membership [1] rating values in terms of fuzzy 
triangular number. 

Table 1 Truth membership 
rating values 

Criteria/experts .X1 .X2 .X3 .X4 . X5

Initial investment .C1 H H H MH ML 

Manual support .C2 H M H ML L 

Awareness and training .C3 H VH VH H VL 

Youngsters’ interest rate .C4 MH VH VH VH MH 

Market demand rate .C5 M VH M VH H 

Profit rate .C6 H ML MH H H 

Additional income rate .C7 H VH H VH M
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Table 2 Truth membership . Tm with triangular fuzzy number 

.X1 .X2 .X3 .X4 . X5

.C1 (0.7,0.9,1) (0.7,0.9,1) (0.7,0.9,1) (0.5,0.7,0.9) (0.1,0.3,0.5) 

.C2 (0.7,0.9,1) (0.3,0.5,0.7) (0.7,0.9,1) (0.1,0.3,0.5) (0,0.1,0.3) 

.C3 (0.7,0.9,1.0) (0.9,1.0,1.0) (0.9,1.0,1.0) (0.7,0.9,1.0) (0.5,0.7,0.9) 

.C4 (0.5,0.7,0.9) (0.9,1.0,1.0) (0.9,1.0,1.0) (0.9,1.0,1.0) (0.5,0.7,0.9) 

.C5 (0.7,0.9,1.0) (0.9,1.0,1.0) (0.3,0.5,0.7) (0.9,1.0,1.0) (0.7,0.9,1.0) 

.C6 (0.7,0.9,1.0) (0.1,0.3,0.5) (0.5,0.7,0.9) (0.7,0.9,1.0) (0.7,0.9,1.0) 

.C7 (0.7,0.9,1.0) (0.9,1.0,1.0) (0.7,0.9,1.0) (0.9,1.0,1.0) (0.3,0.5,0.7) 

Table 3 Normalized weight value for . Tm

Criteria Average fuzzy score Defuzzified value Normalized weight . Tm

.C1 (0.54,0.74,0.88) 0.72 0.1433 

.C2 (0.36,0.54,0.7) 0.533 0.1061 

.C3 (0.74,0.9,0.98) 0.524 0.1043 

.C4 (0.74,0.88,0.96) 0.86 0.1712 

.C5 (0.7,0.86,0.94) 0.833 0.1658 

.C6 (0.54,0.74,0.88) 0.72 0.1433 

.C7 (0.7,0.86,0.94) 0.833 0.1658 

Table 4 Normalized weight value for . IM

Criteria Average fuzzy score Defuzzified value Normalized weight . IM

.C1 (0.02,0.08,0.22) 0.1066 0.0981 

.C2 (0.12,0.2,0.34) 0.22 0.2025 

.C3 (0.02,0.08,0.22) 0.1066 0.0981 

.C4 (0.02,0.08,0.22) 0.1066 0.0981 

.C5 (0.02,0.08,0.22) 0.1066 0.0981 

.C6 (0.16,0.24,0.38) 0.26 0.2393 

.C7 (0.04,0.16,0.34) 0.18 0.1685 

We calculate the average fuzzy score . Li
j , defuzzified values . (e), and normalized 

weighted values .(w) for truth membership function of criteria in Table 3 using 
step 4. 

Similarly, continuing the same process for indeterminacy .(IM) in Table 4 and 
false membership .(FM) rating values in Table 5 to get normalized weight values 
.(w). 

Now, the centroid weighted value .Wj for all the criteria is calculated. 

. Wj = (α + 2β + γ )

4
, W1 = 0.1433 + 2(0.0981) + 0.1455

4
= 0.121.

Similarly, the remaining values are calculated. Next, assign the applicable neu-
trosophic rating values by experts (truth . TM , false . FM , and indeterminacy .IM
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Table 5 Normalized weight value for . FM

Criteria Average fuzzy score Defuzzified value Normalized weight . (IM)

.C1 (0.08,0.18,0.34) 0.2 0.1455 

.C2 (0.16,0.26,0.4) 0.2733 0.1988 

.C3 (0.14,0.26,0.084) 0.1613 0.1173 

.C4 (0.06,0.1,0.22) 0.1266 0.0921 

.C5 (0.04,0.14,0.3) 0.16 0.1164 

.C6 (0.2,0.3,0.44) 0.3133 0.2279 

.C7 (0.04,0.12,0.26) 0.14 0.1018 

Table 6 Normalized decision matrix . Tm

.Tm .C1 .C2 .C3 .C4 .C5 .C6 . C7

.A1 0.8400 0.8319 0.9918 1 1 0.8906 0.6093 

.A2 0.9199 0.7999 0.9674 0.8434 0.8162 1 0.9375 

.A3 0.9360 0.9519 0.8129 0.7912 0.8529 0.9218 1 

.A4 1 1 1 0.9392 0.8235 0.8828 0.9140 

.A5 0.8479 0.6879 0.8129 0.6347 0.7500 0.8983 0.7421 

Table 7 Normalized decision matrix . Im

.Im .C1 .C2 .C3 .C4 .C5 .C6 . C7

.A1 0.9399 0.5745 0.2727 0.6153 0.4893 1 0.7885 

.A2 0.7200 0.8723 0.5818 1 0.6594 0.6001 0.5383 

.A3 0.6001 0.6808 0.5272 0.8461 0.4679 0.2907 1 

.A4 0.6001 1 1 0.6407 1 0.5455 0.4229 

.A5 1 0.8298 0.6001 0.4869 0.5745 0.7092 0.9422 

Table 8 Normalized decision matrix . Fm

.Fm .C1 .C2 .C3 .C4 .C5 .C6 . C7

.A1 0.7092 0.4679 0.5 0.3876 0.8937 0.6001 0.6094 

.A2 0.6363 0.8084 0.5756 1 0.5955 1 0.6563 

.A3 1 0.8084 1 0.6123 0.7660 0.9798 0.8593 

.A4 0.8363 0.8723 0.5756 0.7755 1 0.8199 0.3436 

.A5 0.9537 1 0.5454 0.7550 0.9361 0.8799 1 

membership function) to each alternative .Aj on criteria . Cj as linguistic variables 
and then transforming [1] linguistic variables to triangular fuzzy number. Using step 
4, average fuzzy score and defuzzified values are calculated, and we derive normal-
ized decision matrices for truth membership, indeterminacy, and false membership, 
which are provided in Tables 6, 7, and 8, respectively. 

Calculate the values of .Nij for . λ = 0.5. We arrive .N11 and .N12 as follows. 

.N11 = 0.8400 + (0.5)(0.9399) + (1 − 0.5)(0.7092)

2
= 0.8325
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Table 9 Combined normalized decision matrix 

.Nij .C1 .C2 .C3 .C4 .C5 .C6 . C7

.A1 0.8325 0.6765 0.6890 0.7507 0.8457 0.8453 0.6541 

.A2 0.7990 0.8201 0.7730 0.9217 0.7963 0.90002 0.7674 

.A3 0.8680 0.8482 0.7882 0.7602 0.7349 0.7785 0.9648 

.A4 0.8591 0.9680 0.8939 0.8236 0.9117 0.7827 0.6486 

.A5 0.9148 0.8014 0.6928 0.6278 0.7526 0.8464 0.8566 

Table 10 Comparative 
ranking 

Methods Ranking order 

NFSAW . A2 > A4 > A3 > A5 > A1

TOPSIS . A2 > A3 > A1 > A5 > A4

WASPAS . A2 > A1 > A3 > A5 > A4

WSM . A2 > A1 > A5 > A3 > A4

WPM . A2 > A1 > A3 > A5 > A4

. N12 = 0.8319 + (0.5)(0.5745) + (1 − 0.5)(0.4679)

2
= 0.6765

Similarly, the remaining values are calculated and used to form the Combined 
Normalized Neutrosophic Decision Matrix, which is tabulated in Table 9. 

Finally, the total score of each alternative is obtained by .Nij ∗ Wj . 

. A1 = (0.8325 × 0.121) + (0.6765 × 0.177) + (0.6890 × 0.104)+
(0.7507 × 0.114) + (0.8457 × 0.119) + (0.8453 × 0.212) + (0.6541 × 0.151)

= 0.7563

A2 = (0.7990 × 0.121) + (0.8201 × 0.177) + (0.7730 × 0.104)+
(0.9217 × 0.114) + (0.7963 × 0.119) + (0.9000 × 0.212) + (0.7674 × 0.151)

= 0.9446

Therefore, the total score of alternatives .A1 = 0.7563 and .A2 = 0.9446 is obtained. 
Similarly, the remaining values for each alternative is calculated. 

6 Comparative Study 

In this section, the results obtained through the proposed (NFSAW) method is 
compared with the existing fuzzy methods such as TOPSIS, weighted product 
model (WPM), weighted sum model (WSM), and weighted aggregated sum product 
assessment (WASPAS). From Table 10, it can be observed that the selection of 
alternative (. A2) as the preferred choice by NFSAW is validated by the existing
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Fig. 1 Graphical 
representation of different 
MCDM methods 

methods. The slight variation in the ranking order of other alternatives can be 
attributed to the sensitive nature of NFSAW method. The results are illustrated with 
graphical representation in Figure 1. 

7 Conclusion 

By applying NFSAW method, rankings of the alternatives are obtained with 
accuracy. The rankings for the alternative are of the order . A2 > A4 > A3 > A5 >

A1, i.e., community farming . > organic store . > integrated farming . > millet mills 
. > beekeeping. It is evident that community farming(. A2) is ranked first in NFSAW 
method, and the same has been the best alternative in all the other existing methods. 
This shows that the best choice for an entrepreneur during their initial days is to 
start with community farming. Further, many such real-life oriented research work 
can be extended using neutrosophic sets. 

Alternative Total score Rank 

.A1 0.7563 V 

.A2 0.9446 I 

.A3 0.8219 III 

.A4 0.8345 II 

.A5 0.7845 IV 
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Decision-Making Problem Based on 
Complex Picture Fuzzy Soft Set Using 
ELECTRE I Method 

S. Anita Shanthi and T. Umamakeswari 

Keywords Complex picture fuzzy soft aggregation matrix · Concordance index · 
Discordance index · Fiberglass 

1 Introduction 

Zadeh [1] introduced fuzzy set. Atanassav [2] developed IF sets. Hatami-Marbini 
et al. [3] proposed ELECTRE I method in fuzzy environment. Aytac et al. [4] 
developed fuzzy ELECTRE I to select suitable catering firm. Wu et al. [5] proposed 
IF ELECTRE method for solving MCDM problems. Ramot et al. [6, 7] defined 
CPS and some basic operations on CPS. Liu et al. [8] dealt with TODIM and 
ELECTRE II method based on decision-making framework. Rouyendegh [9] used  
ELECTRE method to solve MCDM problems using IF data. Cuong et al. [10, 11] 
introduced PFS and defined some operations on PFS. Garg et al. [12, 13] developed 
MCDM problems on CIFS. Akram et al. [14, 15] extended ELECTRE I method 
to Pythagorean fuzzy environment. Further, they [16] extended it to hesitant 
Pythagorean fuzzy sets. Akram et al. [17] developed BN TOPSIS and ECLECTRE I 
method to solve MCDM problems. Further, in [18], they accomplished BF TOPSIS 
and ELECTRE I method and CSF ELECTRE I method in [19, 20]. Seenivasan et 
al. [21] designed a robust fuzzy ranking approach. 

In Sect. 2, basic definitions needed for the development of the method are 
provided. Section 3 deals with the procedure of ELECTRE I method on CPFSS. 
In Sect. 4, results and discussions are specified. 
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2 ELECTRE I Method for CPFSS 

Definition of CPFS set is given in [22]. 

Definition 1 CPFSSs are represented as .p × q matrix denoted by CPFSM. 

CPFSM = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

e1 e2 · · ·  

C1 (μ11eiα11π , ξ11eiγ11π , ν11eiβ11π ) (μ12eiα12π , ξ12eiγ12π , ν12eiβ12π ) · · ·  

C2 (μ21eiα21π , ξ21eiγ21π , ν21eiβ21π ) (μ22eiα22π , ξ22eiγ22π , ν22eiβ22π ) · · ·  

... 
... 

... · · ·  

Cp (μr1eiαr1π , ξr1eiγr1π , νr1eiβr1π ) (μr2eiαr2π , ξr2eiγr2π , νr2eiβr2π ) · · ·  

eq 

(μ1se
iα1sπ , ξ1se

iγ1sπ , ν1se
iβ1sπ ) 

(μ2se
iα2sπ , ξ2se

iγ2sπ , ν2se
iβ2sπ ) 

... 

(μrse
iαrsπ , ξrse

iγrsπ , νrse
iβrsπ ) 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

Definition 2 Given an CPFSS, 
.(CPF,E) = {ϕ, ((μij e

iαij π (ϕ), ξij e
iγij π (ϕ), νij e

iβij π (ϕ))) : ϕ ∈ U}, 
.ηij = 1 − |μij e

iαij π − ξij e
iγij π − νij e

iβaij π | is the degree of fuzziness. The CPFS 
entropy measure .CPEj is, 

.CPEj = 1
r

pE
i=1

ηij , . j = 1, 2, . . . , q.

Weights .wi = 1−CPEj
qE

j=1
(1−CPEj )

,. i = 1, 2, · · · , p.

Weight value .w = (w1, w2, . . . , wp) satisfies .
pE

i=1
wi = 1. 

Definition 3 CPFS concordance (C) set is defined as 
. CPFSCpq =
. {j/μCPFpj (E)

(ϕ) < μCPFqj (E)
(ϕ), ξCPFpj (E)

(ϕ) < ξCPFqj (E)
(ϕ), νCPFpj (E)

(ϕ)

. αCPFpj (E)
(ϕ) < αCPFqj (E)

(ϕ), γCPFpj (E)
(ϕ) < γCPFqj (E)

(ϕ),> νCPFqj (E)
(ϕ)

. βCPFpj (E)
(ϕ) > βCPFqj (E)

(ϕ)}
for the terms on amplitude and phase . ∀ ϕ ∈ U ,.p /= q and .p, q = 1, 2, · · · , r.
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Definition 4 CPFS discordance (D) set is defined as 
. CPFSDpq =
. {j/μCPFpj (E)

(ϕ) > μCPFqj (E)
(ϕ), ξCPFpj (E)

(ϕ) < ξCPFqj (E)
(ϕ), νCPFpj (E)

(ϕ) <

νCPFqj (E)
(ϕ)

. αCPFpj (E)
(ϕ) > αCPFqj (E)

(ϕ), γFpj (E)(ϕ) < γCPFqj (E)
(ϕ),

. βCPFpj (E)
(ϕ) < βCPFqj (E)

(ϕ)}
for the terms on amplitude and phase . ∀ ϕ ∈ U ,.p /= q and . p, q = 1, 2, · · · , r.

Definition 5 CPFS C matrix is . CMpq.

CMpq = 

⎛ 

⎜⎜⎝ 

e1 e2 · · · eq 
C1 − am12 · · ·  am1q 
C2 am21 −  · · ·  am2q 

· · ·  · · ·  · · ·  · · ·  
Cp amp1 amp2 · · ·  −  

⎞ 

⎟⎟⎠. 

CPFS C index .ampqs are determined as .ampq = E
j∈CMpq

wj , . j = 1, 2, . . . , q.

Definition 6 CPFS D matrix is . DMpq.

DMpq = 

⎛ 

⎜⎜⎝ 

e1 e2 · · · eq 
C1 − bm12 · · ·  bm1q 
C2 bm21 −  · · ·  bm2q 

· · ·  · · ·  · · ·  · · ·  
Cp bmp1 bmp2 · · ·  −  

⎞ 

⎟⎟⎠ 

CPFS D index .bmpq are determined as 

. bmpq =
max

j∈DMpq

/
1
6

E
δ=μ,ξ,ν,ω=α,γ,β

[δpj e
iωpj π−δqj e

iωqj π ]2

max
j

/
1
6

E
δ=μ,ξ,ν,ω=α,γ,β

[δpj e
iωpj π−δqj e

iωqj π ]2
.

Definition 7 To rank the alternatives, threshold values such as C and D levels are to 
be computed. CPFS C level . ϕ and CPFS D level . z are bounded by means of CPFS 
C and D index. 

CPFS C level . ϕ = 1
r(r−1)

rE
p=1,q /=1

rE
p /=1,q=1

ampq.

CPFS D level . z = 1
r(r−1)

rE
p=1,q /=1

rE
p /=1,q=1

bmpq.

Definition 8 By the CPFS C level . ϕ, the CPFS C dominance matrix (dom) K is 
computed as:
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K = 

⎛ 

⎜⎜⎝ 

e1 e2 · · · eq 
C1 − k12 · · ·  k1q 
C2 k21 −  · · ·  k2q 

· · ·  · · ·  · · ·  · · ·  
Cp kp1 kp2 · · ·  −  

⎞ 

⎟⎟⎠ 

The values of .kpq are evaluated as .kpq = 1 if ampq ≥ ϕ, 0 if ampq < ϕ. 

Definition 9 By the CPFS D level . z, the CPFS D dom L is computed as: 

L = 

⎛ 

⎜⎜⎝ 

e1 e2 · · · eq 
C1 − l12 · · ·  l1q 
C2 l21 −  · · ·  l2q 

· · ·  · · ·  · · ·  · · ·  
Cp lp1 lp2 · · ·  −  

⎞ 

⎟⎟⎠ 

The values of .lpq are evaluated as . lpq = 1 if bmpq ≤ z, 0 if bmpq > z

Definition 10 CPFS aggregated dom M is determined by peer-to peer multiplica-
tion of the elements of K and L. 

M = 

⎛ 

⎜⎜⎝ 

e1 e2 · · ·  eq 
C1 − m12 · · ·  m1q 
C2 m21 −  · · ·  m2q 

· · ·  · · ·  · · ·  · · ·  
Cp mp1 mp2 · · ·  −  

⎞ 

⎟⎟⎠ 

where .mpq = kpq.lpq . A simple directed graph can be drawn using the values of 
.mpq, which connects the alternatives specifically. 

3 Procedure 

Step 1: Compute CPFSM. 
Step 2: Determine weights wj by Definition 2. 
Step 3: Compute CPFS C set by Definition 3. 
Step 4: Compute CPFS D set by Definition 4. 
Step 5: Determine CPFS C Matrix by Definition 5. 
Step 6: Determine CPFS D Matrix by Definition 6 and CPFS C and D level by 

Definition 7. 
Step 7: Calculate CPFS C dom by Definition 8. 
Step 8: Calculate CPFS D dom by Definition 9.
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Construct the CPFS decision matrix 

Determine the weight value 

Calculate the CPFS 

Concordance set 

Calculate the CPFS Concordance 

matrix and CPFS Concordance level 

Computr the CPFS Concordance 

Dominance matrix 

Calculate the CPFS 

Discordance set 

Calculate the CPFS Discordance matrix 

and CPFS Discordance level 

Compute the CPFS Discordance 

Dominance matrix 

Determine the aggregated 

CPFS Dominance matrix 

Draw the decision graph and 

Determine the best alternative 

Fig. 1 CPFS ELECTRE I method 

Step 9: Determine CPFS aggregated dom by Definition 10, and draw the decision 
graph. Determine the best alternative. Flowchart of CPFS ELECTRE I method is 
given in Fig. 1. 

4 Results and Discussions 

Fiberglass is durable and versatile. Hence, it has a wide range of uses. Fiberglass 
components are as follows: 

A-type is acknowledged as alkali glass. It is opposing to C-type and has certain 
resemblance to window glass. 

C-type is designated as a chemical glass.
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Fig. 2 Types of fiberglass 

E-type is electrical glass. 
S-type is identified as structural glass. 

Types of fiberglass are given in Fig. 2. 
Four types of fiberglasses, .C1, C2, C3, C4, are chosen as alternatives. To determine 
the best alternative, fiberglass materials are evaluated based on the following 
parameters: .e1 = density, .e2 = tensile strength, .e3 = modulus, and .e4 = elongation 
at break. The best type of fiberglass based on this concept is found. 

Step 1 CPFS sets .C1, C2, C3, C4 are represented in Table 1. 

Step 2 The weight values . wj are, 
.w1 = 0.3596, .w2 = 0.1815, .w3 = 0.0960, . w4 = 0.3627.

Step 3 CPFS C set:
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Table 1 Decision matrix in CPFS environment 

U .e1 . e2 

.C1 .0.2e0.5π , 0.3e0.3π , 0.45e0.6π . 0.3e0.5π , 0.2e0.3π , 0.41e0.51π 

.C2 .0.3e0.6π , 0.4e0.5π , 0.2e0.3π . 0.3e0.6π , 0.3e0.3π , 0.4e0.6π 

.C3 .0.4e0.6π , 0.4e0.4π , 0.3e0.5π . 0.4e0.4π , 0.3e0.1π , 0.3e0.53π 

.C4 .0.1e0.4π , 0.2e0.2π , 0.4e0.61π . 0.41e0.61π , 0.31e0.7π , 0.1e0.5π 

U .e3 . e4 

.C1 .0.1e0.2π , 0.3e0.3π , 0.4e0.6π . 0.3e0.5π , 0.5e0.7π , 0.1e0.3π 

.C2 .0.3e0.4π , 0.4e0.6π , 0.2e0.5π . 0.2e0.4π , 0.3e0.5π , 0.4e0.6π 

.C3 .0.4e0.7π , 0.35e0.4π , 0.2e0.59π . 0.12e0.3π , 0.1e0.4π , 0.6e0.61π 

.C4 .0.3e0.5π , 0.2e0.3π , 0.1e0.2π . 0.5e0.5π , 0.3e0.6π , 0.2e0.2π 

CPFSCpq = 

⎛ 

⎜⎜⎝ 

1  2 3 4  

C1 − {1, 3} {1, 3} {2} 
C2 {4} −  {3} {2} 
C3 {4} {4} −  {2, 4} 
C4 {1} {1} {1} −  

⎞ 

⎟⎟⎠ 

Step 4 CPFS D set: 

CPFSDpq = 

⎛ 

⎜⎜⎝ 

1 2 3 4  

C1 − {4} {4} {1} 
C2 {1, 3} −  {4} {1} 
C3 {1, 3} {3} − {1} 
C4 {2} {2} {2, 4} −  

⎞ 

⎟⎟⎠ 

Step 5 CPFS C Matrix is: 

CMpq = 

⎛ 

⎜⎜⎝ 

− 0.4556 0.4556 0.1815 
0.3627 − 0.0960 0.1815 
0.3627 0.3627 − 0.5442 
0.3596 0.3596 0.3596 − 

⎞ 

⎟⎟⎠ 

CPFS C level . ϕ = 0.3. 

Step 6 CPFS D Matrix is: 

DMpq = 

⎛ 

⎜⎜⎝ 

− 0.1904 0.3009 0.0530 
0.1598 − 0.1105 0.2042 
0.2155 0.0813 − 0.1751 
0.1543 0.1782 0.2646 − 

⎞ 

⎟⎟⎠ 
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Fig. 3 Decision graph 

CPFS D level . z = 0.17. 

Step 7 CPFS C dom is: 

K = 

⎛ 

⎜⎜⎝ 

− 1 1 0  
1 − 0 0  
1 1  − 1 
1 1 1  − 

⎞ 

⎟⎟⎠ 

Step 8 CPFS D dom is: 

L = 

⎛ 

⎜⎜⎝ 

− 0 0 1  
1 − 1 0  
0 1  − 0 
1 1 1  − 

⎞ 

⎟⎟⎠ 

Step 9 Compute CPFS aggregate dom, and decision graph (Fig. 3) is constructed 
based on these values. 

M = 

⎛ 

⎜⎜⎝ 

− 0 0 0  
1 − 0 0  
0 1  − 0 
1 1 1  − 

⎞ 

⎟⎟⎠ 

From matrix M for alternative . C2, the value 1 exists at column .C1. So an arrow is 
drawn from . C2 to .C1. The maximum number of arrows are from . C4 to . C1, C2, C3. 
Hence, . C4 (S-type) is the best fiberglass. 
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5 Conclusion 

In this article, ELECTRE I method on CPFSS is developed. CPFS entropy, weights, 
C index, and D index are evaluated. The aggregated CPFS D matrix is computed, 
and decision graph is drawn. Taking four types of fiberglass, A-type, C-type, E-
type, and S-type, and four properties present in these fiberglass as parameters, it is 
determined that S-type is the best as it has higher values of tensile strength, modulus, 
and elongation when compared to the other three types of fiberglass. 

Conflict of Interest The authors declare that they have no conflict of interest. 

Acknowledgments The authors are thankful to the reviewers for their valuable comments, which 
have greatly helped in improving the quality of the paper. 

References 

1. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965). https://doi.org/10.2307/2272014 
2. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87–96 (1986). https://doi.org/ 

10.1016/S0165-0114(86)80034-3 
3. Hatami-Marbini, A., Tavana, M.: An extension of the ELECTRE I method for group decision-

making under a fuzzy environment. Omega 39(4), 373–386 (2011). https://doi.org/10.1016/j. 
omega.2010.09.001 

4. Aytac, E., Tus Isik, A., Kundakci, N.: Fuzzy ELECTRE-I method for evaluating catering firm 
alternatives. Ege Acad. Rev. 11, 125–134 (2011) 

5. Wu, M.C., Chen, T.Y.: The ELECTRE multicriteria analysis approach based on Atanassov’s 
intuitionistic fuzzy sets. Exp. Syst. Appl. 38(10), 12318–12327 (2011). https://doi.org/10.1016/ 
j.eswa.2011.04.010 

6. Ramot, D., Milo, R., Friedman, M., Kandel, A.: Complex Fuzzy sets. IEEE Trans. Fuzzy Syst. 
10(2), 171–186 (2002). https://doi.org/10.1109/91.995119 

7. Ramot, D., Friedan, M., Langholz, G., Kandel, A.: Complex Information fuzzy logic. IEEE 
Trans. Fuzzy Syst. 11(4), 450–461 (2003) 

8. Liu, H.W., Wang, G.J.: Multi criteria decision making methods based on intuitionistic fuzzy 
sets. Europ. J. Oper. Res. 179(1), 220–233 (2007). https://doi.org/10.1016/j.ejor.2006.04.009 

9. Rouyendegh, B.D.: The intuitionistic fuzzy ELECTRE model. Int. J. Manage. Sci. Eng. 
Manage. 13(2), 139–145 (2018). https://doi.org/10.1080/17509653.2017.1349625 

10. Cuong, B.C.: Picture Fuzzy sets. J. Comput. Sci. Cybern. 30(4), 409–420 (2014). https://doi. 
org/10.156225/1813-9663/30/4/5032 

11. Cuong, B.C., Kreinovich, V.: Picture Fuzzy Sets – a new concept for computational intelligence 
problems. In: IEEE Third World Congress on Information and Communication Technologies 
WICT, pp. 1–6 (2013). https://doi.org/10.1109/WICT.2013.7113099 

12. Grag, H., Rani, D.: Some generalized complex intuitionistic fuzzy aggregation operators and 
their application to multi criteria decision-making process. Arabian J. Sci. Eng. 44(3), 2679– 
2698 (2019). https://doi.org/10.1007/s13369-018-3413-x 

13. Rani, D., Garg, H.: Distance measures between the complex intuitionistic fuzzy sets and its 
applications to the decision-making process. Int. J. Comput. Intel. Syst. 7(5), 423–439 (2017). 
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356 

14. Akram, M., Garg, H., Ilyas, F.: Multi-criteria group decision making based on ELECTRE I 
method in Pythagorean fuzzy information. Soft Comput. 24, 3425–3453 (2020). https://doi. 
org/10.1007/s00500-019-04105-0 

https://doi.org/10.2307/2272014
https://doi.org/10.2307/2272014
https://doi.org/10.2307/2272014
https://doi.org/10.2307/2272014
https://doi.org/10.2307/2272014
https://doi.org/10.2307/2272014
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/S0165-0114(86)80034-3
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.omega.2010.09.001
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1016/j.eswa.2011.04.010
https://doi.org/10.1109/91.995119
https://doi.org/10.1109/91.995119
https://doi.org/10.1109/91.995119
https://doi.org/10.1109/91.995119
https://doi.org/10.1109/91.995119
https://doi.org/10.1109/91.995119
https://doi.org/10.1109/91.995119
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1016/j.ejor.2006.04.009
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.1080/17509653.2017.1349625
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.156225/1813-9663/30/4/5032
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1109/WICT.2013.7113099
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1007/s13369-018-3413-x
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2017020356
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0
https://doi.org/10.1007/s00500-019-04105-0


86 S. Anita Shanthi and T. Umamakeswari 

15. Akram, M., Luqman, A., Alcantud, J.R.: Risk evaluation in failure modes and effects analysis: 
hybrid TOPSIS and ECLECTRE I solutions with Pythagorean fuzzy information. Neural 
Comput. Appl. 33(11), 5675–5703 (2021). https://doi.org/10.1007/s00521-020-05350-3 

16. Akram, M., Luqman, A., Kahraman, C.: Hesitant pythagorean fuzzy ELECTRE-II method for 
multi-criteria decision-making problems. Appl. Soft Comput. 108, 1–25 (2021). https://doi.org/ 
10.1016/j.asoc.2021.107479 

17. Akram, M., Shumaiza, Smarandache, F.: Decision making with bipolar neutrosophic TOPSIS 
and bipolar neutrosophic ELECTRE-I. Axioms 7(2), 1–25 (2018). https://doi.org/10.3390/ 
axioms7020033 

18. Akram, M., Shumaiza, Arshad, M.: Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I 
method to diagnosis. Comput. Appl. Math. 39(7), 1–21 (2020). https://doi.org/10.1007/s40314-
019-0980-8 

19. Akram, M., Al-Kennani, A.N., Shabir, M.: Enhancing ELECTRE I method with complex 
spherical fuzzy information. Int. J. Comput. Intel. Syst. 14(190), 1–31 (2021). https://doi.org/ 
10.1007/s44196-021-00038-5 

20. Akram, M., Garg, H., Zahid, K.: Extension of ELECTRE-I and TOPSIS method for group 
decision-making under complex Pythagorean fuzzy environment. Iran. J. Fuzzy Syst. 17(5), 
147–164 (2020). https://doi.org/10.22111/IJFS.2020.5522 

21. Seenivasan, M., Ramesh, R.: Heterogeneous queueing system with cost and profit appraises 
by robust fuzzy ranking approach. In: 4th International Congress on Life, Social and Health 
Sciences in a Changing World Congress proceedings Book, pp. 215–223 (2022) 

22. Anita Shanthi, S., Umamakeswari, T., Saranya, M.: MCDM method on complex picture fuzzy 
soft environment. Mat. Today Proc. 51, 2375–2379 (2022). https://doi.org/10.1016/j.matpr. 
2021.11.583 

https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1007/s00521-020-05350-3
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.1016/j.asoc.2021.107479
https://doi.org/10.3390/axioms7020033
https://doi.org/10.3390/axioms7020033
https://doi.org/10.3390/axioms7020033
https://doi.org/10.3390/axioms7020033
https://doi.org/10.3390/axioms7020033
https://doi.org/10.3390/axioms7020033
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s40314-019-0980-8
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.1007/s44196-021-00038-5
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.22111/IJFS.2020.5522
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583
https://doi.org/10.1016/j.matpr.2021.11.583


Resultant of an Equivariant Polynomial 
System with Respect to Direct Product of 
Symmetric Groups 

Sonagnon Julien Owolabi, Ibrahim Nonkané, and Joel Tossa 

Keywords Commutative algebra · Symbolic computation · Resultant · 
Discriminant · Divided difference · Direct product of symmetric groups 

1 Motivation and Introduction 

Solving algebraic systems of polynomial equations .f1, f2, . . . , fn in several vari-
able is a fundamental problem with in computational algebra with many applications 
(cryptology, robotics, biology, physic, coding theory, etc.. . . .). The analysis of such 
systems is based on the study of the resultant [4]. System which are invariant 
under the action of a group may be of great importance since symmetry is very 
relevant in physical sciences as it has to with energy. Thus, Laurent Busé and Anna 
Karasoulou have studied the resultant of an equivariant polynomial system with 
respect to . Sn group of permutations on a set of variables .{x1, . . . , xn} [2]. They 
developed a nice decomposition of that resultant, which leads to the decomposition 
of the discriminant of a symmetric polynomial. In some situations, the permutations 
among the set .x1, . . . , xn may not be effective in the sense that some action may 
hindered or neglected, and in this case, the symmetric group would not be of the 
best description of the symmetry. For example, the coordinates .x1, . . . , xn of the 
particles of a given molecule may be separated into two subsets, .{x1, . . . , xp} and 
.{xp+1, . . . , xn}, which do not interact. The symmetry is therefore described by the 
direct product of symmetric groups .Sp × Sn−p,, where . Sp and .Sn−p are groups of 
permutations on .{x1, . . . , xp} and .{xp+1, . . . , xn}, respectively. A similar situation 
may occur when the coordinates separated into three or more subsets, leading to a 
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product of three or more symmetric groups. Therefore, we think that some results 
of [2] may be generalizes to systems that are equivariant with respect to the product 
of symmetric groups, even to other groups. In this chapter, we attempt to study 
the resultant of an equivariant system with respect to the direct product of two 
subgroups of .Sn. We realize that the techniques that have been used is the case 
of the symmetric groups [2] work for the case for the direct product of symmetric 
groups, then we make great use of them in this paper. This chapter is somehow a 
variant of [2], and we mainly refer to it for the proofs. 

A polynomial system .A = {f1, f2, . . . , fn} is said to be equivariant with respect 
to a finite group . G if for all .g ∈ G, fi ∈ A, g(fi) ∈ A, i = 1, . . . , n. In other words 
. A is globally stable under the finite group G see [3]. Let a system of n homogeneous 
polynomials .f {1}, . . . , f {p}, f {p+1}, . . . , f {n} of same degree d equivariant to the 
direct product .S{1,...,p} × S{p+1,...,n} of two symmetric subgroups of . Sn with . 1 <
p < n. the action of .S{1,...,p} × S{p+1,...,n} on . f {1}, . . . , f {p}, f {p+1}, . . . , f {n}
is described as follows. Let .σ1 ∈ S{1,...,p}, and .σ2 ∈ S{p+1,...,n} we have for all 
. i = 1, . . . , n

. (σ1, σ2)
(
f {i})(x1, . . . , xp, xp+1, . . . , xn)

= f {i}(xσ1(1), . . . xσ1(p), xσ2(p+1), . . . , xσ2(n)).

We assume that for all .k ∈ {1, . . . , p}σ = (σ1, σ2) ∈ S{1,...,p} × S{p+1,...,n}, 

.σ
(
f {k}) =

⎧⎨
⎩

σ1

(
f {k}

)
= f {σ1(k)} if k ∈ {1, . . . , p}

σ2

(
f {k}

)
= f {σ2(k)} if k ∈ {p + 1, . . . , n}. (1) 

Under this assumption, the polynomial system is equivariant with respect to the 
direct product .S{1,...,p} × S{p+1,...,n}. In what follows, we set 

.f {σ(i)} := σ
(
f {i}), σ ∈ S{1,...,p} × S{p+1,...,n}, i = 1, . . . , n. (2) 

In this work, we will study the resultant of such systems. As an application, we 
obtain a decomposition formula for the discriminant of an invariant multivariate 
homogeneous polynomial under the action of a direct product of two symmetric 
groups. 

2 Resultant of a S{1,...,p} × S{p+1,...,n}-Equivariant 
Polynomial System 

Let R be a commutative ring, and denote by .R[x1, . . . , xn] the ring of polynomials 
in .n > 2 variables, which is graded with the usual weights: .deg(xi) = 1 for all 
.i ∈ {1, . . . , n}. In this section, we consider a polynomial system of n homogeneous
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polynomials .f {1}, . . . , f {p}, f {p+1}, . . . , f {n} in .R[x1, . . . , xn] of same degree d 
which is equivariant to the direct product .S{1,...,p} ×S{p+1,...,n} of two subgroups of 
. Sn with .1 < p < n. 

2.1 Partitions 

Let .λ := (λ1, λ2, . . . , λr1) be a sequence such that .λ1 > · · · > λr1 > 0. When 
.
Er1

i=1 λi = p, we will say such a . λ is a partition of p, and write . λ T p.

Given a partition .λ T p, its associated multinomial coefficient is defined as the 
integer 

.mλ := 1||n
j=1 sj !

(
p

λ1, λ2, . . . , λr1

)
= p!

(
||p

j=1 sj !)λ1!λ2! · · · λr1 !
. (3) 

where . sj denotes the number of boxes having exactly j objects, .j ∈ [p] for the 
partition . λ T p.

Let .Λ = (λ, λ') be a couple of partition swhere .λ = (λ1, λ2, . . . , λr1) T p and 
.λ' = (λ'

1, λ
'
2, . . . , λ

'
r2

) T q; then, we will write .(λ, λ') T (p, q) or .Λ T (p, q). 
Given a couple of partitions .Λ = (λ, λ') T (p, q) such that .p + q = n, we consider 
the following homomorphism of algebras: 

. ρΛ : R[x1, . . . , xn] → R[y1, . . . , yr1 , y
'
1, . . . , y'

r2
] (4)

f (x1, . . . , xn) |→ f (y1, . . . , y1' '' '
λ1

, . . . , yr1 , . . . , yr1' '' '
λr1

, y'
1, . . . , y'

1' '' '
λ'

1

, . . . , y'
r2

, . . . , y'
r2' '' '

λ'
r2

).

where .y1, . . . , yr1 , y
'
1, . . . , y

'
r2

are new indeterminates. 
For two integers .i, j ∈ {1, . . . , n} and .π ∈ S1,...,p × Sp+1,...,n such that .π(l) = l if 
.l /∈ {i, j} and .π(i) = j , then 

.f {i} − f {j} = f {i} − π(f {i}) ∈ (xi − xj ). (5) 

Therefore, the polynomial systems .f {1}, . . . f {p} and .f {p+1} . . . f {n} admit divided 
differences. From [2, Lemma 2.1] and (2) for any subsets .{i1, . . . , ik} ⊂ {1, . . . , p}, 
.{j1, . . . , jl} ⊂ {p + 1, . . . , n} and .φ = (π, σ ) ∈ S1,...,p × Sp+1,...,n, we have  

.φ(f {i1,...,ik}) = f {π(i1),...,π(ik)}, and φ(f {j1,...,jl}) = F {σ(j1),...,σ (jl )}. (6) 

Whenever .ρΛ(xi) = ρΛ(xj ), by  (5), we have  

.ρΛ(f {i}) = ρΛ(f {j}).
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So, for any integer .i1 ∈ {1, . . . , r1} (respectively, .i2 ∈ {1, . . . , r2} ), we define 
the homogeneous polynomial 

. f
{i1}
Λ := ρΛ(f {j1}), ( respectively f

{i2}
Λ := ρΛ(F {j2}),

where .j1 ∈ {1, . . . , p} such that .ρΛ(xj1) = yi1 , (respectively, . j2 ∈ {p + 1, . . . , }
such that .ρΛ(xj2) = yi2 ). 
For .I = {i1, . . . , ik} ⊂ {1, . . . , p}, define .J = {j1, . . . , jk} ⊂ {1, . . . , r1} by 
the equality .ρΛ(xir ) = yjr forall .r ∈ {1, . . . , k} (respectively, . I ' = {i'1, . . . , i'l} ⊂
{p+1, . . . , n}, define .J ' = {j '

1, . . . , j
'
l } ⊂ {1, . . . , r2} by the equality . ρΛ(xi'r ) = yj '

r

forall .r ∈ {1, . . . , l} ). Then if .|I | = |J | (respectively, .|I '| = |J '|) we have  

. ρΛ(f I ) = ρΛ(f J ), ( ,respectively ρΛ(f I '
) = ρΛ(f J '

)).

2.2 The Decomposition Formula 

Theorem 21 Assume that n > 2 and assume a system of n homogeneous 
polynomials f {1}, . . . , f  {p}, f  {p+1}, . . . , f  {n} in R[x1, . . . , xn] of the same degree 
d equivariant with respect to the direct product of two symmetric groups S{1,...,p} × 
S{p+1,...,n} with 1 < p <  n. Let’s put q = n − p, Λ = (λ, λ') T (p, q).

. If p < d and q < d then: 

.Res
(
f {1}, . . . , f {p}, f {p+1}, . . . , f {n}) =

||
ΛT(p,q)

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.

. If p >  d  and q < d then 

.Res
(
f {1}, . . . , f {p}, f {p+1}, . . . , f {n}) = ±

(
f {1,...,d+1})μ

×
||

ΛT(p,q)
r1<d

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.
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. If p < d and q >  d  then 

.Res
(
f {1}, . . . , f {p}, f {p+1}, . . . , f {n}) = ±

(
f {p+1,...,p+1+d})μ

×
||

ΛT(p,q)r2<d

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.

. If p >  d  and q >  d  then 

. Res
(
f {1}, . . . , f {p}, f {p+1}, . . . , f {n}) = ±

(
f {1,...,d+1})μ ×

(
f {p+1,...,p+1+d})μ

×
||

ΛT(p,q)r1<d,r2<d

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.

where 

. μ := ndn−1 −
E

(λ,λ')T(p,q)
r1<d, r2<d

mλmλ'

⎛
⎝ r1E

j=1

dj +
r2E

j=1

dj

⎞
⎠ .

with 

. dj = d(d − 1) · · · (d − r1 + 1)d(d − 1) · · · (d − r2 + 1)

(d − j + 1)
.

Idea of the Proof The main idea of the proof is the same as the one in [2]. In fact It 
is clear that the system {f {1}, . . . , f  {p}} is equivariant with respect to S{1,...,p} and 
the system {f {p+1}, . . . f  {n}} is equivariant with respect to S{p+1,...,n}. The proof 
goes on by splitting the resultant of f {i}’s into several factors by means of their 
divided differences associated to S{1,...,p}, respectively. For the rest of the proof, we 
mimic the proof of [2, Theorem 3.3]. Indeed this is a generalization of the proof of 
[2, Theorem 3.3]. 

For the sake of the number of pages, the detailed discussions of the proof will be 
published later in an extended version of this chapter. 

Example 22 Consider the following system of 5 homogeneous polynomials
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. 

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

f {1} = ax2
1 + bx2

1 + bx1x2 + bx1x3 + cx2
1 + cx2

2 + cx2
3 + x4x5

f {2} = ax2
2 + bx1x2 + bx2

2 + bx2x3 + cx2
1 + cx2

2 + cx2
3 + x4x5

f {3} = ax2
3 + bx1x3 + bx2x3 + bx2

3 + cx2
1 + cx2

2 + cx2
3 + x4x5

f {4} = px2
4 + qx2

5

f {5} = px2
5 + qx2

4 .

This system
{
f {1} , f {2}, f {3}, f  {4}, f {5}} is not equivariant with respect to the 

symmetric group S5; then, the formula of [2, Theorem 3.3] cannot help to split 
the resultant of that polynomial system. But this system is equivariant to the direct 
product S{1,2,3} × S{4,5}. Then f {1}, f {2}, f {3} equivariant with respect to S{1,2,3} 
and f {4}, f {5} equivariant with respect to S{4,5}. 

. Res
(
f {1}, f {2}, f {3}, f {4}, f {5}) =

(
f {1,2,3})μ

Res
(
f

{1}
(3),(2)

, f
{4}
(3),(2)

)m(3)m(2)

×Res
(
f

{1}
(2,1),(2)

, f
{1,2}
(2,1),(2)

f
{4}
(2,1),(2)

)m(2,1)m(2)×Res
(
f

{1}
(3),(1,1)

, f
{4}
(3),(1,1)

f
{4,5}
(3),(1,1)

)m(3)m(1,1)

× Res
(
f

{1}
(2,1),(1,1)

, f
{1,2}
(2,1),(1,1)

f
{4}
(2,1),(1,1)

f
{4,5}
(2,1),(1,1)

)m(2,1)m(1,1)
.

f {1} 
(3),(2) = (a + 3b + 3c)x2 

1 + x2 
4 , f  {4} 

(3),(2) = (p + q)x2 
4 , 

f {1} 
(2,1),(2) = (a + 2b + 2c)x2 

1 + cx2 
2 + bx1x2 + x2 

4 , 

f {1,2} 
(2,1),(2) = (a + 2b)x1 + (a + b)x2, f  {4} 

(2,1),(2) = (p + q)x2 
4 , 

f {1} 
(3),(1,1) = (a + 3b + 3c)x2 

1 + x4x5, f  {4} 
(3),(1,1) = px2 

4 + qx2 
5 , 

f {4,5} 
(3),(1,1) = (p−q)x4+(p−q)x5, f  {1} 

(2,1),(1,1) = (a+2b+2c)x2 
1 +cx2 

2 +bx1x2+x4x5, 

f {1,2} 
(2,1),(1,1) = (a + 2b)x1 + (a + b)x2, f  {4} 

(2,1),(1,1) = px2 
4 + qx2 

5 , 

f {4,5} 
(2,1),(1,1) = (p − q)x4 + (p − q)x5, f  {1,2,3} = a, μ = 8. 

we have Res
(
f {1} 

(3),(2), f  {4} 
(3),(2)

)
= (3b + 3c + a)2(p + q)2 

. Res
(
f

{1}
(2,1),(2)

, f
{1,2}
(2,1),(2)

f
{4}
(2,1),(2)

)
= (p + q)2(a3 + 3a2b + 3a2c + 2ab2 + 8abc + 6b2c)2

Res
(
f {1} 

(3),(1,1), f  {4} 
(3),(1,1)f {4,5} 

(3),(1,1)

)
= (p + q)2(p − q)4(3b + 3c + a)2 

.Res
(
f

{1}
(2,1),(1,1), f

{1,2}
(2,1),(1,1), f

{4}
(2,1),(1,1), f

{4,5}
(2,1),(1,1)

)

= (p + q)2(p − q)4(a3 + 3a2b + 3a2c + 2ab2 + 8abc + 6b2c)12.
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. Res
(
f {1}, f {2}, f {3}, f {4}, f {5})

= a8(a3 + 3a2b + 3a2c + 2ab2 + 8abc + 6b2c)12(p − q)16(p + q)16

(3b + 3c + a)4.

3 Discriminant of a Homogeneous Polynomial Invariant 
Under Direct Product of Symmetric Groups 

In this section, we will use Theorem 21 to develop a decomposition formula for the 
discriminant of an invariant homogeneous polynomial under the action of . S{1,...,p}×
S{p+1,...,n}. Let .f ∈ R[x1, . . . , xp, xp+1, . . . , xn] of degree d be a homogeneous 
polynomial that is invariant under direct product .S{1,...,p} ×S{p+1,...,n} of symmetric 
groups with .1 < p < n. 

For all .σ1 ∈ S{1,...,p} and for all .σ2 ∈ S{p+1,...,n}, we have:  

.(σ1, σ2)
(
f

)
(x1, . . . , xp, xp+1, . . . , xn) = f (xσ1(1), . . . xσ1(p), xσ2(p+1), . . . , xσ2(n)).. (7) 

= f (x1, . . . , xp, xp+1, . . . , xn) (8) 

We will denote the partial derivatives of F by 

. f {i}(x1, . . . , xp, xp+1, . . . , xn) := ∂f

∂xi

(x1, . . . , xp, xp+1, . . . , xn), i = 1, . . . n.

The discriminant of F is defined by the equality 

.da(n,d)Disc(f ) = Res
(
f {1}, f {2}, . . . , f {n}) ∈ U (9) 

where 

. a(n, d) := (d − 1)n − (−1)n

d
∈ Z.

and that it is homogeneous of degree .n(d − 1)n−1 see [1]. 

Lemma 31 The set .{f {1}, f {2}, . . . , f {p}, f {p+1}, . . . , f {n}} of partial derivatives 
of a .S{1,...,p} × S{p+1,...,n}-invariant homogeneous polynomial f is an equivariant 
polynomial system with respect to .S{1,...,p} × S{p+1,...,n}. 

Proof We will use the canonical inclusions . S{1,...,p} → S{1,...,p}×S{p+1,...,n}, σ1 |→
(σ1, e2) and .S{p+1,...,n} → S{1,...,p} × S{p+1,...,n}, σ2 |→ (e1, σ2), where .e1, e2 are 
unit elements of .S{1,...,p} and .S{p+1,...,n}, respectively. For all .i ∈ {1, . . . , p} and
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.σ1 ∈ S{1,...,p}, we have .σ1

(
f {i}

)
= σ1

(
∂f
∂xi

)
= ∂(σ1f )

∂xσ1(i)
= ∂f

∂xσ1(i)
= f {σ1(i)}. For 

all .j ∈ {p + 1, . . . , n} and .σ2 ∈ S{p+1,...,n},, . σ2

(
f {j}

)
= σ2

(
∂f
∂xj

)
= ∂(σ2f )

∂xσ2(j)
=

∂f
∂xσ2(j)

= f {σ2(j)}. For all .k ∈ {1, . . . , p}σ = (σ1, σ2) ∈ S{1,...,p} × S{p+1,...,n}, we  

have .σ
(
f {k}

)
=

⎧⎨
⎩

σ1

(
f {k}

)
= f {σ1(k)} if k ∈ {1, . . . , p}

σ2

(
f {k}

)
= f {σ2(k)} if k ∈ {p + 1, . . . , n}. Hence . σ

(
f {k}

)
∈

{f {1}, . . . , f {n}}, for all .k ∈ {1, . . . , p}σ = (σ1, σ2) ∈ S{1,...,p} × S{p+1,...,n}. and 
the set of partial derivative of f form an equivariant polynomial system with respect 
to .S{1,...,p} × S{p+1,...,n}. 

As a consequence of this lemma, Theorem 21 can be applied in order to 
decompose the resultant of the polynomials . f {1}, f {2}, . . . , f {p}, f {p+1}, . . . f {n}
and hence, by (9), to decompose the discriminant of the .S{1,...,p} × S{p+1,...,n}-
invariant polynomial f . 

Theorem 32 Assume that .n > 2 and .d > 2. With the above notation, the following 
equalities hold:

. If .p < d and .q < d then: 

.da(n,d)Disc (f ) =
||

ΛT(p,q)

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.

. If .p > d and .q < d then: 

.da(n,d)Disc (f ) =
(
f {1,...,d})μ

×
||

ΛT(p,q)r1<d

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.

. If .p < d and .q > d then: 

.da(n,d)Disc (f ) =
(
f {1,...,p+d})μ

×
||

ΛT(p,q) r2<d

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , F

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.
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. If .p > d and .q > d then: 

. da(n,d)Disc (f ) =
(
f {1,...,d})μ ×

(
f {p+1,...,p+d})μ

×
||

ΛT(p,q)r1<d, r2<d

Res
(
f

{1}
Λ , f

{1,2}
Λ , . . . , f

{1,2,...,r1}
Λ , f

{p+1}
Λ , f

{p+1,p+2}
Λ , . . . ,

f
{p+1,p+2,...,p+r2}
Λ

)mλmλ'
.

where 

. μ := n(d − 1)n−1 −
E

(λ,λ')T(p,q)
r1<d, r2<d

mλmλ'

⎛
⎝ r1E

j=1

dj +
r2E

j=1

dj

⎞
⎠ .

with 

. dj = (d − 1) · · · (d − r1)(d − 1) · · · (d − r2)

(d − j)

Proof These formulas are obtained by specialization of the formulas given in 
Theorem 21 with the difference that the polynomials .f {i}, .i = 1, . . . , n are of degree 
.d − 1 in our setting (and not of degree d as in Theorem 21). 

Example 33 Consider a homogeneous polynomial of degree 4. 

. f := ax4
1 + bx2

1x2
2 + ax4

2 + cx4
3 + x3x

3
4 + x3

3x4 + cx4
4

F is not symmetric polynomial but an invariant polynomial under the action of the 
direct product . S{1,2} × S{3,4}

Its partial derivatives are: . 

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f {1} = 4ax3
1 + 2bx1x

2
2

f {2} = 4ax3
2 + 2bx2

1x2

f {3} = 4cx3
3 + x3

4 + 3x2
3x4

f {4} = 4cx3
4 + x3

3 + 3x3x
2
4

.f {1}, .f {2} equivariant with respect to .S{1,2} and .f {3}, .f {4} equivariant with 
respect to . S{3,4}

The formula given in Theorem 32 shows that 

.4
34−(−1)4

4 Disc(f ) = Res
(
f

{1}
(2),(2), f

{3}
(2),(2)

)
× Res

(
f

{1}
(1,1),(2), f

{1,2}
(1,1),(2)f

{3}
(1,1),(2)

)

×Res
(
f

{1}
(2),(1,1), f

{3}
(2),(1,1)f

{3,4}
(2),(1,1)

)
×Res

(
f

{1}
(1,1),(1,1), f

{1,2}
(1,1),(1,1)f

{3}
(1,1),(1,1)f

{3,4}
(1,1),(1,1)

)
.
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we have

. .Res
(
f

{1}
(2),(2), f

{3}
(2),(2)

)
= 512(2a + b)3(c + 1)3

. .Res
(
f

{1}
(1,1),(2), f

{1,2}
(1,1),(2)f

{3}
(1,1),(2)

)
= 8589934592a6(2a + b)3(2a − b)6(c + 1)6

. . Res
(
f

{1}
(2),(1,1), f

{3}
(2),(1,1)f

{3,4}
(2),(1,1)

)
= 262144(2a + b)6(c − 1)3(8c2 + 1)6

. Res
(
f

{1}
(1,1),(1,1), f

{1,2}
(1,1),(1,1)f

{3}
(1,1),(1,1)f

{3,4}
(1,1),(1,1)

)

= 73786976294838206464a12(2a + b)6(2a − b)12(c − 1)6(8c2 + 1)12

. Disc(f ) = 77371252455336267181195264a18(c − 1)9(c + 1)9(8c2 + 1)18

(2a − b)18(2a + b)18.
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Color Image Filtering Using Convolution 
Fuzzy Neural Network 

S. Anita Shanthi and G. Sathiyapriya 

Keywords Convolution operation · Image filters · Hamming distance · 
Euclidean distance · Similarity index 

1 Introduction 

Anil K. Jain [1] discussed the implementation of various problems in image 
processing including restoration and enhancement of images, data compression, 
and filter design with examples. Image processing based on different structuring 
elements was developed by Anita Shanthi et al. [2]. Rishap Anand [3] dealt 
with several concepts of digital image processing. Egmont et al. [4] developed 
several applications of neural networks in image processing. Van De Ville [5] 
presented fuzzy filter to reduce heavy noise in images. Mishra et al. [6] developed 
several methods for color image contrast intensification operator. Wang et al. [7] 
proposed an effective method for image de-noising. Azad et al. [8] motivated 
the use of color in digital image processing. Albawi et al. [9] explained critical 
issues related to CNN and its applications in image classification. Chen et al.[10] 
proposed a CNN method to learn the perceptive features for identifying classic 
image processing operations. Nader et al. [11] introduced the effect of Gaussian 
noises and performed experimental analysis to reduce the effect of noise. Coady 
et al. [12] gave an overview of image filtering operations using edge detection, 
smooth filters, and its advantages. Mirmozzaffari [13] considered four filters for 
de-blurring and smoothing of images and performed a comparison analysis. Tomasi 
et al. [14] dealt with bilateral filtering Sultana et al. [15] discussed the advancements 
in image classification using CNN. Based on these concepts, color image filtering 
using CFNN is developed. 
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2 Convolutional Neural Network 

One of the most popular deep neural networks is the convolution neural network. 
It is designated from mathematical linear operations between matrices called con-
volution. CNN has multiple layers including convolution layer, nonlinearity layer, 
pooling layer, and fully connected layer. The convolution and fully connected layers 
have parameter, whereas pooling and nonlinearity layers do not have parameters. 
The input layer consists of the given input image, which is in pixel values. 
Convolution is the mathematical operation performed with the filters to extract the 
features in the images as shown in Fig. 1. 

Convolution Operations Convolution layer generates feature maps, from images. 
It contains filters that convert images, and these filters are called convolution filters. 
To understand the working of convolution process, .4 × 4 pixel image values are 
taken, which are operated upon by a .2 × 2 convolution filter as shown in Fig. 2. At  
the final stage, the .4 × 4 pixel image has been converted into a .3 × 3 pixel image. 
The feature map extracted depends on the convolution filter. 

Fig. 1 CNN image features 

Fig. 2 Convolution operation
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Fig. 3 Pooling operation 

Fig. 4 Original image and its 
membership image 

Pooling Operations It is used to reduce the size of the image. There are two types 
of pooling operations, which are max pooling and mean pooling. Mean pooling: 
finding the arithmetic mean of the convolution areas is mean pooling. Max pooling: 
this is the maximum value of the convolution area as shown in Fig. 3. 

2.1 Image Fuzzification 

Definition 1 Let I be the image that is represented as m × n matrix of pixel 
values xij . The image fuzzification membership function is defined by μij = 
[ 1+(xij )max−(xij )min 

Fd
]Fe , where i and j represent ith row and j th column of the pixel 

values. Fe and Fd values differ for different images. The pixel value of an image 
is converted to fuzzy membership value matrix, and the corresponding membership 
images are found using MATLAB. Original image and its corresponding member-
ship image are shown in Fig. 4. 

2.2 Types of Filters 

Mean filter:[3] A box/Mean is a low-pass filter that smoothens the image. The 
center pixel value is replaced by the average of all the values of its neighborhood N. 

.G(x, y) = 1
N

n∑
(x,y)∈N

f (x, y), when n is the number of neighborhoods. 

Median filter: [6] Median filter is a nonlinear filtering useful in reducing impulsive 
or salt and pepper noise. It preserves sharp edges. 

Bilateral filter: [14] A bilateral filter is used for smoothing images and reducing 
noise while preserving edges.
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Fig. 5 Gaussian membership images 

Lab filter: Lab is a nonlinear transformation of RGB where the Euclidean distance 
between two colors is equal to their preceptual distances. 

Noise filter: [12] Noise is always present in digital images during image acquisition, 
coding, transmission, and processing steps. Noise removal algorithm is the 
process of removing or reducing the noise from the image. 

Unsharp filter: [3] Unsharp mask tool increases contrast so that the image is 
sharpened. 

Standard filter: Standard filter specifies the neighborhood used to compute the 
standard deviation. 

Gaussian filter: [6] Gaussian filter is a linear type of filter, which is based on 
Gaussian function and is much useful at separating frequencies. The (.3 × 3) 

filter value is . 1
16 . 

⎛
⎝1 2 1

2 4 2
1 2 1

⎞
⎠ .

Gaussian Membership Value Images 
The Gaussian filter along with the membership values from 0 to 0.9 is applied to the 
original image and the resultant images obtained. These images are given in Fig. 5. 

2.3 Example 

Step 1 Pixel membership values of the image (Rose) is taken, and the Gaussian 
filter is applied for three colors RGB of the original image. 

Step 2 Apply the Gaussian filter for Red image pixel membership values, and 
perform the convolution operation for red image.
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. 

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0.1295 0.1543 0.1513 0.1391 0.1369 0.1429
0.1219 0.14 0.1496 0.3397 0.2274 0.1325
0.1198 0.1328 0.1796 0.4804 1 0.1448
0.1210 0.1207 0.1537 0.4082 0.57 0.1369
0.1219 0.1213 0.1348 0.2847 0.1913 9.1474
0.1344 0.1459 0.1357 0.1387 0.1277 0.1474

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∗
⎛
⎝0.0625 0.125 0.0625

0.125 0.25 0.125
0.0625 0.125 0.0625

⎞
⎠

⎛ 

⎜ ⎜ ⎝ 

0.1183 0.1712 0.2007 0.2905 
0.1063 0.2076 0.4083 0.4673 
0.1097 0.1931 0.3655 0.3916 
0.0985 0.1485 0.2138 0.2085 

⎞ 

⎟ ⎟ ⎠, which is filtered image matrix for Red. 

Similarly, apply the Gaussian filter for blue and green image pixel membership 
values, and perform the convolution operation for green image. 

Step 3 Add the three convolution filtered matrices. ⎛ 

⎜ ⎜ ⎝ 

0.1487 0.2616 0.4021 0.3204 
0.1402 0.2334 0.3483 0.3185 
0.1531 0.1892 0.5524 0.2401 
0.1425 0.1769 0.2139 0.2045 

⎞ 

⎟ ⎟ ⎠ . 

Step 4 Max pooling yields(
0.8252 1.0323 
0.6079 1.1394

)
. 

Step 5 Weights are taken as trapezoidal fuzzy number indicating the features of the 
image. ⎛ 

⎜ ⎜ ⎝ 

0.1 0.2 0.35 0.5 
0 0.19 0.25 0.42 

0.3 0.32 0.39 0.52 
0.11 0.15 0.43 0.61 

⎞ 

⎟ ⎟ ⎠ . 

Step 6 Peer-to-peer multiplication of the convolution filtered matrix, and the weight 
matrix gives the output image pixel values of 6 × 6 membership matrix considered. ⎛ 

⎜ ⎜ ⎝ 

0.0573 0.165 0.3212 0.4394 
0 0.1359 0.2503 0.4336 

0.1415 0.1945 0.4444 0.4639 
0.0532 0.08 0.2764 0.3972 

⎞ 

⎟ ⎟ ⎠ . 

HSV Filter [2] HSV filter converts a color image into three channels, color (hue), 
brightness (value), and saturation (shades). It is useful for object detection. Different 
colors can be assigned to the background of an image in the HSV color space. In 
MATLAB, HSV is a three-dimensional matrix, which represents three components 
of HSV as shown in Fig. 6.
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Fig. 6 Hue and saturation 
modified image 

Fig. 7 Hue- and saturation-modified membership images 

Fig. 8 Filtered and its membership images 

Hue-modified image with different membership values and saturation member-
ship value images in the range 0.1 to 0.9 are shown in Fig. 7. 

2.4 Filtered Images 

The different types of filtered images and its membership images are shown in 
Fig. 8.
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3 Hamming and Euclidean Distances 

Definition 2 Hamming distance on filtered images Hamming distance on filtered 

images shown in Fig. 9 is denoted by HD and is defined as HD = ∑
i,j

∥∥∥xij − x′
ij

∥∥∥, 

i, j= 1 to 256, where xij and x′
ij denotes pixel values of two filtered image matrices. 

Definition 3 Similarity index on filtered images is denoted by SI (HD) and is 
defined as SI (HD) = 1 

1+HD 
. 

Definition 4 Hamming distance on membership filtered images shown in Fig. 10 

is denoted by μHD and is defined as μHD = ∑
i,j

∥∥∥μ(xij ) − μ(x′
ij )

∥∥∥, i, j= 1 to 256, 

where μ(xij ) and μ(x′
ij ) denote pixel values of two filtered image matrices. 

Definition 5 Similarity index on membership filtered images is denoted by μSI (HD) 
and is defined as μSI (HD) = 1 

1+μHD 
. 

Fig. 9 Hamming distance of filtered images 

Fig. 10 Hamming distance on membership filtered images
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Table 1 Similarity index 
based on hamming distance 

xij x′
ij SI (ED) μSI (ED) 

Mean Median 0.0031 0.8379 

Mean Bilateral 0.0149 1.7934 

Mean Noise 0.0014 0.1619 

Mean Sharpen 0.0062 0.4968 

Mean Gaussian 0.0019 0.3777 

Median Bilateral 0.0077 0.8365 

Median Noise 0.0011 0.1537 

Median Sharpen 0.0051 0.4384 

Median Gaussian 0.0035 0.3928 

Bilateral Noise 0.0014 0.1697 

Bilateral Sharpen 0.0094 0.6149 

Bilateral Gaussian 0.0018 0.3703 

Lab HSV 0.0004 0.0006 

Lab Standard 0.0005 0.0006 

Noise Sharpen 0.0015 0.1262 

Noise Gaussian 0.0011 0.1274 

Sharpen Gaussian 0.0017 0.2943 

Hsv Standard 0.0020 0.0279 

Fig. 11 Euclidean distance of filtered images 

Similarity index on filtered images and its corresponding membership images are 
given in Table 1. 

Definition 6 Euclidean distance on filtered images shown in Fig. 11 is denoted by 

ED and is defined as ED =
√∑

i,j 
(xij − x′

ij )
2, i, j = 1 to 256. 

Definition 7 Similarity index on filtered images is denoted by SI (ED) and is 
defined as SI (ED) = 1 

1+ED 
.
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Definition 8 Euclidean distance on membership filtered images shown in Fig. 12 is 

denoted by μED and is defined as μED =
√∑

i,j 
μ((xij ) − μ(x′

ij ))
2 

Definition 9 Similarity index on membership filtered images is denoted by μSI (HD) 
and is defined as μSI (ED) = 1 

1+μED 
. 

Similarity index on filtered images and its corresponding membership images are 
given in Table 2. 

Fig. 12 Euclidean distance on membership filtered images 

Table 2 Similarity index 
based on Euclidean distance 

xij x′
ij SI (ED) μSI (ED) 

Mean Median 0.0001825 0.1433 

Mean Bilateral 0.0008829 0.9671 

Mean Noise 0.00009317 0.1149 

Mean Sharpen 0.0003891 0.2317 

Mean Gaussian 0.000114 0.0304 

Median Bilateral 0.000437 0.01438 

Median Noise 0.00007333 0.0654 

Median Sharpen 0.0003166 0.1105 

Median Gaussian 0.0002023 0.032 

Bilateral Noise 0.0000939 0.1235 

Bilateral Sharpen 0.0006161 0.2599 

Bilateral Gaussian 0.0001064 0.0303 

Lab HSV 0.00000374 0.0403 

Lab Standard 0.0000664 0.0403 

Noise Sharpen 0.000102 0.1262 

Noise Gaussian 0.0006721 0.0322 

Sharpen Gaussian 0.0000988 0.0319 

Hsv Standard 0.0000988 0.3
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4 Conclusion 

Different image filters are applied to original and membership images, and the 
corresponding images are found using MATLAB. Hamming and Euclidean dis-
tances between different combinations of original and membership filtered images 
are calculated and the similarity index values tabulated. It is found that using both 
Hamming and Euclidean distances, the similarity index between mean and bilateral 
filter images is maximum. This concept is useful in identifying diseases in the leaves 
of plants. 
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Some Combinatorial Results for Partial 
and Full Symmetric Semigroups 

F. Al-Kharousi, W. Alnadabi, and A. Umar 

Keywords Partial symmetric semigroup · Full symmetric semigroup · 
Idempotents 

1 Introduction and Preliminaries 

Let .Xn = {1, 2, . . . , n}. A transformation .α : Dom α ⊆ Xn → Xn is said to be 
total or full if .Dom α = Xn; otherwise, it is called strictly partial. Let . Tn and . Pn

be the full and partial transformation semigroups on . Xn, respectively. Howie found 
some notable combinatorial results in . Tn [5], while Garba was interested in . Pn [4]. 
Recently Laradji and Umar obtained some interesting results on these semigroups 
and some of their subsemigroups [6]. Umar in [10] computed and gathered together 
the combinatorial results in .Pn and . Tn and some of their subsemigroups and 
highlighted some open problems. Motivated by that paper, we compute some of 
the unknown results in .Pn and . Tn. In this section we give necessary definitions. 
In Sect. 2 we compute the cardinalities of some equivalences defined by equalities 
of some parameters in .Pn and . Tn. For basic definitions and standard concepts in 
(transformation) semigroup theory, we refer the reader to [3] and [10]. 

For any transformation . α ∈ Pn, the fix and the collapse of . α are denoted and 
defined by 

The results in this chapter are from Wafa Alnadabi’s MSc. thesis (2015) [1] 
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. 
F(α) = {x ∈ Xn : xα = x}
C(α) = {x ∈ Xn : xα = y and |yα−1| ≥ 2}

respectively. Let . b(α) = |Dom α|, h(α) = |Im α|, w+(α) = max(Im α), f (α) =
|F(α)| and .c(α) = |C(α)|. Consider the natural equivalences on .Pn defined by 
equalities of breadths, heights, waist, fix, and collapse. The intersection of these 
equivalences can be counted by the following combinatorial function: let S be a set 
of partial transformations of . Xn; define the combinatorial function 

. F(n; k,m, p, q, r) = |{α ∈ S : w+(α) = k, f (α) = m,h(α) = p, c(α)

= q, b(α) = r}|

Here, we introduce a new notation to the combinatorial functions by putting 
the parameters .k,m, p, q, and r (ordered alphabetically) as subscripts. Then the 
six-parameter function .F(n; k,m, p, q, r) can be simply written as .Fkmpqr and 
similarly any two-, three-, four-, or five-parameter function. 

Stirling numbers of the second kind denoted by .S(n, k) are defined to be the 
number of partitions of .{1, . . . , n} into k nonempty subsets and can be calculated by 
the explicit formula. 

.S(n, k) = 1

k!
kE

j=0

(−1)k−j

(
k

j

)
jn. (1) 

Lemma 1 ([2]) For all natural numbers n and m, we have 

.

nE
i=0

(
n

i

)
S(m, i)i! = nm. (2) 

Definition 1 ([2]) An r-associated Stirling number of the second kind is the 
number of ways to partition a set of n objects into k subsets, with each subset 
containing at least r elements and is denoted by .Sr(n, k). The 2-associated Stirling 
numbers of the second kind array can be found in ([9], A008299). 

Lemma 2 (Vandemonde’s Convolution Identity [8]) For all natural numbers 
.m, n, and k, 

.

nE
i=0

(
n

k − i

)(
m

i

)
=

(
n + m

k

)
.
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2 Some Combinatorial Results in Tn and Pn 

Proposition 1 [1, Proposition 3.1] Let S = Pn. Then 

. Fkm =
(

k

m

)
(k + 1)n−kkk−m −

(
k − 1

m

)
(k − 1)k−m−1kn−k+1.

Proof Note that Fkm = Gkm − Jkm, where 

. Gkm = |{α ∈ Pn : f (α) = m and Im α ∩ Xn−k = ∅}|;
Jkm = |{α ∈ Pn : f (α) = m and Im α ∩ Xn−k+1 = ∅}|.

For Gkm, there are
(

k 
m

)
ways to select the m fixed points from the k elements. The 

k − m elements in Xk are either in the domain or not. If they are in the domain, then 
they can map to any of the k elements except themselves. So, they have (k − 1) + 1 
degrees of freedom. The remaining n−k elements in Xn\Xk are either in the domain 
or not. If they are in the domain, then they can map to any of the k elements. So, 
they have k + 1 degrees of freedom. Thus, we get, 

. Gkm =
(

k

m

)
(k + 1)n−kkk−m

By a similar argument, we find that 

. Jkm =
(

k − 1

m

)
(k − 1)k−m−1kn−k+1,

and the result follows directly. 

Corollary 1 [1, Corollary 3.15] Let S = Tn. Then 

. Fkm =
(

k

m

)
(k)n−k(k − m)k−1 −

(
k − 1

m

)
(k − 2)k−m−1(k − 1)n−k+1.

Following similar arguments as the ones used to obtain F(n; p, m) in the 
semigroup of full transformations Tn [7], we can compute the following: 

Theorem 1 [1, Theorem 3.2] Let S = Pn. Then, 

.Fkmpr =
(

k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)

jE
i=m

(
j − m

i − m

)(
n − j

r − i

)
j r−i (j − 1)i−m.
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Proof There are
(
k−1 
p−1

)
ways to select the images. Let 

. G(n;m, p, r) = |{α ∈ Pn : Im α ∩ Xn−p = ∅, b(α) = r, h(α) = p, and f (α) = m}|.

Then F(n; k, m, p, r) = (
k−1 
p−1

)
G(n; m, p, r). Using the principle of inclusion-

exclusion, we find that 

. G(n;m,p, r) = |An−p| −
(

p

1

)
|An−p+1| +

(
p

2

)
|An−p+2| − . . .

+ (−1)p−m

(
p

p − m

)
|An−m|

=
p−mE
j=0

(−1)j
(

p

j

)
|An−p+j |,

where An−p+j = {α ∈ Pn : Im α ∩ Xn−p+j = ∅, b(α)  = r and f (α)  = m}. Now,  

. |An−p+j | =
(

p − j

m

) p−j−mE
i=0

(
p − j − m

i

)(
n − p + j

r − m − i

)
(p − j)r−m−i (p − j − 1)i .

Note that we have
(
p−j 
m

)
ways to choose the m fixed points from the p − j images. 

Since these m fixed points are among the domain elements, then we are left with r − 
m points to be chosen. We either choose them from the p−j −m images or from the 
n−p+j points, which are not in Im α. So, we have

Ep−j−m 
i=o

(
p−j−m 

i

)(
n−p+j 
r−m−i

)
ways 

to choose the rest of the domain elements. The i points chosen from the p − j − m 
elements have p− j −1 possible images, while the remaining r −m− i points have 
p − j possible images. Summing up we get 

. Fkmpr =
(

k − 1

p − 1

) p−mE
j=0

(−1)j
(

p

j

)(
p − j

m

)

p−j−mE
i=0

(
p − j − m

i

)(
n − p + j

r − m − i

)
(p − j)r−m−i (p − j − 1)i

=
(

k − 1

p − 1

) pE
j=m

(−1)p+j

(
p

j

)(
j

m

) j−mE
i=0

(
j − m

i

)(
n − j

r − m − i

)
j r−m−i (j − 1)i

=
(

k − 1

p − 1

) pE
j=m

(−1)p+j

(
p

j

)(
j

m

) jE
i=m

(
j − m

i − m

)(
n − j

r − i

)
j r−i (j − 1)i−m,

and the result follows.
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Corollary 2 [1, Corollary 3.3(iii)] Let S = Pn. Then, 

. Fkmp =
(

k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)
(j + 1)n−j j j−m.

Proof By Theorem 1 we see that 

. Fkmp =
nE

r=0

Fkmpr

=
(

k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

) pE
j=m

(−1)p+j

(
p − m

p − j

)

jE
i=m

(
j − m

i − m

)
(j − 1)i−m

nE
r=1

(
n − j

r − i

)
j r−i

=
(

k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)
jj−m(j + 1)n−j .

Corollary 3 [1, Corollary 3.3(i)] Let S = Pn. Then, 

. Fkmr =
nE

p=m

(
k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)

jE
i=m

(
j − m

i − m

)(
n − j

r − i

)
j r−i (j − 1)i−m.

Corollary 4 [1, Corollary 3.3(iv)] Let S = Pn. Then, 

. Fkpr =
(

k − 1

p − 1

)(
n

r

)
S(r, p)p!

Proof From Theorem 1, we get 

.Fkpr =
pE

m=0

Fkmpr

=
pE

m=0

(
k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)
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jE
i=m

(
j − m 
i − m

)(
n − j 
r − i

)
j r−i (j − 1)i−m 

=
(

k − 1 

p − 1

) pE
j=0 

(−1)p+j

(
p 
j

) jE
i=0

(
n − j 
r − i

)
j r−i 

iE
m=0

(
j 
m

)(
j − m 
i − m

)
(j − 1)i−m 

=
(

k − 1 

p − 1

) pE
j=0 

(−1)p+j

(
p 
j

) jE
i=0

(
n − j 
r − i

)(
j 
i

)
j r−i 

iE
m=0

(
i 

i − m

)
(j − 1)i−m 

=
(

k − 1 

p − 1

) pE
j=0 

(−1)p+j

(
p 
j

) jE
i=0

(
n − j 
r − i

)(
j 
i

)
j r−i j i 

=
(

k − 1 

p − 1

) pE
j=0 

(−1)p+j

(
p 
j

)
j r 

jE
i=0

(
n − j 
r − i

)(
j 
i

)

=
(

k − 1 

p − 1

)(
n 
r

)
S(r, p)p! (by Eq. 1) 

Similarly from Theorem 1, we get the next corollary. 

Corollary 5 [1, Corollary 3.3(ii)] Let S = Pn. Then, 

. Fmpr =
(

n

p

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

) jE
i=m

(
j − m

i − m

)(
n − j

r − i

)
j r−i (j − 1)i−m.

By similar arguments as in Corollary 4, we deduce the next two corollaries. 

Corollary 6 [1, Corollary 3.5(i)] Let S = Pn. Then, 

. Fkp =
(

k − 1

p − 1

)
S(n + 1, p + 1)p!

Corollary 7 [1, Corollary 3.5(ii)] and [10, Proposition 2.8] Let S = Pn. Then, 

. Fkr =
(

n

r

)
[kr − (k − 1)r ].

Corollary 8 [1, Corollary 3.5(iii)] and [10, Proposition 2.2] Let S = Pn. Then, 

.Fpr =
(

n

p

)(
n

r

)
S(r, p)p!



Combinatorial Results 113

Corollary 9 [1, Corollary 3.4] Let S = Pn. Then, 

. Fmp =
(

n

p

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)
(j + 1)n−j j j−m.

Corollary 10 [1, Corollary 3.16(i)] Let S = Tn. Then 

. Fkmp =
(

k − 1

p − 1

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)
(j)n−j (j − 1)j−m.

Corollary 11 [1, Corollary 3.17(i)] [7, Proposition 2.6]. Let S = Tn. Then, 

. Fmp =
(

n

p

)(
p

m

) pE
j=m

(−1)p+j

(
p − m

p − j

)
(j)n−j (j − 1)j−m.

Note that a partial transformation α is idempotent if and only if Im α = F(α). 
Using this fact, we can recover the formula for Fkmr and Fm in E(Pn) as follows: 

Corollary 12 [1, Corollary 4.3(ii)] Let S = E(Pn). Then, 

. Fkmr =
(

k − 1

m − 1

)(
n − m

r − m

)
mr−m.

Corollary 13 [1, Corollary 4.6(ii)] Let S = E(Pn). Then, 

. Fm =
(

n

m

)
(m + 1)n−m.

Corollary 14 [1, Corollary 3.11] For n ≥ m ≥ 0, 

. nn−m =
nE

p=m

pE
j=m

(−1)p+j

(
n − m

p − m

)(
p − m

p − j

)
(j + 1)n−j j j−m.

Proof By [10, Corollary 2.6], Fm in Pn is given by
(
n 
m

)
nn−m. So, we get 

.nn−m = Fm(
n
m

)

=
En

p=m Fmp(
n
m

)
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=
En 

p=m

(
n 
p

)(
p 
m

) Ep 
j=m(−1)p+j

(
p−m 
p−j

)
(j + 1)n−j jj−m

(
n 
m

)

=
En 

p=m

(
n 
m

)(
n−m 
p−m

) Ep 
j=m(−1)p+j

(
p−m 
p−j

)
(j + 1)n−j jj−m

(
n 
m

)

= 
nE

p=m 

pE
j=m 

(−1)p+j

(
n − m 
p − m

)(
p − m 
p − j

)
(j + 1)n−j jj−m . 

Similarly, from [4, Corollary 2], we deduce the identity given in the next corollary. 

Corollary 15 [1, Corollary 3.12] For n ≥ p ≥ 0, 

. S(n + 1, p + 1)p! =
pE

m=0

pE
j=m

(−1)p+j

(
p

m

)(
p − m

p − j

)
(j + 1)n−j j j−m.

Lemma 3 [1, Lemma 3.6] For all natural numbers n and k, 

. S(n, k) =
nE

j=0

(
n

j

)
S2(n − j, k − j).

Proof Note that S(n, k) is the number of ways to partition n objects into k nonempty 
subsets. Let j be the number of one-element subsets. These can be selected in

(
n 
j

)
ways. The remaining n−j elements will be partitioned into k−j nonempty subsets, 
each with at least two elements in S2(n − j, k − j)  ways. Thus, 

. S(n, k) =
nE

j=0

(
n

j

)
S2(n − j, k − j).

Proposition 2 [1, Proposition 3.7] Let S = Pn. Then, 

. Fkpqr =
(

k − 1

p − 1

)(
n

q

)(
n − q

r − q

)
S2(q, p + q − r)p!

Proof There are
(
k−1 
p−1

)
ways to select the images and

(
n 
q

)
ways to select the collapse 

points. The remaining r − q points of the domain can be selected in
(
n−q 
r−q

)
ways. 

Let j be the number of images that absorb the collapse. Then, since the r − q points 
of the domain are not among the collapse, they must be adjoined one-to-one to the
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remaining p−j images. So, p−j = r −q. Hence, j = p+q −r , and we can select 
those in

(
p 

p+q−r

)
ways. Now, we partition the q collapse points into S2(q, p+q −r) 

nonempty subsets, where each has at least two elements, and then permute them in 
(p+q−r)! ways. The remaining r −q pre-images and r −q images can be matched 
in (r − q)! ways. Thus, 

. Fkpqr =
(

k − 1

p − 1

)(
n

q

)(
n − q

r − q

)(
p

p + q − r

)
S2(q, p + q − r)(p + q − r)!(r − q)!

=
(

k − 1

p − 1

)(
n

q

)(
n − q

r − q

)
S2(q, p + q − r)p!

Corollary 16 [1, Corollary 3.8(i)] Let S = Pn. Then, 

. Fkpq =
(

k − 1

p − 1

)(
n

q

) nE
r=q

(
n − q

r − q

)
S2(q, p + q − r)p!

Corollary 17 [1, Corollary 3.8(iv)] Let S = Pn. Then, 

. Fkpr =
(

k − 1

p − 1

)(
n

r

)
S(r, p)p!

Proof By Proposition 2, we see that 

. Fkpr =
rE

q=0

Fkpqr

=
rE

q=0

(
k − 1

p − 1

)(
n

q

)(
n − q

r − q

)
S2(q, p + q − r)p!

=
(

k − 1

p − 1

)(
n

r

)
p!

rE
q=0

(
r

r − q

)
S2(q, p − (r − q))

=
(

k − 1

p − 1

)(
n

r

)
S(r, p)p! (by Lemma 3). 

Corollary 18 [1, Corollary 3.8(iii)] Let S = Pn. Then, 

.Fkqr =
(

n

r

)(
r

q

) rE
p=0

(
k − 1

p − 1

)
S2(q, p + q − r)p!
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Corollary 19 [1, Corollary 3.8(ii)] Let S = Pn. Then, 

. Fpqr =
(

n

p

)(
n

q

)(
n − q

r − q

)
S2(q, p + q − r)p!

Corollary 20 [1, Corollary 3.9(i)] Let S = Pn. Then, 

. Fkp =
(

k − 1

p − 1

)
S(n + 1, p + 1)p!

Corollary 21 [1, Corollary 3.10(i)] Let S = Pn. Then, 

. Fkq =
(

n

q

) rE
p=0

nE
r=q

(
n − q

r − q

)(
k − 1

p − 1

)
S2(q, p + q − r)p!

Corollary 22 [1, Corollary 3.9(ii)] Let S = Pn. Then, 

. Fkr =
(

n

r

)
[kr − (k − 1)r ].

Proof By Corollary 18, we get 

. Fkr =
rE

q=0

Fkqr

=
rE

q=0

(
n

r

)(
r

q

) rE
p=0

(
k − 1

p − 1

)
S2(q, p + q − r)p!

=
(

n

r

) rE
p=0

(
k − 1

p − 1

) rE
q=0

(
r

q

)
S2(q, p + q − r)p!

=
(

n

r

) rE
p=0

(
k − 1

p − 1

)
S(r, p)p! (by Lemmas 1 and 3) 

=
(

n 
r

) rE
p=0

[(
k 
p

)
−

(
k − 1 

p

)]
S(r, p)p! 

=
(

n 
r

)
[kr − (k − 1)r ].
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Corollary 23 [1, Corollary 3.10(iii)] Let S = Pn. Then, 

. Fpq = p!
(

n

p

)(
n

q

) n−qE
j=0

(
n − q

j

)
S2(q, p − j).

By Corollary 19 and Lemma 3, we deduce the next corollary. 

Corollary 24 [1, Corollary 3.9(iii)] and [10, Proposition 2]. 

. Fpr =
(

n

p

)(
n

r

)
S(r, p)p!

Corollary 25 [1, Corollary 3.10(ii)] Let S = Pn. Then, 

. Fqr =
(

n

r

)(
r

q

) rE
p=0

(
n

p

)
S2(q, p + q − r)p!

Corollary 26 [1, Corollary 3.10(iv)] Let S = Pn. Then, 

. Fq =
(

n

q

) nE
p=0

p!
(

n

p

) n−qE
j=0

(
n − q

j

)
S2(q, p − j).

By [10, Corollary 2.3], we deduce the identity given in the next corollary. 

Corollary 27 [1, Corollary 3.13] For n ≥ r ≥ 0 

. nr =
rE

q=0

rE
p=0

(
r

q

)(
n

p

)
S2(q, p + q − r)p!

By [4, Corollary 2], we deduce the identity given in the next corollary. 

Corollary 28 [1, Corollary 3.14] For n ≥ p ≥ 0, 

. S(n + 1, p + 1) =
nE

q=0

n−qE
j=0

(
n

q

)(
n − q

j

)
S2(q, p − j).

Corollary 29 [1, Corollary 3.16(ii)] Let S = Tn. Then, 

. Fkpq =
(

k − 1

p − 1

)(
n

q

)
S2(q, p + q − n)p!

From Corollary 29, we deduce the following successive corollaries.
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Corollary 30 [1, Corollary 3.17(ii)] and [10, Proposition 2.11] Let S = Tn. Then, 

. Fkp =
(

k − 1

p − 1

)
S(n, p)p!

Corollary 31 [1, Corollary 3.16(iii)] Let S = Tn. Then, 

. Fpq =
(

n

p

)(
n

q

)
S2(p, p + q − n)p!

Corollary 32 [1, Corollary 3.16(iv)] Let S = Tn. Then, 

. Fkq =
(

n

q

) nE
p=0

(
k − 1

p − 1

)
S2(q, p + q − n)p!
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Integrated Tomato Cultivation Using 
Backpropagation Neural Network on 
Bipolar Fuzzy Sets 

S. Anita Shanthi and R. Preethi 

Keywords Bipolar fuzzy set · Activation function · Backpropagation neural 
network 

1 Introduction 

Zadeh [1] introduced fuzzy sets. Zhang [2] introduced bipolar fuzzy set. Akram 
et al. [3] described the application of BFS in graph structures. Dongare et al. 
[4] proposed artificial neural network (ANN) as a tool for analysis of different 
parameters of a system. Wu et al. [5] introduced four characteristics of ANN and its 
application. Seenivasan et al. [6] dealt with deep learning. Svozil et al. [7] described 
the multilayer feed-forwarded neural network and also discussed the advantages 
and disadvantages of this network. Ishibuchi et al. [8] proposed multilayer feed-
forward neural networks and also the learning algorithm of fuzzy neural network. 
Jin et al. [9] derived BP algorithm for fuzzy neural network. Li et al. [10] analyzed 
the characteristics and mathematical theory of BP neural network. Nawi et al. [11] 
proposed an algorithm by introducing the adaptive gain of the activation function 
and improved the learning speed of the conventional BP algorithm. Shihab [12] 
discussed an efficient and scalable technique for computer network security. Hegazy 
et al. [13] effectively improved the process of developing practical neural network. 
Chen et al. [14] proposed the privacy-preserving BPNN learning. Zheng et al. [15] 
developed a rockburst prediction model to select the evaluation factors based on 
the entropy weight gray relational BP neural network. Won et al. [16] proposed 
a method of recognition and prediction of nutrient deficiency in tomato plants 
based on deep neural network. Walgenbach et al. [17] determined the persistence 
of insecticides on tomato foliage and plant growth rate. Schmitz-Eiberger et al. [18] 
investigated on the influence of deficient calcium supply on tomato leaves. Based 
on these concepts, BP on BFNN is developed. 
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2 Backpropagation on Bipolar Fuzzy Neural Network 
(BPBFNN) 

BP is one of the major concepts of a NN. The input values .xm, weights . (b−
mn, b

+
mn)

of the input layer(IL), and bias value . ba are feed-forwarded to find hidden layer 
(HL). Output .g(φ) is found using sigmoid function. If output . /= target, then the error 
is calculated. Weights and bias are revised and BP to achieve the target. Figure 1 
represents BPBFNN. 

Definition 1 Degree of BF set is defined as .dmn = 1 − |b−
mn − b+

mn|. 

Definition 2 The entropy measure, . En = 1
p

pE
m=1

dmn; n = 1, 2, . . . , q.

Definition 3 Using the entropy values, the HL weights are calculated and are 
defined as . Wn = 1−En

qE
n=1

1−En

.

The weights .Wn = (W1,W2, . . . ,Wq) satisfy . 
qE

n=1
Wn = 1.

Definition 4 HL weight correction, .∇Wn = Wn−ηωg(Gn) where . η is the assumed 
learning rate, .g(Gn) is the output of the HL, and .ω = (T −g(φ))∗g(φ)∗(1−g(φ)), 
where T is the targeted value and .g(φ) is the calculated output. 
IL weight correction, 
Negative: . ∇b−

mn = b−
mn − ηωζ−

n xm

where .ζ−
n = g(G−

n ) ∗ (1 − g(G−
n )) ∗ Wn

2 and . xm’s are the input values. 
Positive: . ∇b+

mn = b+
mn − ηωζ+

n xm

where . ζ+
n = g(G+

n ) ∗ (1 − g(G+
n )) ∗ Wn

2 .

Definition 5 The bias correction is . ∇ba = ba − ηω, a = 1, 2.

Fig. 1 BPNN using BF sets
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3 Algorithm 

Step 1: Set the targeted output 'T '. 
Step 2: Let the input values be x1, x2, x3 and bias values b1 and b2. 
Step 3: Determine IL weights as bipolar fuzzy set (b−

mn, b
+
mn). 

Step 4: Calculate weighted sum (WS) of positive and negative membership 
function of BF set, 

G−
n = 

pE
m=1 

|xmb−
mn − b1| and G+

n = 
pE

m=1 
|xmb+

mn + b1|. 

Step 5: Applying sigmoid function, g(Gn) = g(G−
n )+g(G+

n ) 
2 is calculated, where 

g(G−
n ) = 1 

1+e−G
−
n 

and g(G+
n ) = 1 

1+e−G
+
n 

Step 6: Calculate the weights of HL, 

Wn = 1−En 
qE

n=1 
(1−En) 

which satisfies 
qE

n=1 
Wn = 1. 

Step 7: For the output unit, the weighted sum of HL is, 
φ = E

Wng(Gn) + b2. 
Step 8: Use activation function g(φ) = 1 

1+e−φ to get the output. 
If calculated output /= targeted output, then proceed further. 

Step 9: To find error, Er = 1 
2 (T − g(φ))2. 

Step 10: For output unit, find weight and bias corrections using Definitions 4 and 
5. 
Repeat Steps 4 to 8. When calculated output = targeted output, end the process. 
Otherwise, repeat the process. 

4 Application 

Tomato is a fruit rich in vitamins and minerals. Nutrients are essential for plant 
reproduction, growth, and metabolism. Normal life cycle of a plant is incomplete 
without minerals. Nutrients such as nitrogen, potassium, and phosphorus are 
described below. 

1. Nitrogen: Plants require a lot of nitrogen, in order to produce desired crop 
growth and obtain maximum benefits. 

2. Potassium: It is an essential element for plant growth. It contributes to stem 
strength, disease resistance, and growth. 

3. Phosphorus: It benefits the formation of new roots and is used in flower, fruit, 
and seed production. 
Nitrogen-, potassium-, and phosphorus-deficient plants are shown in Fig. 2. 

Insecticides control pests that affect plants. 

1. Carbosulfan: It is used to control soil dwelling and foliar insect pests.
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Fig. 2 Nutrient-deficient tomato plants 

Fig. 3 Tomato plant affected by insects 

2. Abamectin: It is a natural fermentation product for the control of mites, leaf 
miners, and fire ants. 

3. Acetamiprid: It is a broad-spectrum insecticide used to regulate sucking-type 
insects. 

Tomato plants affected by insects are shown in Fig. 3. 

5 Example 

Let .α1, α2, α3 denote the amount of tomato seeds sown in three farms. Let 
.(b−

mn, b
+
mn) for .m, n = 1, 2, 3 denote the nutrients nitrogen, potassium, and 

phosphorus applied to the farms. The returns in three farms are registered in the HL. 
.W1,W2,W3 denote the insecticides such as carbosulfan, abamectin, and acetamiprid 
sprayed to each farm. The total returns of three farms are found. If the returns 
obtained are not the targeted value, BP is carried out, and the error is determined. 
Then the optimal quantity of nutrients and insecticides to be supplied is estimated 
till the favorable returns are obtained.
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Step 1: Assume the targeted output . T = 0.80.

Step 2: The input values .α1 = 0.15;α2 = 0.03;α3 = 0.28 and the bias values 
are .b1 = 0.5 and . b2 = 0.65.

Step 3: The bipolar fuzzy sets taken as the IL weights are represented in a matrix 
form. 

BFM = 

⎛ 

⎝ 

Field1 Field2 Field3 

nitrogen (−0.2, 0.58) (−0.65, 0.1) (−0.11, 0.63) 
potassium (−0.09, 0.79) (−0.12, 0.69) (−0.56, 0.3) 
phosphorus (−0.28, 0.7) (−0.27, 0.6) (−0.51, 0.08) 

⎞ 

⎠ 

Step 4: Determine the negative and positive weighted sum. 
. G−

1 = 0.3889,G−
2 = 0.3233,G−

3 = 0.3239.

. G+
1 = 0.8067,G+

2 = 0.7037,G+
3 = 0.6259.

Step 5: Sigmoid activation function 
. g(G−

1 ) = 0.5960, g(G−
2 ) = 0.5801, g(G−

3 ) = 0.5802.

. g(G+
1 ) = 0.6914, g(G+

2 ) = 0.6690, g(G+
3 ) = 0.6515.

. g(G1) = g(G−
1 )+g(G+

1 )

2 = 0.6437.

Similarly, . g(G2) = 0.6245, g(G2) = 0.6159.

Step 6: .Wn is calculated using .dmn and . En.

. d11 = 0.22, d21 = 0.12, d31 = 0.02.

. d12 = 0.25, d22 = 0.19, d32 = 0.13.

. d13 = 0.26, d23 = 0.14, d33 = 0.41.

. E1 = 0.12, E2 = 0.57, E3 = 0.81.

Finally, . W1 = 0.88
2.42 = 0.3636,W2 = 0.3347,W3 = 0.3016.

Step 7: Calculate the weighted output. 
. α = g(G1)W1 + g(G2)W2 + g(G3)W3 + b2
. = 0.2340 + 0.2090 + 0.1857 + 0.65 = 1.2789.

Step 8: Determine the output value, . g(α) = 0.7822.

Nutrients added to tomato farms at trial 1 are plotted graphically in Fig. 4. 
If the output . /= target, proceed further. 

Step 9: . Er = 0.00015.

Step 10: For output unit, Error 
. ω = −0.00302, ωg(G1) = −0.00194.

Choose the learning rate . η = 0.9.

. ηωg(G1) = −0.00175.

Weight correction: . ∇W1 = 0.3653,∇W2 = 0.3364,∇W3 = 0.3033.

Bias Correction:. ∇b2 = 0.6527.

Step 11: For input, Error 
. ζ−

1 = 0.0437, ζ−
2 = 0.0407, ζ−

3 = 0.0367.

. ζ+
1 = 0.0387, ζ+

2 = 0.0370, ζ+
3 = 0.0342.

Weight Correction: 
Negative:
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Fig. 4 Nutrients added to plants (trial 1) 

. ∇b−
11 = −0.19998,∇b−

21 = −0.09,∇b−
31 = −0.2799.

. ∇b−
12 = −0.64998,∇b−

22 = −0.12,∇b−
32 = −0.2699.

. ∇b−
13 = −0.1099,∇b−

23 = −0.56,∇b−
33 = −0.5099.

Positive: 
. ∇b+

11 = 0.5800,∇b+
21 = 0.7900,∇b+

31 = 0.7000.

. ∇b+
12 = 0.1000,∇b+

22 = 0.6900,∇b+
32 = 0.6000.

. ∇b+
13 = 0.6300,∇b+

23 = 0.3000,∇b+
33 = 0.0800.

Bias Correction:. ∇b1 = 0.5027.

Step 12: Repeat Steps 4 to 8 after updating the weights. 
Determine the WS. . G−

1 = |x1∇b−
11 +x2∇b−

21 +x3∇b−
31 +∇b1| = 0.3916,G−

2 =
0.3260,G−

3 = 0.3266
. G+

1 = 0.8094,G+
2 = 0.7064,G+

3 = 0.6286.

Activation function, . f (G1) = 0.6443, f (G2) = 0.6252, f (G3) = 0.6165.

Weighted output,. α = g(G1)∇W1 + g(G2)∇W2 + g(G3)∇W3 + b2 = 1.2854.

Determine the output, . g(α) = 0.7833.

Using the UW (updated weight), the output is .0.7833 which is . /= target. 
Nutrients added to tomato farms at trial 2 are plotted graphically in Fig. 5. 
Repeating the process n=51 times UW for IL, For input layer, 
. ∇b−

11 = −0.1997,∇b−
21 = −0.09,∇b−

31 = −0.2795,

. ∇b−
12 = −0.6497,∇b−

22 = −0.12,∇b−
32 = −0.2695,

. ∇b−
13 = −0.1098,∇b−

23 = −0.56,∇b−
33 = −0.5095.

. ∇b+
11 = 0.5802,∇b+

21 = 0.7900,∇b+
31 = 0.7004,

. ∇b+
12 = 0.1011,∇b+

22 = 0.6900,∇b+
32 = 0.6004,

. ∇b+
13 = 0.6302,∇b+

23 = 0.3001,∇b+
33 = 0.0814.

For output layer, .∇W1 = 0.39032,∇W2 = 0.3606,∇W3 = 0.3268.
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Fig. 5 Nutrients added to plants (trial 2) 

Fig. 6 Nutrients added to plants (trial n) 

Bias values,. ∇b1 = 0.5423,∇b2 = 0.6923
Using these weights, the targeted output . = 0.8018.

Nutrients added to tomato farms at trial n are plotted graphically in Fig. 6. 

6 Conclusion 

Taking the tomato seeds sown as input, nutrients as IL weight, and insecticides 
as HL weight, the total returns of three farms are registered. The total returns 
at the end of the first trial are .0.7822. If the returns obtained . /= the targeted
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value, BP is carried out, and the error is determined. Then the optimal quantity 
of nutrients and insecticides to be supplied is registered. The returns after the UW 
are .0.7833. The process is repeated for 51 times, and finally, the targeted value, 
which is the favorable returns .0.8018, is reached. The correct amount of nutrients 
and insecticides that must be supplied in three farms is calculated using BPFNN so 
that the farmers attain favorable returns, which could be of great benefit to them. 
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Cryptographic Coding of Some Fibonacci 
Type Numbers to Determine Repeated 
Steps of Their Residues 

T. Srinivas and K. Sridevi 

Keywords Fibonacci · Lucas · Pell · Pell-Lucas · Jacobistal · 
Jacobistal-Lucas · Narayana numbers 

1 Introduction 

Number theory is the Queen of Pure Mathematics. We can apply the theory of 
numbers to our nature, in particular by observation in plant growth (patterns in 
leaves, seed distribution, development in flower petals, and branch mechanisms in 
the plants). In most of the cases, their mechanism is in the Fibonacci sequence of 
numbers, and some of them are represented below. From References [1–5]. 

We can introduce numbers of Fibonacci type of rth order of linear recurrence 
defined as follows: 

. an = c1an−1 + +c2an−2 + c3an−3 + c4an−4 + . . . . . . ..cran−r , for n ≥ r, r ≥ 2.

Some of them are represented according to their second order as follows: 
Fibonacci numbers {1, 1, 2, 3, 5, 8, 13, 21 . . .  . . .  . .} satisfy following recurrence 

relation 

. Fn = Fn−1 + Fn−2 f or n ≥ 2, with F0 = 1, F1 = 1.

Lucas numbers {2, 1, 3, 4, 7,11,18,29, . . .  .  . . . .} satisfy following recurrence 
relation 
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. Ln = Ln−1 + Ln−2 f or n ≥ 2, with L0 = 2, L1 = 1.

Pell numbers {0,1,2,5,12,29 . . .  . . .  ., } satisfy following recurrence relation 

. Pn = 2Pn−1 + Pn−2 f or n ≥ 2, with P0 = 0, P1 = 1.

Pell-Lucas numbers {1, 3, 7,17,41,99, . . .  . .} satisfy following recurrence relation 

. Qn = 2Qn−1 + Qn−2 f or n ≥ 2, with Q0 = 1,Q1 = 3.

Jacobistal numbers {0, 1, 1, 3, 5, 11, . . . . .} satisfy following recurrence relation 

. Jn = Jn−1 + 2Jn−2 f or n ≥ 2, with J0 = 0, J1 = 1.

Jacobistal-Lucas numbers {2, 1, 5, 7, 17, . . . . .} satisfy the following recurrence 
relation 

. Jn = Jn−1 + 2Jn−2 f or n ≥ 2, with J0 = 2, J1 = 1.

Narayana numbers {0, 1, 1, 1, 2, 3, 4, . . .  . .} satisfy following recurrence relation 

. Nn = Nn−1 + Nn−3 f or n ≥ 3, with N0 = 1, N1 = 1, N2 = 1.

1.1 Fibonacci Numbers 

Program 

// fibonacci Numbers 
decimal[] fibonacci = new decimal[100]; 
fibonacci[0] = 1; fibonacci[1] = 1; 
for (int i = 2; i < fibonacci.Length; i++) 
{ 
fibonacci[i] = fibonacci[i - 1] + fibonacci[i-2]; 
} 
Console.WriteLine(“Fibonacci Numbers for n values 

2 to 100 \n”); 
foreach (var item in fibonacci) 
{ 

Console.Write($“{item},”); 
}
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Console.WriteLine(“\n”); 
for (int n = 2; n <= 10; n++) 
{ 

Console.WriteLine(“\nReminders of Fibonacci Numbers 
when divided by {0} \n”,n); 
foreach (var item in fibonacci) 
{ 

Console.Write(“{0},”,(item % n)); 
} 
Console.WriteLine(“\n”); 

} 

Reminders of Fibonacci numbers when divided by 2 
1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1, 
0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1, 
1,0,1,1,0,1,1,0,1,1,0,1, 

Reminders of Fibonacci numbers when divided by 3 
1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0, 
2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0, 
1,1,2,0,2,2,1,0,1,1,2,0, 

Reminders of Fibonacci numbers when divided by 4 
1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1, 
2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3, 
1,0,1,1,2,3,1,0,1,1,2,3, 

Reminders of Fibonacci numbers when divided by 5 
1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3, 
0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1, 
4,0,4,4,3,2,0,2,2,4,1,0, 

Reminders of Fibonacci numbers when divided by 6 
1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3, 
2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3, 
1,4,5,3,2,5,1,0,1,1,2,3, 

Reminders of Fibonacci numbers when divided by 7 
1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4, 
2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6, 
0,6,6,5,4,2,6,1,0,1,1,2,3,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6, 
1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6, 
6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,
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Reminders of Fibonacci numbers when divided by 8 
1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5, 
2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3, 
5,0,5,5,2,7,1,0,1,1,2,3, 

Reminders of Fibonacci numbers when divided by 9 
1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6, 
2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6, 
4,1,5,6,2,8,1,0,1,1,2,3, 

Reminders of Fibonacci numbers when divided by 10 
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3, 
0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1, 
9,0,9,9,8,7,5,2,7,9,6,5, 

Integer modulo m (from 2 to 11) for Fibonacci numbers 

m-modulo Sequence of residues 
Residues 
repeats Nonresidues 

2-modulo (1,1,0,1,1,0,1,1,0, . . .  . . .  . . .  .) 3 steps – 
3-modulo (1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0, 

1,1,2,0,2,2,1,0,1,1 . . .  . . .  ) 
8 steps – 

4-modulo (1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3 . . .  .) 6 steps – 
5-modulo (1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2, . . .  . . . ) 20 steps – 

(3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0 . . .  . . .  ) 

6-modulo . 

⎛
⎜⎜⎜⎝
1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 

5, 5, 4, 3, 1 
, 4, 5, 3, 2, 5, 1, 0 

, 1, 1, 2, 3, 5, 2, ,  3, 2, 5, 1, 0, 

⎞ 

⎟⎟⎟⎠ 24 steps – 

7-modulo (1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3, . . .  .) 16 steps – 

5,1,6,0,6,6,5,4,2,6,1,0, . . .  .) 
8-modulo (1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2, 12 steps 4,6 

7,1,0,1,1,2,3, . . . .) 
9-modulo (1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0, 24 steps – 

1,1,2,3,5,8, . . . ..) 
10-modulo (1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8, 60 steps – 

5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,0,3,3,6,9, 
5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,5,8,3,, . . .  .) 

1.2 Lucas Numbers 

Program: 

// Lucas Numbers
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decimal[] lucas = new decimal[100]; 
lucas[0] = 1; lucas[1] = 1; 
for (int i = 2; i < lucas.Length; i++) 
{ 

lucas[i] = lucas[i - 1] + lucas[i-2]; 
} 
Console.WriteLine(“Lucas Numbers for n values 2 to 100 \n”); 
foreach (var item in lucas) 
{ 

Console.Write($“{item},”); 
} 
Console.WriteLine(“\n”); 
for (int n = 2; n <= 10; n++) 
{ 

Console.WriteLine(“\nReminders of Lucas Numbers 
when divided by {0} \n”, n); 
foreach (var item in lucas) 
{ 

Console.Write(“{0},”,(item % n)); 
} 
Console.WriteLine(“\n”); 

} 

Reminders of Lucas numbers when divided by 2 
1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1, 
0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0, 
1,1,0,1,1,0,1,1,0,1,1,0,1, 

Reminders of Lucas numbers when divided by 3 
1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2, 
0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2, 
2,1,0,1,1,2,0,2,2,1,0,1,1,2,0, 

Reminders of Lucas numbers when divided by 4 
1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1, 
2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2, 
3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3, 

Reminders of Lucas numbers when divided by 5 
1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1, 
0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1, 
2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0, 

Reminders of Lucas numbers when divided by 6 
1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5, 
4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3, 
5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,
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Reminders of Lucas numbers when divided by 7 1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1, 
2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6, 
1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3, 

Reminders of Lucas numbers when divided by 8 
1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5, 
2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1, 
2,3,5,0,5,5,2,7,1,0,1,1,2,3, 

Reminders of Lucas numbers when divided by 9 
1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5, 
6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8, 
8,7,6,4,1,5,6,2,8,1,0,1,1,2,3, 

Reminders of Lucas numbers when divided by 10 
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1, 
6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6, 
1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5, 

Integer modulo m (from 2 to 11) of Lucas numbers 

m-modulo Sequence of residues 
Residues 
repeats Nonresidues 

2-modulo {1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, ..} 3 steps – 
3-modulo {1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, } 8 steps – 
4-modulo {1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, } 6 steps – 

5-modulo . 

{
1, 1, 2, 3, 0, 3, 3, 1, 4, 0, 4, 4, 3, 2, 0, 2, 2, 4, 

1, 0, 1, 1, 2, 3, 0, 3, 3

}
20 steps – 

6-modulo . 

{
1, 1, 2, 3, 5, 2, 1, 3, 4, 1, 5, 0, 5, 5, 4, 3, 1 

, 4, 5, 3, 2, 5, 1, 0, 1, 1, 2, 3

}
24 steps – 

7-modulo . 

{
1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 

1, 1, 2, 3

}
16 steps – 

8-modulo . 

{
1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 

1, 1, 2, 3, 5, 0, 5, 5, 2, 7, 1, 0, 1, 1, 2, 3

}
12 steps 4,6 

9-modulo . 

{
1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 0, 8, 8, 7, 6, 4, 1, 5, 

6, 2, 8, 1, 0, 1, 1, 2, 3,

}
24 steps – 

10-modulo . 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, 1, 2, 3, 5, 8, 3, 1, 4, 5, 9, 4, 3, 7, 0, 7, 7, 4, 
1, 5, 6, 1, 7, 8, 5, 3, 8, 1, 9, 0, 9, 9, 8, 7 

, 5, 2, 7, 9, 6, 5, 1, 6, 7, 3, 0, 3, 3, 6, 9, 5 

, 4, 9, 3, 2, 5, 7, 2, 9, 1, 0, 1, 1, 2, 3 

⎫⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
60 steps



Cryptographic Coding of Some Fibonacci Type Numbers to Determine. . . 135

1.3 Pell Numbers 

Program 

// Pell Numbers 
using System.Numerics; 
BigInteger[] pell = new BigInteger[100]; 
pell[0] = 0; pell[1] = 1; 
for (int i = 2; i < pell.Length; i++) 
{ 

pell[i] = (2 * pell[i - 1]) + pell[i-2]; 
} 
Console.WriteLine(“Pell Numbers for n values 2 to 100 \n”); 
foreach (var item in pell) 
{ 

Console.Write($“{item},”); 
} 
Console.WriteLine(“\n”); 
for (int n = 2; n <= 10; n++) 
{ 

Console.WriteLine(“\nReminders of Pell Numbers when 
divided by {0} \n”, n); 
foreach (var item in pell) 
{ 
Console.Write(“{0},”,(item % n)); 
} 
Console.WriteLine(“\n”); 

} 

Integer modulo of Pell numbers 

1.4 Jacobistal Numbers 

Program 

// Jacobistal Numbers 
using System.Numerics; 
BigInteger[] jacobistal = new BigInteger[100]; 
jacobistal[0] = 0; jacobistal[1] = 1; 
for (int i = 2; i < jacobistal.Length; i++) 

{ 
jacobistal[i] = jacobistal[i - 1] + 
(2 * jacobistal[i-2]); 

} 
Console.WriteLine(“Jacobistal Numbers for n values 2 to 100 
\n”); 
foreach (var item in jacobistal) 
{ 

Console.Write($“{item},”); 
}
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n-modulo Sequence of residues Residues repeats Nonresidues 

2-modulo . 

{
0, 1, 0, 1, 0, 

1, 0, 1 . . . . . . .,

}
2 steps – 

3-modulo . 

⎧⎪⎨
⎪⎩

0, 1, 2, 2, 
0, 2, 1, 1, 0 

, 1, 2, 2, . . . .,  

⎫⎪⎬ 

⎪⎭ 
8 steps – 

4-modulo . 

⎧⎪⎨
⎪⎩

0, 1, 2, 1, 0, 1, 
2, 1, 0, 1, 2, 1, 
0, 1, 2, 1 . . . .,  

⎫⎪⎬ 

⎪⎭ 
4 steps 3 

5-modulo . 

⎧⎪⎨
⎪⎩

0, 1, 2, 0, 2, 4 

, 0, 4, 3, 0, 3, 1, 
0, 1, 2, 0 . . . .,  

⎫⎪⎬ 

⎪⎭ 
12 steps – 

6-modulo . 

⎧⎪⎨
⎪⎩

0, 1, 2, 5, 0, 5, 
4, 1, 0, 1, 2, 5, 
0, 5, 4, . . . .,  

⎫⎪⎬ 

⎪⎭ 
8 steps 3 

7-modulo . 

{
0, 1, 2, 5, 5, 1, 
0, 1, 2, 5, 5, 1

}
6 steps 3,4,6 

8-modulo . 

{
0, 1, 2, 5, 4, 5, 6, 

1, 0, 1, 2, . . . .

}
8 steps 3,7 

9-modulo {0, 1, 2, 5, 3, 2, 
7, 7, 3, 4, 2, 8, 0 
,8, 7, 4, 6, 7, 2,  
2, 6, 5, 7, 1, 
0,1,2,5,3} 

24 steps – 

10-modulo . 

⎧⎪⎨
⎪⎩

0, 1, 2, 5, 2, 9, 
0, 9, 8, 5, , 8, 1, 

0, 1, 2, 5 . . .  

⎫⎪⎬ 

⎪⎭ 
12 steps 3,4,6,7 

Console.WriteLine(“\n”); 
for (int n = 2; n <= 10; n++) 
{ 

Console.WriteLine(“\nReminders of Jacobistal 
Numbers when divided by {0} \n”, n); 
foreach (var item in jacobistal) 
{ 
Console.Write(“{0},”,(item % n)); 
} 
Console.WriteLine(“\n”); 

} 

Integer modulo of Jacobistal numbers
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n-modulo Sequence of residues Residues repeats Nonresidues 

2-modulo {0, 1, 1, 1, 1, } Residue “1” is repeated -

3-modulo . 

{
0, 1, 1, 0, 2, 

2, 0, 1, 1, 0, 2, 2

}
6 steps -

4-modulo . 

{
0, 1, 1, 3, 1, 3, 
1, 3, 1, 3, 1, 3

}
After two steps 1,3 are repeated 2 

5-modulo . 

{
0, 1, 1, 3, 0, 

1, 1, 3, 0

}
4 steps 2,4 

6-modulo . 

⎧⎪⎨
⎪⎩

0, 1, 1, 3, 5, 
5, 3, 

1, 1, 3, 5, . . .  

⎫⎪⎬ 

⎪⎭ 
6 steps (except first residue) 2,4 

7-modulo . 

{
0, 1, 1, 3, 5, 4, 

0, 1, 1, 3, ..

}
6 steps 2,6 

8-modulo . 

{
0, 1, 1, 3, 5, 
3, 5, 3, 5, ..

}
After 5 steps, two residues 3,5 are 
repeated 

2,4,6,7 

9-modulo . 

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 1, 1, 3, 5, 2, 3, 
7, 4, 0, 8, 8, 6, 
4, 7, 6, 2, 5, 
0, 1, 1, 3, 

⎫⎪⎪⎪⎬ 

⎪⎪⎪⎭ 
18 steps -

10-modulo . 

⎧⎪⎨
⎪⎩
0, 1, 1, 3, 5, 1, 1, 
3, 5, 1, 1, 3, 5, 

1, 1, 3, 5 

⎫⎪⎬ 

⎪⎭ 
1,1,3,5 repeats 2,4,7,9 

1.5 Jacobistal-Lucas Numbers 

Program 

// Jacobistal-Lucas Numbers 
using System.Numerics; 
BigInteger[] jacobistalLucas = new BigInteger[100]; 
jacobistalLucas[0] = 2; jacobistalLucas[1] = 1; 
for (int i = 2; i < jacobistalLucas.Length; i++) 
{ 

jacobistalLucas[i] = jacobistalLucas[i - 1] 
+ (2 * jacobistalLucas[i-2]); 

} 
Console.WriteLine(“Jacobistal-Lucas Numbers for n 
values 2 to 100 \n”); 
foreach (var item in jacobistalLucas) 
{ 

Console.Write($“{item},”); 
} 
Console.WriteLine(“\n”);
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for (int n = 2; n <= 10; n++) 
{ 

Console.WriteLine(“\nReminders of Jacobistal-
-Lucas Numbers when divided by {0} \n”, n); 
foreach (var item in jacobistalLucas) 
{ 
Console.Write(“{0},”,(item % n)); 
} 
Console.WriteLine(“\n”); 

} 

Reminders of Jacobistal-Lucas numbers when divided by 2 
0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 

Reminders of Jacobistal-Lucas numbers when divided by 3 
2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2, 
1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1, 
2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1, 

Reminders of Jacobistal-Lucas numbers when divided by 4 
2,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1, 
3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1, 
3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3, 

Reminders of Jacobistal-Lucas numbers when divided by 5 
2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1, 
0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2, 
2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2, 

Reminders of Jacobistal-Lucas numbers when divided by 6 
2,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5, 
1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1, 
5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1, 

Reminders of Jacobistal-Lucas numbers when divided by 7 
2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5, 
0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0, 
3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0, 

Reminders of Jacobistal-Lucas numbers when divided by 8 
2,1,5,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7, 
1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1 
7,1,7,1,7,1,7,1,7,1,7,1,7, 

Reminders of Jacobistal-Lucas numbers when divided by 9 
2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,
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5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5, 
7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7,8,4,2,1,5,7, 

Reminders of Jacobistal-Lucas numbers when divided by 10 
2,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7, 
1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7, 
1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7, 

1.6 Narayana Numbers 

Program 

// Narayana Numbers 
using System.Numerics; 
BigInteger[] narayana = new BigInteger[100]; 
narayana[0] = 0; narayana[1] = 1; narayana[2] = 1; 
for (int i = 3; i < narayana.Length; i++) 
{ 

narayana[i] = narayana[i - 1] + narayana[i-3]; 
} 
Console.WriteLine(“Narayana Numbers 
for n values 2 to 100 \n”); 

foreach (var item in narayana) 
{ 

Console.Write($“{item},”); 
} 
Console.WriteLine(“\n”); 
for (int n = 2; n <= 10; n++) 
{ 

Console.WriteLine(“\nReminders of Narayana 
Numbers when divided by {0} \n”, n); 
foreach (var item in narayana) 
{ 

Console.Write(“{0},”,(item % n)); 
} 
Console.WriteLine(“\n”); 

} 

Reminders of Narayana numbers when divided by 2 
0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1, 
1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1, 
0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1 

Reminders of Narayana numbers when divided by 3 
0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0, 
1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1, 
2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1
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Reminders of Narayana numbers when divided by 4 
0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1, 
3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2, 
3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1, 

Reminders of Narayana numbers when divided by 5 
0,1,1,1,2,3,4,1,4,3,4,3,1,0,3,4,4,2,1,0,2,3,3,0,3,1,1,4,0,1,0,0,1,1,1,2,3, 
4,1,4,3,4,3,1,0,3,4,4,2,1,0,2,3,3,0,3,1,1,4,0,1,0,0,1,1,1,2,3,4,1,4,3,4, 
3,1,0,3,4,4,2,1,0,2,3,3,0,3,1,1,4,0,1,0,0,1,1,1,2,3,4, 

Reminders of Narayana numbers when divided by 6 
0,1,1,1,2,3,4,0,3,1,1,4,5,0,4,3,3,1,4,1,2,0,1,3,3,4,1,4,2,3,1,3,0,1,4,4,5, 
3,1,0,3,4,4,1,5,3,4,3,0,4,1,1,5,0,1,0,0,1,1,1,2,3,4,0,3,1,1,4,5,0,4,3,3,1, 
4,1,2,0,1,3,3,4,1,4,2,3,1,3,0,1,4,4,5,3,1,0,3,4,4,1, 

Reminders of Narayana numbers when divided by 7 
0,1,1,1,2,3,4,6,2,6,5,0,6,4,4,3,0,4,0,0,4,4,4,1,5,2,3,1,3,6,0,3,2,2,5,0,2,0, 
0,2,2,2,4,6,1,5,4,5,3,0,5,1,1,6,0,1,0,0,1,1,1,2,3,4,6,2,6,5,0,6,4,4,3,0,4,0, 
0,4,4,4,1,5,2,3,1,3,6,0,3,2,2,5,0,2,0,0,2,2,2,4, 

Reminders of Narayana numbers when divided by 8 
0,1,1,1,2,3,4,6,1,5,3,4,1,4,0,1,5,5,6,3,0,6,1,1,7,0,1,0,0,1,1,1,2,3,4,6,1,5, 
3,4,1,4,0,1,5,5,6,3,0,6,1,1,7,0,1,0,0,1,1,1,2,3,4,6,1,5,3,4,1,4,0,1,5,5,6,3, 
0,6,1,1,7,0,1,0,0,1,1,1,2,3,4,6,1,5,3,4,1,4,0,1, 

Reminders of Narayana numbers when divided by 9 
0,1,1,1,2,3,4,6,0,4,1,1,5,6,7,3,0,7,1,1,8,0,1,0,0,1,1,1,2,3,4,6,0,4,1,1,5,6, 
7,3,0,7,1,1,8,0,1,0,0,1,1,1,2,3,4,6,0,4,1,1,5,6,7,3,0,7,1,1,8,0,1,0,0,1,1, 
1,2,3,4,6,0,4,1,1,5,6,7,3,0,7,1,1,8,0,1,0,0,1,1,1, 

Reminders of Narayana numbers when divided by 10 
0,1,1,1,2,3,4,6,9,3,9,8,1,0,8,9,9,7,6,5,2,8,3,5,3,6,1,4,0,1,5,5,6,1,6,2,3,9,1, 
4,3,4,8,1,5,3,4,9,2,6,5,7,3,8,5,8,6,1,9,5,6,5,0,6,1,1,7,8,9,6,4,3,9,3,6,5,8,4, 
9,7,1,0,7,8,8,5,3,1,6,9,0,6,5,5,1,6,1,2,8,9, 

2 Conclusion 

This paper focused on to study cryptographic coding of linear recurrence relations 
of some Fibonacci type numbers to determine repeated steps of their residues for 
integer modulo from 2 to 10. It particularly focused to study repeated steps of 
residues of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobistal, Jacobistal-Lucas, and 
Narayana numbers. In cryptographic coding, repeated steps of residues are useful
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for public sector, and nonresidues are useful for private sector. So we are focused to 
generate the Fibonacci type number repeated steps of residues under integer modulo 
from 2 to 10. 
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1 Introduction 

Imai and Iseki [1] investigated and studied the notion of BCK-algebra, and also they 
looked into several connections between d-algebras and BCK-algebras, where the 
concept of d-algebras is introduced by Neggers and Kim [2]. Many academics have 
intensively examined numerous generalizations of a B-algebra, and properties have 
been considered methodically. Next, the concept of B-algebras ([3]) is pioneered. 
The B-algebra is an algebra of type (2,0). 

The notion of BI-algebra is shown by Saeid et al. [4]. They discuss the essential 
properties of BI-algebras as well as ideals and congruence relations. A BI-algebra 
is an extension of (dual) implication algebra. Alsalem [5] provides permutation 
sets. The permutations of symmetric and alternating groups are examined [6–13]. 
A permutation set is a nonclassical set such as fuzzy sets [14–21], soft sets [22–27], 
neutrosophic sets [28–33], and nano sets [34]. 

We looked at permutation quasi-associative BI-algebra, permutation BI-ideal, 
and permutation right (left) distributive BI-algebra. Moreover, we explored some 
new notions in permutation theory for the first time. We also examined permutation 
right compatible relation, permutation left compatible relation, and permutation 
compatible relation in permutation BI-algebra. 
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2 Preliminaries 

This section covers the fundamental principles as well as facts relevant to this topic. 

Definition 2.1: [3] Let  X /= ∅ and 0 be a constant with a binary operation ∗. We  
say that (X, ∗ ,∅) is a BI-algebra if it satisfies the following conditions: 

(a) x ∗ x = 0. 
(b) x ∗ (y ∗ x) = x, ∀ x, y ∈ X. 

Definition 2.2: [5] For any permutation .β = ||c(β)
i=1 λI in a symmetric 

group Sn, where .{λi}c(β)
i=1 is a composite of pairwise disjoint cycles . {λi}c(β)

i=1
where .λi = (

tI1, tI2, . . . , tiαi

)
, 1 ≤ i ≤ c (β), for some 1  ≤ αi, c(β) ≤ n. If  

λ = (t1, t2, . . . , tk) is  k−cycle in Sn, we define β−set as λβ = {t1, t2, . . . , tk} 
and is called β−set of cycle λ. So the  β−sets of .{λi}c(β)

i=1 are defined 

by. 
{
λ

β
i = {

tI1, tI2, . . . , tiαi

} |1 ≤ i ≤ c (β)
}

.

3 Permutation BI-Algebras 

In this section, we’ll examine some of the core traits of permutation BI-algebras 
(PBI − As) and explore some fresh applications. 

Definition 3.1: Let .X =
{
λ

β
i

}c(β)

i=1
be a collection of β-sets, where β is a 

permutation in the symmetric group G = Sn. Then X is, namely, a permutation 
BI-algebra (PBI − A) if there exists a mapping ⋕ : X × X −→ X such that (1) 

.λ
β
i ⋕ λ

β
i = {1} , (2) λ

β
i ⋕

(
λ

β
j ⋕ λ

β
i

)
= λ

β
i , ∀λ

β
i , λ

β
j ∈ X. We say that {1} is 

the fixed element in X. 

Example 3.2: Let (S12,o) be a symmetric group and 

.β =
(

1 2 3 4 5 6 7 8 9 10 11 12
6 3 5 2 4 7 1 9 8 12 10 11

)
be a permutation in S12. Since . β =

(
1 2 3 4 5 6 7 8 9 10 11 12
6 3 5 2 4 7 1 9 8 12 10 11

)
= (167)(2354)(89)

(10 12 11). Therefore, we have .X =
{
λ

β
i

}4

i=1
∪{1} ={{1, 6, 7}, {2, 3, 5, 4}, {8, 9}, 

{10, {10,12,11}, {1}}. Define ⋕ : X × X −→ X by .⋕
(
λ

β
i , λ

β
j

)
= λ

β
i #λ

β
j = λ

β
k , 

where . λ
β
k its cycle . λ

β
k such that .λk =

{
λioλ−1

j , if i = j

λj , if i /= j
, where λi and λj are cycles 

for . λβ
i and . λβ

j , respectively. Here, we have (i).λioλ−1
i = (1) → .λ

β
i #λ

β
i = {1} , (ii)
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when .i = j → λio
(
λioλ−1

i

)
= λio(1)−1 = λi → λ

β
i ⋕

(
λ

β
j ⋕ λ

β
i

)
= λ

β
i , also, if 

.i /= j =⇒ λ
β
i ⋕

(
λ

β
j ⋕ λ

β
i

)
= λ

β
i ⋕ λ

β
j = λ

β
i . Then X is a (PBI − A). 

Definition 3.3: Let (X, ⋕ , {1}) be a (PBI − A). We introduce a relation “≤” on  X 
defined by .λβ

i ≤ λ
β
j if and only if .λβ

i ⋕ λ
β
j = {1}. This relation “≤” is not partially 

ordered. In other side, it is just reflexive. 

Proposition 3.4: Let (X, ⋕ , {1}) be a (PBI − A). Then, (1) .λβ
i ⋕ {1} = λ

β
i , (2)  

.{1} ⋕ λ
β
i = {1} , (3) .λβ

i ⋕ λ
β
j =

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j , (4) If . λ

β
j ⋕ λ

β
i = λ

β
i ,∀λ

β
i , λ

β
j ∈

X then X = {{1}}, (5) If .λ
β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
= λ

β
j ⋕

(
λ

β
i ⋕ λ

β
k

)
,∀λ

β
i , λ

β
j , λ

β
k ∈ X, 

then X = {{1}}, (6) If .λ
β
i ⋕ λ

β
j = λ

β
k , then .λβ

k ⋕ λ
β
j = λ

β
k and .λβ

j ⋕ λ
β
k = λ

β
j . 

(7) If .
(
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
k ⋕ λ

β
l

)
=

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
l

)
, then X = {{1}} for all 

. λ
β
i , λ

β
j , λ

β
k , λ

β
l ∈ X.

Proof : 
(1) Substituting .λβ

j = λ
β
i in (2) of Definition 3.1, we have that . λβ

i = λ
β
i ⋕(

λ
β
i ⋕ λ

β
i

)
= λ

β
i ⋕ {1} .

(2) Substituting .λβ
j = λ

β
i and .λβ

i = {1} in (2) of Definition 3.1, we have that 

.{1} = {1} ⋕
(
λ

β
i ⋕ {1}

)
= {1} = λ

β
i (From (1)). 

(3) Given that .λ
β
i , λ

β
j ∈ X, we have that . λ

β
i ⋕ λ

β
j =

(
λ

β
i ⋕ λ

β
j

)
⋕(

λ
β
j ⋕

(
λ

β
i ⋕ λ

β
j

))
=

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j . 

(4) If .λβ
j ⋕ λ

β
i = λ

β
i ,∀λ

β
i , λ

β
j ∈ X, then . λβ

i = λ
β
i ⋕

(
λ

β
j ⋕ λ

β
i

)
= λ

β
i ⋕ λ

β
i =

{1} . Thus, X = {{1}}. 
(5) .∀λ

β
i ∈ X, we have that . {1} = {1} ⋕

(
λ

β
i ⋕ {1}

)
= λ

β
i ⋕ ({1} ⋕ {1}) = λ

β
i ⋕

{1} = λ
β
i . Hence X = {{1}}. 

(6) If .λβ
i ⋕ λ

β
j = λ

β
k , then from (3), we have that . λβ

k ⋕ λ
β
j =

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
j =

λ
β
i ⋕ λ

β
j = λ

β
k . Also, .λβ

j ⋕ λ
β
k = λ

β
j ⋕

(
λ

β
i ⋕ λ

β
j

)
= λ

β
j . 

(7) If .λβ
i ∈ X, then we have that . λβ

i = λ
β
i ⋕ {1} =

(
λ

β
i ⋕ {1}

)
⋕

(
λ

β
i ⋕ λ

β
i

)
=(

λ
β
i ⋕ λ

β
i

)
⋕

(
{1} ⋕ λ

β
i

)
= {1} ⋕

(
{1} ⋕ λ

β
i

)
= {1} ⋕ {1} = {1} . Hence 

X = {{1}}. 
Definition 3.5: A permutation BI-algebra X is, namely, permutation right distribu-

tive BI-algebra (PRDBI − A), if . 
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k =

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
.

Also, it is, namely, permutation left distributive BI-algebra (PLDBI − A), if . λβ
k ⋕(

λ
β
i ⋕ λ

β
j

)
=

(
λ

β
k ⋕ λ

β
i

)
⋕

(
λ

β
k ⋕ λ

β
j

)
, for all .λβ

i , λ
β
j , λ

β
k ∈ X.



146 N. M. Ali Abbas et al.

Proposition 3.6: If (X, ⋕ , {1}) is (PLDBI − A), then X = {{1}}. 
Proof : Let .λβ

i ∈ X. Thus, substituting .λβ
j = λ

β
i in (2) of Definition 3.1, we have  

that . λβ
i = λ

β
i ⋕

(
λ

β
i ⋕ λ

β
i

)
=

(
λ

β
i ⋕ λ

β
i

)
⋕

(
λ

β
i ⋕ λ

β
i

)
= {1} ⋕ {1} = {1} .

Proposition 3.7: Assume that(X,⋕) is a permutation groupoid with {1} ∈  X. If it is  
such that (1) .λβ

i ⋕ λ
β
i = {1}, (2) .λ

β
i ⋕ λ

β
j = λ

β
i , ∀λ

β
i /= λ

β
j ∈ X. Then (X, ⋕ , {1}) 

is a (PRDBI − A). 

Proof : Let .λβ
i /= λ

β
j /= λ

β
k ∈ X. Then . 

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = λ

β
i ⋕ λ

β
j =(

λ
β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
.

Proposition 3.8: Let (X, ⋕ , {1}) be a (PRDBI − A). Then (1) .λβ
j ⋕ λ

β
i ≤ λ

β
j , (2)  

.

(
λ

β
j ⋕ λ

β
i

)
⋕ λ

β
i ≤ λ

β
j , (3) .

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
≤ λ

β
i ⋕ λ

β
j . (4) If .λ

β
i ≤ λ

β
j , 

then .λβ
i ⋕ λ

β
k ≤ λ

β
j ⋕ λ

β
k , (5) .

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k ≤ λ

β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
, and (6) if 

.λ
β
i ⋕ λ

β
j = λ

β
k ⋕ λ

β
j , then .

(
λ

β
i ⋕ λ

β
k

)
⋕ λ

β
j = {1} ,∀λ

β
i , λ

β
j , λ

β
k ∈ X. 

Proof : For all .λβ
i , λ

β
j ∈ X, we have that 

(1) . 

(
λ

β
j ⋕ λ

β
i

)
⋕ λ

β
j =

(
λ

β
j ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
j

)
= {1} ⋕

(
λ

β
i ⋕ λ

β
j

)
=

{1} .Thus . λβ
j ⋕ λ

β
i ≤ λ

β
j .

(2) . 

((
λ

β
j ⋕ λ

β
i

)
⋕ λ

β
i

)
⋕ λ

β
j =

((
λ

β
j ⋕ λ

β
i

)
⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
j

)
=((

λ
β
j ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
j

))
⋕

(
λ

β
i ⋕ λ

β
j

)
=

(
{1} ⋕

(
λ

β
i ⋕ λ

β
j

))
⋕(

λ
β
i ⋕ λ

β
j

)
= .{1} ⋕

(
λ

β
i ⋕ λ

β
j

)
= {1}. Thus, .

(
λ

β
j ⋕ λ

β
i

)
⋕ λ

β
i ≤ λ

β
j . 

(3) . 

((
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

))
⋕

(
λ

β
i ⋕ λ

β
j

)
=

((
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k

)
⋕(

λ
β
i ⋕ λ

β
j

)
=

((
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
j

))
⋕

(
λ

β
k ⋕

(
λ

β
i ⋕ λ

β
j

))
= {1} ⋕(

λ
β
k ⋕

(
λ

β
i ⋕ λ

β
j

))
= {1}. 

Thus, .
(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
≤ λ

β
i ⋕ λ

β
j . 

(4) If .λβ
i ≤ λ

β
j , then .λβ

i ⋕ λ
β
j = {1} and hence. 

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
=(

λ
β
i ⋕ λ

β
j

)
⋕ λ

β
k = {1} ⋕ λ

β
k = {1} . Hence .λβ

i ⋕ λ
β
k ≤ λ

β
j ⋕ λ

β
k . 

(5) From (1), we have .λβ
i ⋕ λ

β
k ≤ λ

β
i . It follows from (4) that . 

(
λ

β
i ⋕ λ

β
k

)

#
(
λ

β
j ⋕ λ

β
k

)
≤ λ

β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
. Since X is (PRDBI − A), we have that 

.

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k ≤ λ

β
i ⋕

(
λ

β
j ⋕ λ

β
k

)
.



On Permutation Distributive BI-Algebras 147

(6) Let .λβ
i ⋕ λ

β
j = λ

β
k ⋕ λ

β
j . Since X is (PRDBI − A), we get that . 

(
λ

β
i ⋕ λ

β
k

)
⋕

λ
β
j =

(
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
k ⋕ λ

β
j

)
=

(
λ

β
i ⋕ λ

β
j

)
⋕

(
λ

β
i ⋕ λ

β
j

)
= {1} . In other 

side, .λβ
i ≤ λ

β
j does not imply that . λβ

k ⋕ λ
β
i ≤ λ

β
k ⋕ λ

β
j .

Proposition 3.9: Let (X, ⋕ , {1}) be a (PBI − A) with the condition. 

.

(
λ

β
k ⋕ λ

β
i

)
⋕

(
λ

β
k ⋕ λ

β
j

)
= λ

β
j ⋕ λ

β
i ∀λ

β
i , λ

β
j , λ

β
k ∈ X. If .λ

β
i ≤ λ

β
j , then . λβ

k ⋕

λ
β
j ≤ λ

β
k ⋕ λ

β
i . 

Proof : If .λβ
i ≤ λ

β
j , then .λβ

i ⋕ λ
β
j = {1}. Now . 

(
λ

β
k ⋕ λ

β
j

)
⋕

(
λ

β
k ⋕ λ

β
i

)
= λ

β
i ⋕

λ
β
j = {1}. Thus, . λβ

k ⋕ λ
β
j ≤ λ

β
k ⋕ λ

β
i .

Definition 3.10: Let (X, ⋕ , {1}) be a (PBI − A). We say it has an inclusion 

condition if .
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
i = {1} ∀λ

β
i , λ

β
j ∈ X. Note that any (PRDBI − A) 

has the inclusion condition (see Proposition 3.8 (1)). 

Definition 3.11: If (X, ⋕ , {1}) is a (PRDBI − A), then (X, ⋕ , {1}) is, namely, a 
permutation quasi-associative BI-algebra (PQABI − A). 

Proposition 3.12: Let (X, ⋕ , {1}) be a (PRDBI − A), and then the induced relation 
“≤” is a transitive relation. 

Proof : If .λβ
i ≤ λ

β
j and .λβ

j ≤ λ
β
k , then from Proposition 3.4 (1) . λβ

i ⋕ λ
β
k =(

λ
β
i ⋕ λ

β
k

)
⋕ {1} =

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
=

(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
k = {1} ⋕ λ

β
k =

{1}. Thus, . λβ
i ≤ λ

β
k .

Definition 3.13: Assume that (X, ⋕ , {1}) is a (PBI − A), and ∅ /= I ⊆ X. The set  
I is, namely, an permutation BI-ideal (PBI − I) of  X if (1) {1} ∈  I, and (2) . λβ

j ∈ I

and .λβ
i ⋕ λ

β
j ∈ I imply that .λβ

i ∈ I for all .λβ
i , λ

β
j ∈ X. Note that each one of {{1}} 

and X is (PBI − I) of X. Also, they are, namely, the fixed ideal and the trivial ideal, 
respectively. An (PBI − I) I is, namely, a proper (PBI − I) if  I /= X. 

Lemma 3.14: If {Ii}i ∈ A is a family of (PBI − Is) of  X, then .
n

i∈A Ii is a (PBI − I) 
of X. 

Proposition 3.15: If (X, ⋕ , {1}) is a (PBI − A), then (I(X), ⊆) is a complete lattice. 

Proof : The result follows from the fact that the set I(X) is closed under arbitrary 
intersections. 

Proposition 3.16: Let I be (PBI − I) of (PBI − A) (X, ⋕ , {1}). If .λβ
j ∈ I and 

.λ
β
i ≤ λ

β
j then .λβ

i ∈ I . 

Proof : If .λβ
j ∈ I and .λβ

i ≤ λ
β
j , then .λβ

i ⋕ λ
β
j = {1} ∈ I . Since .λβ

j ∈ I and I is 

(PBI − I), we have that .λβ
i ∈ I .
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Definition 3.17: For all .λβ
i , λ

β
j ∈ X, we define . A

(
λ

β
i , λ

β
j

)
=

{
λ

β
k ∈ X |

(
λ

β
k ⋕ λ

β
i

)

⋕ λ
β
j = {1}

}
. Note that (1)- {1}, .λ

β
i ∈ A

(
λ

β
i , λ

β
j

)
, (2)- . A

(
λ

β
i , λ

β
j

)
/=

A
(
λ

β
j , λ

β
i

)
, and (3)- . A

(
λ

β
i , {1}

)
=

{
λ

β
k ∈ X |

(
λ

β
k ⋕ λ

β
i

)
⋕ {1} = {1}

}
={

λ
β
k ∈ X | λ

β
k ⋕ λ

β
i = {1}

}
=

{
λ

β
k ∈ X |

(
λ

β
k ⋕ {1}

)
⋕ λ

β
i = {1}

}
= A

(
{1} , λ

β
i

)
.

Proposition 3.18: If (X, ⋕ , {1}) is a (PRDBI − A), then .A
(
λ

β
i , λ

β
j

)
is (PBI − I) 

of (X, ⋕ , {1}) where . λβ
i , λ

β
j ∈ X.

Proof : Let .λβ
i ⋕ λ

β
j ∈ A

(
λ

β
m, λ

β
n

)
, .λβ

j ∈ A
(
λ

β
m, λ

β
n

)
. Then . 

((
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
m

)
⋕

λ
β
n = {1} and

(
λ

β
j ⋕ λ

β
m

)
⋕ λ

β
n = {1} . Since X is (PRDBI − A), so 

.{1} =
((

λ
β
i ⋕ λ

β
j

)
⋕ λ

β
m

)
⋕ λ

β
n . =

((
λ

β
i ⋕ λ

β
m

)
⋕

(
λ

β
j ⋕ λ

β
m

))
⋕ λ

β
n =((

λ
β
i ⋕ λ

β
m

)
⋕ λ

β
n

)
⋕

((
λ

β
j ⋕ λ

β
m

)
⋕ λ

β
n

)
=

((
λ

β
i ⋕ λ

β
m

)
⋕ λ

β
n

)
⋕ {1} =(

λ
β
i ⋕ λ

β
m

)
⋕ λ

β
n . Thus, .λβ

i ∈ A
(
λ

β
m, λ

β
n

)
. Therefore, .A

(
λ

β
m, λ

β
n

)
is a(PBI − I) of  

(X, ⋕ , {1}). 
Proposition 3.19: Let (X, ⋕ , {1}) be a (PBI − A). Then, (1)-. A

(
{1} , λ

β
i

)
⊆

A
(
λ

β
i , λ

β
j

)
,∀λ

β
i , λ

β
j ∈ X, (2)-If .A

(
{1} , λ

β
j

)
is a (PBI − I) and .λ

β
i ∈ A

(
{1} , λ

β
j

)
, 

and then . A
(
λ

β
i , λ

β
j

)
⊆ A

(
{1} , λ

β
j

)
.

Proof : (1)  Let .λβ
k ∈ A

(
{1} , λ

β
i

)
. Then . λβ

k ⋕ λ
β
i =

(
λ

β
k ⋕ {1}

)
⋕ λ

β
i =

{1} . Hence, .
(
λ

β
k ⋕ λ

β
i

)
⋕ λ

β
j = {1} ⋕ λ

β
j = {1}. Thus, . λβ

k ∈ A
(
λ

β
i , λ

β
j

)

and so .A
(
{1} , λ

β
i

)
⊆ A

(
λ

β
i , λ

β
j

)
. (2) Let .A

(
{1} , λ

β
j

)
be a (PBI − I) and 

.λ
β
i ∈ A

(
{1} , λ

β
j

)
. If .λ

β
k ∈ A

(
λ

β
i , λ

β
j

)
, then .

(
λ

β
k ⋕ λ

β
i

)
⋕ λ

β
j = {1}. Hence, 

.

((
λ

β
k ⋕ λ

β
i

)
⋕ {1}

)
⋕ λ

β
j = {1}. Therefore, .λβ

k ⋕ λ
β
i ∈ A

(
{1} , λ

β
j

)
. Now,  

since .A
(
{1} , λ

β
j

)
and .λβ

i ∈ A
(
{1} , λ

β
j

)
, .λβ

k ∈ A
(
{1} , λ

β
j

)
. Thus, . A

(
λ

β
i , λ

β
j

)
⊆

A
(
{1} , λ

β
j

)
.

Proposition 3.20: If (X, ⋕ , {1}) is a (PBI − A), then . A
(
{1} , λ

β
i

)
=

.∩
λ

β
j ∈X

A
(
λ

β
i , λ

β
j

)
,∀λ

β
i , λ

β
j ∈ X.
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Proof : From Proposition 3.19 (1), we have that . A
(
{1} , λ

β
i

)
⊆ ∩

λ
β
j ∈X

A
(
λ

β
i , λ

β
j

)
.

If .λβ
k ∈ n

λ
β
j ∈X

A
(
λ

β
i , λ

β
j

)
, then .λβ

k ∈ A
(
λ

β
i , λ

β
j

)
∀λ

β
i , λ

β
j ∈ X. Thus, . λβ

k ∈
A

(
{1} , λ

β
i

)
. . ∩

λ
β
j ∈X

A
(
λ

β
i , λ

β
j

)
⊆ A

(
{1} , λ

β
i

)
.

Proposition 3.21: If ∅ /= I ⊆ X, where (X, ⋕ , {1}) is a (PBI − A), then I is a 

(PBI − I) of  X if and only if .A
(
λ

β
i , λ

β
j

)
⊆ I,∀λ

β
i , λ

β
j ∈ I . 

Proof : Assume that I is a (PBI − I) of  X and .λ
β
i , λ

β
j ∈ I . If .λ

β
k ∈ A

(
λ

β
i , λ

β
j

)
, then 

.

(
λ

β
k ⋕ λ

β
i

)
⋕ λ

β
j = {1} ∈ I. Since I is a(PBI − I) and .λβ

i , λ
β
j ∈ I we have that 

.λ
β
k ∈ I . Thus, .A

(
λ

β
i , λ

β
j

)
⊆ I . Conversely, assume that . A

(
λ

β
i , λ

β
j

)
⊆ I∀λ

β
i , λ

β
j ∈

I . Since .
(
{1} ⋕ λ

β
i

)
⋕ λ

β
j = {1}, .{1} ∈ A

(
λ

β
i , λ

β
j

)
⊆ I . Let .λ

β
m ⋕ λ

β
n and .λβ

n ∈ I . 

Since .
(
λ

β
m ⋕ λ

β
n

)
⋕

(
λ

β
m ⋕ λ

β
n

)
= {1}, we consider that . λβ

m ∈ A
(
λ

β
n, λ

β
m ⋕ λ

β
n

)
⊆

I, i.e., λ
β
m ∈ I. Hence, I is a (PBI − I) of  X. 

Proposition 3.22: If I is a (PBI − I) of a (PBI − A)(X, ⋕ , {1}), then . I =
∪

λ
β
i ,λ

β
j ∈I

A
(
λ

β
i , λ

β
j

)
.

Proof : Let I be a (PBI − I)of X and .λβ
k ∈ I . Since . 

(
λ

β
k ⋕ {1}

)
⋕ λ

β
k = λ

β
k ⋕

λ
β
k = {1}. We have that .λβ

k ∈ A
(
{1} , λ

β
k

)
. Then, . I ⊆ ∪

λ
β
k ∈I

A
(
{1} , λ

β
k

)
⊆

∪
λ

β
i ,λ

β
j ∈I

A
(
λ

β
i , λ

β
j

)
. If .λβ

k ∈ U
λ

β
i ,λ

β
j ∈I

A
(
λ

β
i , λ

β
j

)
, then there exists . λβ

m, λ
β
n ∈ I

such that .λβ
k ∈ A

(
λ

β
m, λ

β
n

)
. It follows from Proposition 3.21 that .λβ

k ∈ I , that is, 

. ∪
λ

β
i ,λ

β
j ∈I

A
(
λ

β
i , λ

β
j

)
⊆ I.

Proposition 3.23: If I is a(PBI − I) of a (PBI − A) (X, ⋕ , {1}),then . I =
∪

λ
β
k ∈I

A
(
{1} , λ

β
k

)
.

Proof : Let I be a (PBI − I)of X and .λβ
k ∈ I . Since . 

(
λ

β
k ⋕ {1}

)
⋕ λ

β
k = λ

β
k ⋕

λ
β
k = {1}. We have that .λβ

k ∈ A
(
{1} , λ

β
k

)
. Hence, .I ⊆ ∪

λ
β
k ∈I

A
(
{1} , λ

β
k

)
. If 

.λ
β
k ∈ U

λ
β
k ∈I

.A
(
{1} , λ

β
k

)
, then there exists .λβ

m ∈ I satisfies .λβ
k ∈ A

(
{1} , λ

β
m

)
, 

which means that .λ
β
k ⋕ λ

β
m =

(
λ

β
k ⋕ {1}

)
⋕ λ

β
m = {1} ∈ I. Since I is a (PBI − I)of 

X and . λβ
m ∈ I , we have that .λ

β
k ∈ I . Thus . ∪

λ
β
k ∈I

A
(
{1} , λ

β
k

)
⊆ I.

Definition 3.24: Let (X, ⋕ , {1}) be a (PRDBI − A) and let I be a (PBI − I) of  X 

and .λβ
m ∈ X. Define .I l

λ
β
m

=
{
λ

β
i ∈ X | λ

β
i ⋕ λ

β
m ∈ I

}
.
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Proposition 3.25: If (X, ⋕ , {1}) is a (PRDBI − A), then .I l

λ
β
k

is the least (PBI − I) of  

X containing I and . λβ
m. 

Proof : By (1) of Definition 3.1, we have that .λβ
m ⋕ λ

β
m = {1} for all .λβ

m ∈ X, 
i.e., .λβ

m ∈ I l

λ
β
m

and so .I
λ

β
m

/= ∅. Assume that .λβ
i ⋕ λ

β
j ∈ I l

λ
β
m

and .λβ
j ∈ I l

λ
β
m

. 

Then .
(
λ

β
i ⋕ λ

β
j

)
⋕ λ

β
m ∈ I and .λβ

j ⋕ λ
β
m ∈ I . Since X is (PRDBI − A), we get 

.

(
λ

β
i ⋕ λ

β
m

)
⋕

(
λ

β
j ⋕ λ

β
n

)
∈ I . Since .λβ

j ⋕ λ
β
m ∈ I , we have that .λβ

i ⋕ λ
β
m ∈ I and 

so .λβ
i ∈ I l

λ
β
m

. Then, .I l

λ
β
m

is a (PBI − I) of  X. Let .λ
β
i ∈ I . Since. 

(
λ

β
i ⋕ λ

β
m

)
⋕ λ

β
i =(

λ
β
i ⋕ λ

β
i

)
⋕

(
λ

β
m ⋕ λ

β
i

)
= {1} ⋕

(
λ

β
m ⋕ λ

β
i

)
= {1} ∈ I , and I is a (PBI − I) of  

X, we have that .λβ
i ⋕ λ

β
m ∈ I . Hence, .λβ

i ∈ I
λ

β
m

. Thus, .I ⊆ I l

λ
β
m

. Now, let  J be a 

(PBI − I) of  X containing I and . λβ
m. Let .λ

β
i ∈ I l

λ
β
m

. Then .λβ
i ⋕ λ

β
m ∈ I ⊆ J . Since 

.λ
β
m ∈ J and J is a (PBI−) of  X, we have that .λβ

i ∈ J . Therefore, .I l
a ⊆ J . 

Definition 3.26: Let I be a (PBI − I) of a (PBI − A) (X, ⋕ , {1}) and .λβ
m ∈ X. We  

denote .I r

λ
β
m

=
{
λ

β
i ∈ X | λ

β
m ⋕ λ

β
i ∈ I

}
. Note that .I r

λ
β
m

is not always a (PBI − I) of  

X. 

Definition 3.27: Let ∅ /= I ⊆ X and (X, ⋕ , {1}) be (PBI − A). We define a binary 
relation “∼I” by .λ

β
i ∼I λ

β
j if and only if λ

β
i ⋕ λ

β
j ∈ I and λ

β
j ⋕ λ

β
i ∈ I. The set 

.

{
λ

β
j | λ

β
i ∼I λ

β
j

}
will be denoted by . 

[
λ

β
i

]
I
.

Proposition 3.28: The relation “∼I” on X is an equivalence, where I be a (PBI − I) 
of a (PRDBI − A)(X, ⋕ , {1}). 
Proof : We consider that .λβ

i ⋕ λ
β
i = {1} ∈ I (since I is a(PBI − I) of  X). Thus, 

.λ
β
i ∼I λ

β
i . Thus, ∼I is reflexive. If .λβ

i ⋕ λ
β
j = {1} ∈ I , then .λβ

j ⋕ λ
β
i = {1} by 

Proposition 3.8 (3). Thus, .λβ
i ∼I λ

β
j =⇒ λ

β
j ∼I λ

β
i and so I is symmetric. Now, let 

.λ
β
i ∼I λ

β
j and .λβ

j ∼I λ
β
i . Then, .λβ

i ⋕ λ
β
j , .λβ

j ⋕ λ
β
i ∈ I , and .λβ

j ⋕ λ
β
k , .λβ

k ⋕ λ
β
j ∈ I . 

By Proposition 3.8 (3), we have that .
(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
≤ λ

β
i ⋕ λ

β
j . Since 

I is a (PBI − I) and .λβ
i ⋕ λ

β
j ∈ I , we have that . 

(
λ

β
i ⋕ λ

β
k

)
⋕

(
λ

β
j ⋕ λ

β
k

)
∈

X and so λ
β
i ⋕ λ

β
k ∈ I. Similarly, we have that .λβ

k ⋕ λ
β
i ∈ I . Thus, .λβ

i ∼I λ
β
k and 

so ~I is a transitive. Therefore, the relation ~I on X is an equivalence. 

Definition 3.29: A binary relation “θ” on (PBI − A) (X, ⋕ , {1}) is, namely, 

(1) A permutation right compatible relation if .λ
β
i θλ

β
j and .λ

β
p ∈ X, then 

.

(
λ

β
i ⋕ λ

β
p

)
θ

(
λ

β
j ⋕ λ

β
p

)
.
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(2) A permutation left compatible relation if .λ
β
i θλ

β
j and .λ

β
q ∈ X, then 

. 

(
λ

β
q ⋕ λ

β
i

)
θ

(
λ

β
q ⋕ λ

β
j

)
.

(3) A permutation compatible relation if .λβ
i θλ

β
j and .λβ

pθλ
β
q , then . 

(
λ

β
i ⋕ λ

β
p

)

θ
(
λ

β
j ⋕ λ

β
q

)
.

A permutation right (left) compatible equivalence relation on (PBI − A) 
(X, ⋕ , {1}) is, namely, a permutation right (left) congruence relation on X [They 
are abbreviated by PRCR (PLCR)]. 

Proposition 3.30: The equivalence relation “~I” as stated in Proposition 3.28 is a 
(PRCR) on (PBI − A)I. 

Proof : If .λβ
i ∼I λ

β
j and .λβ

p ∈ X, then .λβ
i ⋕ λ

β
j ∈ I and .λβ

j ⋕ λ
β
i ∈ I . From  

Proposition 3.8 (3), we have that . 
((

λ
β
i ⋕ λ

β
p

)
⋕

(
λ

β
j ⋕ λ

β
p

))
⋕

(
λ

β
i ⋕ λ

β
j

)
=

{1} ∈ I. Since I is a (PBI − I) and .λβ
i ⋕ λ

β
j ∈ I , we have that . 

(
λ

β
j ⋕ λ

β
p

)
⋕(

λ
β
i ⋕ λ

β
p

)
∈ I. Therefore, .

(
λ

β
i ⋕ λ

β
p

)
∼I

(
λ

β
j ⋕ λ

β
p

)
. 

Proposition 3.31: Let I be a subset of a (PBI − A) (X, ⋕ , {1}) with {1} ∈  I. If  I 

has the condition: If .λβ
i ⋕ λ

β
j ∈ I , then .

(
λ

β
k ⋕ λ

β
i

)
⋕

(
λ

β
k ⋕ λ

β
j

)
∈ I . Then X = I. 

Proof : Let .λβ
i = {1} and .λβ

j = λ
β
k . Then .{1} ⋕ λ

β
k = {1} ∈ I imply that 

.

(
λ

β
k ⋕ {1}

)
⋕

(
λ

β
k ⋕ λ

β
k

)
= λ

β
k ⋕ {1} = λ

β
k ∈ I. Therefore, X ⊆ I and so I = X. 

Proposition 3.32: If ~I is a (PLCR) on (PRDBI − A) (X, ⋕ , {1}), then [{1}]I is a 
(PBI − I) of  X. 

Proof : Obviously, {1} ∈  [{1}]I . If . λ
β
j and .λ

β
i ⋕ λ

β
j are in [{1}]I , then . λ

β
i ⋕ λ

β
j ∼I {1}

and .λβ
j ∼I {1}. It follows that .λ

β
i = λ

β
i ⋕ {1} ∼I λ

β
i ⋕ λ

β
j ∼I {1} . Therefore, . λβ

i ∈
[{1}]I . 

4 Conclusion and Future Work 

Certain new extensions of BI-algebras are introduced in this paper, and their 
properties are investigated using permutation sets and have been used to study 
numerous mathematical issues in recent work. Therefore, in future research, rather 
than using permutation sets, we shall also employ neutrosophic sets to broaden our 
concepts.
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A Note on Multiplicative Ternary 
Hyperring 

Md. Salim Masud Molla 

Keywords Multiplicative ternary hyperrings · Hyperideals · Regular equivalence 
relations · Quotient multiplicative ternary hyperrings · Isomorphism theorems 

1 Introduction 

A binary hyperoperation is a mapping .◦ : A × A → ℘∗(A), where A is a nonempty 
set and .℘∗(A) is a nonempty subsets of A. A hyperstructure is a multivalued algebra 
[5], expressed as .(A, ◦), and a nonempty set A assigned with the hyperoperation “. ◦.” 
In the beginning of the nineteenth century, hyperstructure theory moved forward 
by pathfinder F. Marty’s [14] paper on hypergroups. Over the decades, there are 
several famous mathematicians and researchers like Corsini [3, 4, 6] who studied 
hypergroups, hypergraph, and hypermodules. De Salvo [9] studied hyperrings and 
hyperfields. Dehkordi and Davvaz [10] found out .Γ -semihyperrings. S. Abdullah 
et al. [1] introduced .Γ -hyperideals of .Γ -semihyperring and developed the theory 
of hyperstructure and applied in different fields. In [7], P. Corsini et al. and, in 
[8] , B. Davvaz and V. L. Fotea mention their appositeness in different fields like 
cryptography, graph theory, computer science, etc. In [11], Krasner initiated Krasner 
hyperring .(K,+, ·) in which addition is a binary hyperoperation and “. ·” is a binary 
operation, and both the distributive laws hold. In 1990, R. Rota [16] launched 
multiplicative hyperring .(H,+, ◦), where “. +” is the usual binary operation and “. ◦” 
is a binary hyperoperation, and . (h1 +h2) ◦h3 ⊆ h1 ◦h3 +h2 ◦h3, h1 ◦ (h2 +h3) ⊆
h1 ◦ h2 + h1 ◦ h3 holds, for all .h1, h2, h3 ∈ H . 

Schar is a ternary algebraic structure initiated in 1924 by H. Pr. ̈ufer [15]. In [12], 
D. H. Lehmer presented the commutative ternary groups, which are a special type of 
ternary algebraic structure known to be triplex. After that in 1971, W. G. Lister [13] 
initiated the concept of ternary ring T , a commutative group in which product is 
defined on three elements and right, center, and left distributive laws hold. 

M. S. M. Molla (O) 
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In 2015, Md. Salim et al. [17] presented the concept of multiplicative ternary 
hyperring (MTH), which is a generalized concept of ternary ring and multiplicative 
hyperring. In [17], we studied the regular equivalence relation and strongly regular 
equivalence relation and analyzed them. Also we defined quotient MTH over a 
regular equivalence relation “. τ” and analyzed it and gained three isomorphism 
theorems on MTH by using the regular equivalence relation “. τ .” In this note, we 
learn on hyperideals of MTH, and we demonstrate a one-to-one correspondence 
between the family of all hyperideals and the family of all regular equivalence 
relations of a MTH. Also, we obtain quotient MTH over a hyperideal and show 
that above two quotient MTHs are coincide. Lastly using the notion of hyperideal, 
we obtain three isomorphism theorems on a MTH. 

Some earlier works of the author on the MTH may be found in [18, 19]. 

2 Preliminaries 

A ternary hyperoperation is a mapping .◦ : A×A×A −→ ℘ ∗ (A), where .℘ ∗ (A) is 
the class of all nonempty subset of the nonempty set A. The image of . (a1, a2, a3) ∈
A×A×A will be denoted by .a1◦a2◦a3 (which is known to be a ternary hyperproduct 
of .a1, a2, a3 ∈ A). 

Definition 1 ([18]) Let .(R,+, ◦) be a MTH, that is, an abelian group . (R,+)

together with a ternary hyperproduct “. ◦” satisfying the following conditions: 

(i) .(α ◦ β ◦ γ ) ◦ δ ◦ η = α ◦ (β ◦ γ ◦ δ) ◦ η = α ◦ β ◦ (γ ◦ δ ◦ η); 
(ii) .(α + β) ◦ γ ◦ δ ⊆ α ◦ γ ◦ δ + β ◦ γ ◦ δ; .α ◦ (β + γ ) ◦ δ ⊆ α ◦ β ◦ δ + α ◦ γ ◦ δ; 

.α ◦ β ◦ (γ + δ) ⊆ α ◦ β ◦ γ + α ◦ β ◦ δ; 
(iii) .(−α)◦β ◦γ = α◦(−β)◦γ = α◦β ◦(−γ ) = −(α◦β ◦γ ) for all .α, β, γ ∈ R; 
(iv) .0R ◦ α ◦ β = α ◦ 0R ◦ β = α ◦ β ◦ 0R = {0R}∀α, β ∈ R(absorbing property 

of . 0R), for all .α, β, γ, δ, η ∈ R, 

Definition 2 ([19]) Let .(I,+) be a subgroup of a MTH .(R,+, ◦) is said to be a 
right (resp. a lateral or a left) hyperideal of R if for .α, β ∈ R and for all .i ∈ I such 
that .i ◦ α ◦ β ⊆ I (resp. .α ◦ i ◦ β ⊆ I or .α ◦ β ◦ i ⊆ I ). 

The additive subgroup I of MTH .(R,+, ◦) is both a left hyperideal and a right 
hyperidel of R; then I is called both sided hyperideal of R. 

If I is a right hyperideal, a left hyperideal, and a lateral hyperideal of MTH R, 
then I is said to be a hyperideal. 

In [17], we sketch the regular equivalence and strongly equivalence relation on 
MTH. 

Let . τ be a equivalence relation over a MTH R and .℘ ∗ (R) = ℘(R)\{0}, where 
.℘(R) is the subsetes of R. Now . τ and . τ are two equivalence relation marked by (i) 
.XτY holds if and only if for every .x ∈ X, .∃y ∈ Y such that .xτy retains and also 
for every .y' ∈ Y and .∃x' ∈ X such that .x'τy' retains. (ii) For all .x ∈ X and .y ∈ Y , 
.XτY if an only if .xτy retains, for any .X, Y ∈ ℘ ∗ (R).
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Definition 3 ([17]) Let .(R,+, ◦) be a MTH and . τ be a equivalence relation on it. 
Then . τ is regular equivalence relation if .xτy ⇒ (x+z)τ (y+z), and . xτy, zτw, uτv

implies .(x ◦ z ◦ u)τ(y ◦ w ◦ v) for all .x, y, z,w, u, v ∈ R. 
The relation . τ is strongly regular equivalence relation if .xτy ⇒ (x + z)τ (y + z), 

and .xτy, zτw, uτv implies .(x ◦ z ◦ u)τ(y ◦ w ◦ v)∀x, y, z,w, u, v ∈ R. 

Remark 1 ([17]) From the above definition, we have the following conditions: 
.xτy implies .(x ◦ z ◦ w)τ(y ◦ z ◦ w), (z ◦ x ◦ w)τ(z ◦ y ◦ w) and . (z ◦ w ◦ x)τ(z ◦

w ◦ y),∀x, y, z,w ∈ R. 
.xτy implies .(x ◦ z ◦ w)τ(y ◦ z ◦ w), (z ◦ x ◦ w)τ(z ◦ y ◦ w) and . (z ◦ w ◦ x)τ(z ◦

w ◦ y),∀x, y, z,w ∈ R. 

3 Hyperideals and Regular Equivalence Relations 

Proposition 1 Let I be a hyperideal of a MTH. Then there exists a regular 
equivalence relation τ over MTH such that xτy if and only if x − y ∈ I . 

Proof Consider I be a hyperideal of a MTH (R,+, ◦). Let  τ be a relation marked 
by xτy if and only if x − y ∈ I for all x, y ∈ R. Obviously, τ is an equivalence 
relation on R. 

Let xτy hold for x, y ∈ R. Then x − y ∈ I implis (x + z) − (y + z) ∈ I . This  
implies that (x + z)τ (y + z) holds for x, y, z ∈ R. Therefore, τ is a congruence on 
(R, +). 

Let x, y ∈ R and xτy. Then x − y ∈ I . Then x = y + i, for some  i ∈ I . Then 
x ◦ z ◦ w = (y + i) ◦ z ◦ w ⊆ y ◦ z ◦ w + i ◦ z ◦ w ⊆ y ◦ z ◦ w + I . So, for every 
a ∈ x ◦ z ◦ w, there exists an element b ∈ y ◦ z ◦ w such that a = b + i for some 
i ∈ I . Hence, a − b ∈ I . So  aτb. Therefore, for each a ∈ x ◦ z ◦ w, there exists 
b ∈ y ◦ z ◦ w such that aτb holds. Also we can show that for any b ∈ y ◦ z ◦ w, 
there exists an element a ∈ x ◦ z ◦ w such that aτb. Hence, (x ◦ z ◦ w)τ(y  ◦ z ◦ w). 
By a similar fashion, we get (z ◦ x ◦ w)τ(z  ◦ y ◦ w), (z ◦ w ◦ x)τ(z ◦ w ◦ y). Thus, 
τ is regular equivalence relation over (R,+, ◦). 

Proposition 2 Let τ be regular equivalence relation on a MTH (R,+, ◦). Then 
there exists a hyperideal I of (R,+, ◦) such that xτy if and only if x − y ∈ I . 

Proof Suppose (R,+, ◦) is a MTH and τ is a regular equivalence on the set R. 
Therefore τ determines a partition on R into disjoint equivalence classes. Let 0τ be 
the equivalence class containing 0. Let I = 0τ . Now we verify  I is a hyperideal 
of R. Let  x, y ∈ I = 0τ . Then xτ0 and yτ0 hold. Since τ is congruence on R, 
(x − y)τ0 holds. So, x − y ∈ I . 

Let x ∈ 0τ . Then xτ0 holds. Since τ is a regular equivalence relation on 
(R,+, ◦), (r1◦r2◦a)τ(r1◦r2◦0) for all r1, r2 ∈ R, by Remark 1, i.e., (r1◦r2◦x)τ {0}. 
So for any x ∈ r1 ◦ r2 ◦ x, xτ0 holds. This implies that x ∈ 0τ = I . Therefore 
r1 ◦ r2 ◦ x ⊆ I . Likewise r1 ◦ x ◦ r2 ⊆ I and x ◦ r1 ◦ r2 ⊆ I . So  I is hyperideal of 
(R,+, ◦). Lastly aτy ⇔ (x − y)τ0 ⇔ x − y ∈ 0τ = I .
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Theorem 1 Suppose (R,+, ◦) is a MTH. Then there exists an inclusion preserving 
bijection between the collection of all hyperideals of (R,+, ◦) and the collection of 
all regular equivalence relations on (R,+, ◦). 

Proof Consider I to be a collection of all hyperideals of the MTH (R,+, ◦) and E a 
collection of all regular equivalence relations on R. We define a mapping φ : E → I 
by φ(τ)  = 0τ . Let τ1 and τ2 be regular equivalence relations on (R,+, ◦); then, 
φ(τ1) = φ(τ2). This implies that 0τ1 = 0τ2 . Now, for  x, y ∈ R, xτ1y ⇔ (x = 
y)τ10 ⇔ (x − y) ∈ 0τ1 = 0τ2 ⇔ (x − y)τ20 ⇔ xτ2y. So, τ1 = τ2, i.e., φ is 
injective. Let H ∈ I. Then there exists an equivalence relation τ which is regular 
on (R,+, ◦), xτy if and only if x − Y ∈ H . Let  x ∈ H . Then x ∈ H ⇔ x − 0 ∈ 
H ⇔ xτ0 ⇔ x ∈ 0τ . Thus φ(τ)  = 0τ = H . So  φ is surjective. Let τ1, τ2 ∈ E be 
such that τ1 ⊆ τ2. Let  x ∈ 0τ1 ⇒ xτ10 ⇒ xτ20 ⇒ x ∈ 0τ2 . So, 0τ1 ⊆ 0τ2 . Thus φ 
is inclusion preserving. 

Definition 4 ([17]) Let τ be a regular equivalence relation on a MTH (R, +, ◦); 
then the MTH (R/τ, +, ◦) where R/τ = {aτ : a ∈ R}, is known to be the quotient 
MTH of (R,+, ◦) by τ , where aτ +bτ = (a+b)τ and aτ ◦bτ ◦cτ = {xτ : x ∈ a◦b◦c} 
for a, b, c ∈ R. 

Definition 5 ([17]) Let μ and ν be two regular equivalence relations on a MTH 
(R,+, ◦) with μ ⊆ ν. We set a relation ν/μ on R/μ by : aμ(ν/μ)bμ if and only if 
aνb for a, b ∈ R. 

Lemma 1 ([17]) ν/μ is a regular equivalence relation on the quotient MTH 
(R/μ,+, ◦). 

Theorem 2 (Correspondence Theorem) Suppose (R,+, ◦) is a MTH and τ a 
regular equivalence relation over (R,+, ◦). Then there exists an inclusion pre-
serving bijection between the family of regular equivalence relation over (R,+, ◦) 
containing τ and the family of regular equivalence relations on (R/τ,+, ◦). 

Proof Suppose τ is a regular equivalence relation on (R, +, ◦). Let M be family of 
all regular equivalence relations on (R,+, ◦) containing τ and N be the family of 
all regular equivalence relation on (R/τ). We consider a mapping ψ : M −→ N by 
ψ(φ)  = φ/τ where τ ⊆ φ. Let  φ1 and φ2 ∈ M be such that ψ(φ1) = ψ(φ2). Then 
φ1/τ = φ2/τ . Then aφ1b ⇔ aτ (φ1/τ)bτ ⇔ aτ (φ2/τ)bτ ⇔ aφ2b. This implies 
that φ1 = φ2. So, ψ is a one-to-one mapping. Clearly ψ is surjective. Therefore ψ 
is a bijective mapping. 

Lastly, let φ1, φ2 ∈ M be such that φ1 ⊆ φ2. Now aτ (φ1/τ)bτ ⇒ aφ1b ⊆ 
aφ2b ⇒ aτ (φ2/τ)bτ . This implies that φ1/τ ⊆ φ2/τ . Thus ψ is inclusion 
preserving. 

Proposition 3 Suppose (R,+, ◦) is a MTH and H is a hyperideal of R. Let R/H = 
{a + H : a ∈ R}. Then (R/H, +) is an abelian group. We define (a + H)  ◦ (b + 
H)  ◦ (c + H)  = {p + H : p ∈ a ◦ b ◦ c}. Then with respect to the above ternary 
hyperoperation, R/H forms a MTH.
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Proof Let H be a hyperideal of (R,+, ◦). Then we have the quotient group 
(R/H, +). Obviously (R/H,+) is an additive commutative group. Now we shall 
show that above defined multiplicative ternary hyperoperation is established. Let 
x +H = x' +H , b+H = b' +H and z+H = z' +H . Let  p+H ∈ (x +H)◦ (y + 
H)◦(z+H). Then p ∈ x◦y◦z. Again  x+H = x'+H ⇒ x−x' ∈ H ⇒ x = x'+h1 
for some h1 ∈ H . Similarly y = y' +h2 and z = z' +h3 for some h2, h3 ∈ H . Now  
x◦y◦z = (x'+h1)◦(y'+h2)◦(z'+h3) ⊆ x'◦y'◦z'+H . This implies that p = q+h 
where q ∈ x' ◦ y' ◦ z'. Therefore p +H = q + H ∈ (x' + H) ◦ (y' +H) ◦ (z' + H). 
So, (x + H)  ◦ (y + H)  ◦ (z + H)  ⊆ (x' + H)  ◦ (y' + h) ◦ (z' + H). Similarly 
(x' + H)  ◦ (y' + H)  ◦ (z' + H)  ⊆ (x + H)  ◦ (y + h) ◦ (z + H). Consequently 
(x+H)◦(y+H)◦(z+H)  = (x'+H)◦c(y'+H)◦(z'+H)  and ternary hyperoperation 
‘◦’ is well defined. Let a+H ∈ ((x+H)◦(y+h)◦(z+H))◦(w+H)◦(t+H)  where 
x, y, z, w, t ∈ R. Then a ∈ p◦w◦ t where p+H ∈ (x +H)◦ (y +H)◦ (z+H)  ⇒ 
p ∈ x ◦ y ◦ z. Then a ∈ (x ◦ y ◦ z) ◦ w ◦ t = x ◦ y ◦ (z ◦ w ◦ t), so  a + H ∈ 
(x+H)◦(y+H)◦(b+H), where b ∈ z◦w◦t . So, b+H ∈ (z+H)◦(w+H)◦(t+H). 
Thus a+H ∈ (x+H)◦(y+H)◦((z+H)◦(w+H)◦(t+H)). Thus ((x+H)◦(y+ 
H)◦(z+H))◦(w+H)◦(t+H)  ⊆ (x+H)◦(y+H)◦((z+H)◦(w+H)◦(t+H)). 
Converse inclusion is similar. Hence (x+H)◦(y+H)◦((z+H)◦(w+H)◦(t+H))  = 
((x +H) ◦ (y +H) ◦ (z+H)) ◦ (w +H) ◦ (t +H). Similarly (x +H) ◦ ((y +H) ◦ 
(z+H)◦ (w +H))◦ (t +H)  = (x +H)◦ (y +H)◦ ((z+H)◦ (w +H)◦ (t +H)). 

Similarly we can prove the distributive laws. 
Now, (x + H)  ◦ (y + H) ◦ (0 + H)  = {a + h : a ∈ x ◦ y ◦ 0 = {0R}} = 0 + H . 

Similarly (x + H) ◦ (0 + H) ◦ (y + H)  = (0 + H) ◦ (x + H) ◦ (y + H)  = 0 + H . 
Lastly, So, a = −b for some b ∈ x ◦y ◦ z, i.e., a +H = −b +H = −(b +H)  ∈ 

−(x+H)◦(y+H)◦(z+H). Thus (x+H)◦(y+H)◦(−(z+H))  ⊆ −(x+H)◦(y+ 
H)◦(z+H). Likewise we prove −(x+H)◦(y+H)◦(z+H)  ⊆ (x+H)◦(y+H)◦ 
(−(z+H)). Hence −(x+H)◦ (y +H)◦ (z+H)  = (x +H)◦ (y +H)0(−(z+H)). 
Comparably we can show (x + H) ◦ (−(y + H))  ◦ (z + H)  = (−(x + H)) ◦ (y + 
H) ◦ (z + H)  = −((x + H)  ◦ (y + H) ◦ (z + H)). Hence, (R/H,+, ◦) is MTH. 

Theorem 3 Let (R,+, ◦) be a MTH and I be a hyperideal of (R, +, ◦). Then 
there exists an inclusion preserving bijection from the family of all hyperideals on 
(R,+, ◦) containing H and the family all of hyperideals on (R/H,+, ◦). 

Proof Theorems 1 and 2 comply the proof. 

Lemma 2 Let (R,+, ◦) be a MTH. Let τ be the regular equivalence relation on R 
and I be a hyperideal corresponding to τ , i.e α − β ∈ I if an only if ατβ. Then 
ατ = α + I for all α ∈ R. 

Proof Since I is the hyperideal corresponding to τ then ατβ if and only if α − β ∈ 
I . Now  a ∈ ατ ⇔ aτα ⇔ a − α ∈ I implies and implied by a ∈ α + I . So, 
ατ = α + I . 

Proposition 4 Let τ be regular equivalence relation on a MTH (R,+, ◦). Then all 
the regular equivalence classes are equipotent.
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Proof Here we show that the regular equivalence classes aτ and bτ are equipotent 
for a, b ∈ R. By Lemma 2, aτ = a +H and bτ = b+H , where H is the hyperideal 
corresponding to τ . Obviously the mapping f from a+H |−→ H marked as follows 
f (a  + i) = i for all i ∈ H , is bijective. So a + H and H are equipotent. Similarly 
b + H and H are equipotent. Hence aτ = a + H and bτ = b + H are equipotent. 

The above proposition enables us to get an example of an equivalence relation, 
which is not a regular equivalence relation. 

Example 1 Consider the MTH (ZZA,+, ◦) induced by A, where ZZ is the set of 
all integers and A is any subset of ZZ. Now  {ZZA\{1}, {1}} is a partition in ZZA. 
So this gives an equivalence relation on ZZA. Since the equivalence classes are not 
equipotent, the above equivalence relation is not a regular equivalence relation. 

Remark 2 The above condition stated in Proposition 4 is a necessary condition but 
not sufficient. 

Theorem 4 Let (R,+, ◦) be a MTH. Let τ be the regular equivalence relation 
on (R,+, ◦) and H be the hyperideal on (R,+, ◦) corresponding to τ . Then the 
quotient MTH’s (R/τ,+, ◦) and (R/H, +, ◦) coincide. 

Proof As τ is regular equivalence relation over (R,+, ◦), R/τ = {aτ : a ∈ R} =  
{a + H : a ∈ R} =  R/H . Let  a, b ∈ R. Now  aτ + bτ = (a ◦ b)τ = (a + b) + H = 
(a + H)  + (b + H). Again  aτ ◦ bτ ◦ cτ = {xτ : x ∈ a ◦ b ◦ c} = {x + H : x ∈ 
a ◦ b ◦ c} =  (a + H) ◦ (b + H) ◦ (c + H)  for every a, b, c ∈ R. Hence the quotient 
MTHs coincide. 

In [17] we define the homomorphism and good homomorphism between two 
MTH. An epimorphism (resp. monomorphism) is a surjective (resp. injective) MTH 
homomorphism. 

Proposition 5 Consider π : R → T to be a MTH homomorphism from a MTH 
(R,+, ◦) to another MTH (T ,+, ◦). Then the kernel of π , designed by ker(π), 
and marked as {x ∈ R : π(x) = 0T }, is a hyperideal of multiplicative ternary 
hyperring(MTH) R. 

Proof The mapping π : R → T is a group homomorphism, since π is MTH 
homomorphism. Thus π(0R) = 0T ⇒ 0R ∈ ker(π). Let  x, y ∈ ker(π); then 
x − y ∈ ker(π). Now x ∈ ker(π) ⇒ π(x) = 0T ⇒ π(r1 ◦ r2 ◦ x) ⊆ π(r1) ◦ 
π(r2) ◦ π(x) = {0T } ⇒  r1 ◦ r2 ◦ x ⊆ ker(π). Likewise, r1 ◦ x ◦ r2 ⊆ ker(π) and 
x ◦ r1 ◦ r2 ⊆ ker(π). Consequently, ker(π) is a hyperideal of (R,+, ◦). 

Theorem 5 Let π : (R,+, ◦) → (T ,+, ◦) be an epimorphism from a MTH 
(R,+, ◦) to another MTH (T ,+, ◦). Then R/ker(π) ∼= T . 

Proof Since π : R → T is a MTH epimorphism. Then π : (R,+) → (T ,+) is 
a group-epimorphism. Then Ψ : (R/ker(π),+) → (T ,+), expressed by Ψ (r  + 
ker(π)) = π(r) for all r ∈ R is group-isomorphism. For any x, y ∈ R, Ψ ((x + 
ker(π)) ◦ (y + ker(π)) ◦ (z + ker(π))) = Ψ (p + ker(π)) (where p ∈ x ◦ y ◦ z) =
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π(p) ∈ π(x ◦ y ◦ z) ⊆ π(x) ◦ π(y) ◦ π(z) = Ψ (x  + ker(π)) ◦ Ψ (y  + ker(π)) ◦ 
Ψ (z  + ker(π)). Thus, Ψ is MTH isomorphism. 

Theorem 6 Let M and N be two hyperideals of a MTH (R,+, ◦). Then M/(M ∩ 
n) ∼= (M + N)/N . 

Proof We construct a mapping Φ : M/(M ∩ N)  → (M + N)/N  by Φ(α + (M ∩ 
N))  = α + N for all α ∈ M . Let  α, β ∈ M . Now  (α + M) ∩ N = (β + M) ∩ N ⇔ 
(α − β) ∈ M ∩ N ⇔ (α − β) ∈ N ⇔ α + N = β + N ⇔ Φ(α + (M ∩ N))  = 
Φ((β + M) ∩ N). So, Φ is well defined and injective. 

Now let α, β, γ ∈ M . Then Φ((α + (M ∩N))+ (β + (M ∩N))) = Φ((α +β)+ 
(M∩N))  = (α+β)+N = (α+N)+(β+N)  = Φ(α+(M∩N))+Φ(β+(M∩N)). 
Also Φ((α + (M ∩ N))  ◦ (β + (M ∩ N))  ◦ (γ + (M ∩ N))) = Φ(p + (M ∩ N))  
(where p ∈ α ◦β ◦γ ) = p+N ⊆ (α ◦β ◦γ )+N = (α+N)◦ (β +N)◦ (γ +N)  = 
Φ(α+(M ∩N))◦Φ(β +(M ∩N))◦Φ(γ +(M ∩N)). Thus Φ is a homomorphism. 
It is obvious that Φ is surjective, so Φ is an epimorphism. Therefore by Theorem 5, 
we gain M/(M ∩ N)  ∼= (M + N)/N . 

Theorem 7 Suppose M and N two hyperideals of MTH (R, +, ◦) with M ⊆ N . 
Then (R/M)/(N/M) ∼= R/N . 

Proof Consider Ψ : R/M → R/N by Ψ (α + M) = α + N,∀α ∈ R. Let  α, β, γ ∈ 
R. Then α + M = β + M implies α − β ∈ M ⊆ N . This implies that α + N = 
β + N ⇒ Ψ (α  + M) = Ψ (β  + N). So, definition of Ψ is established. 

Let α, β, γ ∈ R. Then Ψ ((α+M)+(β+M)) = Ψ ((α+β)+M) = (α+β)+N = 
(α+N)+(β+N)  = Ψ (α+M)+Ψ (β+N). Also  Ψ (((α+M)◦(β+M)◦(γ +M))) = 
Ψ (p  + M)(where p ∈ α ◦ β ◦ γ ) = p + N ⊆ α ◦ β ◦ γ + N = (α + N)  ◦ (β + 
N) ◦ (γ + N)  = Ψ (α  + M) ◦ Ψ (β  + M) ◦ Ψ (γ  +M). Thus Ψ is a homomorphism. 
Obviously ψ is an epimorphism. Now ker(Ψ ) = {α + M ∈ R/M : Ψ (α  + M) = 
0+N} = {α +M ∈ R/M : α+N = 0+N} = {α+M ∈ R/M : α ∈ N} =  N/M . 
Therefore by Theorem 5, (R/M)/(N/M) ∼= R/N . 
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Ɲeutrosophic Ɲ-Ideals and Ɲ-Filters 
of BF-Algebra 

B. Satyanarayana and P. Rajani 

Keywords BF-algebra · Subalgebra · Ideal · Neutrosophic N-BF-ideal · 
Neutrosophic N-BF-filter 

1 Introduction 

Zadeh [1] introduced the idea of fuzzy set theory. F. Smarandache launched the 
concept of Ɲeutrosophic logic and set to deal with uncertainty as a generalization of 
the intuitionistic fuzzy set, paraconsistent set, and intuitionistic set [2]. Atanassov 
[3] unveiled the degree of nonmembership/falsehood (f) and elucidated the intu-
itionistic fuzzy set. Smarandache devised the term “Ɲeutrosophic,” which means 
knowledge of neutral thought, and this third/neutral represents the main difference 
between “fuzzy”/“intuitionistic fuzzy” logic/set and “Ɲeutrosophic” logic/set. He 
introduced the degree of indeterminacy/neutrality as an independent component and 
developed the Ɲeutrosophic set on three components (t, i, f = truth, indeterminacy, 
falsehood). Jun et al. [4] have introduced a new mapping which is called negative-
valued mapping and built Ɲ-structures to deal with negative information. Khan et 
al. [5] displayed the concept of Ɲeutrosophic Ɲ-structure (ƝƝS) and applied it to 
a semigroup. Walendziak[6] worked out BF-algebra which is a generic form of 
B-algebra and explored some characteristics of ideals and normal ideals in BF-
algebra. Seok-ZunSong et al. [7] presented the concept of Ɲeutrosophic Ɲ-ideal 
in BCK-algebras and investigated numerous attributes. In this paper, we introduce 
the concept of Ɲeutrosophic Ɲ-BF-subalgebra (ƝƝSA), Ɲeutrosophic Ɲ-BF-ideal 
(ƝƝi), Ɲeutrosophic N-positive implicative Bf-ideal (ƝƝPIi), Ɲeutrosophic Ɲ-
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near BF-filter (ƝƝƝf), and Ɲeutrosophic Ɲ-BF-filter (ƝƝf) and examine numerous 
attributes. We consider an association among ƝƝSA, types of ƝƝi, and ƝƝf. 

2 Preliminaries 

Definition 2.1: A BF-algebra is a structure S:=(S/=Ø, ӿ,0)∈K(τ) satisfying 

.pӿp = 0 (1) 

.pӿ 0 = p (2) 

.0 ӿ (p ӿ q) = q ӿ p,∀p, q ∈ S (3) 

Example 2.2: The following composition table is a BF-algebra (Table 1). 

Definition 2.3: A relation “≤” on BF-algebra S:=(S/=Ø, ӿ,0) is defined as 

. (∀p, q ∈ S) (p ≤ q iffpӿ q = 0) (4) 

Definition 2.4: Consider a BF-algebra S:=(S/=Ø,ӿ, 0). M( /=Ø)⊆S is a subalgebra 
if 

.p ӿq ∈ M,∀p, q ∈ M (5) 

Definition 2.5: Consider a BF-algebra S:=(S/=Ø, ӿ, 0). M( /=Ø)⊆S is an ideal if 

.0 ∈ M (6) 

and 

. (∀p, q ∈ S) (p ӿq ∈ M, q ∈ M ⇒ p ∈ M) (7) 

Definition 2.6: Consider a BF-algebra S:=(S/=Ø, ӿ, 0). M(/=Ø)⊆S is a positive 
implicative BF-ideal if (6) holds and satisfies 

Table 1 (S={0, 1, 2, 3},ӿ,0) ӿ 0 1 2 3 

0 0 1 2 3 
1 1 0 3 2 
2 2 3 0 1 
3 3 2 1 0
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. (∀p, q, r ∈ S) , ((p ӿq) ӿr) ∈ M, qӿr ∈ M => pӿr ∈ M (8) 

Example 2.7: Let R be the set of real numbers. Then, S=(R, ӿ, 0) where ӿ is given 
by 

. p ӿ q =

⎧⎪⎪⎨
⎪⎪⎩

p if q = 0

q if p = 0

0 otherwise

is a BF-algebra. 
M=R+ U{0} is a positive implicative BF-ideal of S. 

Definition 2.8: Consider a BF-algebra S:=(S/=Ø, ӿ, 0). M( /=Ø)⊆S is a near BF-
filter if 

. (∀p, q ∈ S) (q ∈ M ⇒ p ӿ q ∈ M) (9) 

Example 2.9: M=R+ U{0}is a near BF-filter of S for the example defined in 2.5. 

Definition 2.10: Consider a BF-algebra S:=(S/=Ø, ӿ, 0). M( /=Ø)⊆S is a BF-filter 
if (6) holds and 

. (∀p, q ∈ S) (p ӿ q ∈ M, p ∈ M => q ∈ M) (10) 

Example 2.11: For the BF-algebra in Table 1, M={0,1} is a BF-filter of S. 

3 Ɲeutrosophic Ɲ-Concept on BF-Algebra 

Let γ(S,[−1,0]) be the family of negative-valued mappings from a set S to [−1,0] 
(called Ɲ-mapping on S). An Ɲ-structure is denoted by (S, g) of S and g is a Ɲ-
mapping on S. A ƝƝS over a universe S /=Ø is  

. SƝ = S(
YƝ, IƝ,NƝ

) =
⎧⎨
⎩

p(
YƝ (p) , IƝ (p) ,NƝ (p)

)/p ∈ S

⎫⎬
⎭

where YƝ, IƝ, and NƝ are Ɲ-mappings on S, which are called the negative truth 
membership mapping, the negative indeterminacy membership mapping, and the 
negative falsity membership mapping, respectively, on S. 

A ƝƝS SƝ over S holds 

. (∀p ∈ S)
(
−3 ≤ YƝ (p) + IƝ (p) + NƝ (p) ≤ 0

)
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Let us represent ∀p,q∈[−1,0], pvq denotes max{p,q}, and pAq denotes min{p,q}. 
Definition 3.1: A ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) is a ƝƝSA of S if 

.YƝ (p ӿ q) ≤ v
{

YƝ (p) , YƝ (q)
}

(11) 

.IƝ (p ӿ q) ≥ A
{

IƝ (p) , IƝ (q)
}

(12) 

.NƝ (p ӿ q) ≤ v
{
NƝ (p) ,NƝ (q)

}
(13) 

for all p,q∈S 

Example 3.2: The following table SƝ is a ƝƝSA of Table 1 (Table 2). 

Definition 3.3: A ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) is a ƝƝi of S if  

.YƝ (0) ≤ YƝ (p) ≤ v
{

YƝ (p ӿ q) , YƝ (q)
}

(14) 

.IƝ (0) ≥ IƝ (p) ≥ A
{

IƝ (p ӿ q) , IƝ (q)
}

(15) 

.NƝ (0) ≤ NƝ (p) ≤ v
{
NƝ (p ӿ q) ,NƝ (q)

}
(16) 

for all p,q∈S 

Example 3.4: The following table SƝ is a ƝƝi of Table 1 (Table 3). 

Definition 3.5: A ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) is a ƝƝPIi of S if 

.YƝ (0) ≤ YƝ (p) , IƝ (0) ≥ IƝ (p) ,NƝ (0) ≤ NƝ (p) (17) 

Table 2 ƝƝSA of Table 1 
(S={0, 1, 2, 3}, ӿ, 0)

   0 1 2 3 
Y  -0.8 -0.8 -0.8 -0.8 
I  -0.1 -0.8 -0.9 -0.9

 -0.8 -0.4 -0.4 -0.6 

Table 3 ƝƝi of Table  1 
(S={0, 1, 2, 3}, ӿ, 0)

   0 1 2 3 
Y  -0.7 -0.2 -0.6 -0.2 
I  -0.1 -0.8 -0.9 -0.9 

 -0.8 -0.4 -0.4 -0.6 
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.YƝ (p ӿ r) ≤ v
{

YƝ ((p ӿ q) ӿ r) , YƝ (q ӿ r)
}

(18) 

.IƝ (p ӿ r) ≥ A
{

IƝ ((p ӿ q) ӿ r) , IƝ (q ӿ r)
}

(19) 

.NƝ (p ӿ r) ≤ v
{
NƝ ((p ӿ q) ӿ r) ,NƝ (q ӿ r)

}
(20) 

for all p,q,r∈S 

Example 3.6: The following composition table is a BF-algebra (Table 4). 
The ƝƝS SƝ of S is ƝƝPIi as shown below (Table 5): 

Definition 3.7: A ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) is a ƝƝƝf of S if  

. (∀p, q ∈ S)
(

YƝ (p ӿ q) ≤ YƝ (q)
)

(21) 

. (∀p, q ∈ S)
(

IƝ (p ӿ q) ≥ IƝ (q)
)

(22) 

. (∀p, q ∈ S)
(
NƝ (p ӿ q) ≤ NƝ (q)

)
(23) 

Example 3.8: The following table SƝ is a ƝƝƝf of Table  4 (Table 6). 

Definition 3.9: A ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) is a ƝƝf of S if  

. (∀p ∈ S)
(

YƝ (0) ≤ YƝ (p)
)

,
(

IƝ (0) ≥ IƝ (p)
)

,
(
NƝ (0) ≤ NƝ (p)

)
(24) 

Table 4 (S={0, 1, 2}, ӿ, 0) ӿ 0 1 2 

0 0 1 2 
1 1 0 0 
2 2 0 0 

Table 5 ƝƝPIi of Table 4 
(S={0, 1, 2}, ӿ, 0)

   0 1 2 
Y  -1 -1 -1 
I  -0.2 -0.2 -0.2 

 -0.5 -0.5 -0.5 

Table 6 ƝƝƝf of Table  4 
(S={0, 1, 2}, ӿ, 0)

   0 1 2 
Y  -0.9 -0.9 -0.9 
I  -0.5 -0.5 -0.5 

 -0.8 -0.8 -0.8 
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.YƝ (q) ≤ v
{

YƝ (p ӿ q) , YƝ (p)
}

(∀p, q ∈ S) (25) 

.IƝ (q) ≥ A
{

IƝ (p ӿ q) , IƝ (p)
}

(∀p, q ∈ S) (26) 

.NƝ (q) ≤ v
{
NƝ (p ӿ q) ,NƝ (p)

}
(∀p, q ∈ S) (27) 

Example 3.10: The following table SƝ is a ƝƝf of Table 4 (Table 7). 

Definition 3.11: Consider a ƝƝS SƝ of a BF-algebra S:=(S /= Ø, ӿ, 0) and λ1, λ2, 
λ3∈ [−1,0] with −3 ≤ λ1 + λ2 + λ3 ≤ 0 with the following: 

. YƝ
λ1 =

{
p ∈ S/YƝ (p) ≤ λ1

}
,

. IƝ
λ2 =

{
p ∈ S/IƝ (p) ≥ λ2

}
,

. NƝ
λ3 =

{
p ∈ S/NƝ (p) ≤ λ3

}
.

Then 

. SƝ (λ1, λ2, λ3) =
{

p ∈ S/YƝ (p) ≤ λ1, IƝ (p) ≥ λ2,NƝ (p) ≤ λ3

}

is the (λ1, λ2, λ3) – level set of SƝ. 
Note: From the Definition 3.11, it is obvious that SƝ (λ1, λ2, λ3)=. YƝ

λ1 ∩ IƝ
λ2 ∩

NƝ
λ3 . 

Definition 3.12: For any fixed numbers, λY, λN∈[−1,0), λI∈(−1,0], and a non-
empty subset G of a BF-algebra S:=(S /= Ø, ӿ, 0), a  ƝƝS SƝ G over S are defined to 
be 

. SƝ
G :=

{
p

YƝ
G (p) , IƝ

G (p) , NƝ
G (p)

/p ∈ S

}
,

Table 7 ƝƝf of Table 4 
(S={0, 1, 2}, ӿ, 0)

   0 1 2 
Y  -0.7 -0.5 -0.5 
I  -0.5 -0.5 -0.5 

 -0.7 -0.4 -0.5 
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where YƝ G, IƝ G, NƝ G are Ɲ mappings on S which are shown below: 

. YƝ
G : S → [−1, 0] , as YƝ

G (p) =
{

λY, if p ∈ G

0, otherwise

. IƝ
G : S → [−1, 0] , as IƝ

G (p) =
{

λI, if p ∈ G

−1, otherwise

and 

. NƝ
G : S → [−1, 0] , as NƝ

G (p) =
{

λN, if p ∈ G

0, otherwise

Theorem 3.13: Every ƝƝPIi of a BF-algebra is a ƝNi. 

Proof: Let ƝƝS SƝ be a ƝƝPIi of a BF-algebra S:=(S /= Ø, ӿ, 0). Then 

. 

⎛
⎜⎜⎜⎝

YƝ (0) ≤ YƝ (p)

IƝ (0) ≥ IƝ (p)

NƝ (0) ≤ NƝ (p)

⎞
⎟⎟⎟⎠ ,∀p ∈ S by (17)

and 

i. YƝ (p)= YƝ (pӿ0) ≤ v {YƝ ((pӿq) ӿ 0), YƝ (qӿ0)} by (2) & (18) 

Therefore, YƝ (p) ≤ v {YƝ (pӿq), YƝ (q)} ∀p,q∈S. 
Similar proof follows for IƝ and NƝ also. 
Hence, SƝ is ƝƝi of S.  
Note: Converse of the theorem need not be true, i.e., every ƝƝi need not be 

ƝƝPIi. 

Example 3.14: The following table SƝ is a ƝƝi but not ƝƝPIi of Table 4 (Table 8). 
(By (18),YƝ (0ӿ1) = YƝ (1) = −0.5 > v{YƝ (0 ӿ 1) ӿ1), YƝ (1ӿ1)} =  YƝ(0) = 

−0.7) 

Theorem 3.15: Let a ƝƝS SƝ be a ƝƝf of a BF-algebra S:=(S/=Ø,ӿ, 0) and then 
the sets. 

Table 8 ƝƝi but not ƝƝPIi    0 1 2 
Y  -0.7 -0.5 -0.5 
I  -0.5 -0.5 -0.5 

 -0.7 -0.4 -0.5 
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(i) . SƝYƝ
= {p∈S / YƝ(p) = YƝ(0)}. 

(ii) . SƝIƝ
= {p∈S / IƝ(p) = IƝ(0)}. 

(iii) . SƝ
NƝ

= {p∈S /  NƝ(p) = NƝ(0)} are BF-filters of S. 

Proof: Suppose a ƝƝS SƝ is a ƝƝf of a BF-algebra S:=(S/=Ø,ӿ, 0). It is obvious 
that0 ∈.SƝYƝ

∩ SƝIƝ
∩ SƝ

NƝ
. 

Let p, q ∈ S be such that p, pӿq∈.SƝYƝ
∩ SƝIƝ

∩ SƝ
NƝ

. 

This implies YƝ(p)=YƝ(pӿq)=YƝ(0), IƝ(p)=IƝ(pӿq)=IƝ(0),NƝ(p)=NƝ(pӿq)= 
NƝ(0) and 

(i) YƝ (0)=v{YƝ (p), YƝ (pӿ q)}≥YƝ (q)≥YƝ (0) by (24) and (25)

. YƝ (q) =YƝ (0)

. q ∈. SƝYƝ

Similar proof follows for (ii) and (iii) also. 
Hence, .SƝYƝ

, .SƝIƝ
, .SƝ

NƝ
are BF-filters of S. 

Theorem 3.16: Every ƝƝSA of a BF-algebra satisfies (17). 

Proof: Proof is straightforward by (1) and Definition (3.1). 

Theorem 3.17: Let a ƝƝSA SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) satisfying ∀p,q∈ 
S 

. (p ӿ q /= 0) =>

⎛
⎜⎜⎜⎝

YƝ (p) ≤ YƝ (q)

IƝ (p) ≥ IƝ (q)

NƝ (p) ≤ NƝ (q)

⎞
⎟⎟⎟⎠ (28) 

and then SƝ is a ƝƝƝf of S.  

Proof: Suppose that a ƝƝSA SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) holds (28). Then 

. 

⎛
⎜⎜⎜⎝

YƝ (0) ≤ YƝ (p)

IƝ (0) ≥ IƝ (p)

NƝ (0) ≤ NƝ (p)

⎞
⎟⎟⎟⎠ (∀p ∈ S) by (Theorem 3.16)

Case (i): If p ӿ q = 0, then it is obvious that SƝ is a ƝƝƝf of S.  
Case (ii): If p ӿ q/=0, then
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(i) YƝ(pӿ q) ≤ v{YƝ(p), YƝ(q)}(∀p,q∈ S) by (11)

. YƝ(pӿ q) ≤ YƝ(q)(∀p,q∈ S) by (28) 

Similar proof follows for IƝ and NƝ also. 
Hence, SƝ is a ƝƝƝf of S.  

Theorem 3.18: If a ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) satisfying ∀p,q,r∈ S 

. (r ≤ p ӿ q) =>

⎛
⎜⎜⎜⎜⎜⎝

YƝ (q) ≤ v
{

YƝ (r) , YƝ (p)
}

IƝ (q) ≥ A
{

IƝ (r) , IƝ (p)
}

NƝ (q) ≤ v
{
NƝ (r) ,NƝ (p)

}

⎞
⎟⎟⎟⎟⎟⎠

, (29) 

then SƝ is a ƝƝf of S.  

Proof: Suppose a ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0) holds (29). Then, we 
have p ӿ (p ӿ 0) = 0, and by (1) and (2) 

. 

⎛
⎜⎜⎜⎝

YƝ (0) ≤ YƝ (p)

IƝ (0) ≥ IƝ (p)

NƝ (0) ≤ NƝ (p)

⎞
⎟⎟⎟⎠ (∀p ∈ S) by (4) and (29)

and also (p ӿ q)ӿ (p ӿ q) = 0. by (1) 

. 

⎛
⎜⎜⎜⎝

YƝ (q) ≤ v{YƝ (p ӿ q) , YƝ (p)

IƝ (q) ≥ A
{

IƝ (p ӿ q) , IƝ (p)
}

NƝ (q) ≤ v{NƝ (p ӿ q) ,NƝ (p)

⎞
⎟⎟⎟⎠ (∀p, q ∈ S) by (4) (29)

Hence, SƝ is a ƝƝf of S.  

Theorem 3.19: Let a ƝƝS SƝ of a BF-algebra S:=(S /= Ø, ӿ, 0) be a  ƝƝPIi. Then, 
.YƝ

λ1,IƝ
λ2,NƝ

λ3are positive implicative BF-ideals of S, ∀ λ1, λ2, λ3 ∈[−1,0] with 
−3 ≤ λ1 + λ2 + λ3 ≤ 0 whenever they are non-empty. 

Proof: Suppose a ƝƝS SƝ of a BF-algebra S:=(S /= Ø, ӿ, 0) is a ƝƝPIi. Let λ1, 
λ2, λ3 ∈[−1,0]with −3 ≤ λ1 + λ2 + λ3 ≤ 0. 

Let p∈. YƝ
λ1 , q∈.IƝ

λ2 , and r∈.NƝ
λ3 for some p, q, r ∈ S. Then
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. 

⎛
⎜⎜⎜⎝

YƝ (0) ≤ YƝ (p) ≤ λ1

IƝ (0) ≥ IƝ (p) ≥ λ2

NƝ (0) ≤ NƝ (p) ≤ λ3

⎞
⎟⎟⎟⎠ (∀p ∈ S) .Thisimplies by (17)

. 0 ∈ YƝ
λ1 ∩ IƝ

λ2 ∩ NƝ
λ3

Let ((pӿq) ӿ r) ∈.YƝ
λ1 ∩ IƝ

λ2 ∩ NƝ
λ3 , qӿr.∈ YƝ

λ1 ∩ IƝ
λ2 ∩ NƝ

λ3 . Then 

. 

⎛
⎜⎜⎜⎝

YƝ ((pӿq) ӿ r) ≤ λ1,YƝ (qӿr) ≤ λ1

IƝ ((pӿq) ӿ r) ≥ λ2,IƝ (qӿr) ≥ λ2

NƝ ((pӿq) ӿ r) ≤ λ3,NƝ (qӿr) ≤ λ3

⎞
⎟⎟⎟⎠

and 

(i) YƝ(pӿr) ≤ v{YƝ (pӿq) ӿ r), YƝ (qӿr)}≤ λ1 by (18)

. pӿr∈. YƝ
λ1

Similar proof follows for IƝ and NƝ also. 
Hence, .YƝ

λ1 , IƝ
λ2 ,NƝ

λ3 are positive implicative BF-ideals of S. 

Theorem 3.20: Let a ƝƝS SƝ of a BF-algebra S:=(S/=Ø, ӿ, 0), and let λ1, λ2, λ3 
∈[−1,0] be such that −3 ≤ λ1 + λ2 + λ3 ≤ 0. If SƝ is a ƝƝPIi of S, then the 
non-empty set (λ1, λ2, λ3) is a level set of SƝ and is a positive implicative BF-ideal 
of S. 

Proof: Suppose a ƝƝS SƝ of a BF-algebra S:=(S /= Ø, ӿ, 0) is a ƝƝPIi of S. 
Let λ1, λ2, λ3 ∈[−1,0] with −3 ≤ λ1 + λ2 + λ3 ≤ 0. 

. 

(
λ1, λ2, λ3

)−−level set of SƝ is SƝ
(
λ1, λ2, λ3

)

=
{

p ∈ S/YƝ (p) ≤ λ1, IƝ (p) ≥ λ2,NƝ (p) ≤ λ3

}
.

Since 

.

⎛
⎜⎜⎜⎝

YƝ (0) ≤ YƝ (p) ≤ λ1

IƝ (0) ≥ IƝ (p) ≥ λ2

NƝ (0) ≤ NƝ (p) ≤ λ3

⎞
⎟⎟⎟⎠ (∀p ∈ S) , wehave by (17)
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. 0 ∈ SƝ
(
λ1, λ2, λ3

)

Let p, q, r ∈ S be such that (pӿq) ӿ r ∈ SƝ (λ1, λ2, λ3) and (qӿr) ∈ SƝ (λ1, λ2, 
λ3). Then 

. 

⎛
⎜⎜⎜⎝

YƝ ((pӿq) ӿ r) ≤ λ1,YƝ (qӿr) ≤ λ1

IƝ ((pӿq) ӿ r) ≥ λ2,IƝ (qӿr) ≥ λ2

NƝ ((pӿq) ӿ r) ≤ λ3,NƝ (qӿr) ≤ λ3

⎞
⎟⎟⎟⎠

and 

. 

⎛
⎜⎜⎜⎝

YƝ (p ӿ r) ≤ v{YƝ ((p ӿ q) ӿ r) , YƝ (q ӿ r) = λ1

IƝ (p ӿ r) ≥ A
{

IƝ ((p ӿ q) ӿ r) , IƝ (q ӿ r)
}

= λ2

NƝ (p ӿ r) ≤ v{NƝ ((p ӿ q) ӿ r) ,NƝ (q ӿ r) = λ3

⎞
⎟⎟⎟⎠ (∀p, q, r ∈ S)

by (18) , (19) , and (20) .

This implies pӿr∈ SƝ (λ1, λ2, λ3) ∀p, q, r ∈ S. 
Hence, SƝ is a positive implicative BF-ideal of S. 

Corollary 3.21: Let a SƝ be a ƝƝS of a BF-algebra S:=(S /= Ø, ӿ, 0) and let λ1, 
λ2, λ3 ∈[−1,0] with −3 ≤ λ1 + λ2 + λ3 ≤ 0. If SƝ is a ƝƝSA of S, then the 
non-empty (λ1, λ2, λ3) – level set of SƝ is a subalgebra of S. 

Proof: Proof is straightforward by Definitions (3.11) and (3.1). 

Theorem 3.22: Let SƝ be a ƝƝS of a BF-algebra S:=(S /= Ø, ӿ, 0) and assume 
that .YƝ

λ1,IƝ
λ2,NƝ

λ3 are subalgebra of S, ∀ λ1, λ2, λ3 ∈[−1,0] with −3 ≤ λ1 + 
λ2 + λ3 ≤ 0, then SƝ is a ƝƝSA of S. 

Proof: Suppose SƝ be a ƝƝS of a BF-algebra S:=(S /= Ø, ӿ, 0) and assume that 
.YƝ

λ1 , IƝ
λ2 ,NƝ

λ3 are subalgebras of S, ∀ λ1, λ2, λ3 ∈[−1,0] with −3 ≤ λ1 + λ2 
+ λ3 ≤ 0. 

Let p q∈Sbe E YƝ (pӿq) > λ1 >v{YƝ (p), YƝ (q)} for some λ1∈[−1,0]. 
This implies p, q ∈.YƝ

λ1 but pӿq /∈.YƝ
λ1 , which is a contradiction. 

Therefore, YƝ (pӿq) ≤ v{YƝ (p), YƝ (q)} ∀  p, q∈ S. 

Let p q∈S beE IƝ (pӿq) < λ2 < A{IƝ (p), IƝ (q)} 
where λ2 = ½ {IƝ (pӿq) + A{IƝ (p), IƝ (q)}. 

This implies p, q ∈.IƝ
λ2 but pӿq /∈.IƝ

λ2 , which is a contradiction. 
Therefore, IƝ (pӿq) ≥ A{IƝ (p), IƝ (q)} ∀  p, q∈ S. 
Similarly, suppose NƝ (q) > λ3 ≥ v{NƝ (pӿq), NƝ (p)} for some p, q∈ S and 
λ3 ∈[−1,0].
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Then p, q ∈.NƝ
λ3 but pӿq /∈.NƝ

λ3 , which is a contradiction. 
Therefore, NƝ (pӿq) ≤ v{NƝ (p), NƝ (q)} ∀ p, q∈ S. 
Hence, SƝ is ƝƝSA of S. 

Theorem 3.23: Given a non-empty subset G of a BF-algebra of S:=(S /= Ø, ӿ, 0),  
a ƝƝS SƝ G over S is a ƝƝPIi of S iff G is a positive implicative BF-ideal of S. 

Proof: Suppose that G is a positive implicative BF-ideal of a BF-algebra S:=(S /= 
Ø, ӿ, 0). Since, 0∈G, we have 

. YƝ
G (0) = λy ≤ YƝ

G (p)

. IƝ
G (0) = λI ≥ IƝ

G (p)

. NƝ
G (0) = λƝ ≤ NƝ

G (p) ,∀p ∈ S. by Definition (3.12)

∀ p, q, r ∈ S, we consider the following four cases: 

Case (i): If(p ӿ q) ӿ r ∈ G and q ӿ r ∈ G, then p ӿ r ∈ G. 

Hence, YƝ G(p ӿ r) ≤ v{ YƝ G((p ӿ q) ӿ r), YƝ G(q ӿ r)}. 
Similarly, IƝ G andNƝ G also by Definitions (3.12) and (3.5). 

Case (ii): If (p ӿ q) ӿ r ∈ G and q ӿ r /∈ G are valid, then YƝ G(q ӿ r) = 0, 

. IƝ
G (q ӿ r) = −1 and NƝ

G (q ӿ r) = 0.

Thus, YƝ G(p ӿ r) ≤ 0 = v{ YƝ G((p ӿ q) ӿ r), YƝ G(q ӿ r)}. 
Similarly, IƝ G and NƝ G. 

Case (iii): If (p ӿ q) ӿ r /∈ G and q ӿ r ∈ G which is similar to case (ii), and for case 
(iv), if (p ӿ q) ӿ r /∈ G and q ӿ r /∈ G, then 

. YƝ
G (p ӿ r) ≤ v

{
YƝ

G ((p ӿ q) ӿ r) , YƝ
G (q ӿ r)

}
.

Similarly, IƝ G and NƝ G also. 
Hence, SƝ Gis a ƝƝPIi of S. 
Conversely, suppose that SƝ G is a ƝƝPIi of S then by (3.19) 

.

(
YƝ

G
) λY

2 = G,
(

IƝ
G
) λI

2 = G and .
(
NƝ

G
) λN

2 = G are positive implicative 

BF-ideals of S.
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4 Conclusion 

In the study, ƝƝS, ƝƝSA, ƝƝi, ƝƝPIi, ƝƝƝf, and ƝƝf of a BF-algebra are 
introduced and proved that every ƝƝPIi is a ƝƝi and so on. Finally, level set of 
a ƝƝS is also presented. In the future, the scope of this study could be expanded to 
include Neutrosophic sets within specific algebraic contexts. 
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Study of MBJ-Neutrosophic Level Sets 
in β-Ideal 

P. Muralikrishna and M. Surya 

Keywords β-Algebra · Ideal · MBJ-neutrosophic set · MBJ-neutrosophic 
normed level subsets 

1 Introduction 

A β-algebra is a development of BCK/BCI algebras by Neggers and Kim [9]. 
Further this beta-algebra was studied by many researches to explore their ideas. 
Zadeh [15] tackled the uncertainty and modeling of real and scientific problems, 
by a structure known as the fuzzy set (FS), by defining the membership grade 
in closed 0,1. Intuitionistic fuzzy set (IFS) by including nonmembership grade 
in the fuzzy set the idea came out from Atanassov [3]. Also, the concept called 
interval valued IFS (IVIFS) was initiated from FS which defines the membership 
and nonmembership grades into terms of intervals. Later, an adding component 
called indeterminate membership valued is included in between membership and 
nonmembership function and was named as neutrosophic set (NS). Here the compo-
nents are read as truth-mem, indeterminacy-mem, and falsity-mem by Smarandache 
[11]. Again, this concept is being extended by giving the interval in indeterminate 
membership function and resulted in MBJ-neutrosophic set (MBJ-NS), and those 
components are truth-mem, interval-valued indeterminacy-mem, and a non-mem 
function. 

Menger [6] started to analyze the content called t-norm that is triangular norm 
for the membership grand, and for the nonmembership, it is treated as t-conorm or 
s-norm. Later to discuss in the MBJ-neutrosophic set, the middle component takes 
interval valued triangular norm, and it is represented as .t-norm. 

Rosenfeld [10] initiated the correlation of fuzzy with different algebraic struc-
tures. This correlation concept gathered research with a great interest to move 
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forward with different kinds of fuzzy and algebra, and thus this concept also 
motivates me to define the concept by considering a MBJ-neutrosophic set, and 
a beta-algebra arises with MBJ-neutrosophic beta-ideal. Further, norm is introduced 
here and is named as normed MBJ-neutrosophic β-ideals of β-algebras, and its 
results are studied. 

2 Preliminaires 

This segregation presents the necessary definition in the sequel. 

Definition 2.1 [5]: ϒ is a β-algebra with a scalar value zero, operations +and−, 
holds 

(i) ℴ − 0 = ℴ. 
(ii) (0 − ℴ) + ℴ = 0. 

(iii) . (ℴ − ℩) − ı = ℴ − (℩ + q) ∀ℴ, ℩, ı ∈ ϒ.

Example 2.2: ϒ is a collection of 0, 1, 2, and 3 with +and− tabled using Cayley’s. 

+ 0 1 2 3 

0 0 1 2 3 

1 1 0 3 2 

2 2 3 1 0 

3 3 2 0 1

- 0 1 2 3 

0 0 1 3 2 

1 1 0 2 3 

2 2 3 0 1 

3 3 2 1 0 

Definition 2.3 [1, 2, 8]: Let . k of ϒ is a subset along with a constant and two 
operations +and−, respectively, are the β – ideal of ϒ, if  

(i) .0 ∈ k. 
(ii) .ℴ + ℩ ∈ k. 

(iii) .ℴ − ℩ & ℩ ∈ k then . ℴ ∈ k ∀ ℴ, ℩ ∈ ϒ.

Example 2.4: ϒ is a collection of ℯ, ρ,Q,ς with +and− tabled using Cayley’s. 
The subset .k1 = { ℯ, ς } of ϒ is an β-ideal of ϒ .
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+ -
0 

Definition 2.5: .A = { ℴ, τA (ℴ) : ℴ ∈ Y}of ϒ, τ : ϒ → [0, 1], τ (ℴ) refers the 
membership grade of ℴ ∈ ϒ. 

Definition 2.6 [12]: . A on ϒ consists of three components, namely, truth rep-
resented as τT, an indeterminacy as ςI, and a falsity QF where τT,ςI, QF is a 
mapping from ϒ to [0,1] and . A is named as NS and structured in the form of 
.A = {

< ℴ, τT (ℴ) , ςI (ℴ) , ζF (ℴ) > /ℴ ∈ Y
}
. 

Definition 2.7 [13, 14]: An MBJ-NS .A in ϒ is of the form . A ={
< ℴ, τT (ℴ) , ςI (ℴ) , ζF (ℴ) > /ℴ ∈ Y

}
where τT, ζF : ϒ → [0, 1] and 

.ςI : Y → D [0, 1] with τT as truth, . ςI as an intermediate interval valued, and ζF 
denotes the falsity. 

Definition 2.8 [4, 7]: .I : [0, 1] × [0, 1] → [0, 1] defines the triangular norm (. – 
norm), if 

(i) .I (ℴ, 1) = ℴ. 
(ii) .I (ℴ, ℩) = I (℩,ℴ). 

(iii) .I ( I (ℴ, ℩) , ı) = I (ℴ,I (℩, ı)). 
(iv) .I (ℴ, ℩) ≤I (ℴ, ı) if . ℩≤q ∀ℴ, ℩, ı ∈ [0, 1]

min(ℴ, ℩) is denoted as .IM (ℴ, ℩) , ℴ, ℩ as .IP (ℴ, ℩), and the Lukasiewicz 
. I – norm .IL (ℴ, ℩) = max (ℴ + ℩ − 1, 0) ∀o, ℩ ∈ [0, 1]. 

Definition 2.9: . I : [0, 1] × [0, 1] → D [0, 1] states the definition of i – v – 
triangular norm (. I– norm), if 

(i) . I
(
ℴ, 1

) = ℴ. 
(ii) . I (ℴ, ℩) = I (℩,ℴ). 

(iii) . I

(
I (ℴ, ℩) , ı

)
= I

(
ℴ, J (℩, ı)

)
. 

(iv) . I (ℴ, ℩) ≤ I (ℴ, ı) if .℩ ≤ ı ∀ℴ, ℩, ı ∈ D [0, 1]. 
. IM (ℴ, ℩) = rmin (ℴ, ℩), the product . IP (ℴ, ℩) = ℴ.℩ and the Lukasiewicz 

. I – norm . IL (ℴ, ℩) = rmax
(
ℴ + ℩ − 1, 0

) ∀ℴ, ℩ ∈ D [0, 1]. 

Definition 2.10: .S : [0, 1] × [0, 1] → [0, 1] defines the triangular conorm (. I – 
conorm), if 

(i) .S (ℴ, 1) = ℴ. 
(ii) .S (ℴ, ℩) = S (℩,ℴ). 

(iii) .S (S (ℴ, ℩) , ı) = S (ℴ,S (℩, ı)).
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(iv) .S (ℴ, ℩) ≤S (ℴ, ı) if ℩ ≤ ı ∀ ℴ, ℩ , ı ∈ [0, 1] 
.SM (ℴ, ℩) = max (ℴ, ℩), .SP (ℴ.℩) = ℴ + ℩ − ℴ℩ and the Lukasiewicz . – 

conorm .L (ℴ, ℩) = min (ℴ + ℩, 1) ∀ℴ, ℩ ∈ [0, 1]. 

Definition 2.11: Let a fuzzy set be τ in a β – algebra, and then fuzzy β – ideal of 
ϒ satisfies 

(i) τ (0) ≥ τ (ℴ). 
(ii) τ (ℴ + ℩) ≥ min {τ (ℴ), τ (℩) }. 

(iii) τ (ℴ) ≥ min { τ (ℴ − ℩), τ (℩) } ∀  ℴ, ℩ ∈ ϒ . 

Definition 2.12: MBJ-neutrosophic fuzzy set . A = {
< ℴ, τA (ℴ) , ςA (ℴ) ,

ζA (ℴ) > /ℴ ∈ Y
}

is called MBJ-neutrosophic β-ideal of ϒ if . ∀o,m∈Y.

(i) . τA(0) ≥ τA (ℴ)

. τA (ℴ + ℩) ≥ min { τA (ℴ) , τA (℩) }

. τA (ℴ) ≥ min { τA (ℴ − ℩) , τA (℩) }
(ii) . ςA(0) ≥ ςA (ℴ)

. ςA (ℴ + ℩) ≥ rmin
{

ςA (ℴ) , ςA (℩)
}

. ςA (ℴ) ≥ rmin
{

ςA (ℴ − ℩) , ςA (℩)
}

(iii) . ζA(0) ≤ ζA (ℴ)

. ζA (ℴ + ℩) ≤ max { ζA (ℴ) , ζA (℩) }

. ζA (ℴ) ≤ max { ζA (ℴ − ℩) , ζA (℩) }

3 Level Subset of MBJ-Neutrosophic Norm Using β-Ideal 

In this segment, the level on MBJ-neutrosophic norm using β-ideal of β-algebra is 
studied. 

Definition 3.1: A β-algebra is a collection of (ϒ, + , − , 0), and the MBJ-NS 
.V = {

ℴ, τT (ℴ) , ςI (ℴ) , ζF (ℴ) : ℴ ∈ Y
}

is known as MBJ-N N β-ideal, if 

(i) .τV(0) ≥ τU (ℴ). 
.τV (ℴ + ℩)≥J { τV (ℴ) , τV (℩) }. 
.τV (ℴ) ≥J { τV (ℴ − ℩) , τV (℩) }. 

(ii) .ςV(0) ≥ ςV (o). 
.ςV (ℴ + ℩) ≥ J

{
ςV (ℴ) , ςV (℩)

}
. 

.ςV (ℴ) ≥ J
{

ςV (ℴ − ℩) , ςV (℩)
}
. 

(iii) .ζV(0) ≤ ζV (ℴ). 
.ζV (ℴ + ℩)≤S { ζV (ℴ) , ζV (℩) }. 
.ζV (ℴ)≤S { ζV (ℴ − ℩) , ζV (℩) } ∀ ℴ, ℩ ∈ ϒ . 

Here . J is triangular norm, . J is interval valued triangular norm, and . S is triangular 
conorm.
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Definition 3.2: ϒ is a β-algebra and . V as an MBJ-NS of ϒ. Then, . V
-, ℷ,- ={

ℴ ∈ Y; τV (ℴ)≥-, ςV (ℴ) ≥ℷ , ζV (ℴ)≤-

}
is called a MBJ-N level subset 

of . V ∀-∈ [0, 1] ; ℷ∈D [0, 1] & -∈ [0, 1] .

Theorem 3.3: If . V = {
< ℴ, τV (ℴ) , ςV (ℴ) ,

ζV (ℴ) > /ℴ ∈ Y
}

is an MBJ-NN β-ideal of ϒ, and then . V
-, ℷ,- ={

ℴ ∈ Y; τV (ℴ) ≥ -, ςV (ℴ) ≥ ℷ , ζV (ℴ) ≤ -

}
is β-ideal of ϒ, for . - ∈

[0, 1] ; ℷ ∈ D [0, 1] & - ∈ [0, 1] .

Proof: If . V is an MBJ NN β-ideal of ϒ . Now  

(i) . τV(0) ≥ τV (ℴ) ∀ℴ ∈ ϒ

.τV(0) ≥ - for some - ∈ [0, 1] 
⇒ . 0 ∈ τV-

For .ℴ, ℩ ∈ τV-
implies . τV (ℴ) ≥ - &τV (℩) ≥ -

∴. τV (ℴ + ℩)≥J { τV (ℴ) , τV (p) }
= . J { -,- } ≥ -

Hence, . ℴ + ℩ ∈ τA-

Let ℴ, ℩ ∈ ϒ be such that . ℴ − ℩, ℩ ∈ τV-

. τV (ℴ − ℩) ≥ - &τV (℩) ≥ -

∴. τV (ℴ) ≥J { τV (ℴ − ℩) , τV (℩) }
= . J { -,- } ≥ -

Hence, . ℴ ∈ τV-

(ii) . ςV(0) ≥ ςU (ℴ) ∀ℴ ∈ ϒ

.ςV(0) ≥ ℷ for some . ℷ ∈ D [0, 1]
⇒ . 0 ∈ ςV

ℷ

For .ℴ, ℩ ∈ ςVv
implies .ςV (ℴ) ≥ ℷ &ςV (℩) ≥ ℷ. 

∴. ςV (ℴ + ℩) ≥ J
{

ςV (ℴ) , ςV (℩)
}

= . J
{
ℷ, ℷ

} ≥ ℷ

Hence . ℴ + ℩ ∈ ςV
ℷ

Let ℴ, ℩ ∈ ϒ be such that . ℴ − ℩, ℩ ∈ ςV
ℷ

. ςV (ℴ − ℩) ≥ ℷ & ςV (℩) ≥ ℷ

∴ . ςV (ℴ) ≥ J
{

ςV (ℴ − ℩) , ςV (℩)
}

= . J
{
ℷ, ℷ

} ≥ ℷ

Hence . ℴ ∈ ςV
ℷ

(iii) . ζV(0) ≤ ζV (ℴ) ∀ℴ ∈ ϒ

.ζV(0) ≤ - for some - ∈ [0, 1] 

. =⇒ 0 ∈ ζV-

For .ℴ, ℩ ∈ ζV-
implies .ζV (ℴ) ≤ - &ζV (℩) ≤ -. 

. ∴ ζV (ℴ + ℩)≤S { ζV (ℴ) , ζV (℩) }
= . S { -,-} ≤ -

Hence . ℴ + ℩ ∈ ζV-

Let ℴ, ℩ ∈ ϒ be such that .ℴ − ℩, ℩ ∈ ζV-
. 

.ζV (ℴ − ℩) ≤ - &ζV (℩) ≤ -
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. ∴ ζV (ℴ)≤S { ζV (ℴ − ℩) , ζV (℩) }
= . S { -,- } ≤ -

Hence . ℴ ∈ ζV-

.∴ V
-, ℷ,- is a β – ideal of ϒ . 

Theorem 3.4: Let . V be an MBJ-NS in ϒ such that .V
-, ℷ,- is a β-ideal of ϒ for 

.- ∈ [0, 1] ; ℷ ∈ D [0, 1] & - ∈ [0, 1] , and then . V is an MBJ-N N β-ideal of ϒ. 

Proof: Let .V
-, ℷ,- a β-ideal of ϒ . Then 

(i) If . 0 ∈ V- =⇒ τV(0) ≥ -

Also, for ℴ ∈ ϒ , . Im ( τV) ≥ -

Implies .τV(0) ≥ τV (l) . ∀ℴ, ℩ ∈ V

If . ℴ + ℩ ∈ V

. τV (ℴ) = τV (℩) = τV (ℴ + ℩) ≥ -

= . J { τV (ℴ) , τV (℩)}
. τV (ℴ + ℩)≥J { τV (ℴ) , τV (℩)}
For any .ℴ, ℩ ∈ V , if . ℴ − ℩ ∈ V & ℩∈V=⇒ℴ ∈ V

. τV (ℴ) ≥- = J { -,-}
= . J { τV (ℴ − ℩) , τV (℩)}

. τV (ℴ) ≥J { τV (ℴ − ℩) , τV (℩)}
(ii) If . 0 ∈ V

ℷ
=⇒ ςV(0) ≥ ℷ

Also, for ℴ ∈ ϒ . Im
(
ςV

) ≥ ℷ

Implies . ςV(0) ≥ ςV (ℴ)

For any . ℴ, ℩ ∈ V

If . ℴ + ℩ ∈ V

. ςV (ℴ) = ςV (℩) = ςV (ℴ + ℩) ≥ ℷ

= . J
{

ςV (ℴ) , ςV (℩)
}

. ςV (ℴ + ℩) ≥ J
{

ςV (ℴ) , ςV (℩)
}

For any .ℴ, ℩ ∈ V if . ℴ − ℩ ∈ V & ℩∈V=⇒ℴ ∈ V

. ςV (ℴ) ≥ ℴ = J
{
ℷ, ℷ

}
= . J

{
ςV (ℴ − ℩) , ςV (℩)

}
. ςV (ℴ) ≥ J

{
ςV (ℴ − ℩) , ςV (℩)

}
(iii) If . 0 ∈ V- =⇒ ζV(0) ≤ -

Also, for ℴ ∈ ϒ . Im ( ζV) ≤ -

Implies . ζV(0) ≤ ζV (ℴ)

For any . ℴ, ℩ ∈ V

If . ℴ + ℩ ∈ V

. ζV (ℴ) = ζV (℩) = ζV (ℴ + ℩) ≤ -

= . S { ζV (ℴ) , ζV (℩)}
. ζV (ℴ + ℩)≤S {ζV (ℴ) , ζV (℩)}
For any .ℴ, ℩ ∈ V , if . ℴ − ℩ ∈ V & ℩∈V=⇒ℴ ∈ V

. ζV (ℴ)≤- = S { -,-}
= .S { ζV (ℴ − ℩) , ζV (℩)}
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. ζV (ℴ)≤S { ζV (ℴ − ℩) , ζV (℩)}
∴ . V is an MBJ-neutrosophic normed β-ideal of ϒ . 

Theorem 3.5: Any β-ideal of ϒ can be realized as a level of β-ideal for some 
MBJ-N N β-ideal of ϒ. 

Theorem 3.6: . V as MBJ-N N β-ideal of ϒ, . -∈ [0, 1] ; ℷ∈D [0, 1] & -∈ [0, 1]
then 

(i) If - = 1 , then truth-level set .V (τV,-) is either empty or β – ideal of ϒ . 
(ii) If .ℷ = 1, then intermediate interval valued-level set .V

(
ςV, s

)
is either empty 

or β-ideal of ϒ . 
(iii) If - = 0 , then lower-level set .L (ζL,-) is either empty or β-ideal of ϒ . 

Theorem 3.7: Let .V
-, ℷ,- and .W

-0, ℷ0,-0
two MBJ-N level β-ideal of .V&W of 

ϒ , where .-≤-0 ; ℷ≤ℷ0 & -≥-0. If .τV (ℴ)≤τW (℩) ; .ςV (ℴ)≤ςW (℩) and 
.ζV (ℴ) ≥ζW (℩) , then . V⊆W.

Proof: Let .V
-, ℷ,- = {

ℴ ∈ ϒ; τV (ℴ) ≥ -, ςV (ℴ) ≥ ℷ , ζV (ℴ) ≤ -

}
and 

. W
-0, ℷ0,-0

= {
ℴ ∈ ϒ; τW (ℴ) ≥ -0, ςW (ℴ) ≥ ℷ0 , ζW (ℴ) ≤ -0

}
If .ℴ ∈ τWu0

then 
. τW (ℴ) ≥ -0

≥-

. ⇒ ℴ ∈ τV-

. ∴ τW (℩) ≥ τV (ℴ)

And if .ℴ ∈ ςW
ℷ0

then 

. ςW (ℴ) ≥ ℷ0
. ≥ ℷ

. ⇒ ℴ ∈ ςV
ℷ

. ∴ ςW (℩) ≥ ςU (ℴ)

Similarly, .ℴ ∈ ζW-0
then 

. ζW (ℴ) ≤ -0
≤-

. ⇒ ℴ ∈ ζV-

.∴ ζW (℩) ≥ ζV (ℴ) . Hence . V⊆W.

4 Conclusion 

A three-component fuzzy set named neutrosophic set in which the middle com-
ponent is in terms of interval valued indeterminate membership function and thus 
named as MBJ-neutrosophic set. Take a beta-algebra and merge MBJ-neutrosophic 
set which arrives at MBJ-neutrosophic beta-ideal of a beta-algebra. By using this
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MBJ-neutrosophic beta-ideal of a beta-algebra, a norm is introduced here and 
defines a definition of normed MBJ-neutrosophic beta-ideal, and this definition 
gives way to discuss the relevant results. One can move this to any other algebraic 
structures. 
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Maximal Solution of Tropical Linear 
Systems by Normalization Method 

B. Amutha and R. Perumal 

Keywords Semiring · Tropical semiring · Solution of linear system · Maximal 
solution 

1 Introduction 

Imre Simon [2], a Brazilian mathematician and computer scientist, was the first 
who brought tropical geometry into the literature. French mathematicians coined 
the term “tropical” to recognize Simon’s efforts in applying min-plus algebra to 
optimization theory. In tropical geometry, tropical semirings play a significant role. 
Semirings with an underlying carrier set, that is, a subset of the set of real numbers 
and a binary operation of addition as maximum or minimum, product as addition, 
have been devised and reinvented numerous times in diverse fields of research since 
the late 1950s [3]. There are two tropical semirings, depending on the operation. 
One is the minimum tropical semiring, while the other one is maximum. In the 
minimum tropical semiring, an addition of two elements will be a minimum of that 
two elements and multiplication of two elements obtained by adding them. Min-plus 
semiring is another name for this algebraic structure. Similarly in maximum tropical 
semiring, addition of two elements will be the maximum of two elements, and the 
tropical product is a sum of the elements. It is also called as max-plus semiring [4]. 
Examples of max-plus semirings are .(R ∪ (−∞),

O
,
O

), .(Z+ ∪ (−∞),
O

,
O

). 
The tropical semiring .(Z+ ∪ (−∞),

O
,
O

) was introduced by Simons. Max-plus 
semiring is isomorphic to a min-plus semiring, and both are idempotent semirings 
[5]. Working with tropical semirings is appealing because of its simplicity and 
resemblance to algebraic geometry [9]. As a result, the ease of use and applicability 
might be inspiring. The tropical semiring structure is used in a variety of fields, 
including computer science, linear algebra, number theory, automata theory, etc. 
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[3, 8, 12]. Tropical semirings are also used in language theory, control theory, and 
operation research [3]. Tropical semirings are playing an important role in linear 
algebra, especially in solving the linear systems [10, 11, 13]. We intend to decide the 
behavior of some matrices over the tropical semiring. Tropical addition is denoted 
as . 

O
and the tropical product as . 

O
. In this chapter, we are concentrating on the 

maximum tropical semiring [8]. 

2 Preliminaries 

A semiring S is a non-empty set with two binary operations, say addition and 
multiplication, that guarantees the conditions that, .(S,+) has the identity element 0 
and it is commutative monoid; .(S, ·) is a monoid that has a single identity element 
which is 1; multiplication distributes over addition, that is, . a (b + c) = ab + ac

and .(b + c) a = ba + ca, .∀ .a, b, c ∈ S, .a.0 = 0.a = 0 .∀ a ∈ S; and an 
element 1 is not equal to zero [1, 10]. A semiring S is said to be an idempotent 
semiring if .∀ a ∈ S, a + a = a [5]. A semiring is said to be zero-sum-free if 
.a + b = 0 . =⇒ a = b = 0. The maximum tropical semiring is the semiring 
.R = (S ∪ (−∞),

O
,
O

), since the operations . 
O

and . 
O

denoted the maximum 
tropical addition and maximum tropical multiplication, respectively, since S is a 
semiring and R should satisfy the following properties that commutative under 
the tropical addition, .i.e., .a

O
b = .b

O
a .∀ a, b ∈ R. It satisfies the associative 

property under the tropical addition and tropical multiplication .i.e., . (a
O

b)
O

c =
a

O
(b

O
c) and .(a

O
b)

O
c = a

O
(b

O
c) .∀ a, b, c ∈ R, It satisfies the property 

that multliplication distributes over addition .i.e. . a
O

(b
O

c) = (a
O

b)
O

(a
O

c)

.∀ a, b, c ∈ R, property of existence of additive identity .i.e. . ∃ .e ∈ R, .∀ . a ∈ R

such that .e
O

a = a
O

e = a (since the additive identity is .−∞), and it never 
has an additive inverse [10, 20]. Similarly in minimum tropical semiring, instead of 
maximum we have to choose minimum [11, 19]. Maximum tropical semiring is a 
idempotent semiring, and all idempotent semirings are zero-sum-free [5]. Suppose 
that there is a semiring, say S; we denote the set of all .m × n matrices over the 
semiring as .Mm×n(S) and we denoting every .ij th element of .P ∈ Mm×n(S) matrix 
as . pij ; transpose of the matrix P is denoted as . P T . Let .P = (pij ) ∈ Mm×n(S), 
.Q = (qij ) ∈ Mm×n(S), .T = (tij ) ∈ Mn×l(S) and .α ∈ S. Addition of two matrices 
generally calculated by .P + Q = ((pij ) + (qij ))m×n and similarly product of two 
matrices PT can be calculated by, 

. 

nE
i=1

((pik)(tkj ))m×l

and .αP = (α(pij ))m×n. 
Similarly in the max-plus semiring, addition of two tropical matrices, .P

O
Q, 

can be calculated by .(max((pij ), (qij )))m×l , and the multiplication of two tropical
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matrices P. 
O

T is calculated by 

. max((pik) + (tkj ))m×l

and .α
O

P = (α + (pij ))m×n. A system .P
O

x = q is said to be a tropical system 
if all the entries of the system from the tropical semiring . R = (S ∪ (±∞),

O
,
O

)

[16, 17]. A matrix .P ∈ Mm×n(S) is said to be a tropical matrix if all the elements of 
a matrix from the tropical semiring .R = (S ∪ (±∞),

O
,
O

)[5]. A matrix P is said 
to be maximum tropical matrix if all the elements of the matrix from the maximum 
tropical semiring .R = (S ∪ (−∞),

O
,
O

). A matrix P is said to be minimum 
tropical matrix if all the elements of the matrix from the minimum tropical semiring 
.R = (S ∪ (∞),

O
,
O

). Let .S = R be the extended real number system under 
the max-plus algebra, and let P and Q be .m × n matrices over the extended real 
numbers under the operation of maximum tropical semirings, where . P = (pij )m×n

and .Q = (qij )m×n and .(pij ), .(qij ) are the .ij th entries of P and Q, respectively, 
.P ≤ Q .↔ .(pij ) ≤ (qij ) .∀ i, j [11, 18]. A matrix .P = (pij ) is said to be regular 
if .(pij ) /= ±∞. A vector .b ∈ .Sm is said to be a normal vector or regular vector 
if .bj /= −∞ .∀ j ∈ m [10]. Since we have considered max-plus semiring, if we 
consider the min-plus algebra, then in the regular vector, each entries . bj /= ∞
.∀ j ∈ m [11]. A solution . x∗ of the tropical system .P

O
x = q is called as the 

maximal solution if .x ≤ x∗ for any other solution x [10, 11]. A linear system 
.P

O
x = q is said to be a tropical linear system if the elements of the linear system 

are all from any one of the tropical semirings [14, 15]. 

3 Main Results 

A linear system .P
O

x = q is said to be a maximum if the coefficients of the 
linear systems from the maximum tropical semirings [7]. We know that there are 
different methods to solving the linear equations [6]. In this chapter, we have used 
the method of normalization [10, 11]. Consider the system of equation .P

O
x = q. 

.P = (pij ) ∈ Mm×n .(S/(−∞)), .Q = (qij ) ∈ Mm×n(S/(−∞)) since . (S/(x))

denote all the values of R except x, .q = (qj ) is a regular vector .1 ≤ j ≤ m, 
and .j th column of P matrix denoted as . Pj . We begin this section with some basic 
definitions, and then we discuss the general maximal solution of the particular 
matrices. Let us assume the tropical semirings .T = (Z+ ∪ (−∞),

O
,
O

) where 
.Z

+ denoting the set of all natural numbers, . V=.(R∪ (−∞),
O

,
O

) where . R is a set 
of all real numbers, . W=.(Z ∪ (−∞),

O
,
O

) where . Z is a set of all integers. 

Theorem 1 The linear system .P
O

x = q has solution if and only if every row 
of associated normalized matrix U contains at least one element, which is column 
minimum.
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3.1 Analyzing the Maximal Solution of the Tropical Linear 
Systems with Natural Matrix 

Definition 1 A matrix  P ∈ Mm×n(T) is said to be a natural matrix if the entries of 
the P matrix are continuously written with the natural numbers in the way followed 
by the row or column. Types of natural matrix are: 

– Row natural matrix 
– Column natural matrix 

Definition 2 A matrix  P ∈ Mm×n(T) is said be a row natural matrix if it is in the 
form of 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 . . . .. n

n + 1 n + 2 n + 3 . . . .. 2n

2n + 1 2n + 2 2n + 3 . . . .. 3n

: : : : :
: : : : :
.. .. .. .. m.n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Definition 3 A matrix  P ∈ Mm×n(T) is said be column natural matrix, if it is in 
the below form, 

. 

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 m + 1 2m + 1 . . . ..

2 m + 2 2m + 2 . . . ..

3 m + 3 2m + 3 . . . ..

: : : : . . .

: : : : . . .

m 2m 3m .. n.m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Theorem 2 Let P ∈ Mm×m(T/(−∞)) be a column natural matrix and P
O

x = q 
the linear system over the tropical semiring (T/(−∞)). If the  m × 1 regular vector 
q is of the form qi = m2 + i, 1 ≤ i ≤ m, then the linear system P

O
x = q has a 

solution with the maximal solution 

. x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m2

m2 − m

m2 − 2m

m2 − 3m

:
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Proof Given P is a column natural matrix over the tropical semiring T/(−∞)
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. 

⎡
⎢⎢⎢⎢⎢⎢⎣

1 m + 1 2m + 1 3m + 1 .. .. m(m − 1) + 1
2 m + 2 2m + 2 3m + 2 .. .. m(m − 1) + 2
3 m + 3 2m + 3 3m + 3 .. .. ..

: : : : .. .. ..

: : : : .. .. ..

m 2m 3m 4m .. m(m − 1) m(m − 1) + m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

:
:

xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

m2 + 1
m2 + 2
m2 + 3

:
:

m2 + m

⎤
⎥⎥⎥⎥⎥⎥⎦

Since P̂1 = m+1 
2 , P̂2 = 3m+1 

2 ,  . . . . . . ,  P̂m = 2m2−m+1 
2 , q̂ = 2m2+m+1 

2 finally U 
matrix is a zero matrix. Clearly every row of U matrix has at least one element, 
which is the minimum element in any one of the columns. By Theorem 1, the given 
system has a solution. The maximal solution of given system obtained by xj

∗ = 
yj

∗ − P̂j + q̂ 

. x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m2

m2 − m

m2 − 2m

m2 − 3m

:
m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Theorem 3 Let P ∈ Mm×m(T/(−∞)) be a row natural matrix and P
O

x = q 
linear system over the tropical semiring (T/(−∞)). Since T = (Z+ ∪ 
(−∞),

O
,
O

). If the  m×1 regular vector q is of the form qi = m2+im, 1 ≤ i ≤ m 
then the linear system P

O
x = q has a solution with the maximal solution 

x∗
i = m2 + m − i, for  1 ≤ i ≤ m. 

Proof Given a row natural matrix 

. 

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 .. .. m

m + 1 m + 2 m + 3 m + 4 .. .. 2m

2m + 1 2m + 2 2m + 3 2m + 4 .. .. 3m

: : : : .. .. ..

: : : : .. .. ..

(m − 1)m + 1 (m − 1)m + 2 (m − 1)m + 3 .. .. .. m(m − 1) + m

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

:
:

xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

m2 + m

m2 + 2m

m2 + 3m

:
:

2m2

⎤
⎥⎥⎥⎥⎥⎥⎦

Since P̂1 = (m2−m+2 
2 ), P̂2 = (m2−m+4 

2 ), P̂3 = (m2−m+6 
2 ),  . . . . . . ,  P̂m = 

(m2−m+2m 
2 )), q̂ = 3m2+m 

2 , now the matrix U has all of its entries zero =⇒ All the
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rows contain at least one column minimum element. By Theorem 1, given system 
has a solution. The general form of the maximal solution is 

. x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m2 + m − 1
m2 + m − 2
m2 + m − 3
m2 + m − 4

:
m2 + m − m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

3.2 Analysis of the Maximal Solution of the Tropical Linear 
Systems with J-Matrix 

Definition 4 Let P be a m × n matrix, and it is named as J-matrix if all the entries 
of the P matrix are only j . 

. 

⎡
⎢⎢⎢⎢⎢⎣

j j j .. j

j j j .. j

j j j .. j

: : : : j

j j j .. j

⎤
⎥⎥⎥⎥⎥⎦

Theorem 4 Let P ∈ Mm×m be a J-matrix and P
O

x = q a linear system over the 
tropical semiring V/(−∞) where V=(R ∪ (−∞),

O
,
O

) with the m × 1 normal 
vector q of the form 

. q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

:
:

qm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

then 

1. qi = qj for all 1 ≤ i, j ≤ m if and only if the system has solution. 
2. qi /= qj for some 1 ≤ i, j ≤ m if and only if the system has no solution. 

Proof Given matrix is a J-matrix over the tropical semiring V/(−∞)
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. 

⎡
⎢⎢⎢⎢⎢⎣

j j j .. j

j j j .. j

j j j .. j

: : : : j

j j j .. j

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

:
:

xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

:
:

qm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Since we have P̂1 = j , P̂2 = j , P̂3 = j ,  . . . ..,  P̂m = j , q̂ = ( q1+q2+...+qm 
m ) = k. 

In U matrix, all the entries are equal in first row, all the entries are equal in second 
row, and similarly, this condition holds till for the last row. 

1. Assume that qi = qj = k, for all 1 ≤ i, j ≤ m; then 

. q1 − (
q1 + q2 + . . . + qm

m
) = . . . .. = qm − (

q1 + q2 + . . . + qm

m
) = 0

now clearly verify that all the elements are column minimum elements. Since 
every row of U matrix has a column minimum element as 0. By Theorem 1, 
the system has a solution. To prove the converse part, assume that the system 
has a solution. By the method of contradiction, suppose that qi /= qj for some 
1 ≤ i, j ≤ m; then clearly we know that minimum element among qk s where 
1 ≤ k ≤ m can be either qi or qj for some 1 ≤ i, j ≤ m; then that minimum 
element will be placed in the same row. All other rows have no column minimum 
element. By Theorem 1, the system has no solution, which is the contradiction 
to our assumption that system has a solution. So qs 

k should be equal for every 
1 ≤ k ≤ m. The general form of the maximal solution for this case will be 
x∗
i = −j + k,∀ 1 ≤ i ≤ m. 

2. Assume qi /= qj for some 1 ≤ i, j ≤ m; then minimum element can be one of 
the values of qs 

k where 1 ≤ k ≤ m. The column minimum element will be placed 
in any one of the rows of U matrix. Other rows cannot have the column minimum 
element. By Theorem 1, that implies system has no solution. Conversely, let 
us assume that system has no solution. We can say that some row of the U 
matrix does not contain any column minimum element. Suppose qi = qj for 
all i and j; then, by first part of Theorem 4, the system has a solution, which is a 
contradiction. 

3.3 Analysis of the Maximal Solution of the Tropical Linear 
Systems with γ -Diagonal Matrix 

Theorem 5 Let P ∈ Mm×m be a γ -diagonal matrix and P
O

x = q a linear 
systems over the tropical semiring V/(−∞) where V=(R∪ (−∞),

O
,
O

) with the 
normal vector qi = γ,  ∀1 ≤ i ≤ m then U = −  ̃P and the system has a solution.
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Proof Given is a γ -diagonal matrix, 

. 

⎡
⎢⎢⎢⎢⎢⎣

γ 0 0 .. 0
0 γ 0 .. 0
0 0 γ .. 0
: : : : :
0 0 0 .. γ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

:
:

xm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ

γ

γ

:
:
γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

when we compare the normalized matrix P̃ and associated normalized matrix =⇒ 
U = −  P̃ . Now we want to prove that the system has a solution. Associated 
normalized matrix has only two elements ( γ 

m ) and −(γ − γ 
m ). 

Case 1: 
If ( γ 

m ) <  −(γ − γ 
m ), then ( γ 

m ) is the column minimum element in every column. 
Also we know that every row and every column has an entry ( γ 

m ), so every  
row has atleast one column minimum element. Hence the system always has 
a solution. Now the maximal solution of this system is 

. x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

γ

γ

γ

γ

:
γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Case 2: 
If −(γ − γ 

m ) < (  γ 
m ) then −(γ − γ 

m ) be the column minimum element in every 
column. Also we know that every row and every column has an entry −(γ − γ 

m ). 
So that every row has at least one column minimum element =⇒ System has a 
solution. In this case the maximal solution is 

.x∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
:
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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3.4 Analysis of the Maximal Solution of the Tropical Linear 
Systems with Circulant Matrix 

Theorem 6 Let P ∈ Mm×m(V(−∞)) be a circulant matrix and P
O

x = q a 
linear systems over the tropical semiring V/(−∞) where V=(R ∪ (−∞),

O
,
O

) 
with the m × 1 normal vector q of the form q = Cj , where Cj is a j th  column of 
the circulant matrix; then the following conditions hold: 

1. P̂i = P̂j = q̂, ∀ 1 ≤ i, j ≤ m 
2. P̃ is also circulant matrix. 
3. System has a solution. 
4. x∗ = y∗ 

Proof 

1. Given P ∈ Mm×m is a circulant matrix over the tropical semiring V/(−∞). We  
know that P̂j = ( p1j +p2j +...+pmj 

m ), ∀j ∈ m. Clearly every row of circulant matrix 
has every element from ci s , ∀ 0 ≤ i ≤ m − 1 exactly once and every column of 
the circulant matrix has every element from ci s , ∀ 0 ≤ i ≤ m − 1 exactly once. 
Sum of the entries in every columns is equal. Let the column sum of the circulant 
matrix be r. When calculating the P̂j , the  P̂j = r 

m = k ∀ j ∈ 1, 2, . . . m. So we  

conclude that P̂i = P̂j = q̂ = k, ∀ 1 ≤ i, j ≤ m. 
2. For the given system P

O
x = q, the normalized system is P̃

O
y = q̃ 

We know that by the first part of Theorem 6, we know P̂i = P̂j = q̂. Assume 
that P̂i = P̂j = q̂ = k 

. 

⎡
⎢⎢⎢⎢⎢⎢⎣

c0 − k cm−1 − k cm−2 − k .. c1 − k

c1 − k c0 − k cm−1 − k .. c2 − k

c2 − k c1 − k c0 − k .. c3 − k

: : : : :
: : : : cm−1 − k

cm−1 − k cm−2 − k c2 − k .. c0 − k

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

:
:

ym

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

c0 − q̂

c1 − q̂

c2 − q̂

:
:

cm−1 − q̂

⎤
⎥⎥⎥⎥⎥⎥⎦

This normalized matrix satisfies all the conditions of a circulant matrix. We can 
conclude that P̃ is also a circulant matrix. 

3. After finding the normalized matrix when we are finding the associated normal-
ized matrix, we are getting U matrix as, 

. U =

⎡
⎢⎢⎢⎢⎢⎢⎣

q̃1 − (c0 − k) q̃1 − (cm−1 − k) q̃1 − (cm−2 − k) .. q̃1 − (c1 − k)

q̃2 − (c1 − k) q̃2 − (c0 − k) q̃2 − (cm−1 − k) .. q̃2 − (c2 − k)

q̃3 − (c2 − k) q̃3 − (c1 − k) q̃3 − (c0 − k) .. q̃3 − (c3 − k)

: : : : :
: : : : ˜qm−1 − (cm−1 − k)

q̃m − (cm−1 − k) q̃m − (cm−2 − k) q̃m − (c2 − k) .. q̃m − (c0 − k)

⎤
⎥⎥⎥⎥⎥⎥⎦

if q = Cj , j th  column of U matrix is zero, and in the j th  column, all 
elements are column minimum elements. We have at least one column minimum
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element in every row of the associated normalized matrix U . By Theorem 1, we  
can conclude that the system has a solution. Maximal solution of this system 
depending upon the y∗. For each value of y∗, we can find different maximal 
solution. 

4. We know that 

. x∗ =

⎡
⎢⎢⎢⎢⎢⎣

y1
∗ − P̂1 + q̂

y2
∗ − P̂2 + q̂

y3
∗ − P̂3 + q̂

:
yn

∗ − P̂n + q̂

⎤
⎥⎥⎥⎥⎥⎦

By the first part of Theorem 6, we have  P̂i = P̂j = q̂, ∀ 1 ≤ i, j ≤ m 

. x∗ =

⎡
⎢⎢⎢⎢⎢⎣

y1
∗

y2
∗

y3
∗

:
yn

∗

⎤
⎥⎥⎥⎥⎥⎦

= y∗

hence x∗ = y∗. 

Notes and Comments To determine the solutions of tropical linear systems, we 
employed the normalization method in this article. We talked about the conditions 
in tropical systems and came up with a unique solution, many solutions, and no 
solution. We used normalized method to determine the maximal solution of the 
linear equations over the tropical semirings. We worked on some special matrices 
and studied the general form of the maximal solution of that special matrices. We 
have also given several theorems about the general maximal solutions of specific 
linear systems over the tropical semirings. 
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A Theoretical Perception on Interval 
Valued Fuzzy β-Subalgebraic Topology 

P. Muralikrishna , P. Hemavathi , K. Palanivel , and R. Vinodkumar 

Keywords β-Algebra · Fuzzy β-algebra · Topology · Interval valued fuzzy · 
β-Subalgebra · Fuzzy β-subalgebraic topological space 

1 Introduction 

A F_S has been originated by Zadeh, and later the concept of linguistic variable 
was described [13, 14]. Following that, other researchers applied the F_S in 
numerous directions and scientific fields. Chang [5] introduced F_S as a concept for 
generalized topology. The idea of FT subsystem on a TM-algebra was established 
by Annalakshmi et al. [1]. The big idea of fuzzy β_subalgebraic_TS has been 
initiated by Chandramouleeswaran et al. [3]. Chanduraty et al. proposed the idea 
of FT on F_S [4]. Foster [6] proposed the idea of FT groups in which the results on 
homomorphic images and inverse images, product, and quotients of FT groups were 
investigated. Kandil et al. [8] dealt the separation axioms in i_v FTS. Moreover, the 
relation between induced FTS and separation axioms on a given i_v FTS has been 
studied. 
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The notion of FTS involving Boolean algebraic structures was introduced by 
Sharma et al. [10], and the author described the properties of Boolean algebraic 
FTS. Veerappan Chandrasekar et al. [11] presented the concepts on fuzzy_ e_open 
sets fuzzy_ e_continuity and fuzzy _e_compactness in intuitionistic_ FTS. Neggers 
and Kim first suggested the idea of β_algebra in 2002 [9]. On β_subalgebras, Jun et 
al. [12] covered a number of related topics in 2001. The idea of fuzzy β_subalgebras 
of β_algebras was proposed in 2013 by the authors of [2] applied the F_Ss into 
β_algebra. In 2015 [7] Hemavathi et.al initiated the notion of i_v_f_β_subalgebras. 
This paper explores the notion of i_v_f_β_subalgebraic TS on β_algebras by 
bringing together the ideas of FTS and i_v_f_β_algebras and proving some of their 
features. 

2 Preliminaries 

Some fundamental definitions that are necessary for the sequel are recalled in this 
section. 

Definition 2.1: For any non-empty set E, a F_S in E, we define ψ : E → [0, 1]. 
For every .L ∈ E, .ψ (L) with .0 ≤ ψ (L) ≤ 1 is known as the membership_ value of 
. L in E. 

Definition 2.2: Any non-empty set E with the binary operations -,+ and constant 0 
is known as a β_aβlgebra if (i) .L− 0 = L (ii) .(0 − L)+L = 0 (iii) . (L − ξ)−w =
L − (w + ξ) ∀L, ξ,w ∈ E. 

Definition 2.3: Consider a non-empty subset . Å of a β_algebra (E, + , − , 0)  is  
said to be a β_subalgebra of E, if .(i) L + ξ ∈ Å .(ii) L − ξ ∈ Å for all L, ξ ∈ Å. 

Definition 2.4: For any β_algebra E, a F_S ψ is referred to as fuzzy_ β_subalgebra 
of E, if .∀L, ξ ∈ E. 

.(i) ψ (L + ξ) ≥ min {ψ (L) ,ψ (ξ)}and . (ii) ψ (L − ξ) ≥ min {ψ (L) ,ψ (ξ.)}
Example 2.5 Suppose a β_algebra (E, + , − , 0) with the Cayley’s table. 

Let us describe the F_S ψ : E → [0, 1] such that
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. ψ (L) =
⎧⎨
⎩

1 L = 0
0.5 L = e1

0 L = e2, e3

Thus, ψ is a fuzzy algebra in E. 

Definition 2.6: If .ψ1 and .ψ2 are two i_v F_Ss of E, then the intersection 

of .ψ1 and .ψ2, expressed by .ψ1 ∩ ψ2, is defined by (. ψ1 ∩ ψ2

)
(L) =

rmin
{
ψ1 (L) , ψ2 (L)

} ∀L ∈ E.

Definition 2.7: If . ψ1and .ψ2 are two i_v F_Ss of E, then the ∪ of .ψ1 and . ψ2,

denoted by .ψ1∪ψ2, is defined by (. ψ1∪ψ2

)
(L) = rmax

{
ψ1 (L) , ψ2 (L)

} ∀L ∈
E.

Definition 2.8: If E has two i_v F_Ss . ψ1 and . ψ2, then . ψ1 is regarded as a subset 

of .ψ2, represented by .ψ1 ⊆ ψ2, if . ψ1 (L) ≤ψ2

)
(L) ∀L ∈ E.

Definition 2.9: Let . ψ be an i_v F_S in E and f be a function from E to Y. The 
image of . ψ is defined as 

. ψ (ξ) =
⎧⎨
⎩

rsup
L∈f −1(ξ)

λ (L) , if f −1 (ξ) /= ∅

[0, 0] otherwise

Consider an i_v F_S . λ in Y. Then, we define the inverse function f−1 

as.λf −1 (L) = λ (f(. L)) for all . L ∈ E.

Definition 2.10: Let E be a universe. The collection r is called an i_v FT set of 
F_Ss in E if 

(i) . ̆0 and .1̆ ∈ r and .0̆ = ψ (x) = 0 and .1̆ = ψ (x) = 1. 
(ii) ψH , ψK ∈ r then ψ (H ∩ K) ∈ r. 

(iii) .ψHi
∈ r f or each i ∈ A, then .

U
AψHi

∈ r with an index set A. 

Remark 2.11: For any universe E with an i_v F_S . r of E, .
(
E,r

)
is called an i_v 

FTS and each member of . r is named as . ropen F_S in E. 

Definition 2.12: For an i_v FTS .
(
E,r

)
and . ζ ∈ r. A i_v FS .υ ∈ r is said to 

have a neighborhood (NBD) of . ζ if ∃ a . ropen _F_S . o with .ζ ⊂ o ⊂ υ,that is, 
. ζ (L) ≤ o (L) ≤ υ (L) ∀L ∈ E.

Definition 2.13: Consider a i_v FTS .
(
E,r

)
, and . H, . K are two i_v F_Ss in it and 

.H ⊃ K. Then, . K is said to have an interior of . H if . H is a NBD of . K. The union of 
all i_v F_Ss of . H is also an interior of . H and is represented by . H

0
.
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3 Interval Valued Fuzzy β_Subalgebraic Topology 

The concept of i_v_f β_subalgebraic TS is presented in this section, along with 
several associated findings. 

Definition 3.1: Let E be a β_algebra. If there is a family . r of i_v F β_subalgebras 
that meets the conditions listed below, then .

(
E,r

)
is said to be an i_v_f β-

subalgebraic TS on E. 

(i) . ̆0 and .1̆ ∈ r and .0̆ = χ (L) = 0 and .1̆ = χ (L) = 1. 
(ii) If .χH , χK ∈ r then χ(H∩K) ∈ r. 

(iii) If .χHi
∈ r f or each i ∈ A, then .

U
AχHi

∈ r where A indicates an IS. 

Each element in . r is referred to as a . ropen - i_v F_S in β_algebra of E. 

Example 3.2: For a β_algebra given in the Example 2.5, consider the fuzzy_ 
β_subalgebras, .χi : E → D [0, 1] , i = 1, 2, 3, 4, and 5 be given 

. χ1 (L) =
⎧⎨
⎩

[0.3, 0.7] : L = 0
[0.2, 0.5] : L = e1, e2

[0.1, 0.3] : L = e3

χ2 (L) =
⎧⎨
⎩

[0.4, 0.6] : L = 0
[0.3, 0.5] : L = e1, e2

[0.2, 0.4] : L = e3

. χ3 (L) =
⎧⎨
⎩

[0.3, 0.5] : L = 0
[0.2, 0.3] : L = e1, e2

[0.1, 0.2] : L = e3

χ4 (L) =
⎧⎨
⎩

[0.4, 0.5] : L = 0
[0.3, 0.4] : L = e1, e2

[0.1, 0.2] : L = e3

. χ5 (L) =
⎧⎨
⎩

[0.4, 0.6] : L = 0
[0.3, 0.4] : L = e1, e2

[0.2, 0.3] : L = e3

Then the collection .τ =
{∼

0,
∼
1, χ1, χ2, χ3, χ4, χ5

}
is an i_v_f β_subalgebras 

on E. 
Thus, (E, . r) is an i_v_f β_subalgebraic TS on E. 

Definition 3.3: Suppose that (E, . r) be an i_v_f β_subalgebraic TS. Consider an 
i_v F_S . χ in . r. An i_v F_S .ϕ ∈ r is known as NBD of . χ if ∃a . r_open i_v F set 
. o with .χ ⊂ o ⊂ ϕ ie .χ (L) ≤o(L) ≤ ϕ (L) .∀L ∈ E. 

Example 3.4: Let us assume the i_v_f β_subalgebraic TS as in the example 3.2. 
. χ3 is a i_v_f NBD of i_v F_S . χ1, for .χ1 (L) ≤χ2 (L) ≤ χ3 (L).
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Definition 3.5: Consider i_v_f sets . Hand . K in an i_v_f β_subalgebraic TS (E, . r). 
If .H .⊃ K and . H is a NBD of . K , then we can say . Kis having an interior of . H . The  

union of all interior i_v F_S of . H is also an interior of . H and is represented by . H
0
. 

Example 3.6: For any i_v_f β_subalgebraic TS on E given in Example 3.2. 
. χ2 is an i_v_f NBD of a i_v F sets . χ1, . χ4, . χ5. 
That is, . χ1, . χ4, . χ5 are i_v F interiors of . χ2. 

. χ2
0 = ∪

{
χ

1
, χ4, χ5

}

. = rmax
{

χ1 (L) , χ4 (L) , χ5 (L)
} = χ1 (L) .

Theorem 3.7: Let (E, . r) be an i_v_f β_subalgebraic TS on E. Then, an i_v F 
β_subalgebra of . Y is .τopen if and only if for each i_v F set . E contained in . Y , . Y is 
an i_v_f NBD of . E. 

Proof 
Assume an i_v_f β_subalgebra of . H is . ropen. 

Consider an i_v_f β_subalgebra . K contained in . H . 
Here . H is open, and . K ⊂ . H . 
Hence, . H is i_v_f NBD of . K . 
Alternatively, for each i_v_f β_subalgebra . K contained in . H , 
. H is an i_v_f NBD of . K . 
For . H ⊂ . K , by our assumption, 
. H is an i_v_f NBD of . H . 
Then, there will be an i_v_f _open set . o with . H ⊂ . o ⊂ . H . 
Thus, . H= . oand . H are . r_open in (E, . r). 

Theorem 3.8: Consider an i_v_f β_subalgebraic TS (E, . r) on E. For an i_v_f 
β_subalgebra . H on E, 

(1) . H
0
is the largest i_v_f _open set contained in . H . 

(2) . H = . H
0
if and only if the i_v_f β_subalgebra . H is open. 

Proof 
(1) Suppose that (E, . r) be an i_v_f β_subalgebraic TS on . X. 

Consider an i_v_f β_subalgebra . H be in E. 
From the definition of i_v_f interior, 
. H

0
is again an i_v_f interior_set of . H . 

Hence, there exist an . r_ i_v_f _open set . o with . H
0⊂ . o⊂ . H . 

On the other hand, . o is an fuzzy interior_set of H, . o ⊂ .Y
0

and so, . H
0= . o. 

Hence, .H
0

is the largest i_v_f _open set contained in . H . 
(2) Assume that the i_v_f set . H is open.
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If . H is open, then . H ⊂ . H
0
, for . H is an i_v_f interior set of . H and so . H = 

. H
0
. 
Alternatively, suppose . H = . H

0
. 

By definition of i_v_f interior, the union of every i_v_f interior sets of . H is 

also i_v_f interior of . H and is denoted by . H
0
. 

Hence, . H is a NBD of . H
0
. 

An i_v_f set . H is . r_open. 

Definition 3.9: On the β_algebras, E and Y, consider i_v_f β_subalgebraic TS 
(E, . r) and (Y, . χ ), respectively. The function f: (E, . r)→(Y, . χ ) is said to have a . T

continuous function if the inverse of any . χ_open i_v F_S of Y is . r_open i_v_f set 
of E . 

Theorem 3.10: For the β_algebras, E and Y, consider i_v_f β_subalgebraic TS 
(E, . r), and (Y, . χ), respectively, f is . Tcontinuous if and only if the inverse image of 
every closed i_v F_S set is closed. 

Proof 
Assume that f is . Tcontinuous. 

That is, the inverse of every . Q_open i_v F_S is . ropen. 
Choose . Q0 be the set of closed F_S in Y 
Thus, . χf −1(Q') (L) = χ,

Q (f (L))

. = χQ, (f (L))

. = 1 − χQ (f (L))

. = 1 − χf −1(Q) (L)

. = χ,
f −1(Q,) (L)

. ⇒ f −1 (Q,) =
{
f −1 (Q)

}, ∀x ∈ E.

Because f is . T _continuous, the inverse of each closed i_v F_S is closed. 
Alternatively, for the set . χ of open i_v F_S in Y, 

. χf −1(Q) (L) = χQ (f (L))∀L ∈ E.

Since the inverse of every closed i_v F_S is closed. 
∴ The inverse of every open i_v F_S is open and so f is . T _continuous. 
This completes the proof. 

Theorem 3.11: Assume two i_v_f β_subalgebraic TS (E, . r) and 
(Y, . χ) on the  β_algebras, E and Y correspondingly. Then, for each i_v F_S . H

in E, the inverse of every NBD of f(. H ) is a NBD of . H if for each i_v F set . H in E

and each NBD . ς of f(. H ), there is NBD . ω of . H with f(. ω) ⊂ . ς .
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Proof 
Let . H be the i_v F_S of E. 

Let .U, J be the family of NBDs of i_v F_S and their image. 
Let . A ∈ A.

Take .ς∈J, .ω∈U is the NBD of .f
(
H ) and . H . 

So, the inverse of every NBD of f(. H ) is a NBD  
of . H.

. ∴ f (ω) = f
(
f −1 (ς)

)
(1) 

If f−1(ξ) is not empty, 

. χf(f −1(ς)) (ξ) = rsupz∈f −1(ξ)χf −1(ς) (w)

. = rsupz∈f −1(ξ)

{
χς (f (w))

}

. = χς (ξ) ∀ξ ∈ Y.

If f−1(ξ) is not empty, 

. χf(f −1(ς)) (ξ) = 0

. ∴ χf(f −1(ς)) (ξ) ≤ χ(ς) (ξ) ∀ξ ∈ Y.

. ∴ f
(
f −1 (ς)

)
⊂ ς (2) 

From (1) and (2) .⇒ f (ω) ⊂ ς . 

Conversely, let V be a NBD of .f
(
H ). 

Since there is a NBD . ω of . H such that .f (ω) ⊂ ς , 

.Hence,
(
f −1 (f (ω)) ⊂

(
f −1 (ς)

)
(3) 

. χ(f −1(f (ω))) (x) = χf (ω) (f (L))

. = rsup w∈f −1(f (L))

{
χω (w)

}

. ≥ χω (L) ∀L∈X.

. ∴ ω ⊂ f −1 (f (ω)) (4) 

From (3) and (4) ⇒ .ω ⊂ f −1 (f (ω)) ⊂ (
f −1 (ς)

)
, 

.
(
f −1 (ς)

)
is a NBD of . ω.
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Theorem 3.12: On the β_algebras, E and Y, respectively, consider i_v_f 
β_subalgebraic TS (E, . r) and (Y, . χ). If f is . T continuous, then for each i_v 
F_S . H in E, the inverse of every NBD of .f

(
H

)
is a NBD of . H . 

Proof 
Assume that . A be the i_v F_Sof E. 

Suppose that . J be the family of NBD of i_v F_S on . A. 
Let .H ∈ A and . ς∈J.

That is, . A is an i_v F_S in E and . ς NBD of . f
(
H

)
.

Hence, there is an open NBD . ω of .f
(
H

)
with, .f

(
H

) ⊂ ω ⊂ . ς . 

. ⇒ f −1 (
f

(
H

)) ⊂
(
f −1 (ς)

)
(5) 

Because f is . Tcontinuous, .f −1 (ω) is open. 

. χ (
f −1

(
f

(
H

) )) (L) = χf
(
H

) (f (L))

. = rsupw∈f −1(f (L))

{
χH (w)

}

. ≥ χH (L) ∀L ∈ E.

. ∴ A ⊂ f −1 (
f

(
H

))
(6) 

From (5) and (6) ⇒ .H ⊂ f −1 (f (ω)) ⊂ (
f −1 (ς)

)
, 

.
(
f −1 (ς)

)
is a NBD of . H . 

4 Conclusion and Future Scope 

This article is intended to exhibit the new approach on interval valued fuzzy 
β_subalgebraic topology in a different dimension. Some of the absorbing results 
of fuzzy β_subalgebraic topology incorporated with an interval valued fuzzy sets 
were explored. Further, this thought can be extended to various kinds of algebraic 
structures in future work. 
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A Specific Key Sharing Protocol Among 
Multiuser Using Noncommutative Group 
for Telecare Medicine Information 
System 

Girija Murugan and Uma Kaliyappan 

Keywords Telecare medicine information system · Authentication · Braid 
decomposition problem (BDP) · Twin conjugacy search problem (TCSP) 

1 Introduction 

Communication algorithms such as public key cryptosystems are based on hard 
problems. The cryptographers are always hunting for hard problems to increase the 
diversity of public key cryptography. The braid group is used as the implementation 
group of twin conjugacy theory, but all of Chen et al. [1] results can be applied to 
any non-commutative group, as long as two exchangeable subgroups are contained 
in the group. Also, for the first time, Chen et al. define several security assumptions 
related to the conjugacy search problem and analyze the security of the CSP-
hEIG scheme under the security assumptions [1]. As a cryptographic stage, braid 
organizations are a characteristic longing among noncommutative organizations. 
Despite the fact that the conjugacy seeks for issue is thought to be troublesome, the 
word issue is known to make some polynomial memories algorithmic arrangement. 
Since they are individuals from a braid bunch, finding subgroups that excursion 
with individuals from different subgroups is straightforward. Artin [2] started the 
interlace organizations, which are noncommutative twist-free partnerships. They’re 
of cryptographic interest since calculations and statis-spasms capacity can be 
performed decently accurately; however, they’re sufficiently mind-boggling that it 
seems improbable that they have any astounding hidden structure from the outset. 
The name “mesh bunch” is completely proper, as the nth plait association Bn is 
depicted as a fixed of “n-twists.” 

The conjugacy issue in twist organizations’ administration is the establishment 
for some advanced cryptosystems, and late measurements uncovered that the issue 
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is more conceivable than many individuals anticipated [3–5]. The mission of public-
key cryptography is to communicate straight over open channels with the goal that 
a vindictive intruder can’t procure any secret records regardless of whether he has 
direct associations with the sent messages [6]. Numerous residents have researched 
noncommutative logarithmic frameworks in the desire for finding another option, 
and twist organizations seemed to hold a ton of promise [7–9]. Following a basic 
examination, it was found that twist organizations might have a lot of design and 
that a portion of similar systems for proficient calculations could be utilized to go 
after interlace based total conventions [6, 10–13]. 

Current encryption ordinarily utilizes complex limits dependent absolutely upon 
mistaken and much of the time testing to check probabilistic contentions as 
insurance verifications. Compositional plan and investigation are one of a handful 
of procedures that might in any way whatsoever license the test of complicated 
frameworks. Here, one determines, by means of notable structure ideas, the well-
being of a bigger contraption from the security of individual parts. This exposition 
adds to the assortment of ability in this subject. Our canvases spend significant time 
in the composability of secure key substitute, quite possibly of the most fundamental 
cryptographic work. To report convention well-being, there are much of the time two 
procedures. The reproduction worldview is the dream for models very much like the 
overall organization design and others [14]. The elective methodology reproduces 
security through games. Test system essentially based security presents coordinated, 
stylishly interesting ways of characterizing insurance and habitually permits formed 
convention security to be resolved precisely. 

Further, the resulting frameworks can include complexities which might be 
difficult to understand furthermore; because of the simulation’s strict protection 
requirements, many critical jobs can’t be effectively and securely found out. 
Furthermore, simulation systems [15] are generally surely insufficient for the exam 
of modern protocols of realistic relevance, in part due to the fact such techniques do 
not adhere to the very rigorous constraints demanded through simulation-primarily 
based safety. This is probably considered the number one driving pressure for 
the ongoing development. The closing ultimate preference is to apply formalists 
stimulated by using video games [16]. Even though they have much less strict 
regulations, the derived keys often have a terrific degree of safety and cannot 
be outstanding from random keys. Even though we’re aware of the extent of 
security required for key-alternate methods when employed independently by way 
of commonplace recreation-based models, there may be sadly no solidly set up 
warranty nation of their blending with different sports. This gap is filled by our 
work. 

That is (in all likelihood) now not the case, despite the fact. Inside the prolonged 
model, we exhibit that a session matching method exists if a primary swap etiquette 
is preparable with any harmonic primary rules and safety is mounted using a 
particular form of black-area discount. We accentuate that the outer meeting 
matching does not affect the imperative thing substitute conventions as it best 
impacts the convention for key trade and no extraordinary key makes use of. 
Ultimately, we draw attention to the truth that combining relaxed key change 
strategies with any symmetrical key techniques could probable seem tough.
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That’s what the plain contention is if the key innovation convention “messes up” 
by utilizing approach to wrongly rehashing a couple of levels of the key settlement 
convention, and the synthesis could quickly wind up unreliable. 

Expect, for instance, that a nonce is scrambled utilizing the pristine meeting 
key as a feature of the critical substitute strategy and that the essential convention 
step is for a festival to legitimate away screen the meeting key after getting an 
encoded message in an uncommon condition. Replaying the past message from the 
significant thing trade fragment needs to then think twice about convention’s typical 
security. In any case, this line of pondering is defective. A key trade convention’s 
ability to refresh the genuine key with a chosen irregular key accurately decouples 
the two territories. This is implied through utilizing key lack of definition. 

1.1 Literature Review 

Girl et al. [17] proposed that the evolved scheme may be utilized to at ease special 
safety threats like replay and password cracking. In early 2015, Amin and Biswas 
[18] counseled that the lady scheme is risky to offline guessing passwords and 
assaults. Furthermore, they deployed a more advantageous authentication-primarily 
based scheme. Zhang and Zhu [19] advanced a scheme primarily based on a key 
agreement authentication protocol. Ostad-Sharif et al. [20] also elaborated on the 
telecare remedy-based records community for showcasing the efficiency of the 
authentication scheme. The usage of a key exchange protocol to create symmetric 
keys on the way to finally be used in a comfortable channel protocol is an instance 
of a normal application. We cope with protection definitions for each stand-alone 
and composite protocols inside the context of conventional sport-primarily based 
environments. 

2 Protocol Key Exchange 

A key trade procedure empowers two neighborhood meetings utilizing long haul 
character keys to agree on a fast-meeting key. Asymmetric long haul key person-
alities are thought about (symmetric extended keys can be treated likewise.) We 
“accomplice” two meetings utilizing a meeting recognizable proof worth. This not 
entirely settled by the key trade instrument. 

The key trade convention ascertains this worth. One can in any case utilize a 
meeting distinguishing proof to put together cooperating with respect to thoughts 
like matching exchange, as shown by Bellare et al. [21]. One can likewise accom-
plish a comparable, though not indistinguishable, thought by utilizing the message 
record. The meeting key for collaborated meetings should be indistinguishable 
from irregular and should be processed by the two meetings. Also, just two 
meetings ought to at any point have a similar meeting ID while utilizing two-party
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conventions. The meeting ID is not the same as the nearby meeting ID. The key 
trade strategy registers the previous to recognize which meetings are accomplices, 
while the last option is only an unmistakable mark for the assailant to utilize while 
addressing questions to a particular meeting. 

We assume that the foe knows about the acknowledgment or dismissal of a key 
during a key trade convention meeting. We explicitly request this trait; however, it is 
obvious from the models of that an enemy might find when meetings acknowledge 
or dismiss a key by sending an “Uncover” question after each “Send” inquiry. 

3 Basic Definitions 

3.1 Platform Group 

Platform groups are noncommutative groups used in cryptographic protocols. 
Noncommutative cryptographic protocols can only be implemented on platforms 
with certain properties. For a particular noncommutative cryptographic system, let 
G be a platform group. G,s properties are outlined below. 

1. The group G must be well-known and researched. 
2. A deterministic algorithm should be able to solve the word problem in G quickly. 

For elements of G, there should be an efficiently computable “normal form.” 
3. The factors x and y should be impossible to recover from the product xy in G. 
4. The number of n − length elements in G2 should increase faster than any 

polynomial in n. 

3.2 Braid Group 

A group is a way of specifying a collection absolutely in phrases of a hard and fast 
of mills and a hard and fast of defining members of the family on these generators. 
The braid group Bn with braid index n, by the subsequent generators and relations: 

Generators: σ 1, σ 2, . . .  , σ n − 1 
Defining family members 

1. σ sσ t = σ tσ s for |t − s| ≥  1 
2. σ sσ tσ s = σ tσ sσ t for |t − s| =  1. 

3.3 Conjugacy Search Issue 

Let (g,X) ∈ Bn × Bn, and find x ∈ Bn such that X = xgx−1.
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3.4 Dual (Twin) Conjugacy Quest Challenge 

Given (g,X1,X2) ∈ Bn × Bn, find x1, x2 ∈ Bn such that .X1 = x1gx−1
1 and . X2 =

x2gx−1
2 . 

3.5 Dual (Twin) Conjugacy Quest Encryption Ruse 

The (Ens, Dec) is a couple of proportion key encryption calculations, while H 
is a hash function, H : Bl + r → {0, 1}l(k), l(k) is a defense boundary, and g is a 
component in Bl + r. 

1. Key Production 
Pick erratic components .(x1, x2) ∈ Bn such that X1 = x1gx−1

1 and . X2 =
x2gx−1

2 , and then the mutual key is ( X1, X2, g), while the confidential key is 
(x1, x2). 

2. Encryption 
For cipher letter m ∈ Bl + r, designate a random element y in RBr, and 

compute Y = ygy−1, Z1 = yX1y−1, Z2 = yX1y−1, k = H(Y,Z), c = Enck(m). 
The nonentity text is (Y, c). 

3. Decryption 
Decode get the object nonentity text (Y, c). Compute . Z1 = x1Yx−1

1 , Z2 =
x2Yx−1

2 , k = H (Y,Z) ,m = Deck(c). 

4 Proposed Scheme 

4.1 Steps Involved in Protocol 

Initialization and Key Agreement 

Let g be efficiently complicated n-braid in Bn. We call physician as U1, hospital as 
U2 and patient as U3 be triple users wishing to share a key. 

Step 1 
U1adopt an element x1, x2 ∈ lBl 

Compute .X1 = x1gx−1
1 and . X2 = x2gx−1

2
Public key is ( X1, X2, g), and private is (x1, x2). 
Choose a unplanned element y ∈ RBr 

Compute Y = ygy−1, Z1 = yX1y−1, Z2 = yX1y−1 

Send the key, k1 = H(Y, Z), to the next user. That is, k1 = yX1gX2y−1
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Step 2 
U2 gains the key k1 and determine the elements . x∗

1 , x∗
2 ∈ LBl

Compute .X∗
1 = x∗

1g
(
x∗

1

)−1
and . X∗

2 = x∗
2g

(
x∗

2

)−1

Mutual key is.
(
X∗

1, X∗
2, g

)
and special key is . 

(
x∗

1 , x∗
2

)
Elect an aimless element y∗ in RBr 

Figure out Y∗ = y∗g(y∗ )−1, . Z∗
1 = y∗X∗

1(y∗)−1 and Z∗
2 = y∗X∗

2(y∗)−1

We get a key . k2 = H (Y ∗, Z∗) = y∗X∗
1gX∗

2(y∗)−1

Now concatenate the keys k1,k2 compile k12 
We get . k12 = y∗X∗

1k1X
∗
2(y∗)−1

Exactly, customer deliver the keys k1, k2, k12 to the terminal user. 

Step 3 
Now the ultimate user hit the crucial role in our protocol that it can’t be ended 
without the user U3 which is clients. Scholarly we rerun the stride1. 

That randomly selects elements . x∗∗
1 , x∗∗

2 ∈ LBl

Compute .X∗∗
1 = x∗∗

1 g
(
x∗∗

1

)−1
and . X∗∗

2 = x∗∗
2 g

(
x∗∗

2

)−1

Social key is.
(
X∗∗

1 , X∗∗
2 , g

)
and exclusive key is . 

(
x∗∗

1 , x∗∗
2

)
Accept an irregular element y∗∗ in RBr 

Figure out Y∗∗ = y∗∗g(y∗∗ )−1, . Z∗∗
1 = y∗∗X∗∗

1 (y∗∗)−1 and Z∗∗
2 = y∗∗X∗∗

2 (y∗∗)−1

We get a key . k3 = H (Y ∗∗, Z∗∗) = y∗∗X∗∗
1 gX∗∗

2 (y∗∗)−1

Now compute the keys k13and k23 and dispatch to the users U1, U2. 

Step 4 
The three users U1, U2, U3 compute their mysterious keys S(U1), S(U2), S(U3). 

That is, k123 = S(U1) = S(U2) = S(U3). 

4.2 Correctness 

. S (U1) =
(
yX1gX2y

−1
) (

y∗X∗
1g

(
y∗)−1

X∗
2

) (
y∗∗X∗∗

1 g
(
y∗∗)−1X∗∗

2

)

= (
X1X

∗
1X∗∗

1

)
Y

(
X2X

∗
2X∗∗

2

)
.

Similarly, we get (U2) and S(U3) .  

5 Conclusion 

Cryptosystems have woven a great deal of exploration and fervor into the subject, 
and it immediately became evident that they were unreliable. At first, the issue of 
taking advantage of interlace bunches was believed to be sufficiently troublesome 
to develop a solid cryptosystem. It rolls out minor improvements to the encryption



A Specific Key Sharing Protocol Among Multiuser Using Noncommutative. . . 213

cycle to the first CSP conspire. As a matter of fact, the primary consequence 
of this article is the expansion of the finish of the dual Diffie-Hellman issue for 
universal periodic gatherings proposed by David Money to the twin conjugacy 
search issue for general noncommutative gatherings. And furthermore utilizing 
this twin conjugacy technique, we tackle an extraordinary key dividing convention 
between multiclients. 
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Some Analytic and Arithmetic Properties 
of Integral Models of Algebraic Tori 

Armen G. Bagdasaryan 

Keywords Linear algebraic group · Algebraic torus · Integral models · 
Arithmetic properties · Integer-valued polynomials · Factorization · Generators 

1 Introduction 

The last decades have witnessed the growing interest in the analysis of various 
properties of linear algebraic groups over local and global fields, the origins of 
which can be traced back to the works of Lagrange and Gauss. While this subject 
remains an area of active research, there is a particular interest in the arithmetic 
properties of linear algebraic groups over fields of an arithmetic nature that are not 
global, such as function fields of curves over various classes of fields, including p-
adic fields and number fields. These recent developments rely on a combination of 
methods from the theory of algebraic groups and arithmetic geometry [17]. 

Let . k be a field of characteristic 0, and suppose . k is the field of fractions of an 
integral domain . O, and let G be a linear algebraic group over . k. An  integral model 
of G is a group scheme . X over . O such that .X ⊗O k ∼= G. The integral forms of 
G always exist and can be easily constructed. An algebraic torus . T is an algebraic 
.k-group that .T ⊗k L ∼= G

d
m,L for a finite Galois extension .L/k, where .Gm is the 

multiplicative group and .d = dimT is the dimension of . T [3]. The smallest among 
such extensions L is called the minimal splitting field of . T, .k ⊆ L ⊆ k, . k is the 
algebraic closure of . k. The projections .χi : T ⊗k L → Gm,L, . i = 1, 2, . . . , d

generate a free abelian group . T̂ , the group of rational characters of . T, that may be 
regarded as a .r-module of rank d over . Z, where .r = Gal(L/k). 

The necessity of a study of integral models in .k-group G (specifically, .k-torus) 
is due to some principal problems in arithmetic and analysis on a group G (torus 
. T), such as reduction of algebraic groups modulo of a prime, computation of class 

A. G. Bagdasaryan (O) 
American University of the Middle East, Egaila, Kuwait 
e-mail: armen.bagdasaryan@aum.edu.kw 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
H.-H. Leung et al. (eds.), Recent Developments in Algebra and Analysis, 
Trends in Mathematics, https://doi.org/10.1007/978-3-031-37538-5_21

215

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37538-5protect T1	extunderscore 21&domain=pdf

 885 56845 a 885 56845 a
 
mailto:armen.bagdasaryan@aum.edu.kw
mailto:armen.bagdasaryan@aum.edu.kw
mailto:armen.bagdasaryan@aum.edu.kw
mailto:armen.bagdasaryan@aum.edu.kw
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21
https://doi.org/10.1007/978-3-031-37538-5_21


216 A. G. Bagdasaryan

numbers and Tamagawa measure, and application of Siegel-Tamagawa formulas 
[14, 17]. The algebras of integer-valued functions defined on a torus naturally 
appear when studying integral models of the algebraic torus. The study of properties 
of these algebras is important for classification of various integral forms of tori. 
Another problem related to analysis of integral models is to determine the generators 
of algebras defined on the torus, which is the main object of this work. 

Notations As is customary, . Q, . Qp, . Z, and . Zp denote the field of rational numbers, 
the field of p-adic numbers, the ring of rational integers, and the ring of p-adic 
integers. We let . N and . N0 denote the set of positive and nonnegative integers. We 
denote by . R∗ the group of invertible elements in a commutative ring . R. 

2 Main Results 

2.1 Algebras as Integral Models of Algebraic Tori 

Consider the algebra 

.A1 = {f ∈ Qp[t, t−1] | f
(
Z

∗
p

)
⊆ Zp}, (1) 

where .X1 = SpecA1 is an affine scheme [12, 13]. The algebra .A1 is an integral 
model for the algebraic torus .T = Gm, that is, .T ∼= X1 ⊗Zp

Qp, and .Gm is the 
multiplicative group over the ring . Zp. If considered as a ring, .A1 is an example 
of integer-valued ring, being extensively studied [7, 15, 16, 19]. We determine the 
generators of such rings and study their factorization properties [2, 9]. 

To find the generators of . A1, we search for polynomials .Qn(t) and numbers 
.tn ∈ Z

∗
p with the following properties: 

1. . deg(Qn(t)) = n

2. . Qn(t) ∈ A1

3. .Qn(tn) ∈ Z
∗
p or .

1

p
Qn(t) /∈ A1. 

We first prove the existence of the polynomials .Qn(t) by constructing .Qn(t) when 
.n = ϕ

(
pk

)
, where . ϕ is the Euler function. 

Theorem 1 The polynomials 

. Qϕ(pk)(t) = 1

pαk

pk−1−1||
i=1

(i,p)=1

(t − i),

where
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. αk = 1 + p + p2 + · · · + pk−1 = pk − 1

p − 1
,

belong to the algebra .A1 and the polynomials .
1

p
Qϕ(pk)(t) /∈ A1. 

Proof Since .t ∈ Z
∗
p and . i ∈ Z

∗
p, we have  

. 
t = r0 + r1p + · · · + rk−1p

k−1 + rkp
k + · · · (0 < r0 ≤p − 1, 0 ≤ ri ≤p − 1),

i = s0 + s1p + · · · + sk−1p
k−1 (0 < s0 ≤ p − 1, 0 ≤ si ≤ p − 1).

The number . pl divides .(t − i) when .ri = si for .i = 0, . . . , l − 1, .rl /= sl. Fix t and 
choose i to run over reduced residue class modulo . pk; write .i ∈ R. Then there are 
in total .(p − 1)pk−(l+1) expressions .(t − i) that are divisible by . pl for .l < k, since 
for all . i ∈ R

. r0 = s0, r1 = s1, . . . , rl−1 = sl−1, rl = sl

and for .j ≥ l + 1, the numbers . sj are arbitrarily chosen. Note that when . rj = sj
for .j = 0, 1, . . . , k − 1, there exists unique .i ∈ R such that .pk | (t − i), and 
when .rk = rk+1 = · · · = rk+m = 0, .pk' | (t − i), .k' > k. Therefore, .pαk divides 
.
||

i∈R(t − i), where 

. 

αk = k + (p − 1)(k − 1) + p(p − 1)(k − 2) + · · · + (p − 1)pk−(l+1)l+
+ · · · + (p − 1)pk−2

= 1 + p + p2 + · · · + pk−1 = pk − 1

p − 1
.

However, for .t ' = pk + 1, .pαk+1
+

||
i∈R(t ' − i), which completes the proof. nu

To construct the numbers . tn, we choose them in ascending order from the reduced 
residue class modulo . pk+1. We set .n > ϕ

(
pk

)
; for instance, .tn = pk + 1 when 

.n = ϕ
(
pk

)+1. Similar to the case of polynomials, for .n = ϕ
(
pk

)
, we first consider 

for arbitrary n the products 

.P(t) =
pk−1||
i=1

(i,p)=1

(t − i)

n||
j=ϕ(pk)+1

(t − tj ). (2) 

We determine a number . ν such that . pν | P. We have  

.n = nkϕ
(
pk

)
+ nk−1ϕ

(
pk−1

)
+ · · · + n1ϕ(p) + n0,
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where .nk > 0 and .0 ≤ ni < p, .n0 < p−1, .i = 1, 2, . . . , k −1. From construction 
of n, we note the following: among the numbers i and . tj in (2), there are . nk reduced 
residue classes modulo . pk having the digits .0, 1, . . . , nk −1 at . pk . Among numbers 
with the digit . nk at . pk , there are .nk−1 reduced residue classes modulo .pk−1 having, 
respectively, the digits .0, 1, . . . , nk−1 − 1 at .pk−1, and so on. Hence, the numbers i 
run over . nk reduced residue classes modulo . pk , then over remaining .nk−1 reduced 
residue classes modulo .pk−1, etc. Further, from the proof of Theorem 1, it follows 
that .pνn | P, where .νn = nkαk+nk−1αk−1+· · ·+n2α2+n1α1. By construction of . tn, 
we have .tn+1 = (

nkp
k + nk−1p

k−1 + · · · + n1p + n0
)+ 1. Then upon substitution 

.t = tn+1 into (2), using the proof scheme of Theorem 1, one finds that since .nk /= 0, 

.pαk | ||
(tn+1 − j) when j runs over any reduced residue class modulo . pk in (2). 

Similarly, if there is .nu /= 0, then .pαu | ||
(tn+1 − j) when j runs over any reduced 

residue class modulo . pu in (2). This shows that for .t = tn+1, it holds that .pνn+1
+ P. 

Thus, we have constructed the numbers . tn and polynomials 

. Qn(t) = 1

pνn

pk−1||
i=1

(i,p)=1

(t − i)
||

ϕ(pk)<j≤n

(t − tj )

that possess the abovementioned properties, and moreover .Qn(tk) = 0 for .k ≤ n. 

Theorem 2 Let .ϕ
(
pk

)
< n ≤ ϕ

(
pk+1

)
and 

. Qn(t) = 1

pνn

pk−1||
i=1

(i,p)=1

(t − i)
||

ϕ(pk)<j≤n

(t − tj ).

Moreover, if .n = nkϕ
(
pk

)+nk−1ϕ
(
pk−1

)+· · ·+n1ϕ(p)+n0, then . νn = nkαk +
nk−1αk−1 + · · · + n2α2 + n1α1, where .0 ≤ ni < p, .n0 < p − 1, .nk /= 0, and 

.αi = pi − 1

p − 1
for .0 < i ≤ k. Then 

. A1 = Zp[t, t−1,Q1(t),Q2(t), . . . ,Qn(t), . . .].

Proof Suppose .f (t) ∈ Q[t, t−1]. Then it can be written .f (t) = 1

tn
g(t). We have  

that .f (t) ∈ A1 ⇔ g(t) ∈ A1. Let .deg(g) = d. The polynomials .Ql(t) are defined 
for any degree . l, so we can write  

. g(t) = sdQd(t) + sd−1Qd−1(t) + · · · + s1Q1(t) + s0.

Since .g(t) ∈ A1, we have that .g(tn) ∈ Zp for .tn ∈ Z
∗
p. Then the proof is continued 

by induction over t . nu
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Theorem 3 Let .Q'
k(t) = Qϕ(pk)(t). Then it holds that 

. A1 = Zp

[
t, t−1,Q'

1(t),Q
'
2(t), . . . ,Q

'
k(t), . . .

]
.

Moreover, if 

. A
(k)
1 = Zp

[
t, t−1,Q'

1(t),Q
'
2(t), . . . ,Q

'
k(t)

]

then .pQ'
k+1(t) ∈ A

(k)
1 , but .Q'

k+1(t) /∈ A
(k)
1 . 

Proof The proof is by induction over degree d of polynomial .Q'
k(t). nu

Consider an algebraic torus .T = G
n
m in . Qp. 

Theorem 4 Suppose the algebra 

. A1 = {f (t) ∈ Qp[t1, t2, . . . , tn, t−1
1 , t−1

2 , . . . , t−1
n ] | f

(
Z

∗n
p

)
⊆ Zp}

and let .Qα1,α2,...,αn(t1, t2, . . . , tn) be the polynomials such that 

. Qα1,α2,...,αn(t1, t2, . . . , tn) = Qα1(t1)Qα2(t2) · · · Qαn(tn),

where .(α1, α2, . . . , αn) ∈ N
n
0 . Then it holds that 

. A1 = Zp[t1, t2, . . . , tn, t−1
1 , t−1

2 , . . . , t−1
n , . . . , Qα1,α2,...,αn(t1, t2, . . . , tn), . . .].

Proof The degrees of polynomials .Q(·) run over all possible values . αi in the set of 
vectors .(α1, α2, . . . , αn) ∈ N

n
0. Then any polynomial .f (t) ∈ Qp[t1, t2, . . . , tn] has 

the expansion 

. f (t) =
E

aα1,α2,...,αn Qα1,α2,...,αn(t),

where .aα1,α2,...,αn ∈ Qp. The theorem is then proved, like in proof of Theorem 2, by  
showing that .f ∈ A1 if and only if .ai ∈ Zp, .i = 1, 2, . . . , n. nu

2.2 The Ring of Integer-Valued Polynomials and Factorization 
Properties 

The problems of factorization and non-unique factorization in polynomial rings, 
as well as elasticity of factorization, have recently been studied by many authors 
[1, 4, 5, 9, 10, 18]. For the ring .Int(Z) it was shown [11] that .ρ(Int(Z)) = ∞ and
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proved [5] that the ring .Int(Z) is fully elastic. We consider the ring of integer-valued 
p-adic polynomials . Int(Zp) = {f ∈ Qp[t] | f (Zp) ⊆ Zp}.
Theorem 5 The following statements are true for the ring .Int(Zp): 

1. it is atomic; 
2. it is bounded factorization domain; 
3. it is non-factorial. 

Theorem 6 The elasticity of .Int(Zp) is infinite, that is, .ρ(Int(Zp) = ∞. 

Proof It is known [8] that .ρ(Int(Zpn [t]) = ∞. To show this, an irreducible 
polynomial .f (t) was constructed, and then irreducibility of the polynomial . f q(t)+
pn−1, where q is a large prime number, was proved. For the polynomial . g(t)

.g(t) =
(
f q(t) + pn−1

)2
. (3) 

= f q (t)
(
f q (t) + 2pn−1

)
(4) 

it follows that factorization (3) has two irreducibles, whereas factorization (4) has 
.q + 1 irreducibles. In view of the Hensel’s lemma and its modification [11], two 
factorizations of .g(t) can be lifted to a factorization in the ring . Int(Zp). The  
existence of the two factorizations of .g(t) in .Int(Zp) proves the theorem. nu

2.3 Algebras of Integer-Valued Functions 

Let .Qp be the field of p-adic numbers, .O = OQp
be the ring of integers of the field 

. Qp, and .O∗ the group of invertible elements in . Qp, and .f = O/O∗ is the norm 
field. Suppose . T is an algebraic torus over . Qp, and . X is a group scheme over . O
such that .Qp-groups .X ⊗O Qp and . T are isomorphic, .X = SpecA, .A ⊂ Qp[T]. 
Low-Dimensional Tori We consider the algebra .A = {f ∈ Qp[T] | f (U) ⊂ O}, 
where .U = UQp

is the maximal compact subgroup of the group .T(Qp), and find its 
generators for one- and two-dimensional tori (as some of them are direct products 
of split and 1-dim tori). The 1-dim torus .T = Gm, represented by .Z[x, x−1], a  
special case of split tori .T = G

d
m, was studied in previous sections. There exist 

two 1-dimensional tori. So consider the 1-dim torus .T = R
(1)
L/Qp

(Gm), the kernel 
of the norm mapping .N : RL/Qp

(Gm) → Gm,Qp
, where .Gm,Qp

= Gm ⊗Z Qp, 

.L = Qp(
√

d), R stands for the Weil functor of restriction of scalars, and . (d, p) =
1. In this case, the generators of . A are reduced to the generators of the algebra 
.A1 = {f ∈ Qp[x, y] | f (U) ⊆ O}, where .U = {(x, y) ∈ O2 | x2 − dy2 = 1}. 
Let .U(∗) = {(±x1,±y1), (±x2,±y2), . . . , (±xν,±yν)} be the set of solutions of 
the congruence .x2 − dy2 ≡ 1 (mod p). Suppose .(xi, yi) ∈ U(∗) is a solution of 
the given congruence. Then, for .y'

i = yi + y∗
i p, where . y∗

i is in the complete residue 
system modulo p, there exists a unique solution . x'

i of .(x'
i )

2 − d(y'
i )

2 ≡ 1 (mod p2)
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that satisfies .(x'
i ) ≡ xi (mod p), which follows from the Hensel lemma. Applying 

the lemma further, one constructs solutions modulo .pk+1 based on the solutions 
modulo . pk , thus obtaining an element of U . 

Let .U(∗)
k be the set of solutions of .x2 − dy2 ≡ 1 (mod pk); then one has 

.|(U(∗)
k+1)| = p |(U(∗)

k )|. Denote .θ1 = U
(∗)
1 , .θk = U

(∗)
k /U

(∗)
k−1 for .k ≤ 2, .|θ1| = ν, 

.θk = |U(∗)
k | − |U(∗)

k−1| = ϕ̃(k) = ϕ(pk−1)ν, . ϕ is the Euler function. 

Theorem 7 Let .|U(∗)
k | < l ≤ |U(∗)

k+1| and 

. 

Pl(x) = 1

pνl

||
(xi ,yi )∈U

(∗)
k

(x − xi)
||

(xj ,yj )∈θn+1

|(U(∗)
k )|<j≤l

(x − xj ),

Ql(y) = 1

pνl

||
(xi ,yi )∈U

(∗)
k

(y − yi)
||

(xj ,yj )∈θn+1

|(U(∗)
k )|<j≤l

(y − yj ).

Moreover, if .l = lkϕ̃(k) + · · · + l1ϕ̃(1) + l0, then .νl = lkαk + · · · + l1α1, where 

.0 ≤ li < p, .αi = pi−1
p−1 , for .0 < i ≤ ω; also, .lω /= 0 and .0 ≤ l0 < ν. Then 

. A1 = O[x, y, P1(x),Q1(x), . . . , Pn(x),Qn(x), . . .].

Proof We prove the theorem for polynomials .Qk(y). We verify that .Qk(y) possess 
the properties: (1) .deg(Ql) = l, (2) .Ql ∈ A1, (3) .

1
p
Ql(yl+1) /∈ A1. We first 

consider the polynomials when .l = |(U(∗)
k )|. For arbitrary .Qk(y), the properties 

are verified in a similar way by ordering the elements of . θk . Analogously, these 
properties are proved for .Pk(x). nu
Quasi-Split Tori We consider the algebra . A0 = {f ∈ Qp[T] | f (u) ∈ O, ∀u ∈
X(O)}, where .X(O) = Hom(A,O), .X = SpecA, for which we construct the 
generators in case of quasi-split tori defined as follows. Let .r = Gal(L/Qp), . T̂
be a .r-module of characters of . T, .{χi}di=1 the basis of . T̂ , and the group . r which 

acts on . T̂ by the permutations. Suppose . r1 is a stabilizer of the element . χ1, then 
.T̂ ∼= Z ⊗r1 Z[r], and .T ∼= RF/Qp

(Gm), where .F = Lr1 is the extension of 
.Qp with respect to an integral basis .{ωi}di=1 and the ring of integers .OF of F . We  
have decomposition .χ1 = x1ω1 + · · · + xdωd . For the integral model of . T, . A =
O[x1, x2, . . . , xd, y−1], and .y = χ1 · · · χd is a norm form with degree d in variables 
.x1, . . . , xd . Thus, our aim is to find the generators of 

. A0 = {f ∈ Qp[T] = Qp ⊗O A | f (u) ∈ O, ∀u ∈ O∗
F },

where .O∗
F = X(O) = Hom(A,O).
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Lemma 1 It holds .A0 = {f ∈ Qp[x1, . . . , xd, y−1] | f (u) ∈ O, ∀u ∈ O∗
F }. 

Proof The proof immediately follows from the fact that y is a norm mapping that 
on the elements of .O∗

F takes on the values in . O∗. nu
One has . O∗

F = {(x1, x2, . . . , xd) | ∀i, xi ∈ O and ∃i0, xi0 ∈ O∗}.
Theorem 8 Let . A0 be the algebra defined as above. The polynomials 

. Qnj
(tj ) = 1

p
snj

p
kj −1||
i=0

(
tj − i

) ||
p

kj ≤in≤nj

(
tj − t∗in

)
,

where . tj is a variable, .j = 1, 2, . . . d, and . nj = nj,kj
pkj + nj,kj −1p

kj −1 + · · · +
nj,1p + nj,0, .0 ≤ nj,m < p, 1 ≤ m ≤ kj − 1, nj,kj

/= 0, . snj
= nj,kj

αkj
+

nj,kj −1αkj −1 + · · · + nj,1α1, .αi = 1 + p + p2 + · · · + pi−1 = pi−1
p−1 , are  in  . A0. 

Moreover, together with the polynomials 

. Q'[k] (t1, t2, . . . td ) =
d||

j=1

⎛
⎜⎜⎝

pk−1||
i=1

(i,p)=1

(tj − i)

⎞
⎟⎟⎠ 1

pαk
.

they form the generators of . A0. 

Proof We give the sketch of the proof. Using the inclusion .O∗ ⊂ O, we get 
.Qnj

(tj ) ∈ A0 and .Qnj
(tj ) are integer-valued on . O. The necessity of adding .Q'[k] is 

due to the representation of .u ∈ O∗
F as .u = u1ω1 + . . . + udωd , where .ui ∈ O and 

there exists . i0 such that .ui0 ∈ O∗. Hence, when the values of i run over the reduced 
residue system modulo p, for the variable . xi0 , one can find an element that belongs 

to the same class with . ui0 . Therefore, p divides .
p−1||
i=1

(i,p)=1

(xj0 − i). Considering the 

reduced residue systems modulo . pk , one finds the values . αk . nu

3 Future Research and Conclusion 

The results of this work may lead to a study of algebras of integer-valued functions 
for arbitrary algebraic tori, since any algebraic torus is embedded into a quasi-
split torus. There are nine different non-isomorphic two-dimensional tori. Some 
of those tori are represented as direct product of split and one-dimensional norm 
tori, which can be studied using the obtained results. Further study of algebras 
may be performed in several directions, for instance, the study of arithmetic and 
algebras of tori defined over more general fields and function fields of one or two
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variables. The construction of Artin L-functions for one- and two-dimensional tori 
over the field of rational numbers is another interesting topic for future research. 
Moreover, using the Artin L-functons of algebraic torus, one can compute its global 
.ζ -function and the Tamagawa numbers as well. In addition, due to a certain property 
of any algebraic torus, two tori are isomorphic if and only if their minimal splitting 
fields coincide, and split groups are conjugate in .GL(n,Z), which can be employed 
for classification of all n-dimensional tori. Also, finding the generators of algebras 
of integer-valued functions is important for classification of integral models of 
algebraic tori, including tori of small dimensions. 
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Zadeh [24] launched the FSs in 1965. Later on, Rosenfeld [21] invented the theory 
of FGs in 1971. The idea of level FSG was innovated by Das [8] in 1981. Liu 
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in 1988. Mashou [14] discussed multiple consequential plats of FNSGs in 1990. 
Biswas [5] commenced the opinion of anti-FSG in 1990. Dixit et al. [9] studied the 
union of FSGs in 1990. Gupta [11] developed many classical t-operators in 1991. 
Kumar et al. [12] explored the FNSG, fuzzy direct product, and fuzzy quotients 
in 1992. Malik et al. [15] investigated the normality of FSGs in 1992. Filep [10] 
established the structure and construction of FSGs of group in 1992. Chakraborty 
and Khare [7] examined the behavior of the composition of fuzzy homomorphism 
and proved the fundamental theorem of homomorphism in 1993. Asaad and Zaid 
[2] proposed the study of FSGs of nilpotent groups in 1993. Ajmal [1] described 
the homomorphism of FSGs, fuzzy quotient groups, and correspondence theorem 
in 1994. Morsi et al. [17] examined fuzzy quotient groups and level structures in 
1994. Mishref [16] described the normal, subnormal, and composition series of 
FNSGs in 1995. C.T. Nagaraj and M. Premkumar [19] introduced the concept on 
fundamental attributes on homomorphism of μ-anti- fuzzy subgroups in 2021. Ray 
[20] developed key features of the product of two FSb and FSGs in 1999. Sharma 
[22] expounded α-anti FSGs in 2012. Further, the basic algebraic properties of α-
FSGs are determined by the coequal authors [23] in 2013. 

In Sect. 3, we utilize the study of this phenomenon to define μ-anti- Q−FSG and 
prove that each anti- Q−FS is μ-anti- Q−FSG. Moreover, we investigate μ-anti-
Q−fuzzy version of some fundamental outcomes of pure mathematics. Addition-
ally, we innovate the concepts of μ-anti- Q−fuzzy cosets, μ-anti- Q−FNSG. 

2 Preliminaries 

Definition 2.1 [24] A FS  ̆A. of a nonempty set P is a function 

. Ă. : P → [0, 1] .

Definition 2.2 [3] Let Ă. be FSb of a group H. Then Ă. is said to a FSG if 
Ă. (u

−1v) ≥ min {Ă. (u), Ă. (v)}, for all u, v ∈ H. 

Definition 2.3 [5] Let Ă. be FSb of a group H. Then Ă. is said to an anti-FSG if 
Ă. (u

−1v) ≤ max { ̆A. (u), Ă. (v)}, for all u, v ∈ H. 

Definition 2.4 [19] Let d’ be a nonempty set and also Ă. be the FSb of d’ and 
μ ∈ [0, 1]. Then FS Ă. is bellowed μ-anti-FSb afore d’ and is defined as 

.Ă. μ (m) = Sď

{
Ă. (m) , 1 − μ

}
, for all m ∈ ď
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3 Algebraic Properties on μ-Anti- Q−FSGs 

In this chapter, we define aspects of μ-Anti- Q−FSG and μ-Anti- Q−FNSG. 
We show that every anti- Q−FSG (anti- Q−FNSG) is additionally μ-anti- Q−FS 
(μ-Anti- Q−FNS). The opinion of μ-anti- Q−fuzzy coset (μ-Anti- Q−FCS) is 
discussed deeply during this section. Further, we innovate the notion of factor group 
with regard to μ-anti- Q−FNS. 

Definition 3.1 Let \̃H̨ be a collection and Ă. be a Q−FSb of \̃H̨,μ ∈ [0, 1]and q ∈ Q, 
and then Ă. signifies μ-Anti- Q−FSG if 

(i) Ă. μ(mn, q) ≤ max { ̆A. μ(m, q), Ă. μ(n, q)}, for all m, n ∈ \̃H̨ and q ∈ Q 
(ii) Ă. μ(m−1, q) = Ă. μ(m, q). 

Proposition 3.2 If Ă. : \̃H̨ −→ [0, 1] is a μ- Anti - Q−FSG of ̃\H̨, then 

(i) Ă. μ(m, q) ≤ Ă. μ(e, q), ∀ m ∈ ̃\H̨ ,q ∈ Q and where e ∈\̃H̨. 
(ii) Ă. μ(mn−1, q) = Ă. μ(e, q)⇒ ̆A. μ(m, q) = Ă. μ(n, q), ∀m, n ∈ ̃\H̨ and q ∈ Q. 

Proof 

(i) Ă. μ(e, q) = Ă. μ(mm−1, q) ≤ max { ̆A. μ(m, q), Ă. μ(m−1, q)} 
= max {Ă. μ(m, q), Ă. μ(m, q)} =  ̆A. μ(m, q). 

Hence, Ă. μ(e, q) ≤ Ă. μ(m, q), for all m ∈ ̃\H̨. 

(ii) Ă. μ(m, q) = Ă. μ(mn−1n, q) ≤ max { ̆A. μ(mn−1, q), Ă. μ(n, q)} 

. = max
{
Ă. μ (e, q) , Ă. μ (n, q)

} = Ă. μ (n, q) .

Hence, Ă. 
μ(m, q) ≤ Ă. μ(n, q). 

Similarly, Ă. μ(n, q) ≤ Ă. μ(m, q). 

. Ă. μ (n, q) = Ă. μ (m, q) , for all m, n ∈ \̃H̨ and q ∈ Q.

The following findings explain that the every Q−FSG of the group is μ- Q−FSG 
of the group. 

Theorem 3.3 Every μ-anti-FSG of ̃\H̨ is a μ-Anti- Q−FSG of ̃\H̨. 

Proof Let Ă. be an μ-anti- Q−FSG of ̃\H̨ and m & n in II elements in ̃\H̨. 

. Ă. μ(mn, q)=Sp

{
Ă. (mn,q) , 1 − μ

} ≤ Sp

{
max

{
Ă. (m, q) ,Ă. (n, q)

}
, 1 − μ

}

. =max
{
Sp

{
Ă. (m, q) ,1−μ

}
, Sp

{
Ă. (n, q) ,1−μ

}}=max
{
Ă. μ (m, q) , Ă. μ (n, q)

}

Hence, Ă. μ(mn, q) ≤ max {Ă. μ(m, q), Ă. 
μ(n, q)}.
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Further, Ă. μ(m−1, q) = Sp{( ̆A. (m−1, q), μ} =  Sp{( ̆A. (m, q), μ} =  ̆A. μ(m, q). 
Consequently, Ă. is μ-Anti- Q−FSG of ̃\H̨. 

Example 3.4 Let \̃H̨ = {e,m, n,mn}, where m2 = n2 = e and mn = nm in \̃H̨ . Let  
the FS Ă. of ̃\H̨ be defined by 

. Ă. (u, q) =

⎧⎪⎪⎨
⎪⎪⎩

0.7, if x = e

0.5, if x = m or n

0.6, if x = mn

Take μ = 0, and then Ă. μ(u, q) = Sp{ ̆A. (u, q), 1} =  Sp{ ̆A. (u, q), 1} =  1, 
for all u ∈ ̃\H̨ and q ∈ Q. 

This implies that Ă. μ(mn, q) ≤ max {Ă. μ(m, q), Ă. μ(n, q)}. 

. m−1 = m, n−1 = n and (mn)−1 = mn.

. Ă. μ

(
u−1, q

)
= Ă. μ (u, q) , for all u ∈ \̃H̨ and q ∈ Q.

Ă. is μ-anti- Q−FSG of ̃\H̨. Obviously, Ă. is not μ-anti- Q−FSG of ̃\H̨ for 
Ă. μ(mn, q) = 0.6 > 0.5 = max { ̆A. (m, q), Ă. (n, q)}. 

Theorem 3.5 Let ∪ of two μ-anti- Q−FSGs of \̃H̨ and is also μ-anti- Q−FSG of 
\̃H̨. 

Proof Let Ă. & Ꞗ be two μ-Anti- Q−FSGs of ̃\H̨. 
Assume that for all m1, m2 ∈ ̃\H̨ and q ∈ Q 

. 
(
Ă. ∪Ꞗ)

μ
(m1m2, q)=(

Ă. μ ∪Ꞗμ

)
(m1m2, q)=max

{
Ă. μ(m1m2, q) ,Ꞗμ(m1m2, q)

}

. ≤ max
{
max

{
Ă. μ (m1, q) , Ă. μ (m2, q)

}
, max

{
Ꞗμ (m1, q) ,Ꞗμ (m2, q)

}}

. = max
{
max

{
Ă. μ (m1, q) ,Ꞗμ (m1, q)

}
, max

{
Ă. μ (m2, q) ,Ꞗμ (m2, q)

}}

. = max{
((

Ă. ∪Ꞗ)
μ

(m1, q) ,
(
Ă. ∪Ꞗ)

μ
(m2, q)

}
.

Thus, (( ̆A. ∪ Ꞗ)μ(m1m2, q) ≤ max {( ̆A. ∩ Ꞗ)μ (m1, q), ( ̆A. ∩ Ꞗ)μ(m2, q)}
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Moreover, . 
(
Ă. ∪Ꞗ)

μ

(
m−1

1 , q
)

= (
Ă. μ ∪Ꞗμ

) (
m−1

1 , q
)

. = max
{

Ă. μ

(
m−1

1 , q
)

,Ꞗμ

(
m−1

1 , q
)}

= max
{
Ă. μ (m1, q) ,Ꞗμ (m1, q)

}
.

Hence, . 
(
Ă. ∪Ꞗ)

μ

(
m−1

1 , q
)

=
((

Ă. ∪Ꞗ)
μ

(m1, q)

Consequently, ( ̆A. ∪ Ꞗ) is  μ-anti- Q−FSG of ̃\H̨. 

Definition 3.6 Let Ă. and Ꞗ two μ-anti- Q−FSGs of \̃H̨1 & \̃H̨2 respectively, and 
then product of μ-Anti-Q−FSGs of Ă. & Ꞗ is 

Ă. μ × Ꞗμ((m1, n1), q) = max { ̆A. μ(m1, q),Ꞗμ(n1, q)}, for all m1 ∈ \̃H̨1, 
n1 ∈ \̃H̨2 and q ∈ Q. 

Theorem 3.7 Let Ă. & Ꞗ two μ-anti-Q−FSGs of groups ̃\H̨1 and ̃\H̨2, respectively. 
Then Ă. 

μ × Ꞗμ is μ-anti-Q−FSG of ̃\H̨1 × ̃\H̨2. 

Proof Let m1, m2 ∈ \̃H̨1and n1, n2 ∈ \̃H̨2 and q ∈ Q then (m1, n1), 
(m1, n2) ∈ ̃\H̨1 × ̃\H̨2. 

. Ă. μ ×Ꞗμ

(
(m1, n1)

(
m−1

2 , n−1
2

)
, q

)
= Ă. μ ×Ꞗμ

((
m1m

−1
2 , n1n

−1
2

)
, q

)

. = max
{

Ă. μ

(
m1m

−1
2 , q

)
,Ꞗμ

(
n1n

−1
2 , q

)}

. ≤ max
{

max
{

Ă. μ (m1, q) , Ă. μ

(
m−1

2 , q
)}

, max
{
Ꞗμ (n1, q) ,Ꞗμ

(
n−1

2 , q
)}}

. ≤ max
{
max

{
Ă. μ (m1, q) , Ă. μ (m2, q)

}
, max

{
Ꞗμ (n1, q) ,Ꞗμ (n2, q)

}}

. = max
{
max

{
Ă. μ (m1, q) ,Ꞗμ (n1, q)

}
, max

{
Ă. μ (m2, q) ,Ꞗμ (n2, q)

}}

. = max
{
Ă. μ ×Ꞗμ ((m1, n1) , q) , Ă. μ ×Ꞗμ ((m2, n2) , q)

}

Hence, 

. Ă. μ ×Ꞗμ

(
(m1, n1)

(
m−1

2 , n−1
2

)
, q

)
.

. ≤ max
{
Ă. μ ×Ꞗμ ((m1, n1) , q) , Ă. μ ×Ꞗμ ((m2, n2) , q)

}
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Definition 3.8 Let Ă. be a μ-anti-Q−FSG of a group \̃H̨ and μ ∈ [0, 1]. ∀m ∈ \̃H̨, 
the μ-anti- Q−FLCS of Ă. in ̃\H̨ is represented by m ̆A. μ. 

. mĂ. μ (g, q) = Sp

{
Ă.

(
m−1, q

)
, μ

}
, ∀m, g ∈ \̃H̨ and q ∈ Q.

μ-Anti- Q−FRCS of Ă. in ̃\H̨ by Ă. μm and is defined as 

. 
(
Ă. μm,

)
(g, q) = Sp

{
Ă.

(
gm−1, q

)
, μ

}
, for all m, g ∈ \̃H̨ and q ∈ Q.

Definition 3.9 Let Ă. be a μ-anti- Q−FSG of ̃\H̨ & μ ∈ [0, 1], and then Ă. is named 
as μ-anti- Q−FNSG of ̃\H̨ iff m Ă. μ = Ă. μm, for all m ∈ \̃H̨. 

Theorem 3.10 Every anti- Q−FNSG of ̃\H̨ is a μ-anti- Q−FNSG of ̃\H̨. 

Proof Let Ă. be an anti- Q−FNSG of ̃\H̨. ∀ m ∈ ̃\H̨ and q ∈ Q. 
m Ă. = Ă. m, ⇒(m Ă. )(g, q) = ( ̆A. m)(g, q), for any g ∈ ̃\H̨. 
Then, we have Ă. (m

−1g, q) = Ă. (gm−1, q) ⇒ Sp{Ă. (m−1g, q), μ} 
= Sp{ ̆A. (gm−1, q), μ} 
⇒(m Ă. μ)(g, q) = ( ̆A. μm)(g, q). Hence, m Ă. μ = Ă. μm, for all m ∈ ̃\H̨ and q ∈ Q. 
⇒Ă. is μ-Anti- Q−FNSG of ̃\H̨. 

Example 3.11 Let dihedral group of degree 3 with finite presentation 
\̃H̨ = D3 = < m, n : m3 = n2 = e, nm = m2n> . Define the FSG of D3 by 

. Ă. (y, q) =
{

0.05, if y ∈< n >

0.3, otherwise

Take μ = 0, and we have 

. 
(
yĂ. μ

)
(g, q) = Sp

{
Ă.

(
y−1g, q

)
, 1 − μ

}
= Sp

{
Ă.

(
y−1g

)
, 1

}
= 1

. = Sp

{
Ă.

(
gy−1, q

)
, 1

}
= Sp

{
Ă.

(
gy−1, q

)
, 1 − μ

}
= Ă. μy (g, q)

Hence, y Ă. μ = Ă. μy, for all y ∈ \̃H̨ and q ∈ Q. This shows that Ă. is 0-anti-
Q−FNSG of ̃\H̨. 

Now, Ă. (m
2(mn), q) = Ă. (m3n, q) = Ă. (n, q) = 0.05 

. Ă.
(
(mn) m2, q

)
= Ă. (m (nm)m, q) = Ă.

(
m

(
m2n

)
m, q

)

. = Ă.
((

m3n
)
m, q

) = Ă. (nm, q) = 0.3

⇒ ̆A. is not μ -Anti- Q−FNSG of ̃\H̨.



On Algebraic Characteristics of μ-Anti-Q-Fuzzy Subgroups 231

Theorem 3.12 Let Ă. be μ-anti- Q−FNSG of ̃\H̨, and then Ă. μ(n−1mn) = Ă. μ(m) or  
equivalently, Ă. μ(mn, q) = Ă. μ(nm, q),∀m, n ∈ ̃\H̨ . 

Proof Since Ă. be μ-anti- Q−FNSG of a ̃\H̨. 
∴ m Ă. μ = Ă. μm, holds ∀ m ∈ ̃\H̨ and q ∈ Q . 
This implies that (m Ă. μ)(n−1, q) = Ă. μm)(n−1, q), n−1 ∈ ̃\H̨ 

. ⇒ Sp

{
Ă.

(
m−1n−1, q

)
, 1 − μ

}
= Sp

{
Ă.

(
n−1m−1, q

)
, 1 − μ

}

which implies that Ă. μ((nm)−1, q) = Ă. μ((mn)−1, q) 
as Ă. is μ-anti- Q−FSG of \̃H̨ so Ă. μ(g−1, q) = Ă. μ(g, q), for all g ∈ \̃H̨ and q ∈ Q . 
⇒ Ă. μ(nm, q) = Ă. μ(mn, q). 

Definition 3.13 Let Ă. be a μ-anti- Q−FNSG of a group \̃H̨. Define . ̃\H̨Ă. μ

={
m ∈ \̃H̨ and q ∈ Q : Ă. μ (m, q) = Ă. μ (e, q)

}
, where e ∈\̃H̨ . It follows that 

explaination that the set .̃\H̨Ă. μ

is in fact a FNSG of ̃\H̨. 

Theorem 3.14 Let Ă. be a μ-anti- Q−FNSG of ̃\H̨, and then .̃\H̨Ă. μ

� \̃H̨. 

Proof Obviously, ̃\H̨ ̆A. μ
/= ∅  as e ∈ ̃\H̨ ̆A. μ 

Let .m, n ∈ \̃H̨Ă. μ

and q ∈ Q be any element . 

We have 

. Ă.
(
mn−1,q

)
≤max

{
Ă. μ(m,q) ,Ă. μ (n,q)

}=max Ă. μ(e, q) , Ă. μ(e, q)}= Ă. μ (e, q)

. Ă. μ

(
mn−1, q

)
≤ Ă. μ (e, q) but Ă. μ

(
mn−1, q

)
≥ Ă. μ (e, q) .

Therefore, Ă. μ(mn−1, q) = Ă. μ(e, q), ⇒.
(
mn−1, q

) ∈ \̃H̨Ă. μ

. 

Hence, .̃\H̨Ă. μ

is a subgroup of ̃\H̨. 

.Let m ∈ \̃H̨Ă. μ

, n ∈ ̃\H̨. We have  ̆A. μ(n−1mn, q) = Ă. μ(m, q) = Ă. μ(e, q) 

.⇒ (
n−1mn, q

) ∈ \̃H̨Ă. μ

. Consequently, . ̃\H̨Ă. μ

� \̃H̨.

Theorem 3.15 Let Ă. be the μ-anti- Q−FNSG of ̃\H̨, then 

. 
(
mĂ. μ, q

) = (
nĂ. μ, q

)
iff

(
m−1n, q

)
∈ \̃H̨Ă. μ

.
(
Ă. μm, q

) = (
Ă. μn, q

)
iff

(
mn−1, q

)
∈ \̃H̨Ă. μ
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Proof 

(i) m ̆A. μ = n Ă. μ∀ m, n ∈ \̃H̨ and q ∈ Q. 

. Ă. μ

(
m−1n, q

)
= Sp

{
Ă.

(
m−1n, q

)
, μ

}
for all m, n ∈ \̃H̨ and q ∈ Q

. = (
mĂ. μ

)
(n, q) = (

nĂ. μ

)
(n, q) = Sp

{
Ă.

(
n−1n, q

)
, μ

}
= Sp

{
Ă. (e, q) , μ

}

. = Ă. μ (e, q) .

⇒. m−1n ∈ \̃H̨Ă. μ.

Converse, .let m−1n ∈ \̃H̨Ă. μ

. ⇒ Ă. μ(m−1n, q) = Ă. μ(e, q). 

For any element,. r ∈ \̃H̨Ă. μ

,
(
mĂ. μ

)
(r, q) = Sp

{
Ă.

(
m−1r, q

)
, μ

} =
Ă. μ

(
m−1r, q

)

. = Ă. μ

((
m−1n

) (
n−1r

)
, q

)
≤ max

{
Ă. μ

(
m−1n, q

)
, Ă. μ

(
n−1r, q

)}

. = max
{

Ă. μ (e, q) , Ă. μ

(
n−1r, q

)}
= Ă. μ

(
n−1r, q

)
= (

nĂ. μ

)
(r, q) .

Interchanging the role of m and n 

. 
(
mĂ. μ

)
(r, q) = (

nĂ. μ

)
(r, q) , for all r ∈ \̃H̨ and q ∈ Q.

Consequently, (m Ă. μ, q) = (n Ă. μ, q) .  

(ii) It can be proven as analogous to part (i). 

Definition 3.16 Let Ă. be a μ-anti- Q−FNSG of \̃H̨. The set of all  μ-anti- Q−FCSs 
of Ă. .̃\H̨

/
Ă. μ forms a H with respect to * defined by 

. 

( (
mĂ. μ

)
∗
(
nĂ. μ

)
, q

)
= (m∗n, q) Ă. μ, where mĂ. μ, nĂ. μ ∈

\̃H̨
/

Ă. μ,m, n ∈ \̃H̨ and q ∈ Q This group is called the factor group of \̃H̨ with 
regard to μ-Anti- Q−FNSG Ă. μ. 

Theorem 3.17 Let .̃\H̨
/

Ă. μ form a group w.r.t the above stated binary arithmetic ∗. 

Proof Let Ă. μm1 = Ă. μm2 and Ă. μn1 = Ă. μn2, for some  m1, m2, n1, n2 ∈ \̃H̨ and q ∈ Q 
Let g ∈ \̃H̨ and q ∈ Q be any element of ̃\H̨ .
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. 
(
Ă. μ (m2n2, q)

)
(g) = Sp

{
Ă.

(
g(m2n2)

−1, q
)

, μ
}

= Sp

{
Ă.

(
gn−1

2 m2
−1, q

)
, μ

}

. = Sp

{
Ă.

((
gn−1

2

)
m2

−1, q
)

, μ
}

= Ă. μm2

(
gn−1

2 , q
)

= Ă. μm1

(
gn−1

2 , q
)

. = Sp

{
Ă.

((
gn−1

2

)
m1

−1, q
)

, μ
}

. = Sp

{
Ă.

((
m−1

1

) (
gn−1

2

)
, q

)
, μ

}
= Ă. μn2

(
m−1

1 g, q
)

= Ă. μn1

(
m−1

1 g, q
)

. = Sp

{
Ă.

((
m−1

1 g
)

n−1
1

)
, μ

}

. = Sp

{
Ă.

(
n−1

1

(
m−1

1 g
)

, q
)

, μ
}

= Sp

{
Ă.

((
n−1

1 m−1
1

)
(g) , q

)
, μ

}

. = Sp

{
Ă.

(
(m1n1)

−1 (g) , q
)
, μ

}

. = Sp

{
Ă.

(
(g) (m1n1)

−1, q
)

, μ
}

= (
Ă. μ (m1n1) , q

)
(g) .

Therefore, ∗ is well defined. Clearly, the set .̃\H̨
/

Ă. μ satisfies ∗. 
Moreover, ( Ă. μ)(m Ă. μ, q) = ((e Ă. μ) ∗ (m Ă. μ), q) = (e ∗ m, q) ̆A. μ = m Ă. μwhich 

implies that Ă. μis identity of \̃H̨/ ̆A. μ. The inverse of each element . mĂ.
μ ∈ \̃H̨

/
Ă. μ

is .m−1Ă. μ ∈ \̃H̨
/

Ă. μ as ((m−1 Ă. μ, ) ∗ (m Ă. μ), q) = (m−1 ∗ m, q) ̆A. μ = e Ă. μ = Ă. μ. 

Consequently,.
(
\̃H̨

/
Ă. μ,∗

)
is ̃\H̨. 

Theorem 3.18 Let Ă. be a μ-anti- Q−FNSG of a group \̃H̨. Then ∃a natural onto 
homomorphism bwl ̃\H̨ and .̃\H̨

/
Ă. μ which can be described as 

. f (m, q) = Ă. μm, m ∈ \̃H̨ and q ∈ Q

Proof f is homomorphism as if for m, n ∈ ̃\H̨ and q ∈ Q we have 

. f (mn, q) = (
Ă. μmn, q

) = (
Ă. μm, q

) (
Ă. μn, q

) = f (m, q) f (n, q)

Obviously f is onto as well. Consequently, f is an onto homomorphism from \̃H̨ 
to .̃\H̨

/
Ă. μ.
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Further, ker f = {m ∈ \̃H̨ and q ∈ Q : f (m, q) = Ă. μ(e, q)} = {m ∈ Gand q ∈ Q : 
( ̆A. μm, q) = ( ̆A. μe, q)} 

. kerf =
{
m ∈ \̃H̨and q ∈ Q :

(
me−1, q

)
∈ \̃H̨Ă. μ

}

. =
{
m ∈ \̃H̨and q ∈ Q : (m, q) ∈ \̃H̨Ă. μ

}
= \̃H̨Ă. μ.

Theorem 3.19 Let Ă. be the μ-anti- Q−FNSG of ̃\H̨, and then . ̃\H̨
/

Ă. μ
∼= \̃H̨/\̃H̨Ă. μ

.

Proof We have. \̃H̨/\̃H̨Ă. μ

which is well defined. 

Let .f : \̃H̨
/

Ă. μ → \̃H̨/\̃H̨Ă. μ

defined as . f
(
mĂ. μ, q

) = m\̃H̨Ă. μ

, for any . mĂ. μ ∈
\̃H̨

/
Ă. μ and q ∈ Q.

f is well defined because if m Ă. μ = n Ă. μ this implies that . m\̃H̨Ă. μ

= n\̃H̨Ă. μ

Hence, f (m Ă. μ, q) = f (n Ă. μ, q) 
This also shows that f is injective. Also, for each .m\̃H̨Ă. μ

∈ \̃H̨/\̃H̨Ă. μ

there 

exist.mĂ. μ ∈ \̃H̨
/

Ă. μsuch that .f
(
mĂ. μ, q

) = m\̃H̨Ă. μ

.Thus, f is surjective. 

Further, for each .mĂ. μ, nĂ. μ ∈ \̃H̨
/

Ă.
μ

and q ∈ Q, we have  

. f
(
mĂ. μnĂ. μ, q

) = f
(
(mn) Ă. μ, q

) = (mn, q) \̃H̨Ă. μ

=
(

m\̃H̨Ă. μ

, q

) (
n\̃H̨Ă. μ

, q

)

. = f
(
mĂ. μ, q

)
f

(
nĂ. μ, q

)

Hence, f (m Ă. μn Ă. μ, q) = f (m Ă. μ, q)f (n Ă. μ, q). Thus, f is a homomorphism. 
Consequently, . ̃\H̨/Ă. μ

∼= \̃H̨
/

\̃H̨Ă. μ

.

4 Conclusion 

In present work, the ideas of μ-anti- Q−FSG and μ-Anti- Q−FCS of a given group 
are delineated. Moreover, the opinion of μ-anti- Q−FNSG has been innovated, and 
we have established several fundamental characteristics of this notion. 
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Multi-criteria Decision-Making with 
Bipolar Intuitionistic Fuzzy Soft Expert 
Sets 

S. Anita Shanthi, N. Nishadevi, and S. Sampathu 

Keywords Bipolar intuitionistic fuzzy soft expert set · Score function · Entropy 
weights · VIKOR method 

1 Introduction 

The concept of fuzzy set was introduced by Zadeh [1]. Atanassov [2] extended this 
concept to IFS. Bipolar fuzzy set was introduced by Zhang et al. [3]. Abdullah [4] 
developed the concept of bipolar fuzzy soft set. The concepts of soft expert and 
fuzzy soft expert sets were introduced by Alkhazaleh [5, 6]. Enginoglu et al. [7] 
constructed a MCDM method for modified soft expert sets. Geetharamani et al. [8] 
proposed fuzzy expert decision set model. Seenivasan et al. [9] designed a robust 
fuzzy ranking approach. Al-Qudah et al. [10] defined AND and OR operators an 
BFSES and applied it to MCDM problem. Chandran et al. [11] proposed IFSES 
theory and defined some basic operations using this concept. 

Opricovic introduced VIKOR method to arrive at a compromise solution for 
MCDM method. Tara et al. [12] applied VIKOR method to select the best 
Magnesium alloy for automobile industry. Nurmuslimah et al. [13] analyzed the 
extent of damage of an amplifier using VIKOR method. VIKOR method was first 
introduced in fuzzy environment by Opricovic [14]. Yang et al. [15] developed a 
MCDM problem in IF environment. Hagar et al. [16] proposed neutrosophic VIKOR 
method. Fang et al. [17] proposed AHP-VIKOR-MRM method with PF information. 
Anita et al. [18] dealt with VIKOR method on BIFSS. Based on these concepts, the 
theory of BIFSES is developed. 
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2 VIKOR Method Based on BIFSES 

Definitions of BIFSES and BIFSE decision matrix are given in [19]. 

Definition 1 A BIFSES . BES = {x, (μn
uv(x), μ

p
uv(x)), (νn

uv(x), ν
p
uv(x)) : x ∈ X}

where .μn
uv=.μn

uv(x), .μp
uv=.μ

p
uv(x), . νn

uv=.νn
uv(x), . νp

uv=. ν
p
uv(x).

The pair .(μn
uv, μ

p
uv), (ν

n
uv, ν

p
uv) is often denoted by . β=.(m, n), (o, p). The score 

function of BIFSES is . β=.
m2+n2+o2+p2

4 . Using this score function, score matrix is 
constructed. 

Definition 2 The positive and negative ideal solutions in BIFSES is defined by 
.PI = max Euv, if .v ∈ k1, .min Euv, if . v ∈ k2

.NI = min Euv, if .v ∈ k1, .max Euv, if . v ∈ k2

where . k1 denotes the collection of benefit criteria and . k2 denotes the collection of 
cost criteria. 

Definition 3 Given a BIFSES, 
BES=.{x, [μn

uv(x), μ
p
uv(x)], [νn

uv(x), ν
p
uv(x)];.x ∈ X}, 

. λuv = 1 − |μn
uv − νn

uv + μ
p
uv − ν

p
uv|,

The entropy . Ev is 

. Ev = 1
m

mE
u=1

λuv.

The entropy weight 
. wv = 1−Ev

lE
v=1

(1−Ev)

The weight vector .W = (w1, w2, . . . , wv) satisfies . w1 + w2 + . . . + wv = 1.

Definition 4 Given BIFSES, the group utility value .BMu of an alternative is 

defined by .BMu=.

lE
v=1

( P I−Ev

PI−NI
), where PI and NI are positive and negative ideal 

solutions. 

Definition 5 Given BIFSES, the individual regret value .BNu of an alternative is 
defined by 
.BNu = max

v
(wv

PI−Ev

PI−NI
). 

Definition 6 The value of .BOu in BIFSES is defined by 
.BOu=.(Bt)BMu−BM∗

BM
'−BM∗ +(1-Bt).BNu−BN∗

BN
'−BN∗ , 

where . BM∗ = min
u

{BMu}, BM
' = max

u
{BMu}, BN∗ = min

u
{BNu},

.BN
' = min

u
{BNu}. 

.Bt ∈ [0, 1] represents weight of maximum group utility, and .(1 − Bt) represents 
the weight of individual regret value. Minimum value of .BOu is better alternative. 

Definition 7 Compromise solution: The best alternative should satisfy the follow-
ing conditions.



MCDM with BIFSES 239

Fig. 1 Flowchart of BIFSES 
VIKOR method 

Condition1: Acceptable Advantage 
The first alternative EA on compromise list .BOu for .Bt = 0.5 has sufficient 
advantage in to the next best ranked alternative EA, 
if .BOu(EA2) − BOu(EA1) ≥ 1

1−d
, where d denotes the number of alternatives. 

Condition2: Acceptable Stability 
Alternative .EA1 is ranked by using .BMu and . BNu.

Case1: If the Condition1 is not satisfied , then the compromise solution of the 
alternatives are first and second rank alternatively. 
Case2: If the Condition2 is not satisfied, then the compromise solution is 
. EA1, EA2, . . . , EAm.

Flowchart of BIFSES VIKOR method is given in Fig. 1. 

3 Procedure 

The procedure of VIKOR method is as follows: 

Step 1. Construction of BIFSES decision matrix. 
Step 2. Calculate score matrix from Definition 1. 
Step 3. Determine positive and negative ideal solutions from criteria by using 

Definition 2. 
Step 4. Compute entropy and weight values of BIFSES by using Definition 3. 
Step 5. Determine the BIFSE group utility, BIFSE individual regret, and . BOu

values by Definitions 4, 5, and 6. 
Step 6. Compute the compromising ranking list by considering two conditions 

given in Definition 7.
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4 Illustrative Example 

Let .{EA1, EA2, EA3, EA4} represent four different fans companies (Fig. 2). The 
quality of fans produced by these companies depends on the parameters . E =
.{e1, e2} where . e1 = speed and . e2 = energy efficiency. 

Company .EA1: Fans produced by this company have high performance even at 
a low voltage. Also it is built with a high lift angle that provides 
uniform airflow across the room. 

Company .EA2: Fans manufactured by this company are designed with aero-
dynamic technology and have wider blades. It is capable of 
enhancing energy conservation. 

Company .EA3: Fans made by this company have powerful dominant motor, 
comprising of a double ball bearing, and it functions smoothly 
without much noise. 

Company .EA4: Fans manufactured by this company are very speedy. It has 
powerful copper motor and delivers an efficient flow of cool air. 

Fig. 2 Fans produced by different companies
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Table 1 Decision matrix for agree 

U .(e1, x1, 1) . (e1, x2, 1) 
.EA1 .[−0.25, 0.49], [−0.45, 0.23] . [−0.32, 0.63], [−0.18, 0.19] 
.EA2 .[−0.18, 0.37], [−0.29, 0.14] . [−0.18, 0.38], [−0.26, 0.14] 
.EA3 .[−0.19, 0.61], [−0.25, 0.11] . [−0.48, 0.36], [−0.34, 0.27] 
.EA4 .[−0.52, 0.40], [−0.38, 0.19] . [−0.34, 0.15], [−0.12, 0.16] 
U .(e2, x1, 1) . (e2, x2, 1) 
.EA1 .[−0.58, 0.28], [−0.26, 0.27] . [−0.31, 0.54], [−0.28, 0.26] 
.EA2 .[−0.47, 0.26], [−0.25, 0.16] . [−0.05, 0.21], [−0.02, 0.03] 
.EA3 .[−0.42, 0.57], [−0.51, 0.28] . [−0.20, 0.69], [−0.06, 0.17] 
.EA4 .[−0.27, 0.28], [−0.15, 0.26] . [−0.17, 0.33], [−0.08, 0.16] 

Table 2 Decision matrix for dis-agree 

U .(e1, x1, 0) . (e1, x2, 0) 
.ED1 .[−0.38, 0.25], [−0.01, 0.01] . [−0.25, 0.31], [−0.16, 0.17] 
.ED2 .[−0.36, 0.59], [−0.24, 0.19] . [−0.02, 0.21], [−0.01, 0.02] 
.ED3 .[−0.11, 0.39], [−0.33, 0.09] . [−0.59, 0.44], [−0.32, 0.25] 
.ED4 .[−0.14, 0.21], [−0.03, 0.07] . [−0.27, 0.22], [−0.10, 0.11] 
U .(e2, x1, 0) . (e2, x2, 0) 
.ED1 .[−0.59, 0.52], [−0.24, 0.25] . [−0.27, 0.52], [−0.26, 0.24] 
.ED2 .[−0.45, 0.24], [−0.23, 0.14] . [−0.03, 0.19], [−0.02, 0.01] 
.ED3 .[−0.39, 0.55], [−0.49, 0.26] . [−0.17, 0.67], [−0.04, 0.15] 
.ED4 .[−0.25, 0.26], [−0.13, 0.21] . [−0.15, 0.31], [−0.06, 0.14] 

Step 1. Decision matrix for Agree is given in Table 1: 
Decision matrix for Dis-Agree (Table 2): 

Step 2. BIFSE score matrix for agree is as follows: 

. SM(EA) = 

⎛ 

⎜ ⎜ ⎝ 

0.0118 0.1077 0.0685 0.0604 
0.0164 0.0224 0.0501 0.0113 
0.0834 0.0429 0.0407 0.1209 
0.0625 0.0245 0.0153 0.0264 

⎞ 

⎟ ⎟ ⎠ 

BIFSE score matrix for .dis − agree is as follows: 

. SM(DA) = 

⎛ 

⎜ ⎜ ⎝ 

0.0517 0.0260 0.1246 0.0545 
0.0960 0.0110 0.0469 0.0091 
0.0118 0.0942 0.0367 0.1134 
0.0145 0.0248 0.0173 0.0238 

⎞ 

⎟ ⎟ ⎠ 

Step 3. Best value and weakest value of BIFSE for agree and . Dis − Agree 
given in Tables 3 and 4, respectively. 
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Table 3 Best value U .(e1, x1, 1) .(e1, x2, 1) .(e2, x1, 1) . (e2, x2, 1) 
.EA∗ .0.0834 .0.1077 .0.0686 . 0.1209 

.EA' .0.0118 .0.0224 .0.0153 . 0.0113 

Table 4 Weakest value U .(e1, x1, 1) .(e1, x2, 1) .(e2, x1, 1) . (e2, x2, 1) 
.ED∗ 0.0960 0.0942 0.1246 0.1134 

.ED' 0.0118 0.0110 0.0173 0.0091 

Table 5 .BMu, .BNu, . BOu 
values for agree 

U .BMu .BNu . BOu(d = 0.5) 
.EA1 0.4622 0.3471 0.6631 

.EA2 0.8302 0.3248 0.9384 

.EA3 0.2841 0.1660 0 

.EA4 0.7201 0.2257 0.5640 

Table 6 .BMu, .BNu, . BOu 
values for dis-agree 

U .BMu .BNu . BOu(d = 0.5) 
.ED1 0.4483 0.1742 0 

.ED2 0.6081 0.3085 0.6115 

.ED3 0.5225 0.3254 0.5778 

.ED4 0.9253 0.3151 0.9658 

Table 7 Average of .BMu, 
.BNu, . BOu 

U .BMu .BNu . BOu(d = 0.5) 
.EA1 0.4552 0.2606 0.3315 

.EA2 0.7191 0.3166 0.7749 

.EA3 0.4033 0.2454 0.2889 

.EA4 0.8227 0.2704 0.7649 

Step 4. The BIFSE entropy values of agree are given below: 
.EA1 = 0.642, .EA2 = 0.775, .EA3 = 0.767, . EA4 = 0.785. 
The BIFSE entropy values of .dis − agree are given below: 
.ED1 = 0.760, .ED2 = 0.907, .ED3 = 0.822, . ED4 = 0.772. 
Calculated weight values based on the criteria for agree are 
.w1 = 0.3471, .w2 = 0.2184, .w3 = 0.2257, . w4 = 0.2087. 
Calculated weight values based on the criteria for disagree are 
.w1 = 0.3254, .w2 = 0.1254, .w3 = 0.2407, . w4 = 0.3085. 

Step 5. Compute the values of .BMu, .BNu and .BOu for agree (Table 5) 
Compute the values of .BMu, .BNu and .BOu for dis-agree (Table 6) 
Compute the average values of .BMu, .BNu, and .BOu (Table 7). 

Step 6. Compute the compromising ranking: From the values of .BOu, .EA3 has 
the minimum value. 
So it has the first rank. The second minimum value is .EA1. 
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Fig. 3 Pie chart of BIFSES 
VIKOR 

Now, verify the two conditions: 
Condition 1: . BOu(EA1) − BOu(EA3) ≥ 1 

d−1 

. 0.3315 − 0.2889 ≥ 1 
4−1 , 

. 0.0426 < 0.33. 
Condition 1 is not satisfied. Hence, .EA1, EA2, . . . , EA5 are compromised solu-
tions. There is no comparative advantage of .EA3 from others. 
Condition 2: Since .EA3 is also best ranked by the values of .BMu and . BNu, 
Condition 2 is satisfied. Hence, it is concluded that fans produced by company . EA3 
is the best. Pie chart of BIFSES VIKOR method is given in Fig. 3. 

5 Conclusion 

In this article, VIKOR method on BIFSES is dealt with. The score function proposed 
is very effective in finding the score matrix. The BIFSES entropy value is used for 
calculating the weights of the criteria. The group utility and regret values are found, 
from which the compromising solution is obtained. Ceiling fans of four different 
companies are chosen and tested for the qualities speed and energy efficiency. The 
company that produces the best fan is determined using this method. 
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Efficiency of Eco-friendly Construction 
Materials in Interval Valued Picture 
Fuzzy Soft Environment 

S. Anita Shanthi and M. Gayathri 

Keywords Interval valued picture fuzzy soft set · TODIM Method · Normalized 
Hamming distance 

1 Introduction 

Every feature of human reasoning is associated with some sort of ambivalence. 
Zadeh [1] represented this ambivalence in the form of fuzzy sets. Atanassov [2, 3] 
and [4] put forward IFS as an extension of FS. Seenivasan et al. [5] designed a robust 
fuzzy ranking approach. Krohling and De Souza [6] proposed fuzzy TODIM. Zhang 
et al. [7] Krohling et al [8] and Zhao et al. [9] developed IF TODIM method. Ren et 
al. [10] extended TODIM method under trapezoidal IF environment. Lu [11] dealt 
with IVIFN TODIM method. Li et al. [12] and Zhao et al. [13] proposed IVIFS 
TODIM method. Anita Shanthi et al. [14] proposed BIFS TODIM method. Cuong 
et al. [15, 16] introduced PF sets to deal with ambiguity in an extensive manner. PF 
TODIM method was developed by Wei et al. [17] and Jiang et al. [18]. Based on 
these concepts, TODIM method on IVPFSS is developed. 

2 Normalized Hamming Distance on IVPFSS 

Definition of IVPFSS is given in [19]. 

Definition 1 Given a IVPFSS 
. (PF ,A) = {x, [μPF(e)

(δ), μPF(e)
(δ)], [ηPF(e)

(δ), ηPF(e)
(δ)], [νPF(e)

(δ), νPF(e)
(δ)]);

.δ ∈ U, e ∈ A}, .ϑmn = 1 − |μ − η − ν + μ − η − ν|, where .μ = μPF(e)
(δ), 

.μ = μPF(e)
(δ), .η = ηPF(e)

(δ), .η = ηPF(e)
(δ), ν = νPF(e)

(δ), . ν = νPF(e)
(δ).
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The entropy . En is 

.En = 1
i

i∑
m=1

ϑmn, n = 1, 2, . . . , j . 

Definition 2 Each criteria is assigned a weight defined as 

. wn = 1 − En

j∑
n=1

(1 − En)

, n = 1, 2, . . . , j.

The weight vector .W = (w1, w2, . . . , wj ) satisfies . w1 + w2 + . . . + wj = 1.

Relative weight .wnk is 

. wnk = wn

wk

, where wk = max wn.

Definition 3 Let . A = [μPF(e)
(δ), μPF(e)

(δ)], [ηPF(e)
(δ), ηPF(e)

(δ)], [νPF(e)
(δ),

νPF(e)
(δ)], be an IVPFSS value. Its score function is 

. SR(PF ,A) = |μPF(e)
(δ) − μPF(e)

(δ) + ηPF(e)
(δ) − ηPF(e)

(δ)+
νPF(e)

(δ) − νPF(e)
(δ)|/3

Using this score function, the score matrix denoted by .PF SR is constructed. 

Definition 4 Universal set .X = {δ1, δ2, . . . , δi}, 
parameter set .E = {e1, e2, . . . , ej } and .(PF ,A), (PG,B) IVPFSS. NHD between 
.(PF ,A) and .(PG,B) is 
. PNHd((PF ,A), (PG,B)) =
.

1
6mn

{
i∑

m=1

j∑
n=1

(|μPF(ei
)(δj ) − μPG(ei

)(δj )|, |μPF(ei
)(δj ) − μPG(δi

)(xj )|, 
. |ηPF(ei

)(δj ) − ηPG(ei
)(δj )|, |ηPF(ei

)(δj ) − ηPG(ei
)(δj )|, 

. |νPF(ei
)(δj ) − νPG(ei

)(δj )|, |νPF(ei
)(δj ) − νPG(ei )

(δj )|. 
Theorem 1 Distance function .PNHd from .IV PFSS(U) to the set of positive real 
numbers is a metric. 

Proof 

(i) . PNHd((PF ,A), (PG,B)) > 0.

(ii) . PNHd((PF ,A), (PG,B)) = 0
. ⇔ (μPF(ei

)(δj ) − μPG(ei
)(δj ) + μPF(ei

)(δj ) − μPG(ei
)(δj ))

. +(ηPF(ei
)(δj ) − ηPG(ei

)(δj ) + ηPF(ei
)(δj ) − ηPG(ei

)(δj ))

. +(νPF(ei
)(δj ) − νPG(ei

)(δj ) + νPF(ei
)(δj ) − νPG(ei

)(δj )) = 0
.⇔ μPF(ei

)(δj ) = μPG(ei
)(δj ), μPF(ei

)(δj ) = μPG(ei
)(δj ),
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.ηPF(ei
)(δj ) = ηPG(ei

)(δj ), ηPF(ei
)(δj ) = ηPG(ei

)(δj ), 
.νPF(ei

)(δj ) = νPG(ei
)(δj ), νPF(ei

)(δj ) = νPG(ei
)(δj ). 

.⇔ (PF ,A) = (PG,B). 
(iii) .PNHd((PF ,A), (PG,B)) = PNHd((PG,B), (PF ,A)), is obvious. 
(iv) .(PF ,A), (PG,B) and .(PH ,C) are IVPFSS. Then 

. (μPF(ei
)(δj ) − μPG(ei

)(δj ) + μPF(ei
)(δj ) − μPG(ei

)(δj ))

. +(ηPF(ei
)(δj ) − ηPG(ei

)(δj ) + ηPF(ei
)(δj ) − ηPG(ei

)(δj ))

. +(νPF(ei
)(δj ) − νPG(ei

)(δj ) + νPF(ei
)(δj ) − νPG(ei

)(δj ))

. = (μPF(ei
)(δj ) − μPH(ei

)(δj ) + μPH(ei
)(δj ) − μPG(ei

)(δj ))

. +(μPF(ei
)(δj ) − μPH(ei

)(δj ) + μPH(ei
)(δj ) − μPG(ei

)(δj ))

. +(ηPF(ei
)(δj ) − ηPH(ei

)(δj ) + ηPH(ei
)(δj ) − ηPG(ei

)(δj ))

. +(ηPF(ei
)(δj ) − ηPH(ei

)(δj ) + ηPH(ei
)(δj ) − ηPG(ei

)(δj ))

. +(νPF(ei
)(δj ) − νPH(ei

)(δj ) + νPH(ei
)(δj ) − νPG(ei

)(δj ))

. +(νPF(ei
)(δj ) − νPH(ei

)(δj ) + νPH(ei
)(δj ) − νPG(ei

)(δj ))

. ≤ (μPF(ei
)(δj ) − μPH(ei

)(δj )) + (μPH(ei
)(δj ) − μPG(ei

)(δj ))

. +(μPF(ei
)(δj ) − μPH(ei

)(δj )) + (μPH(ei
)(δj ) − μPG(ei

)(δj ))

. +(ηPF(ei
)(δj ) − ηPH(ei

)(δj )) + (ηPH(ei
)(δj ) − ηPG(ei

)(δj ))

. +(ηPF(ei
)(δj ) − ηPH(ei

)(δj )) + (ηPH(ei
)(δj ) − ηPG(ei

)(δj ))

. +(νPF(ei
)(δj ) − νPH(ei

)(δj )) + (νPH(ei
)(δj ) − νPG(ei

)(δj ))

. +(νPF(ei
)(δj ) − νPH(ei

)(δj )) + (νPH(ei
)(δj ) − νPG(ei

)(δj ))

.= PNHd((PF ,A), (PH ,C)) + PNHd((PH ,C), (PG,B)). 
Hence .PNHd is a metric. 

3 TODIM Method for IVPFSS 

The alternatives .U = {r1, r2, . . . , rm} are to be ranked depending on the parameters 
.E = {e1, e2, . . . , en}. Each alternative . rm is described by a IV  PFSS  over U . 
. rm = {([μm1, μm1], [ηm1, ηm1], [νm1, νm1]), 
. ([μm2, μm2], [ηm2, ηm2], [νm2, νm2]), . . . ,
. ([μmn,μmn], [ηmn, ηmn], [νmn, νmn])}, 
.m = 1, 2, . . . , i, n = 1, 2, . . . , j . Taking the data as IVPFSS the best alternative is 
found. 

Definition 5 The IVPFS dominance degree (DD) of an alternative . rm over another 
alternative . ru depending upon each criteria . en is: 
.PF φ(rm, ru) = 0, if. rmn = run
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. 

√√√√√√
wstPNHd(rmn, run)

j∑
n=1

wjk

, if rmn > run

. 
−1

PF θ

√√√√√√
j∑

n=1
wjkPNHd(rmn, run)

wjk

, if rmn < run

Here .PNHd(rmn, run) represents the IVPFSS normalized Hamming distance. The 
loss factor such that .PF θ > 0. If .rmn > run, then .PF φ(rm, ru) represents a gain, 
and if .rmn < run, then .PF φ(rm, ru) indicates a loss. 
IVPFS dominance matrix (DM) is: 

. PF φn = (PF φn(rm, ru)) =

⎛
⎜⎜⎜⎝

r1 0 PF φn(r1, r2) · · · PF φn(r1, rm)

r2 PF φn(r2, r1) 0 · · · PF φn(r2, rm)
...

...
... · · · ...

rm PF φn(rm, r1) PF φn(rm, r2) · · · 0

⎞
⎟⎟⎟⎠

Definition 6 IVPFSS overall DD is: 

.PF δ(rm, ru) =
q∑

n=1
PF φn(rm, ru). 

Definition 7 IVPFSS global value is: 

.PF ξ(rm) =
i∑

m=1
PF δ(rm,ru)−min

m

i∑
m=1

PF δ(rm,ru)

max
m

i∑
m=1

PF δ(rm,ru)−min
m

i∑
m=1

PF δ(rm,ru)

. 

Flowchart of IVPFSS TODIM Method is given in Fig. 1. 

4 Procedure 

The procedure for solving MCDM problem using TODIM method is as follows: 

Step 1: IVPFSS decision matrix is constructed. 
Step 2: IVPFSS entropy measure .(EMn) of IVPFSS based on parameters . en is 

computed by Definition 1. 
Step 3: IVPFSS weights .wjk is determined by Definition 2. 
Step 4: Construct the IVPFSS score matrix by Definition 3. 
Step 5: IVPFSS DD .PF φ(rm, ru) is evaluated using Definition 5. 
Step 6: IVPFSS overall DD .PF δ(rm, ru) is calculated by using Definition 6. 
Step 7: IVPFSS global value is determined by Definition 7.
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Fig. 1 Flowchart of IVPFSS 
TODIM method 

Step 8: The global values are ranked, and alternative that corresponds to the 
maximum value is the desirable one. 

Example 41 Let .{α1, α2, α3, α4, α5} represent five different types of eco-friendly 
construction (Fig. 2.) materials: earthen structures; natural fibers and cellulose 
insulation; slate and stones; Grasscrete, hempcrete, and Ashcrete; and natural clay 
plaster. The quality of eco-friendly materials is rated based on the parameters 
.E = {e1, e2, e3, e4, e5, e6} where . e1 = thermal insulation, . e2 = renewable resources, 
. e3 = solar orientation, . e4 = indoor air quality, . e5= recyclability resources, and . e6 = 
stormwater control, using IVPFSS TODIM method. 

Step 1. IVPFS DM is constructed in Table 1. 
Step 2: 
The IVPFSS entropy measures .EMn are . EM1 = 0.392, EM2 = 0.310,

.EM3 = 0.380, EM4 = 0.114, EM5 = 0.352, EM6 = 0.362. 
Step 3: 
Weights .Ws are . w1 = 0.1487, w2 = 0.1687, w3 = 0.1516, w4 = 0.2166,

w5 = 0.1584, w6 = 0.1560. 
The relative weights .Wst are . w1t = 0.6865, w2t = 0.7789, w3t = 0.6999,

w4t = 1, w5t = 0.7313, w6t = 0.7202. 
Step 4: 
IVPFSS score matrix is:
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Fig. 2 Constructions of eco-friendly material 

. PF SR =

⎛
⎜⎜⎜⎜⎜⎝

0.173333 0.096667 0.193333 0.153333 0.203333 0.150000
0.163333 0.100000 0.116667 0.110000 0.116667 0.123333
0.193333 0.213333 0.180000 0.170000 0.160000 0.183333
0.190000 0.163333 0.200000 0.126667 0.176667 0.196667
0.146667 0.250000 0.243333 0.136667 0.130000 0.096667

⎞
⎟⎟⎟⎟⎟⎠

Step 5: 
The IVPFSS DD matrices based on the parameter . en are: 
Here .PF θ = 1
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Table 1 IV  PFS  decision matrix 

U .e1 . e2 

.α1 [00.12,00.20],[00.05,00.37],[00.22,00.34] [00.09,00.18],[00.25,00.34],[00.30,00.41] 

.α2 [00.16,00.24],[00.13,00.32],[00.18,00.40] [00.16,00.27],[00.40,00.51],[00.06,00.14] 

.α3 [00.10,00.31],[00.07,00.23],[00.14,00.35] [00.07,00.35],[00.20,00.42],[00.03,00.17] 

.α4 [00.15,00.25],[00.19,00.30],[00.06,00.42] [00.11,00.32],[00.24,00.45],[00.15,00.22] 

.α5 [00.03,00.17],[00.26,00.38],[00.09,00.27] [00.04,00.19],[00.12,00.37],[00.08,00.43] 

U .e3 . e4 

.α1 [00.14,00.25],[00.08,00.36],[00.21,00.40] [00.07,00.15],[00.22,00.43],[00.18,00.35] 

.α2 [00.19,00.28],[00.11,00.24],[00.30,00.43] [00.11,00.24],[00.35,00.40],[00.13,00.28] 

.α3 [00.07,00.32],[00.16,00.20],[00.10,00.35] [00.05,00.17],[00.26,00.51],[00.16,00.30] 

.α4 [00.03,00.15],[00.27,00.38],[00.04,00.41] [00.14,00.25],[00.12,00.36],[00.29,00.32] 

.α5 [00.12,00.29],[00.05,00.23],[00.17,00.45] [00.03,00.19],[00.27,00.41],[00.23,00.34] 

U .e5 . e6 

.α1 [00.15,00.26],[00.07,00.36],[00.20,00.41] [00.05,00.13],[00.24,00.45],[00.21,00.37] 

.α2 [00.22,00.30],[00.11,00.25],[00.31,00.44] [00.12,00.26],[00.33,00.40],[00.15,00.31] 

.α3 [00.08,00.33],[00.16,00.21],[00.19,00.37] [00.08,00.29],[00.18,00.36],[00.06,00.22] 

.α4 [00.12,00.24],[00.28,00.35],[00.06,00.40] [00.16,00.42],[00.10,00.27],[00.14,00.30] 

.α5 [00.09,00.17],[00.23,00.38],[00.13,00.29] [00.03,00.11],[00.32,00.43],[00.25,00.35] 

. PF φ1 =

⎛
⎜⎜⎜⎜⎜⎝

0 −0.107614 0.024047 0.020923 −0.142040
0.016002 0 0.017485 0.014079 −0.161722

−0.119150 −0.117588 0 −0.129664 −0.159397
−0.141898 −0.094682 0.019281 0 −0.140708
0.021121 0.024047 0.023702 0.020923 0

⎞
⎟⎟⎟⎟⎟⎠

Similarly the other values of .PF φ are calculated. 

Step 6: The IVPFSS overall DD of alternative . rm over each other alternative . ru

. PF δ1 =

⎛
⎜⎜⎜⎜⎜⎝

0 −0.539388 −0.171355 −0.137518 −0.395536
−0.086445 0 0.121497 0.134939 −0.187564
−0.471487 −0.737322 0 −0.289293 −0.502993
−0.564798 −0.818167 −0.364881 0 −0.367615
−0.186878 −0.523318 −0.168222 −0.345904 0

⎞
⎟⎟⎟⎟⎟⎠

Similarly, the other values of .PF θ are calculated. 
Step 7: Alternatives are ranked as follows: 
From the values of .PF ξ(rm), the value of alternative . α2 is maximum. So it is chosen 
as the desirable one. 
The global values for different values of .PF θ are tabulated in Table 2, and the 
decision graph is shown in Fig. 3.
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Table 2 Global values corresponding to . PF θ 

U .PF θ = 1 .PF θ = 1.5 . PF θ = 2 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α1 0.415496 3 0.407974 3 0.401304 3 

.α2 1 1 1 1 1 1 

.α3 0.54515 4 0.044471 4 0.035566 4 

.α4 0 5 0 5 0 5 

.α5 0.424779 2 0.420031 2 0.415821 2 

U .PF θ = 2.5 .PF θ = 3 . PF θ = 3.5 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α1 0.395349 3 0.390003 3 0.385170 3 

.α2 1 1 1 1 1 1 

.α3 0.027615 4 0.020474 4 0.014024 4 

.α4 0 5 0 5 0 5 

.α5 0.412062 2 0.408686 2 0.405637 2 

U .PF θ = 4 .PF θ = 4.5 . PF θ = 5 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α1 0.380786 3 0.376788 3 0.374413 3 

.α2 1 1 1 1 1 1 

.α3 0.008170 4 0.002832 4 0 5 

.α4 0 5 0 5 0.002049 4 

.α5 0.402870 2 0.400343 2 0.399270 2 

U .PF θ = 5.5 .PF θ = 6 . PF θ = 6.5 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α1 0.373862 3 0.373359 3 0.372898 3 

.α2 1 1 1 1 1 1 

.α3 0 5 0 5 0 5 

.α4 0.006500 4 0.010569 4 0.014303 4 

.α5 0.399840 2 0.400362 2 0.400841 2 

U .PF θ = 7 .PF θ = 7.5 . PF θ = 8 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α1 0.372473 3 0.372080 3 0.371716 3 

.α2 1 1 1 1 1 1 

.α3 0 5 0 5 0 5 

.α4 0.017743 4 0.020920 4 0.023865 4 

.α5 0.401282 2 0.401690 2 0.402067 2 

U .PF θ = 8.5 .PF θ = 9 . PF θ = 9.5 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α1 0.371378 3 0.371063 3 0.370768 3 

.α2 1 1 1 1 1 1 

(continued) 
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Table 2 (continued) 

U .PF θ = 1 .PF θ = 1.5 . PF θ = 2 

.PF ξ(rm) Ranking .PF ξ(rm) Ranking .PF ξ(rm) Ranking 

.α3 0 5 0 5 0 5 

.α4 0.026603 4 0.029153 4 0.031533 4 

.α5 0.402419 2 0.402746 2 0.403050 2 

U . PF θ = 10 

.PF ξ(rm) Ranking 

.α1 0.370493 3 

.α2 1 1 

.α3 0 5 

.α4 0.033764 4 

.α5 0.403337 2 

Fig. 3 Decision graph for 
IVPFSS TODIM method 

5 Conclusion 

Here TODIM method on IVPFSS is dealt with. Entropy measure on IVPFSS is 
developed and is used in computing the weights. Normalized Hamming distance is 
defined, and this is used to find dominance degree matrix. Five types of eco-friendly 
construction materials are taken, and the quality of these materials is evaluated 
based on six parameters. It is found that . α2, which corresponds to natural fibers 
and cellulose insulation, is the best. 
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1 Introduction 

Mittag-Leffler function, a special transcendental function has been on the spotlight 
due to its role in treating problems related to integral and differential equations of 
fractional order. Refer to Srivastava et al. [1–4] for detailed studies which involved 
Mittag-Leffler function. Srivastava-Tomovski [5] investigated the properties of the 
three parameters Mittag-Leffler function of the form 

. Eυ, ν
ρ, τ (ξ) =

∞E
n=0

(υ)nνξ
n

r (ρn + τ) n! , ξ, ρ, τ, υ, ν ∈ C, Re(ρ) > 0, Re(ν) > 0,

(1) 

where . C denotes the sets of complex numbers and .(x)n will be used to denote the 
usual Pochhammer symbol. 
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Let . A denote the class of functions analytic in .o = {ξ : |ξ | < 1} having a series 
expansion 

.χ(ξ) = ξ +
∞E

n=2

anξ
n. (2) 

Using Srivastava-Tomovski generalization of the Mittag-Leffler function [5], 
recently Breaz et al. in [6] defined an operator .Jm

ν, λ(ρ, τ, υ)χ(ξ) : A → A by 

.Jm
ν, λ(ρ, τ, υ)χ(ξ) = ξ +

∞E
n=2

[1 − λ + λn]m
r(υ + nν)r(ρ + τ)

r(υ + ν)r(ρn + τ)n!anξ
n. (3) 

Remark 1 The operator .Jm
ν, λ(ρ, τ, υ)χ(ξ) was motivated by the studies [7–10]. 

For .0 ≤ δ < 1, .S∗(δ) denote the well-known class of starlike functions of order 
. δ. Gao and Zhou in [11] introduced a class of close-to-convex univalent function 
denoted by . Ks , is the class of all functions .χ ∈ A satisfying 

. Re

(
ξ2χ '(ξ)

κ(ξ)κ(−ξ)

)
< 0, (ξ ∈ o) (4) 

for .κ(ξ) ∈ S∗(1/2). It is well-known that .−κ(ξ)κ(−ξ)/ξ is starlike if . κ(ξ) ∈
S∗(1/2). Hence the class of functions in . Ks is close to convex, which implies that 
.χ ∈ Ks is univalent in . o. By replacing the right-hand side zero with . δ in (4), the  
class . Ks was extended to .Ks(δ) by Kowalczyk and Bomba [12]. 

Recently, Breaz et al. [13] (also see [14]) defined the following function: 

. r(H,F; p; η;o) = [(1 + H)p + η(F − H)] o(ξ) + [(1 − H)p − η(F − H)]

[(F + 1)o(ξ) + (1 − F)]
,

(5) 

where .−1 ≤ F < H ≤ 1, .o(ξ) ∈ P (the class of functions with positive real part) 
and has an expansion of the form 

.o(ξ) = 1 + R1ξ + R2ξ
2 + · · · . (6) 

Detailed geometrical analysis of .r(H,F; p; η;o) was discussed by Karthikeyan 
et al. in [15]. 

Motivated by Wang and Chen [16] and Karthikeyan et al. [9], we now define the 
following. 

Definition 1 For .r(H,F; p; η;o) defined as in (5), a function .χ ∈ A is said to 
be in .UCVm, η

ν, λ (t; ρ, τ, υ, μ; H,F; o) if and only if
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. 

tξ2
[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]' + μtξ3

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]''

Jm
ν, λ(ρ, τ, υ)κ(ξ)Jm

ν, λ(ρ, τ, υ)κ(tξ)
≺ r(H,F; 1; η;o),

(7) 

where .Jm
ν, λ(ρ, τ, υ)κ(ξ) ∈ S∗

(
1
2

)
, .0 ≤ μ ≤ 1 and .|t | ≤ 1, t /= 0. 

Remark 2 For appropriate choice of the parameters, several well-known and new 
classes can be obtained as special case of .UCVm, η

ν, λ (t; ρ, τ, υ, μ; H,F; o). For  
example, 

1. If .υ = ν = 1, .λ = 1, .ρ = η = m = 0, .t = −1 and .o(ξ) = 1+ξ
1−ξ

, then 

.UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o) reduces to 

. Ks(λ,H,F) =
{
χ ∈ A, κ ∈ S∗(1/2); ξ2χ '(ξ) + μξ3χ ''(ξ)

−κ(ξ)κ(−ξ)
≺ 1 + Hξ

1 + Yz

}
,

the class .Ks(λ,H,F) was introduced by Wang and Chen [16]. 
2. If .t = −1, .υ = ν = 1, .λ = 1, .ρ = μ = η = m = 0, .H = 1 and .F = −1, then 

.UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o) reduces to 

. Ks(o) =
{
χ ∈ A, κ ∈ S∗(1/2); ξ2χ '(ξ)

−κ(ξ)κ(−ξ)
≺ o(ξ)

}
.

.Ks(o) was investigated by Cho et al. [17]. 
3. If .υ = ν = 1, .λ = 1, .ρ = μ = m = 0, .H = 1, .F = −1 and . 1+ξ

1−ξ
, then 

.UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o) reduces to 

. Kt (η) =
{
χ ∈ A, κ ∈ S∗(1/2); tξ2χ '(ξ)

κ(ξ)κ(tξ)
≺ 1 + (1 − 2η)ξ

1 − ξ

}
,

the class .Kt (η) was introduced by Prajapat [18]. 

2 Main Results 

We need the following lemmas to establish our results. 

Lemma 1 ([13, Lemma 4]) Let .p(ξ) ∈ P satisfy the subordination condition 

. p(ξ) ≺ [(1 + H) + η(F − H)] o(ξ) + [(1 − H) − η(F − H)]

[(F + 1)o(ξ) + (1 − F)]
,

then for .−1 ≤ F < H ≤ 1, .0 ≤ η < 1
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.|pn| ≤ (H − F)(1 − η)R1

2
, (n ≥ 1). (8) 

Lemma 2 ([18]) Let .κ(ξ) = ξ + E∞
n=2 bnξ

n ∈ S∗( 1
2 ), then .

κ(ξ)κ(tξ)
tξ

∈ S∗. 

Using Lemma 2 and proceeding on lines similar to Lemma 2.4 of [9], we get 

Lemma 3 ([9]) Let .κ(ξ) = ξ + E∞
n=2 bnξ

n and .Jm
ν, λ(ρ, τ, υ)κ ∈ S∗

(
1
2

)
, then 

.G(ξ) = [Jm
ν, λ(ρ, τ, υ)κ(ξ)][Jm

ν, λ(ρ, τ, υ)κ(tξ)]
tξ

= ξ +
∞E

n=2

cnξ
n ∈ S∗, (9) 

and .|cn| ≤ n, where .cn = [
ϕnbn + tϕn−1ϕ2bn−1b2 + · · · + (t)n−1ϕnbn

]
and 

. ϕn = [1 − λ + λn]m
r(υ + nν)r(ρ + τ)

r(υ + ν)r(ρn + τ)n! .

2.1 Coefficient Estimates 

Throughout this chapter, we let 

. ϕn = [1 − λ + λn]m
r(υ + nν)r(ρ + τ)

r(υ + ν)r(ρn + τ)n!
and 

. κ(ξ) = κ(ξ)κ(tξ)

tξ
= ξ +

∞E
n=2

cnξ
n,

. (cn =
[
ϕnbn + tϕn−1ϕ2bn−1b2 + · · · + (t)n−1ϕnbn

]
).

Theorem 1 Let .o ∈ P be chosen such that 

. 
[(1 + H) + η(F − H)] o(ξ) + [(1 − H) − η(F − H)]

[(F + 1)o(ξ) + (1 − F)]

is convex in . o. If .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o), then 

. | an |≤ 1

n [1 + μ(n − 1)] |ϕn|

{
|cn| + (H − F)(1 − η)R1

2

[
1 +

n−1E
k=2

|ck|
]}

.

(10)
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Proof Let .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o), then there exists . p(ξ) ∈ P

such that 

. p(ξ)=
ξ

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]' +μξ2

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]''

G(ξ)
≺ r(H,F; 1; η;o),

(11) 

where .r(H,F; 1; η;o) is defined by the equation (5). Clearly . r(H,F; 1; η;o)

maps . o on to a convex domain (assumption). From (11), we have 

. 

ξ
[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]' + μξ2

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]''

G(ξ)
= p(ξ), (p(ξ) ∈ P) .

(12) 
From (12), we get 

.ξ +
∞E

n=2

n [1 + μ(n − 1)] ϕnanξ
n = (1 +

∞E
n=1

pnξ
n)(ξ +

∞E
n=2

cnξ
n). (13) 

Equating the coefficients of . ξn in (13), we have 

.n [1 + μ(n − 1)] ϕnan = cn + p1cn−1 + p2cn−2 + · · · + pn−1. (14) 

Using (8) and Lemma 3 , we get 

. n [1 + μ(n − 1)] |ϕn| |an| ≤ |cn| + |p1|cn−1| + |p2||cn−2| + · · · + |pn−1|

≤ |cn| + (H − F)(1 − η)R1

2

[
1 +

n−1E
k=2

|ck|
]

. (15) 

From (15), we get the desired result in (10). nu
Corollary 1 Let .o ∈ P be chosen in such a manner that 

. 
[(1 + H) + η(F − H)] o(ξ) + [(1 − H) − η(F − H)]

[(F + 1)o(ξ) + (1 − F)]

is convex in . o. If .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o), then 

. | an |≤ 1

[1 + μ(n − 1)] |ϕn|
(

1 + (n − 1)(H − F)(1 − η)R1

4

)
.

Proof From Lemma 3 .G(ξ) = [Jm
ν, λ(ρ, τ, υ)κ(ξ)][Jm

ν, λ(ρ, τ, υ)κ(tξ)]
tξ

∈ S∗, thus . |cn| ≤
n. Now the result follows from (10). nu
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Setting .υ = ν = 1, .λ = 1, .ρ = μ = m = 0, .H = 1, .F = −1 and . 1+ξ
1−ξ

in 
Corollary 1, we get 

Corollary 2 ([18]) If .χ(ξ) ∈ Kt (η), then 

. | an |≤ 1 + (n − 1)(1 − η).

Remark 3 We note that for an applicable selection of the parameters in Theorem 1, 
we can get the coefficient inequality obtained by Gao and Zhou [11]. 

2.2 Fekete-Szegő Problem 

In this subsection, we will obtain the Fekete-Szegő inequality for functions belong-
ing to . UCVm, η

ν, λ (t; ρ, τ, υ, μ; H,F; o)

Theorem 2 If .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o), then for .ϑ ∈ C, we have 

. | a3 − ϑa2
2 |≤ (H − F)(1 − η)|R1|

6|ϕ3|(1 + 2μ)
max{1, |2L1 − 1|}

+ 1

3 |ϕ3| (1 + 2μ)
max

{
1,

|||||3 − 3ϑϕ3(1 + 2μ)

(1 + μ)2ϕ2
2

|||||
}

+ (H − F)(1 − η)|R1|
4

|||||
3

4ϕ3(1 + 2μ)
− ϑ

(1 + μ)2ϕ2
2

||||| , (16) 

where 

. L1 =
(F + 1)R1 + 2

(
1 − R2

R1

)
4

+ 3ϑ(H − F)(1 − η)ϕ3(1 + 2μ)R1

16(1 + μ)2ϕ2
2

.

Proof For .p(ξ) ∈ P , we can consider 

. p(ξ) = 1 + w(ξ)

1 − w(ξ)
,

where .w(ξ) is the Schwartz function. On simple computation, we have 

.w(ξ) = p(ξ) − 1

p(ξ) + 1
= p1ξ + p2ξ

2 + p3ξ
3 + · · ·

2 + p1ξ + p2ξ2 + p3ξ3 + · · · (17) 

= 
1 

2 
p1ξ + 

1 

2

(
p2 − 

1 

2 
p2 

1

)
ξ2 + 

1 

2

(
p3 − p1p2 + 

1 

4 
p3 

1

)
ξ3 + · · ·  .
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Using (17) in (6), we have  

. o(w(ξ)) = 1 + R1p1

2
ξ + R1

2

[
p2 − 1

2

(
1 − R2

R1

)
p2

1

]
ξ2 + · · · .

As .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H,F; o), by  (7), we have  

. 

ξ
[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]' + μξ2

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]''

G(ξ)

= [(1 + H) + η(F − H)] o[w(ξ)] + [(1 − H) − η(F − H)]

[(F + 1)o[w(ξ)] + (1 − F)]
. (18) 

From (18), we obtain 

. 1 + [2(1+μ)ϕ2a2−c2]ξ+
[
ϕ33(1+2μ)a3−2(1+μ)ϕ3a2c2 − c3 + c2

2

]
ξ2 + · · ·

== 1 + R1p1(H − F)(1 − η)

4
ξ+

(H − F)(1 − η)R1

4

⎡
⎣p2 − p2

1

⎛
⎝ (F + 1)R1 + 2

(
1 − R2

R1

)
4

⎞
⎠

⎤
⎦ ξ2 + · · · .

Equating the coefficients at . ξ and . ξ2 on both sides of the above equation, we get 

. a2 = R1p1(H − F)(1 − η) + 4c2

8ϕ2(1 + μ)

and 

. a3 = (H − F)(1 − η)R1

12ϕ3(1 + 2μ)

⎡
⎣p2 − p2

1

⎛
⎝ (F + 1)R1 + 2

(
1 − R2

R1

)
4

⎞
⎠

⎤
⎦

+p1(H − F)(1 − η)R1c2

12ϕ3(1 + 2μ)
+ c3

3ϕ3(1 + 2μ)
.

Therefore, we have 

. | a3 − ϑa2
2 |=

||||||
(H − F)(1 − η)R1

12ϕ3(1 + 2μ)

⎡
⎣p2 − p2

1

⎛
⎝ (F + 1)R1 + 2

(
1 − R2

R1

)
4
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+3ϑ(H − F)(1 − η)ϕ3(1 + 2μ)R1 

16(1 + μ)2ϕ2 
2

)]

+ (H − F)(1 − η)R1p2c2 

8

[
3 

4ϕ3(1 + 2μ) 
− ϑ 

(1 + μ)2ϕ2 
2

]

+ 1 

3ϕ3(1 + 2μ)

[
c3 − c2 

2

(
3ϑϕ3(1 + 2μ) 
4(1 + μ)2ϕ2 

2

)]||||| (19) 

Using Fekete-Szegő inequalities of classes . P (see [19]) and . S∗ (see [20]), we can 
get (16). nu
Corollary 3 If .χ(ξ) ∈ Xt (H, F), then for .ϑ ∈ C, we have 

. | a3 − ϑa2
2 |≤ H − F

3
max (1, | 2L2 − 1 |) + 1

3
max (1, | 3 − 4L3 |)

+2(H − F)

||||1

3
− ϑ

2

|||| ,

where . L2 = 1+F
2 + 3(H−F)ϑ

8 , L3 = 3ϑ
4 .

2.3 Inclusion Relation 

To establish the inclusion relation, we need the following. 

Lemma 4 ([21]) If .−1 ≤ F2 ≤ F1 < H1 ≤ H2 ≤ 1, then 

. 
1 + H1ξ

1 + F1ξ
≺ 1 + H2ξ

1 + F2ξ
.

Theorem 3 Let .−1 ≤ F2 ≤ F1 < H1 ≤ H2 ≤ 1, then 

. UCVm, η
ν, λ (t; ρ, τ, υ, μ; H1,F1; o) ⊂ UCVm, η

ν, λ (t; ρ, τ, υ, μ; H2,F2; o).

Proof As .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H1,F1; o), therefore 

. p(ξ) =
tξ2

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]' + μξ3

[
Jm

ν, λ(ρ, τ, υ)χ(ξ)
]''

Jm
ν, λ(ρ, τ, υ)κ(ξ)Jm

ν, λ(ρ, τ, υ)κ(tξ)

≺ [(1 + H1) + η(F1 − H1)] o(ξ) + [(1 − H1) − η(F1 − H1)]

[(F1 + 1)o(ξ) + (1 − F1)]
. (20)
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Since .−1 ≤ F2 ≤ F1 < H1 < H2 ≤ 1, by Lemma 4, we have  

. p(ξ) ≺ [(1 + H1) + η(F1 − H1)] o(ξ) + [(1 − H1) − η(F1 − H1)]

[(F1 + 1)o(ξ) + (1 − F1)]

≺ [(1 + H2) + η(F2 − H2)] o(ξ) + [(1 − H2) − η(F2 − H2)]

[(F2 + 1)o(ξ) + (1 − F2)]
.

This yields that .χ(ξ) ∈ UCVm, η
ν, λ (t; ρ, τ, υ, μ; H2,F2; o), and this proves the 

inclusion relation. nu

3 Conclusion 

Using Srivastava-Tomovski generalization of the famous Mittag-Leffler function, 
here we have introduced an differential operator, which generalizes the well-
known and new operators. We have studied a subclass of analytic functions in dual 
with Mittag-Leffler function so that it generalizes or unifies the study of various 
subclasses of analytic functions. Coefficient inequalities, Fekete-Szegő inequalities, 
and inclusion relations are the main results of this study. 
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9. Karthikeyan, K.R., Reddy, K.A., Murugusundaramoorthy, G.: On classes of Janowski functions 
associated with a conic domain. Ital. J. Pure Appl. Math. 47, 684–698 (2022) 

10. Reddy, K.A., Karthikeyan, K.R., Murugusundaramoorthy, G.: Inequalities for the Taylor 
coefficients of spiralike functions involving q-differential operator. Eur. J. Pure Appl. Math. 
12(3), 846–856 (2019). https://doi.org/10.29020/nybg.ejpam.v12i3.3429 

11. Gao, C., Zhou, S.: On a class of analytic functions related to the starlike functions. Kyungpook 
Math. J. 45(1), 123–130 (2005) 
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On the Newly Generalized Absolute 
Summability of an Orthogonal Series 
with Respect to Hausdorff Matrix 

Kalaivani Kamalakkannan and Madhu Venkataraman 

Keywords Hausdorff methods · Cesaro method · Regular matrix 

1 Introduction 

Initially, Moricz and Leindler generalized the concept of absolute summability to 
generalized summability of an orthogonal series, and they have obtained a condition 
for the convergence of an series in summability method. Hausdorff matrix includes 
Cesaro, Riesz, Euler, and many other matrices. In this chapter, we generalize 
Leindler and Moricz results to Hausdorff matrix. 

Definition 1 Let .{φn}∞n=1 be an orthonormal system in .L2[0, 1]. The Hausdorff 
mean of the series 

.

∞∑
k=0

akφk (1) 

is defined by .σn =
∞∑

k=0
bn kSk, where . Sk is . kth partial sum of (1) and .(bn k)n,k∈Z+ is 

an infinite matrix. 

Definition 2 Let . γ be a non-negative and non-decreasing function on .[1,∞) and 
.k ≥ 1. The series (1) is .|A, γ |k summable, if 

.

∞∑
n=1

γ (n)knk−1|σn − σn−1|kconverges. (2) 
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Hausdorff Matrix Let . Φ be a bounded variation function in .BV [0, 1]. For . n, k ∈
Z

+, we define 

.am n :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1∫
0

(
m

n

)
tn(1 − t)m−ndΦ(t) if 0 ≤ n ≤ m,

0 n > m.

(3) 

Now, we restrict .Φ(t) =
1∫

0
h(u)φ[0,t](u)du, h ∈ Lp[0, 1] (1 < p ≤ 2), where . φ is 

the characteristic function. 

Definition 3 Let .γ := {γ (n)}∞n=1 be a set of positive numbers. For .β ∈ R, . γ is 
quasi .β-power monotone decreasing if . ∃ constant .M ≥ 1 such that 

.

( n

m

)β

γ (n) ≤ Mγ(m) for m ≤ n. (4) 

We denote .Γβ = {γ | γ be a non-decreasing on .[1,∞) with the sequence 
.{γ (n)}∞n=1 is quasi .β-power monotone decreasing . }.

In 1971, Bolgov [1] obtained for any .{nm}∞m=0 be a positive sequence such that 
.1 ≤ γ ≤ nm+1

nm
≤ γ1 and .c ∈ �2(N) the condition 

.

∞∑
m=0

⎧⎨
⎩

nm+1∑
n=nm+1

nj
1− 2

q |cn|2
⎫⎬
⎭

k
2

< ∞, (5) 

is sufficient for the series .
∞∑

n=1
cnψn absolute Hausdorff summable a.e. 

Kantawala [3] gave a sufficient condition .
∞∑

m=1
γ (2m)k2mk

⎧⎨
⎩

2m+1∑
n=2m+1

|cn|2
⎫⎬
⎭

k
2

is finite for 

the series (1) is generalized Euler summable a.e. to the index . k.

In 2013, Kalaivani and Youvaraj [2] generalized the result of Kantawala for . γ ∈
Γβ with .β > − 3

4 and gave the necessary condition for the series (1) is generalized 
absolute Hausdorff summable a.e. 

In this chapter, under certain conditions on . γ and . 1 ≤ k ≤ 2,

1. We extend the result of Bolgov [1] for generalized absolute Hausdorff summa-
bility methods. 

2. We give sufficient condition in terms of .{nm}∞m=0 satisfying certain conditions so 
that .nm = 2m is the particular case of theorems obtained in [2, 3].
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2 Basic Definition 

Definition 4 A set γ := {γ (n)}∞n=1 satisfying the condition, ∃ μ ∈ N and K = 
K(γ ) ≥ 1 such that 

. 2γ (n + μ) ≤ γ (n) and γ (n + 1) ≤ Kγ (n) ∀ n ∈ N. Then γ is is quasi-

geometrically decreasing sequence. 

Theorem 1 A sequence γ of positve numbers is quasi geometrically decreasing iff 

. 

∞∑
n=m

γ (n) ≤ Mγ(m) for some M ≥ 1, ∀ m ∈ N.

We refer to [4], for the proof of the theorem. 

3 Main Results 

Theorem 2 Let {ψn}∞n=0 be an orthonormal system in L2[0, 1], A = (an m) be 
a infinite Hausdorff matrix, k ∈ [1, 2] and {n 

k 
2 γ (n)k} is quasi geometrically 

decreasing. Then for any c ∈ �2(Z
+) the condition 

.

∞∑
m=0

γ (nm+1)
k

⎧⎨
⎩nm

1− 2
q

nm+1∑
n=nm+1

|cn|2
⎫⎬
⎭

k
2

< ∞ (6) 

is sufficient for the orthogonal series 
∞∑

n=0 
cnψn to be generalized absolute A-

summable summable a.e. where {nm}∞m=0 be a positive sequence such that 

.1 ≤ nm+1

nm

≤ γ1 (m = 0, 1, . . . ). (7) 

Then (6) is necessary if {cn}∞n=0 is absolutely monotonically decreasing. 

Proof Let 

.σ =
∞∑

n=1

b∫
a

γ (n)knk−1|σn(x) − σn−1(x)|kdx
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= 
∞∑

n=1 

b∫
a 

γ (n)k nk−1

∣∣∣∣∣∣
n∑

u=1 

u 
n 

⎛ 

⎝ 
1∫

0 

an uh(t)dt 

⎞ 

⎠ cuφu(x)

∣∣∣∣∣∣
k 

dx 

Choose n0 as in assumption, we have 

. σ ≤ 1

2

∞∑
n=1

b∫
a

γ (n)knk−1

∣∣∣∣∣∣
n0∑

u=1

u

n

⎛
⎝

1∫
0

an uh(t)dt

⎞
⎠ cuφu(x)

∣∣∣∣∣∣
k

dx

+1

2

∞∑
n=n0+1

b∫
a

γ (n)knk−1

∣∣∣∣∣∣
n∑

u=n0+1

u

n

⎛
⎝

1∫
0

an uh(t)dt

⎞
⎠ cuφu(x)

∣∣∣∣∣∣
k

dx

≤ σ1 + σ2.

Let μk = max{1, 2k−1}. Then 

. σ1 ≤ μ
n0−1
k

2

∞∑
n=1

γ (n)knk−1
n0∑

u=1

uk

nk

⎛
⎝

1∫
0

an uh(t)dt

⎞
⎠

k

|cu|k
b∫

a

|φu(x)|kdx

≤ (b − a)1− k
2
μ

n0−1
k

2

∞∑
n=1

γ (n)knk−1
n0∑

u=1

uk

nk

⎛
⎝

1∫
0

an uh(t)dt

⎞
⎠

k

|cu|k

≤ (b − a)1− k
2
μ

n0−1
k

2

n0∑
u=1

∞∑
n=u

γ (n)knk−1 uk

nk
‖h‖k

p|cu|k

≤ n0‖h‖k
p(b − a)1− k

2
μ

n0−1
k

2
max

1≤u≤n0
|cu|k

∞∑
n=1

γ (n)knk−1

≤ n0‖h‖k
p(b − a)1− k

2
μ

n0−1
k

2
max

1≤u≤n0
|cu|kγ (1)k

as {γ (n)k n 
k 
2 }∞k=1 is quasi geometrically decreasing. 

.σ2 ≤ 1

2

∞∑
n=n0+1

b∫
a

γ (n)knk−1

∣∣∣∣∣∣∣
n∑

u=n0+1

u

n

⎛
⎜⎝

1∫
0

an uh(t)dt

⎞
⎟⎠ cuφu(x)

∣∣∣∣∣∣∣

k

dx
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≤ 
(b − a)1− k 

2 

2 

∞∑
n=n0+1 

γ (n)k nk−1 

⎧ ⎪⎪⎨ 

⎪⎪⎩ 

b∫
a

∣∣∣∣∣∣∣
n∑

u=n0+1 

u 
n 

⎛ 

⎜⎝ 
1∫

0 

an uh(t)dt 

⎞ 

⎟⎠ cuφu(x)

∣∣∣∣∣∣∣

2 

dx 

⎫ ⎪⎪⎬ 

⎪⎪⎭ 

k 
2 

≤ 
(b − a)1− k 

2 

2 

∞∑
n=n0+1 

γ (n)k nk−1 

⎧ ⎪⎪⎨ 

⎪⎪⎩ 

n∑
u=n0+1 

u2 

n2 

⎛ 

⎜⎝ 
1∫

0 

an uh(t)dt 

⎞ 

⎟⎠ 

2 

|cu|2 

⎫ ⎪⎪⎬ 

⎪⎪⎭ 

k 
2 

Let Kn u  = 
u2 

n2 

⎛ 

⎝ 
1∫

0 

an uh(t)dt 

⎞ 

⎠ 
2 

. Then 

. σ2 ≤ (b − a)1− k
2

2

∞∑
n=n0+1

γ (n)knk−1

⎧⎨
⎩

n∑
u=n0+1

Kn u|cu|2
⎫⎬
⎭

k
2

≤ (b − a)1− k
2

2

∞∑
m=0

nm+1∑
n=nm+1

γ (n)knk−1

⎧⎨
⎩

m∑
j=0

min{nj+1,n}∑
u=nj +1

Kn u|cu|2
⎫⎬
⎭

k
2

≤ (b − a)1− k
2

2

∞∑
m=0

⎧⎨
⎩

nm+1∑
n=nm+1

m∑
j=0

min{nj+1,n}∑
u=nj +1

Kn uγ (n)2n
2k−2

k |cu|2
⎫⎬
⎭

k
2

(nm+1 − nm)1− k
2

(8) 

. ≤ (b − a)1− k
2

2

∞∑
m=0

⎧⎨
⎩

m∑
j=0

nj+1∑
u=nj +1

nm+1∑
n=max{nm+1,u}

Kn uγ (n)2n
2k−2

k |cu|2
⎫⎬
⎭

k
2

(nm+1 − nm)1− k
2

≤ (b − a)1− k
2

2

∞∑
m=0

⎧⎨
⎩

m∑
j=0

nj+1∑
u=nj +1

nm+1∑
n=max{nm+1,u}

Kn uγ (n)2n
2
k
−1

m n
2k−2

k |cu|2
⎫⎬
⎭

k
2

. (9) 

Then 

.

nm+1∑
n=max{nm+1,u}

Kn uγ (n)2n
2k−2

k ≤
nm+1∑

n=max{nm+1,u}
γ (n)2n

2k−2
k

u

n
1+ 2

q

‖h‖2−p
p

u

n

∫ 1

0
an u(t)|h(t)|pdt

≤ nj+1

n
2
q
+1

m

‖h‖2−p
p

1∫
0

|h(t)|ptu
nm+1∑

n=max{nm+1,u}
γ (n)2n

2k−2
k

(
n − 1

u − 1

)
(1 − t)n−udt
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≤ 
nj+1 

n 
2 
q +1 
m

‖h‖2−p 
p γ (nm+1)

2n 
2k−2 

k 
m+1 

1∫
0 

|h(t)|p tu 
nm+1∑
n=u

(
n − 1 

u − 1

)
(1 − t)n−u dt 

≤ 
nj+1 

n 
2 
q +1 
m

‖h‖2−p 
p γ (nm+1)

2n 
2k−2 

k 
m+1 

1∫
0 

|h(t)|p dt 

n 
2 
k −1 
m 

nm+1∑
n=max{nm+1,u} 

Kn uγ (n)2n 
2k−2 

k ≤ 
nj+1 

n 
2 
q 
m

‖h‖2 
pγ (nm+1)

2. (10) 

Using (10) in (8), we obtain 

. σ2 ≤ (b − a)1− k
2

2

∞∑
m=0

⎧⎨
⎩

m∑
j=0

nj+1∑
u=nj +1

nj+1

n
2
q
m

|cu|2‖h‖2
pγ (nm+1)

2

⎫⎬
⎭

k
2

.

For 1 ≤ k ≤ 2, we have 

. σ2 ≤ (b − a)1− k
2

2

∞∑
m=0

m∑
j=0

⎧⎨
⎩

nj+1∑
u=nj +1

nj+1

n
2
q
m

|cu|2‖h‖2
pγ (nm+1)

2

⎫⎬
⎭

k
2

≤ (b − a)1− k
2

2

∞∑
j=0

∞∑
m=j

n
k
2
j+1

n
k
q
m

‖h‖k
pγ (nm+1)

k

⎧⎨
⎩

nj+1∑
u=nj +1

|cu|2
⎫⎬
⎭

k
2

≤ (b − a)1− k
2 ‖h‖k

p

2

∞∑
j=0

⎧⎨
⎩

nj+1∑
u=nj +1

|cu|2
⎫⎬
⎭

k
2

n
k
2
j+1

∞∑
m=j

γ (nm+1)
k

n
k
q
m

≤ (b − a)1− k
2 ‖h‖k

p

2

∞∑
j=0

⎧⎨
⎩

nj+1∑
u=nj +1

|cu|2
⎫⎬
⎭

k
2 ∞∑

m=j

γ (nm+1)
k

n
k
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As we used the property that {n 
k 
2 γ (n)k}∞n=1 is quasi geometrically decreasing 

sequence to obtain the above inequality. 
For necessity part, the proof obtained by arguments as in Theorem 1 in [2] for the  
sequence {nm}∞m=0 = {2m}∞m=0. 

4 Generalized Hausdorff Matrix 

Let .Φ ∈ BV [0, 1]. For .α > −1 and .n, k ∈ Z
+, we define 

.bα
n k :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1∫
0

(
n + α

n − k

)
rk+α(1 − r)n−kdΦ(r) if 0 ≤ k ≤ n,

0 otherwise.

(11) 

For .α = 0, then Hausdorff matrix is the special case of Generalized Hausdorff 
matrix. In particular .α ∈ N, using the techniques in Theorem (1), we obtain 
the necessary and sufficient condition for summability of a orthogonal series for 
generalized Hausdorff matrix. 

Future Endeavors 
Besides .α ∈ N, the natural question arises for .α ∈ R. Also, we could refer the 
function to obtain the sufficient condition for general sequence .{nm}∞m=0 instead of 
. {2m}∞m=0.

Another possible direction for future work is to relax the requirement of the 
sequence .{cn}∞n=0, which is absolutely monotonically decreasing. 
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Identification and Recognition of 
Bio-acoustic Events in an Ocean 
Soundscape Data Using Fourier Analysis 

B. Mishachandar, S. Vairamuthu, and B. Selva Rani 
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1 Introduction 

Marine ecosystems play a vital role in balancing the global ecosystem of the Earth 
[1]. Every being is directly or indirectly dependent on these massive water bodies 
for their existence. However, this significance has adversely impacted the ocean 
dwelling marine habitats especially the large-sized underwater marine species, 
the marine mammals [2]. The National Centers for Environmental Information 
has reported intrusion through anthropogenic activities like large-scale shipping, 
massive fishing, dredging, and the unusual weather or oceanographic events to be 
the cause for the unusual mortality events reported as mass stranding of marine 
mammals [3], whereas, this scenario is even more evident in the shallow fronts as 
their exposure to anthropogenic activities is more vulnerable being very closer to 
land. Stringent climatic conditions and mostly mislead visual observations through 
the use of satellite images and surveys don’t support conventional visual and 
aural observatory techniques as proxies for monitoring marine acoustic events. 
The ease of sound propagation in a water medium favors the use of acoustics in 
recording massive volumes of real-time soundscape data in an ocean environment 
[4]. Each year, massive volumes of acoustic recordings are recorded as part of 
ocean life monitoring projects to observe and assess the acoustic behavior of the 
bio-acoustic sources in an ocean environment. Traditionally, these animal calls as 
bio-acoustic data are recorded and inspected manually through visual and aural 
inspection to identify any acoustic activity. However, this process is highly time and 
cost incurring, and the possibility of an erroneous detection is substantially high. 
Besides, identifying individual signals in a soundscape data is manually tedious as 
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they are mostly beyond the human hearing limit, thus increasing the error rate [5]. 
In this context, the idea of numerically identifying individual acoustic sources in 
a soundscape data using Fourier analysis aids in precisely identifying the precise 
number of acoustic events. Post the identification of acoustic events, the proposed 
deep learning model serves as a recognizer that detects and classifies the bio-
acoustic calls from the non-biological signals. This way, a complete identification 
and recognition system is designed to serve as a relevant choice for monitoring the 
biodiversity of a given region without expert intelligence. 

The idea of perceiving relevant information from these audio sources is to 
perform sound source detection. In source detection technique, the audio form 
of data is converted into a two-dimensional spectrogram, and peak finding or 
fingerprint hashing algorithms are used to define the peaks or fingerprints in the 
acoustic recording. In this case, the peaks in the acoustic recordings denote the 
presence of animal activity through vocalizations produced by marine species. 
Cetacean vocalization ranges from low to high frequencies occupying a wide 
frequency band with different characteristics. Cetacean vocals are categorized into 
four major types, namely, clicks, whistles, songs, and pulsed class. Similarly, 
fish sounds are commonly classified as drums, grunt, and impulse. Frame-wise 
activity detection in SED is approached using various supervised and unsupervised 
methods. Some of the most popularly used classifiers include the Gaussian mixture 
model (GMM), hidden Markov model (HMM), fully convolutional neural networks, 
recurrent neural network (RNN), and CNN. The choice on the detector depends on 
the nature of the signal and the application to be developed. Interpreting spectrogram 
to detect acoustic events requires domain expertise. 

Soundscape monitoring helps understand the acoustic ecology of an environment 
and how different sound sources respond to the dynamically changing ocean 
[6]. The major sources of a marine soundscape include anthrophony, biophony, 
and geophony. Increasing ocean-based human activities and changing climatic 
conditions have rapidly altered the composition of a marine soundscape [7]. This 
chapter aims to design a recognition system without the need for feature extraction 
and train the classification model to predict the category of the signal and classify 
it accordingly. Marine conservatory research aims at achieving a resilient and 
productive ocean with a small change helping restore the blue world and having 
a biggest impact in balancing a healthier biodiversity and human well-being. 

2 Materials and Methods 

2.1 Study Site and Acoustic Recordings 

The source of the data used in this chapter is the National Oceanic Atmospheric 
Administration (NOAA). In association with the QAR Pacific Marine Environ-
mental Laboratory, they have set up twelve mooring sites across the US coastline
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Fig. 1 Annotated long-term spectral average of a marine soundscape of the Perth Canyon [8] 

waters. The US Virgin Islands is the 12th deployment site with yearlong ocean 
acoustic recordings from 2017-05-02T01:20:28 to 2018-05-31T14:15:28. As per 
the sources state, the passive acoustic recordings comprise predominantly of 
anthropogenic sources, periodical occurrences of marine species calls, and lower-
frequency sounds from geophysical activities or the geophony. Matching to the 
geographical positioning of this region being very close to the harbor, this site is 
exposed to an increased level of shipping and vessel activities, which account to 
the high levels of anthrophony that are observed in the recordings. At the same 
time, this region is known for its rich biological sources of primarily whales and 
soniferous fishes. The sources show that the passive acoustic monitoring (PAM) 
technique was adopted for data collection, collected continuously using a single-
channel mooring device, with a sampling rate of 5 kHz with the sensors positioning 
of . −40m of the ocean depth to cover all frequencies. Figure 1 shows the dataset 
features in an ocean soundscape data. The biological sounds of over 60 different 
species of marine mammals are provided by the Watkins Marine Mammal Sound 
Database [9]. The non-biological sounds from the diverse human activities and the 
fish and invertebrate sounds are collected from the source “Discovery of sound in 
the sea,” maintained by the University of Rhode Island [10]. 

3 Methodology 

3.1 Identification of Acoustic Events Using Fourier Analysis 

The identification of acoustic events in an ocean soundscape data using Fourier 
analysis forms the vital contribution of this chapter. It is based on the concept 
that a waveform or a time domain signal is a sum of series of sinusoids of various
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frequencies, amplitudes, and phases. Fourier analysis is the series of sine waves that 
decompose a periodic or aperiodic signal to individual sine wave components in 
its frequency domain of a single-sided Fourier spectrum. In this context, Fourier 
analysis is used to represent the individual frequency components in an ocean 
soundscape audio signal that in a way numerically represents the local biodiversity 
as individual bio-acoustic calls of a marine soundscape using FFT. For an aperiodic 
time, function x(t) with a period T. The Fourier coefficients X(n) are defined by 

.r = 1

T

f T
2

−T
2

x(t)e−jwont (1) 

where, 

.wo = 2π

T
(2) 

using the coefficients x(m), x(t) can be represented as, 

.x(t) =
∞E

n=−∞
x(n)ejwomt =

∞E
n=−∞

x(n)ej 2π
T

mt (3) 

It takes into the property of the symmetry in sine waves to reconstruct the 
individual bio-acoustic signals. The number of frequencies in a Fourier spectrum 
equals to the number of individual samples in its raw waveform. Figure 2 shows the 
spectral peaks of two individual acoustic sources fetched using Fourier analysis on 
a single sided Fourier spectrum. 

Fig. 2 Spectral content of an ocean soundscape signal with two minor frequencies at 0.1 and 1 kHz
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.Δf = 1

T
= Fs

N
(4) 

where N is the length of the signal and FS is the sample rate of the raw waveform 
frequency. Frequency ranges of 0 Hz to the highest frequency of Nyquist frequency 
can be reconstructed using FFT. After the identification of individual acoustic 
sources from the soundscape data, the numbers of sources are identified, and they 
are recognized and classified as biological or non-biological sources. 

3.2 Recognition of Acoustic Events Using Deep Learning 

3.3 Visual Representation of Acoustic Events 

The technique of converting an audio signal in its time domain to 2D image, 
like spectrograms, aids experts in performing visual inspection to identify acoustic 
events, precisely bio-acoustic events [11]. Spectrograms are 2D imagelike repre-
sentation of a time domain signal that varies across time. It is extensively applied 
on voiced signals to extract meaningful features to perform speech recognition, 
image identification, gesture and palm recognition, and many more applications of 
audio signal processing. Figure 3 presents the 1D time domain and 2D spectrogram 
representation extracted using short-term Fourier transform (STFT). The spectro-
gram shows the prevalence of acoustic events occupying across the entire frequency 
spectrum. In the case of a non-biological spectrogram, the abiotic acoustic events 
show more prevalence in the higher frequencies of the spectrum. A short clip of the 
overall audio data is used to generate the spectrogram.
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Fig. 3 From the top, time domain and spectrogram representation of the biological and the non-
biological sources 

3.4 Training, Testing, and Validation Data Split 

A preliminary study was performed to collect the list of marine species from the 
region of study, and their corresponding audio data was collected to constitute 
the training and testing data. Audio information of all the possible marine life in 
this region was collected to improve the robustness of the model in detecting the 
sources in the validation data, which is the source-separated soundscape data. The 
training samples consisted of spectrograms with corresponding labels and mapping 
generated and stored in a JSON file. An 80-20-20 split of training, testing, and 
validation data was adopted in the model preparation. The two categories of data, 
namely, biological and non-biological sounds, were equally sized and labeled to 
constitute the training and the testing data. The model was validated using the 
denoised soundscape data of the US Virgin Islands to classify it to be either 
biological or a non-biological. The long durational denoised data was clipped into 
short segments of audio, with 2s length each. This way, the separated data is 
classified to either of the two classes to identify the predominant source of the 
separated long durational data. This way, the need for profound feature extraction 
techniques is evaded using the proposed model to identify target signals in the audio 
data amidst the effect of other ocean noise sources.
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3.5 Model Creation 

Two deep learning models, namely, convolutional neural networks (CNN) and 
recurrent neural networks (RNN-LSTM), were the preferred choice for the model 
creation. The choice on the model was made based on the nature of the data, which 
is a long durational sequential labeled data clipped into short segmental frames. 
2D CNN for learning is more robust as the model is capable of recognizing feeble 
animal sounds as contours in a spectrogram. Model structuring is designed to learn 
more features from the time domain by stacking three consecutive convolutional 
layers followed by a max pooling to pull down the loss of prominent features. The 
filter size of the model is progressively increased, and padding is used to preserve the 
input matrix dimension. The ReLu activation function is used to avoid the vanishing 
gradient problem that facilitates a faster learning process. A minimalistic model 
architecture is achieved with this model design. 

On a general note, CNN is the preferred choice of deep learning model when 
dealing with 2D image data. The 2D image form, an audio signal known as 
spectrogram, is generated from time-domain signals using various feature extraction 
techniques like Fourier transform (FT), short-term Fourier transform (STFT), 
wavelet transform (WT), spectral centroid, spectral bandwidth, and zero-crossing 
rate. When compared to other conventional convolutional models, the LSTM model 
is a type of recurrent neural network (RNN) where the learning is performed 
sequentially, and it is the preferred choice of model in complex recognition 
problems. The proposed classification model is fed with sequential long durational 
passive acoustic data collected for 3 months, recorded on the basis of 4 hours per day 
summing up to 1200 hours. The long durational data is clipped to definite-size audio 
samples definitive to the length of the species call. The clipped biological and non-
biological calls are identified and classified to either of the two classes. Conventional 
CNN and RNN models are used to access the best performing model that identifies 
the sources with almost similar acoustic structure. The model architecture is kept 
simple to reduce the complexity and to achieve far more precise results compared to 
other less complicated traditional machine learning algorithms like SVM and other 
conventional clustering techniques. The entire model is scripted in Python 3.6 and 
implemented on Spyder 4.4 IDE with TensorFlow 2.0. 

4 Results and Discussion 

The spectrograms generated from the image-based data are used for training the 
model of denoised soundscape data consisting of marine species vocalization and 
anthropogenic noise separated in the audio source separation is clipped and used in 
model validation. The training and validation loss of the model is controlled through 
the model structuring, where dropouts and flattening layers are combined with the 
convolutional layers to balance the model architecture. The model’s performance
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was evaluated with varying epoch sizes like 10, 25, and 50, to check its effect on 
the overall model accuracy. The recognition model was developed on Windows 10, 
64bit PC, with Intel(R) Core (TM) i5-7200U CPU, and NVIDIA GeForce 304 GTX 
1080 GPU and TensorFlow 2.2. The model processing was performed using a GPU 
to increase the computation speed with large volumes of data. The complexity of the 
model is quite reduced as the model is expected to recognize an entire category of 
the audio source rather than individual sources. Recognizing individual sources in 
an audio recording would require learning from an overcomplete dictionary, which 
is tedious. The proposed model is evaluated using the accuracy metric in which the 
2D CNN model achieves a validation loss of 0.25 and an accuracy rate of 94.2%. 
The binary classification accuracy shows the adaptability of a convolutional model 
that suits best in handling image data and also performs best when dealing with 
audio-based data; however, the performance shows an inconsistent classification 
with steady drops in the accuracy value and varying epochs. The RNN-LSTM model 
shows greater adaptability toward the continuous data and fetch and accuracy of 
96% and a validation loss of 0.07. 

On comparing the models, the 2D CNN shows an upper hand compared to 
the RNN-LSTM in terms of handling structures in a non-voiced data in audio 
recognition. However, this study also proves the efficient applicability of simple 
deep learning models in performing complex audio recognition and classification 
tasks easily. A fixed dictionary of the sources in a deep ocean is still undefined as 
the evolving marine world unwraps new species each day. On this note, the results of 
the binary classifier in this study prove the proposed model that identifies the ocean 
life as a significant contribution in this regard. Figure 4 shows the performance of 
Fig. 4a CNN Fig. 4b RNN-LSTM in a graph plotted accuracy against the number of 
epochs. 

The graphs for model loss in the training and the validation process in Figure 2 
show 2D CNN-based binary classification to exhibit the model’s training and vali-
dation process with the loss of the model reducing significantly with varying epochs 
and converging to zero at the last few epochs, proving the model’s adaptability in 
handling new data. An important inference from a steady drop in the RNN model’s 
accuracy is observed at varied epochs, proving its adaptability in handling non-
voiced structures in a spectrogram to be less efficient as the vocalization pattern 
as whistle contours do not possess a definite structure as in a usual 2D image. On 
a precise note, the designed automated system recognizes the bio-acoustic events 
and is accessed on the basis of the validation accuracy. Efficient conventional deep 
learning models like convolutional neural networks (CNN) and recurrent neural 
networks (RNN-LSTM) were put to test their efficiency in handling the real-time 
passive acoustic ocean soundscape data. Unlike other popular audio AI domains like 
speech and music, the applicability of AI on ocean acoustics is nascent. Research 
efforts in this regard are expected to grow in the future for its significance in marine 
life conservation.



Bioacoustic Source Recognition 283

Fig. 4 From the top, time domain and spectrogram representation of the biological and the non-
biological sources 

5 Conclusion 

The conservation of rapidly depleting marine ecosystems and its habitat has 
necessitated the need for marine life monitoring and conservatory policies with 
preventive measures. In this regard, artificial intelligence, especially deep learning, 
has gained great significance in the design and development of robust automated 
systems to interpret and perform actions with far more precision and intelligence 
than humans. This chapter is one such effort to effectively recognize the number 
of sources and classify the bio-acoustic events in an ocean soundscape data using 
CNN. The model’s performance was tested on its ability in effectively handling 
biological and non-biological calls that possess nearly similar acoustic patterns in 
their 2D image form. The results shows CNN model, a conventional choice of model 
in handling 2D image-based data, also efficiently handles sequential non-voiced 
data better compared to RNN model. As part of future work, we intend to identify 
the specific bio-acoustic source in the ocean soundscape data using a hybrid deep 
learning model and apply transfer learning to extend to new species with limited
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data. The ocean is a vital source of life sustenance on this planet. A little contribution 
in this regard can help revive the massive blue world and protect it in the long run. 
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1 Introduction 

Zadeh [31] was the first one to introduce fuzzy set and its topological spaces by 
Chang [4]. Atanassov [2, 3] introduced intuitionistic fuzzy sets and its topological 
spaces by Coker [5]. In 1995, Smarandache [18, 19] introduced neutrosophic logic 
and its topological spaces by Salama et al. [17] and their applications by several 
authors [1, 6, 11, 14, 24, 27]. Pawlak [15] was the first one to introduced the rough set 
theory. In 2013, Lellis Thivagar [9] presented nano-topology and nano-topological 
spaces. 

Pankajam [12] introduced .δ-open sets in nano-topological space and Vadivel et 
al. [22, 23, 28–30] in a neutrosophic topological space. El-Maghrabi and Al-Juhani 
[7] introduced .M-open sets in topological spaces and in nano-topological spaces by 
Padma et al. [13]. 

Recently, a novel idea of neutrosophic nano-topology was investigated by Lellis 
Thivagar et al. [10]. Recently, Thangammal et al. [20, 21] and Kalaiyarasan et al. 
[8] introduced some open sets in fuzzy nano-topological spaces, and Vadivel et al. 
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[25, 26] investigated .δ-open sets and .M-open sets in neutrosophic nano-topological 
spaces. 

2 Preliminaries 

The basic definitions used in this article are given and studied in these articles [10, 
13, 16, 25, 26]. 

3 Neutrosophic Nano M Continuous Functions 

Throughout this section, let a function .h : (U1, τN(F1)) → (U2, τN(F2)) be . h. 

Definition 1 A function h is said to be neutrosophic nano (resp. . θ , . θ semi, . δ
pre .& . M) continuous (briefly, .NseuNCts (resp. .NseuN θCts, .NseuN θSCts, 
.NseuN δPCts . & .NseuNMCts)), if for each .NseuNo set S of . U2, the set . h−1(S)

is .NseuNo (resp. .NseuN θo, .NseuN θSo, .NseuN δPo . & .NseuNMo) sets of . U1. 

Theorem 1 Let h be a mapping. Then, every 

(i) .NseuN θCts is .NseuNCts. 
(ii) .NseuNCts is .NseuN δPCts. 
(iii) .NseuN θCts is .NseuN θSCts. 
(iv) .NseuN θSCts is .NseuNMCts. 
(v) .NseuN δPCts is .NseuNMCts. 
(vi) Every .NseuN δPCts is a .NseuN eCts. 
(vii) Every .NseuNMCts is a .NseuN eCts. 

Proof 

(i) Let h be .NseuN θCts and L is a .NseuNo in . U2. Then .h−1(L) is .NseuN θo in 
. U1. Since every .NseuN θo is .NseuNo, .h−1(L) is .NseuNo in . U1. Therefore 
h is .NseuNCts. 

(ii) Let h be .NseuNCts and L is a .NseuNo in . U2. Then .h−1(L) is . NseuNo

in . U1. Since every .NseuNo is .NseuN δPo, .h−1(L) is .NseuN δPo in . U1. 
Therefore h is .NseuN δPCts. 

(iii) Let h be .NseuN θCts and L is a .NseuNo in . U2. Then .h−1(L) is . NseuN θo

in . U1. Since every .NseuN θo is .NseuN θSo, .h−1(L) is .NseuN θSo in . U1. 
Therefore h is .NseuN θSCts. 

(iv) Let h be .NseuN θSCts and L is a .NseuNo in . U2. Then .h−1(L) is 
.NseuN θSo in . U1. Since every .NseuN θSo is .NseuNMo, .h−1(L) is 
.NseuNMo in . U1. Therefore h is .NseuNMCts.
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(v) Let h be .NseuN δPCts and L is a .NseuNo in . U2. Then .h−1(L) is 
.NseuN δPo in . U1. Since every .NseuN δPo is .NseuNMo, .h−1(L) is 
.NseuNMo in . U1. Therefore h is .NseuNMCts. 

(vi) Let h be .NseuN δPCts and L is a .NseuNo in . U2. Then .h−1(L) is 
.NseuN δPo in . U1. Since every .NseuN δPo is .NseuN eo, .h−1(L) is 
.NseuN eo in . U1. Therefore h is .NseuN eCts. 

(vii) Let h be .NseuNMCts and L is a .NseuNo in . U2. Then .h−1(L) is . NseuNMo

in . U1. Since every .NseuNMo is .NseuN eo, .h−1(L) is .NseuN eo in . U1. 
Therefore h is .NseuN eCts. 

nu
The converse of Theorem 1 need not be true. 

Example 1 Assume .U = {s1, s2, s3, s4} and .U/R = {{s1, s4}, {s2}, {s3}}. Let  

.So =
{/

s1
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\
,
/

s4
0.1,0.5,0.9

\}
be a .Nseu subs of . U . 

.NseuN (So) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

. BNseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
.

Thus .τN(So) = {0N, 1N,NseuN (So),NseuN (So) = BNseuN (So)}. 
Then .h : (U, τN(F )) → (U, τN(F )) is an identity function, the set . Ao ={/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
is .NseuNCts but not .NseuN θCts. 

Since, . Ao is a .NseuNo set in . U but .h−1(Ao) is not .NseuN θo set in . U . 

Example 2 Assume .U = {s1, s2, s3, s4} and .U/R = {{s1, s4}, {s2}, . {s3}}. Let  

.So =
{/

s1
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\
,
/

s4
0.1,0.5,0.9

\}
be a .Nseu subs of . U . 

.NseuN (So) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

. BNseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
.

Thus .τN(So) = {0N, 1N,NseuN (So),NseuN (So) = BNseuN (So)}. 
Also, .V = {t1, t2, t3, t4} and .V/R = {{t1, t4}, {t2}, .{t3}}. 
Let .To =

{/
t1

0.1,0.5,0.9

\
,
/

t2
0.1,0.5,0.9

\
,
/

t3
0.4,0.5,0.6

\
,
/

t4
0.1,0.5,0.9

\}
be a .Nseu .subs of 

. V . 
. NseuN (To) =

{/
t1,t4

0.1,0.5,0.9

\
,
/

t2
0.1,0.5,0.9

\
,
/

t3
0.4,0.5,0.6

\}
= NseuN (To) =

BNseuN (To).

Thus .σN(To) = {0N, 1N,NseuN (To) = NseuN (To) = BNseuN (To)}. 
Then .h : (U, τN(F )) → (V , σN(F )) is an identity function, the set . Ao ={/

t1,t4
0.1,0.5,0.9

\
,
/

t2
0.1,0.5,0.9

\
,
/

t3
0.4,0.5,0.6

\}
is .NseuN δPCts (resp. .NseuNMCts) but  

not .NseuNCts (resp. .NseuN θSCts). Since, . Ao is a .NseuNo set in . V but . h−1(Ao)

is not .NseuNo (resp. .NseuN θSo) set set in . U .
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Example 3 Assume .U = {s1, s2, s3, s4} and .U/R = {{s1, s4}, {s2}, . {s3}}. Let  

.So =
{/

s1
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\
,
/

s4
0.1,0.5,0.9

\}
be a .Nseu subs of . U . 

.NseuN (So) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

. BNseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
.

Thus .τN(So) = {0N, 1N,NseuN (So),NseuN (So) = BNseuN (So)}. 
Also, .V = {t1, t2, t3, t4} and .V/R = {{t1, t4}, {t2}, .{t3}}. 
Let .To =

{/
t1

0.8,0.5,0.2

\
,
/

t2
0.7,0.5,0.3

\
,
/

t3
0.6,0.5,0.4

\
,
/

t4
0.8,0.5,0.2

\}
be a .Nseu .subs of 

. V . 
.NseuN (To) =

{/
t1,t4

0.8,0.5,0.2

\
,
/

t2
0.7,0.5,0.3

\
,
/

t3
0.6,0.5,0.4

\}
= NseuN (To), 

. BNseuN (To) =
{/

t1,t4
0.2,0.5,0.8

\
,
/

t2
0.3,0.5,0.7

\
,
/

t3
0.4,0.5,0.6

\}
.

Thus .σN(To) = {0N, 1N,NseuN (To) = NseuN (To), BNseuN (To)}. 
Then .h : (U, τN(F )) → (V , σN(F )) is an identity function, the set . Bo ={/

t1,t4
0.8,0.5,0.2

\
,
/

t2
0.7,0.5,0.3

\
,
/

t3
0.6,0.5,0.4

\}
is .NseuN θSCts (resp. .NseuNM .Cts and 

.NseuN eCts) but not .NseuN θCts (resp. .NseuN δPCts and .NseuN .δPCts). 
Since, . Bo is a .NseuNo set in . V but .h−1(Bo) is not .NseuN θo (resp. . NseuN δPo

and .NseuN δPo) set in . U . 

Remark 1 Figure 1 shows the relationships of .NseuNMCts mappings in 
.NseuN ts. 

Theorem 2 A function h is .NseuNMCts iff the inverse image of every .Nseu . N c

in . U2 is .NseuNMc in . U1. 

Proof Let h be .NseuNMCts . & . Oo is .NseuNo in . U2. (i.e.) .U2 −Oo is .NseuNo in 
. U2. Since h is .NseuNMCts, .h−1(U2−Oo) is .NseuNMo in . U1. (i.e.) . U1−h−1(Oo)

is .NseuNMo in . U1. Therefore .h−1(Oo) is .NseuNMc in . U1. 
Conversely, let the inverse image of every .NseuN c be .NseuNMc. Let  C be 

.NseuNo in . U2. Then .U2 −C is .NseuN c in . U2, implies .h−1(U2 −C) is . NseuNMc

in . U1. (i.e.) .U1 − h−1(C) is .NseuNMc in . U1. Therefore .h−1(C) is .NseuNMo in 
. U1. Thus, the inverse image of every .NseuNo in . U2 is .NseuNMo in . U1. Hence, h 
is .NseuNMCts on . U1. nu

NseuN θCts NseuN θSCts NseuNMCts  

NseuNCts NseuN δPCts NseuN eCts 

Fig. 1 .NseuNMCts mappings in .NseuN ts
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Theorem 3 A function h is .NseuNMCts iff . h(NseuNMcl(M)) ⊆ NseuN cl(

.h(M)) for every subset M of . U1. 

Remark 2 A function h is .NseuNMCts then .h(NseuNMcl(K)) is not necessar-
ily equal to .NseuN cl(h(K)) where .K ∈ IU1 . 

Example 4 In Example 1, .h : (U, τN(F )) → (U, τN(F )) is .NseuNMCts. 

Let .Ao =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.1,0.5,0.9

\}
∈ U . Then . NseuNMcl(Ao) =

h(NseuNMcl(Ao)) = h(Ao) = Ao. 
But 

. NseuN cl(h(Ao)) = NseuN cl(Ao)

=
{/

s1, s4

0.8, 0.5, 0.2

\
,

/
s2

0.7, 0.5, 0.3

\
,

/
s3

0.6, 0.5, 0.4

\}
.

Thus .h(NseuNMcl(Ao)) /= NseuN cl(h(Ao)). 

Theorem 4 A function h is .NseuNMCts iff . NseuNMcl(h−1(S)) ⊆ h−1(Nseu

.N cl(S)) for every subset S of . U2. 

Proof If h is .NseuNMCts .& .S ⊆ U2. .NseuN cl(S) is .NseuN c in . U2. Thus, 
.h−1(NseuN cl(S)) is .NseuNMc in . U1. Therefore . NseuNMcl(h−1(NseuN cl(S)

.)) = h−1(NseuN cl(S)). Since .S ⊆ NseuN cl(S), .h−1(S) ⊂ h−1(NseuN .cl(S)). 
Therefore . NseuNMcl(h−1(S)) ⊂ NseuNMcl(h−1(NseuN cl(S))) = h−1(Nseu

.N cl(S)). That is .NseuNMcl(h−1(S)) ⊆ h−1(NseuN cl(S)). 
Conversely, let .NseuNMcl(h−1(S)) ⊆ h−1(NseuN cl(S)) for every subset S of 

. U2. If  S is .NseuN c in . U2, then .NseuN cl(S) = S. By assumption, . NseuNMcl(

.h−1(S)) ⊆ h−1(NseuN cl(S)) = h−1(S). Thus .NseuNMcl( .h−1(S)) ⊆ h−1(S). 
But .h−1(S) ⊆ NseuNMcl(h−1(S)). Therefore .NseuNM .cl(h−1(S)) = h−1(S). 
Hence .h−1(S) is .NseuNMc in . U1, for every .NseuN c set S in . U2. Therefore h is 
.NseuNMCts on . U1. nu
Remark 3 A function h is .NseuNMCts then .NseuNMcl(h−1(L)) is not neces-
sarily equal to .h−1(NseuN cl(L)) where .L ∈ IU2 . 

Example 5 In Example 1, .h : (U, τN(F )) → (U, τN(F )) is .NseuNMCts. Let  

.Bo =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.1,0.5,0.9

\}
∈ U . 

Then .NseuNMclh−1(Bo) = NseuNMcl(Bo) = Bo. But  

. h−1(NseuN cl(Bo)) = h−1(

{/
s1, s4

0.8, 0.5, 0.2

\
,

/
s2

0.7, 0.5, 0.3

\
,

/
s3

0.6, 0.5, 0.4

\}
)

=
{/

s1, s4

0.8, 0.5, 0.2

\
,

/
s2

0.7, 0.5, 0.3

\
,

/
s3

0.6, 0.5, 0.4

\}
.

Thus .NseuNMcl(h−1(Bo)) /= h−1(NseuN cl(Bo)).
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Theorem 5 A function h is .NseuNMCts iff . h−1(NseuN int (S)) ⊆ NseuNM

.int (h−1(S)) for every subset S of . U2. 

Proof If h is .NseuNMCts and .S ⊆ U2. .NseuN int (S) is .NseuNo in .U2 and 
hence, .h−1(NseuN int (S)) is .NseuNMo in . U1. Therefore . NseuNMint(h−1(

.NseuN int (S))) = h−1(NseuN int (S)). So, .NseuN int (S) ⊆ S, implies 

.h−1(Nseu .N int (S)) ⊆ h−1(S). Then, .NseuNMint(h−1(NseuN int . (S))) ⊆
NseuNMint( .h−1(S)). That is .h−1(NseuN int (S)) ⊆ NseuNMint(h−1(S)). 

Conversely, let .h−1(NseuN int (S)) ⊆ NseuNMint(h−1(S)) for every subset S 
of . U2. If  S is .NseuNo in . U2, then .NseuN int (S) = S. Based on our assumption, 
.h−1(NseuN int (S)) ⊆ NseuNMint(h−1(S)). Thus . h−1(S) ⊆ NseuNMint(h−1

. (S)). But .NseuNMint(h−1(S)) ⊆ h−1(S). Hence, .Nseu . NMint(h−1(S)) =
h−1(S). That is, .h−1(S) is .NseuNMo in . U1, for every .NseuNo set S in . U2. 
Therefore h is .NseuNMCts on . U1. nu
Remark 4 A function h is .NseuNMCts then .h−1(NseuN int (L)) is not neces-
sarily equal to .NseuNMint(h−1(L)) where .L ∈ IU2 . 

Example 6 In Example 1, .h : (U, τN(F )) → (U, τN(F )) is .NseuNMCts. Let  

.Bo =
{/

s1,s4
0.9,0.5,0.1

\
,
/

s2
0.8,0.5,0.2

\
,
/

s3
0.9,0.5,0.1

\}
∈ U . 

Then .NseuNMint(h−1(Bo)) = NseuNMint(Bo) = Bo. 

But .h−1(NseuN int (Bo)) = h−1
({/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\})
. ={/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
. 

Thus .NseuNMint(h−1(Bo)) /= h−1(NseuN int (Bo)). 

Theorem 6 Let h be a function. Then, . h is a .NseuNMCts function iff . NseuN
.Mcl(h−1(So)) ⊆ h−1(NseuNMcl(So)) for all .Nseu subs . So in . U2. 

Proof Let . So be any .Nseu subs in . U2 and . h be a .NseuNMCts function. From 
Theorem 4 (i), .h−1(So) ⊆ h−1(NseuNMcl(So)). Then, . NseuNMcl(h−1(So)) ⊆
NseuNMcl(h−1(NseuNMcl(So))). Since .NseuNMcl(So) is .NseuNMc set in 
. U2, by Theorem 4, .h−1(NseuNMcl(So)) is .NseuNMc set in . U1. Thus, . NseuNM

.cl(h−1(So)) ⊆ NseuNMcl(h−1(NseuNMcl(So))) = h−1(NseuNM .cl(So)). 
Conversely, .NseuNMcl(h−1(So)) ⊆ h−1(NseuNMcl(So)) for all . Nseu subs

. So in . U2. Let . Fo be a .NseuN c set in . U2. Since every .NseuN c set is . NseuNMc

set, .NseuNMcl(h−1(Fo)) ⊆ h−1(NseuNMcl(Fo)) = h−1(Fo). From Theorem 4, 
. h is a .NseuNMCts function. nu
Theorem 7 Let . h be a bijective function. Then . h is .NseuNMCts iff . NseuNM

.int (h(So)) ⊆ h(NseuNMint(So)) for all .Nseu subs . So in . U1. 

Proof Let . So be any .Nseu subs in .U1 and . h be a bijective and . NseuNMCts

function. Let .h(So) = To. From Theorem 5 (i), .h−1(NseuNMint(To)) ⊆ h−1(To). 
Since . h is an injective function, .h−1(To) = So, so that .h−1(NseuNM . int (To)) ⊆
So. Therefore, .NseuNMint(h−1(NseuNMint(To))) ⊆ NseuNM .int (So). Since 
. h is .NseuNMCts, .h−1(NseuNMint(To)) is .NseuNMo set in . U1 and .h−1(Nseu
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.NMint(To)) ⊆ NseuNMint(So), h(h−1(NseuNMint(To))) . ⊆ h(NseuNMint

.(So)). Hence, . NseuNMint(h(So)) ⊆ h(NseuNMint(So)).

Conversely, .NseuNMint(h(So)) ⊆ h(NseuNMint(So)) for all . Nseu subs

. So in . U1. Let  V be a .NseuNo set in . U2. Then V is .NseuNMo in . U2. Since 

. h is surjective and Theorem 5 (ii), . V = NseuNMint(V ) = NseuNMint(h(

.h−1(V ))) ⊆ h(NseuNMint(h−1(V ))). It follows that, . h−1(V ) ⊆ NseuNM

.int (h−1(V )). Hence, .h−1(V ) is .NseuNMo set in . U1. Hence by Definition 1, . h
is a .NseuNMCts function. nu
Definition 2 For any two .Nseu subs’s . S and . T , then .SqT means that . S is 
neutrosophic nano-quasi-coincident with . T if . ∃ .s ∈ U . ∃ .S(s) + T (s) > 1. That 
is, .{<s, μS(s) + μT (s), σS(s) + σT (s), νS(s) + νT (s)> : s ∈ U} > 1. 

If . S is not neutrosophic nano-quasi-coincident with . T , then we write .S / qT . 

Definition 3 Let . S and . T be any two .Nseu subs’s of a .NseuN ts’s. Then . S is 
neutrosophic nano .q-neighbourhood with . T if . ∃ a .NseuNo set . O with .SqO ⊆ T . 

Definition 4 A .Nseu subs . S in a .NseuN ts .(U, τN(F )) is called a neutrosophic 
nano .M .q-neighborhood (briefly, .NseuNMq-nbhd) of a fuzzy point .x(u,v,w) if . ∃ a 
.NseuNMo set . V in .(U, τN(F )) . ∃ .x(u,v,w)qV ⊆ S. 

Proposition 1 Let . h be a .NseuN ts. Then the following assertions are equivalent: 

(i) . h is .NseuNMCts. 
(ii) For each fuzzy point .x(u,v,w) ∈ U1 and every .NseuNMq-nbhd S of 

.h(x(u,v,w)), . ∃ a .NseuNMo set T in .U1 . ∃ .x(u,v,w) ∈ T ⊆ h−1(S). 
(iii) For each fuzzy point .x(u,v,w) ∈ U1 and every .NseuNMq-nbhd S of 

.h(x(u,v,w)), . ∃ a .NseuNMo set T in .U1 . ∃ .x(u,v,w) ∈ T and . h(T ) ⊆ S.

Remark 5 The composition of two .NseuNMCts functions need not be . NseuN
.MCts as seen from the following example. 

Example 7 Assume .U = {s1, s2, s3, s4} and .U/R = {{s1, s4}, {s2}, . {s3}}. Let  

.So =
{/

s1
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\
,
/

s4
0.1,0.5,0.9

\}
be a .Nseu subs of . U . 

. NseuN (So) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
,

NseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
,

BNseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
.

Thus .τN(So) = {0N, 1N,NseuN (So),NseuN (So) = BNseuN (So)}. 
Also, .V = {t1, t2, t3, t4} and .V/R = {{t1, t4}, {t2}, .{t3}}. 
Let .To =

{/
t1

0.1,0.5,0.9

\
,
/

t2
0.2,0.5,0.8

\
,
/

t3
0.1,0.5,0.9

\
,
/

t4
0.1,0.5,0.9

\}
be a .Nseu .subs of 

. V . 
. NseuN (To) =

{/
t1,t4

0.1,0.5,0.9

\
,
/

t2
0.2,0.5,0.8

\
,
/

t3
0.1,0.5,0.9

\}
= NseuN (To) =

BNseuN (To).

Thus .σN(To) = {0N, 1N,NseuN (To) = NseuN (To) = BNseuN (To)}. 
Also, .W = {r1, r2, r3, r4} and .W/R = {{r1, r4}, {r2}, .{r3}}.
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Let .Ro =
{/

r1
0.1,0.5,0.9

\
,
/

r2
0.0,0.0,1.0

\
,
/

r3
0.6,0.5,0.4

\
,
/

r4
0.1,0.5,0.9

\}
be a .Nseu . subs

of . W . 
. NseuN (Ro) =

{/
r1,r4

0.1,0.5,0.9

\
,
/

r2
0.0,0.0,1.0

\
,
/

r3
0.6,0.5,0.4

\}
= NseuN (Ro) =

BNseuN (Ro).

Thus .ρN(Ro) = {0N, 1N,NseuN (Ro) = NseuN (Ro) = BNseuN (Ro)}. 
Then .h1 : (U, τN(F )) → (V , σN(F )) and .h2 : (V , σN(F )) → (W, ρN(F )) are 

.NseuNMCts but .(h2 ◦ h1) is not .NseuNMCts. 

Since, .Bo =
{/

r1,r4
0.1,0.5,0.9

\
,
/

r2
0.0,0.0,1.0

\
,
/

r3
0.6,0.5,0.4

\}
is .NseuNo set in .W but 

.(h2 ◦ h1)
−1(Bo) is not .NseuNMo set in . U . 

Theorem 8 Let .h1 : (U1, τN (F1)) → (U2, τN (F2)) and . h2 : (U2, τN(F2)) →
(U3, τN (F3)) be any two functions. If . h1 is a .NseuNMCts & . h2 is . NseuNCts

functions, then .h2 ◦ h1 is .NseuNMCts. 

Proof Let C be any .NseuN c in . U3. As . h2 is .NseuNCts, .h−1
2 (C) is .NseuN c in . U2. 

Since . h1 is .NseuNMCts, implies .h−1
1 (h−1

2 (C)) = (h2 ◦ h1)
−1(C) is . NseuNMc

in . U1. Therefore .h2 ◦ h1 is .NseuNMCts. nu
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Two-Dimensional Walsh-Fourier Series 
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1 Introduction 

We shall denote the set of non-negative integers by . N. The Walsh(-Paley) system 
.(wn : n ∈ N) was introduced by Paley in 1932. Let .Sn (f ) denote the nth 
partial sum of one-dimensional Walsh-Fourier series, and let .Sn,m (f ) denote the 
rectangular partial sums of two-dimensional Walsh-Fourier series. It is well-known 
that the partial sums .Sn (f ) of every integrable function are convergent in measure to 
the function f . A similar theorem does not hold for quadratic sums .Sn,n (f ) of two-
dimensional Walsh-Fourier series. In particular, it is known that [6, 7, 9, 11, 12] there 
exists such an integrable function whose square partial sums .Sn,n (f ) are divergent 
in measure. 

The .(C;αn, βm) means of two-dimensional Walsh-Fourier series are defined as 
follows: 

. σ (αn,βm)
n,m (f, x, y) = 1

A
αn

n−1A
βm

m−1

nE
i=1

mE
j=1

A
αn−1
n−i A

βm−1
m−j Si,j (f, x, y) ,
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where 

. Aαn
n := (1 + αn) . . . (n + αn)

n!
for any .n ∈ N, αn /= −1,−2, . . .. 

In the case when the functions . αn and . βm are positive constant numbers . αn = α

and .βm = β , then .(C;αn, βm) means coincide with the well-known . (C;α, β)

means, and it is well-known that for each integrable function .(C;α, β) means are 
convergent in .L1−norm and, therefore, in measure. 

The presented paper will discuss the case when . αn, .βn ∈ (0, 1) and . αn, . βn → 0
as .n → ∞. 

We Can Formulate the Following Questions Let . αn , .βn ∈ (0, 1) and tend 
to zero as .n → ∞. Does the .L1

(
I

2
)
-class provide convergence in measure of 

.σ
(αn,βm)
n,m (f )? 

In the present chapter, the main aim is to establish the necessary and sufficient 
conditions for .{αn} and .{βm} in order .(C, αn, βm) means with varying parameters 
of two-dimensional Walsh-Fourier series to be convergent in measure. 

2 Definitions and Notation 

Set .I := [0, 1) and .I2 := [0, 1) × [0, 1). We denote by .L0 = L0(I
2) the Lebesgue 

space of functions that are measurable and finite almost everywhere on . I2; . μ(A)

is the two-dimensional Lebesgue measure of the set .A ⊂ I
2. The one-dimensional 

Lebesgue measure of the set .A ⊂ I will be denoted by .μ (A). We denote by . L1
(
I

2
)

the class of all measurable functions . f satisfying .||f ||1 := f
I2

|f | < ∞. For the 

functions of two variables and for the set .E ⊂ I
2, the following notions will be 

used: 

.μ1(E) :=
f
I

χE (x, y) dx for a.e. y ∈ I (1) 

and 

.μ2(E) :=
f
I

χE (x, y) dy for a.e. x ∈ I, (2) 

where . χE is characteristic function of the set E. 
The .(C, αn) kernel is defined by 

.Kαn
n = 1

Aα
n−1

nE
j=1

A
αn−1
n−j Dj .
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It is evident that 

. σ (αn,βm)
n,m (f, x, y) = f ∗ (

Kαn
n ⊗ Kβm

m

)
(x, y) (3)

= σβm
m

(
σαn

n (f ) ; x, y
) = σαn

n

(
σβm

m (f ) ; x, y
)
,

where .σαn
n (f ) := f ∗ .K

αn
n is the .(C, αn) means of one-dimensional Walsh-Fourier 

series of the function .f ∈ L1 (I). 

3 Main Results 

We assume that .αn, βm ∈ (0, 1) and . lim
n→∞ αn = α, . lim

n→∞ βn = β.

Theorem 1 Let .f ∈ L1
(
I

2
)
and .α + β > 0. Then 

(a) 

. μ
{
(x, y) ∈ I

2 :
|||σ (αn,βm)

n,m (f, x, y)

||| > λ
}

≤ c

λ

f

I2

|f (x, y)| dxdy;

(b) 

. σ (αn,βm)
n,m (f ) → f in measure on I

2, as n,m → ∞.

Theorem 2 Let 

.α + β = 0. (4) 

The set of the functions from the space .L1(I
2) with sequence .σ

(αn,βn)
n,n (f ) convergent 

in measure on . I2 is of first Baire category in . L1(I
2).

4 Proof of the Theorems 

Proof of Theorem 1 Since α + β >  0 at least one α and β is not equal to zero. 
Without loss of generality, we can assume that β >  0. Set 

. Ω :=
{
(x, y) :

|||σ (αn,βm)
n,m (f, x, y)

||| > λ
}

.

Since (see [3]) 

.λμ
({

x ∈ I : ||σαn
n (f, x)

|| > λ
}) ≤ c ||f ||1 , f ∈ L1 (I) and αn ∈ (0, 1) ,
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by Fubin’s theorem, we can write (see (3)) 

. μ (Ω) =
f

I2

χΩ (x, y) dxdy =
f
I

⎛
⎝f

I

χΩ (x, y) dx

⎞
⎠ dy (5)

=
f
I

μ1
{
x : ||σαn

n

(
σβm

m (f ) , x, y
)|| > λ

}
dy

≤
f
I

c

||||||σ
βm
m (f ; ·, y)

||||||
1

λ
dy =

f
I

c

||||||σ
βm
m (f ; x, ·)

||||||
1

λ
dx.

Since β >  0, using estimations (see [4]) 

. 
||||Kβn

n

||||
1 ∼ 1

nβn

|n|E
k=0

|εk (n) − εk+1 (n)| 2kβn

we conclude that 

. sup
m

||||Kβm
m

||||
1 ≤ c < ∞.

On the other hand, f (x, ·) ∈ L1 (I) , for a. e. x ∈ I and f ∈ L1
(
I

2
)

and||||||σ βm 
m (f ; x, ·)

||||||
1 

≤ ||f (x, ·)||1 sup 
m

||||||K βm 
m

||||||
1 

≤ c ||f (x, ·)||1 . Hence, from (5) we  

haveμ (Ω) ≤ c 
λ

f
I2 

|f (x, y)| dxdy. By density of polynomials and by virtue of 

standart arguments (see [13], ch. VII), we can obtain validity of (b) of Theorem 1. 
nu

Proof of Theorem 2 It is proved in [3] that 

.Kαn
n = 1

A
αn

n−1

|n|E
s=0

εs (n)wn(s)−1

2s−1E
j=1

A
αn−2
n(s−1)+j jKj (6)

− 1

A
αn

n−1

|n|E
s=0

εs (n) wn(s)−1A
αn−1
n(s)−12sK2s

+ 1

A
αn

n−1

|n|E
s=0

εs (n) wn(s)−1A
αn

n(s)−1D2s

= : T (1)
n (αn) + T (2)

n (αn) + T (3)
n (αn) ,
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where 

. n(s) :=
∞E

j=s

εj (n) 2j , n(s) = n − n(s+1) =
sE

j=0

εj (n) 2j .

Then the operator σ (αn,βm) 
n,m (f ) can be represented as follows: 

. σ (αn,βm)
n,m (f, x, y)

=
3E

i,j=1

f ∗
(
T (i)

n (αn) ⊗ T
(j)
m (βm)

)
(x, y) =

3E
i,j=1

J (i, j) .

Since (see [10, p. 46]) sup 
j

||||Kj

||||
1 < ∞, we have 

. 

||||||T (1)
n (αn)

||||||
1

≤ 1

A
αn

n−1

|n|E
s=0

εs (n)

2s−1E
j=1

|||Aαn−2
n(s−1)+j

||| j ||||Kj

||||
1

≤ c
1

A
αn

n−1

|n|E
s=0

εs (n)

2s−1E
j=1

|αn − 1|
αn − 1 + n(s−1) + j

A
αn−1
n(s−1)+j j

= c
1

A
αn

n−1

|n|E
s=0

εs (n)
(
Aαn

n(s)
− Aαn

n(s−1)

)
≤ c < ∞.

Hence, 

. ||J (1, 1)||1 (7)

≤ c ||f ||1

||||||T (1)
n (αn) ⊗ T (1)

m (βm)

||||||
1

≤ c ||f ||1 .

Analogously, we can prove that 

. ||J (i, j)||1 ≤ c ||f ||1 , (i, j) ∈ {(1, 2) , (2, 1) , (2, 2)} . (8) 

Since 

.T (3)
n (αn) = wn

A
αn

n−1

|n|E
s=0

εs (n) A
αn

n(s)−1

(
D2s+1 − D2s

)
,
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we get 

. f ∗ T (3)
n (αn)

= f ∗
⎛
⎝ wn

A
αn

n−1

|n|E
s=0

εs (n) A
αn

n(s)−1

(
D2s+1 − D2s

)
⎞
⎠

= wn

|n|E
s=0

εs (n)
A

αn

n(s)−1

A
αn

n−1

(
S2s+1 (f wn) − S2s (f wn)

)

Since 

. sup
k

(
εk (n)

A
αn

n(k)−1

A
αn

n−1

)
≤ 1,

we conclude that (see [10, p. 97])  

. λμ
({|||f ∗ T (3)

n (αn)

||| > λ
})

≤ c ||f ||1 .

If we use the same way that was used to prove Theorem 1, we get that 

.μ ({|J (i, j)| > λ}) ≤ c

λ

f

I2

|f | , (i, j) ∈ {(1, 3) , (2, 3) , (3, 1) , (3, 2)} . (9) 

Set 

. nA := 22A + 22A−2 + · · · + 22 + 20, δA := max
{
αnA

, βnA

}

and define 

. fA (x, y) := D22A+1 (x) D22A+1 (y) ,

where D2n := 
2n−1E
k=0 

wk . First, we assume that lim 
A→∞ 

(AδA) ≥ 1. Then there exists a 

sequence {Ak : k ∈ N} such that δAk > 2 
3Ak 

. SetλAk := 4Ak − 1 
δAk 

.Then it is easy 

to see that δAk → 0 as  k → ∞  and sup 
A 

λAk = ∞. Without loss of generality, we 

can assume that Ak = A and λA → ∞  as A → ∞. Now, we discuss the operator 
fA ∗ T (3) 

nA

(
αnA

) ⊗ T (3) 
nA

(
βnA

)
. We have  

.

|||fA ∗
(
T (3)

nA

(
αnA

) ⊗ T (3)
nA

(
βnA

))||| (10)
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=
|||||

1 

A αnA 
nA−1 

2AE
s=0 

εs (nA) A αnA 
(nA)(s)−1

(
D2s+1 − D2s

)|||||

×
||||||

1 

A βnA 
nA−1 

2AE
s=0 

εs (nA) A βnA 
(nA)(s)−1

(
D2s+1 − D2s

)
|||||| . 

We assume that x ∈ Ia\Ia+1, a  = 0, 1, . . . , 2A − 1. Since (see [10, p. 7])  

.D2s = 2sχ[0,2s ) (11) 

from (10) we obtain 

. 
1

A
αnA

nA−1

2AE
s=0

εs (nA) A
αnA

(nA)(s)−1

(
D2s+1 (x) − D2s (x)

)

= 1

A
αnA

nA−1

a−1E
s=0

εs (nA) A
αnA

(nA)(s)−12s − εa (nA) A
αnA

(nA)(a)−12a.

Since |εa−1 (nA) − εa (nA)| = 1, two cases are possible: (a) εa (nA) = 0 and 
εa−1 (nA) = 1; (b) εa (nA) = 1 and εa−1 (nA) = 0. First we consider case (a). 
Since (see [1]) A αn 

k ∼ kαn, when 0 < αn ≤ 1 from (11) we have  

. 

|||||
1

A
αnA

nA−1

2AE
s=0

εs (nA) A
αnA

(nA)(s)−1

(
D2s+1 (x) − D2s (x)

)||||| (12)

≥
A

αnA

(nA)(a−1)−12a−1

A
αnA

nA−1

≥ c2a(1+αA)

22AαA
≥ c2a(1+δA)

22AδA
.

Now, we consider case (b), and we have 

. 

|||||
1

A
αnA

nA−1

2AE
s=0

εs (nA) A
αnA

(nA)(s)−1

(
D2s+1 (x) − D2s (x)

)|||||

≥ 1

A
αnA

nA−1

|||||A
αnA

2a−12a −
a−2E
s=0

A
αnA

2s+1−1
2s

||||| .

Since 

.

a−1E
s=1

A
αnA

2s−12s−1 ≤ 1

2

a−2E
s=0

2s+1−1E
l=2s

A
αnA

l = 1

2

2a−1−1E
l=1

A
αnA

l ≤ 1

2
A

αnA
+1

2a−1−1
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and 

. A
αnA

+1

2a−1−1
= αnA

+ 2a−1

αnA
+ 1

A
αnA

2a−1−1
≤ 2a−1A

αnA

2a−1−1
,

we obtain, 

. 

|||||
1

A
αnA

nA−1

2AE
s=0

εs (nA) A
αnA

(nA)(s)−1

(
D2s+1 (x) − D2s (x)

)||||| (13)

≥ c2a
(
1+αnA

)

22AαnA

≥ c2a(1+δA)

22AδA
.

Let (x, y) ∈ (Ia\Ia+1) × (Ib\Ib+1) for some (a, b) ∈ {0, 1, . . . , 2A − 1} × 
{0, 1, . . . , 2A − 1}. Then combining (10), (12), and (13), we have the following 
lower estimation: 

. 

|||fA ∗
(
T (3)

nA

(
αnA

) ⊗ T (3)
nA

(
βnA

))|||
≥ c2(a+b)(δA+1)

24AδA
≥ c2a+b,

when 2A − 1/δA ≤ a, b ≤ 2A. Consequently, 

. μ
({

(x, y) :
|||fA ∗

(
T (3)

nA

(
αnA

) ⊗ T (3)
nA

(
βnA

))||| > 2λA

})
(14)

≥ c
E

2A−1/δA≤a<2A

E
4A−1/δA−a≤b≤2A

1

2a+b
≥ c1/δA

2λA
.

Combining (6), (7), (8), (9), and (14), we conclude that 

.μ
({

(x, y) :
|||fA ∗

(
K

αnA
nA

⊗ K
βnA
nA

)
(x, y)

||| > 2λA

})
≥ c

1/δA

2λA
. (15) 

Set 

. QA :=
{
(x, y) :

|||fA ∗
(
K

αnA
nA

⊗ K
βnA
nA

)
(x, y)

||| > 2λA

}
.

Now, we prove the following: There exists (x1, y1) , . . . ,
(
xl(A), yl(A)

) ∈ I2, l (A) :=[
2λAδA

] + 1, such that 

.

||||||
l(A)U
j=1

(
QA +

(
xj , yj

))
|||||| ≥ c > 0. (16)
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On the other hand, the existence of such pairs (x1, y1) , . . . ,
(
xl(A), yl(A)

) ∈ I2 for 
which inequality (16) will take place for c = 1/2 was proved in the paper [8]. Then 
using Stein’s method from (16), we can show that ([2], pp. 7-12 ) there exists t0 ∈ I, 
such that 

. μ

⎧⎨
⎩(x, y) ∈ I

2 :
||||||
l(A)E
j=1

rj (t0)
(
fA ∗

(
K

αnA
nA

⊗ K
βnA
nA

) (
x + xj , y + yj

))||| > 2λA

⎫⎬
⎭

≥ 1

8
. (17) 

Set 

. GA (x, y) = 1

l (A)

l(A)E
j=1

rj (t0) fA

(
x + xj , y + yj

)
.

It is easy to show that 

. ||GA||1 ≤ 1

and 

.μ
{
(x, y) ∈ I

2 :
|||GA ∗

(
K

αnA
nA

⊗ K
βnA
nA

)||| > 2λA

}
≥ 1

8
. (18) 

The theorem can be proved from inequality (18) and applying the method that 
was used in the paper (see [5]). 

Finally, let us consider the case when δA < 1 
3A

, A ≥ A0 ∈ N . Then from 

. 

|||fA ∗
(
T (3)

nA

(
αnA

) ⊗ T (3)
nA

(
βnA

))|||
≥ c2a+b, (x, y) ∈ (Ia\Ia+1) × (Ib\Ib+1) , a, b = 0, 1, . . . , 2A − 1.

Consequently, we can write 

. μ
({

(x, y) :
|||fA ∗

(
T (3)

nA

(
αnA

) ⊗ T (3)
nA

(
βnA

))||| > 23A
})

≥ c

3AE
a=0

3AE
b=3A−a

1

2a+b
≥ cA

23A
,

and in the same way as the above, the proof of Theorem 2 will be completed. nu
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Some Topological Operators Using 
Neutrosophic Nano . M Open Sets 

K. Saraswathi, A. Vadivel, S. Tamilselvan, and C. John Sundar 

Keywords .NseuNMo set · .NseuNMFr · .NseuNMBr · . NseuNMExt

1 Introduction 

Zadeh [32] was the first one to introduce fuzzy set and its topological spaces by 
Chang [4]. Atanassov [2, 3] introduced intuitionistic fuzzy sets and its topological 
spaces by Coker [5]. In 1995, Smarandache [18, 19] introduced neutrosophic logic 
and its topological spaces by Salama et al. [17] and their applications by several 
authors [1, 6, 11, 14, 24, 30]. Pawlak [15] was the first one to introduce the rough set 
theory. In 2013, Lellis Thivagar [9] presented nano-topology and nano-topological 
spaces. 

Pankajam [13] introduced .δ-open sets in nano-topological space and Vadivel et 
al. [22, 23, 25–27] in a neutrosophic topological space. El-Maghrabi and Al-Juhani 
[7] introduced .M-open sets in topological spaces and in nano-topological spaces by 
Padma et al. [12]. 

Recently, a novel idea of neutrosophic nano-topology was investigated by Lellis 
Thivagar et al. [10]. Recently, Thangammal et al. [20, 21] and Kalaiyarasan et al. 
[8] introduced some open sets in fuzzy nano-topological spaces, and Vadivel et al. 
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[28, 29] investigated .δ-open sets and .M-open sets in neutrosophic nano-topological 
spaces. In 2020, Vijayalakshmi and Mookambika [31] introduced neutrosophic 
nano-frontier in neutrosophic nano-topological spaces. 

2 Preliminaries 

The basic definitions used in this article are defined and studied in these articles 
[10, 12, 16, 28, 29]. 

3 Neutrosophic Nano M Frontier 

In this section, neutrosophic nano .M-frontier operators are introduced and their 
properties discussed. 

Throughout this section, let .(U, τN(F )) be a .NseuN ts and . So be a . Nseu subs

of .(U, τN(F )). 

Definition 1 The neutrosophic nano (resp. .θ, θ semi, . δ pre & . M) frontier 
of a .Nseu subsSo were denoted by .NseuNFr(So) (resp. . NseuN θF r

(So),NseuN θSFr(So),NseuN δPFr(So)&NseuNMFr(So)) and defined by 
.NseuNFr(So) = NseuN cl(So) ∩ NseuN cl(So

c) (resp. . NseuN θF r(So) =
NseuN θcl(So) ∩ NseuN θcl(So

c), NseuN θSFr(So) = NseuN θScl(So) ∩
NseuN θScl(So

c), NseuN δPFr(So) = NseuN δPcl(So)∩NseuN δPcl(So
c)&Ns

euNMFr(So) = NseuNMcl(So) ∩ NseuNMcl(So
c)). 

Example 1 Assume .U = {s1, s2, s3, s4} and .U/R = {{s1, s4}, {s2}, {s3}}. Let . So ={/
s1

0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\
,
/

s4
0.1,0.5,0.9

\}
be a .Nseu subs of . U . 

.NseuN (So) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

. BNseuN (So) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
.

Thus .τN(So) = {0N, 1N,NseuN (So),NseuN (So) = BNseuN (So)}. 
Then .A =

{/
s1,s4

0.1,0.5,0.9

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.1,0.5,0.9

\}
, 

.NseuNMcl(A) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.1,0.5,0.9

\}
, 

.NseuNMcl(Ac) =
{/

s1,s4
0.9,0.5,0.1

\
,
/

s2
0.8,0.5,0.2

\
,
/

s3
0.9,0.5,0.1

\}
. 

.NseuNMFr(A) =
{/

s1,s4
0.1,0.5,0.9

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.1,0.5,0.9

\}
. 

Remark 1 For a .Nseu subsA of .U,NseuNMFr(A) is .NseuNMc.
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Theorem 1 For a .Nseu subsSo in . NseuN ts(U, τN(F )),NseuNMFr(So) =
NseuNMFr(Sc

o). 

Proof Let . So be a .Nseu subs in .NseuN ts(U, τN(F )). Then by Definition 1, 
. NseuNMFr(So) = NseuNMcl(So) ∩ NseuNMcl(Sc

o) = NseuNMcl(Sc
o) ∩

NseuNMcl(So) = NseuNMcl(Sc
o) ∩ (NseuNMcl(Sc

o)
c). Again by Definition 1, 

this is equal to .NseuNMFr(Sc
o). Hence .NseuNMFr(So) = NseuNMFr(Sc

o). 
nu

Theorem 2 For, .NseuNMFr(So) = NseuNMcl(So) − NseuNMint(So). 

Proof Let . So be in .(U, τN(F )). By Theorem 4.2. (i) in [29], . (NseuNMcl(Sc
o))

c =
NseuNMint(So) and by Definition 1, . NseuNMFr(So) = NseuNMcl(So) ∩
(NseuNMcl(Sc

o)) = NseuNMcl(So) ∩ (NseuNMint(Sc
o))

c. By using . So −
To = So ∩ To

c,NseuNMFr(So) = NseuNMcl(So) − NseuNMint(So). Hence 
.NseuNMFr(So) = NseuNMcl(So) − NseuNMint(So). nu
Theorem 3 A .Nseu subsSo is .NseuNMc set in . U iff .NseuNMFr(So) ⊆ So. 

Proof Let . So be a .NseuNMc in the .NseuN ts(U, τN(F )). Then by Definition 1, 
.NseuNMFr(So) = NseuNMcl(So) ∩ NseuNMcl(Sc

o) ⊆ NseuNMcl(So). By  
using Theorem 4.2. (ii) in [29], .NseuNMcl(So) = So. Hence . NseuNMFr(So) ⊆
So, if . So is .NseuNMc in . U . 

Conversely, Assume that, .NseuNMFr(So) ⊆ So. Then . NseuNMcl(So) −
NseuNMint(So) ⊆ So. Since .NseuNMint(So) ⊆ So, we conclude that 
.NseuNMcl(So) = So, and hence . So is .NseuNMc. nu
Theorem 4 If . So is a .NseuNMo set in . U , then .NseuNMFr(So) ⊆ Sc

o . 

Proof Let . So be a .NseuNMo set in the .NseuN ts(U, τN(F )). By Definition of 
.NseuNMo set, . Sc

o is .NseuNMc in . U . By Theorem 3, .NseuNMFr(Sc
o) ⊆ Sc

o and 
by Theorem 3, we get .NseuNMFr(So) ⊆ Sc

o . nu
The converse of Theorem 4 is not true as shown by the following example. 

Example 2 In Example 1, let .A =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.5,0.5,0.5

\}
, 

.NseuNMcl(A) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.5,0.5,0.5

\}
, 

.NseuNMcl(Ac) =
{/

s1,s4
0.8,0.5,0.2

\
,
/

s2
0.8,0.5,0.2

\
,
/

s3
0.6,0.5,0.4

\}
. 

.NseuNMFr(A) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.2,0.5,0.8

\
,
/

s3
0.5,0.5,0.5

\}
. 

.Ac =
{/

s1,s4
0.8,0.5,0.2

\
,
/

s2
0.8,0.5,0.2

\
,
/

s3
0.5,0.5,0.5

\}
. 

.NseuNMFr(A) ⊆ Ac. But . A is not .NseuNMo set. 

Theorem 5 Let .So ⊆ To and .To be any .NseuNMc set in . U . Then 
.NseuNMFr(So) ⊆ To. 

Proof By Theorem 4.9. (iv) in [29], .So ⊆ To, .NseuNMcl(So) ⊆ NseuNMcl(To). 
By Definition 1, .NseuNMFr(So) = NseuNMcl(So) ∩ NseuNMcl(So

c) ⊆
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NseuNMcl(To) ∩ NseuNMcl(So 
c ) ⊆ NseuNMcl(To). Then by Theorem 4.9. 

(iv) in [29], this is equal to . To. Hence .NseuNMFr(So) ⊆ To. nu
Theorem 6 For . So, .(NseuNMFr(So))

c = NseuNMint(So)∪NseuNMint(So
c). 

Proof Let . So be in .(U, τN(F )). 
Then by Definition 1, . (NseuNMFr(So))

c = (NseuNMcl(So) ∩ NseuNMcl

(So
c))c = ((NseuNMcl(So))

c ∪ (NseuNMcl(So
c))c. By Theorem 4.2. (i) 

in [29], which is equal to .NseuNMint(So
c) ∪ NseuNMint(So). Hence 

.(NseuNMFr(So))
c = NseuNMint(So) ∪ NseuNMint(So

c). nu
Theorem 7 For a .Nseu subsSo in the .NseuN ts(U, τN(F )), then . NseuNMFr(So)

⊆ NseuNFr(So). 

Proof Let .So be in .(U, τN(F )). Then by Proposition 4.12. (4) in [29], 
.NseuNMcl(So) ⊆ NseuN cl(So) and .NseuNMcl(So

c) ⊆ NseuN cl(So
c). 

By Definition 1, . NseuNMFr(So) = NseuNMcl(So) ∩ NseuNMcl(So
c) ⊆

NseuN cl(So) ∩ NseuN cl(So
c), this is equal to .NseuNFr(So). Hence 

.NseuNMFr(So) ⊆ NseuNFr(So). nu
Theorem 8 For a .Nseu subsSo in the .NseuN ts(U, τN(F )), . NseuNMcl(NseuN
MFr(So)) ⊆ NseuNMFr(So). 

Proof Let .So be the .Nseu subs in the .NseuN ts(U, τN(F )). Then by 
Definition 1, . NseuNMcl(NseuNMFr(So)) = NseuNMcl(NseuNMcl(So) ∩
(NseuNMcl(So

c))) ⊆ (NseuNMcl(NseuNMcl(So))) ∩ (NseuNMcl(NseuN
Mcl(So

c))). By Theorem 4.9. (iii) in [29], . NseuNMcl(NseuNMFr(So)) =
NseuNMcl(So) ∩ (NseuNMcl(So

c)). By Definition 1, this is equal to 
.NseuNMFr(So). nu
Theorem 9 For a .Nseu subsSo in the .NseuN ts(U, τN(F )), . NseuNMFr(NseuN
Mint(So)) ⊆ NseuNMFr(So). 

Theorem 10 For a .Nseu subsSo in the .NseuN ts(U, τN(F )), then . NseuNMFr

(NseuNMcl(So)) ⊆ NseuNMFr(So). 

Theorem 11 For . So, .NseuNMint(So) ⊆ So − NseuNMFr(So). 

Remark 2 In .NseuN t , the following conditions do not hold in general: 

(i) . NseuNMFr(So) ∩ NseuNMint(So) = 0N,

(ii) . NseuNMint(So) ∪ NseuNMFr(So) = NseuNMcl(So),

(iii) . NseuNMint(So) ∪ NseuNMint(So
c) ∪ NseuNMFr(So) = 1N.

Example 3 In Example 1, let .A =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.4,0.5,0.6

\
,
/

s3
0.4,0.5,0.6

\}
, then 

.NseuNMcl(A) =
{/

s1,s4
0.8,0.5,0.2

\
,
/

s2
0.7,0.5,0.3

\
,
/

s3
0.6,0.5,0.4

\}
, 

.NseuNMcl(Ac) =
{/

s1,s4
0.8,0.5,0.2

\
,
/

s2
0.7,0.5,0.3

\
,
/

s3
0.6,0.5,0.4

\}
. 

.NseuNMFr(A) =
{/

s1,s4
0.8,0.5,0.2

\
,
/

s2
0.7,0.5,0.3

\
,
/

s3
0.6,0.5,0.4

\}
.
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.NseuNMint(A) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuNMint(Ac) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
. 

(i) .NseuNMFr(A) ∩ NseuNMint(A) /= 0N . 
(ii) .NseuNMint(A) ∪ NseuNMint(Ac) ∪ NseuNMFr(A) /= 1N . 

Example 4 In Example 1, let .A =
{/

s1,s4
0.3,0.5,0.7

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.7,0.5,0.3

\}
, 

.NseuNMcl(A) =
{/

s1,s4
0.8,0.5,0.2

\
,
/

s2
0.7,0.5,0.3

\
,
/

s3
0.7,0.5,0.3

\}
, 

.NseuNMcl(Ac) =
{/

s1,s4
0.7,0.5,0.3

\
,
/

s2
0.7,0.5,0.3

\
,
/

s3
0.3,0.5,0.7

\}
. 

.NseuNMFr(A) =
{/

s1,s4
0.7,0.5,0.3

\
,
/

s2
0.7,0.5,0.3

\
,
/

s3
0.3,0.5,0.7

\}
. 

.NseuNMint(A) =
{/

s1,s4
0.3,0.5,0.7

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.7,0.5,0.3

\}
. 

.NseuNMint(A) ∪ NseuNMFr(A) /= NseuNMcl(A). 

Theorem 12 Let .So&To be .Nseu subs’s in the .NseuN ts(U, τN(F )). Then 
.NseuNMFr(So ∪ To) ⊆ NseuNMFr(So) ∪ NseuNMFr(To). 

Theorem 13 For any .Nseu subs’s . So and . To in the .NseuN ts(U, τN(F )), 
. NseuNMFr(So ∩ To) ⊆ (NseuNMFr(So)∩ (NseuNMcl(To)))∪ (NseuNMFr

(To) ∩ NseuNMcl(So)). 

Corollary 1 For any .Nseu subs’s . So and . To in the .NseuN ts(U, τN(F )), 
.NseuNMFr(So ∩ To) ⊆ NseuNMFr(So) ∪ NseuNMFr(To). 

Theorem 14 For any .Nseu subsSo in the .NseuN ts(U, τN(F )), 

(i) .NseuNMFr(NseuNMFr(So)) ⊆ NseuNMFr(So), 
(ii) . NseuNMFr(NseuNMFr(NseuNMFr(So))) ⊆ NseuNMFr(NseuNMFr

(So)). 

Remark 3 Theorems 1–14, Remarks 1 . & 2 and Corollary 1 holds for .NseuNo, 
.NseuN θo, .NseuN θSo&NseuN δPo sets. 

4 Neutrosophic Nano M Border and Neutrosophic Nano M 
Exterior 

In this section, neutrosophic nano . M border and neutrosophic nano . M exterior 
operators are introduced and their properties discussed. 

Definition 2 The neutrosophic nano (resp. . θ , . θS, .δP&M) border of . So (briefly, 
.NseuNBr(So) (resp. .NseuN θBr(So), .NseuN θSBr(So), . NseuN δPBr(So)&Ns

euNMBr(So))) is defined by .NseuNBr(So) = So − NseuN int (So) (resp. 
.NseuN θBr(So) = So − NseuN θint (So), .NseuN θSBr(So) = So −
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NseuN θSint (So), . NseuN δPBr(So) = So−NseuN δPint (So)&NseuNMBr(So) =
So − NseuNMint(So)). 

Example 5 In Example 1, let .A =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.4,0.5,0.6

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuNMint(A) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
. 

.NseuNMBr(A) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.4,0.5,0.6

\
,
/

s3
0.4,0.5,0.6

\}
. 

Theorem 15 If a .Nseu subsSo of .NseuN ts(U, τN(F )) is .NseuNMc, then 
.NseuNMBr(So) = NseuNMFr(So). 

Proof Let .So be a .NseuNMc subset of . U . Then by Theorem 4.2. (ii) in 
[29], .NseuNMcl(So) = So. Now, . NseuNMFr(So) = NseuNMcl(So) −
NseuNMint(So) = So − NseuNMint(So) = NseuNMBr(So). nu
Theorem 16 For a .Nseu subsSo of .NseuN ts(U, τN(F )), . So = NseuNMint(So)

∪ NseuNMBr(So). 

Proof Let .x(u,v,w) ∈ So. If .x(u,v,w) ∈ NseuNMint(So), then the result is 
obvious. If .x(u,v,w) /∈ NseuNMint(So), then by the definition of .NseuNMBr(So), 
.x(u,v,w) ∈ NseuNMBr(So). Hence . x(u,v,w) ∈ NseuNMint(So)∪NseuNMBr(So)

and so .So ⊆ NseuNMint(So) ∪ NseuNMBr(So). On the other hand, since 
.NseuNMint(So) ⊆ So & .NseuNMBr(So) ⊆ So, we have . NseuNMint(So) ∪
NseuNMBr(So) ⊆ So. nu
Theorem 17 For . So, .NseuNMint(So) ∩ NseuNMBr(So) = 0N . 

Proof Suppose .NseuNMint(So) ∩ NseuNMBr(So) /= 0N . Let . x(u,v,w) ∈
NseuNMint(So) ∩ NseuNMBr(So). Then .x(u,v,w) ∈ NseuNMint(So) and 
.x(u,v,w) ∈ NseuNMBr(So). Since .NseuNMBr(So) = So − NseuNMint(So), 
then .x(u,v,w) ∈ So. But .x(u,v,w) ∈ NseuNMint(So), x(u,v,w) ∈ So. There is a 
contradiction. Hence . NseuNMint(So) ∩ NseuNMBr(So) = 0N. nu
Theorem 18 For a .Nseu subsSo of .NseuN ts(U, τN(F )), . So is a .NseuNMo set if 
and only if .NseuNMBr(So) = 0N . 

Proof Necessity: Suppose . So is .NseuNMo. Then by Theorem 4.2. (ii) in [29], 
.NseuNMint(So) = So. Now, . NseuNMBr(So) = So − NseuNMint(So) = So −
So = 0N.

Sufficiency: Suppose .NseuNMBr(So) = 0N . This implies, . So − NseuNMint

(So) = 0N . Therefore, .So = NseuNMint(So), and hence . So is .NseuNMo. nu
Corollary 2 For a .NseuN ts, .NseuNMBr(0N) = 0N & .NseuNMBr(1N) = 0N . 

Proof Since .0N &1N are .NseuNMo, by Theorem 18, .NseuNMBr(0N) = 0N and 
. NseuNMBr(1N) = 0N. nu
Theorem 19 For . So, .NseuNMBr(NseuNMint(So)) = 0N . 

Proof By the definition of .NseuNMBr , . NseuNMBr(NseuNMint(So)) =
NseuNMint(So) − NseuNMint(NseuNMint(So)). By Theorem 4.6. (iv)
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in [29], .NseuNMint(NseuNMint(So)) = NseuNMint(So), and hence 
. NseuNMBr(NseuNMint(So)) = 0N. nu
Theorem 20 For . So, .NseuNMint(NseuNMBr(So)) = 0N . 

Proof Let .x(u,v,w) ∈ NseuNMint(NseuNMBr(So)). Since . NseuNMBr(So) ⊆
So, by Theorem 4.2. (i), .NseuNMint(NseuNMBr(So)) ⊆ NseuNMint(So). 
Hence .x(u,v,w) ∈ NseuNMint(So). Since . NseuNMint(NseuNMBr(So)) ⊆
NseuNMBr(So), x(u,v,w) ∈ NseuNMBr(So). Therefore, . x(u,v,w) ∈ NseuNMint

(So) ∩ NseuNMBr(So), x(u,v,w) = 0N. nu
Theorem 21 For . So, .NseuNMBr(NseuNMBr(So)) = NseuNMBr(So). 

Proof By the definition of .NseuNMBr , . NseuNMBr(NseuNMBr(So)) =
NseuNMBr(So)−NseuNMint(NseuNMBr(So)). By Theorem 20, . NseuNMint

(NseuNMBr(So)) = 0N , and hence . NseuNMBr(NseuNMBr(So)) =
NseuNMBr(So). nu
Theorem 22 For . So, the following statements are equivalent: 

(i) . So is .NseuNMo. 
(ii) .So = NseuNMint(So). 
(iii) .NseuNMBr(So) = 0N . 

Proof (i) . → (ii) Obvious from Theorem 4.6. (ii) in [29]. 
(ii) .→ (iii). Suppose that .So = NseuNMint(So). Then by definition of 

.NseuNMint , . NseuNMBr(So) = NseuNMint(So) − NseuNMint(So) = 0N.

(iii) .→ (i). Let .NseuNMBr(So) = 0N . Then by Definition 2, . So −
NseuNMint(So) = 0N , and hence .So = NseuNMint(So). nu
Theorem 23 Let . So be a .Nseu subs of .NseuN ts(U, τN(F )). Then, . NseuNMBr

(So) = So ∩ NseuNMcl(Sc
o). 

Proof Since .NseuNMBr(So) = So − NseuNMint(So) and by Theorem 4.2. (i) 
in [29], . NseuNMBr(So) = So −(NseuNMcl(Sc

o))
c = So ∩(NseuNMcl(Sc

o)
c) =

So ∩ NseuNMcl(Sc
o). nu

Theorem 24 For . So, .NseuNMBr(So) ⊆ NseuNMFr(So). 

Proof Since . So ⊆ NseuNMcl(So), So − NseuNMint(So) ⊆ NseuNMcl(So) −
NseuNMint(So). That implies, .NseuNMBr(So) ⊆ NseuNMFr(So). The proof 
of the others are similar. nu
Remark 4 Theorems 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 . & Corollary 2 holds for 
.NseuNo, .NseuN θo, .NseuN θSo&NseuN δPo sets. 

Definition 3 The neutrosophic nano (resp. . θ , . θS, .δP&M) interior of .So
c is called 

the neutrosophic nano (resp. . θ , . θS, .δP&M) exterior of . So (briefly, . NseuNExt(So)

(resp. .NseuN θExt (So), .NseuN θSExt(So), . NseuN δPExt(So)&NseuNMExt

(So))). That is, .NseuNExt(So) = NseuN int (So
c) (resp. .NseuN θExt (So) =
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NseuN θint (So 
c ), .NseuN θSExt(So) = NseuN θSint (So

c), . NseuN δPExt(So)

= NseuN δPint (So
c)&NseuNMExt(So) = NseuNMint(So

c)). 

Example 6 In Example 1, let .A =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.4,0.5,0.6

\
,
/

s3
0.4,0.5,0.6

\}
, 

.NseuNMint(Ac) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
. 

.NseuNMExt(A) =
{/

s1,s4
0.2,0.5,0.8

\
,
/

s2
0.3,0.5,0.7

\
,
/

s3
0.4,0.5,0.6

\}
. 

Theorem 25 For a .Nseu subsSo of .NseuN ts(U, τN(F )), . NseuNMExt(So) =
(NseuNMcl(So))

c. 

Proof We know that, .1N − NseuNMcl(So) = NseuNMint(Sc
o), then 

. NseuNMExt(So) = NseuNMint(Sc
o) = (NseuNMcl(So))

c. nu
Theorem 26 For a .Nseu subsSo of .NseuN ts(U, τN(F )), . NseuNMExt(NseuN
MExt(So)) = NseuNMint(NseuNMcl(So)) ⊇ NseuNMint(So). 

Proof Now, . NseuNMExt(NseuNMExt(So)) = NseuNMExt(NseuNMint

(Sc
o)) = NseuNMint((NseuNMint(Sc

o))
c) = NseuNMint(NseuNMcl(So)) ⊇

NseuNMint(So). nu
Theorem 27 For a .Nseu subsSo of .NseuN ts(U, τN(F )), If  .So ⊆ To, then 
.NseuNMExt(To) ⊆ NseuNMExt(So). 

Proof Suppose . So ⊆ To. Now, . NseuNMExt(To) = NseuNMint(T c
o ) ⊆

NseuNMint(Sc
o) = NseuNMExt(So). nu

Theorem 28 For a .Nseu subsSo of .NseuN ts(U, τN(F )), . NseuNMExt(1N) =
0N &NseuNMExt(0N) = 1N . 

Proof Now, . NseuNMExt(1N) = NseuNMint((1N)c) = NseuNMint(0N)&Ns

euNMExt(0N) = NseuNMint((0N)c) = NseuNMint(1N). Since .0N&1N are 
.NseuNMo sets, then .NseuNMint(0N) = 0N &NseuNMint(1N) = 1N . Hence 
. NseuNMExt(0N) = 1N&NseuNMExt(1N) = 0N. nu
Theorem 29 For a .Nseu subsSo of .NseuN ts(U, τN(F )), . NseuNMExt(So) =
NseuNMExt((NseuNMExt(So))

c). 

Proof Now, . NseuNMExt((NseuNMExt(So))
c) = NseuNMExt((NseuNMint

(Sc
o))

c) = NseuNMint((((NseuNMint(Sc
o))

c))c) = NseuNMint(NseuNMint

(Sc
o)) = NseuNMint(Sc

o) = NseuNMExt(So). nu
Theorem 30 For a .Nseu subs’s .So&To of .NseuN ts(U, τN(F )), the followings are 
valid. 

(i) .NseuNMExt(So ∪ To) ⊆ NseuNMExt(So) ∩ NseuNMExt(To). 
(ii) .NseuNMExt(So ∩ To) ⊇ NseuNMExt(So) ∪ NseuNMExt(To). 

Remark 5 Theorems 25, 26, 27, 28, 29 . & 30 holds for .NseuNo, .NseuN θo, 
.NseuN θSo&NseuN δPo sets.
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Approximation of Functions in a 
Weighted .Lp-Norm by Summability 
Means of Fourier Series 

Soshal Saini and Uaday Singh 

Keywords Approximation · Weighted norm · Product means 

1 Introduction 

Let f be a . 2π periodic function belonging to .Lp := Lp[0, 2π ](p ≥ 1)-space. The 
trigonometric Fourier series of f is defined as 

.f (x) ∼ a0

2
+

∞E
k=1

(ak cos kx + bk sin kx). (1) 

The .nth partial sums of the Fourier series (1), i.e., 

.sn(f ; x) := a0

2
+

nE
ν=1

(aν cos νx+bν sin νx), ∀ n ∈ N with s0(f ; x) = a0

2
, (2) 

called trigonometric polynomial of degree (or order). ≤ n.

The conjugate series of the Fourier series of f is defined by . 
∞E

k=1

(ak sin kx −
bk cos kx), with its .nth partial sums 

.s̃n(f ; x) :=
nE

ν=1

(aν sin νx − bν cos νx), ∀ n ∈ N and s̃0(f ; x) = 0. (3) 
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The conjugate of . f, denoted by . f̃ , is defined as 

.f̃ (x) = − 1

2π
lim
E→0

f π

E

ψ(x, t) cot(t/2)dt, (4) 

where .ψ(x, t) = f (x + t) − f (x − t), and we also write . φ(x, t) := f (x + t) +
f (x − t) − 2f (x) [6]. 

Let .T ≡ (an,k) be a lower triangular matrix. Then the sequence-to-sequence 
transformation 

. tn(f ; x) =
nE

k=0

an,ksk(f ; x), n ∈ N0 = N ∪ {0},

defines the matrix means of .{sn(f ; x)}. The Fourier series (1) is said to be summable 
to s by T -means, if . lim

n→∞ tn(f ; x) = s, where s is a finite number. A similar 

definition can be given for the summability of the conjugate Fourier series also. 
Let .A ≡ (an,m) and B ≡ (bn,m) be two infinite lower triangular matrices of real 

numbers such that 

.A(or B) =
{

an,m(or bn,m) ≥ 0, m = 0, 1, 2, . . . n,

an,m(or bn,m) = 0, m > n.
(5) 

When we superimpose the .B−summability on .A−summability, we get BA means 
of .{sk(f ; x)} and .{s̃k(f ; x)} defined by 

. tBA
n (f ; x) =

nE
m=0

mE
k=0

bn,mam,ksk(f ; x), n = 0, 1, 2, . . . .

. ̃tBA
n (f ; x) =

nE
m=0

mE
k=0

bn,mam,ks̃k(f ; x), n = 0, 1, 2, . . . .

We write 

. (BA)n(t) = 1

2π

nE
m=0

mE
k=0

bn,mam,k

sin (k + 1/2)t

sin (t/2)
.

. ˜(BA)n(t) = 1

2π

nE
m=0

mE
k=0

bn,mam,k

cos (k + 1/2)t

sin (t/2)
.

The weighted .Lp-norm of .f ∈ Lp[0, 2π ] with the weighted function .sinβp(x/2) is 
defined by
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.||f ||p,β =
(

1

2π

f 2π

0
|f (x)|p sinβp(x/2)dx

)1/p

, 1 ≤ p < ∞. (6) 

The degree of approximation .En(f ) of a function .f ∈ Lp-space by a trigonometric 
polynomial .Tn(x) of degree .≤ n with respect to the weighted norm is given by 

. En(f ) = min
Tn

|| f (x) − Tn(x) ||p,β .

This method of approximation is called the trigonometric Fourier approximation, 
and the .Tn(x) is called Fourier approximant of f . 

. f ∈ W(Lp, ξ(t)) if
||||||(f (x + t) − f (x)) sinβ

(x

2

)||||||
p

= O(ξ(t)),

where .ξ(t) is a positive integer function, .t > 0, α > 0, p ≥ 1, and . β ≥ 0.

We write .K1 << K2 if . ∃ a positive constant C (it may depend on some 
parameters), such that .K1 ≤ CK2. 

2 Known Results 

Many investigators such as Lal [1], Singh, et al. [4], and Mishra et al. [2] have  
considered the .C1.Np means in various directions. Lal [1] have obtained the degree 
of approximation of .f ∈ W(Lp, ξ(t))-class by using the .C1.Np means of the 
Fourier series of f under some assumption conditions on the function .ξ(t) as 
follows: 
Theorem A [1, Theorem 2] If f is a . 2π periodic function and Lebesgue integrable 
on .[0, 2π ] and is belonging to .W(Lp, ξ(t))-class, then its degree of approximation 
by .C1.Np means of its Fourier series is given by 

. 

||||||tCN
n (f ; x) − f (x)

||||||
p

= O
(
(n + 1)β+1/pξ(1/(n + 1))

)
.

Singh et al. [4] studied the results of Lal [1] further and pointed out some errors [4, 
Remark 2.4, p.4]. The authors [4] improved the earlier results of Lal [1] by replacing 
the monotonicity on .{pn} by the condition .(n+1)pn = O(Pn) [4, Theorem 3.2, pp. 
4–5]. 

In the sequel, recently, Mishra et al. [2] have obtained the subsequent results for 
conjugate Fourier series using the .C1.Np means [2, Theorem 3.1]. 

Recently, Zhang [5] has pointed out that results of Mishra et al. [2] hold only for 
the function which is constant almost everywhere under their assumption conditions. 
The same observations are also true for the results of Singh et al. [4]. 

We study the above problems further to get better degree of approximation with 
less assumption conditions on .ξ(t) and resolve the issue raised by Zhang [5].
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3 Main Results 

In this chapter, we extend the earlier results using the more general summability 
means, the product means, for Fourier series, and its conjugate series also. We note 
that several authors define the function class .W(Lp, ξ(t)) with weight function 
.sinβp(x/2) or .sinβp(x), but the degree of approximation is measured in ordinary 
.Lp-norm. Also, the function class .W(Lp, ξ(t)) is a subclass of the weighted 
.Lp[0, 2π ]-space with the weight function .sinβp(x/2), so it is relevant to measure 
the degree of approximation in the weighted norm defined by (6). More precisely, 
we prove the following: 

Theorem 1 Let f be a .2π -periodic function belonging to .W(Lp, ξ(t)) with . p ≥
1, β ≥ 0 and let the entries of the lower triangular matrices .A ≡ (an,k) and 
.B ≡ (bn,k) satisfy the following conditions: 

.bn,n << 1

n + 1
, n ∈ N0, (7) 

.|bn,mam,0 − bn,m+1am+1,1| << bn,m

(m + 1)2
for 0 ≤ m ≤ n − 1 (8) 

and 

. 

m−1E
k=0

|(bn,mam,m−k − bn,m+1am+1,m+1−k) − (bn,mam,m−k−1 − bn,m+1am+1,m−k)|

. << bn,m

(m + 1)2 for 0 ≤ m ≤ n − 1, (9) 

with .An,n =
nE

m=0

an,m = Bn,n =
nE

m=0

bn,m = 1 for .n = 0, 1, 2, . . . . Then the degree 

of approximation of f by BA means of its Fourier series is given by 

.

||||||tBA
n (f ; x) − f (x)

||||||
p,β

= O

(
ξ(π/(n + 1)) + (n + 1)1−σ

nE
m=0

bn,m

m + 1

)
(10) 

provided that the positive nondecreasing function .ξ(t) satisfies the condition: 

.ξ(t)/tσ is non–decreasing function for some 0 < σ < 1. (11) 

Theorem 2 Let f be a .2π -periodic function belonging to .W(Lp, ξ(t)) with . p ≥
1, β ≥ 0 and let the entries of the lower triangular matrices .A ≡ (an,k) and 
.B ≡ (bn,k) satisfy the conditions (7), (8) and (9) of Theorem 1 with .An,n = Bn,n = 1
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for .n = 0, 1, 2, . . . . Then the degree of approximation of . f̃ , conjugate of . f, by BA 
means of its conjugate Fourier series is given by 

.

||||||t̃BA
n (f ; x) − f̃ (x)

||||||
p,β

= O

(
ξ(π/(n + 1)) + (n + 1)1−σ

nE
m=0

bn,m

m + 1

)
(12) 

where .ξ(t) and . σ are the same as in Theorem 1. 

Remark 1 If the entries of matrix B satisfy one more condition, that is, . 
nE

m=0

bn,m

m + 1

.= O(1/(n + 1)), then the degree of approximation in our results reduces to 

.O
(
ξ(π/(n + 1)) + (n + 1)−σ

)
, which is a better approximation. 

4 Lemmas 

For the proof of our theorems, we need the following lemmas: 

Lemma 1 ([3]) If the conditions (8) and (9) hold, then 

.|bn,rar,r−l −bn,r+1ar+1,r+1−l | << bn,r

(r + 1)2 , for 0 ≤ l ≤ r −1 ≤ n−2. (13) 

For more details, one can see [3, Lemma 4.1, p.27]. 

Lemma 2 If the matrices A and B satisfy the conditions (7)–(9) of Theorem 1, then 

.|(BA)n(t)| = O (n + 1) , for 0 < t ≤ π/(n + 1). (14) 

For proof, one can see [3, Lemma 4.2, p.6]. 

Lemma 3 If the matrices A and B satisfy the conditions (7)–(9) of Theorem 1, then 

.|(BA)n(t)| = O

(
1

t2

(
nE

m=0

bn,m

m + 1
+ 1

n + 1

))
, for π/(n + 1) < t ≤ π. (15) 

For the proof, one can see [3, Lemma 4.3, pp.6–7]. 

Lemma 4 If the matrices A and B satisfy the conditions (7)–(9) of Theorem 1, then 

.| ˜(BA)n(t)| = O

(
1

t

)
, for 0 < t ≤ π/(n + 1). (16)
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Proof Using . 1
sin(t/2)

= O
(

π
t

)
for .0 < t ≤ π/(n + 1), we have 

. | ˜(BA)n(t)| ≤ 1

2π

nE
m=0

mE
k=0

bn,mam,k

||||cos (k + 1/2)t

sin(t/2)

||||

= O

(
1

t

nE
m=0

bn,mAm,m

)
= O

(
1

t
Bn,n

)
= O

(
1

t

)
,

in view of . An,n = Bn,n = 1.

Lemma 5 If the matrices A and B satisfy the conditions (7)–(9) of Theorem 1, then 

.| ˜(BA)n(t)| = O

(
1

t2

(
nE

m=0

bn,m

m + 1
+ 1

n + 1

))
, for π/(n + 1) < t ≤ π. (17) 

Proof Using . 1
sin(t/2)

= O
(

π
t

)
, for .π/(n + 1) < t ≤ π , 

. | ˜(BA)n(t)| =
|||||

1

2π

nE
m=0

mE
k=0

bn,mam,k

cos (k + 1/2)t

sin(t/2)

|||||

= O

(
1

t

) |||||
nE

m=0

mE
k=0

bn,mam,k cos (k + 1/2)t

||||| . (18) 

Now, using Abel’s transformation after changing the order of summation, we have 

. 

|||||
nE

m=0

mE
k=0

bn,mam,k cos(k + 1/2)t

|||||

. =
|||||

nE
m=0

mE
k=0

bn,mam,m−k cos (m − k + 1/2)t

|||||

=
||||

nE
k=0

[ n−1E
m=k

(bn,mam,m−k − bn,m+1am+1,m+1−k)

kE
l=m

cos (l − k + 1/2)t

+bn,nan,n−k

nE
l=k

cos (l − k + 1/2)t

]||||

= O

(
1

t

) (
n−1E
m=0

[
mE

k=0

|bn,mam,m−k − bn,m+1am+1,m+1−k|
]

+
nE

k=0

bn,nan,n−k

)
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. = O

(
1

t

)[ n−1E
m=0

m−1E
k=0

|bn,mam,m−k − bn,m+1am+1,m+1−k| + bn,n

+
n−1E
m=0

|bn,mam,0 − bn,m+1am+1,1|
]

= O

(
1

t

)[
n−1E
m=0

m.
bn,m

(m + 1)2 + bn,n +
n−1E
m=0

bn,m

(m + 1)2

]

= O

(
1

t

)[
nE

m=0

bn,m

(m + 1)
+ 1

(n + 1)

]
, (19) 

in view of Lemma 1, conditions (7) and (8), and . An,n = 1.

Hence, collecting (18) and (19), we get 

. | ˜(BA)n(t)| = O

(
1

t2

(
nE

m=0

bn,m

m + 1
+ 1

n + 1

))
.

Lemma 6 ([6]) Let .g(x, t) ∈ Lp([a, b] × [c, d]), for .p ≥ 1. Then 

.

{f b

a

||||
f d

c

g(x, t)dt

||||
p

dx

}1/p

≤
f d

c

{f b

a

|g(x, t)|pdx

}1/p

dt. (20) 

This is known as generalized form of Minkowski’s inequality. 

5 Proof of Main Results 

Proof of Theorem 1 We have, 

.tBA
n (f ; x) − f (x) =

nE
m=0

mE
k=0

bn,mam,k(sk(f ; x) − f (x))

= 1

2π

f π

0
φ(x, t)

nE
m=0

mE
k=0

bn,mam,k

sin (k + 1/2)t

sin(t/2)
dt

=
f π

0
φ(x, t)(BA)n(t)dt.
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Using Lemma 6, we have  

. 

||||||tBA
n (f ; x) − f (x)

||||||
p,β

=
{

1

2π

f 2π

0

||||
f π

0
φ(x, t)(BA)n(t)dt

||||
p

sinβp(x/2)dx

}1/p

≤
f π

0

{
1

2π

f 2π

0
|φ(x, t)|p sinβp(x/2)dx

}1/p

(BA)n(t)dt

=
f π

0
O(ξ(t))(BA)n(t)dt

= O

(f π/(n+1)

0
ξ(t)(BA)n(t)dt +

f π

π/(n+1)

ξ(t)(BA)n(t)dt

)

= I1 + I2. (21) 

Now, using Lemma 2 and mean value theorem for integrals, we have 

. I1 = O

(f π/(n+1)

0
ξ(t)(BA)n(t)dt

)

= O

(
(n + 1)

f π/(n+1)

0
ξ(t)dt

)

= O(ξ(π/(n + 1))). (22) 

Further, using Lemma 3, we have  

. I2 = O

(f π

π/(n+1)

ξ(t)

t2

(
nE

m=0

bn,m

m + 1
+ 1

n + 1

)
dt

)

= O

((
nE

m=0

bn,m

m + 1

)f π

π/(n+1)

ξ(t)

t2 dt + 1

n + 1

f π

π/(n+1)

ξ(t)

t2 dt

)

= I21 + I22. (23)
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Now, 

. I21 = O

(
nE

m=0

bn,m

m + 1

f π

π/(n+1)

ξ(t)

tσ
.

1

t2−σ
dt

)

= O

(
nE

m=0

bn,m

m + 1

ξ(π)

πσ

[
tσ−1

]π

π/(n+1)

)

= O

(
(n + 1)1−σ

nE
m=0

bn,m

m + 1

)
, (24) 

in view of condition (11) and mean value theorem for integrals. 
Similarly, 

. I22 = O

(
1

(n + 1)

f π

π/(n+1)

ξ(t)

tσ
.

1

t2−σ
dt

)
= O

(
1

(n + 1)

ξ(π)

πσ

[
tσ−1

]π

π/(n+1)

)

= O
(
(n + 1)−σ

)
, (25) 

in view of condition (11) and mean value theorem for integrals. 
Further, 

. (n + 1)−σ + (n + 1)1−σ
nE

m=0

bn,m

m + 1
≥ (n + 1)−σ + (n + 1)−σ

nE
m=0

bn,m

≥ 2(n + 1)−σ ,

so that, 

.(n + 1)−σ = O

(
(n + 1)1−σ

nE
m=0

bn,m

m + 1

)
. (26) 

Therefore 

.I2 = O

(
(n + 1)1−σ

nE
m=0

bn,m

m + 1

)
. (27) 

Collecting (21)–(27), we have 

. 

||||||tBA
n (f ; x) − f (x)

||||||
p,β

= O

(
ξ(π/(n + 1)) + (n + 1)1−σ

nE
m=0

bn,m

m + 1

)
.

Thus, the proof of Theorem 1 is completed.
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Proof of Theorem 2 We have, 

. ̃tBA
n (f ; x) − f̃ (x) = 1

2π

f π

0
ψ(x, t) ˜(BA)n(t)dt.

Using Lemma 6, we have  

. 

||||||t̃BA
n (f ; x) − f̃ (x)

||||||
p,β

=
(

1

2π

f 2π

0

||||
f π

0
ψ(x, t) ˜(BA)n(t)dt

||||
p

sinβp(x/2)dx

)1/p

. ≤
f π

0

(
1

2π

f 2π

0
|ψ(x, t)|p sinβp(x/2)dx

)1/p

|(B̃A)n(t)|dt

=
f π

0
O(ξ(t))| ˜(BA)n(t)|dt

= O

(f π/(n+1)

0
+

f π

π/(n+1)

)(
ξ(t)| ˜(BA)n(t)|dt

)
= J1 + J2. (28) 

Now, using Lemma 4, we have  

. J1 = O

(f π/(n+1)

0
ξ(t) ˜(BA)n(t)dt

)
= O

(f π/(n+1)

0

ξ(t)

tσ
tσ−1dt

)

= O(ξ(π/(n + 1))),

in view of condition (11) and mean value theorem for integrals. 
Further, using Lemma 5, we have  

. J2 = O

(f π

π/(n+1)

ξ(t)

t2

(
nE

m=0

bn,m

m + 1
+ 1

n + 1

)
dt

)

= O

((
nE

m=0

bn,m

m + 1

) f π

π/(n+1)

ξ(t)

t2
dt + 1

n + 1

f π

π/(n+1)

ξ(t)

t2
dt

)

= J21 + J22. (29) 

Proceeding in the same manner as the proof of Theorem 1, we have 

.J2 = O

(
(n + 1)1−σ

nE
m=0

bn,m

m + 1

)
. (30)
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Collecting (28) and (30), we have 

. 

||||||t̃BA
n (f ; x) − f̃ (x)

||||||
p,β

= O

(
ξ(π/(n + 1)) + (n + 1)1−σ

nE
m=0

bn,m

m + 1

)
.

Thus, the proof of Theorem 2 is completed. 

6 Particular Cases 

1. If we replace the matrix B ≡ (bn,k) by C1 matrix, i.e., the matrix corresponding 
to Cesàro means of order 1, then 

. bn,m =
{

1
n+1 , 0 ≤ m ≤ n

0, m > n.

Thus, we get C1A-version of Theorem 1 and 2. 
2. Further, if we replace the right-hand side of conditions (8) and (9) by  bn,m 

(n+m+1)2 , 

then, for the C1A-means, the conditions (8) and (9) reduce to 

.|am,0 − am+1,1| << 1

(n + m + 1)2
for 0 ≤ m ≤ n − 1 (31) 

and, 

. 

m−1E
k=0

|(am,m−k − am+1,m+1−k) − (am,m−k−1 − am+1,m−k)|

. << 1

(n + m + 1)2 for 0 ≤ m ≤ n − 1. (32) 

Using the above conditions (31) and (32), Lemma 3 becomes as following: 

. |(C1A)n(t)| = O

(
1

(n + 1)t2

(
nE

m=0

1

n + m + 1
+ 1

n + 1

))
= O

(
t−2

n + 1

)

in view of 
nE

m=0 

1 

(n + m + 1) 
= O(1) and for C1A-means, Theorem 1 becomes 

.

||||||tC
1A

n (f ; x) − f (x)

||||||
p,β

= O
(
ξ(π/(n + 1)) + (n + 1)−σ

)
.
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Similarly, Lemma 5 changes as |( ˜C1A)n(t)| =  O
(

t−2 

n+1

)
, and for C1A-means, 

Theorem 2 becomes
||||||t̃C

1A 
n (f ; x) − f̃ (x)

||||||
p,β 

= O
(
ξ(π/(n + 1)) + (n + 1)−σ

)
. 
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Third Hankel Determinants . H3(1)
and .H3(2) for Bi-starlike Functions 

Janani Thambidurai 

Keywords Hankel determinant · Analytic functions · Univalent functions · 
Bi-univalent · Bi-starlike 

1 Introduction 

Let . A represent the class which has analytic functions, 

.f (z) = z +
∞E

n=2

anz
n in Δ = {z : |z| < 1}, open unit disc, (1) 

normalized by .f (0) = 0 and .f '(0) = 1. Let . S represent all univalent functions in 
. Δ. It is known that every function .f ∈ S has an inverse .f −1, where 

. f −1(w) = g(w) = w − a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + (14a4

2

−21a2
2a3 + 6a4a2 + 3a2

3 − a5)w
5 + (−42a5

2 + 84a3
2a3 − 28a4a

2
2

−28a2a
2
3 + 7a5a2 + 7a4a3 − a6)w

6 + (132a6
2 − 330a4

2a3 + 120a3
2a4

+180a2
2a2

3 − 36a5a
2
2 − 72a2a3a4 + 8a6a2 − 12a3

3 + 8a5a3 + 4a2
4

−a7)w
7 + · · · (2) 

Let . Σ represent all bi-univalent functions in .Δ, where both f and .f −1 are 
univalent. Famous bi-starlike functions of order . α [.S∗

Σ(α)] and bi-convex function 
of order . α [.KΣ(α)] were introduced by Brannan and Taha [3]. 
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A function f is subordinate to g [.f ≺ g], if there is . w, an analytic function 
defined on . Δ with .w(0) = 0, |w(z)| < 1 satisfying .f (z) = g(w(z)). It is assumed 
that function . φ of the form 

.φ(z) = 1 + B1z + B2z
2 + B3z

3 + · · · , (B1 > 0), φ(0) = 1, φ'(0) > 0, (3) 

with positive real part, .φ(Δ) is symmetric with respect to the real axis. 
Various starlike and convex subclasses for which either . z f '(z)

f (z)
or .1 + z f ''(z)

f '(z) is 
subordinate to a function which is more general superordinate were unified by Ma 
and Minda [12]. Ma-Minda starlike subclass has f satisfying . z f '(z)

f (z)
≺ φ(z), the 

subordination. Ma-Minda convex subclass has f satisfying .1 + z f ''(z)
f '(z) ≺ φ(z) in a 

similar manner. 
.S∗

Σ(φ) or .KΣ(φ) represents Ma-Minda bi-starlike or bi-convex, if both f and 
.f −1 are Ma-Minda starlike or convex, respectively. 

Noonan and Thomas [15] analyzed in 1976 , qth Hankel determinant, 

. Hq(n) =

|||||||||

an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

|||||||||
, q ≥ 1.

For .n = 1, q = 2, Fekete and Szegö [6] studied the Hankel determinant, 

.H2(1) =
||||a1 a2

a2 a3

|||| . With . μ real, they analyzed the estimates of .|a3 −μa2
2 |, a1 = 1. 

According to their study, if .f ∈ A, then 

. |a3 − μa2
2 | ≤

⎧⎪⎨
⎪⎩

4μ − 3 if μ ≥ 1,

1 + 2 exp(
−2μ
1−μ

) if 0 ≤ μ ≤ 1,

3 − 4μ if μ ≤ 0.

Furthermore, Hummel [7, 8] obtained for convex functions, .|a3 −μa2
2 |, the sharp 

estimates, whereas Keogh and Merkes [10] estimated for starlike,convex and close-
to-convex, the sharp estimates. 

For .q = 3 and .n = 1, 2, we know that the Hankel estimates are 

. H3(1) =
||||||
a1 a2 a3

a2 a3 a4

a3 a4 a5

|||||| ,

.H3(1) = a3(a2a4 − a2
3) − a4(a4 − a2a3) + a5(a3 − a2

2), since a1 = 1, (4)
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. H3(2) =
||||||
a2 a3 a4

a3 a4 a5

a4 a5 a6

|||||| .

After simplification, we get 

.H3(2) = a6(a2a4 − a2
3) + a5(a3a4 − a2a5) + a4(a3a5 − a2

4). (5) 

Motivated by second Hankel determinant study of various subclasses of bi-univalent 
function class [1, 4, 5, 13, 14, 16, 20–22] and third Hankel determinant analysis for 
various univalent functions subclass [2, 11, 18, 19, 23], in the present article, a bi-
starlike function subclass of . Σ is considered along with its initial Taylor-Maclaurin 
coefficient estimates .|a2|, |a3| · · · |a6| for functions in subclass of . Σ to find the 
estimates of third Hankel determinants, .H3(1) and . H3(2), of the functions of this 
class. 

The following bi-starlike class definition is considered from the literature for the 
study. 

Definition 1 ([12]) Function f is said to be in .S∗
Σ(φ) if 

.
z f '(z)
f (z)

≺ φ(z) (6) 

and 

.
w g'(w)

g(w)
≺ φ(w) (7) 

where .z,w ∈ Δ and g is given in (2). 

2 Hankel Estimates of S∗ 
Σ (φ) 

The following lemma and theorem are used to derive our main results. 

Lemma 1 ([17]) Let . P represent all functions with real part . > 0 and of the form 

.hp(z) = 1 + h1z + h2z
2 + · · · for z ∈ Δ, (8) 

then .|hi | ≤ 2 for each i,



330 J. Thambidurai

Theorem 1 ([9]) Let f be in .S∗
Σ(φ). Then initial Taylor-Maclaurin coefficient 

estimates are 

. |a2| ≤ B1

|a3| ≤ B2
1 + B1/2

|a4| ≤ 2B3
1/3 + 5B2

1/4 + 4B1/3 + 4|B2|/3 + |B3|/3

|a5| ≤ 7B1/4 + |B3|(B1 + 3/4) + 35B2
1/8 + 5B3

1/4 + |B2|(4B1 + 9/4)

|a6| ≤ 16B1/5 + 8|B4|/5 + |B5|/5 + |B3|(B2
1 + 77B1/24 + 24/5) + 63B2

1/8

+19B3
1/4 + 7B4

1/12 + B5
1/5 + |B2|(4B2

1 + 77B1/8 + 32/5)

Theorem 2 Let f be in .S∗
Σ(φ). Then the Third Hankel estimate, when .n = 1 is 

. |H3(1)| ≤ |B2
3 |/9 + |2B3

1/9 + 5B2
1/3 + 91B1/72 + 8B2/9||B3| + 16|B2

2 |/9

+|8B3
1/9 + 20B2

1/3 + 337B1/72||B2| + |B6
1 |/9 + 4|B5

1 |
+859|B4

1 |/144 + 335|B3
1 |/48 + 191|B2

1 |/72 (9) 

Proof In order to analyze Third Hankel determinant, we need to find the estimates 
of the following: 

.V1 = a2a4 − a2
3 . (10) 

V2 = a4 − a2a3. (11) 

V3 = a3 − a2 
2 (12) 

From Theorem 1, by substituting the coefficient estimates, we can get the following 
equations easily: 

.V1 = (B1p1((B1p3)/12 − (B1q3)/12 − (B1q
3
1 )/24 + (B2q

3
1 )/12 − (B3q

3
1 )/24

+(B3
1p3

1)/12 + (B1p2q1)/12 − (B2p2q1)/12 + (B1q1q2)/12 − (B2q1q2)/12

+(5B2
1p1p2)/32 − (5B2

1p1q2)/32))/2 − ((B2
1p2

1)/4

+(p2/8 − q2/8)B1)
2

V2 = (B1p3)/12 − (B1q3)/12 − (B1q
3
1 )/24 + (B2q

3
1 )/12

−(B3q
3
1 )/24 + (B3

1p3
1)/12

+(B1p2q1)/12 − (B2p2q1)/12 + (B1q1q2)/12 − (B2q1q2)/12

+(5B2
1p1p2)/32

−(5B2
1p1q2)/32 − (B1p1((B

2
1p2

1)/4 + (p2/8 − q2/8)B1))/2

V3 = B1(p2/8 − q2/8)
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After collecting the .B1, B2, B3 terms, we get 

. V1 = (−(B1p1q
3
1 )/48)B3 − (p4

1B
4
1 )/48 + ((p1((5p1p2)/32 − (5p1q2)/32))/2

−(p2
1(p2/8 − q2/8))/2)B3

1

+((p1(p3/12 − q3/12 + (p2q1)/12 + (q1q2)/12

−q3
1/24))/2 − (p2/8 − q2/8)2)B2

1

−(B2p1((p2q1)/12 + (q1q2)/12 − q3
1/12)B1)/2

V2 = −p3
1B

3
1/24 + (5p1p2/32 − 5p1q2/32

−(p1(p2/8 − q2/8))/2)B2
1 + (p3/12 − q3/12

+p2q1/12 + q1q2/12 − q3
1/24)B1 − B3q

3
1/24

−B2(p2q1/12 + q1q2/12 − q3
1/12)

V3 = (p2/8 − q2/8)B1

From the definition of Hankel determinant, Eq. (4), and by using the calculated 
expression .V1, V2, V3, we get the following by using MATLAB: 

.H3(1) = ((p3
1((5p1p2)/32 − (5p1q2)/32))/24 − (p4

1(p2/8 − q2/8))/48

−(p2
1((p

2
1(p2/8 − q2/8))/2 − (p1((5p1p2)/32 − (5p1q2)/32))/2))/4

+(p3
1((5p1q2)/32 − (5p1p2)/32 + (p1(p2/8 − q2/8))/2))/12)B5

1

−B3
1 (((p2/8 − q2/8)2 − (p1(p3/12 − q3/12 + (p2q1)/12 + (q1q2)/12

−q3
1/24))/2)(p2/8 − q2/8) − ((5p1q2)/32 − (5p1p2)/32 + (p1(p2/8

−q2/8))/2)(p3/12 − q3/12 + (p2q1)/12 + (q1q2)/12 − q3
1/24) − (p2/8

−q2/8)((3p2
2)/128 − (3p2q2)/64 + (p1q1p2)/8

+(3q2
2 )/128 + (p1q1q2)/8

+p1p3/8 − p1q3/8 − p1q
3
1/16)

+(5p1p2/32 − 5p1q2/32)(p3/12 − q3/12 +
+(p2q1)/12 + (q1q2)/12 − q3

1/24)) − B2(B
2
1 (((p2q1)/12 + (q1q2)/12

−q3
1/12)((5p1q2)/32 − (5p1p2)/32

+(p1(p2/8 − q2/8))/2) − (5p1p2/32

−(5p1q2)/32)((p2q1)/12 + (q1q2)/12 − q3
1/12)

+(p2/8 − q2/8)(p1p2q1/8



332 J. Thambidurai

−(p1q
3 
1 )/8 + (p1q1q2)/8) + (p1(p2/8 − q2/8)((p2q1)/12 + (q1q2)/12 

−q3 
1/12))/2) − B1(2(p2q1/12 + q1q2/12 − q3 

1/12)(p3/12 − q3/12 

+p2q1/12 + q1q2/12 − q3 
1/24) − (p2/8 − q2/8)((p3q1)/16 + q1q3/16 

+3p2q
2 
1/32 − 3q2 

1q2/32 − p2 
2/32 + q2 

2/32)) 

+(B3 
1p3 

1(p2q1/12 + q1q2/12 

−q3 
1/12))/12) − B2 

1 ((p3/12 − q3/12 + p2q1/12 + q1q2/12 − q3 
1/24)2 

−(p2/8 − q2/8)(p4/16 − q4/16 + (p3q1)/16 

+(q1q3)/16 + (3p2q
2 
1 )/64 

−(3q2 
1q2)/64 − p2 

2/32 + q2 
2/32)) + (−p6 

1/576)B6 
1 + (−q6 

1/576)B2 
3 

+(((5p1p2)/32 − (5p1q2)/32)((5p1q2)/32 − (5p1p2)/32 + (p1(p2/8 

−q2/8))/2) − ((p2 
1(p2/8 − q2/8))/2 − (p1((5p1p2)/32 + 

−(5p1q2)/32))/2)(p2/8 − q2/8) − (p3 
1(p3/12 − q3/12 + (p2q1)/12 

+(q1q2)/12 − q3 
1/24))/24 − (p2 

1((p2/8 − q2/8)2 − (p1(p3/12 − q3/12 

+(p2q1)/12 + (q1q2)/12 − q3 
1/24))/2))/4 + ((5p2 

1p2)/64 

−(5p2 
1q2)/64)(p2/8 − q2/8))B4 

1 + (−((p2q1)/12 + (q1q2)/12 + ... 

. + ... −q3
1/12)2)B2

2 + (−(p3
1q

3
1B3

1 )/288 + ((q3
1 ((5p1p2)/32 − (5p1q2)/32))/24

−(q3
1 ((5p1q2)/32

−(5p1p2)/32 + (p1(p2/8 − q2/8))/2))/24 − (p1q
3
1 (p2/8

−q2/8))/12)B2
1 + ((q3

1 (p3/12 − q3/12 + (p2q1)/12 + (q1q2)/12

−q3
1/24))/12 + ((3p2q

2
1 )/64 − (3q2

1q2)/64)(p2/8 − q2/8))B1

−(B2q
3
1 ((p2q1)/12 + (q1q2)/12 − q3

1/12))/12)B3

After applying modulus on both sides of the equations and applying the Lemma 1, 
we obtain 

. |H3(1)| ≤ |B2
3 |/9 + |2B3

1/9 + 5B2
1/3 + 91B1/72 + 8B2/9||B3| + 16|B2

2 |/9

+|8B3
1/9 + 20B2

1/3 + 337B1/72||B2| + |B6
1 |/9 + 4|B5

1 |
+859|B4

1 |/144 + 335|B3
1 |/48 + 191|B2

1 |/72 (13) 

Hence the proof.
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Theorem 3 Let f be in .S∗
Σ(φ). Then the Third Hankel estimate, when .n = 2 is 

. |H3(2)| ≤ |19B2
1/60 + 9B3

1/20 + B4
1/15 + 4B1B2/15 + B1B3/15||B5| + |B3

3 |/27

+64|B3
2 |/27 + 31|B9

1 |/135 + 179|B8
1 |/45

+7009|B7
1 |/360 + |B2

2 ||320B3
1/9

+293B2
1/6 + 17,069B1/720| + |B2||392B6

1/45 + 3503B5
1/72

+182,257B4
1/1440 + 17,889B3

1/160

+12,499B2
1/360| + 27,719|B3

1 |/2160

+26,081|B4
1 |/480 + 241,837|B5

1 |/2880 + 31,609|B6
1 |/576 + |2B3

1/9

+239B2
1/72 + 2057B1/720 + 4B2/9||B2

3 | + |B3||1055B2
1/72

+54,187B3
1/1440 + 16B2

2/9 + 135,967B4
1/4320

+773B5
1/72 + 22B6

1/45

+B2(344B3
1/27 + 1871B2

1/72 + 6197B1/360)| + |38B2
1/15 + 18B3

1/5

+8B4
1/15 + 32B1B2/15 + 8B1B3/15||B4|

Proof In order to find the estimate of Third Hankel determinant, when .n = 2, we 
need to find the estimates of the following: 

.J1 = a2a4 − a2
3 . (14) 

J2 = a3a4 − a2a5. (15) 

J3 = a3a5 − a2 
4 (16) 

From Theorem 1, by substituting the coefficient estimates, we can get the following 
equations easily, by collecting the .B1, B2, B3, B4, B5 terms: 

.J1 = ((p1(5p1p2/32 − 5p1q2/32))/2 − (p2
1(p2/8 − q2/8))/2)B3

1 + ((p1(p3/12

−q3/12 + p2q1/12 + q1q2/12 − q3
1/24))/2

−(p2/8 − q2/8)2)B2
1 − (p4

1/48)B4
1

−(B1p1q
3
1/48)B3 + (−(B1p1((p2q1)/12 + q1q2/12 − q3

1/12))/2)B2

J2 = ((p2
1(5p1p2/32 − 5p1q2/32))/4 + (p3

1(p2/8 − q2/8))/12 − (p1(5p2
1p2/64

−5p2
1q2/64))/2)B4

1 + (p5
1/48)B5

1

+(B2
1p2

1q
3
1/48 − B1((q

3
1 (p2/8 − q2/8))/24

+(p1((3p2q
2
1 )/64 − (3q2

1q2)/64))/2))B3
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+B2 
1 ((p2/8 − q2/8)(p3/12 − q3/12 

+p2q1/12 + q1q2/12 − q3 
1/24) 

−(p1(p4/16 − q4/16 + (p3q1)/16 + (q1q3)/16 

+(3p2q
2 
1 )/64 − (3q2 

1q2)/64 − p2 
2/32 + q2 

2/32))/2) + (((p1((p1p2q1)/8 

−(p1q
3 
1 )/8 + (p1q1q2)/8))/2 − (p2 

1((p2q1)/12 

+(q1q2)/12 − q3 
1/12))/4)B2 

1 

+((p1((p3q1)/16 + (q1q3)/16 

+(3p2q
2 
1 )/32 − (3q2 

1q2)/32 − p2 
2/32 + q2 

2/32))/2 

−(p2/8 − q2/8)((p2q1)/12 + (q1q2)/12 − q3 
1/12))B1)B2 + (((5p1p2)/32 

−(5p1q2)/32)(p2/8 − q2/8) − (p1((3p2 
2)/128 − (3p2q2)/64 + (p1q1p2)/8 

+(3q2 
2 )/128 + (p1q1q2)/8 + (p1p3)/8 

−(p1q3)/8 − (p1q
3 
1 )/16))/2 + (p2 

1(p3/12 

−q3/12 + (p2q1)/12 + (q1q2)/12 − q3 
1/24))/4)B3 

1 

.J3 = ((p2
1((5p2

1p2)/64 − (5p2
1q2)/64))/4

−(p3
1((5p1p2)/32 − (5p1q2)/32))/6)B5

1

+B2(((p
3
1((p2q1)/12 + (q1q2)/12 − q3

1/12))/6

−(p2
1((p1p2q1)/8 − (p1q

3
1 )/8

+(p1q1q2)/8))/4)B3
1 + (2((5p1p2)/32

−(5p1q2)/32)((p2q1)/12 + (q1q2)/12

−q3
1/12) − (p2

1((p3q1)/16 + (q1q3)/16 + (3p2q
2
1 )/32

−(3q2
1q2)/32 − p2

2/32

+q2
2/32))/4 − (p2/8 − q2/8)((p1p2q1)/8 − (p1q

3
1 )/8 + (p1q1q2)/8))B2

1

+(2((p2q1)/12 + (q1q2)/12 − q3
1/12)(p3/12 − q3/12

+(p2q1)/12 + (q1q2)/12

−q3
1/24) − (p2/8 − q2/8)((p3q1)/16 + (q1q3)/16

+(3p2q
2
1 )/32 − (3q2

1q2)/32

−p2
2/32 + q2

2/32))B1) + B3
1 ((p2

1(p4/16 − q4/16 + (p3q1)/16 + (q1q3)/16

+(3p2q
2
1 )/64 − (3q2

1q2)/64 − p2
2/32 + q2

2/32))/4
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+(p2/8 − q2/8)((3p2 
2)/128 

−(3p2q2)/64 + (p1q1p2)/8 + (3q2 
2 )/128 

+(p1q1q2)/8 + (p1p3)/8 − (p1q3)/8 + 

−(p1q
3 
1 )/16) − 2((5p1p2)/32 − (5p1q2)/32)(p3/12 − q3/12 + (p2q1)/12 

+(q1q2)/12 − q3 
1/24)) + (−(5p3 

1q
3 
1B3 

1 )/576 + ((q3 
1 ((5p1p2)/32 

−(5p1q2)/32))/12 + (p2 
1((3p2q

2 
1 )/64 − (3q2 

1q2)/64))/4 − (p1q
3 
1 (p2/8 

−q2/8))/16)B2 
1 + ((q3 

1 (p3/12 − q3/12 + (p2q1)/12 + (q1q2)/12 

−q3 
1/24))/12 + ((3p2q

2 
1 )/64 − (3q2 

1q2)/64)(p2/8 − q2/8))B1 

−(B2q
3 
1 ((p2q1)/12 + (q1q2)/12 − q3 

1/12))/12)B3 − B2 
1 ((p3/12 − q3/12 

+(p2q1)/12 + (q1q2)/12 − q3 
1/24)2 

−(p2/8 − q2/8)(p4/16 − q4/16 + p3q1/16 

+(q1q3)/16 + (3p2q
2 
1 )/64 − (3q2 

1q2)/64 

−p2 
2/32 + q2 

2/32)) + (−p6 
1/144)B6 

1 (17) 

. + ... +(−q6
1/576)B2

3 + ((p2
1((3p2

2)/128 − (3p2q2)/64

+(p1q1p2)/8 + (3q2
2 )/128

+(p1q1q2)/8 + (p1p3)/8 − (p1q3)/8 − (p1q
3
1 )/16))/4 − ((5p1p2)/32

−(5p1q2)/32)2 − (p3
1(p3/12 − q3/12 + (p2q1)/12

+(q1q2)/12 − q3
1/24))/6

+((5p2
1p2)/64 − (5p2

1q2)/64)(p2/8 − q2/8))B4
1 + (−((p2q1)/12

+(q1q2)/12 − q3
1/12)2)B2

2 (18) 

From the definition of Hankel determinant and Eq. (5), we get the below estimate 
by applying modulus and Lemma 1. 

.|H3(2)| ≤ |19B2
1/60 + 9B3

1/20 + B4
1/15 + 4B1B2/15 + B1B3/15||B5| + |B3

3 |/27

+64|B3
2 |/27 + 31|B9

1 |/135 + 179|B8
1 |/45

+7009|B7
1 |/360 + |B2

2 ||320B3
1/9

+293B2
1/6 + 17,069B1/720| + |B2||392B6

1/45 + 3503B5
1/72

+182,257B4
1/1440 + 17,889B3

1/160
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+12,499B2 
1/360| +  27,719|B3 

1 |/2160 

+26,081|B4 
1 |/480 + 241,837|B5 

1 |/2880 + 31,609|B6 
1 |/576 + |2B3 

1/9 

+239B2 
1/72 + 2057B1/720 + 4B2/9||B2 

3 | + |B3||1055B2 
1/72 

+54,187B3 
1/1440 + 16B2 

2/9 + 135,967B4 
1/4320 

+773B5 
1/72 + 22B6 

1/45 

+B2(344B3 
1/27 + 1871B2 

1/72 + 6197B1/360)| + |38B2 
1/15 + 18B3 

1/5 

+8B4 
1/15 + 32B1B2/15 + 8B1B3/15||B4| 

Thus the proof. 

Considering the function . φ to be 

.φ(z) =
(

1 + z

1 − z

)α

= 1 + B1z + B2z
2 + · · · (0 < α ≤ 1), (19) 

for the class of strongly starlike functions, we have 

.B1 = 2α, . (20) 

B2 = 2α2, . (21) 

B3 = (4α3)/3 + (2α)/3, . (22) 

B4 = 2α(α3/3 + α/3) + (2α2)/3, . (23) 

B5 = (2α)/5 + 2α(2α(α3/15 + α/9) + (2α2)/9) + (4α3)/9. (24) 

Also, if we consider 

.φ(z) = 1 + (1 − 2β)z

1 − z
(0 ≤ β < 1), (25) 

then we have . B1, B2, ...B5 = 2(1 − β).

Remark 1 While choosing .φ(z) to be of form (19), one can easily obtain the third 
Hankel determinants .|H3(1)|, |H3(2)| based on the result discussed in Theorems 2 
and 3, respectively, of which .|H3(2)| estimate is obtained newly for the class of 
strongly starlike functions based on the literature survey. 

.|H3(1)| ≤ |784α6/81 + 4144α5/27 + 13,012α4/81 + 2165α3/27 + 1000α2/81|
|H3(2)| ≤ |2,968,288α9/18,225 + 1,172,992α8/405 + 47,160,056α7/6075

+751,081α6/81 + 64,224,083α5/12,150 + 191,206α4/135

+2,639,522α3/18,225|
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Remark 2 One can easily obtain the third Hankel determinants . |H3(1)|, |H3(2)|
based on the result discussed in the Theorems 2 and 3, respectively, of which . |H3(2)|
estimate is obtained for the first time for the class, where .φ(z) is of the form (25). 

. |H3(1)| ≤ |64β6/9 − 512β5/3 + 7739β4/9 − 35,957β3/18 + 2479β2

−28,693β/18 + 1249/3|
|H3(2)| ≤ |18,688β8/9 − 15,872β9/135 − 722,192β7/45 + 642,505β6/9

−3,637,745β5/18+5,630,791β4/15−907,991β3/2+3,429,129β2/10

−6,590,158β/45 + 7,274,293/270|

References 

1. Altinkaya, S., Yalcin, S.: Second hankel determinant for a general subclass of bi-univalent 
functions. TWMS J. Pure Appl. Math 7(1), 98–104 (2016) 

2. Altinkaya, S., Yalcin, S.: Third Hankel determinant for Bazilevic functions. Adv. Math. 5, 91– 
96 (2016) 

3. Brannan, D.A., Taha, T.S.: On some classes of bi-univalent functions. Studia Univ. Babeś-
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.(j, k)th-Proximate Order and 

.(j, k)th-Proximate Type of Entire 
Function 

Banani Dutta and Md. Azizul Hoque 

Keywords Proximate order · Proximate type · Proximate (j, k)th order · 
Proximate (j, k)th type 

1 Introduction 

In the discussion of growth of an entire function, order and type play a major role. 
In general, order is the limit superior ratio of .log[2] M(t, c) and .log t , where . M(t, c)

denotes maximum modulus function. In 1946, Shah [7] introduced the concept 
and existence of proximate order of an entire function. Later C. Ghosh et al. [2] 
prove the existence of proximate L- order of an entire function. Here we define 
proximate .(j, k)th order, proximate .(j, k)th type of an entire function and proved 
their existence. For the discussion , we need the following definitions. 

2 Basic Definitions 

Definition 1 ([1]) The (j, k)th order of entire function is 

. β
(j,k)
c = lim sup

t→∞
log[j−1] Mc(t)

log[k] t

where j, k are positive integers greater than 1. 

Definition 2 ([13]) The relative (j, k)th type of entire function is 
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. S = lim sup
t→∞

log[j−2]Mc(t)

log[k−1]tβ(j,k)
.

In 1923, Valiron [11] generalized Proximate order, and in 1946, Shah [7] proved 
existence of proximate order, now, we define Proximate (j,k) order as: 

Definition 3 (Proximate (j,k) Order) Let ζ be an entire function with finite (j, k)-
order β(j,k). β(j,k)(r) is said to be proximate-(j, k)-order of ζ(z)  if β(j,k)(t) satisfies 
the followings: 

(i.) β '
(j,k)(t) exists for t >  t0 except at isolated points at which left-hand and 

right-hand derivatives exist, 
(ii.) lim 

t→∞ 
β(j,k)(t) = β(j,k) 

(iii.) lim 
t→∞ 

tβ '
(j,k)(t) log[k] t = 0, 

(iv.) lim sup 
t→∞ 

log[j−2] M(t) 

log[k−1] t βj,k 
(t) 

= 1 ,for j >  2, k  >  1. 

3 Main Results 

Theorem 1 (Existence of Proximate (j,k) Order) For an entire function c(z) of 
finite (j, k) order β(j,k), there exists a proximate (j, k) order β(j,k)(t) for j >  2, 
k >  1. 

Proof Let σj,k(t) = log[j−1] Mc(t) 
log[k] t 

Case- I: When σj,k(t) > β(j,k) for a sequence of values of t → ∞, 
we define φj,k(t) = max 

x≥t 
σj,k(x). Since σj,k(t) is continuous , 

. lim sup
t→∞

σj,k(t) = β(j,k),

σj,k(t) > β(j,k) for a sequence of values of t → ∞, 
So φj,k(t) exists and is a decreasing function for t . 
Let t1 > eee 

and φj,k(t1) = σj,k(t1); such values will exist for a sequence of 
values of t → ∞. 

Let φj,k(t1) = βj,k(t1) and d1 be the least integer not less than t1 + 1 such that , 

. φj,k(t1) > φj,k(d1)

and also let 

. β(j,k)(t) = β(j,k)(t1) = φj,k(t1); t1 < t ≤ d1

For p1 > d1 define
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β(j,k)(t) = β(j,k)(t1) − log[k+1] t + log[k+1] d1 for d1 ≤ t ≤ p1 
β(j,k)(t) = φj,k(t) for t = p1 but β(j,k)(t) > φj,k(t) for d1 ≤ t <  p1. 

Let t2 be the least value of t for which t2 ≥ p1 and φj,k(t2) = σj,k(t2). If  
t2 > p1 then let β(j,k)(t) = φj,k(t) for p1 ≤ t ≤ t2, Since φj,k(t) is constant for 
p1 ≤ t ≤ t2, therefore β(j,k)(t) is constant for p1 ≤ t ≤ t2. 

Proceeding with similar argument, we can prove that β
'
(j,k)(t) exists in corre-

sponding intervals. Further, 
β '

(j,k)(t) = 0 or − 1 
log[k] t log[k−1] t...... log t.t 

⇒ t log[k] tβ '
(j,k)(t) = 0 or  −1 

log[k−1] t...... log t 
hence, lim 

t→∞ 
tβ '

(j,k)(t) log[k] t = 0 since k >  1. 

Also note that β(j,k)(t) ≥ φj,k(t) ≥ σj,k(t) for t ≥ t1. 
Further , 

β(j,k)(t) = φj,k(t) for t1, t2, t3........... and β(j,k)(t) is non-increasing and 

. lim
t→∞ φ(j,k)(t) = β(j,k).

Hence, lim sup 
t→∞ 

β(j,k)(t) = lim 
t→∞ 

β(j,k)(t) = β(j,k). Again since 

σj,k(t) = log[j−1] Mc(t) 
log[k] t 

⇒ log[j−1] Mc(t) = σj,k(t) log[k] t 
= σj,k(t) log(log[k−1] t)  
= log(log[k−1] t)σj,k(t) 

⇒ log[j−2] Mc(t) = (log[k−1] t)σj,k(t) 

= (log[k−1] t)βj,k(t) , 
for infinitely many values of t 
and log[j−2] Mc(t) < (log[k−1] t)βj,k(t) for the remaining t. 

Hence, lim sup 
t→∞ 

log[j−2] Mc(t) 
(log[k−1] t)βj,k(t) 

= 1. 

Case-II: when σj,k(t) ≤ βj,k for all large values of t ,we consider the two cases. 
subcase-I: σj,k(t) = βj,k ,for atleast a sequence of values of t → ∞. Here we take 
βj,k(t) = βj,k for all large t. 
subcase-II: Let σj,k(t) < βj,k for all large t , let  X' > eee 

such that 
σj,k(t) < βj,k , where t ≥ X'.We define ξj,k(t) = max 

X'≤x≤t 
σj,k(x). 

Therefore ξj,k(t) is non-decreasing. For t1 > X' , let  βj,k(t1) = βj,k 
βj,k(t) = βj,k + log[k+1] t − log[k+1] t1 for w1 ≤ t ≤ t1 where w1 < t1 is such that 
ξj,k(s) = βj,k(w1). 

If ξj,k(w1) /= σj,k(w1) , we take  ξj,k(t) = βj,k(t) for d1 ≤ t ≤ w1 where d1 is 
the nearest point (d1 < w1) at which ξj,k(d1) = βj,k(d1). 

Therefore βj,k(t) is constant for d1 ≤ t ≤ w1. If  ξj,k(w1) = σj,k(w1) , then let 
d1 = w1. Choose t2 > t1 suitable large, and let 
βj,k(t2) = βj,k and 
βj,k(t) = βj,k + log[k+1] t − log[k+1] t2 for w2 ≤ t ≤ t2 where w2(< t2) is such 
that ξj,k(w2) = βj,k(w2).
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If ξj,k(w2) /= σj,k(w2), then we take ξj,k(t) = βj,k(t) for d2 ≤ t ≤ w2 where d2 
is the nearest point (d2 < w2) at which ξj,k(d2) = σj,k(d2). 

If ξj,k(w2) = σj,k(w2) , then let d2 = w2. For t <  d2 ,let 
βj,k(t) = βj,k(d2) + log[k+1] d2 − log[k+1] t for p1 ≤ t ≤ t2,where p2(< d2) is 
the point of intersection of y = βj,k with 
y = βj,k(d2) + log[k+1] d2 − log[k+1] t . Let  βj,k(t) = βj,k for t1 ≤ t ≤ p1; we can 
find t2 so large that t1 < p1. 

Similarly we can prove β '
j,k(t) exists in adjacent intervals. Further , 

β '
(j,k)(t) = 0 or  − 1 

log[k] t log[k−1] t...... log t.t . Hence, lim 
t→∞ 

tβ '
(j,k)(t) log[k] t = 0. Also 

βj,k(t) ≥ ξj,k(t) ≥ σj,k(t) for all large t and βj,k(t) = σj,k(t) for 
t = d1, d2, d3, ........ Hence, lim 

t→∞ 
β(j,k)(t) = β(j,k) 

. and lim sup
t→∞

log[j−2] Mc(t)

(log[k−1] t)βj,k(t)
= 1.

Example Let us consider the entire function c(z) = ez. Let  j = 4, k  = 2 

. β
(j,k)
c = lim sup

t→∞
log[j−1] Mc(t)

log[k] t

= lim sup
t→∞

log[3] et

log[2] t

= lim sup
t→∞

log[2] t
log[2] t

= 1.

and σj,k(t) = log[j−1] Mc(t) 
log[k] t = log[3] et 

log[2] t . 

Then lim sup 
t→∞ 

σj,k(t) = β (j,k) 
c . 

Let φj,k(t) = max 
x≥t 

{σj,k(x)}. 
β(j,k)(t) = β(j,k)(t1) − log[k+1] t + log[k+1] d1 = 1 − log[3] t + log[3] d1 for d1 ≤ 
t ≤ p1 
and β(j,k)(t) = φj,k(t) for t = p1 

Definition 4 (Lower Proximate-(j, k)th-Order) Let c(z) be an entire function of 
finite lower (j, k)th order η(j,k). A function η(j,k)(t) is said to be lower proximate-
(j, k)th-order of c(z) if η(j,k)(t) satisfies the followings: 

(i.) η'
(j,k)(t) exists for t >  t0 except at isolated points at which left-hand and 

right-hand derivatives exist. 
(ii.) lim 

t→∞ 
η(j,k)(t) = η(j,k)
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(iii.) lim 
t→∞ 

tη'
(j,k)(t) logk t = 0 

(iv.) lim inf 
t→∞ 

log[j−2] Mc(t) 
(log[k−1] t)ηj,k(t) 

= 1, j  >  2, k  >  1. 

Theorem 2 (Existence of Lower Proximate-(j, k)th-Order) For an entire func-
tion c(z) of finite (j, k)th lower order η(j,k) there exists proximate (j, k)th lower 
order η(j,k)(t) , for  j >  2, k  >  1. 

Proof Same as Theorem 1. 

Definition 5 (Proximate (j, k)th-Type) A function S(j,k)(t) is said to be a 
proximate-(j, k)th-type of an entire function c(z) of finite (j, k)th-type S(j,k) if 
S(j,k)(t) satisfies followings: 

(i.) S(j,k)(t) is real, differentiable for t >  t0 except at isolated points at which left 
hand and right hand derivatives exist. 

(ii.) lim 
t→∞ 

S(j,k)(t) = S(j,k) 

(iii.) lim 
t→∞ 

tS'
(j,k)(t) = 0 

(iv.) lim sup 
t→∞ 

log[j−3] Mc(t) 

exp[log[k−1] t βj,k(t) 
Sj,k(t)] 

= 1 for  j >  3, k  >  1. 

Theorem 3 (Existence of Proximate-(j, k)th-Type) For an entire function c(z) 
of finite (j, k)th-order β(j,k) and finite (j, k)th-type S(j,k), there exists a (j, k)th-
proximate type S(j,k)(t) for j >  3, k  >  1. 

Proof Let sj,k(t) = log[j−2] M(t) 
{log[k−1] t}β(j,k) 

Case- I: When sj,k(t) > S(j,k) for a sequence of values of t → ∞, 
We define ψj,k(t) = max 

x≥t 
{sj,k(x)} 

Since sj,k(t) is continuous , lim sup 
t→∞ 

sj,k(t) = S(j,k), sj,k(t) > S(j,k) for a 

sequence of values of t → ∞, So ψj,k(t) exists and is a non increasing function for 
t. Let t1 > eeand ψj,k(t1) = Sj,k(t1) such values will exist for a sequence of values 
of t → ∞. 

Let ψj,k(t1) = Sj,k(t1) and d1 be the smallest integer not less than t1 + 1 such 
that , 

ψj,k(t1) > ψj,k(d1) and also let 

. S(j,k)(t) = S(j,k)(t1) = ψj,k(t1); t1 < t ≤ d1

For p1 > d1 define as 
S(j,k)(t) = S(j,k)(t1) − log log t + log log d1 for d1 ≤ t ≤ p1 
S(j,k)(t) = ψj,k(t) for t = p1 but 
S(j,k)(t) > ψj,k(t) for d1 ≤ t ≤ p1. Let  t2 be the smallest value of t for which 
t2 ≥ p1 and ψj,k(t2) = sj,k(t2). If  t2 > p1 then let S(j,k)(t) = ψj,k(t) for p1 ≤ 
t ≤ t2, since ψj,k(t) is constant for p1 ≤ t ≤ t2 , therefore S(j,k)(t) is constant for 
p1 ≤ t ≤ t2.
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Similarly we can that S'
(j,k)(t) exists in adjacent intervals. 

Further, S
'
(j,k)(t) = 0 or S

'
(j,k)(t) = −  1 

log t.t ⇒ tS '
(j,k)(t) = 0 

hence, lim 
t→∞ 

tS
'
(j,k)(t) = 0. Also note that S(j,k)(t) ≥ ψj,k(t) ≥ sj,k(t) for t ≥ t1. 

Further , 
S(j,k)(t) = sj,k(t) for t1, t2, t3........... and S(j,k)(t) is non-increasing and 

lim 
t→∞ 

ψ(j,k)(t) = S(j,k). Hence, lim sup 
t→∞ 

S(j,k)(t) = lim 
t→∞ 

S(j,k)(t) = S(j,k). 

Again since 

sj,k(t) = log[j−2] M(t) 
{log[k−1] t}βj,k 

⇒ log[j−2] M(t) = sj,k(t)log[k−1] t β(j,k) for infinite many values of t 
⇒ log[j−3] M(t) = exp[Sj,k(t)(log[k−1] t)βj,k ] 
⇒ log[j−3] M(t) 

exp[Sj,k(t)(log[k−1] t)  βj,k ] = 1 and for the remaining t, 

. log[j−2] t < s(j,k)(t)(log[k−1] t)β(j,k)

Hence, lim sup 
t→∞ 

log[j−3] M(t) 
exp[(log[k−1] t)β(j,k)Sj,k(t)] 

= 1. 

Case-II: when sj,k(t) ≤ Sj,k for all large values of t , we consider two cases. subcase-
I: sj,k(t) = Sj,k for at least a sequence of values of t → ∞, 
Here we take Sj,k(t) = Sj,k for all large t . 
subcase-II: Let sj,k(t) < Sj,k for all large t. Let X' > ee such that sj,k(t) < Sj,k , 
where t ≥ X'.We define , ξj,k(t) = max 

X'≤x≤t 
sj,k(x). 

Therefore ξj,k(t) is non-decreasing. Considering t1 > X' and let Sj,k(t1) = Sj,k 
and 
Sj,k(t) = Sj,k + log log t − log log t1 for w1 ≤ t ≤ t1 where w1 < t1 is such that 
ξ(j,k)(w1) = Sj,k(w1). If  ξ(j,k)(w1) /= s(j,k)(w1) , we take ξ(j,k)(t) = S(j,k)(t) for 
d1 ≤ t ≤ w1 where d1 is the nearest point (d1 < w1) at which 
ξ(j,k)(d1) = s(j,k)(d1). Therefore Sj,k(t) is constant for d1 ≤ t ≤ w1. 

If ξ(j,k)(w1) = s(j,k)(w1) , then let d1 = w1, choose t2 > t1 suitable large d and 
let 
Sj,k(t2) = βj,k 
Sj,k(t) = βj,k + log log t − log log t2 for w2 ≤ t ≤ t2. where w2(< t2) is such 
that ξj,k(w2) = Sj,k(w2).If ξj,k(w2) /= sj,k(w2) then we take ξj,k(t) = Sj,k(t) for 
d2 ≤ t ≤ w2 where d2 is the nearest point (d2 < w2) at which ξj,k(d2) = sj,k(d2). 

If ξj,k(w2) = sj,k(w2) , then let d2 = w2. For t <  d2, let  
Sj,k(t) = Sj,k(d2) + log log d2 − log log t for p1 ≤ t ≤ d2,where p2(< d2) is the 
point of intersection of y = Sj,k with y = Sj,k(d2) + log log d2 − log log t . 

Let Sj,k(t) = Sj,k for t1 ≤ t ≤ p1, we can find t2 so large that t1 < p1. 
Similarly we can prove that S'

j,k(t) exists in adjacent intervals. 

Further , S'
(j,k)(t) = 0 or  S'

(j,k)(t) = −  1 
log t.t
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Hence, lim 
t→∞ 

tS'
(j,k)(t) = 0. Also Sj,k(t) ≥ ξj,k(t) ≥ sj,k(t) for all large t and 

Sj,k(t) = sj,k(t) for d1, d2, d3, ........ 
Hence, 

lim 
t→∞ 

S(j,k)(t) = S(j,k) and lim sup 
t→∞ 

log[j−3] Mc(t) 
exp[Sj,k(t)(log[k−1] t)βj,k(t)] = 1. 

Definition 6 (Lower (j, k)th-Proximate Type) Let c(z) be an entire function of 
finite (j, k)th-lower type ϑ(j,k). A function ϑ(j,k)(t) is said to be lower proximate-
(j, k)th-type of c(z), if ϑ(j,k)(t) satisfies the following properties: 

(i.) ϑ '
(j,k)(t) exists for t >  t0 except at isolated points at which left hand and right 

hand derivatives exist. 
(ii.) lim 

t→∞ 
ϑ(j,k)(t) = ϑ(j,k) 

(iii.) lim 
t→∞ 

tϑ
'
(j,k)(t) = 0 

(iv.) lim inf 
t→∞ 

log[j−3] Mc(t) 
exp[(log[k−1] t)βj,k(t) ϑj,k(t)] 

= 1 where j >  3, k  >  1. 

Theorem 4 (Existence of Lower Proximate-(j, k)th-Type) For every entire func-
tion c(z) of finite lower (j, k)th-order η(j,k) and finite lower (j, k)th-type ϑ(j,k) , 
there exists an proximate-(j, k)th-type ϑ(j,k)(t) for j >  3, k  >  1. 

Proof Same as previous theorem. 

4 Conclusion and Future Scope 

Here, we have proved the existence of proximate-.(j, k)th-order for an entire 
function. One may try to prove for proximate -.(j, k, L)th-order taken with respect 
to any other function. 
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Fractals via Self-Similar Group of Fisher 
Contractions 

C. Thangaraj and D. Easwaramoorthy 

Keywords Fractal analysis · Fisher contraction · Iterated function system · 
Topological group · Self-similar group · Profinite group 

1 Introduction 

Mandelbrot introduced the fractal geometry in 1975 [1], and it has since been 
popularized by many researchers. In the real world, fractals can be defined as 
objects that seem self-similar (SS) under different magnifications. Mathematically, 
fractals can be defined as sets with a Hausdorff dimension that strictly exceeds the 
topological dimension. Then Hutchinson formalized the important concept called 
iterated function system (IFS) [2]. Consequently, Barnsley created the mathematical 
theory called the Hutchinson-Barnsley (HB) theory [3–5]. A fractal set is generated 
through the IFS of Banach contractions and defined in terms of a compact invariant 
subset of the complete metric space (CMS), [6, 7]. To put it another way, Hutchinson 
defined an operator, called HB operator, on the hyperspace of nonempty compact 
sets. It involves the Banach fixed point theorem to define a unique fixed point as a 
fractal set in CMS with the distinguished dimensional measures [8–14]. Secelean 
explored the idea of countable iterated function system [15]. Secelean proposed the 
idea of creating new IFS by combining various contractions into F-contractions. 
The authors developed the notion of a topological IFS attractor in reference, which 
generalizes the familiar IFS attractor. That is, every IFS attractor is also a topological 
IFS attractor, but the converse is not true [16, 17]. 
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The concept of self-similarity lends itself well to performing intensive research 
on fractals. To completely comprehend the group structure, one must first fully 
comprehend self-similar sets [18]. A compact fractal space has a natural propensity 
to be thought of as being unable to accommodate an infinite number of motions. 
It clearly depicts the set of notions relevant to the modification of a mathematical 
pattern when the measured scale changes [19]. A rearrangement is a cyclic group, 
a continuous parameter group, or a cyclic group whose inverse is typically not 
invertible and is made up of specialized transformations to partially solve a 
mathematical problem. As a result, it is a semi-group [19, 20]. 

A subclass of the non-cyclic renormalization group is self-similar groups (SSG). 
SSG can also be described in other ways. One approach is to define mealy-
type automata-generated groups. This creates SSG that are generally feasible for 
computer science [19]. A second approach to define SSG is the recursive functional 
structure of compact topological groups (CTG). Thus, it is close to many problems 
in dynamical systems. 

The most fundamental attribute of fractals is self-similarity. To thoroughly 
examine the self-similarity sets, one must first comprehend their group structure. 
Based on the group structure, S. Kocak and M. Saltan et al. describe the self-similar 
property of fractal sets [21, 22]. The Koch curve, Cantor set, and Sierpinski triangle 
are typical examples of fractals. The aforementioned sets are employed with IFS 
with the Banach contraction to get the attractor. In addition, we invoked .HB theory 
to obtain the fractals, which are constructed as self-similar sets. 

In 2010, Sahu et al. presented the Kannan iterated function system (KIFS) 
and used these contractions for creating the fractal sets, which was based on the 
iterated function system [3, 23]. In 2015, Uthayakumar et al. introduced Kannan 
contraction’s strong self-similar group (SSSG) and SSG and described the KIFS 
associating with SSSG and profinite groups [24, 25]. 

So far, the research study on the generation of fractals has not been discussed 
through the strong self-similar group by using Fisher contractions. It has motivated 
us to explore the notion of SSSG of Fisher contractions to generate the fractal set 
and also several consequences of SSSG to describe the FIFS relationship between 
SSSG and profinite groups. In this study, SSSG of Fisher contractions is proved as 
an attractor of FIFS, in which every Fisher contraction is a group homomorphism. 

The remaining chapter of this study is structured as follows. Section 2 explains 
the basic facts that are necessary for this study. Also, Sect. 3 discusses Fisher 
fractals, profinite groups, and self-similarity in the sense of IFS. The self-similar and 
strong self-similar groups are discussed in Sect. 4 in the sense of FIFS of CTG to 
generate the fractals as the main focus of this study. Finally, the results are concluded 
in Sect. 5.
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2 Basic Facts 

2.1 Metric Fractals 

Definition 1 ([2, 3, 26, 27]) If (H, ρ) is a metric space, and K0(H) is a nonempty 
collection of all compact subsets of H. Define ρ(a, B) = infb∈B ρ(a, b) and 
ρ(A, B) = supa∈A ρ(a, B) for all a ∈ H and A, B ∈ K0(H). The Hausdorff 
metric (Hρ) is a function Hρ : K0(H) × K0(H) → R defined by Hρ(A, B) = 
max {ρ(A,  B), ρ(B,A)} . Then the pair (K0(H), Hρ) is said to be Hausdorff metric 
space. 

Theorem 1 ([2, 3, 26, 27]) If (H, ρ) is complete, then (K0(H), Hρ) is also 
complete. 

Definition 2 ([2, 3, 26, 27]) If (H, ρ) is a metric space. Then the self map T : 
H → H is known as contraction, if ∃ α ∈ [0, 1) such that ρ(T (a), T (b)) ≤ 
αρ(a, b) ∀a, b ∈ H . Here  α is known as the contraction ratio of T . 

Definition 3 ([2, 3, 26, 28]) If (H, ρ) is a metric space and Tn : H → H, n = 
1, 2, ...N0(N0 ∈ N) are N0− contraction mappings associating the contraction ratio 
αn, n  = 1, 2, ...N0. Then {H, Tn; n = 1, 2, ..., N0} the system is said to be the 
hyperbolic iterated function system (IFS) with the contraction ratio α = maxN0 

n=1 αn. 

Definition 4 ([2, 3, 26, 28]) Let (H, ρ) be a metric space and {H, Tn; n = 1, 2, ..., 
N0, N0 ∈ N} be IFS of contractions. Then the Hutchinson-Barnsley (HB) operator 

is a function F : K0(H) → K0(H) defined by F (B) = UN0 
n=1 Tn(B) ∀B ∈ 

K0(H). 

Theorem 2 ([2, 3, 26, 28]) Let (H, ρ) be a metric space. Let {H, Tn; n = 1, 2, ..., 
N0, N0 ∈ N} be IFS of contractions. Then, the HB-Operator F is a Banach 
contraction mapping on (K0(H), Hρ). 

Theorem 3 ([27, 29, 30]) If (H, ρ) is CMS, and an IFS of Banach contractions 
is {H, Tn; n = 1, 2, ..., N0, N0 ∈ N}. Then F has a unique compact invariant set 
A∞ ∈ K0(H). 

Definition 5 (([27, 29, 30]) Metric Fractals) The invariant set A∞ ∈ K0(H) that 
exists in Theorem 3 is called the unique fixed point of F (or) attractor (fractals) of 
IFS of Banach contraction. 

3 Fisher Fractals 

This section discusses about Fisher IFS and Fisher fractals through the HB-theory 
generated by Fisher contractions and by using Fisher fixed point theorem. In 1976, 
Fisher introduced a mapping and proved the fixed point theorem for the Fisher 
contraction, which are described as follows.
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Definition 6 ([31]) Let .(H, ρ) be CMS. The function .T : H → H is known as 
Fisher contractions if there exists real numbers . α, . β; .0 < α, β < 1

2 such that 
.ρ(T (a), T (b)) ≤ α[ρ(a, T (a)) + ρ(b, T (B))] + βρ(a, b), for all .a, b ∈ H . Here  
. α, . β are F -contractivity factors of Fisher contractions T . 

If .α = 0, then the Fisher contraction is reduced to a usual contraction, but the 
converse is not always true. Similarly, if .β = 0, then the Fisher contraction is 
reduced to a Kannan contractions, but the converse is not always true. 

Theorem 4 If .(H, ρ) is CMS and the mapping .T : (H, ρ) → (H, ρ) is Fisher 
contraction, then T has a unique fixed point. 

On the basis of IFS provided by Barnsley [3], Sahu [23], Uthayakumar et al. 
[24], initiated the invariant set of KIFS, now we can introduce invariant set of FIFS 
as follows: 

Definition 7 A FIFS composed of CMS .(H, ρ) along with a finite number of Fisher 
contractions .Tn : H → H, n = 1, 2, 3, ..., N0 (N0 ∈ N) with F -contractivity 
factors . αn, βn, n = 1, 2, 3, ..., N0.

Definition 8 If .(H, ρ) is a metric space. Let .{H, Tn; n = 1, 2, ..., N0, N0 ∈ N} be 
a Fisher IFS that consists of finite number of Fisher contractions. Then the HB-
operator of the Fisher IFS of Fisher contractions is a mapping . F : K0(H) →
K0(H) defined as . F (B) = UN0

n=1 Tn(B) ∀B ∈ K0(H).

Lemma 1 If .(H, ρ) is CMS and .(K0(H),Hρ) is the associating Hausdorff metric 
space. Let .T : H −→ H be a continuous Fisher contractions on .(H, ρ) with F-
contractivity factors .α, β. Then .F : K0(H) −→ K0(H) constructed by . T (B) =
{T (x) : x ∈ B} ∀B ∈ K0(H) is a Fisher mapping on .(K0(H),Hρ) with .F -
contractions ratios .α, β. 

Lemma 2 If .(H, ρ) is CMS and .(K0(H),Hρ) is the appropriate Hausdorff metric 
space. Let .Tn : H −→ H , .n = 1, 2, 3, ..., No (No ∈ N) be continuous Fisher 
contractions on .(H, ρ) with F-contractivity factors .αn, βn, n = 1, 2, 3, ..., No. Then 
the HB operator .F : K0(H) −→ K0(H) of the Fisher IFS of continuous Fisher 
contractions is also a Fisher contraction on .(K0(H),Hρ) with F-contractivity 

factors .α = maxNo

n=1 αn and .β = maxNo

n=1 βn. 

Theorem 5 If .(H, ρ) is CMS and .{H ; Tn, n = 1, 2, 3, ..., No;No ∈ N} be FIFS of 
continuous Fisher contractions with F-contractivity factors .α, β. Then, there exists 
a unique fixed point .A∞ ∈ K0(H) is the HB operator for Fisher IFS or, likewise, 
. F has unique compact invariant set .A∞ ∈ K0(H). Here,  .A∞ ∈ K0(H) obeys 
.A∞ = F (A∞) = UNo

n=1 Tn(A∞), and is provided that . A∞ = limn→∞F o(n)(B)

for any .B ∈ Ko(X). 

Theorem 6 If .{H ; T0, T1, T2, ..., Tn, n = 1, 2, 3, ..., No;No ∈ N} is FIFS with the 
unique fixed point B. If the Fisher contractions mappings .T0, T1, ..., Tn are one-to-
one on B and .Ti(B) ∩ Tj (B) = ∅ ∀, 0 ≤ i, j ≤ n and i /= j then B is 
totally disconnected.
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3.1 Strong Self Similar and Profinite Groups for FIFS 

Definition 9 ([21, 22]) Assume that (A, ρ) is CTG with the metric ρ being 
translation-invariant. Group A is denoted as self-similar if it has a proper subgroup 
B with a finite index and a onto homomorphism χ : A → B (contractions) with 
respect to ρ. 

Definition 10 ([22]) Assume that (A, ρ) is CTG with the metric ρ being 
translation-invariant. If a group has a proper subgroup B of the finite index and 
a group isomorphism χ : A → B (contractions) with regard to ρ, then A is said to 
be strong self-similar. 

Definition 11 ([22]) Let A be a topological group is known as profinite if it 
is topologically isomorphic to a finite discrete topological group’s inverse limit. 
Equivalently, a topological group that is totally disconnected, Hausdorff, and 
compact is known as a profinite group. 

4 FIFS of Compact Topological Groups, Self-Similar and 
Profinite Groups 

This section defines SSG and their properties, including SSSG and Fisher contrac-
tions. Additionally, a few SSSG and profinite group characteristics are also depicted 
as well. 

Definition 12 If .(A, ρ) is CTG with the metric . ρ being translation-invariant. If A 
has a proper subgroup B with a finite index and a onto homomorphism . χ : A → B

(i.e., a Fisher contraction) with regard to . ρ, then A is said to be self-similar. 

Definition 13 Assume that .(A, ρ) is CTG and that its metric is translation-
invariant. If a group isomorphism .χ : A → B where B has an proper subgroup 
of an finite index of A and (i.e., Fisher contractions) with regard to . ρ, then A is said 
to be strong self-similar. 

Theorem 7 If A is the SSSG of Fisher contractions, then A is FIFS the attractor. 

Proof Assume that .(A, ρ) is CTG and that its metric is translation-invariant. If 
a group has an proper subgroup B of the finite index and a group isomorphism 
.χ : A → B, that is, Fisher contractions with regard to . ρ. 

Take .[A : B] = n and also take .a0 = e is an identity of A, .i /= j ∀i, j ∈ [0, n], 
there exist cosets of B in A such that .(B ∗ai)∩(B ∗aj ) = ∅ and . A = B ∪(B ∗a1)∪
(B∗a2)∪...∪(B∗an−1). Define .χi : A → A by . χi(g) = χi(g)∗ai, 0 ≤ i ≤ n−1.

Here, to claim .χi(g) is Fisher contractions . ∀i. From that .χi(A) = B ∗ ai as 
a result of . χ0 is onto (surjective). After that . χ0 is Fisher contractions with the 
contractivity factors .α, β and . ρ is translation invariant metric, we obtain that
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. ρ(χi(g), χi(h)) = ρ(χ0(g) ∗ ai, χ0(h) ∗ ai)

= ρ(χ0(g), χ0(h))

≤ α[ρ(g, χ0(g)) + ρ(h, χ0(h))] + βρ(g, h),

for each .g, h ∈ A. For these reasons, . χi is Fisher mappings and the corresponding 
contraction ratios . αi and . βi for .1 ≤ i ≤ n − 1 and 

. A = B ∪ (B ∗ a1) ∪ (B ∗ a2) ∪ ... ∪ (B ∗ an−1)

= χ0(A) ∪ χ1(A) ∪ χ2(A) ∪ ... ∪ χn−1(A)

A =
n−1U
n=0

χn(A).

Thus, A is the attractor of the FIFS . {A;χ0, χ1, ..., χn−1}.
Theorem 8 Allow the topological groups .(A, ∗, ρ) and .

(
A', ∗', ρ') to be compact. 

If .T : A −→ A' is both an group isomorphism and isometry map and A is SSSG of 
Fisher contractions, then prove that . A' is also SSSG of Fisher contractions. 

Proof T is onto and T is isometry, hence . ∃ .a, b, c ∈ A such that . T (a) = a', T (b) =
b' and .T (c) = c' for all .a', b', c' ∈ .A'. . ρ is translation-invariant metric, we compute 

. 

ρ' (a' ∗' c', b' ∗' c') = ρ' (T (a) ∗' T (c), T (b) ∗' T (c)
)

= ρ'(T (x), T (y))

= ρ' (a', b') .

A SSSG of Fisher mapping is A, and B is a subgroup of the finite index set A; 
.χ : A −→ B is a group. Let us take .T (B) = B '. And  T is a group asymmetry. 
Similarly . B ' is a subgroup of . A' with a finite index. 

Define .T|B : B −→ B ' by .T|B(a) = T (a) for all .a ∈ B ⊆ A. Now we prove 
that .χ ' = T|B ◦ χ ◦ T −1 : A' −→ B '; this two are satisfying Fisher contractions 
mapping and a group isomorphism condition. Also, the .T , T|B and . χ satisfy the 
(group) isomorphisms condition; naturally . χ ' satisfies the group isomorphism. . χ is 
a Fisher map, and the contractions ratio . α and . β and .T , T|B are isometries; we get 

.ρ' (χ ' (g') , χ ' (h')) = ρ' (T|B ◦ χ ◦ T −1 (
g') , T|B ◦ χ ◦ T −1 (

h'))

≤α
[
ρ' (T −1 (

g') , χ
(
T −1 (

g')))

+ρ' (T −1 (
h') , χ

(
T −1 (

h')))]
+ βρ(T −1(g'), T −1(h'))

=α
[
ρ' (g', χ ' (g')) + ρ' (h', χ ' (h'))] + βρ'(g', h'),
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.∀g', h' ∈ A'. This implies, . χ ' is Fisher contractions function on . A'. 

Theorem 9 If .A1, A2, . . . , An are SSSG of Fisher Mapping then . A1×A2×. . .×An

is SSSG of Fisher Mapping. 

Proof Since .(A1, ∗1, ρ1) , (A2, ∗2, ρ2) , . . . , (An, ∗n, ρn) are CTG, . A1×A2×. . .×
An is CTG. In addition, there exist subgroups .B1, B2, . . . , Bn of .A1, A2, . . . , An, 
respectively; .χi : Ai −→ Bi are Fisher contractions with corresponding con-
tractions given that these groupings exhibit substantial Fisher contractions self-
similarity. Define the map . χ : A1 × A2 × . . . × An −→ B1 × B2 × . . . × Bn

by . χ (g1, g2, . . . , gn) = (χ1 (g1) , χ2 (g2) , . . . , χn (gn)) .

It is obvious that .B1 × B2 × . . . × Bn is a subgroup of .A1 × A2 × . . . × An and 
.[A1 × A2 × . . . × An : B1 × B2 × . . . × Bn] = m1m2...mn. Since . χ1, χ2, ..., χn

are group homomorphisms, we compute 

. χ(g ∗ h) =χ ((g1, g2, . . . , gn) ∗ (h1, h2, . . . , hn))

=χ ((g1) , (g2) , . . . , (gn)) ∗ χ ((h1) , (h2) , . . . , (hn))

=χ (g) ∗ χ (h) .

It becomes clear that . χ is one to one and onto (bijective) because of the definitions 
.χ1, χ2, . . . , χn. Hence . χ is a group homomorphism. Let . α = max{α1, α2, . . . αn}
and .β = max{β1, β2, . . . βn}, for 1 ≤ i ≤ n. Next, to derive that 

. ρ(χ(g), χ(h)) =ρ (χ (g1, g2, . . . , gn) ∗ χ (h1, h2, . . . , hn))

χ(g ∗ h) =χ ((g1, g2, . . . , gn) ∗ (h1, h2, . . . , hn))

=ρ ((χ1 (g1) , . . . , χn (gn)) ∗ (χ1 (h1) , . . . , χn (hn)))

=α[ρ(g, χ(g) + ρ(h, χ(h))] + βρ(g, h).

In light of the fact that . χ is a Fisher contraction with the contractions ratios .α, β. 
Therefore, .A1 × A2 × . . . × An is SSSG. 

Theorem 10 A self-similar group of continuous Fisher contractions is a discon-
nected set. 

Proof Assume that A is SSG of (Fisher) contractions. This implies that A is a 
topological group. A is the attractor of the .FIFS {χ0, . . . , χn−1} by using Theorem 7 
and . ∀ i such that .1 ≤ i ≤ n − 1, the mappings 

. χi : A −→ χi(A)

are Fisher contractions. Furthermore, we have 
. G = χ0(A) ∪ χ1(A) ∪ . . . ∪ χn−1(A)

.Φ = χi(A) ∩ χj (A),
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for all .1 ≤ i, j ≤ n − 1 and .i /= j . It is commonly known that every compact 
subspace of a Hausdorff space is closed and that the image of a compact set under a 
continuous map is compact. Therefore, for .1 ≤ i ≤ n − 1 .χi(A) is closed set. As a 
result, 

. 
A = χ0(A) ∪ [χ1(A) ∪ . . . ∪ χn−1(A)]

Φ = χ0(A) ∩ [χ1(A) ∪ . . . ∪ χn−1(A)]) ,

we obtain that .{χ0(A), [χ1(A) ∪ . . . ∪ χn−1(A)]} is closed separation of A. There-
fore, A is proved (disconnected set). 

Theorem 11 SSSG with continuous Fisher contractions are totally disconnected 
groups. 

Proof Assume that A is SSSG of continuous Fisher contractions. Theorem 7 clearly 
shows A is the invariant set (attractor) of a FIFS .{χ0, . . . , χn−1}. Since . χ0 : A −→
B is one to one, we get 

. 

χi(g) = χi(h)

χ0(g) ∗ ai = χ0(h) ∗ ai

χ0(g) = χ0(h)

g = h,

.∀g, h ∈ A. From this . χi is injective for .1 ≤ i ≤ n−1. Likewise, .χi(A)∩χj (A) = ∅, 

.i /= j and for every .i, j ∈ 1 ≤ i, j ≤ n − 1. For this reason, A is proven (totally 
disconnected by using Theorem 6). 

The relationship between a profinite group and a strong Fisher contractions SSG is 
given by Theorem 12. 

Theorem 12 A profinite group is SSSG of Fisher contractions. 

Proof Let A be SSSG Fisher contractions. By Definition 13, A is CTG. It is 
known that every metric space is a Hausdorff space, the set A is Hausdorff. 
Besides, Theorem 11 clears that A is a totally disconnected set. Hence, A is totally 
disconnected, Hausdorff, and compact. As a result, we have the traits of profinite 
groups. This demonstrates that SSSG of Fisher contractions is a profinite group. 

If all the contractivity factors .αn = 0 (n = 1, 2, · · · , N0), then the Fisher 
IFS becomes a standard IFS; and if all the contractivity factors . βn = 0 (n =
1, 2, · · · , N0), then the Fisher IFS becomes a Kannan IFS; the converse of both 
cases is not always true. Hence, the method of constructing the Fisher fractal is 
a generalized case of the method of constructing the existing fractals through the 
classical IFS [2, 5, 6] and Kannan IFS (K-IFS) [23]. 

The importance of this research work is to generate fractal sets in SSSG through 
the iterated function system of Fisher contractions. It is demonstrated with the idea
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of constructing a new type of fractals in SSSG through interesting theorems and 
results. It is believed that the proposed research work will lead to a new path for 
developing the strong self-similar groups and their consequences based on Fisher 
contractions. 

5 Conclusion 

In this context, we have introduced the concepts of SSG and SSSG with Fisher 
contractions. We have proved SSSG of Fisher contractions as an attractor of a FIFS. 
A new type of fractal has been constructed as a self-similar group and strong self-
similar group by the Fisher iterated function system on the compact topological 
group. Furthermore, the relations between the profinite group and the strong version 
of self-similar group with Fisher contractions have been proved mathematically. 
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On Alternating Direction Implicit 
Solutions of 2D Kelvin–Helmholtz 
Instability Problem 

Aziz Takhirov 

1 Introduction 

The goal of this chapter is to extend a highly parallelizable alternating direc-
tion implicit algorithm for solving the unsteady incompressible Navier–Stokes 
equations of [3] to more general boundary conditions and validate it on two-
dimensional Kelvin–Helmholtz mixing layer problem [5]. A projection based 
similar scheme developed earlier in [1] has been thoroughly studied and validated 
for two-dimensional and three-dimensional lid-driven cavity problems. However, 
the validation of these schemes for high Reynolds number flows has not performed 
yet, to the best of our knowledge, and this is a first step in that direction. 

Turbulence is inherently a three-dimensional phenomenon. As such, there are 
many good numerical benchmark problems for .Re >> 1 incompressible flows in 
three dimensional. On the other hand, first studying two-dimensional examples 
is preferred because of faster implementation and significantly shorter computing 
times compared to three-dimensional simulations. 

The most popular numerical benchmark for a high Reynolds number flow in two-
dimensions seems to be the Kelvin–Helmholtz instability or mixing layer problem 
given in [5] and thoroughly studied in [7] (referred to as DNS henceforth). The 
velocity field is initiated with a perturbation noise, and through the action of the 
nonlinear term, small vortices arise, which then merge into a larger and larger 
vortices until finally one vortex is formed. Dozens of numerical studies have been 
dedicated for the Kelvin–Helmholtz instability problem. Although the existing 
results seem to be qualitatively correct, there are often a considerable quantitative 
differences, as discussed in more detail in the numerical section. Our experience 
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with simulating this problem also showed that slight changes in discretization 
parameters can yield substantially different results. 

This chapter is organized as follows. Next we recall the setting of Kelvin– 
Helmholtz problem. In Sect. 2, we recall a few notations, present the time-discrete 
numerical scheme. In the section that follows, we prove a simple but an important 
lemma that allows us to state the stability of our scheme in the context of the Kelvin– 
Helmholtz problem. Section 4 discusses the numerical results, and Sect. 5 concludes 
the manuscript. 

1.1 Kelvin–Helmholtz Instability Problem 

The flow of Kelvin–Helmholtz instability problem is given by incompressible 
Navier–Stokes system in .o = [0, 1]2: 

.

∂u
∂t

+
(
u · −→∇

)
u + ∇p + ν

−→
Au = f in o × (0, Tf ]

∇ · u = 0 in o × (0, Tf ]
(1) 

with periodic boundary conditions on the x boundary and no penetration . u · n = 0
and free-slip boundary conditions .(−ν∇u · n) × n = 0 on the y boundary. 

The initial velocity is given by 

.

u0 =
[
u∞ tanh ((2y − 1)/α0)

0

]
+ 10−3

[
∂yψ(x, y)

−∂xψ(x, y)

]
,

ψ(x, y) = exp
(

− 784 (y − 0.5)2
)

[cos(8πx) + cos(20πx)] ,

(2) 

where the reference velocity is .u∞ = 1. 

2 Notations and Numerical Scheme 

2.1 Notations 

To simplify the discussion, we only consider time-discretized numerical schemes. 
Define the functional space for appropriate for the Kelvin–Helmholtz problem: 

.H 1
# :=

{
u ∈ H 1(o) : u|x=0 = u|x=1 and u2|y=0 = u2|y=1 = 0,

∂yu1|y=0 = ∂yu1|y=1 = 0
}
.
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The scalar product of .L2(o) and .L2f =0
(o) is denoted by .(·, ·). 

The splitting error operator of the scheme is defined as 

. Sv := ∂xx∂yyv

with its domain 

. D(S) :=
{
u ∈ H 1

# (o) : Su ∈ L2(o)
}

.

2.2 Direction Splitting Scheme 

Next we present the direction splitting scheme for the Navier–Stokes equations 
(1). Our numerical approximation is constructed via the artificial compressibility 
regularization: 

.

∂tu +
(
u · −→∇

)
u + ∇p − ν

−→
Au = 0

τ∂tp + χ∇ · u = 0,

(3) 

where .χ = O (1). The resulting approximation .(u, p) has first-order temporal accu-
racy (see [8]), and higher-order schemes can be constructed using the bootstrapping 
approach of [2–4]. 

Denoting .NL :=
(
u · −→∇

)
u, the Douglass–Gunn factorized Euler scheme takes 

the form: 

Algorithm Given initial data . u0 and properly initialized initial pressure field . p0, 
solve for .

(
un+1, pn+1

)
: 

. [I − (χ + ν)τ∂xx]
[
I − ντ∂yy

] un+1
1 − un

1

τ
= νAun

1 + χ∂xxu
n
1 + χ∂xyu

n
2

+ f n+1
1 − ∂xp

n − NLn
1. (4) 

[I − ντ∂xx]
[
I − (χ + ν)τ∂yy

] un+1 
2 − un 

2 

τ 
= νAun 

2 + χ∂yxu
n+1 
1 + χ∂yyu

n 
2 

+ f n+1 
2 − ∂yp

n − NLn 
2. (5) 

pn+1 − pn + χ∇ · un+1 = 0. (6) 

The algorithm can be rewritten in a more recognizable Crank–Nicolson form:
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. 

un+1 − un

τ
+ NLn − νAun+1 − χ∇

(
∇ · ũn+1

)
−

(
0, ∂yy

(
un+1 − un

))T

+ν(χ + ν)τ 2S

[
un+1 − un

τ

]
+ ∇pn = fn+1

(7) 

where .ũn+1 :=
(
un+1

1 , un
2

)
. 

3 Stability of the Unsteady Stokes Approximation 

The key result in establishing the stability of the scheme is the following coercivity 
result for the operator S: 

Lemma 1 The bilinear form .D(S) × D(S) ∈ (u, v) → (u, Sv) ∈ R is symmetric 
positive and 

.(u, Su) = ||∂xyu||2, ∀ u ∈ D(S). (8) 

Proof Using Fubini–Tonelli theorem and integration by parts gives 

.(u, Su) = (u1, ∂xx∂yyu1) + (u2, ∂xx∂yyu2)

=
y=1f

y=0

u1∂xyyu1
||x=1
x=0 dy

' '' '
=0 by periodicity

−(∂xu1, ∂xyyu1)

+
y=1f

y=0

u2∂xyyu2
||x=1
x=0 dy

' '' '
=0 by periodicity

−(∂xu2, ∂xyyu2)

= −
x=1f

x=0

∂xu1∂xyu1
||y=1
y=0 dx

' '' '
=0 by free-slip

+(∂xyu1, ∂xyu1)

−
x=1f

x=0

∂xu2∂xyu2
||y=1
y=0 dx

' '' '
=0 by free-slip

+(∂xyu2, ∂xyu2)

= ||∂xyu||2.
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Setting .f = 0 and neglecting the nonlinear term, coercivity of the splitting error 
operator S indicates stability of the scheme with respect to the initial data. The proof 
directly follows that of [3][Theorem 4.1] and shall be omitted. 

4 Numerical Example 

Herein we report the results of our simulations for Reynolds number . Re = 104

case. A non-dimensional time unit .t = α0/u∞ is used for reporting the results. In 
what follows, we present the simulation results corresponding to .τ = 2.5e − 5 and 
.256 × 256 uniform grid. The time interval considered is .t ∈ [0, 400]. In Fig. 2, the  
plots produced by our Algorithm are labelled as “ADI,” and those of [7] are labelled 
as “DNS.” 

The expected behavior is as follows: the nonlinearity amplifies the initial 
perturbations, and four vortices are formed around the horizontal line .y = 0.5. 
After a while, those four vortices merge into larger two vortices. Later on, those 
two vortices coalesce into a single vortex centered at the origin (merging of the two 
vortices with vortices from neighboring cells has been reported in [6] at .Re = 100). 

The vorticity contours obtained with our scheme are reported in Fig. 1. The  
reliable prediction of the pairing time of the last two vortices is very difficult, and 
a wide spectrum of merging times has been reported. This discrepancy has been 
attributed to the high sensitivity of this problem to inherent perturbations that occur 
in any numerical simulation [7]. Even on .256 × 256 uniform grid with 8-th degree 
DG scheme and a timestep of .τ = 3.6 × 10−5, mesh convergence has been found 
only for the time interval .t < 200. 

4.1 Kinetic Energy Evolution 

The top left graph in Fig. 2 is the plot of the kinetic energy .
||u||2

2
vs. . t . Kinetic 

energy is supposed to monotonically decrease with time, and that is observed in 
both graphs. Energy of the scheme seems to decay faster, due to the scheme being 
more diffusive. 

4.2 Enstrophy Evolution 

The top right figure in Fig. 2 is the plot of the enstrophy .
||∇ × u||2

2
vs. . t . Enstrophy 

is also a monotonically decreasing quantity for the Navier–Stokes system. Looking 
at the graphs, we see the expected behavior in both cases.
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Fig. 1 Vorticity contours at .t = 7.7, 12.425, 33.25, 52.325, 98, 315.175
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Fig. 2 Top row: kinetic energy and enstrophy. Bottow row: palinstrophy and the relative vorticity 
thickness 

4.3 Palinstrophy Evolution 

The bottom left figure in Fig. 2 is the plot of the palinstrophy .
||∇ (∇ × u) ||2

2
vs. 

. t . In the current formulation of Navier–Stokes system, there is no control over the 
accuracy of palinstrophy, and thus it is the most difficult quantity to predict. As it 
can be seen, the ADI result follows the overall trend of DNS. 

4.4 Vorticity Thickness Evolution 

The bottom-right figure in Fig. 2 is the plot of the relative vorticity thickness 

.δ(t) = 2u∞
sup

y∈[0,1]
|< ω > (t, y)| , < ω > (t, y) =

1f
0

ω(t, x, y)dx
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against . t . Oscillations in the graph of .α(t) indicate ellipsoidal vortices, while its 
smoothness means they are of circular shape. The current plot of .δ(t) vs. t indicates 
that merging occurs at .t = 100, much earlier than the expected result .t = 250. 

5 Conclusions 

We described the extension of the massively parallel ADI scheme for solving 
the Navier–Stokes system (1) subject to more general boundary conditions. We 
discussed the stability of the unsteady Stokes approximation in Lemma 1. Numerical 
testing of our scheme on the Kelvin–Helmholtz benchmark problem gives qualita-
tively accurate results even on under-resolved mesh. Quantitative comparison has 
overall marginal accuracy, and fully resolved numerical simulation of the problem 
will be carried out in the future. 
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On Hyper-relative .(m, s) Order of Entire 
Functions in Light of Central Index 

Md. Azizul Hoque and Banani Dutta 

Keywords Central index · Order · (m,s) order 

1 Introduction 

Considering an entire function .c(z) defined on the set of complex numbers. To 
characterize the growth we need, maximum modulus function on .|z| = r is 
introduced as .M(r, c) = max|z|=r |c(z)|. 

All the preliminary definitions regarding this discussion are available in [5, 6]. 
Here we will develop the idea of hyper-relative (m,s) order using the function . ψ in 
light of central index. 

1.1 Definitions 

The function . ψ defined in [5] satisfies the following relations: 

(i) . lim
r→∞

log[m] r
log[s] ψ(r)

= 0

(ii) . lim
r→∞

log[m] ψ(αr)

log[s] ψ(r)
= 1 where . α > 1,m, s ∈ Z+,m > s.

For example, we can consider the function . zn (where, .n > 2 , an integer). 

Definition 1 ([5]) Let c(z) , d(z) be two entire functions, then the relative (m,s). ψ−
order of c w.r.t. d is 

M. A. Hoque 
Department of Mathematics, Sreegopal Banerjee College, Mogra, Hooghly, West Bengal, India 

B. Dutta (O) 
Department of Mathematics, Darjeeling Government College, Darjeeling, West Bengal, India 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
H.-H. Leung et al. (eds.), Recent Developments in Algebra and Analysis, 
Trends in Mathematics, https://doi.org/10.1007/978-3-031-37538-5_36

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37538-5protect T1	extunderscore 36&domain=pdf
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36
https://doi.org/10.1007/978-3-031-37538-5_36


366 M. A. Hoque and B. Dutta

. ρ
(m,s)
d,ψ (c) = lim sup

r→∞
log[m−1] νd

−1ν(r, c)

log[s] ψ(r)

and .λ(m,s)
d,ψ (c) = lim inf

r→∞
log[m−1] ν−1

d ν(r, c)

log[s] ψ(r)
, where m,s .∈ Z+, .m > s > 1. 

Definition 2 ([5]) Let c(z) , d(z) be two entire functions, then the hyper-relative 
(m,s).ψ− order of c w.r.t. d is 

. ρ̄
(m,s)
d,ψ (c) = lim sup

r→∞
log[m] ν−1

d ν(r, c)

log[s] ψ(r)

and .λ̄(m,s)
d,ψ (c) = lim inf

r→∞
log[m] ν−1

d ν(r, c)

log[s] ψ(r)
, where m,s .∈ Z+, .m > s > 1. 

1.2 Lemma 

The following lemmas will be needed in the discussion. Here we are modifying the 
lemmas given in [1] by using central index. 

Lemma 1 We know that for an entire function c(z) which satisfies property (A), 
.[Mc(r)]2 ≤ [Mc(r

σ )] , .σ > 1 ,holds for all large r. 
We also have .ν(r, c) ≤ M(r, c) ≤ R

R−r
ν(R, c), f or0 ≤ r < R.............(1) Now 

putting R=2r in inequality (1) , 

. ν(r, c) ≤ M(r, c) ≤ 2ν(2r, c)

Using this we get 

. [νc(r)]n ≤ [2νc(2rσ )].

Lemma 2 For an entire function c(z) and .α∗, β∗ be such that . α∗ > 1, 0 < β∗ <

α∗, s∗ > 1 ,then 

. Mc(α
∗r) > β∗Mc(r).

we get 

. 2νc(2α∗r) > β∗νc(r).

Lemma 3 There exists .K(s∗, c) > 0,.s∗ > 1 such that .[Mc(r)]s∗ ≤ K[Mc(r
s∗

)] , 
for .r > 0. Using inequality (1) we get
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. [νc(r)]s∗ ≤ 2K[νc((2r)s
∗
)].

Lemma 4 If c is transcendental, then 

. lim
r→∞

νc(2s∗rs∗)
rnνc(r)

= ∞ = lim
r→∞

νc(2λrλ)

rnνc(rμ)

where . 0 < μ < λ.

Lemma 5 Let c and d be two entire functions , .d(0) = 0 , then for sufficiently large 
values of r 

. Mc(r) ≥ Mc(
1

16
Md(

r

2
)).

Again we have 

. Mc◦d(r) ≤ Mc(Md(r)).

Using inequality (1) we get , 

. 2νc◦d(r) ≥ νc(
1

16
νd(

r

2
)).

and 

. νc◦d(r) ≤ 2νc(2νd(4r)).

2 Main Results 

Theorem 1 Considering four entire functions f1, f2 and g, h with 0 < λh,ψ ≤ 
ρh,ψ < ∞, then for m >  2 

. ρ̄
(m,s)
g,ψ (f1 ± f2) ≤ max[ρ(m,s)

g◦h,ψ(f1), ρ
(m,s)
g◦h,ψ(f2)]

equality holds when ρ (m,s) 
g◦h,ψ(f1) /= ρ (m,s) 

g◦h,ψ(f2) , where ψ is defined earlier. 

Proof We consider the theorem for f1 + f2. Let  f = f1 + f2 and 

. ρ
(m,s)
g◦h,ψ(f1) ≤ ρ

(m,s)
g◦h,ψ(f2).

Let E >  0 be arbitrary, from the definition of ρ (m,s) 
g◦h,ψ(f1), for all larger values of r , 

we have
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. ν(r, f1) ≤ νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f1) + E) log[s] ψ(r)]]

. ≤ νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]]

and 

. ν(r, f2) ≤ νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]]

Now, 

. ν(r, f ) ≤ ν(r, f1) + ν(r, f2)

. < 2νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]]

. < 2νg◦h[2.3 exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]], by Lemma 2 

. ⇒ ν(r, f )

< 2.2νg[2νh[4.2.3 exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]]], by Lemma 5. 

. = 4νg[2νh[24 exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]]]

. ⇒ 1

4
νf (r) ≤ νg[2νh[24 exp[m−1][(ρ(m,s)

g◦h,ψ(f2) + E) log[s] ψ(r)]]]

. ⇒ ν−1
g

1

4
νf (r) ≤ 2νh[24 exp[m−1][(ρ(m,s)

g◦h,ψ(f2) + E) log[s] ψ(r)]]

. ⇒ log ν−1
g νf (r)+O(1) < 2νh[24 exp[m−1][(ρ(m,s)

g◦h,ψ(f2) + E) log[s] ψ(r)]]+O(1)

. < [24 exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]ρh,ψ+E

. ⇒ log log ν−1
g νf (r) + O(1)

< (ρh,ψ + E) log[24 exp[m−1][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]

. ⇒ log log ν−1
g νf (r) + O(1)

< (ρh,ψ + E)[exp[m−2][(ρ(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r)]] + O(1)
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. ⇒ log[m] ν−1
g νf (r) < (ρ

(m,s)
g◦h,ψ(f2) + E) log[s] ψ(r) + O(1)

. ⇒ log[m] ν−1
g νf (r)

log[s] ψ(r)
≤ (ρ

(m,s)
g◦h,ψ(f2) + E) + O(1)

⇒ ρ̄ (m,s) 
g,ψ (f ) ≤ ρ (m,s) 

g◦h,ψ(f2) , as E >  0 is arbitrary. 
So, 

. ρ̄
(m,s)
g,ψ (f1 ± f2) ≤ max[ρ(m,s)

g◦h,ψ(f1), ρ
(m,s)
g◦h,ψ(f2)]

Next let ρ (m,s) 
g◦h,ψ(f1) < ρ  (m,s) 

g◦h,ψ(f2). 
Then from the definition of ρ (m,s) 

g◦h,ψ(f1), for all large values of r 

ν(r, f1) < νg◦h[exp[m−1][(ρ (m,s) 
g◦h,ψ(f1 + E)log[s] ψ(r)]] .........(4) 

Then from the definition of ρ (m,s) 
g◦h,ψ(f2), there exists a sequence rn → ∞  such 

that 
νrn,f2 > νg◦h[exp[m−1][(ρ (m,s) 

g◦h,ψ(f2) − E)log[s] ψ(rn)]] .........(5) 
From Lemma (4) we get 

. lim
r→∞

νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(r)]]

νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f1) + E)log[s] ψ(r)]]

<
ν(r, f2)

ν(r, f1)
→ ∞.

Then for all large r, 

. νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(r)]]

> 2.νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f1) + E)log[s] ψ(r)]]

. ⇒ ν(rn, f2) > νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(r)]]

> 2.νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(f1) + E)log[s] ψ(r)]].

For a sequence of r tending to infinity, by using (4) 
ν(rn, f2) >  2ν(rn, f1) for n ∈ N 

. ⇒ ν(rn, f ) ≥ ν(rn, f2) − ν(rn, f1) > ν(rn, f2) − 1

2
ν(rn, f2) = 1

2
ν(rn, f2)

. >
1

2
νg◦h[exp[m−1][(ρ(m,s)

g◦h,ψ(f2) − E)log[s] ψ(rn)]], using(5).

Then using Lemma 2 we get,
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. ν(f, rn) > νg◦h[1

3
exp[m−1][(ρ(m,s)

g◦h,ψ(f2) − E)log[s] ψ(rn)]]

. >
1

2
νg[ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(rn)

6
]], by Lemma 5. 

. ⇒ ν(f, rn) ≥ νg[ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(rn)

6
]]

. ⇒ ν−1
g 2ν(f, rn) > [ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(rn)

6
]]

. ⇒ log ν−1
g ν(f, rn) + O(1)

> [log νh[
exp[m−1][(ρ(m,s)

g◦h,ψ(f2) − E)log[s] ψ(rn)

6
]] + O(1)

. > [exp[m−1][(ρ(m,s)
g◦h,ψ(f2) − E)log[s] ψ(rn)

6
]λh,ψ−E + O(1)

. ⇒ log log ν−1
g ν(f, rn) > (λh,ψ − E)[exp[m−2][(ρ(m,s)

g◦h,ψ(f2)−E)log[s] ψ(rn)]+O(1)

. ⇒ log[m] ν−1
g ν(f, rn) > (ρ

(m,s)
g◦h,ψ(f2) − E)log[s] ψ(rn) + O(1)

. ⇒ lim sup
r→∞

(
log[m] ν−1

g ν(f, rn)

log[s] ψ(rn
) ≥ (ρ

(m,s)
g◦h,ψ(f2) − E)

i.e. ρ̄ (m,s) 
g,ψ (f ) ≥ ρ (m,s) 

g◦h,ψ(f2), since E >  0 is arbitrary. 
So, 

. ρ̄
(m,s)
g,ψ (f1 ± f2) ≥ ρ

(m,s)
g◦h,ψ(f2) = max[ρ(m,s)

g◦h,ψ(f1), ρ
(m,s)
g◦h,ψ(f2)]

So we have 

. ρ̄
(m,s)
g,ψ (f1 ± f2) = max[ρ(m,s)

g◦h,ψ(f1), ρ
(m,s)
g◦h,ψ(f2)]

This proves the theorem. 

Theorem 2 Let S be a polynomial, and c, g, h are entire functions with 0 < λh,ψ ≤ 
ρh,ψ < ∞, where c is transcendental and ψ is defined earlier. Then for m >  2, 

.ρ̄
(m,s)
g,ψ (S.c) = ρ

(m,s)
g◦h,ψ(c).
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Proof Let the degree of S(z) be m. Then there exists α with 0 < α  <  1, and 
n(> m) ∈ Z+, 2α <  |S(z)| < rn holds on |z| = r for all large r. Using Lemma (2) 

. 2νc(2
1

α
αr) >

1

2α
νc(αr)

. ⇒ νc(αr) < 4ανc(2r).

Let k(z) = S(z)c(z), then for all large r and p >  1 

.νc(αr) < 4ανc(2r) ≤ 2νk(r) ≤ rnνc(r) < νc(2
prp), by Lemma 5 

Let E >  0 be arbitrary and for all large r, 

. 2νk(r) < νc(2
prp)

. < νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(c) + E)log[s] ψ(2prp)]]

. < 2νg[2νh[4 exp[m−1][(ρ(m,s)
g◦h,ψ(c) + E)log[s] ψ(2prp)]]]

. ⇒ ν−1
g νk(r) < [2νh[4 exp[m−1][(ρ(m,s)

g◦h,ψ(c) + E)log[s] ψ(2prp)]]]

. ⇒ log ν−1
g νk(r) < log νh[4 exp[m−1][(ρ(m,s)

g◦h,ψ(c) + E)log[s] ψ(2prp)]] + O(1)

. < [4 exp[m−1][(ρ(m,s)
g◦h,ψ(c) + E)log[s] ψ(2prp)]](ρh,ψ + E) + O(1)

. ⇒ log log ν−1
g νk(r) < (ρh,ψ +E) exp[m−2][(ρ(m,s)

g◦h,ψ(c)+E)log[s] ψ(2prp)]+O(1)

. ⇒ log[m] ν−1
g νk(r) < [(ρ(m,s)

g◦h,ψ(c) + E)log[s] ψ(2prp)] + O(1)

. ⇒ log[m] ν−1
g νk(r)

log[s] ψ(r)
< (ρ

(m,s)
g◦h,ψ(c) + E)

log[s] ψ(2prp)

log[s] ψ(r)
+ O(1)

. ⇒ ρ̄
(m,s)
g,ψ (S.c) ≤ ρ

(m,s)
g◦h,ψ(c) + E.

Since E >  0 is arbitrary, 

. ρ̄
(m,s)
g,ψ (S.c) ≤ ρ

(m,s)
g◦h,ψ(c).

Next for a sequence of values of rn → ∞  

.2νk(rn) > νc(αrn)
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. > νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(αrn)]]

. >
1

2
νg[ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(αrn)

2
]], by Lemma 5. 

. ⇒ ν−1
g νk(rn) + O(1) > [log νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(αrn)

2
]] + O(1)

. ⇒ log ν−1
g νk(rn) > [ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(αrn)

2
]]

. > [exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(αrn)

2
]λh,ψ−E + O(1)

. ⇒ log log ν−1
g ν(k, rn) > (λh,ψ − E)[exp[m−2][(ρ(m,s)

g◦h,ψ(c)−E)log[s] ψ(αrn)]+O(1)

. ⇒ log[m] ν−1
g ν(k, rn) > (ρ

(m,s)
g◦h,ψ(c) − E)log[s] ψ(αrn) + O(1)

. ⇒ lim sup
r→∞

(
log[m] ν−1

g ν(k, rn)

log[s] ψ(rn
) > (ρ

(m,s)
g◦h,ψ(c) − E). lim sup

r→∞
log[s] ψ(αrn)

log[s] ψ(rn)

i.e. ρ̄ (m,s) 
g,ψ (k) ≥ (ρ (m,s) 

g◦h,ψ(c) − E).1 
So, 

. ρ̄
(m,s)
g,ψ (k) ≥ ρ

(m,s)
g◦h,ψ(c).

So we have ρ̄ (m,s) 
g,ψ (S.c) = ρ (m,s) 

g◦h,ψ(c). 
This proves the theorem. 

Theorem 3 Considering n(> 1) ∈ Z+ and c, g, h are entire functions, 0 < λh,ψ ≤ 
ρh,ψ < ∞, ψ is defined earlier. Then for m >  2, 

. ρ̄
(m,s)
g,ψ (cn) = ρ

(m,s)
g◦h,ψ(c).

Proof From Lemmas 2, 3 we obtain 

. [νc(r)]n ≤ 2K∗νc(2
nrn)

< 2νc(Grn ), where G = 2n+1(2K∗ + 1) 

. < 2νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(c) + E)log[s] ψ(Grn)]]
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. < 4νg[2νh[4 exp[m−1][(ρ(m,s)
g◦h,ψ(c) + E)log[s] ψ(Grn)]]],

where K∗ = K∗(n, c) > 0, n  >  1,m  >  1. 
So, 

. ⇒ ν−1
g

1

4
[νc(r)]n < [2νh[4 exp[m−1][(ρ(m,s)

g◦h,ψ(c) + E)log[s] ψ(Grn)]]]

. ⇒ log ν−1
g [νc(r)]n < log νh[4 exp[m−1][(ρ(m,s)

g◦h,ψ(c) + E)log[s] ψ(Grn)]] + O(1)

. < [4 exp[m−1][(ρ(m,s)
g◦h,ψ(c) + E)log[s] ψ(Grn)]](ρh,ψ + E) + O(1)

. ⇒ log log ν−1
g [νc(r)]n < (ρh,ψ+E) exp[m−2][(ρ(m,s)

g◦h,ψ(c)+E)log[s] ψ(Grn)]+O(1)

. ⇒ log[p] ν−1
g [νc(r)]n < [(ρ(m,s)

g◦h,ψ(c) + E)log[s] ψ(Grn)] + O(1)

. ⇒ lim sup
r→∞

log[m] ν−1
g [νc(r)]n

log[s] ψ(r)
≤ lim sup

r→∞
(ρ

(m,s)
g◦h,ψ(c) + E)log[s] ψ(Grn)

log[s] ψ(Grn)

. lim sup
r→∞

log[s] ψ(Grn)

log[s] ψ(r)

. ⇒ ρ̄
(m,s)
g,ψ (cn) ≤ (ρ

(m,s)
g◦h,ψ(c) + E).1

we get, 

. ρ̄
(m,s)
g,ψ (cn) ≤ ρ

(m,s)
g◦h,ψ(c).

For a sequence of r = rn 

. [νc(rn)]n > νc(rn)

. > νg◦h[exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(rn)]]

. >
1

2
νg[ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(rn)

2
]], by Lemma 5. 

. ⇒ ν−1
g 2[νc(rn)]n > [ 1

16
νh[

exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(rn)

2
]]
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. ⇒ log ν−1
g [νc(rn)]n + O(1)

> log νh[
exp[m−1][(ρ(m,s)

g◦h,ψ(c) − E)log[s] ψ(rn)

2
]] + O(1)

. > [exp[m−1][(ρ(m,s)
g◦h,ψ(c) − E)log[s] ψ(rn)

2
]λh,ψ−E + O(1)

. ⇒ log log ν−1
g [νc(rn)]n > (λh,ψ − E)[exp[m−2][(ρ(m,s)

g◦h,ψ(c)−E)log[s] ψ(rn)]+O(1)

. ⇒ log[m] ν−1
g [νc(rn)]n > (ρ

(m,s)
g◦h,ψ(c) − E)log[s] ψ(rn)) + O(1)

. i.e.ρ̄
(m,s)
g,ψ (cn) > (ρ

(m,s)
g◦h,ψ(c) − E),

So, 

. ρ̄
(m,s)
g,ψ (cn) ≥ ρ

(m,s)
g◦h,ψ(c).

So we have 

. ρ̄
(m,s)
g,ψ (cn) = ρ

(m,s)
g◦h,ψ(c).

This proves the theorem. 

Conclusion and Future Scope 
Here we have established few results on hyper-relative (m,s) order of entire function. 
One may try to prove on other growth factors of composition of entire functions. 
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Application of Subordination and 
q-Differentiation to Classes of Regular 
Functions Associated with Certain 
Special Functions and Bell Numbers 
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Keywords Regular function · Bell numbers · Coefficient inequality · Error 
function · Struve function · Fekete-Szegö inequality · q-Differentiation 

1 Introduction 

In this study, we let . A represent the set of regular functions. We also let . S represent 
the set of regular functions that are also schlicht (i.e., univalent) in the domain . Ξ =
{z ∈ C such that |z| < 1}, so that functions in . S can be expressed in the series 

.F(z) = z +
∞E

y=2

Ayz
y, z ∈ Ξ (1) 

which satisfies the following conditions: .F(0) = 0 and .F '(0) − 1 = 0. Some 
known subsets of . S include . C and . S*, known to contain functions . F(z) ∈ S
that, respectively, satisfy the following conditions: .Re

(
1 + (zF ''/F ')

)
> 0, and 

.Re
(
zF '/F

)
> 0 for .z ∈ Ξ . They are, respectively, known as the sets of convex and 

starlike functions. The essence of these two subclasses of . S is so evident in many 
literature through several classes defined via them and the numerous results arising 
therefrom. 

Suppose there exists a function .s(z) (|s(z)| = |z| < 1) regular in . Ξ , where 
.F(z) = J (s(z)), z ∈ Ξ . Then F is said to be subordinate to J usually represented 
as .F(z) ≺ J (z), .z ∈ Ξ for .F, J ∈ A. Indeed, if .J ∈ S , then . F ≺ J ⇐⇒ F(0) =
J (0) and .F(Ξ) ⊂ J (Ξ). Function .s(z) is known as Schwarz function. Also, for 
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.F(z) in (1) and .J (z) = z +
∞E

y=2
byz

y ∈ A, the convolution of F and J denoted by 

.(F * J )(z) is defined by . (F * J )(z) = z +
∞E

y=2
Aybyz

y, z ∈ Ξ.

Bell [3, 4] introduced the numbers: .1, 1, 2, 5, 15, 52, 203, 877, 4140, . . . usually 
represented by . βy , .y ∈ N ∪ {0}. The Bell numbers are generated from the number 
of possible partitions of a set. Some properties of Bell numbers can be found in 
[2, 5, 15]. In particular, Kumar et al. [8] investigated the function 

.B(z) = eez−1 =
∞E

y=0

βy

zy

y! = 1 + z + z2 + 5

6
z3 + 5

8
z4 + · · · , z ∈ Ξ. (2) 

It was also demonstrated in [8] that function .B(z) is starlike with respect to 1. 
The Struve functions 

.Tp(z) = z +
∞E

y=0

(−1)y

Γ (y + 3
2 )Γ (p + y + 3

2 )

( z

2

)2y+p+1
, z ∈ C (3) 

and 

.Wb,c
p (z) = z +

∞E
y=0

(−1)ycy

Γ (y + 3
2 )Γ (p + y + b+2

2 )

( z

2

)2y+p+1
, z ∈ C (4) 

where .p, b, c ∈ C are particular solutions of certain second-order non-
homogeneous differential equations. The aforementioned functions .Tp(z) and 
.W

b,c
p (z) are, respectively, called Struve and generalized Struve functions. Let 

.Ub,c
p (z) = 2p

√
πΓ

(
p + b + 2

2

)
z

−p−1
2 Wb,c

p (
√

z) (5) 

so that by utilizing the Pochhammer symbol 

. (t)j = Γ (t + j)

Γ (t)
= t (t + 1) . . . (t + j − 1),

one can write (5) as 

.Ub,c
p (z) =

∞E
y=0

(− c
4 )y

( 3
2 )y(t)y

zy = b0 + b1z + b2z
2 + · · · (6)
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for .t = p + b+2
2 /= 0,−1,−2, · · · , by = (−1)ycyΓ ( 3

2 )Γ (t)

4yΓ (y+ 3
2 )Γ (y+t)

, .y > 0 and . b0 = 1. We  

note that function .U
b,c
p (z) in (6) is regular in . C, and it is also clear that .Ub,c

p (0) = 1. 
(For more details, see [11, 14, 17, 19]). Let 

.V b,c
p (z) = zUb,c

p (z) = z +
∞E

y=2

(− c
4 )y−1

( 3
2 )y−1(t)y−1

zy. (7) 

.V
b,c
p is the well-known generalized Struve function. Indeed, the univalence, starlike, 

and convex properties of function (7) were investigated by Orhan and Yagmur [11]. 
Also, using the principle of convolution, and in view of function (1) and (7), Raza 
and Yagmur [17] defined and investigated the function 

. G(z) = (F * V b,c
p )(z) = z +

∞E
y=2

(− c
4 )y−1

( 3
2 )y−1(t)y−1

ayz
y

= z − c

6t1
a2z

2 + c2

20t2
a3z

3 − c3

56t3
a4z

4 + c4

144t4
a5z

5 − · · · (8) 

where .(t)1 = t1, .(t)2 = t2, . . . and .(t)y = Γ (t+y)
Γ (t)

= ty ∀y ∈ N. Next, let 

.G(p, b, c;F) :=
⎧⎨
⎩G(z) : G(z) = z +

∞E
y=2

(− c
4 )y−1

( 3
2 )y−1(t)y−1

ay zy, z ∈ Ξ

⎫⎬
⎭ . (9) 

Another special function of interest in this work is the error function erF . It  
got its name as a result of its importance in the study of errors from numerical 
computations. The error function finds its usefulness in error theory in probability 
theory and in mathematical physics where it can be expressed as a special case of 
the Whittaker function. Some practical applications include such study areas like the 
theory of optics, combustion, and quantum mechanics. The error function . erF (z)

was reported by Abramowitz and Stegun [1] as  

.erF (z) = 2√
π

f z

0
exp (−η2)dη = 2√

π

∞E
y=0

(−1)y−1zy+1

(2y + 1)! , z ∈ C (10) 

whose properties are also investigated in [2, 5, 6]. Ramachandran et al. [16] reported 
a modified version of (10) as 

.ErF(z) = z +
∞E

y=2

(−1)y−1

(2y − 1)(y − 1)!z
y (11)
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and used it to define a certain set of regular-univalent functions. Some properties of 
the set were thereafter obtained. Indeed, the relevance of the aforementioned special 
functions cannot be underrated especially in areas of numerical computations in 
mathematical physics and probability. 

The q-differentiation of F in (1) is defined by 

.

DqF (z) =

⎧.⎨
.⎩

F '(z) for z = 0

F(z)−F(qz)
(1−q)z

for z /= 0

D2
qF (z) = Dq(DqF (z))

⎫.....⎬
.....⎭

(12) 

where 

. q ∈ (0, 1), [y]q = 1 − qy

1 − q
= 1 + q + q2 + · · · + qy−1, and lim

q↑1
[y]q = y.

(13) 

It was introduced by Jackson [7] (for more details, see [9, 10]). 
In view of (8) and (11), we define the function 

.H(z) = (G * ErF)(z) = z +
∞E

y=2

(−1)y−1(− c
4 )y−1

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y (14) 

so that with (12) we obtain 

.DqH(z) = 1 +
∞E

y=2

(−1)y−1(− c
4 )y−1[y]q

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y−1. (15) 

Henceforth, we shall let .b ∈ C \ {0}, .t /= 0,−1,−2, · · · , .c ∈ R
+, .q ∈ (0, 1), 

and the functions .B(z) and .H(z) are as defined in (2) and (14), respectively, unless 
otherwise explicitly declared. 

Definition 1 We say that function .H ∈ A is a member of the set .φS*
q(b,H,B) if 

the condition 

.1 + 1

b

(zDqH(z)

H(z)
− 1

)
≺ B(z), z ∈ Ξ (16) 

is satisfied and that .H ∈ A is a member of the set .φCq(b,H,B) if the condition 

.1 + 1

b

(zDqH(z)

DqH(z)

)
≺ B(z), z ∈ Ξ (17) 

is satisfied.
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2 Needed Lemmas 

Let the regular function .s(z) =
∞E

y=1
wyz

y ∈ Ω where . Ω represents the set of 

Schwarz functions defined in . Ξ . Then the following lemmas hold. 

Lemma 1 ([18]) Let .s(z) ∈ Ω , then .|wy | < 1 (y ∈ N). Equality occurs for 
functions .s(z) = eiϑzy (ϑ ∈ [0, 2π)). 

Lemma 2 ([18]) Let .s(z) ∈ Ω , then for .γ ∈ C, .|w2 + γw2
1| < max{1, |γ |}. 

Equality occurs for function .s(z) = z2. 

Lemma 3 ([14]) Let .y ∈ N, .t = p + b+2
2 /= 0,−1,−2. · · · and .p, b ∈ C. If  

.(t)1 = t1, .(t)2 = t2, . . . , (t)y = Γ (t+y)
Γ (t)

≡ t (t + 1) · · · (t + y − 1); then it is clear 
that: 

(i) If .p = −1 and .b = 2, then .t1 = 1, 
(ii) If .p = −1 and .b = 2, then .t2 = 2, 
(iii) If .p = −1 and .b = 2, then .t3 = 6. 

3 Main Results 

Motivated by the works in [2, 12, 13], we shall now present our main results as 
follows. 

Theorem 1 Let .H ∈ φS*
q(b,H,B), then 

.|a2| < 18|b|t1
cq

, . (18) 

|a3| < 200|b|t2 

c2(1 + q)q 
max

{
1,

|||b + q 
q

|||
|

, . (19) 

|a4| < 2, 352|b|t3 

c3(1 + q + q2)q 
max

{
1,

||||σ
[

γ 
σ 

+
(q + b 

q

)
+

(
1 + 

2 

σ

)] ||||
|

(20) 

and 

. |a3 − μa2
2 | < 200|b|t2

c2(1 + q)q
max

{
1,

|||50t2q
2 + 50t2qb + 81μt2

1 q(1 + q)b

50t2q2

|||},

(21) 

where .μ ∈ C, .σ = ([2]q−1)+([3]q−1)

([2]q−1)([3]q−1)
b and .γ = 5

6 − b2

([2]q−1))2 .
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Proof Suppose .H ∈ φS*
q(b,H,B); then the principle of subordination allows us to 

write (16) as 

.1 + 1

b

(zDqH(z)

H(z)
− 1

)
= B(s(z)) (22) 

where function .s(z) is given by (18) so that (22) simplifies to 

.[zDqH(z) − H(z)]H−1(z) = b[B(s(z)) − 1]. (23) 

Using (14) and (15) in the LHS of (23) we obtain 

. zDqH(z) − H(z) =z

(
1 +

∞E
y=2

(−1)y−1(− c
4 )y−1[y]q

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y−1

)

−
(

z +
∞E

y=2

(−1)y−1(− c
4 )y−1

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y

)

=
∞E

y=2

([y]q − 1) (−1)y−1(− c
4 )y−1

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y.

or 

. zDqH(z) − H(z) = ([2]q − 1)
c

18t1
a2z

2 + ([3]q − 1)
c2

200t2
a3z

3

+ ([4]q − 1)
c3

2352t3
a4z

4 + · · · . (24) 

Using the binomial expansion theorem, we obtain 

.H−1(z) =z−1 + (−1)z−2
( ∞E

y=2

(−1)y−1(− c
4 )y−1

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y

)

+ (−1)(−2)

2! z−3
( ∞E

y=2

(−1)y−1(− c
4 )y−1

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y

)2

+ · · ·

=1

z
− c

18t1
a2 − c2

200t2
a3z − c3

2352t3
a4z

2 − · · ·

+ c2

324t2
1

a2
2z + c3

3600t1t2
a2a3z

2 + c4

42,336t1t3
a2a4z

3 + · · ·
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+ c3 

3600t1t2 
a2a3z

2 + c4 

40,000t2 
2 

a2 
3z3 + c5 

470,400t2t3 
a3a4z

4 + · · ·  

+ c4 

42,336t1t3 
a2a4z

3 + c5 

470,400t2t3 
a3a4z

4 + · · ·  

so that we obtain a simplified function 

. H−1(z) = 1

z
− c

18t1
a2 +

( c2

324t2
1

a2
2 − c2

200t2
a3

)
z

+
( c3

1800t1t2
a2a3 − c3

2352t3
a4

)
z2 + · · · . (25) 

Now the product of (24) and (25) yields 

. [zDqH(z) − H(z)]H−1(z) = ([2]q − 1)
c

18t1
a2z

+
(

([3]q − 1)
c2

200t2
a3 − ([2]q − 1)

c2

324t2
1

a2
2

)
z2

+
(

([4]q − 1)
c3

2352t3
a4 + ([2]q − 1)

c3

5832t3
1

a3
2

−
[
([2]q − 1) + ([3]q − 1)

] c3

3600t1t2
a2a3

)
z3 + · · · . (26) 

Expanding the RHS of (23) gives 

.b[B(s(z))−1] = bw1z+b(w2 +w2
1)z

2 +b(w3 +2w1w2 + 5

6
w3

1)z
3 +· · · . (27) 

The comparison of coefficients in (26) and (27) shows that 

.([2]q − 1)
c

18t1
a2 = bw1, (28) 

.([3]q − 1)
c2

200t2
a3 − ([2]q − 1)

c2

324t2
1

a2
2 = b(w2 + w2

1) (29) 

and
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. ([4]q −1)
c3

2352t3
a4+([2]q −1)

c3

5832t3
1

a3
2 −

[
([2]q −1)+([3]q −1)

] c3

3600t1t2
a2a3

= b(w3 + 2w1w2 + 5

6
w3

1). (30) 

Simple computation shows that from (28), we will obtain 

.a2 = 18t1bw1

c([2]q − 1)
(31) 

and by the application of triangle inequality, (13), Lemmas 1 and 3, we obtain 
inequality (18). Also, by using (31) in (29) and simplifying, we obtain 

.a3 =
[

200t2b

c2q(1 + q)

][
w2 +

( [2]q − 1 + b

[2]q − 1

)
w2

1

]
(32) 

and by applying triangle inequality, (13) and Lemmas 2 and 3 for .γ = ([2]q−1)+b

1−[2]q , 
we obtain inequality (19). Lastly, putting (31) and (32) into (30), using . σ =
([2]q−1)+([3]q−1)

([2]q−1)([3]q−1)
b and .γ = 5

6 − b2

([2]q−1)2 and simplifying, we obtain 

. a4 =
[

2352t3b

c3([4]q − 1)

][
w3 + σ

(
γ

σ
+

( [2]q − 1 + b

[2]q − 1

))
w3

1 + σ

(
2

σ
+ 1

)
w1w2

]

and by applying triangle inequality, (13), Lemmas 1, 2 and 3, we obtain inequality 
(20). 

Next, by using (31) and (32), and for .μ ∈ C, we obtain 

. a3 − μa2
2 =

[
200t2b

c2([3]q − 1)

][
w2

+
(

50t2([2]q − 1)2 + 50bt2([2]q − 1) + 81μt2
1 b([3]q − 1)

50t2([2]q − 1)2

)
w2

1

]

and by applying triangle inequality, (13), Lemmas 2 and 3, we obtain inequality 
(21). 

Theorem 2 Let .H ∈ φCq(b,H,B), then 

.|a2| < 18|b|t1
c(1 + q)

, . (33) 

|a3| < 200|b|t2 

c2(1 + q)q 
max

{
1,

|||1 + b
|||}, . (34)
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|a3 − μa2 
2 | < 200|b|t2 

c2(1 + q)q 
max

{
1,

|||50t2(1 + q)2(1 + b) − 81μt2 
1 q(1 + q)b 

50t2(1 + q)2

|||}
(35) 

where .μ ∈ C. 

Proof Suppose that .H ∈ φCq(b,H,B), then the principle of subordination allows 
us to write (17) as 

. 1 + 1

b

(
zDqH(z)

DqH(z)

)
= B(s(z))

or 

.[zDqH(z)][DqH(z)]−1 = b[B(s(z)) − 1]. (36) 

From (15), 

. zDqH(z) = z +
∞E

y=2

(−1)y−1(− c
4 )y−1[y]q

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y

so that further simplification gives 

. zDqH(z) = z + [2]q c

18t1
a2z

2 + [3]q c2

200t2
a3z

3

+ [4]q c3

2352t3
a4z

4 + [5]q c4

3110t4
a5z

5 + · · · . (37) 

By binomial expansion, 

. [DqH(z)]−1 = 1−
( ∞E

y=2

(−1)y−1(− c
4 )y−1[y]q

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y−1

)

+
( ∞E

y=2

(−1)y−1(− c
4 )y−1[y]q

(2y − 1)(y − 1)!( 3
2 )y−1(t)y−1

ayz
y−1

)2

+ · · ·

(38) 

which simplifies to 

.[DqH(z)]−1 = 1 − [2]q c

18t1
a2z − [3]q c2

200t2
a3z

2 − [4]q c3

2352t3
a4z

3
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− [5]q 
c4 

3110t4 
a5z

4 − · · · + [2]2 
q 

c2 

324t2 
1 

a2 
2z2 + [2]q [3]q 

c3 

1800t1t2 
a2a3z

3. (39) 

Putting (37) and (39) into LHS of (36) simplifies to 

. [zDqH(z)][DqH(z)]−1 = z−[2]q c

18t1
a2z

2+
(

[3]q c2

200t2
a3−[2]2

q

c2

324t2
1

a2
2

)
z3+· · ·

(40) 

and equating the coefficients in (27) and (40) gives 

. − [2]q c

18t1
a2 = bw1 (41) 

.[3]q c2

200t2
a3 − [2]2

q

c2

324t2
1

a2
2 = b(w2 + w2

1). (42) 

From (41), we obtain 

.a2 = −18t1bw1

c(1 + q)
(43) 

and the application of triangle inequality, (13), and Lemmas 1 and 3 gives the 
inequality in (33). To get bound for . a3 we put (43) into (42) to obtain 

.a3 =
[

200t2b

c2[3]q
][

w2 + (1 + b)w2
1

]
(44) 

and for .γ = 1 + b and the application of triangle inequality, (13) and Lemmas 1 
and 3 give the inequality in (34). Next, considering (43) and (44), then we obtain 

. a3 − μa2
2 =

[
200t2b

c2[3]q
][

w2 +
(

50t2[2]2
q(1 + b) − 81μt2

1 b[3]q
50t2[2]2

q

)
w2

1

]

and the application of triangle inequality, (13) and Lemmas 1 and 3 gives the 
inequality in (35). 

By making use of Lemma 3 and setting .c = 2 in Theorem 1, we obtain 

Corollary 1 Let .q ∈ (0, 1), .b ∈ C \ {0}, .t /= 0,−1,−2, · · · and .B(z) is defined in 
(2). Then for .H ∈ φS*

q(b,H,B), we obtain 

.|a2| < 9|b|t1
q

,
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|a3| < 50|b|t2 

(1 + q)q 
max

{
1,

|||b + q 
q

|||}

|a4| < 294|b|t3 

(1 + q + q2)q 
max

{
1,

||||σ
[γ 
σ 

+
(q + b 

q

)
+

(
1 + 

2 

σ

)]||||
|

and 

. |a3 − μa2
2 | < 50|b|t2

(1 + q)q
max

{
1,

|||100t2q
2 + 100qb + 81μq(1 + q)b

100q2

|||}.

where .μ ∈ C, .σ = ([2]q−1)+([3]q−1)

([2]q−1)([3]q−1)
b and .γ = 5

6 − b2

([2]q−1))2 . 

By making use of Lemma 3 and setting .c = 2 in Theorem 2, we obtain 

Corollary 2 Let .q ∈ (0, 1), .b ∈ C \ {0}, .t /= 0,−1,−2, · · · and .B(z) is defined in 
(2). Then for .H ∈ φCq(b,H,B), we obtain 

. |a2| < 9|b|t1
(1 + q)

,

|a3| < 50|b|t2
(1 + q)q

max
{

1,

|||1 + b

|||},

|a3 − μa2
2 | < 50|b|t2

(1 + q)q
max

{
1,

|||100(1 + q)2(1 + b) − 81μq(1 + q)b

100(1 + q)2

|||}.
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