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Preface

The Canadian University Dubai, UAE, and United Arab Emirates University,
UAE, jointly organized the International Conference on Recent Developments
in Mathematics (ICRDM 2022) during August 24-26, 2022, in Hybrid mode at
Canadian University Dubai, UAE. The major objective of ICRDM 2022 is to
promote scientific and educational activities toward the advancement of common
man’s life by improving the theory and practice of various disciplines of Math-
ematics. The conference was a grand success, and more than 500 participants
(professors/scholars/students) enriched their knowledge in the wings of mathe-
matics through ICRDM 2022. Over 200 leading researchers worldwide served
in various capacities to organize ICRDM 2022. Thirty-one eminent speakers
worldwide delivered the keynote address and invited talks in this conference.
Three hundred seventy-six researchers submitted their quality research articles to
ICRDM 2022 through EasyChair. We shortlisted more than 300 research articles
for oral presentations authored by dynamic researchers around the world. After peer
review, 119 manuscripts were shortlisted for publication in the Springer book series:
Trends in Mathematics. We hope that ICRDM 2022 inspired several researchers
in mathematics; shared research interest and information; and created a forum of
collaboration to build a trust relationship. We feel honored and privileged to serve
the best recent developments in the field of mathematics to the readers in two
volumes. Volume I: Recent Developments in Algebra and Analysis and Volume II:
Advances in Mathematical Modeling and Scientific Computing.

This book comprises the recent developments in Algebra and Analysis. A basic
premise of this book is that the quality assurance is effectively achieved through
the selection of quality research articles by the scientific committee that consists
of several potential reviewers worldwide. This book comprises the contribution of
several dynamic researchers in 37 chapters. Each chapter identifies the existing
challenges in the areas of Algebra and Analysis and emphasizes the importance of
establishing new theorems and algorithms to addresses the challenges. Each chapter
presents a selection of research problem, furnishes theorems and algorithms suitable
for solving the problem with sufficient mathematical background, and summarizes
the obtained results to understand the domain of applicability. This book also
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provides a comprehensive literature survey which reveals the challenges, outcomes,
and developments of higher-level mathematics in this decade. The theoretical
coverage of this book is relatively at a higher level to meet the global orientation
of Algebra and Analysis.

The target audience of this book is postgraduate students and researchers. This
book promotes a vision of Algebra and Analysis as integral to modern science.
Each chapter contains important information emphasizing Algebra and Analysis,
intended for the professionals who already possesses a basic understanding. In this
book, theoretically oriented readers will find an overview of Algebra and Analysis
and applications. The readers can make use of the literature survey of this book to
identify the current trends in Algebra and Analysis. It is our hope and expectation
that this book will provide an effective learning experience and referenced resource
for all young mathematicians in the areas of Algebra and Analysis.

As editors, we would like to express our sincere thanks to all the administrative
authorities of Canadian University Dubai, UAE, and United Arab Emirates Univer-
sity, UAE, for their motivation and support. We also extend our profound thanks
to all faculty members and staff members of the institutes. We especially thank all
the members of the organizing committee of ICRDM 2022 who worked as a team
by investing their time to make the conference as a grand success. We express our
sincere gratitude to all the referees for spending their valuable time to review the
manuscripts which led to substantial improvements and sort out the quality research
papers for publication. We thank EasyChair platform for providing the manuscript
submission and review service. We are thankful to the project coordinator and team
members from Springer Nature for their commitment and dedication toward the
publication of this book. The organizing committee is grateful to Dr. Chris Eder,
Associate Editor, Mathematics, Birkhéduser, Springer Nature for his continuous
encouragement and support toward the publication of this book.

Al Ain, United Arab Emirates Ho-Hon Leung
Jalandhar, Punjab, India R. Sivaraj
Dubai, United Arab Emirates Firuz Kamalov
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Fuzzy Quotient BM-Algebra ®)
with Respect to a Fuzzy BM-Ideal Qe

Julie Thomas and K. Indhira

Keywords BM-algebra - Fuzzy BM-subalgebra - Fuzzy BM-ideal

1 Introduction

We take into consideration a class of abstract algebra known as BM-algebra which
was introduced by Kim and Kim [1]. This algebraic structure was given the new
name TM-algebra by Megalai and Tamilarasi [2]. Several authors (see [3—6], and
[7]) looked at the different characterizations of this structure and the relationship
between other algebras and them. Zadeh et al. [8] and Ameri et al. [9] stated several
elementary properties of finite BM-algebras. Application of the fuzzy set concept
to group theory by Rosenfeld [10] led to the fuzzification of different algebraic
structures including BM/TM-algebra. Saeid [11] and Megalai and Tamilarasi [12]
explored the characteristics of the newly created algebraic structure known as fuzzy
BM/TM-algebra after applying the fuzzy set theory to BM/TM-algebra. After that,
several fuzzy structures in BM/TM-algebras were considered by many researchers
(see [13—17], and [18]). Handam [19] considered the quotient structure of TM-
algebra via an ideal. Thus there arises a gap of defining quotient fuzzy structure
via a fuzzy ideal in BM-algebra, and we found that further research is needed in this
regard. In this paper, we are trying to generalize the concept of quotient BM-algebra
in the crisp case defined by Handam [19]. We define a compatible equivalence
relation using a fuzzy BM-ideal and the constant 6 in a BM-algebra X and study
the quotient structure obtained using this.

J. Thomas - K. Indhira (P<))
Department of Mathematics, Vellore Institute of Technology, Vellore, Tamil Nadu, India
e-mail: kindhira@yvit.ac.in
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2 Preliminaries

We are reminded of a few definitions and findings that are necessary for the sections
that follow.

Definition 1 A BM-algebra is a triple with the notation (X, *, 6) in which X is a
non-empty set with a fixed member 6 and * is a binary operation so that the two
criterias

. x%x0 =x
2. (xky)k(xkz)=2z%y

are met for all x, y, z € X.

Definition 2 A subset S # ¢ of X is called a BM-subalgebra of X if x x y € S for
all x,y € S. A subset I of X is known as a BM-ideal of X if it holds the following
two criterias:

1.0 el
2.xxyelandyel = xelforallx,ye X.

Definition 3 Consider two BM-algebras (X, *, 6) and (Y, #", 0"). If a mapping ¢ :
X — Y satisfies ¢p(x * y) = ¢(x) ¥ ¢(y) for all x,y € X, then it is called a
BM-homomorphism.

Definition 4 The pair (X, i4) in a set X is considered as a fuzzy set A where the
functionis n4 : X — [0, 1] and is named as the membership function of A. The set
U(ug; a) :={x € X|ua(x) > a} for « € [0, 1] is called an upper level set of A.

Definition S Let f be a mapping defined from X into Y, where A = (X, 4) and
B = (Y, np) be fuzzy sets in X and Y. Consequently f(A) is a fuzzy set in f(X)
called the image of A under f, where u 7(4) defined as

sup {ua )| x € f71(y) # ¢}

fa) () :{ 0if f-1(y) = ¢

forall y € f(X).

Let n y-1(p) is defined by f~Ymp)(x) = np(f(x)) forall x € X, then the inverse
image f~!(B) in X is again a fuzzy set in X.
Definition 6 Let f be any function from X to Y. Membership function p4 of X is
called f-invariantif f (x) = f(y) implies g (x) = ua (¥)Vx,y € X.
Definition 7 A fuzzy subset A = (X, p4) in a BM-algebra X is known as a fuzzy
BM-ideal of X, if
@) pna®) = palx)
(1) pa(x) = min{pa(x *y), pa(y)}
forall x,y € X.
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Theorem 1 A is a fuzzy BM-ideal iff its level subset |1y is a BM-ideal where o €
Im(pa).

Theorem 2 If ¢ : X — Y is an epimorphism from BM-algebra (X, x,0) onto
another BM-algebra (Y, ', 0"), then X/ ker(p) =Y.

3 Construction of a Quotient BM-Algebra Using a Fuzzy
BM-Ideal

Let A = (X, ua) be a fuzzy BM-ideal of a BM-algebra (X, *, 6).

Lemmal Let x ~g y if and only if pa (x xy) = pa (y xx) = pna(0) for any
x,Yy € X. Then ~y is an equivalence relation on X.

Proof Let x,y,z € X. Since g (x xx) = g () we get x ~p x. Hence ~y is
reflexive. Assume that x ~y y. Then we have g (x * y) = s (y xx) = ua (0)
and hence y ~g x which implies ~g is symmetric. Now, suppose that x ~g y and

Yy ~o z. We have pua (x xy) = pua (y*x) = na (@) = pa (y*xz) = pa(z*y).
Then

pa (x xz) = minf{ua ((x % 2) (X% y)), pa (x * )}
=min {p14 (y *2), pa (x * y)}
=min{ua (0), na (0)}
= pna(®)

Since A is a fuzzy BM-ideal, we have i 4 (6) > 4 (z * x). Combining both we get
A (x*xz2) = pua(0). Similarly, p4 (z xx) = pna(0). Thus, x ~y z, and hence ~¢
is transitive.

Lemma 2 ~y is a congruence relation.

Proof Assume that x ~g y and u ~ v, for x, y € X, which implies ;4 (x *x y) =

ma(y*x)=pa @) =puau*v)=ps (vx*u). Then

pa ((xsw) * (y+v)) = min {rea (((x k) % (y 5k v)) * (x %), pa (x*y)}

=min {pa (((x sk u) * (x % y)) * (y % v)), pa (x * y)}
=min {ua ((y % u) * (y*v)), pa (x *y)}
=min{ua (vku), pa (x*y)}
= 1a(9)
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Then by (i) of Definition 7, we get ;g ((x *u) * (y * v)) = ua(6).
Similarly, it can be shown that ;14 ((y * v) * (x xu)) = na(6).
Hence, x * u ~g y * v, proving that ~y is compatible.

Remark 1 We denote A, = {y € X|y ~g x} for the corresponding equivalence
class containing the element x and X/A = {A,|x € X} for the set of equivalence
classes of X.

Theorem 3 Let A be a fuzzy BM-ideal of a BM-algebra X. Define a binary
operation ® on X/A by Ay ® Ay = Ayyy forall x,y € X. Then (X/A, ®, Ag)
is a BM-algebra called the fuzzy quotient BM-algebra.

Proof Consider any A, A, € X/A.
Then ® (Ax, Ay) = Axyy € X/A.
Also, if Ay = A, and Ay = Ay, then Ay,y = Ayyy. Hence, ® is well defined.
Now it is enough to show that X/A is a BM-algebra.
For, consider any A, € X/A.
Weget Ay ® Ag = Ay = Ay
Also, for any Ay, Ay, A; € X/A, we have
(Ax ® Ay) ® (Ax ® Az) = (Ax*y ® Ax*z) = A(x*y)*(x*z) = Az*y~
Hence the proof.

Example 1 Consider a BM-algebra (X, %, ) defined by the following table.

Define ug : X — [0,1] by ua (0) = pa(a) = 0.7, ug (b) = g (c) = 0.4
Then 14 is a fuzzy BM-ideal. Then a ~p 6 and b ~¢ c.
Thus, Ag = A; = {0,a} and Ay, = A = {b, c}. Take X/A = {Ag, Ap}.
Then, (X/A, ®, Ap) is a BM-algebra.

Lemma3 Let ¢ : X — Y be a homomorphism of BM-algebras. If B = (Y, up) is
a fuzzy BM-ideal of Y, then the pre-image ¢~ (B) = (X, ¢~ ' (1)) of B under ¢ is
a fuzzy BM-ideal of X.

Proof For any x, y € X,

o () (x) = up (¢ (x))
> min{ug ((¢ (x) ¥ @ () . s (¢ (¥)}
= min {up (¢ (x ), ug (@ ()}

= min{p ! (up) (x ¥ ¥), 9 (up) ()}
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Hence ¢! (B) is a fuzzy BM-ideal.

Theorem 4 Let ¢ : X — Y be an epimorphism and B = (Y, up) be a fuzzy
BM-ideal of Y. Then X/p~'(B) < Y/B.

Proof Let A =¢~ ' (B) = (X, ! (,uB)) . By Theorem 3 and previous Lemma 3,
X/A and Y/B are (fuzzy) BM-algebras. Define n : X/A — Y/B by n(Ay) =
By(x). Assume

Ax=Ay = ¢ (up) (xxy) =97 (up) *x) = ¢~ (up) )
= up(@(x*y)) =pup@Qy*x)) =upg@©®))
= up (¢ (0) ¥ ) = ns (¢ (N * ¢x)) = up (¢)
= By = By(y)
= n(Ax) =n(Ay)
Thus the map 7 is well defined. Consider
N (Ax ® Ay) =11 (Arsy)
= By(rxy)
= Boowe(y)
= By(x) ® By(y)
=1 (Ax) ® 1(Ay)
Thus, 7 is found to be a homomorphism.
Now, let B, e Y/Bforz e Y.
Since ¢ is an onto homomorphism, 3x € X so that ¢ (x) = z, which implies that
1 (Ax) = Byx) = B;

proving that 7 is onto.
Now, assume 1 (Ay) =7 (Ay)

= By = By(y)
= up(e)* @) =nug(e()* ¢@)=us(®)

= up (@@ x*xy)) =pup(@(y*x)) =pupg(@®))
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= o () (xxy) =9 (up) (yxx) =9 (up) (0)
= A=A,

Hence the proof.

Lemmad4 Let A be a fuzzy BM-ideal of X. If the upper level subset o, =
{x € X|ua (x) = a} # ¢ forall a € [0, 1], then uy is found to be a BM-ideal
of X and 14 (6) = 1.

Proof Given | # ¢, thus 3x € p; such that 4 (x) = 1.
Since (4 (0) > pna(x), we get g (0) = 1 and hence 6 € uy for any o € [0, 1].
Now, assume x x y € 4y and y € ly.
Thus, we have g (x * ¥y) > o and 4 (y) > «. Then

ma(x) >min{us (x xy), ua (¥)} > a

implying that x € u,. Hence pq is a BM-ideal.

Theorem 5 Suppose that v, # ¢ for a fuzzy BM-ideal A of X, for all « € [0, 1].
Then there exists a BM-ideal K of X /A with the property % = X/ g

Proof From Lemma 4, 1y is a BM-ideal of X and g (0) = 1.

Define ¢ : X/A — X/uq by ¢ (Ax) = g, forallx € X.

If Ay = Ay, then

pa(xxy)=pa(ysx)=pa@) =1

>« forall ¢ € [0, 1].

Thus, x * y € We, ¥ ¥ X € Uy, Which implies py, = we,. Hence, ¢ is well
defined. '

Clearly, ¢ is onto. Now let K = ker (¢).

Then the proof follows by Theorem 2.

Theorem 6 If A is a fuzzy BM-ideal of X with 11 # ¢, then X/A = X /.
Proof 1t is enough to show that the epimorphism ¢ defined in Theorem 5 is one to
one.
For example, let ¢ (Ay) = @(A,).
M1, = p1, = xky€purandyxx € u
= pa(x*xy)=pa(y*x)=1=pna ()

— A)CZA}'

Hence ¢ : X/A — X/ is an isomorphism.

Theorem 7 Let ¢ be an epimorphism of BM-algebras from X onto Y and pu, =
ker (). Then X/A =Y where A is a fuzzy BM-ideal of X.
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Proof By Theorem 2, X/ ker(¢) =Y.
e, X/ =Y.
But we have X/A = X/u1 by Theorem 6.
Hence X/A =Y.

Let us try to prove the above theorem in a more general case.

Theorem 8 Let A be a ¢-invariant fuzzy BM-ideal of X such that ¢ # u; C
ker (), where ¢ is an epimorphism of BM-algebras from X onto Y. Then X/A =Y.

Proof We definen: X/A — Y byn(A;) = ¢(x).
Let Ay = Ay, then ua (x xy) = pua (y xx) = pua (0) = 1.

= x*xYy,yxx € u; C ker(p)
= p(xxY) =9 *x) =9 @) =06
= o) F M=+ ex) =6
= ¢ (x) =9}

Hence 7 is well defined.
Consider n (Ay ® Ay) =1 (Axsy)

=p(xxy) =9 @)« @)
=n(Ay) # n(Ay)

Thus 7 is a homomorphism.
Clearly 7 is onto, since ¢ is onto.

Suppose n (Ax) =17 (Ay)
= ¢ @) =9(1)
= 9 ¥ (N =0 =9+ gx)
= p(xxy) =@ (*x)=0 =9

= pua(xxy)=pua(y*xx)=pua(0) since A is g-invariant.
= Ay =A,.
Hence 7 is an isomorphism.

Lemma 5 Let A be a fuzzy BM-ideal of X. Then the natural homomorphism w4 :
X — X/A defined by m4 (x) = Ay is always an onto map. Analogous to this, if [t 4
is the characteristic function xg), then w4 is an isomorphism.

Proof Clearly, if A is a fuzzy BM-ideal of X, then 4 is an epimorphism.
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Now, suppose (g = x9}. f ma (x) = mwa(y), then Ay = A, forx,y € X.
= Xigy (x *y) = xq0) (y ¥ x) = x40y (0) = 1

= x*ky=0andy*xx =20

= X=),

proving that 4 is one to one.

Theorem 9 Let ¢ : X — Y be a homomorphism of BM-algebras, and consider
two fuzzy BM-ideals of X and Y, say A = (X, ua) and B = (Y, up), such that
@ (ua) € up and pua (0) > up(0’). Then, there exists a homomorphism ¢~ :
X/A — Y/B with o~ o mg = mp o @. In other words, the diagram below is
commutative.

X —r vy

X/A—* 5 vy/B

Proof Since ¢ (a) C up, we have
s (0') = ¢ (ua) (07) = sup {pa (07" (6))} = 1a(®).
But we assumed that ug (6') < wa(6).
Hence ua (0) = up(9).
Now, define ¢~ : X/A — Y/B by ¢~ (Ax) = By(x).
Let Ay = Ay. Then
pnaxxy)=pa(y*x)=pna®).
Now,
we (¢ ()% ¢ () = up (@ (x *y))
= ¢ (1a) (@ (xx y) = sup {ua (97 (9 (x )}
> pa (xx y)sincex ¥y € f71(f (x %))
= pa ()
= up®)
Similarly, 15 (¢ (¥) ¥ ¢ (x)) = up(®).
= Ap) = Ay
= ¢~ (Ay) = ¢~(Ay). Hence ¢~ is well defined.
Consider g~ (Ax) ® ¢ (Ay) = Byx) ® By(y)

= By(x)¥o(y)
= By(xxy)
= ¢~ (Axsy)

= p~(Ax ® Ay)
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Hence ¢~ is a homomorphism. Also for all x € X,

4

(9~ 0 a) (x) = @~ (74 (X))
= ¢~ (Ax)
= By()
= mp(p (1))

= (mp o p)(x)

Conclusion

We generalized the concept of quotient BM-algebra in the crisp case defined by
Handam [19], to fuzzy case. We defined a compatible equivalence relation using
a fuzzy BM-ideal and the constant 6 in a BM-algebra X and studied the quotient
structure obtained using this. This research can be further extended to see how the
quotients and products behaves in the quotient fuzzy BM-algebra when equipped
with a fuzzy topology.
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New Classes of the Quotient Permutation )
BN-Algebras in Permutation Qe
BN-Algebras

Enoch Suleiman, Abu Firas Al-Musawi, and Shuker Khalil

Keywords Cycles - Permutation - BN-algebras - Homomorphism -
Subalgebra - Quotient

1 Introduction

BCK-algebras and BCl-algebras are two types of abstract algebras that were
introduced by Y. Imai and K. Is’eki [1, 2]. It is well known that the BCK-algebra
class is a proper subclass of the BCI-algebra class. Next, J. Neggers and H. S. Kim
[3] suggested and examined a few B-algebra aspects that they believed would be
of interest. Chang Bum Kim [4] introduced the notion of BN-algebras, which is
a generalization of B-algebras. Permutation sets are given by Alsalem [5]. Some
properties and applications for the permutations in symmetric and alternating groups
are studied [6—13]. A permutation set is as a nonclassical set like fuzzy sets [14—
20], soft sets [21-26], and nano sets [27]. After that, the notations of permutation
B-algebra [28], permutation BF-algebra [29], and permutation BH-algebra [30]
are shown, and some results are studied with their applications using permutation
sets. We proposed permutation BN-algebras as a new class of BN-algebras and
listed some of their key characteristics in this study: {1}-commutative, condition
(D), permutation BN-subalgebra, permutation BN-normal, and permutation BN -
algebra. Also, the relationships between permutation BN-algebra and other classes
like permutation BH/B/BF-algebras are given. Moreover, we explored some new
notions in permutation theory for the first time. We also examined BN-algebra
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homomorphism, equivalence relations, quotient permutation BN-algebras, and BN-
algebra isomorphism theorems.

2 Preliminaries

The fundamental ideas and facts necessary for this subject will be reviewed in this
section.

Definition 2.1: [3] Let X # & and O be a constant with a binary operation ... We
say that (X, 4 , @) is a B-algebra if it satisfies the following conditions:

(@ x4, x=0,
(b) x«0=x,
© s Ysxz2=xx@Zx04y),Vx,y,z€X.

Definition 2.2: [4] Let K(7) be the class of all algebras of Type t = (2, 0). By a BN-
algebra, we mean a system (X; . ,0) in which the following axioms are satisfied:

. xex=0,VxeX.

2. x+0=x,VxeX.

3. (x*y)*Z=(O*Z)*(y*x),vx,y,ZEX.
We say that O is the unit in X.

Definition 2.3: [31] Let K(7) be the class of all algebras of Type 7 = (2,0). By
a BF-algebra, we mean a system (X; . ,0) in which the following axioms are
satisfied:

4. x4 x=0,Vx e X.

5.x4+0=x,VxeX.
6. 0, (xxY)=ysx,Vx,ye X

We say that 0 is the unit in X.
Definition 2.4: [5]
For any permutation § = ]_[.C(B) Ai in a symmetric group S,, where {)\.}f(ﬁ)
a composite of pairwise disjoint cycles {); }C(B) where \j = (t‘l tiz, cee u) 1<

i <c(B), forsome 1 <aj, c(B) <n. If L =(t1,t, ...,t) is k—cycle in S, we
define S—set as A= {t1,12, ..., 1x} and is called S—set of cycle A. So the S—sets

of 1)) are defined by{xf‘ ={i,d,. .. d}n<i<c (B)} .

c(B)
Definition 2.5: [28] Let X = {Aﬁ } U{1} be a collection of B-sets {Aﬂ } 1 with

{1}, where B is a permutation in the symmetrlc group G = S,,. We say (X, # {1} is
a permutation B-algebra (PB-A), if the binary operation # : X x X —> X satisfies
the following conditions:
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LAl =,
2. M 4y =27,
(Al aal) ol =204 (A () vl e x.

Definition 2.6: [29] We say (X, # ,{1}) is a permutation BF-algebra (PBF-A),

c(B)

where P is a permutation in the symmetric group G = §,, and X= {Af } | U {1}, if
1=

4 satisfies the following conditions:

LAl =,

2 gy =2l vl 2 e x.

B B _ By B _ B _ 3By B 4B
307 #4 = W and A #27 = (1) = 2] =247 e X,
oo . pc® .
Definition 2.7: [30] Let X be a collection of B-sets {xi } . where f is a
1=

c(®)
v
1=

with a binary operation # : X x X — X is said to be a permutation BH-algebra
(PBH — A) if # satisfies the following condition:

permutation in the symmetric group G = S; with {1}. Then X= {)\IB }

Ll ol =y,
2. xf’#xf’={1}andxf#x§={1}:>x?=xf.
sal#m=2, wlafex
Also, we say that {1} is the fixed element in X. It is denoted by (X, # , {1}).

3 Permutation BN-Algebras

In this section, we will look at some of the fundamental characteristics of permuta-
tion BN-algebras (PBN-As) and study some novel implications in the field.

c(B)
Definition 3.1: Let X = {Aﬁg } : be a collection of B-sets, where 8 is a
i=

permutation in the symmetric group G = §,. Then X is said to be a permutation
BN-algebra (PBG-A) if there exists a mapping # : X x X —> X such that

By b g
Lap#al=(1), Al e X
2P ey =12 wlex
300400 = (aal) # (4 #20), vl ol ex,

We say that {1} is the fixed element in X.
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Example 3.2:

123456
Let (S10,0) be a symmetric group and 8 = ( 7891011 )be a per-

4819527361110

1234567891011

mutation in Sy;. Since 8 = (4 819527361110

) = (1496283)(7) (10 11).

3
Therefore, we have X = {)\'?}' UL = ((1.4.9.6.2.8,3}. (7). (10, 1)),
i=

i
Define # : X x X — X by # ()\;.3,)\?) = )Lf] # A‘j = )\,’?, where Af
its cycle A; such that Akz)»iok;l, where A; and A; are cycles for klﬁ and Af,
respectively. Here we have (i) kiok;l = (1) — )\:.3 # Af = {1}, and
(i) o) ™' =1 = AP # (1) =5f

i’
(iii) For any A? , A? € X, we have
rorTloaif jERFELF],
Whifigkdi=] ()
MLifi=k# .
rortoaifi#k=],
-1
In other side, we consider that ((1)0)\1;1) o((kjo ){])) = "lo (Aio)\jfl) =
rorloaif jARFELHE ],
alifjEk£EI =],
MLif i =k#
rortoaifi #k = 1
By () and (%), we have (037" )o a7 = ((og")o((rj047"))
Hence, (xf’ n ,\f) 4 ({1} n xf) =, v1f. 3/ € X. Then, X is a (PBN-A).

(rioa")on;! =

(B

Proposition 3.3: If (X, %, {1}) is a (PBN-A), then (X, %, {1}) is a (PBF-A).
Proof: Put Af = {1} in (3) of Definition 3.1; we have that 1/ # Af = {1} &

B B . .o .
(Aj # A ) . Hence (X, #,{1}) is a (PBF-A). Note that the opposite is not true in
all cases.

Proposition 3.4: If (X, #,{1}) is a (PBN-A), then (1) {1} # ({1} # Af) = )Lf, 2)
el = (0 af) # (0 #20), @ () #37 = (0 #2]) 27,
@1 42 =) = ] #2) = (.G (1) #4] = (1) 2] = 2] =27,
© (W #20) # (0 #00) = (1 40 # (W #20) walaf ol e x,

Proof: (1) Put A% = {1}, 4 = {1} in (3) of Definition 3.1, and then (Af n {1}) mn
(1 = (1) # (1) # ({1} #xf‘) . By (1) and (2) of Definition 3.1, we have that
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(1) # ({1} n )\f) = 7. (2) By (2) and (3) of Definition 3.1, we have that
ol = (am) #0f = (#f) # (0#2]). @ By @ and
(3) of Definition 3.1, we have that ({1} n xf) #22 = ({1} + Af) # 20 @
120 4 4% = (1) then (1) = (1) # (1) = (1) # (xf#,\f) = ¢
[by Proposition (3.3)]. (5) If {1} # A7 = {1} # A%, then by (1), we have that
M=y # ({1} 4 xf) =1} 4 ({1} n Af) = 1”.(6) By (3) of Definition 3.1 and
Proposition 3.3, we have that <A? # Af) # (A]ﬂ # Af) = ({1} # ()Jj # Af)) #
(L #2) = (L #20) % (W 820).
Definition 3.5: Let (X, # ,{1}) be a (PBN-A) which is said to be permutation
{1}-commutative BN-algebra (PICBN — A) if # # ({1} #,\f) =g
(#f )l 2 e x.
Proposition 3.6: If (X, #,{1}) is a (PBN-A), then itis a (PICBN — A).
Proof: Let 3l 1" € X, and then 2’ 4 ({1}4“’?) - ({1}# ({1}#,\;9)) 4+
({1} # Af) (By Proposition 3.4).

= ({1} 4+ ({1} n Af)) n ((Af n Af) n {1}) (By (3) of Definition 3.1)

=4 ({1} n )\f) (By Proposition 3.4 (1) and (2) of Definition 3.1).
Proposition 3.7: If (X, #,{1})is a (PICBN — A), then itis a (PBN-A).
Proof: Let 7,3 2 e X, and then ({1} #xf) n (xf #)\f’) - ({1} #,\f) &+
(015 ()

(By (3) of Definition 2.5) = (xf‘ n xf) n ({1} 4 ({1} n xf)) (By Definition
3.5)

= ()f # )»']8) # )»f (By (3) of Definition 2.5 and (3) of Definition 3.1). Hence,
(X, #,{1})is a (PBN-A).

Proposition 3.8: (X, #,{1})isa (PICBN — A) if and only if it is a (PBN-A).
Proof: 1f (X, #,{1}) is a (PICBN — A), by Proposition 3.7, it is a (PBN-A).

Conversely, if (X, # ,{1}) is a permutation BN-algebra, then from Proposition
3.6, it is {1}-commutative. Now it follows by Proposition 3.10 that (X, # ,{1})isa
permutation BF-algebra.
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Proposition 3.9: If (X, # ,{1)) is a (PICBN — A), then ({1} 4 xf‘) 3+
({1} n )\f) =4l alaf ex.
Proposition 3.10: If (X, # ,{1}) is a permutation B-algebra, then {1} #
(f #20) =27 #afwl A e x.
Corollary 3.11: Every {l}-commutative permutation B-algebra (X, # ,{1}) is a
(PBN-A).
Proof: By Proposition 3.8 and Proposition 3.10, we get the proof is hold.

Note that the converse is not always true.

Proposition 3.12: Let (X, #, {1}) be an abelian group. Then (X, #, {1}) is a (PBN-
A), if
By B 3B B! B 4B
A #Aj _Aiokj . YA ,Aj € X.

-1
Proof: We have A7 # 3 = 2for?™ = {1} and 2P # (1) = 2Po1y! =
Wotty=22.

—1 —1
Now for all /25,3 e X, (W #2) # 2f = (Worf " )orf
Bl (B!

o (#enf )

Bl (BN B gt (8=l B\ g1 gl .8
= o(M al) = o(W ) = 4 () =

(0 #27) # (xﬁoxf’_l) = (1 #2f) # (] #2]). Hence, X, #.(1)) i
a (PBN-A).

—
w

Proposition 3.13: Let (X, # ,{1}) be a (PBN-A) with {1} # ({1} # xf)
3P vaf € X.Then (X, 4 .{1}) is (PICBN — A) if and only if ({1} 4 xf) 4+
(0 #20) =27 gafwaf 2 e x.

Proof: It (X, # ,{1}) is (PICBN — A), then ({1} #xf’) 3 ({1} #xﬁ.’)
" ({1} n ({1} #,\?)) = M 4 Ml e X Conversely, if
(#20) # (#a]) =27 #/vl0f e xosoal # (0#2))
(4 (0 #20)) # (0 #27) =20 # (0 #2]).

Definition 3.14: A permutation algebra (X, #, {1}) is said to have condition (D) if
(F #27) 80 =204 (0 #20) il af o e x.

Proposition 3.15: If (X, #,{1}) is a (PBN-A) and satisfies condition (D), then (1)
(4l =2l and @2 #25 =20 %2l vl af e x.
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Proof: (1) Put A¥ = {1}, 20 = {1} in condition (D), and then we have that {1} #
)‘f = {1} # ({1} #Af) = A?.By Proposition 3.4 (1). (2) )f # )\f = )‘f #
({1} n Af) — kf # ({1} # )\f}) = )Jj # )f. By Proposition 3.6 and (1).

Proposition 3.16: If (X, #,{1}) is a (PBN-A) and satisfies condition (D), then it is
a (PB-A).

Proof: Let 3303 € X, and then 2l # (af # (0 #2])) = 2 #
()

(By Proposition 3.15 (1))

= (xf’ n ,\f) #2 (By condition (D). Hence, (X, #,{1}) is (PB-A).
Proposition 3.17: If (X, # ,{1}) is a (PBN-A) and satisfies condition (D), then
(X, #,{1}) is an abelian group.
Proof: Since (X, # ,{1}) is a (PBN-A), 27 4 27 = {1}vA? € X. We considered

-1
)Lf} as its own inverse, i.e., Af = A? . Now by (2) of Definition 3.1 and Proposition
3.15 (1), we have that

A? # {1} = {1} # )f = )f. That is, {1} is the identity element of X. Since also
that

(F #07) 80 =20 4 (3 #27) =20 # (3] #40).

By Proposition 3.15 (2), the associative law holds. Proposition 3.15 (2) also
shows that (X, # ,{1}) is an abelian group.

Proposition 3.18: If (X, #,{1}) is a (PBN-A) and satisfies condition (D), then it is
a (PBH-A).

Proof: Let )»f; # kf = {1} and Af # )L;.g = {1} . Then, by Proposition 3.15, we have
that 2% = 27 # (1} = 27 # (xf #)\?) = (,\f‘ #xf‘) #48 = 428 =02
Hence, (X, #,{1}) is a (PBH-A).

Definition 3.19: A permutation coxeter algebra (PCA) is a set X # & with a
constant {1} and a binary operation ~ # ~ such that (1) A¥ # 2f = (1}, 2)
My =l and @) (W #27) #2f =2l # (3 #2f) vl Al ol e x.

Proposition 3.20: If (X, # ,{1}) is a (PCA), then (1) {1} # 2/ = A7, and (2)
Wl =08 g alwal f e x.

Proof: (1) For all 3 € X, we have that 2 = 2/ # (1} = 2/ 4 (2] #2!) =
(L #) sl =l @ =4 By



20 E. Suleiman et al.

= [ #) # (7 #20) | 3] = (7 #7) # [ (47 7) 447 =
(4 #:0) # [0 (0] = (0 000) # (2 10) = (6 48) 4
2P, Now multiplying Af to the right side, we have that kf # Af =

[l(xf #x{j.‘) #xf] # 2 = (,\f #xf) # (xf’ #xf) - (xf’ #xjf) # (1)
A af
Proposition 3.21: Every (PCA) is a (PBN-A).

Proof: Let (X, # .{1}) be a (PCA). For all 2/,2%.3f € X, we have that

({1} n ,\,f) + ()Jj + xf) — <A]ﬂ # xf’) n ({1} n ,\,'f) (By Proposition 3.20 (2))
- (xf’ n ,\f) # 1/ (By (3) of Definition 3.1). Hence, (X, # , {1}) is a (PBN-A).
Note that the opposite of above proposition is not necessarily always true.

Proposition 3.22: (X, #,{1}) is a (PBN-A) and satisfies condition (D) if and only
ifitis a (PCA).

Proof: Forall 2,3, 2 e X, (4 47) #2f = af # (3 #2]) (Condition)
D) =27 # (Af i )\,f) (From Proposition 3.20 (2)). Hence, (X, 4, {1}) is a (PCA).

Conversely, assume that (X, # ,{1}) is a (PCA). By Proposition 3.12, we only
need to prove condition (D). For all A?, Af, Af e X, (Af} # Af) # Af = A? #
(,\f n ,\f) (X being a (PCA))

=24 (Af # xf) (By Proposition 3.20 (2))

Definition 3.23: Let (X, #,{1}) be a (PBN-A) and let @ # § C X. S is said to be
a permutation BN-subalgebra (PBN-SA) of X if Af # )»? € § for all )f, Af e S.
S, and it is said to be normal of X if (xf 4+ x,‘i,) 3 (x’f 4 x,’f) € S whenever
Wl bl es.

Proposition 3.24: Every normal subset S of a (PBN-A) (X, #,{1}) is a (PBN-SA)
of X.

Proof: If)f, Af e S, then )»f} # {1},)»? # {1} € S. Since S is normal, Af # Af =
(A? # A/ﬂ) # ({1} % {1}) € S. Thus, S is a (PBN-SA) of X.
Lemma 3.25: Let S be a normal (PBN-SA) (X, # ,{1}). It 27 % xf € S, then
N

Aj #A; €8

: By ,b BB _ By b _
Proof: LetA; # kj es. Slncekj # Aj = {1} € S and S normal, thenkj #A; =
(f #20) 4 (0 #07) es.
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Definition 3.26: Let (X, # ,{1}) be a (PBN-A) and let S be a normal (PBN-SA)
of X. Defining a relation ~g on X by Af~5kf if and only if A? # Af € S, where

k? , )J? € X. Then, ~g is an equivalence relation on X. We denote the equivalence
class containing Af} by [Af]s. ie., [)\?]S = {Af € XIA?~3A‘;}}, and let X/§ :=
{[#7],1%7 & x} be defined by [2/] # [27] = [+ #2]] . and then x5 is
said to be the quotient permutation BN-algebra (QPBN-A) of X by S.

Proposition 3.27: Let S be normal (PBN-SA) of a (PBN-A) (X, #,{1}). Then X/S
is a (QPBN-A).

Proof: 1f we define [Af]s # [)\f]s = [Afj # kf]s, then the operation ~ 4~ is well-
defined, since if )\:-3’\'5)\& and Af’vskf, then Af} # )»51 € S and Af # Af € S imply
that ()»:3 # A]ﬁ) # (kfl # x,’i) € S. By normality of S, so )\f # )\f'vs)\ﬁ # x,’i and

50 [/\f n Af]s - [Af}, n Af]s.

Consider [(1}ls = [ ex W~} = [ ex i/ #es)
[ifexiifes]=s.

Definition 3.28: Let each of (X, # ,{1}x) and (¥, # ,{1}y) be (PBN-A). A
mapping 0 : X —> Y is called a homomorphism from X to Y if 6 (k? # Af )

0 (Af}) # 6 <A]’3> VAL, 38 e X. Note that 6({1}x) = {1}y. Indeed, 6 ({1}y)
% <)»fi # )f) =0 ()f) # 0 (Af) = {l}y. The kernel of the homomorphism

denoted by Kerf = {)»;3 e X|0 ()f) {l}y}. Note that Kerf is a subset of X.

Remark 3.29: Let S be a normal (PBN-SA) of a (PBN-A) X. Then the mapping
y : X — X/S given by y (A? ) = [)f ]Sis an epimorphism of permutation BN-
algebras and Kery = S.

Definition 3.30: A (PBN-A) (X, # ,{1}) is called a permutation BN;-algebra
(PBN;-A) if it satisfies the following condition: )»;6 = ()»;3 # kf) # A?VA?, Af S
X.

Corollary 3.31: Let (X, %, {1}) be a (PBN;-A). If A¥ % ,\f = {1}, then 20 = xf.
: B Y [N B (1B B B
Proof: Substituting A; = A for all A; A e Xindy = (Ai #kj) # 15, we
have thatkf = (kf #Af) #Af = {1} #Af.Nowtaking )f #Af = {1}, we have

B_ (1B u 4P B _ B_ B
that 2” = (ki #,\j) #20 =1y 428 =",
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Proposition 3.32: Let § : X — Y be a homomorphism from a (PBN-A)
X, #,{1}x) into a (PBN-A) (Y, #,{1}y). Then the kernel of 6, Kerfis a normal
(PBN-SA) of X.

Proof: Since {1}x € Kerf, then Kerf + &. If )»'f, A’; € Ker0, then 0 (Afg # )J;) =
0 (1) #0(2) =ty # Ny = (Ui, i # 27 € Kerd. Hence, Ker
is a (PBN-SA) of X. Let A/ # ,\f,xf}, # 28 ¢ Kero. Then 0 (A? 4 Mf) -
0 (1) #0(22) =y and o (W 428) = 0 (1) # 0 (1£)) = (1)y. Since
Y is a (PBN;-A), by Corollary 3.31, 6 ()f) — e( '?) and 6 (Aﬁ) — 0 (xf).
Hence, 6 ((Af 4 ,\,’i,) n (Aﬂ. n Aﬁ)) n Aﬂ) 4+ 0 (Aﬂ 4 ,\ﬁ) -

0 (3
(o () o () # ((kﬂ)#e( ) = ((%ﬂ)#e(ﬁ) #
D) (93 70)

Corollary 3.33: Let6 : X —> Y be a homomorphism from a (PBN-A) (X, #, {1}x)
into a (PBN-A) (Y, #,{l}y). Then, X/Ker0 = Imf. In particular, if 6 is surjective,
then X/Kerf =Y.

4 Conclusion

In this research, some new notions and results are investigated and proven using the
composition of BN-algebra with permutation sets such as permutation BN-algebras,
a form of permutation group-derived, permutation BN-subalgebra, and permutation
BN-normal. In upcoming work, we’ll use the theory of neutrosophic sets to compose
neutrosophic sets and BN-algebra, after which we’ll think about a few ideas and
research the outcomes.
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1 Introduction

In the research of algebra, the order structure is crucial. Skew lattice is the most
common type of lattice. A Hasse diagram can represent the skew lattice with
order structure, but it cannot represent its algebraic structure. Leech [1] has started
researching in the coset structure of skew lattices. Characterization for more types of
skew lattices uses only coset laws [2—4]. Skew ideals of skew lattices were created
to characterize the skewness of skew lattices, which are inextricably linked to the
concept of normality as well the natural preorder structure. In the literature, skew
lattices have received little attention. As a result, they are still a relatively new
area of study. Semilattices are a branch of nonclassical logic. In review of algebra,
semilattices, which are related to nonclassical logic, are consistently present. In
semilattices, there are several notions of distributivity, one of which is the O-
distributivity concept introduced and investigated by Cvetko-vah. K [5]. Hickman
R.C. [6] introduced and investigated mildly distributive semilattices, which are
another interesting class of distributivity. The distributive semilattice is defined as
a join semilattice (S, V) only if x| V X» >y, for X{,X2, y € S, the elements z; and
7p exists in S such as x; > 7y, Xo > 7y and y = 7| V 73 [7]. Even skew ideals
can be obtained from a partial order, but their behavior is more akin to that of
skew lattices. Costa Pita J [8] investigated ideals in skew lattices. This manuscript
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introduces and investigates the skew semilattice, as well as its characterization. We
have the distributive semilattice necessary and sufficient theorem and are working
on the concept of normal skew semilattice. Skew ideals derived from partial order,
on the other hand, appear to be more closely related to the unique properties of skew
lattices. Furthermore, we design an order skew ideal in skew semilattice and prove
the skew semilattice characterization theorem by defining new through relators.

2 Distributive Skew Semilattice

2.1 Skew Lattice

We define a skew lattice as a non-empty set S supplied by exactly two binary
operations V (join) and A (meet) and satisfying the following properties:

Associative:-(gvh)yvz=gv(hvz)and(gAh)Az=gA (h A z).
Idempotent:-gvg=gandgAng=g.
Absorption:-(hAg)vg=g=gv(gAhyandthvglrg=g=gA(gVh).

2.2 Note

The skew lattices are defined by absorption dualities because the binary operations
V (join) and A (meet) are associative and idempotent:

s V t = s assuming and only assuming s At =1
s V t =t assuming and only assuming s At =s

Skew lattice S has a natural partial ordering >, similar to order in lattice, and it
is defined by f; > f; whenever f| A f = =, A f] or dually f; v f, =] =
fy v fi for f1, f; € S. Leech J [8]’s Lemma (2.3) on skew lattice ideals is a useful
observation for skew lattices characterized by regular partial order.

2.3 Lemma

In the skew lattice and if py, q; € S, then p; > q; whenever q; = p; A qi A pj or
dually pr =q1 vV p1 V qi.
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Fig. 1 Example of skew Q
semilattice

2.4 Join Skew Semilattice

A skew semilattice is a set S that is not empty, with (S, V) if it is both right join
skew semilattice and left join skew semilattice.

2.5 Right Join Skew Semilattice

Right join skew semilattice is the semilattice S satisfying the identity p; V q; V p1
=q; VvV pi forpi,qr €S.

2.6 Left Join Skew Semilattice

Left skew semilattice is the semilattice S satisfying identity p; V q; V p1 = p1 V
q1, forpi, q €S.

2.7 Example of Skew Semilattice

In Fig. 1, we observe A VBVC=AVB,andAvBvC=BVC AvCVA
=AvCandAVCVA=CVA;,PVAVP=PVAandPVAVP=AVP;
BvCvB=BvCandBvCVvB=CVB;AVQVA=AVvQandAVvQvV
A=QVA;BVvQVvB=BVvQandBvQVvB=QVB,CvQvC=CVvQ
and C v Q v C=Q v (, etc. So the given semilattice S (Fig. 1) is both left skew
semilattice and right skew semilattice. Therefore, S is skew semilattice.

The partial order (D12, /) given in Fig. 2 is not skew semilattice, since 1vV2v4 =
4£1Vv2 but 1v2v4 =2V 4= 4; hence, it is a right skew semilattice but not left skew
semilattice.
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Fig. 2 Counterexample of 12
skew semilattice

2.8 Distributive Skew Semilattice

A skew semilattice S is claimed to be distributive if for all g, h, z with g < h v
z, their exists h! < h and z' < z such that g = h! v z!; it follows an equivalent
property thatgv (hAz)vg=(gvhvgAa(gvzvg Vg hzinS.

2.9 Example

If S is skew semilattice, then ford, ein S wehaved veve=dvVveandd VeV
d = e Vv d, and then, similarly we may have x V (y AZ) VX=(YyAZ) VX=(Yy V
X)A(zVXx)—(@G)andalso X VYV X)AXVZVX)=(VDb)A(EVX) (i),
therefore, from (i) and (ii), we have X V (y AZ) VX=X VYV X) A (X V Z V X);
therefore, S is a distributive skew semilattice.

2.10 Skew Normal Semilattice

The skew semilattice S is said to be normal if it satisfies the property that m Vv n Vv
zVw=mVzvnVvwformn,z weS.

2.11 Skew Ideal

IfpeSandqeZ, suchasq>p,imply p € Z, then Z is called skew ideal of, where
7 is non-empty subset of a join skew semilattice S.

Example: A subset Z = {a, c, p, q} of skew semilattice S of Fig. 1 is a skew ideal
of S.
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2.12 Distributive Ideal

Each ideal Z of a join skew semilattice S is known as distributive ideal for all ¢ > p
andpinZ,suchthat Zv (qAzZ)VI=T VATV 2z).

2.13 Result

If k; and k, are distributive ideals of skew semilattice S, then k; Vv kp is also
distributive ideal of S.

Proof: Assume k| and k; are distributive ideals of skew semilattice S.

Now [(k; Vko) V(vAZ)V (ki VK)]=[(p1 VP2)V(VAZ)V(p1V P2l
for (p1 Vp2) €k Vky wherep; ekjandpr € ko
=[p1 VP2V (VAZ)V(P1V Dl
=[p1Vv{pP2VvVvVvp)A(p2VzVp)lV(prVp2l
=[(p1 V{pP2VvVvVvp)IA{(p2VzVp2}Vp1)V(p1Vpl
=PIVP2VVYVDPIVDPD)A@IVP2VZVDpLVp)l
=[ki Vk) VvV (ki VK] Ak Vk)VzVv(k Vk;)]

Therefore, k| V k» is distributive ideal of S.

2.14 Theorem

(S, =) is distributive skew semilattice if and only if p; v q; > w, for w, p1, qi, p as
well as q are in S such as p; > p,q; > qwithw=p Vv q.

Proof: (S, >) is a distributive skew semilattice, by definition; it follows

pv@Az)vp=(pVvqVp A(pVzvVp)forallp,q,zinS. To prove that the
condition p; V q; > w, suchasp; > p,q1 > qwithw=p V q, for w, p1, q1; p as
well as q are in S.

Consider the elements p, q in S such as p; > p, q; > q.

Now consider (pvV @) V(@Az)V(pV@=[pVaveAr(pVvqVvalVv(pVvae
=[pvaqveVveVvylarlpvqaqvyVvpVq)]
=wVvqVvVwAWwWVvVzvw) forw=(pVvqesS
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Therefore, w V (qAZ)Vw=(WVqVWAWVzVvwforw=({pVq)eS.
Hence, for w, p;, q; in S, pand q in S such as p; > p,q; > q,thenp; Vq; > p
V q, implies p; V q1 > w, withw =p V q.

Conversely: Let the condition p; Vv q; > w, for w, py, q; in S, p and q in S such as
P1=p.q = qwithw=pVq.

Consider(gvhvgn(gvzvg=WwWVvgA(gvzvgforw=gvVvh
=gVWAZ) =gV (gVh Az
=gVv(gnzvhazy=gv(gnrz)v(hAz)
=gv(hhaz)veg

Alsopr V(QAZ)Vp1 =pVI(QAZ)VDP.

And alsop; V(QAZ)Vpr=p1VI(qQ Az).

Thus,
P1V(@1AZ)=pV(GAZVPp. (D

Alsopi V(@i AZ)=(P1VaQD AP V2D =@{1Vq Vp) AP VzZVp)
>PVqVvp A(PVzZVp).
Thus,

V@A) =Z(pVvgVvp)A(pVzVp). ()

Asaresultfrom (1) and Q) pv(qAz)vVp=(PVqVvp) A(PVzVp)forall
u,v,zinS.
Hence, S is a distributive skew semilattice.

2.15 Result

All ideals of a skew semilattice form a skew semilattice.

Proof: Assuming S is a skew semilattice as well as I to be the skew Ideal of S, then
for all pin S and q in I such as y > x implicit x € I. Now for y > x, implicit x Vv
y=yandxVyVvVx=XVy)Vx=yVXx=y. Therefore, x VyVx=yVX,
with partial order “>.” Therefore I is right skew semilattice. Similarly, x Vy vV x =
XV (yVXx)=xVyasy VX =y, thus, the skew ideal I is left skew semilattice.
Therefore, I is both left and right skew semilattices; hence, every ideal is a skew
semilattice of a skew semilattice S.
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3 Characterization of Skew Semilattice

3.1 Increasing Subset

A subset I C S is called an increasing subset, if for each z in S, such as ze [ and z
<v,thenv el

3.2 Order Ideal

If I is an increasing subset and for each m, n € I, k € S, such as m > k and n > k,
the subset I of the skew semilattice S is then referred to as an order ideal.

3.3 Theorem

The skew semilattice S is a distributive only if (i) S is directed below (ii) Id(S) for
all order ideals of S, a distributive skew semilattice, where Id(S) is set of all proper
order ideals of S.

Proof: Let a skew semilattice S be distributive. Let m, n, w € S, then form v n >
w,eandfinSsuchasm>e,n>fandw=eVv{ SincemvneSandm <m Vv
nand alsoe <m,f <n,thuse V{f<mVnwhichimpliesm=eVf Asf<evf
=m, then fin S such as f < m and f < n for all m, n in S. Therefore, S is directed
below semilattice. Let Id(S) be a set of all proper order ideals of S.

Now to show that Id(S) is distributive, let Iy v I > I3 for all I}, I, Iz € 1d(S) C
S,form e I}, n € I, and w € I3, and we have m Vv n > w. However, S is distributive
eandfin Ssuchasm > e, n > fand w = e Vv f. Id(S) denotes all order ideals of S
that are increasing sets; thus in /, the subset of S is an order ideal, and the increasing
subset / and m, n € I, then probably i € I such as m > i, n > I, which implies m
Vv n >iand as I € Id(S) are increasing set, and for e € [ and f > e, we have f € 1.
Hence, formvn>e Vv f=fel whichimplieseVvfelandasmVvn=wel3 C
Id(S). Hence, Id(S) is distributive. Let us suppose S is directed below and 1d(S) of
all order ideals of S is distributive; we prove that S is distributive. Let for w in S and
m,n €/ C S, and consider m VvV n > w and as / € Id(S) and [ is increasing subset as
iin/suchasm >iand n > i, and then m Vv n > i. Thus, w =i whichisi Vi€ S.
Hence, S is distributive.
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3.4 Theorem

Assume S as a skew semilattice and I C S and then [ as a skew ideal if and only if
the following equivalence holds:
Forall p;,q1 €S, p1 Vqi vV p1 €lifand onlyif pr,q; € .

Proof: WhenI C S, is a skew ideal of S, then for every p; € S & q; € I, with q; >
p1, which gives p; € I. Since q1 > p1,q1 Vp1 =qi1-Nowpr V(q1 Vp1) =p1 V Qi
=qi,thenp; Vqi Vp1 =qi €[, implies p; vV qi V p1 €1 forpi,qr € 1. Letpr, q
€S,suchasp;vqVvprelandasp; Vq; vVpr >piandp; Vq Vpr>qi,and
I is an ideal, implies p1, q1 € 1, for p1 Vv q1 V p1 € I. Conversely, suppose for all py,
q1 € S, the equivalence condition holds, for p1, q; € Iif and only if p; V q; V p1 €
I. To prove that I is skew ideal of S, since p; Vv q; V p1 € [, for p1, q; € I thus I is
closed under the operation V. Let q; € I and p; € S such as q; > pj, also p; V qi
vpi=pivVai=q €landp; Vq Vpr =q Vp1 =q1 €I Therefore, p; € I.
Hence, I is a skew ideal of S.

3.5 Theorem

If S is skew normal semilattice, theno vV p Vv (oVpVvo)=oVpVoforo,pinS.
Proof: If S is normal skew semilattice, then,o V (pVz) VW =0V (zV p) VW,

for o, p, z, win S.

Now considerovVpV(oVvpVvo)=oVpV(pVolVo
=oVvV(pVoV(pVo)
=(OVpVoV(pVo)

Thus,

ovpVv(ovpvo)=(@OVpVvo)V(pVo). 3)

SimilarlyovVpVvo=oVvpVvoVvo=ovpVvpVvoVvo=oVvVpVv(oVp Vo
=(VvpVvoV(pVvo)

Thus,
ovpvo=(VpVvo)V(pVo). @)

From (3) and (4), we haveoVpV (oVpVo)=oVpVo.
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3.6 Preorder Ideal

If J C S, then J is called a preorder skew ideal of skew semilattice S, for m > n and
neJandifm,neJ,thenm Vv n e J.

3.7 Relator

Let S be skew semilattice, for m, n € S, and then the relator <m, n> is that m related
to n and is defined as <o, p>={x €S/p <x V o}

3.8 Theorem

The subsequent conditions are analogous for the skew semilattice S.

(a) Sis distributive skew semilattice.

(b) The set <m, n> € Id(S) for all m, n € S.

(¢) <J, I> € Id(S) for all J € Ji(S) and I € 1d(S), where Id(S) is of all proper order
ideals of S, and J;(S) is of all preorder ideals of S.

Proof: Let S be distributive skew semilattice.

To prove that (a) = (b), let m,n € S. Forp € S, such as p € <m, n>and p < q,
we have n < p vV m < q VvV m, which implies n < q vV m, which implies q € <m, n>.
Therefore, <m, n> is increasing set.

Now to show that <m, n> € Id(S), i.e., <m, n> is an order ideal of S. Let x, y €
<m, n>thenn <p VvV mandn < qV m. Since S is distributive, p;, mj in S such as p
> p1, m > mj and n = p; V my in particular, we have n > p;, and thenp vV m > n
> pi implies p V m > p; and again S is distributive and then their exist p, and my
in S such as p > py and m > mj and p; = py VvV my. Also p > p; = p2 V my, which
impliesp>mpandq>mp andp, Vm=>py vV (m; Vmp)=(p2 Vmy)Vm;=pj
VvV m; = n. Therefore, n < pp vV m < p vV m. Therefore, <m, n > is an order ideal of
S. Hence, <m, n> € Id(S).

To prove that (b) = (c), let <m, n> € Id(S) for all m, n € S. To show that <J, I>
€ Id(S) for all J is an element of J;i(S) (set of all un-order ideals) and I € Id(S). Let
pe</,I>andp <qforanyp e S. Then! <p Vv J <q VJ, which implies q € </,
I>. Therefore, <J, I> is increasing. Now to show that <J, I> is an order ideal, let m,
n € <J, I> then (p1, q1) and (p2, q2) € <J, I>such as m € <pj, q;> and n € <py,
2>, and then q; <m V pj and g2 < n V pa. Since J is a preorder ideal, then p = p;
V p2 € F; and [ is order ideal, q in / such as q; > q, and q2 > q. Then p > p; and
p=p2-NowmVvp>mvVprandnV p=>nV py, whichimpliessmVvp>q; >v
andn V p > qp > v; therefore, we have ¢ < m Vv p and q < n Vv p. Therefore, m €
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<p, ¢> and n € <p, >, and therefore, by hypothesis, there exist z € <p, > such as
m > z and n > z, where <p, q> C <J, I>. Hence </J, I> is an order ideal.

To show that (c¢) = (a), let <J, I> represent order ideal. Let m, n, z € S, such as
m V n > z. Since <m, z> = < (m], (z]> and n, z € <m, z>, by hypothesis an element
ny € <m, z>, thus z < ny, which implies nj < z,andn; <z <m V n gives n; < n.
Then, we have nj <nandnj <z. Then,n; Vm > zand z, m € <nj, z>. As <ny, z>
is representing order Ideal, exists

Thus,

m| €<ny,z>suchasz>miandm>miand z <my Vnj. 5
But
z>nyand z > my which gives 7 > m| V ny. (6)

Therefore, from (5) and (6), we have z = m; Vv n;. Hence, S is distributive
semilattice.

4 Conclusion

In this paper, we present and investigate the skew semilattice and the distributive
skew semilattice, as well as the necessary and sufficient theorem of the distributive
semilattice. We also investigate the notion of normal skew semilattice. In addition,
we define an order skew ideal in skew semilattice and provide the skew semilattice
characterization theorem by defining some new through relators.
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On Certain Semigroups ®)
of Order-Decreasing Full Contraction Qe
Mappings of a Finite Chain

Muhammad Mansur Zubairu, Abdullahi Umar, and Jaafar Abdulkadir Aliyu

Keywords Order decreasing and order preserving full contractions semigroup -
Adequate and dense semigroups - Rank properties

1 Introduction

Let [n] be a finite chain say {1, 2, ..., n} and denote P, (resp., 7,) to be the partial
transformation semigroup on the chain [n] (resp., semigroup of full transformations
on [n]). An element & € 7T, is order preserving (resp., order reversing) if (Va, b €
[7]) a < b implies ao < ba (resp., ax > ba); order increasing (resp., order
decreasing) if (Va € [n]) a < au (resp., ax < a); and a contraction if (Ya, b € [n])
lae — ba| < |a — b|. The collection of all contraction mappings on [r] denoted by
CT, is known as the semigroup of full contraction mappings. The study of various
semigroup of contractions was first proposed in 2013 by Umar and Alkharousi [12],
where they give notations for the semigroups. We will also adopt these notations for
the semigroups considered in this paper. Let

DCT, ={a € CT, : foralla € [n], ax < a} (1)
denote order decreasing full contraction semigroup,

ODCT, ={a €e DCT, : (foralla,b € [n])a <b = aa < ba} )
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denote order preserving and order decreasing full contraction semigroup,
OCT, ={aeCT,: (foralla,be[n]))a <y = au < ba}
be order-preserving full contractions semigroup, and
ORCT, =0CT,U{a €CT,:NVa,be[n])a<b = aa > ba}

be order preserving or order reversing full contraction semigroup. It is clear that
ORCT, is a subsemigroup of C7,, whereas OCT,, and ODCT, are subsemigroups
of ORCT, and DCT,, respectively. A complete characterization of Green’s equiv-
alences for C7, were obtained by Ali et al., [2]. The combinatorial results for
ORCT,,, OCT,, and ODCT, were investigated by Adeshola and Umar [1]. Further-
more, the ranks of OC7T, and ORC7T, and the rank of their two-sided ideals were
obtained by Kemal [10] and Leyla [3], respectively. However, it appears that the
rank and algebraic properties of the semigroup DCT, and its subsemigroup ODCT,
have not been investigated. This chapter intends to study Green’s equivalences, their
starred analogue, and rank properties of these semigroups.

In the current section, we give a brief introduction and introduce some basic nota-
tions and definitions. Moreover, we characterize the elements of DC7,,. Section 2 of
this chapter constitute s characterization of all Green’s equivalence and the regular
elements in DCT,, and ODCT,, respectively. In Sect. 3, we characterize the starred
analogue of Green’s equivalences and show that if S € {DCT,, ODCT,}, then S is
left abundant for all n but not right abundant for » > 3. Moreover, we show that
the semigroup DCT, is a dense semigroup with a cover. In Sect.4, we show that
ODCT, is left adequate and also investigate its rank.

For a contraction « in C7,, we shall denote Im «, rank «, and id4 to be the
image of «, |Im «/|, and identity map on A C [n], respectively. For two elements
say «, B € CT,, their composition shall be as a(a o 8) = ((@)a)B for all a in [n],
the notation o shall be adopted to denote « o § in our subsequent discussions. For
a semigroup S, an element d € S is called an idempotent if d*> = d. It is known
that the condition Im € = F(¢) (where F(¢) = {a € [n] : ae = a}) is a necessary
and sufficient condition for € € 7, to be an idempotent. If S is a commutative
semigroup and all its elements are idempotents (i.e., S = E(S)), then S is said to be
a semilattice. In this case, forall v, u € S, u?> = u, and vu = uv. For basic concepts
in semigroup theory, the reader may refer to Howie [7].

Next, given any transformation « in C7,, the domain of « is partitioned into
blocks by the relation ker « = {(a, b) € [n] x [n] : ae = ba}, so that by Adeshola
and Umar [[1], Lemma 1.2] o can be expressed as

_( Dy D, --- D,

t+1t+2_._t+r)(1Erinandforsomeintegert), 3)

where D; for all 1 < i < r are equivalence classes of the relation ker «, i.e.,
D; = (t+i)a'foralli e {1, ..., r}. We shall denote the partition of [n] (by the
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relation ker «) by Ker « = {D1, Dy,..., D,;}sothat [n] = D{UD,U...U D,
where (1 < r < n). Now if @« € OCT,, then we see that D; < D; if and only if
i<j.

Elements of DCT,, (ODCT,) can be expressed as in the following lemma:
Lemma 1 Every element o € DCT,, (ODCT,) of rank r € [n] can be expressed as

"o Dy Dy --- D,
1 2 )
Proof Let o € DCT, (ODCT,) be as expressed in Eq. (3), i.e.,
" Dy D, --- D,
S\ttt 42- 4 )]

Noticethatr +1 < t+2 < ... < t+r; moreover, since « is order-decreasing, then
t+1<aforalla €e Dy UDyU...U D,.In particular, r + 1 < 1, which implies

t+1=1,andsor =0. Thus Djo =i for | <i <r, as required. O
Let
w= (PP Dr and B = BiBr-- B\ cpor (1 <r<n). @)
1 2 - r 1 2 - r

The corollary below follows directly as a consequence of Lemma 1.
Corollary 1 Lety,8 € S € {DCT,,, ODCT,}:

(a) Imy|=|Imd| < Imy =Imé;
(b) ker y =ker § & y =3.

2 Regularity and Green’s Equivalences

For a semigroup S, an element u € S is regular if u = uvu for some v € §; Sisa
regular semigroup if all its elements are regular. For definitions of the five Green’s
equivalences: £, D, R, J, and H, the reader may refer to Howie [7]. It is a known
result that, if S is finite, the equivalence J = D. The characterizations of Green’s
relations on various semigroups of transformations were examined and studied by
many authors (see, e.g., [2, 15]). It is also known that C,, (where C,, denotes the
order-preserving and order-decreasing full transformation semigroup) is J —trivial
[9]. Thus, we state and prove the theorem below.

Theorem 1 Let DCT, be as in Eq.(1) and let «, B € DCT, be as expressed in
Eq. (4). Then

(i) (@, e R B=ua;

(ii) (o, B) € L < minio™!

=minip~! forall1 <i <r.
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Proof The proof is similar to that of Lemma 1.2 in [11] coupled with the fact that
Ima=1{1,2,...,7} =Im B by Lemma 1. m]

Notice that in this case, DC7T,, is said to be R—trivial semigroup. Thus, we have the
following corollaries:

Corollary2 OnDCT,, H=Rand L=D = J.
Corollary 3 An element a € DCT,, is regular if and only if a is an idempotent.
As a consequence of the above corollary, we now have the following lemma.

Lemma 2 Let o € DCT, be as expressed in Eq. (4). Then « is an idempotent if and
only ifminia™" =i forall 1 <i <r.

We now give the characterizations of the five Green’s equivalences on ODC7,.
Theorem 2 Let ODCT, be as in Eq. (2). Then ODCT, is J —trivial.

Proof Observe that ODCT, is a subsemigroup of C,,, then ODCT,, is J —trivial.
O

Consequently, the corollaries below follow.
Corollary 4 On the semigroup ODCT,, L=R=D=H =J.
Now since ODCT, is R trivial, then we have the following:

Corollary 5 An element « € ODCT, is regular if and only if « is an idempotent.

3 Starred Green’s Equivalences

The relation £* on S is defined as: (u, v) € L* < (u, v) € L(P) (i.e., (u, v) € L
on a semigroup P) for some semigroup P, where S is a subsemigroup of P; R*
is defined in a similar way, and D* is the join of the relations R* and L£*, where
the intersection of the relations R* and £* is H*. A semigroup S is said to be left
abundant (resp., right abundant) if every £* — class (resp., every R* — class)
contains an idempotent, and it is said to be abundant if it is both left and right
abundant. If E(S) is a subsemigroup of a left abundant(resp., right abundant)
semigroup S, then S is called left quasi adequate(resp., right quasi adequate); if
E(S) is commutative, then it is said to be left adequate (resp., right adequate);
and if S is both left and right adequate, it is called adequate (see [S] for more
details on adequate semigroups). If a semigroup is not regular, then there is a
need to investigate the class to which the semigroup belongs. To carry out such
investigation, one would naturally characterize its starred Green’s equivalences. We
are going to investigate regularity, characterize the starred Green’s equivalences,
and show that if S € {DCT,,, ODCT,}, then S is left abundant; moreover, we show
that ODCT, is left adequate. As in [7], the relations £* and R* have the following
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characterizations:

L5 ={(a, B): (forall u, 1 € S") ap =ar < Bu = pA} (5)
and

R* = {(a, B): (forall u,x € ') pua = ra < up = rB}. (6)

We now give characterizations of all the Starred Green’s equivalence on S €
{DCT,, ODCT,} in the theorem below. The proof of the theorem is a simplified
version of the proof of Theorem 1 in [13].

Theorem 3 Leta, 8 € S € {DCT,, ODCT,}. Then

(i) (a, B) € L* & Ima =Im B;
(i) (o, p)e R* & a=p;

(iii) H* = R*;
(iv) D* = L*
Proof

(i) Let @, B € S be as expressed in Eq.(4) and suppose (¢, ) € L*. Notice

that Ima = {1,...,r}. Now consider u = (i”.{l’”."n}>(1 <r =
.« . l

i < n). Thenclearly © € S and « o (i--~{z,....,n}> = aoidy &
“ .. l

5o (i ; SRRCREE n}> = B oidp (by Eq.(5)), which implies that Im & C
PR l
Im B. We can show in a similar way that Im 8 € Im «, as such Im o« = Im 8.
Conversely, suppose Im ¢ = Im B. Then by Howie ([7], Exercise 2.6.17)
aLPnB and following from the definition that « £L* 8, the result follows.
(i) Let o, B € S be as expressed in Eq. (4). Suppose («, 8) € R*. Then (a, b) €

kera & ax = ba <[n]> oo = ([n]) oo ([n]) o =
a b a

<[Z]> 0B (by Eq.(6)) <= af = bp <= (a, b) € ker B.
Therefore ker o =ker B. Thus by Corollary 1 (b) 8 = «. The converse is clear.
Thus («, B) € R*.

(iii) The result follows from (i) and (ii).

(iv) Since S is R* trivial then L£* = D*,

O

We are now going to show that on ODCT,, J* = D*, but before then we note the
lemma below.
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Lemma 3 ([5], Lemma 1.7(3)) Ifx,y € S. Then y € J*(x) if and only if there
exist X0, X1, ..., %n € S, a1, az, ..., an, b1, by, ..., by € S! such that x = xo,
y = x, and (y;, ajxi—1bj) € D* fori =1,2,...,n.

Now we prove an analogue of [[11], Lemma 2.13.].
Lemmad Let 8,a € S € {DCT,, ODCT,}. If « € J*(B) then Im a C Im B.
Proof Suppose « € J*(B), (@, € S). Thus by Lemma 3, there are

BosBls--sBn € S, Ay A2, ... An, M1 M2, ... n € S such that B =
Bo, @ = B, and (B;, AiBi—1i;) € D* for i € [n]. Thus using Theorem 3(iv),
Im B; =Im XA;Bi—1pi € Im B;_; fori € [n]. This means that Im o C Im . a

Lemma 5 For S € {DCT,, ODCT,}, J* = Dx*.

Proof Leta, B € S. Clearly D* C J*. Now for 7* C D*, let (&, B) € J*, i.e,
a € J*B), and B € J*(«). Thus, Lemma 4 ensures that Im 8 = Im «. Thus,
using Theorem 3(i) and (ii), we see that («, 8) € D*, as required. m|

Now we show in the lemma below that S € {DCT,,, ODCT,} is left abundant.
Lemma 6 The semigroup S € {DCT,, ODCT,} is left abundant.
Proof Let o € S be as expressed in Eq. (4) and let L} be an L*-class of « in S.

Denote € = (i ; cednr 1,...,n}) € ODCT,, (1 <r < n).Clearly € is
.« .. r

an idempotent in S; moreover, Im « = Im ¢, and so by Theorem 3(i), we see that

(o, €) € L%, which means € € LY. Since L}, is an arbitrary L£*- class of « in S, then

S is left abundant, as required. O

Remark 1 In contrast with [[14], Lemma 1.20], the semigroup S € {DCT,, ODCT,}
is not right abundant for n > 3.

{1,2} 3

For a counterexample, consider ¢ = < ] 2) € S € {DCT3, ODCT3}. It is

{1,2} 3
1 2
However, the semigroup S € {DCT,, ODCT,} is right abundant for 1 <n < 2,

which is also in contrast with [[14], Remark 1.21].

clear that R} = { ( ) } has no idempotent.

3.1 The Cover for DCT,

A semigroup S is an E—semigroup if E(S) is a subsemigroup. A subsemigroup K
of S is said to be dense if for all s € S, ss’ € K and s”’s € K for some s’ and
s” € §; it is said to be unitary if Vi, t' € K anda € S, at’ € K and tra € K implies
a € K [6, 8]. A semigroup S is E unitary if its set of idempotent (i.e., E(S)) is a
unitary subsemigroup; it is said to be E—dense if E(S) is dense; and it is called E—
unitary dense if E(S) is unitary dense subsemigroup. For the semigroups S and K,
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an epimorphism ¢ : K — S, which is injective on the idempotents, is said to be a
covering; as such, K is said to be a cover for S. Many classes of semigroups, regular
and non-regular, are shown to be dense and/or unitary semigroups; in particular,
the E—semigroup has been shown to have a cover in [8]. For basic concepts and
structural theory of unitary and dense semigroups, we refer the reader to [6, 8]. We
will show that DCT, is a dense semigroup with cover with the help of some results
from Jorge et al., [8].
Before we begin our investigation, we first note the following results from [8].

Proposition 1 [/8], Proposition. 1.1] For an E—semigroup S where E(S) = E,
the statements below correspond.

(i) S isan E—dense semigroup;
(ii) Ya € S, aa’ € E for some a’ € S;
(iii) Ya € S, a"a € E for some a”’ € S.

Theorem 4 [[8], Theorem. 2.1] Let S be a semigroup. Then

(i) If S is an E—semigroup, then S has an E—unitary cover.
(ii) If S is an E—dense semigroup, then S has an E —unitary dense cover.
(iii) If S is an orthodox semigroup, then S has an E—unitary orthodox cover.

We prove the following lemma.

Lemma 7 E(DCT,) is a subsemigroup of DCT,.

Proof Lete; = <D1 Dy - D,) and e = <Bl By Bm) be idempotents in

1 2 - r 1 2 .- m
DCT,. There are two cases to consider, i.e., eitherr <m orm < r.
Now suppose r < m. Notice thatie; =i fori = 1,...,r < m. Thus,

ae= (110 P —a e per).

/ / /

Nowifm < r.Thenejep; = (?1 D22 l?ﬂ’”),whereD; =D;UB(1<i<m)
forsome B € {m +1,m+2,...,r,r +1,...,n}, i.e., the elements in the set
fm+1,m+2,...,r,r +1,...,n} are distributed to the blocks D; for some 1 <
i < m in the following manner: givenany x € {m+ 1, m+2,...,r,r +1,...,n},
if x € B; (forsome 1 < i < m) then xe; = i € D]. As such x is placed in D].
Notice thati € Dl/. for 1 <i < m, as such €;¢; is an idempotent, as required. a

The lemma below is a direct consequence of Lemma 7.
Lemma 8 DCT, is an E— semigroup.
Now, we prove the lemma below.

Lemma 9 For every a € DCT,, there exists B € DCT, such that aff € E(DCT,).
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Proof Let o € DCT, be as expressed in Eq. (7). Now let 8 = <[rll]> € DCT,.

Then off = <[’I]) which is obviously an idempotent. O
Consequently we have proved the following theorem by Lemma 8 and 9 and by
Proposition (1) and Theorem (4), respectively.

Theorem 5 Let DCT,, be as defined in Eq. (I). Then we have:

(i) DCT, is E— dense.
(it) DCT, has an E—unitary and E —unitary dense cover.

4 Rank of ODCT,

Let T C S (T # (). The notation (T) denotes the subsemigroup generated by the
subset T, which is defined as the intersection of all subsemigroups of S containing
T.If T is finite and (T) = S, then § is called a finitely generated semigroup.
Moreover, the rank of S is defined and denoted by

rank S = min{|T| : (T) = §}.
Now let Reg(ORCT,) be the collection of regular elements of ORCT,. Then,
we first note the following result about idempotents in ORC7,, from [13].
Lemma 10 ([13], Lemma 13) Let € be an idempotent in (ORCT,). Then € can be

expressed as

{,...,d+1}d+2---d+r—1{d+r,...,n}
d+1 d+2---d+r—1 d+r ’
We now prove the lemma below, crucial to the main result.
Lemma 11 Every e € E(ODCT,) can be expressed as

E_(12~~{r,r—|—1,...,n}

12, . ) where r € [n].

Proof The proof follows from Lemmas 10 and 1. O

We show in the next theorem that the collection of all idempotents in ODCT,, (i.e.,
E(ODCT,)) is a semilattice.

Theorem 6 E(ODCT,) is a semilattice.
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Proof Lete,n € E(OCDT,). Then by Lemma 11, we may denote € and 1 by

EZ,(I...{m,m—i—l,...,n}) andn=<i"'{r’r+l""’n})

1--- m r

form, r € [n].

Thus, there are two cases to consider:

1---{m,m+1,...,n}

Il°1n§p.Thenen=<1 ):ne:eeE((’)DCE).

m

Ifr<m'Then€n:(i...{r,l"+1r7...,n}>:nézneE(ODCE).

Thus E(ODCT,) is a semilattice. O
Now by Theorem 6 and Lemma 6, we readily have the result below.

Theorem 7 Let ODCT, be as defined in Eq. (2). Then ODCT,, is left adequate.
Next, we state the following well-known result from [4] as a lemma below.

Lemma 12 In a finite J trivial semigroup S, every minimal generating set is
(unique) minimum.

Let G, = {@d € ODCT,, : Ima| = r} and K, = {@¢ € ODCT,, : |Im «| < r}.
It is worth noting that K, = G UG, U ... UG, (1 <r < n). Now we have the
following lemma.

Lemmal3d Forl <r <n-—2 G, C{(Gry1). d

Proof Let « € G,, then by Lemma 1, we may let « = (lil Dr), where
cee

I <r <n—2. Nextnow let D, U D, = D, with D; # @, D; # %, D, N D, =0
and D, < D). Now denote § and p as:

/ /! —
5— D, D,_1 D, D and p = 1 r—1{r,r+1}{r+2,...,n} '
1 «--r—1pr+1 1---r—1 r r+1

Notice that §, p € G,41. It is easy to see that « = dp € (G,4+1). Hence G, C
(Grt1)- O

We now have the corollary below.
Corollary 6 For1 <k <n—1, Gy € (G,—1).

Proof Suppose 1 < k < n — 1,; then, by Lemma 13, we see that Gy € (G+1) and
similarly Gr4+1 € (Gi42), which implies that (G;) € (Gg42). Therefore, G

C
(Gk+1) € (Gg42). If we continue in this fashion, we see that Gy € (Gyy1) C
(Gi42) € ... € (Gy—2) € (Gy—1), as required. m|

Lemma 14 In ODCT,, |G,—1| =n — L
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1 ---n—1
D; < Djifandonlyifi < j.Itis now clear that the order of G, is equal to the
number of subsets of the set [n] of the form {i,i + 1} (1 <i < n — 1), which is
n—1. m]

Proof Notice that if « € G,,_1, then « is of the form o = <Dl o D"_l> , where

The following lemma gives us the rank of ODCT, \ {id,}.
Lemma 15 In ODCT,, rank (K,_1) =n — 1.

Proof To prove that the rank (K,_1) = n — 1, it is enough to show that G,_; is a
minimal generating set of K,,_1, i.e., K,,—1 = (G,—1) and (G,_1\{7}) # K, for
any t € G,_1. Itis clear by Corollary 6 that (G,,_1) = K,,_1.

Now observe that

G _ {1,2}3--- n 1, {2,3}4--- n
nh= 1 2--n—1)°\1 2 3...n—1)""""
1---n—-2{n—-1,n
D | PG
1---n—2 n-1
12---{i,i+1}---n—=2n—-1 n
12--- i -en—3n-2n-1
1. Then one can easily verify that for any «, 8 € G,_1\{t;}, h(eB) < n —1,
h(tia) < n — 1, h(at;) < n — 1 and moreover, at,—1 = « for all @ € G,_.
Thus G,_; is a minimal generating set for K, _1. Thus since S is a finite 7 trivial

semigroup then by Lemma 12, G,_ is the (unique) minimum generating set for
K, 1. O

Taket,-:( >6Gn1f0ri=1,...,n—

Finally the rank of ODCT, is given in the theorem below.
Theorem 8 Let ODCT, be as defined in Eq. (2). Then rank (ODCT,) = n.

Proof Notice that K,_1 = ODCT,\{id[}. Therefore the rank (ODCT,) =
rank (K,_1) + 1 = n, as required. |
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A Novel Concept of Neutrosophic Fuzzy )
Sets in Z-Algebra oo

K. P. Shanmugapriya and P. Hemavathi

Keywords Fuzzy set - Neutrosophic_set - Neutrosophic_subalgebra -
Z-algebra - Neutrosophic_Z-subalgebra - Neutrosophic_algebraic structures

1 Introduction

Zadeh [18] developed the concept of fuzzy sets, which has numerous applica-
tions, particularly throughout dealing with uncertainties. Atanassov initiated the
intuitionistic fuzzy set as the generalization of fuzzy set, which allocates pairs of
degrees of membership function and nonmembership function. A fuzzy set with
interval values represents the degrees of membership, which reflects the uncertainty
in assigning membership values. Smarandache’s [11] neutrosophic_fuzzy set can
provide true_membership function(tmf), indeterminacy_membership function(imf),
and false_membership function(fmf) as extension of each element in any set. The
neutrosophic_fuzzy set which is applied in different fields like topology, algebra,
decision-making, biomedicine, and in various parts. Imai and Iseki [3, 4] established
two new algebraic classes based on propositional logic. In 2017, the basic algebraic
structure based on propositional logic was proposed by Chandramouleeswaran
[1], a new concept called Z-algebra. Using a single-valued membership function,
representing an interval on the membership scale, in 1975 the author created an
interval_valued_fuzzy_set in [19]. The researcher also demonstrated that the fuzzy
Z-subalgebras of Cartesian products are also a fuzzy Z-subalgebras [13]. The
basic principle of a fuzzy Z-subalgebra of Z-algebra and their properties were
investigated, and it explains how to handle the Z-homomorphism of its image and
inverse image of fuzzy Z-subalgebras. The basic ideology of a fuzzy Z-ideal of
a Z-algebra under Z-homomorphisms was evaluated, and some of its properties
of the Cartesian product of fuzzy Z -ideals have been explored [14]. Fuzzy a-
translations and B-multiplications are extensions of fuzzy Z-subalgebras (fuzzy
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Z-ideals) of Z-algebras, also given some excellent outcomes [15]. Following that,
definitions of fuzzy sets, interval-valued fuzzy sets, and Z-ideals in Z-algebras
have been provided. These characteristics of fuzzy Z-subalgebras and fuzzy Z-
ideals also included the aspects of Z-homomorphism and Cartesian product on
fuzzy a-translations and fuzzy B-multiplications of Z-algebras [16]. In 2012, Jun
[6] highlighted and focused the characteristics of a cubic set using a fuzzy set and
an interval_valued_fuzzy_set. Further, in 2010, Jun [7] explored and researched
the subject of cubic_subalgebras with cubic_ideals in BCK/BCl-algebras. Jun [5]
promoted the development of cubic subgroups in 2011 after applying this concept
of cubic_sets to a group. In [10], the concept of neutrosophic algebra is introduced,
along with the idea of an ideal within the context of neutrosophic algebra.
Additionally, the concepts of the kernel and neutrosophic quotient algebra were
provided. Several key properties of neutrosophic algebra are identified and explored.
Moreover, demonstrated that every quotient neutrosophic algebra is indeed a
quotient algebra. The focus of this research is to promote neutrosophic_fuzzy sets in
Z-algebra through the use of specific theorems and examples, as well as to evaluate
some of their properties.

2 Preliminaries

The below section describes basic definitions of fuzzy sets and Z-algebra, as well as
their main properties.

Definition 2.1 [18] The fuzzy set ¢ from the universal set X is defined to be o (X):
X— [0,1] for each elements x € X, and @ (x) is known as the membership value of
X.

Definition 2.2 [9] Let o; and o7 be the fuzzy sets from the universal set X the union
of o1 and @y; is represented as o;U o3 is defined to be (o;U 02) (x) = max {p; (X),
02 xX)}VxeX.

Definition 2.3 [9] Let 0| and o be any two fuzzy sets from the universal set X, the
intersection of p; & 0o, it is expressed as g1 N @7 is defined to be (o1 N E2) (X) =
min {o; (x), 02 X} Vx € X.

Definition 2.4 [9] Let neutrosophic_set in X be in structure of the form ¢ =
{x: 07 (X), 07 (X),07 (x)/x € X} where 07,05,07 are fuzzy sets in
X; which is denoted by o4 (x) is atrue_membership function, o s (x) isan
indeterminate_membership function & ¢ # (x) is an false_membership function
respectively.

Definition 2.5 [1] Suppose X be the non-empty subset with binary operation % and
constant; then, (X, %, 0) is Z— algebra if

A)x%0=0(@)0x%xx=x(lli) X * X =X
v)x#%y=y%x,whenx#0andy#0Vx,yeX
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Table 1 Consider the

N * 0 Q) |2 |23 |

example for Z-algebra 0 00 Q 2 9
1 3

Q|0 Q2 Q3 Q4 |2

Q |0 Q23 Q2 Q27 |2

Q3 |0 Q4 Q) Q23 |23

Q4 10 Q2 |2 |23 |

Example 2.6 Let X = {0, @1, Q2, Q3, 24} be the set with 0 as a constant, and a
binary operation # is to be defined on X by cayley’s table (Table 1).

Definition 2.7 [1]If X is a non-empty subset of neutrosophic_Z-algebra, it is called
to be Z-subalgebra of X:

X % Ye XVx,yeX

Definition 2.8 [2] Let U be the subset in universe X; the sup property of a fuzzy set

o is referred to as o(xp) = supo (x),if I x, xg € U.
xeU

Definition 2.9 [17] Let the intuitionistic fuzzy set be o which assigns the member-
ship function p, as X — [0,1], and 7, as X — [0,1] is nonmembership function,
and then it is known to be sup_inf property, and then for any subset U of X then 3

(x0) € U 3 119(x0) = sup(12o(x)) and 7o(x0) = inf (zo(x)).
xelU xeU

Definition 2.10 A neutrosophic_fuzzy set ¢ in a set X is referred to as an

sup_sup_inf property if the subset U of X then 3 x9 € U 3 0 #(x¢) = sup(o.7 (X)),
xeU

0.7 (X0) = SuB(Q,ﬂ (X)), 7 (x0) = inf (0.7 (x))-

Definition 2.11 Let 9= {X, 07 s #(x) / x € X} be the neutrosophic_set in 7
and 9 maps from X — Y then the image of ¢ under 9, 9 (%) represented as
{ asup(QL?)s asup(Q,ﬂ)’ ainf(Qﬁ)s xeY.

sup 07 (x) if 7' () #¢
@) up (07) ) =<'
1 otherwise
sup 07 (x) if 37N () #¢
(i) dsup(0)y) = { X'
1 otherwise
inf oz () if 7' #£¢
(i) dnflo) ) = § <)

0 otherwise
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Definition 2.12 If 9 : X — Y be a function. Let 0g.9.7 &0, .7, F betwo
neutrosophic_set in X and Y, respectively, and then the inverse image of 0.7 7 #
under 9 is defined by 07! (05..4.2,) = {x, 37! (05(x)), 37! (0.4,(x), 37!
(07,(x)),/ x € Z} such that 37" (0.53) 3 (X) = 0D (X)), 0 (0.05) () = 0.5, (D
(x)), 07 (0.2,) 0 (X) = 0.7,(3 (x)).

Definition 2.13 [16] Let (Z, #,0) and (Z, %, 0') the two Z-algebra, and then the
mapping from f: (Z, ,0) — (2/, *,0') is known as Z-homomorphism of Z-algebra
if

LxxyY) =2 x) ¥ A ().

Definition 2.14 [16] Let h be an Z-endomorphism of neutrosophic_Z-algebras and
v = {x, 07.7.7 X)/x € X} be the neutrosophic_set in X, and then define a new
fuzzy set o in X, as Uon (X) = Bo(h(x)) Vx € X.

3 Neutrosophic in Z-Subalgebra

This section defines neutrosophic Z-algebra and discussed some fascinating results.

Definition 3.1 Suppose (X, #,0) be the Z-algebra with operation “#” and constant
0, then the neutrosophic_set ¢ = {x:07,0.,0%/x € X}; it is defined to be
neutrosophic_Z- subalgebra of X.

() 07 x*y)> min{07(x), 07 ()}
(i) oy (x*Yy)>min{os(x),0s (¥)}
(i) 0.7z (x*Yy) <max {07 (X), 0.7 (¥)}

Example 3.2 Consider Z— algebra defined the Example 2.6. and the following
neutrosophic_fuzzy set defined on X is a neutrosophic_Z- subalgebra of X.

0.5 x=0when x=0,y#0) or x#0,y=0)
07,77 =108 X = Qi, 2
0.4 x = Q3, Q4

Proposition 3.3 If ¢ ={x,05,0s,07 X € v4 } is a neutrosophic_Z— subalgebra
of X.
Thenl.o7 (0) 2z 07 (), 07 (0) Z 0y (¥), 07 (0) <07 (x),VxeX.
207000 07(x*) = 07(X), 07 (0) = 0y (x*) = 07 (%), 07 (0) <
o0z (x*) <oz (x), wherex* =0%xV x € X.
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Proof: For every x €X,

L. 07(0)= 0.7 (x*x)
>min {07 (X),07 (X)} =07 (X)
Similarly, 0. #(0) = 0.7 (X)
0.7 (0)= 0.7 (x#x)
<max{ogz (x), 07 (X)} =07 (X)
2. 07 (x*) =07 (0 *x)
> {min(0.7(0), Eo 7(x))}
07 (x*) = 07(x)
L7 (x*) > 07 (x)

Similarly, 0 ¢ (x*) > 0.#(X)
o (x*) = 0.7 (0%x)
< max {o.7 (0)*0.7 ()}
Hence, 0.7 (x*) < 0.7 (x)

Theorem 34 If ¢ = {x: 07 v 2 (X) / X € 7} and 0.7 .7,.F,» 0.9,.9,.%,b€ tWo
neutrosophic_Z-subalgebras of X, then the intersection is also a neutrosophic_Z-
subalgebras of X.

Proof: Letd ={x,ye Z, 07.7.7 X)/x €X}be a neutrosophic_Z-subalgebras of
X for all x, y'eX. Then
(07 Noz) (x*y) =min {o7(x*Y), 07 (x *Y)}
>{minfog (x),09 )}, min{oz X), 05 V}}
=minfoz (X),07 X}, min{fe7 ), 07 )}
=minf{ozN 0 N}, 05N 075 )
sozNem)xxy) = min{(ezNoz) X, (ezN (eg5) W)
Similarly, (0.7, N 0.5)(x *y) = min{(0.#N 0.5) %), (64N 0.9) ¥}
(0.7, Nog,) (x*Y) =max {0z (X *Y), 07,(x *Y)}
<(max{oz, ().07 M} max{nz x).ez )})
=max{oz, (X), 0%, XN}, max{oz ), 0.2, ()}
=max {(e7,N 07,) X), (07N 07) Y}
sz NNz, (xxY) smax {(07,N 05,) (0. (07N 07,) ¥}
Hence, 0 4;and o g are a neutrosophic_z-subalgebras of X.

Theorem 3.5 If ¢ = {x, 07 7 7 (X) : x €X} is the neutrosophic_Z—subalgebra

of X. If 3 a sequence {x,} of X > Ilimos(x,) = 1, limoys (x,) =
n—0od n— o0

L nli)rgog,?f (x4) =0Then o7 (xp) =1, 07 (x4) =1, 02 (x,) =0.

Proof: Consider the Proposition 3.3, 0 7 (0) > 07 (x) Vx €X.

Then, we have 0 7(0) > 07 (X) V x € X
07(0) > lim 07 (X,)
n—oo
Hence, 0.7 (0) = 1.
Similarly, 0 #(0) =1
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07(0) <0z (x) VxeX

02 (0) < lim o7 (X,)
n—0oo

Hence, n#(0) =0

Theorem 3.6 If ¢ ={x: 07 s 7 /x € X}isthe neutrosophic_Z-subalgebra of X,
thenthe set Xp. , > ={x€ X/ 07 7 #(X) =07, s #(0) }is also a subalgebra
of X.

Proof: Forany x,y€ X, , 5

07 () =07 0)=07()

07 (x#Y) > {min (07 (x), 0.7 (Y}
=min {07 (0), 07 (0)}
=min {7 (0)}

Similarly, 0 #(x #% y) = min {o_#(0)}
07 (x*Y) < {max (0.7 (x), 0.7 (YD}
= max{o.z (0), 07 (0)}
= max {0z (0)}
. Xo . .o 1s the subalgebra of X

Theorem 3.7 Let (X, %, 0) and (Xl, ﬂe/, Ol) be two Z-algebras and U: X — X bea
homomorphism. If 0 7 7 # is a neutrosophic_Z-subalgebra of X, which is defined
as

V(ez,.s.7) =% (07,077 X = 07,77 (VX)) then V(o7 s 7) is the
neutrosophic_Z— subalgebra of X.

Proof: Letx,yeX

(e7)y (x*Y) =07 (V¥ (x*y)

=07V (x)*\V (y)

= min {o 7 (¥ (x), 07(¥ (Y)}

(e7)y =min{(e7)y(X), (¢7)¢y ()}

Similarly, (0.#)g = min{(¢.#)y(x), (0.7) ¢ ()}
(07)y (x*Y) =07 (¥ (x*Y))

=07 (VY (X)* WV (y))

= max {o7(V (x)), 0.7V ()
(07)y =max {(0.7)y(X), (e.7)y(¥)} X /
Therefore, V(07,7 #) is the neutrosophic_Z-subalgebra of X .

Remark 3.8 The set which is denoted by /9 » # is also the subalgebra of X
which is defined tobe Io7 s 7z ={x € X/ 07 7.7 X) =07, 7.7 (0)}.

Theorem 3.9 Let ¢ = {x, 07 s 7 (x) : x €X} be the neutrosophic_Z—algebra of
X. Then, Jaset Iz g gis also the subalgebra of X.

Proof: Letx,yeloz s 7
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Thenoz 7 2 X) =07 .77 0) =07 7.7 ).
Consider
07 (x#*y)>min {07 (x), 07 (¥)}
> min {¢ 7 (0), 07(0)}
=07 (0
07 (x*Y) = 07 (0),

Consider Proposition 3.3, o 7 (x % Y) > 07 (0)
Then, there exist 9.7 ((X * Y) > 0.7 (0) or equivalently, (x *Y) € lo 7 7 #

Similarly, 0 #(x * Y)> 0. ¢ (0)
0z (x*y) =max {07 (X), 0.7 ()}
=max {07 (0), 0.7 (0)}
=07(0)
S0z (x#Y) < o (0) Using Proposition 3.3
Thus, 07 (x#Y) =07 (O)orx*yeloz s 7
Hence, the set 0.7 s 7 are Z-subalgebras of X.

4 Homomorphism of Neutrosophic_z-Subalgebra

Some interesting results on homomorphism of neutrosophic_Z-subalgebra are
studied in this section.

Theorem 4.1 If 9 : X— Y is the homomorphism of Z-subalgebra. Ifoz 7.7
be the neutrosophic_z -subalgebra of Y, then 9! (Qy’j’g/?) = {0 (02),
91 (00),0 Y oz)) is also the neutrosophic_Z-subalgebra of Y, where
7 (07 ) = 070 (), 37 (0r () = 059 (), 37 (07 (V) = 079 (%),
for every x € X.

Proof: Given 97 s g be the neutrosophic_ Z-subalgebra of Y
Let, x,y'e X.

Then, 3! (0.7 (x%Y) = 070 (x%Y)

=079 (X) %070 (Y)

> min {3 (07 (X)) * 3 (0.7 (Y))}

=min {07! (07 X)) %3~ (0.7 ()}
3 (07 (x¢y) > min {37! (07 () * 07" (0.7 (¥))}
37 (0.9) (x%y) = 0,7 (3 (xy))

=05 (3 (x) * ()

>min { 0.# (3 (x)), 0.7 (3 (X))}

=min{d~! (0.7 (x)), 37! (0. )}
37 (07) (xxy) = 07 (3 (x* Y))

=07 (3 (x) *3(Y))

<max {07 (3 (), 0.7 (3 (x))}

=max {37! (0.7 (), 97! (0.7 )}
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97 (07) (eky) < max {37! (07 (x)), 37" (0.7 (¥))) A
Hence 8! (Qﬂq’j’g;) ={@"(07),087 ' (0.r), 37! (0.7 )} is the neutrosophic_Z-
subalgebra of X.

Theorem 4.2 If p : X — Y be the homomorphism from Z-algebra X to Y. If ¢
= (07.7.7) be the neutrosophic_z-algebra of Z, then the image of p ($)= {x,
Psup(@.7) Psup(0.7), pins(0.7)/ X € X } of ¥ under p is also the neutrosophic_Z—
subalgebra of Y.

Proof: Let 9 = (07, s 7) bethe neutrosophic_Z-subalgebra of Z and let Y1, Y2€
Y.
We know that x; % x2/x] € p~ ' (¥}) & x2 € p~ (¥2)C{x € Z/x € p~\(¥j # ¥5).

Now, psup(07) ((}/1*}[2 )=sup {(07)/x € :071 (}[1*}/2 )}
=sup {(07) xi#x2/x1 € p~ 1 (¥}) & x2 € p~! (¥3)}
>sup minfo 7 (x1),ng (x2)/x1 € p~ (1) &x2 € p~ 1 (¥2)}
= min{sup{o7 (x1) /x1 € p~' (Y1), 07 (x2)/ x2 € p~'(¥2)}}
psup(0.7) ((Y1#y5 ) = min {pep (07 (1)), Psup (0.7 (Y2))}
psup(0.5) (Yi%Y2) = sup 0.7 (X)/ x € p~ (¥} #2)
=sup {(0.7) xi¥x2/x1 € p~ 1 (¥]) & x2 € o7 (¥3)}
>sup{min{o.s (x1).n.7 (x2)/x1 € p~ (Y1) & x2 € p~(¥3)}
= min{sup{o.s (x1) /x1 € p7 (¥}), 07 (x2)/ x2€ p~'(¥2)}}
= min {psup (0.7 (Y1)): Psup (0.7 (Y2)))
Psup(0.7) (}/1*3/-2) > min {Psup (07 (}/‘1))’ Psup (0.7 (}/2 N}
pinf(07) (Yi%Y2) =inf {0z (x)/x € p~ (i * y2)}
<inf{(gz) xi#x2/x1 € p~ ! (y}) & x2 € p~' (¥3)}
<inf{max{o.# (x1),0.7 (X2)/x1 € p~ (Y1) & x2 € p~ ' (¥2)}
=max({inf{oz (x1) /x1 € p7' (1), 07 (x2)/ x2€p~ ' (¥2)}}
=max {pinf (0.7 (Y1), Pint (@7 (¥2))}
Hence, pinf(0.7) (Yi%Y2) < max {pinf (07 (¥1)): pint (0.7 (¥2))}-

Theorem 4.3 Suppose: X — Y be the homomorphism of Z-subalgebra. If ¢ =
(07..7.7) be the neutrosophic_Z-algebra of Y, then its pre-image of o9 = {x;
p~ ' (07.7.7) /x € X} of ¥ under p is also a neutrosophic_Z-subalgebra of X.

Proof:
™ (07)(x%Y) = 07(p (x*Y))
=07(p X) % p ()
> min{o7 (X),07 ()}
=min {p~! (07) %), p"! (07) )}
o o) (xxy) = min {p~! (07) (%), p7! (0.7) ()}
Similarly, p~! (0.#)(x* y) = min {p™" (0./) X), p™' (0.9) V)}
P~ 07)(x*Y) = 0.7 (p (x+Y))
=07(p (X) * p (¥))
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=max{oz (x), 07 ()}
=max {p~" (07) (%), p”" () )}
p! (@)(exy) < max {p™ "or) ), p7 (07) W)
pl ) = {x, p~ (ny )/xe X } of ¢ under p is the neutrosophic_ Z-
subalgebra of X.

Theorem 4.4 Let h be the Z- endomorphism of (X, %, 0). Ifﬁ ={x:07, I T /x €
X} be a neutrosophic_Z-subalgebra of X, then ¢ = {x : Q7 T »/x€eZ}isalsoa

neutrosophic_Z-subalgebra of X.
Proof: Given h be an Z—endomorphism of Z—algebra X, %, 0).

Let 9 be a neutrosophic_z-subalgebra of X.
To prove: 9" is also a neutrosophic_Z-subalgebra of X.
Let x, y'e X, then
0gn(x*Y) =0z (h (x*Y)
=07 (X)*h(y))
> min{ ¢ 7(h (x), 0.7 (h (¥)}
o0 (X*Y) = min{o 71 (X), 0. 71 (Y)}
Similarly, 0 g1 (x #* ¥) > min{o g1 (X), 0 #1 (¥)}
ogn (x*Y) =0z (x*Y)
=0zt ) *h(y))
<max{ oz (x), 07 (h(Y)}
ogn (X * 3/) < max{g s (x). Q.7 W}
Hence, 9" is also a neutrosophic_ Z- subalgebra of X.

5 Conclusion

The above research proposal aim is to demonstrate a new approach to neutro-
sophic Z-algebra in various dimensions, and the manuscript outlined the new
framework of neutrosophic_set in Z-algebra using a single binary operation (%)
and discussed algebraic structures such as union, intersection, homomorphism,
endomorphism, and inverse image. In ongoing studies, this could be enhanced
to other algebraic structures and fuzzy set extensions which include interval-
valued neutrosophic_fuzzy set, interval-valued intuitionistic neutrosophic_set, cubic
neutrosophic_set, and bipolar neutrosophic_set.
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Controllable Fuzzy Neutrosophic Soft ®
Matrices Pt

M. Kavitha and P. Murugadas

Keywords Fuzzy Neutrosophic Soft Matrices (FuNeSoMas) - Controllable Fuzzy
Neutrosophic Soft Matrices (CoFuNeSoMas) - Nilpotent Fuzzy Neutrosophic Soft
Matrices (NiFuNeSoMas) - Fuzzy Neutrosophic Soft Relation (FuNeSoRe) -
Transitivity canonical form

1 Introduction

The concept of fuzzy sets was founded by Zadeh [19]. Intuitionistic Fuzzy Sets
(InFuSes) introduced by Atanassov [2] are appropriate for such a situation. But
the intuitionistic fuzzy sets can only handle the incomplete information considering
both the truth-membership (or simply membership) and falsity-membership (or
non-membership) values. It does not handle the indeterminate and inconsistent
information, which exists in belief system. Smarandache [16] introduced the
concept of Neutrosophic Set (NeSe), which is a mathematical tool for handling
problems involving imprecise, indeterminacy, and inconsistent data.

In our regular everyday life, we face situations that require procedures allowing
certain flexibility in information processing capacity. Molodtsov [12] addressed soft
set theory problems successfully. In their early work, soft set was described purely
as a mathematical method to model uncertainties. The researchers can pick any
kind of parameters of any nature they wish in order to facilitate the decision-making
procedure as there is a varied way of picturing the objects.

Maji [10] have done further research on soft set theory. Presence of vagueness
demanded Fuzzy Soft Set (FuSoSe) to come into picture. But satisfactory evaluation
of membership values is not always possible because of the insufficiency in the
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available information (besides the presence of vagueness) situation. Evaluation of
non-membership values is also not always possible for the same reason, and as a
result, there exists an indeterministic part upon which hesitation survives. Certainly
fuzzy soft set theory is not suitable to solve such problems. In those situations,
Intuitionistic Fuzzy Soft Set theory (InFuSoSs) [11] may be more applicable. Now
in the parlance of soft set theory, there is hardly any limitation to select the nature of
the criteria, and as most of the parameters or criteria (which are words or sentences)
are neutrosophic in nature, Maji [9] has been motivated to combine the concept of
soft set and neutrosophic set to make the new mathematical model neutrosophic soft
set and has given an algorithm to solve a decision-making problem.

The theory of a fuzzy matrix is very useful in the discussion of fuzzy relations.
We can represent basic propositions of the theory of fuzzy relations in terms of
matrix operations. Furthermore, we can deal with the fuzzy relations in the matrix
form. In the study of the theory of fuzzy matrix, a canonical form of some fuzzy
matrices has received increasing attention. For example, Kim and Roush [8] studied
the Idempotent fuzzy matrices. Xin [18] introduced the idea for Convergence of
powers of controllable fuzzy matrices. Padder and Murugadas [15] are presented
the max-min opetarion on InFuMa. Broumi et al. [3] redefined the notion of
neutrosophic set in a new way and put forward the concept of neutrosophic soft
matrix and different types of matrices in neutrosophic soft theory. They have
introduced some new operations and properties on these matrices. The minimal
solution was done by Kavitha et al. [5], based on the notion of FuNeSoMa given by
Arokiarani and Sumathi [1]. As time goes, some works on FuNeSoMa were done by
Kavitha et al. [4-7]. The Monotone interval fuzzy neutrosophic soft eigenproblem,
and Monotone fuzzy neutrosophic soft eigenspace structures in max-min algebra
and Solvability of system of neutrosophic soft linear equations were investigated
by Murugadas et al. [13, 14]. Also, two kinds of fuzzy neutrosophic soft matrices
presented by Uma et al. [17].

In this chapter, we study and prove some properties of controllable and Idom-
potent FuNeSoMas. However, we have developed an algorithm for controllable and
nilpotent FuNeSoMas and reduce a controllable FuNeSoMa to canonical form. One
of these results enables us to construct an idempotent and controllable FuNeSoMa
from a given one, and this is the main result in the chapter.

2 Preliminaries

For basic result refer [5, 16—18].

2.1 Main Results

Let R = (rlg, rl.lj, ri'; yand § = (sg, sin, sg ) be square FuNeSoMa with elements in
[0,1].
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- RV S =0l vishoshosil,

- R/\S—[( j, lj,rlf)/\(sg,silj,sg)],

- RoS=0]rl kYot sk sin

(5»’,5”’5)9(5, in’s£> — (rﬂ,ri[j,rif.) If (riz,rilj,rf;)>(sl.ﬁ,si[j,slg)
0,01y 1f okl < (sl

T I .F T I F T I F T I F
- RxS:[((ril,ril,ril)A(slj,slj,s1j>)v((ri2,ri2,riz)/\(szj,szj,szj))v...V
T .1 L F T I F
(i Tis Tin) AN (Syjs Syjn SN

— RMY=RK xR, k=1{0,1,2,...},

- R'=1,
- R’—(rJTl, /11’ F)thetransposeofR,
_ Fy _ (T I .F T .1 .F
- AR = R@R/— (,]7 l]ar,[!> (r;-j,r;.j,r;-!->9(7‘71;1-,?-1.,7‘[{;1-),
/
— VR=RAR —V( i i ru)—(ru r”,r”)/\(rﬂ,r”,rji),
= R SH(rforfor]) < (sl s s)V i € (120 o).
Fy _ T I F\ _ ..
- RVUS iff (( Sij U,sj) = (0,0,1) = (rlj,rlj,rlj) = (0,0,1) Vi,j €
{1,2,...,n}),
FuNeSoMa R is said to be
— Transitive if (r l], llj,rf;)2 < (rg,rilj,rg);
I .F\2 _ /T I ,F\y.
_ Idempotentlf( u”’z,> _<rl.j,rl.j,rij),
— Nilpotent if (r i U,r}j)":(o,o,l);
- Symmetrlclf( ije lIJ rﬁ)—(rT,rll.i,rﬁ),
— ST iff for any index i, j,k € {1,2 n} with i # j,i # k,j # k, such
that (rlk, ik zk) > (rle,r,é,rkl) and (rk/,rkj,rkl) > (rok,rjI.k,rﬁ(), we have

(VT r F) > <rT 1 F).

ijolije Jji’ ]t’ jl
— Strictly Lower (Upper) Triangular (SL(U)T) if (L i Tij r5 y = (0,0, 1)Vi <
J@=J.

Theorem 1 Consider a NiFuNeSoMa N and Symmetric FuNeSoMa (SyFuNe-

SoMa) S. For a FuNeSoMa R given by R = N Vv S$3 a Pemutation FuNeSoMa

— I _ T I F T I F
(PeFuNeSoMa) P 5T = (tl],tu,tl]) = (pij,pij,pij) X (rij,rl.j,rij) X
(pJTi, p§i, pfi) satisfies tlf, tllj, tl';) > (t]Tl,t]]l, tF)forl > j.
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T (I T 1 F T .1
Proof [,]a[,]’tl]) <pijapijapij>x<,]arlja lj> (P], P], PJ,>
= (p};» pij. Plj) % ((nfj,n{j,n,‘j)\/(sg,s,’j,sFD <p,, p,, p,,)

= (plj Pl )<l nli n )< T Pl PEDV RS Pl pEY (sl ss ) x

(phs phi PED.
Since N is NiFuNeSoMa, ((piC., pi’j, pl.';) x(nl.Tj, nl.lj, nl?;) x(pJTi, p]’.i, iji))becomes
strictly lower triangler for some PeFuNeSoMa P.
: T I F T I ,F T I L F\\; :
Thus since ((pl] Pl, pl.j) (n i n” nl.j) X (pjl., pjl.,pjl.)) 1S symmetric,
T satisfies (tL,tL, tE) > (T t!. tE) fori > j by choosing such a PeFuNe-

ijrrijr iy Jjir tjic i
SoMa P.
Remark 1 If N = (n”. ij nlI i ]) is NiFuNeSoMa, then there exists a PeFuNeSoMa

P such that (p[., p/;. pf;) x (nls nlionf) < (pT. pl, ph) is SLQU)T.

Remark 2 The NiFuNeSoMa, R has not less than a null row and atleast one null
column.

Remark 3 If R is NiFuNeSoMa iff (rL, rl rEY® = (0,0,1), to a little i €

ll’ 1’ 11

I,(Index) and little k € 1,,, for RF := [(r 5, rle, rh £y,

Theorem 2 Forany FuNeSoMa R, (r;. vl vy = awl vl o rEyvv ol rl o rf).

3 Controllable Fuzzy Neutrosophic Soft Matrices

Here we establish some basic properties of FuNeSoMas. In the ensuing discussion,
we pact only with SqFuNeSoMas.

Proposition 1 For a FuNeSoMa N. If 3 a PeFuNeSoMa P > (p};, p;, pf;) x

(nl;oniionly < (pli, ply, pT) is SL(U)T, then N is a NiFuNeSoMa.

Proof Let

(0,0,1) (0,0, 1)

T 1 F
i) %

T 1 F
S:(pij7pij?pij>X(”ij’”z]’ <pjz?p]z?p]l>_

* (0,0, 1)

we can prove the direct multiplication that S is also SL(U)T, and consequently
$3,8% ... all powers of S. All diagonals are zero in S, S$2,83,..., so by
fe i T I F T I _F T I F
Remark 3, S is nilpotent. As (pij, pij» pl.j) X (pji, Pji» pji> = (pjl., Pji» pjl.) X
(pic., pl]] pil;) = (1, 1, 0), then multiplying S on the left by (pic. pi]j pil;) we get

(s s 587) x

(P]Ti,P]li,Pfi)X SijSijsS (P,],P,j,p,]) (nl, nl F) so we find the N,

l]’ ij>"ij
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that is <n,T,, njj,nf)" = <p,T,,p§,,p,F,> x (g st sty < Pl pij pl)
(Pis pj, pj,) (st st sEyxpls i P <o oxpls phi pEY < (sl st 5T x
(P} pl, p,,>

(p,, p,, p,,) (shis sk shm <ol ol pf)

= (P} Pl Pf) x 0,0, 1) x (pf}, pf;. p}) = (0,0, 1).

Theorem 3 A FuNeSoMa N is nilpotent iff 3 a PeFuNeSoMa (pl.?, pin, p5> >
(PiT,,PiI/»P5> X (n,-Tj,nle, ) (pﬂ p/l pﬂ) is SL(U)T.

Note 1 Let <er’ lj, l]) be a FuNeSoMa, (pl] pl] plj) is PeFuNeSoMa. Let T =
T .1

I
(Whotlodly = ol plis ph) <l rf) < (pl, plis pT). The element which
lies in the (i, /)™ entry of R lies next in the (h, k)" of T iff (pl., pl., pL) =

Theorem4 Let R = (rl, r!

i Tije T ) be a FuNeSoMa, P = (p;,p{j,pg) is
PeFuNeSoMa. Then

(Pl Pl Pl < (AGS b)) x (pl pli Pl = AR . )

< (rforlorfin < (pl plis Pl (1)

(pli Pl Yy < Vel oy < (phi plis pT) = VAR Pl )

X(i‘T I‘I F>

ijoTijoTij (P],’P],,Pﬂ)) )

Definition 1 We say a FuNeSoMa R is controllabel from belove (above) if 3a

PefuNeSoMa P > (. .15 = (Pl j. pf) x (rf. 1. 1) X (P, Pl )

: I ! I I

satlsﬁes(lj,tlj,t )y > (tjl,tjl,tﬂ) ((tu,tu,t )< (tjl,tjl,tﬂ))alongasz > j.

A FuNeSoMa R = (rl 1 llj, 5 ) is said to be controlled from below (above), if
T I .F T 1 . Fyc T I F T .1

(rij,rl.j,rij) > (rji,rji,rji)((rij,rij,rij) < (r]l,rﬂ, ]l))as longi > j.

Theorem 5 The next statements are analogous:

— () ekl by is CEB(A).
— (2) There exists a PeFuNeSoMa (pg., pl.ll., pﬁ) such that A((pl.T,., pl.ll., pﬁ) X

(rij i i) X APJis Pl PJ)) is SLUJT.

- (3) There exists a PeFuNeSoMa (piT/.,pin,piI;) such that (piTj,pl.Ij,p[I;) X
T I F T I Fy)icq] '
(Alrierf 150) < pJy pjys 1) is SLUIT

- Auk ki ek

Corollary 1 (v, v/, r[) is CFB iff (]}, v, ) is CRA.
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Note 2 Let R and S be FuNeSoMas, and P is a PeFuNeSoM. Then RllfS iff
T I F T I F T I F T I F F
<pijv Dij» P,’j) X <rl'j7rl'jv V[j> 2 (Pji, Pjis Pji)‘l’(P,-j, Pij» p,'j) X (S ,/ S,j) X

Proof: The proof is obvious.

Theorem 6 Let R, S be a FuNeSoMas, and ARY AS. If S is controllable, then R
is controllable.

4 Reduction of Controllable Matrix to Canonical Form

Lemmal Let R = (( i l], 1])) and S = (( Sij ], l])) be n x n FuNeSoMa of
the form
(07 07 1) <07 Oa 1) e (Oa 07 1)
R=| . ,
| o Ry |
(0,0, 1) : (O 0,1)---(0,0,1)
S=| ,
L B S1 i

where o and B are (n — 1) x 1 FuNeSoMa and Ry and Sy are FuNeSoMa of order
(n-1). Then

(i)
(0,0,1):(0,0,1) --- (0,0, 1)
RxS=| ... ... .. ...
Ry x B Ry x 51
(ii)
(0,0,1) :(0,0,1)---(0,0,1)
R'=1|
Rf_l X o Rf

(iii) R is NiFuNeSoMa iff R, is nilpotent.
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Remark 4 Let R = ((r U, U F)) € FuNeSoMa,, and R have no less than one

(0,0, 1) row (say, the i’ row). Let i’ row — I-row and vice versa and do the same
for column; then we have

[10.0.1)1(0,0,1) -+ (0,0, 1) |

R* = *

Lemma 2 R is NiFuNeSoMa iff R is NiFuNeSoMa. By Lemma 1, we have the
following for NiFuNeSoMa R.

Algorithm 1 Step 1. Check R, for a null row and null column; if anyone is missing,
then R fails to be nilpotent. End.

Check R for both zero row and zero column. If not, then R is not nilpotent. If R has
both conditions, then do interchange as mentioned; then, we have

(0,0,1) : (0,0, 1) --- (0,0, 1)
(plj Pl iV X R (pfo phiopfidi= |

where (pl;, pj, pi)t = (pl, plj pjj)(1, ir). Nextstep

Step 2. Check R for both zero row and zero column. If not then R; is not nilpotent,
Stop.

If R, satisfies desired conditions, i.e., in Ry, the iéh row is a null row. The new form
(i Pl P2 x (pZ, p,’,, pii X R x <pf, pf,, Pit X (pli, Pl ph)2 from
FuNeSoMa (pl ,p[ ,pu)l X R x (p p Pl,)l by interchanging the (i» + 1)-th
row with I row and (ip 4+ 1)-th column w1th the II column such that

T 1 F T 1 F T 1 F T 1 F
(Pl'.,',P,'ijiﬂZ X (P,'j,P,'.,',P,'ﬂl x R X (P‘/,',le',Pji)l X (Pj,ij,ijib

_<o, 0,1) (0,0,1) :(0,0,1) ... (0,0, 1)
% (0,0,1):(0,0,1)...(0,0,1)

where (Pi? 17,-1]-, 175)2 = (pg-, pilj, pS)(Z, io + 1). Next step.
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Step 3. Check R, for a null row and null column. If not, R is not nilpotent; thus,
Lemma 2 implies R and R are not nilpotent, stop.
Else if in Ry, the igh row of R is null, the new FuNeSoMa of the form

(Pijs Pijs Pigs > (Pijs Pl Pij)2

(P Pl PV X R > (pT plhi phn x
(Pl Pl pE2 x (pT, phis ph)s from mateix (pls, pli. pia x (pl, pl. pfi1 x

R x (pJTi, pjl.i, pfih X (pJTi, pjl.i, pfi)z then changes the (i3 + 2)-th row with II row
and (i3 + 2)-th column with the II column 3,

(Pl Pl Y3 < (pl bl pla < (plhs ply. pi < R x (pli. plis Pl

T 1 F T 1 F
X A(pji» Pji> Pji)2 X Pji» Pji» Pji)3

*

*

*

(0,0, 1) (0,0, 1) (0,0,1) : (0,0,1) ... (0,0, 1)

(0,0, 1) (0,0,1) :(0,0,1) ... (0,0, 1)
x  (0,0,1):(0,0,1) ...(0,0,1)

* %

where (pig, pilj, p5)3 = (piTj, pilj, pg)(?», i3 + 2). Next step.

Continuing like this, finally we get

T I _F T I _F T I _F T I _F
X<pij’pijvpij>2 X <pij,pij’pij>l X R x (P‘/,',Pji,l?ji)l X (Pj,ij,'»P.,',')zX

T 1 F T 1 F
(pija Pij» Pij>n X (Pij» Dij» Pij)n—l X

X Pyt X (Pl Pl Pl =

where (p, pli 5w = (P, Pljs 5 im +m = 1) m € 1.

[ 10,0, 1) (0,0, 1) (0,0, 1) % (0,0, 1) ...
% (0,0,1)(0,0,1) : (0,0,1) ...
* x  (0,0,1):(0,0,1) ...
* * *
Ry
| x * *

(0,0, 1)
(0,0,1)
(0,0,1)
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In the event if R, fails to satisfy both the condition, then R is not nilpotent.
Else,

(0,0,1) (0,0, 1)
Rn = ..
* <07 Oa 1>

then by Lemma 2, R is nilpotent by the sequence of actions. Then, (p/;, p/;, p;) =

(Pl pl pEYe < ol pl pEY i xoxp L ph pEYe x (ol bl DL
We obtain,

(0,0, 1) (0,0, 1)
(pli Pl o) x R x (ph. pli ph) = .
* (0,0, 1)

which indeed SLT. Algorithm to curtail CoFuNeSoMa to canonical form.

Algorithm 2 Step 1. By Algorithm 1, we can check if AR is nilpotent or not. Thus
R is CoFuNeSoMa or not by Theorem 5.

Step 2. If R is CoFuNeSoMa, then by Step I, we get a permutation matrix P, i.e.,
(pl plis Pl x (AR) x (pT, pl;, pFy), which is SLT. So (p[L, pl;, pf5) x R x
(pJTi, p]’.l., pﬁ.) is canonical form of R. Stop.

5 Conclusion

In this article the controllable fuzzy neutrosophic soft matrix is defined. Further,
various properties of nilpotent and controllable fuzzy neutrosophic soft matrices
are showed. We have developed an algorithm for controllable and nilpotent fuzzy
neutrosophic soft matrices and reduced a controllable fuzzy neutrosophic soft matrix
to canonical form.
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An MCDM Based on Neutrosophic Fuzzy  m
SAW Method for New Entrepreneurs oo
in Organic Farming

T. Porchudar, A. Merceline Anita, M. Arul Jeya Shalini, and J. Jeba Jesintha

Keywords Neutrosophic Fuzzy SAW method - Linguistic variables -
Neutrosophic fuzzy numbers - Organic farming

1 Introduction

Multi-criteria decision-making(MCDM) is a significant approach to make a decision
in accordance with the preference on the people who decide things. At every step in
our lives, we make decisions to perform all our actions. The theory of decision-
making is just an attempt at codification of our decision-making process in a
mathematically tractable form [6]. During decision-making in some cases, there
is no method for assessing the data clearly; it can be easily evaluated in terms of
linguistic variables. The idea of fuzzy sets, which can be used to improve these
kind of situations [11], was first introduced by Prof. Lotfi A. Zadeh of University
of California in 1965. MCDM is a concept that enables us to select the most
appropriate alternative by evaluating them in terms of many criteria. A widely used
and popularly known MCDM is simple additive weighting method, which calculates
the weight values for ranking each alternatives over specific criteria.

Since India is an Agrarian country, the future of small-scale farming lies in the
hands of youth as they are considered as potential future farmers. In the recent years,
we see that the interest in organic farming is booming among youngsters. Many
IT professionals and other young professionals are leaving their lucrative jobs to
start organic farming. Though they are interested, most of them were drawn into the
world of organic farming without knowing the ground reality, and this paves the way
to face so many difficulties during the initial times. Hence, this problem is taken into
account and implemented with NFSAW method. The paper is structured as follows:
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Introduction and historical background of NFSAW method are dealt first, followed
by basic definitions. An algorithm is presented for our case study with comparative
analysis, and finally, it’s concluded with the arrived results.

2 Literature Review

Churchman and Ackoff introduced the method called simple additive weighting
(SAW) in 1945, and they utilized SAW method to select the portfolio problem. In
2005, Modarres and Sadi Nezhad published a paper using preference ratio in fuzzy
simple additive weighting (FSAW) method. In 2013, Prabhjot Kaur and Sanjay
Kumar developed fuzzy SAW method into Intuitionistic fuzzy SAW method for
vendor selection [5]. In 2013, Manish Sagar, Jayaswal, and Kushwah explored fuzzy
SAW method for maintenance strategy selection [8]. In 2016, E. Roszkowskaa
and D. Kacprzakb extended the linguistic FSAW and linguistic fuzzy analytical
hierarchy process (FTOPSIS) techniques [7].

In 2016, Budi Praseliyo, Niswah Baroroh, and Dwi Rufiyanti utilized this fuzzy
SAW Method for taking decisions in human resource recruitment [3]. In 2018,
Wini Waziana, Rita Irviani, Oktaviani Satria, and Adino Kurniawan have utilized
this fuzzy simple additive weighting for helping out farmers and to determine the
recipients in their breeding farm [10]. Further SAW method has also been applied
in interval valued neutrosophic set for the selection of insurance options [2] and
in the selection of achieving students in faculty level [4]. In 2019, this fuzzy SAW
method was extended to neutrosophic fuzzy SAW method by D. Ajay and J. Aldring,
who proposed an application for this neutrosophic fuzzy SAW method [1]. In 2020,
Nguyen Tho Thong has extended TOPSIS method, and it has evolved in dynamic
neutrosophic environment [9]. Earlier, there was no study on using neutrosophic
sets to solve MCDM problems. Most recently, multiple scholarly approaches are
emerging in MCDM using neutrosophic sets, which mainly deal with neutrality.

3 Basic Concepts

This chapter elaborates some of the fundamental ideas behind the fuzzy set and the
neutrosophic set.

Definition 3.1 (Fuzzy Membership [1]) Let x be the universal set. The mem-
bership function w4 by which a fuzzy set A is usually defined is in the form
na: x — [0, 1]; the values obtained are called the membership values.

Definition 3.2 (Linguistic Variables [1]) In fuzzy logic, a linguistic variable is a
variable whose values are phrases in either natural or in artificial language.
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Definition 3.3 (Triangular Fuzzy Number [1]) Triangular fuzzy number is a

triplet A = {x : (u,v,w)}, where the smallest likely value is “u,” the most
probable value is “v,” and the largest possible value is “w” of any fuzzy event.

0, x<u

X—Uu

= o ou<x<v
na(x) =43 o4

, V<X <w
w—v
0, xX>w

Definition 3.4 (Neutrosophic Set [1]) Let U be the universe of discourse and C
be a subset of U. Each element b € U has degree of true indeterminacy and false
membership in C. The neutrosophic set is Cys = {< b, Tc(b), Fc(b), Ic(b) > :
b € X} where T¢ (D), Ic(b), and F¢ (b) represent the degree of truth, indeterminacy,
and falsity membership functions, respectively, which take their values in the unit
closed interval. We have no restriction on the sum of T¢(b), Fc(b), and I¢(b). It
satisfies the following relation: 0 < T¢ (b) + Fc(b) + Ic(b) < 3.

4 Algorithm

Step 1 Determine the criteria C; from a group of experts Xy for the decision-
making problem.

Step 2 Select the relevant truth, false, and indeterminacy membership rating values
of each criterion in terms of the linguistic variables by the experts.

Step 3 Fuzzify the linguistic variable of each criterion in terms of fuzzy triangular
number.

Step 4 Find the average fuzzy scores Lj. of triangular fuzzy numbers

(ll, m%, n?), (ll, m%, n%) e, (ll., m%, ni) defuzzified values, and normalized

weight w; for each criterion. =~

1. Average fuzzy scores L; = w ,wherei =1, 2, 3.

2. Defuzzified value (e) = (l+"31—+") wherel = L. m =12, n=1L3

3. Normalized values (w) = Defuzzified value of the criteria/sum of all defuzzified
values.

Step 5: Find the centroid weight value W; = (a + 28 + y)/4, where «, B, y are
normalized weighted values of truth, indeterminacy, and false membership function,
respectively.

Step 6 Assign the applicable neutrosophic rating values (truth, false, and indeter-
minacy membership values) for each alternative A; over a criteria C; as linguistic
variables by experts’ opinion.
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Step 7 Repeat step 4, and find the average fuzzy score and the defuzzified score of
each alternative on criteria.

Step 8 Form normalized decision matrix for truth, indeterminacy, and false mem-
bership function, corresponding to each alternative over all criteria.

Step 9 Evaluate N;; = Wq’fﬂ)r-’, where p is the normalized truth member-

ship value, q is the normalized indeterminacy membership function value, and r is
the normalized false membership function value.

Step 10 Find the combined normalized neutrosophic decision matrix.

Step 11 Calculate the total scores of each alternative using TS = N;; * W;. Finally,
the highest score is chosen as the ideal alternative.

5 Case Study

This chapter speaks about a real-world issue in the agricultural sector, which is
applied to the NFSAW method. We choose five experts (X1, X2, X3, X4, X5) to
analyze the best alternative for youngsters who urge to be successful entrepreneurs
in organic farming. Five entrepreneur jobs in organic farming are chosen as alter-
natives. The following alternatives are A, beekeeping; A, community farming;
As, integrated farming; A4, organic store; and As, millet mill. Seven criteria are
classified and taken as basic characteristics to be evaluated and checked before an
entrepreneur starts with his/her idea. The list of criteria taken by an entrepreneur in
organic farming includes Cj, initial investment rate; C;, labor/manual support; C3,
awareness/training; C4, youngster’s interest rate; Cs, market demand rate; Cg, profit
rate; and C7, additional income rate. The truth membership (7},) rating values to
each criteria assigned by the experts (Table 1) in terms of the linguistic variables.

Transforming the linguistic variables of truth membership rating values in terms
of fuzzy triangular number is shown in Table 2, similarly, transforming the linguistic
variables of false and indeterminacy membership [1] rating values in terms of fuzzy
triangular number.

Table 1 Truth membership Criteria/experts X1 | X2 X3 | X4 |Xs

rating values —
Initial investment C H H H MH ' ML
Manual support Cy H M |H ML |L
Awareness and training C3 | H VH |VH 'H VL
Youngsters’ interestrate C4, |MH | VH |VH |VH | MH
Market demand rate Cs M VH M VH |H
Profit rate Cg H ML MH H H
Additional income rate Cy H VH H VH M
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Table 2 Truth membership 7}, with triangular fuzzy number

X1 X2 X3 X4 Xs

I8 (0.7,0.9,1) (0.7,0.9,1) (0.7,0.9,1) (0.5,0.7,0.9) (0.1,03,0.5)
Cy (0.7,0.9,1) (0.3,0.5,0.7) (0.7,0.9,1) (0.1,0.3,0.5) (0,0.1,0.3)

C3 (0.7,0.9,1.0) (0.9,1.0,1.0) (0.9,1.0,1.0) (0.7,0.9,1.0) (0.5,0.7,0.9)
Cy (0.5,0.7,0.9) (0.9,1.0,1.0) (0.9,1.0,1.0) (0.9,1.0,1.0) (0.5,0.7,0.9)
Cs (0.7,0.9,1.0) (0.9,1.0,1.0) (0.3,0.5,0.7) (0.9,1.0,1.0) (0.7,0.9,1.0)
Cs (0.7,0.9,1.0) (0.1,0.3,0.5) (0.5,0.7,0.9) (0.7,0.9,1.0) (0.7,0.9,1.0)
C7 (0.7,0.9,1.0) (0.9,1.0,1.0) (0.7,0.9,1.0) (0.9,1.0,1.0) (0.3,0.5,0.7)

Table 3 Normalized weight value for 7,

Criteria Average fuzzy score Defuzzified value Normalized weight T,
Cy (0.54,0.74,0.88) 0.72 0.1433
C> (0.36,0.54,0.7) 0.533 0.1061
C3 (0.74,0.9,0.98) 0.524 0.1043
Cy (0.74,0.88,0.96) 0.86 0.1712
Cs (0.7,0.86,0.94) 0.833 0.1658
Cs (0.54,0.74,0.88) 0.72 0.1433
C7 (0.7,0.86,0.94) 0.833 0.1658

Table 4 Normalized weight value for 1),

Criteria Average fuzzy score Defuzzified value Normalized weight /),
Ci (0.02,0.08,0.22) 0.1066 0.0981
C (0.12,0.2,0.34) 0.22 0.2025
C3 (0.02,0.08,0.22) 0.1066 0.0981
Cy (0.02,0.08,0.22) 0.1066 0.0981
Cs (0.02,0.08,0.22) 0.1066 0.0981
Ce (0.16,0.24,0.38) 0.26 0.2393
C7 (0.04,0.16,0.34) 0.18 0.1685

We calculate the average fuzzy score L defuzzified values (e), and normalized
weighted values (w) for truth membership function of criteria in Table 3 using
step 4.

Similarly, continuing the same process for indeterminacy (/7) in Table 4 and
false membership (F)s) rating values in Table 5 to get normalized weight values
(w).

Now, the centroid weighted value W for all the criteria is calculated.

_@428+y) 01433 42(0.0981) +0.1455

=0.121.
j 4 1 4

Similarly, the remaining values are calculated. Next, assign the applicable neu-
trosophic rating values by experts (truth Ty, false Fjs, and indeterminacy Iy
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Table 5 Normalized weight value for Fj,

T. Porchudar et al.

Criteria Average fuzzy score Defuzzified value Normalized weight (1))
Cy (0.08,0.18,0.34) 0.2 0.1455
Cy (0.16,0.26,0.4) 0.2733 0.1988
C3 (0.14,0.26,0.084) 0.1613 0.1173
Cy (0.06,0.1,0.22) 0.1266 0.0921
Cs (0.04,0.14,0.3) 0.16 0.1164
Ce (0.2,0.3,0.44) 0.3133 0.2279
C7 (0.04,0.12,0.26) 0.14 0.1018
Table 6 Normalized decision matrix 7,
T Cy Cy C3 Cy Cs Ce C7
Ay 0.8400 0.8319 0.9918 1 1 0.8906 0.6093
Ar 0.9199 0.7999 0.9674 0.8434 0.8162 1 0.9375
A3 0.9360 0.9519 0.8129 0.7912 0.8529 0.9218 1
Ay 1 1 1 0.9392 0.8235 0.8828 0.9140
As 0.8479 0.6879 0.8129 0.6347 0.7500 0.8983 0.7421
Table 7 Normalized decision matrix 1,
I, Cy Cy C3 Cy Cs Ce C7
Ay 0.9399 0.5745 0.2727 0.6153 0.4893 1 0.7885
Ay 0.7200 0.8723 0.5818 1 0.6594 0.6001 0.5383
Az 0.6001 0.6808 0.5272 0.8461 0.4679 0.2907 1
Ay 0.6001 1 1 0.6407 1 0.5455 0.4229
As 1 0.8298 0.6001 0.4869 0.5745 0.7092 0.9422
Table 8 Normalized decision matrix Fj,
F, Cy Cy C3 Cy Cs Ce C7
Ay 0.7092 0.4679 0.5 0.3876 0.8937 0.6001 0.6094
Ap 0.6363 0.8084 0.5756 1 0.5955 1 0.6563
Az 1 0.8084 1 0.6123 0.7660 0.9798 0.8593
Ay 0.8363 0.8723 0.5756 0.7755 1 0.8199 0.3436
As 0.9537 1 0.5454 0.7550 0.9361 0.8799 1

membership function) to each alternative A; on criteria C; as linguistic variables
and then transforming [1] linguistic variables to triangular fuzzy number. Using step
4, average fuzzy score and defuzzified values are calculated, and we derive normal-
ized decision matrices for truth membership, indeterminacy, and false membership,
which are provided in Tables 6, 7, and 8, respectively.

Calculate the values of N;; for A = 0.5. We arrive N11 and Nj; as follows.

_0.8400 + (0.5)(0.9399) + (1 — 0.5)(0.7092)

=0.8325

2
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Table 9 Combined normalized decision matrix

Nii Cy Cy C3 Cy Cs Ce C7

Ay 0.8325 0.6765 0.6890 0.7507 0.8457 0.8453 0.6541
A 0.7990 0.8201 0.7730 0.9217 0.7963 0.90002 0.7674
A3 0.8680 0.8482 0.7882 0.7602 0.7349 0.7785 0.9648
Ay 0.8591 0.9680 0.8939 0.8236 0.9117 0.7827 0.6486
As 0.9148 0.8014 0.6928 0.6278 0.7526 0.8464 0.8566
Table 10 Comparative Methods | Ranking order

ranking
NFSAW | Ay > Ay > A3 > A5 > A

TOPSIS Ay > A3 > A > As > Ag
WASPAS | Ay > A] > A3 > As > Ay
WSM Ay > Al > As > Az > Ay
WPM Ar > Al > Az > A5 > Ay

0.8319 4 (0.5)(0.5745 1—-0.5)(0.4679
Ny — + (0.5)( 2) + ( )( ) _ 0.6765

Similarly, the remaining values are calculated and used to form the Combined
Normalized Neutrosophic Decision Matrix, which is tabulated in Table 9.
Finally, the total score of each alternative is obtained by N;; * W;.
A1 = (0.8325 x 0.121) 4 (0.6765 x 0.177) + (0.6890 x 0.104)+
(0.7507 x 0.114) + (0.8457 x 0.119) + (0.8453 x 0.212) 4 (0.6541 x 0.151)
=0.7563
Az = (0.7990 x 0.121) 4 (0.8201 x 0.177) + (0.7730 x 0.104)+
(0.9217 x 0.114) 4+ (0.7963 x 0.119) + (0.9000 x 0.212) 4 (0.7674 x 0.151)
= 0.9446

Therefore, the total score of alternatives A; = 0.7563 and A, = 0.9446 is obtained.
Similarly, the remaining values for each alternative is calculated.

6 Comparative Study

In this section, the results obtained through the proposed (NFSAW) method is
compared with the existing fuzzy methods such as TOPSIS, weighted product
model (WPM), weighted sum model (WSM), and weighted aggregated sum product
assessment (WASPAS). From Table 10, it can be observed that the selection of
alternative (Ay) as the preferred choice by NFSAW is validated by the existing
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Fig. 1 Graphical Comparitive Analysis
representation of different

MCDM methods

Ranking

NFSAW  TOPSIS wasPas WSM  WPM
Methods

methods. The slight variation in the ranking order of other alternatives can be
attributed to the sensitive nature of NFSAW method. The results are illustrated with
graphical representation in Figure 1.

7 Conclusion

By applying NFSAW method, rankings of the alternatives are obtained with
accuracy. The rankings for the alternative are of the order Ay > A4 > A3 > As >
Ay, i.e., community farming > organic store > integrated farming > millet mills
> beekeeping. It is evident that community farming(A») is ranked first in NESAW
method, and the same has been the best alternative in all the other existing methods.
This shows that the best choice for an entrepreneur during their initial days is to
start with community farming. Further, many such real-life oriented research work
can be extended using neutrosophic sets.

Alternative | Total score | Rank
Aq 0.7563 \'%

Ay 0.9446 1

A3 0.8219 11
Ay 0.8345 I

As 0.7845 v

References

1. Ajay, D., Manivel, M., Aldring, J.: Neutrosophic fuzzy SAW method and its application. Int. J.
Anal. Exp. Modal Anal., XI, 881-887 (2019)

2. Bolturk, E., Karasan, A., Kahraman, C.: Simple additive weighting and weighted produced
methods using neutrosophic sets. In: Fuzzy Multi-Criteria Decision Making Using Neutro-
sophic Sets, pp. 647-676. Springer, Cham (2019)



An MCDM Based on Neutrosophic Fuzzy SAW Method. .. 75

10.

11.

. Budi, P, Niswah, B., Dwi, R.: Fuzzy simple additive weighting method in the decision making

of human resource recruitment. Lontar Komputer 7, 174-181 (2016)

. Deni, W., Sudana, O., Ssanitha, A.: Analysis and implementation fuzzy multi attributes

decision making SAW method for selection of achieving students in faculty level. Int. J. Pure
Appl. Math., 10, 674-680 (2013)

. Kaw, P, Kumar, S.: An intuitionistic fuzzy simple additive weighting method for selection of

vendors. ISRO J. Bus. Manag. 15, 78-81 (2013). ISSN 22 77 4106

. Klir, G., Folger, T.A.: Fuzzy Sets, Uncertainty and Information. PHI Learning Private Limited,

New Delhi (2010)

. Roszkowskar, E., Kacprza, D.: The fuzzy saw and fuzzy TOPSIS procedures based on ordered

fuzzy number. Inf. Sci. 369, 564-584 (2016). INS 12370

. Sugar, M.K., Jayaswal, P., Kushwah, K.: Exploring fuzzy SAW method for maintenance

strategy selection problem of material handling equipment. Int. J. Curr. Eng. Technol., 3, 600—
605 (2013). ISSN 22 77 4106

. Thong, N.T., Lan, L.T.H., Son, L.H.: Extended TOPSIS method with unknown weight

information in dynamic neutrosophic environment. MDPI J. Math. 8, 2-15 (2020)

Waziana, W., Irviani, R., Oktaviani, 1., Satria, F., Kurniawan, D., Maseleno, A.: Fuzzy simple
additive weighting for determination of receipients breeding farm program. Int. J. Pure Appl.
Math., 118, 93-100 (2018)

Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338-353 (1965)



Decision-Making Problem Based on ®)
Complex Picture Fuzzy Soft Set Using oo
ELECTRE I Method

S. Anita Shanthi and T. Umamakeswari

Keywords Complex picture fuzzy soft aggregation matrix - Concordance index -
Discordance index - Fiberglass

1 Introduction

Zadeh [1] introduced fuzzy set. Atanassav [2] developed IF sets. Hatami-Marbini
et al. [3] proposed ELECTRE I method in fuzzy environment. Aytac et al. [4]
developed fuzzy ELECTRE I to select suitable catering firm. Wu et al. [5] proposed
IF ELECTRE method for solving MCDM problems. Ramot et al. [6, 7] defined
CPS and some basic operations on CPS. Liu et al. [8] dealt with TODIM and
ELECTRE II method based on decision-making framework. Rouyendegh [9] used
ELECTRE method to solve MCDM problems using IF data. Cuong et al. [10, 11]
introduced PFS and defined some operations on PFS. Garg et al. [12, 13] developed
MCDM problems on CIFS. Akram et al. [14, 15] extended ELECTRE I method
to Pythagorean fuzzy environment. Further, they [16] extended it to hesitant
Pythagorean fuzzy sets. Akram et al. [17] developed BN TOPSIS and ECLECTRE I
method to solve MCDM problems. Further, in [18], they accomplished BF TOPSIS
and ELECTRE I method and CSF ELECTRE I method in [19, 20]. Seenivasan et
al. [21] designed a robust fuzzy ranking approach.

In Sect.2, basic definitions needed for the development of the method are
provided. Section 3 deals with the procedure of ELECTRE I method on CPFSS.
In Sect. 4, results and discussions are specified.
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2 ELECTRE I Method for CPFSS

Definition of CPFS set is given in [22].
Definition 1 CPFSSs are represented as p x g matrix denoted by CPFSM.

CPFSM =
el e
Cr [ (y1€ 07 £y VT vy ePUTY  (pef @127 £1pel V12T yppelfiaT)

Co | (21217 £91 V217 [ 1p1 eP2T)  (119pel @27 el V22T 1y efF22)

Cp | (€17 &gV @By (el £ el V2T v gelPra)
q
(n15€' T, 1€ VT vy etPs)

(ose' 2T, Ece' V2T VZSeIﬁZSjT)

(mrse'@rsT &gt Vs Vrsel‘gmn)

Definition 2 Given an CPFSS, _ 4

(CPF,E) = {g, (ije®i™ (¢), ;¢ (9), vijePi™ (9))) : ¢ € U},

mij = 1 — |wijel®i™ — & ;eVii™ — v;;eP%7| is the degree of fuzziness. The CPFS
entropy measure C P E; is,

p
CPE/':%ZUU,]'ZLQ,...,q.

i=1
Weights w; = ql_ci,i =12,---,p.
> (1-CPEj)
j=1
. . p
Weight value w = (wy, wa, ..., w)) satisfies Y w; = 1.
i=1
Definition 3 CPFS concordance (C) set is defined as
CPFSCy,y =

{J./MCPij(G) (p) < C P o (), ECPFPJ.<€) (p) < SCPqu<€) (), VCPr, (0 @
ACP, (o (p) < ACPr o (), )/CPFW.(G)((P) < YCPi0 (), > VCPr o) ()

Bcpr, o (9) > Bep ;o (@)
for the terms on amplitude and phase Yo e U,p #gand p,g =1,2,--- ,r.
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Definition 4 CPFS discordance (D) set is defined as
CPFSD,, =
Ulierr, @) > 1cpr, o) 8cPr, (@) < ECPp (@) verr, o (@) <
VC P (®)
ACPy, 0 (P) > acry o (@) VE,j© (@) < Verp, o (@),

IBCPFW.(E) (p) < ,BCPFqJ. © (@}
for the terms on amplitude and phase Yo e U,p #gand p,g=1,2,--- ,r.

Definition 5 CPFS C matrix is CM ;.

el (4] e eq
Cy — amyy .- amyy
Cy | amoy — ceeamyy
CMpy =
Cp \ampy ampy --- —
CPFS C index am pqs are determined as am pq, = > wi,j=12,...,q.
JECMp,
Definition 6 CPFS D matrix is DM .
el () e eq
C1 — bm12 s bmlq

Cy | bmyy — <o bmyy
Cp \bmp1 bmp --- —

CPFS D index bm p, are determined as

- max % > [8pje"“Pi™ —8 ¢ “4i™ 2
J€DMpg S=u.&,v,0=a,y,B
bmpq = 1 W, ;T iw, ;T
m‘.”‘\/é > [8pj€"“PI™ =8¢ I |2
J S=p,&,v,0=a,y,B

Definition 7 To rank the alternatives, threshold values such as C and D levels are to
be computed. CPFS C level ¢ and CPFS D level 7 are bounded by means of CPFS
C and D index.

r r
CPFSClevel g = ;o5 > Y amp,.

p=l.q#1 p#l.q=1
r

,
CPFSD]evelZ=ﬁ > > bmpg.

Definition 8 By the CPFS C level p, the CPFS C dominance matrix (dom) K is
computed as:
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e en eq
Cr [ — kio - ki
ko Gkt — kog
Cp \kp1 kpp - —

The values of kj, are evaluated as kg =1 if amp, >@, 0 if amp, < o.

Definition 9 By the CPFS D level Z, the CPFS D dom L is computed as:

ey e eq
Ct {(— hno - Iy
Gl — - Iy

The values of [, are evaluated as [, =1 if bmp, <z, 0 if bmp, >7

Definition 10 CPFS aggregated dom M is determined by peer-to peer multiplica-
tion of the elements of K and L.

el e eq
Ci - mp - myy
C | ma — - my

M =

where mp; = kpg.lpq. A simple directed graph can be drawn using the values of
m pq, which connects the alternatives specifically.

3 Procedure

Step 1: Compute CPFSM.

Step 2: Determine weights w; by Definition 2.

Step 3: Compute CPFES C set by Definition 3.

Step 4: Compute CPFS D set by Definition 4.

Step 5: Determine CPFS C Matrix by Definition 5.

Step 6: Determine CPFS D Matrix by Definition 6 and CPFS C and D level by
Definition 7.

Step 7: Calculate CPFS C dom by Definition 8.

Step 8: Calculate CPFS D dom by Definition 9.
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—

Determine the weight value

=

Calculate the CPFS Concordance Calculate the CPFS Discordance matrix
matrix and CPFS Concordance level and CPFS Discordance level

gy

Draw the decision graph and
Determine the best alternative

Fig. 1 CPFS ELECTRE I method

Step 9: Determine CPFS aggregated dom by Definition 10, and draw the decision
graph. Determine the best alternative. Flowchart of CPFS ELECTRE I method is
given in Fig. 1.

4 Results and Discussions

Fiberglass is durable and versatile. Hence, it has a wide range of uses. Fiberglass
components are as follows:

A-type is acknowledged as alkali glass. It is opposing to C-type and has certain
resemblance to window glass.
C-type is designated as a chemical glass.
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E type

Fig. 2 Types of fiberglass

E-type is electrical glass.
S-type is identified as structural glass.

Types of fiberglass are given in Fig. 2.

Four types of fiberglasses, C1, Ca, C3, C4, are chosen as alternatives. To determine
the best alternative, fiberglass materials are evaluated based on the following
parameters: e; = density, e, = tensile strength, e3 = modulus, and e4 = elongation
at break. The best type of fiberglass based on this concept is found.

Step 1 CPFS sets C1, Ca, C3, Cy are represented in Table 1.
Step 2 The weight values w; are,

wi = 0.3596, wy, = 0.1815, w3 = 0.0960, wy = 0.3627.
Step 3 CPFS C set:
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Table 1 Decision matrix in CPES environment

U el e
Ci 0.2¢997 03937 0.45¢0-67 0.3¢997 02937 0.41£09517
C 0.3¢%97 | 0.4¢0°7  0.2¢937 0.3¢%67 | 0.3¢037  0.4¢0-07
C3 0.460'67[, 0.460'4”, 0.360‘57[ 0.460'47[, 0.360'1”, 0.36‘0‘53”
Cs 0.1(10'47[, 0.260'2ﬂ, 0.4(30'61” 0.4160'617’, 0.3160‘771, 0.160'5”
U e3 eq
C 0.1e927 1 0.36037 | 0.4£0-67 0.3¢957 0.5¢077 | 0.1€0-37
C 0.3¢947 | 0.4€067 | 0.2£0-57 0.2¢947 1 0.3¢057 | 0.4£0-67
Cs3 0.4¢%77 | 0.35¢047 | (0.2¢0597 0.12¢%37 | 0.1%47 | 0.6¢0-017
Cy 0.3¢937 0.2¢037 | 0.1¢0-27 0.5¢937, 0.3¢067 | 0.2£0-27
1 2 3 4
(- {13} {1,3} ({2}
crrsc, =G| W @ @)
3| {4 {4} - 2,4

Gy \ {1} {1} {1} -
Step 4 CPFS D set:

1 2 3 4

ol - W oW o
ol - wom
CPESDp =il 3y 3y - {1

G\ 2} {2} 2.4 -

Step 5 CPFS C Matrix is:

— 0.4556 0.4556 0.1815
0.3627 — 0.0960 0.1815
0.3627 0.3627 — 0.5442
0.3596 0.3596 0.3596 —

CMpq =

CPFS C level p = 0.3.
Step 6 CPFS D Matrix is:

— 0.1904 0.3009 0.0530
0.1598 - 0.1105 0.2042
0.2155 0.0813 - 0.1751
0.1543 0.1782 0.2646 —

DMy =
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Fig. 3 Decision graph

CPFS D level 7 = 0.17.
Step 7 CPFS C dom is:

1 —
k= 1 1
1 1
Step 8 CPFS D dom is:
- 0
1 —
L= 0 1
1 1

O =

—

— O
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—_ O O

S O~

Step 9 Compute CPFS aggregate dom, and decision graph (Fig. 3) is constructed

based on these values.

0

1
1

— o~ |

0
0

1

(=R

From matrix M for alternative C», the value 1 exists at column Cj. So an arrow is
drawn from C; to C;. The maximum number of arrows are from Cy4 to Cy, Cy, C3.

Hence, C4 (S-type) is the best fiberglass.
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5 Conclusion

In this article, ELECTRE I method on CPFSS is developed. CPFS entropy, weights,
C index, and D index are evaluated. The aggregated CPFS D matrix is computed,
and decision graph is drawn. Taking four types of fiberglass, A-type, C-type, E-
type, and S-type, and four properties present in these fiberglass as parameters, it is
determined that S-type is the best as it has higher values of tensile strength, modulus,
and elongation when compared to the other three types of fiberglass.
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Resultant of an Equivariant Polynomial
System with Respect to Direct Product of o
Symmetric Groups

Sonagnon Julien Owolabi, Ibrahim Nonkané, and Joel Tossa

Keywords Commutative algebra - Symbolic computation - Resultant -
Discriminant - Divided difference - Direct product of symmetric groups

1 Motivation and Introduction

Solving algebraic systems of polynomial equations fi, f2, ..., f; in several vari-
able is a fundamental problem with in computational algebra with many applications
(cryptology, robotics, biology, physic, coding theory, etc....). The analysis of such
systems is based on the study of the resultant [4]. System which are invariant
under the action of a group may be of great importance since symmetry is very
relevant in physical sciences as it has to with energy. Thus, Laurent Busé and Anna
Karasoulou have studied the resultant of an equivariant polynomial system with
respect to S, group of permutations on a set of variables {xi, ..., x,} [2]. They
developed a nice decomposition of that resultant, which leads to the decomposition
of the discriminant of a symmetric polynomial. In some situations, the permutations
among the set xp, ..., x, may not be effective in the sense that some action may
hindered or neglected, and in this case, the symmetric group would not be of the
best description of the symmetry. For example, the coordinates xi, ..., x, of the
particles of a given molecule may be separated into two subsets, {x1, ..., x,} and
{Xp+1, ..., x4}, which do not interact. The symmetry is therefore described by the
direct product of symmetric groups S, x S,_,,, where S, and S, , are groups of
permutations on {x1, ..., Xp} and {xp41, ..., X,}, respectively. A similar situation
may occur when the coordinates separated into three or more subsets, leading to a
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product of three or more symmetric groups. Therefore, we think that some results
of [2] may be generalizes to systems that are equivariant with respect to the product
of symmetric groups, even to other groups. In this chapter, we attempt to study
the resultant of an equivariant system with respect to the direct product of two
subgroups of S,,. We realize that the techniques that have been used is the case
of the symmetric groups [2] work for the case for the direct product of symmetric
groups, then we make great use of them in this paper. This chapter is somehow a
variant of [2], and we mainly refer to it for the proofs.

A polynomial system A = {f, f2, ..., fu} is said to be equivariant with respect
to a finite group G ifforall g € G, f; € A, g(fi) € A,i =1, ..., n.Inother words
A is globally stable under the finite group G see [3]. Let a system of n homogeneous
polynomials f{]}, e, f{p}, f{p“}, o f{”} of same degree d equivariant to the
direct product Sqi,....p) X S{p+1,...,n) of two symmetric subgroups of S, with 1 <
p < n. the action of Sy1. py X Sps1,..ap on fU o Pl plodl) o0 pind
is described as follows. Let o1 € Sq1,... p}, and 02 € S{p41,...n) We have for all

..........

i=1,...,n
(Ul’ UZ)(f{l})(x], e 7xpaxp+1’ e 7~xl‘l)
= f{i}(xal(l)s e Xoy(p)s Xoo(p+1)s + -+ s Xaa(n))-
We assume that forall k € {1, ..., p}o = (01,02) € S{1,....p) X S{p+1,...n)>

U(f{k}> _ O'l(f{k}) — f{al(k)} ifkefl,...,p} "

oz(f{k}) = fle®lifke(p+1,...,n).

Under this assumption, the polynomial system is equivariant with respect to the
direct product S1,.... p) X S{p+1,....n)- In what follows, we set

.....

Floih= “(f{i}), 0 € Sph X Spttem)s i =1, @

In this work, we will study the resultant of such systems. As an application, we
obtain a decomposition formula for the discriminant of an invariant multivariate
homogeneous polynomial under the action of a direct product of two symmetric
groups.

2 Resultant of a Syq,.... p) X S{p+1,...,n)-Equivariant
Polynomial System

Let R be a commutative ring, and denote by R[x1, ..., x,] the ring of polynomials
in n > 2 variables, which is graded with the usual weights: deg(x;) = 1 for all
i € {l1,...,n}. In this section, we consider a polynomial system of n homogeneous
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polynomials f{l}, el f{p}, f{p+”, cel, f{”} in R[xy, ..., x,] of same degree d
which is equivariant to the direct product S(1,.... p} X S{p+1,....n} of two subgroups of
S, withl < p <n.

.....

2.1 Partitions

Let A := (A1, A2,..., A;) be a sequence such that A; > --- > A, > 0. When
'L, Ai = p, we will say such a A is a partition of p, and write A b p.
Given a partition A - p, its associated multinomial coefficient is defined as the
integer

1 ( p )_ p!
ITioisit Ay o) (T2 s DMl 4

3)

m =

where s; denotes the number of boxes having exactly j objects, j € [p] for the
partition A - p.

Let A = (A, A’) be a couple of partition swhere A = (A, A2, ..., Ar) F pand
A= (WA ..,k;z) F g; then, we will write (A, 1) F (p,q) or A + (p, q).
Given a couple of partitions A = (A, ') = (p, ¢) such that p + g = n, we consider
the following homomorphism of algebras:

oA Rlx1,..., B TN S A y;z] @)
flxg, ..., xp) = fO1,..-, Vi eeos Vrpsoees yrl,yi ..... yi ..... y;z ..... y;z).
Al )\.rl )‘/I A
)
where yi, ..., yr, Vi oe e y;z are new indeterminates.
For two integers i, j € {1,...,n}andw € 81, p X Spy1,...,n such that w(I) = [ if

l ¢{i,j}and 7 (i) = j, then

== —w(f e (i —x)). 5)
Therefore, the polynomial systems f{! ... f{Phand P+ 1) admit divided
differences. From [2, Lemma 2.1] and (2) for any subsets {i, ..., it} C {1, ..., p},
{jlv RG] .][} C {p + 1’ ) Vl} and¢ = (77:’ 0) € 81,‘..,p X Sp+1,.‘.,)’l’ we haVe

¢(f{i1,~~’ik}) — f{n(il)wn”(ik)}’ and ¢(f{j1 ,,,,, jl}) = ploGn,..o(n} (6)

Whenever p4(x;) = pa(x;), by (5), we have

pa(fhy = pa(rih.



90 S. J. Owolabi et al.

So, for any integer i1 € {1, ..., r1} (respectively, i» € {1,...,r} ), we define
the homogeneous polynomial

= pa(fU), (respectively £12) = pa(FU2)),

where ji € {1,..., p} such that ps(x;,) = y;,, (respectively, j, € {p+1,...,}
such that pa (x},) = yi,).

For I = {i1,...,ix} C {1,...,p}, define J = {ji,...,jx} C {l,...,r1} by
the equality pa(x;,) = yj, forall r € {1,..., k} (respectively, I" = {i},...,i}} C
{p+1,...,n},define J' = {j|,..., jj} C{l,...,r2} by the equality p, (x;) = y;:
forall r € {1,...,1}). Thenif |I| = |J| (respectively, |I'| = |J'|) we have

pa(f1) = pa(f?), (respectively pa(f') = pa(f').

2.2 The Decomposition Formula

Theorem 21 Assume that n > 2 and assume a system of n homogeneous
polynomials £V, ..., flet et 0 rnd iy Rixy, ..., x,] of the same degree
d equivariant with respect to the direct product of two symmetric groups Sy1,..., p) X
Sip+1,..mywith1 < p <n.Let’sputqg =n—p, A=A, 1) (p,q).

e If p<dandq < d then:

Res <f{1}’_._’f{p},f{pﬂ}“_., f{n}> _
1_[ Res (f{l} f{l ,2} f{] 2,11} f {p+1} f {p+1, [7+2} .

A-(p,q)

e Ifp>dandq <dthen
Res (f{l},m,f{p}’ f{p+1}’m,f{n}) — i(f“ ..... d+1})“

% l_[ Res (f{l} f{l 2}’ “’f[{xlyzwwrl}’f[{‘p+1}’f/{‘p+1ap+2}’ o

A-(p.q)
r gd

f{p+1,p+2,...,p+rz}>m‘m'ﬂ’
A
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e Ifp<dandq > d then

Res (f{l}, L ple e ...,f{”}> -4+ (f{p+1,...,p+1+d}>"

< T1 Res(f“},fjf*”,...,f et pletlpt2

A-(p,q)ra<d

e Ifp>dandq > d then
M "
Res (f{l}’“.’f{p}’ FloHn f{n}> (f“ ..... d+1}) % (f{p-H ..... p+l+d}>

% 1—[ Res (f{l} f/{xll ’ f{l 2,011} f {p+1} ’ f {p+1, p+2}’ L

A-(p.q)r1 <d,rp<d

where
r v
M::ndn_l— Z mym;y; Zdj+zdj
A A)H(p.q) j=1 j=1
ri<d, n<d
with

dd—1)---d—ri+1)dd—1)---(d—ry+1)

d':
! d—j+1

Idea of the Proof The main idea of the proof is the same as the one in [2]. In fact It
is clear that the system { f mo f {p}} is equivariant with respect to Sy, py and
the system (Fipt o pindy s equivariant with respect to S(p41,.... ). The proof
goes on by splitting the resultant of £%)’s into several factors by means of their
divided differences associated to Sy1.... p}, respectively. For the rest of the proof, we
mimic the proof of [2, Theorem 3.3]. Indeed this is a generalization of the proof of
[2, Theorem 3.3].

For the sake of the number of pages, the detailed discussions of the proof will be
published later in an extended version of this chapter.

Example 22 Consider the following system of 5 homogeneous polynomials
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FU = ax? + bx} + bxyxy + bx1x3 4 cx7 + cx3 + cxF + x45
F¥ = ax3 + bxyxy + bx3 + bxoxs + cx? + cx3 + cx3 + x4x5
B = ax3 + bxyxs + bxoxz 4 bx3 + cx? + cx3 + cx3 + x4x5
= pxj +qx3
f{S} = px52 + qxf.

This system {f{l} , f1 FB ptd D ph s not equivariant with respect to the
symmetric group Ss; then, the formula of [2, Theorem 3.3] cannot help to split
the resultant of that polynomial system. But this system is equivariant to the direct
product Sy 2.3y X Spa,5). Then PR A At equivariant with respect to Sy 2.3)
and 14, f15) equivariant with respect to Sia5)-

2} +B) 4 05 123 W e rene
Res<f{ I RO }) (f{ }) Res(f3> @ /@), (2))

)m<2,l)m(2) 4,5} )m(3)m<1,l)

m 12 4 "
*Res <f<2,1),<2>* fan.ofen.e xRes <f<3),<1,1) o ant&in

mae,nma,n
X Res( ) .

{1} {1,2} {4} {4,5
f(2,1),(1,1)’ f(2,1),(1,1)f(2,l),(1,l)f(2, D),(,1)

f({sl)} @ = (@+3b+30x] +x3, f(3) o = (P +9)x3,

f(2 1) Q= (a+2b-|—26)x1 +cx2 +bX1xz+x4,

f<2 1) @ = @+ 2b)x1 + (a +b)xz, f<2 b = = (p + q)x},

f(g) an =@+3b+ 3¢)x? + x4xs, f(3) an = = px} +qx2,

f{34) 5(}1 1 = (P=@)xa+(p—q)xs, f(z }1) an = (a—i—2b+2c)x1 +cx2+bx1x2+x4X5,
f({zl 12)}(1 H= = (a +2b)x1 + (a + b)x2, f(z,}l),(l,l) = px4 + qxs’

f(2,1),(1,1) =(p—Qxa+(p—qxs, 12 =a, p=38.
1 4
we have Res (£ ). £ )) = Gb + 3¢ + @ (p + ¢)?
Res (£ ) F0 0 @ F5) ) = (+ @)@ +3a%b + 3aPc + 2ab? + Babe + 6b%¢)?
4 4,5
Res (f(3) (1,1 f({3)}(1 1)f({3) (}1 1)) = +9*(p—)*Gb+3c+a)?

{1.2} {4} {4.5)
Res (f(z v fan.an fan.an: f(z,l),(l,l))

= (p+9)*(p — 9)*(@® + 3a*b + 3d°c + 2ab? + 8abc + 6b*c)'2.
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Res (f{l}, £ B e f{S})
= a®(a® + 3a%b + 3a°c + 2ab® + 8abe + 6b%¢)*(p — )" (p + )'°
(3b + 3¢ + a)*.

3 Discriminant of a Homogeneous Polynomial Invariant
Under Direct Product of Symmetric Groups

In this section, we will use Theorem 21 to develop a decomposition formula for the
discriminant of an invariant homogeneous polynomial under the action of S py X
Sip+1,..n)- Let f € R[x1,...,Xp, Xpy1, ..., Xs] of degree d be a homogeneous
polynomial that is invariant under direct product S p} X S{p+1,...,n} of symmetric
groups with 1 < p < n.

For all o1 € &y1....,py and for all o2 € Syp41,....n), We have:
(mﬂz)(f)(m ,,,,, Xps Xptls o) Xn) = [ (Xoy(1)s - - Xoy (p)s Xoo(pt1)s - - - » Xoym)- (7)
= f(x1,..., Xps Xptls ey Xn) (8)

We will denote the partial derivatives of F' by

. af .
f{’}(xl,...,xp,xpﬂ,...,x,,) = E(xl,...,xP,xP+1,...,.xn), i=1,...n.
1

The discriminant of F is defined by the equality
d“"-DDisc( £) = Res (f“}, a3 f{”}) cU )

where

@—1D" = (D" _

a(n,d) := 7

Z.

and that it is homogeneous of degree n(d — 1)"~! see [1].

Lemma 31 The ser {f1, f12 ) o plotli 00 ¢y of partial derivatives
of a Sq1,....py X Sip+1,....n)-invariant homogeneous polynomial f is an equivariant
polynomial system with respect to S1,....py X S{p+1,....n}-

Proof We will use the canonical inclusions Sy1.... py = S(1,..., p) XS{p+1,....n}, O1 H>
(01, €2) and Sgpi1,...n) = Sii1,....py X Sip+1,..n1» 02 > (e1, 02), where ey, e; are
unit elements of Sy, ) and Syp41,....n), respectively. For all i € {1,..., p} and

,,,,,
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1 € St we e (1) = o (38) = B0 = = e, o

all j e {p+1,...,n}and 02 € S{py1,...n)» Uz(.f{'j}) = 02(3]‘) - 3)(5253 -
gt = [V Forallk € (1. plo = (o1.02) € Su

(W) =@tk e(l,..., p)
haveo(f{k}) =

oz(f{k}) = fle®lifk e (p+1,...,n).
(FA, L i forallk € {1, ..., plo = (01,00) € S{l

..........

..........

As a consequence of this lemma, Theorem 21 can be applied in order to
decompose the resultant of the polynomials f{l}, f{z}, e, f{P}, f{P‘H}, . f{"}
and hence, by (9), to decompose the discriminant of the Sy, p) X Sip+1,...n}-
invariant polynomial f.

Theorem 32 Assume thatn > 2 and d > 2. With the above notation, the following
equalities hold:

e Ifp<dandq < d then:

d*"DDisc (f) =
1,2 1,2,. {p+1 +1,p+2
I1 Res(fA, (120 pllZear plptl) - plptlps2)
A-(p.q)

(p+1, P42, ptra) "M
fa :
e Ifp>dandq < d then:

a0 Opise () = (1)

1 1,2 1,2,.. +1 +1,p+2
< I Res(/{x}1f/{x b pl2en) o) ol
A-(p,q)r1<d

e Ifp<dandq > d then:
da(l‘l,a')DiSC (f) — (f{l ..... p—‘rd})lt

<« 1 Res( 0 Gl pll2ean) | glpdl) plodlp)
AF(p.q) ra<d



Resultant of a Sy, py X S{p+1.....n}-Equivariant Polynomial System 95

e Ifp>dandq > d then:

d°*DDisc (f) = (f{l ,,,,, d})“ % (f{p+1 ..... p+d}>“

1,2 1,2,. +1 +1,p+2
x I1 Res(fA, (121 pllZerd plptl) - plptlps2)
A-(p,q)r1<d, rp<d

{p+1‘p+2,...,p+r2})m*mﬂ
h .

where
At n
we=nd—1""= 3" mmy [ D di+ ) d,
A )H(p.g) Jj=1 Jj=1
ri<d, rp<d
with

d-1---d-—r)d—=1---(d—=nr)
d—=7

dj =

Proof These formulas are obtained by specialization of the formulas given in
Theorem 21 with the difference that the polynomials f B} i=1,..., nareof degree
d — 1 in our setting (and not of degree d as in Theorem 21).

Example 33 Consider a homogeneous polynomial of degree 4.
f = ax] +bxix3 +ax3 + cx3 + )C3)C4 + )C3)C4 + cxj

F is not symmetric polynomial but an invariant polynomial under the action of the
direct product 8{1,2} X 5{3,4}

Fi = 4a)c]3 + 2bx1x§

Fl = 4ax§ + 2bx12xz

FB = 4cx§ + xi + 3x§X4

= 4cx2 + xg + 3X3xf

£ £ equivariant with respect to S0y and f B} £ equivariant with

respect to 53,4
The formula given in Theorem 32 shows that

Its partial derivatives are:

3H_(—

L e ) 12 3
# Disc(f) = Res (f(2>,<2)’ f(2>,<2)) x Res (fa,l)‘(z)’ f(1,1>,(2>f<1,1>,<2))

(n (3.4) {n (1.2} (3) (3.4)
xRes (f(2),<1,1>7 f(z) . 1>f(2>,<1,1>) xRes (fa,l),(l,l)’ f(l,1>,<1,1>f(l,1>,(1,1>f(1,1>,<1,1>)'

4
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we have
]
*Res (o Sl ) = 5120a b e+ 1)
o Res (£l o AT Jh) ) = 8589934592a°2a + b)* (2a — b)O(c + 1)°

1,1),2)71,1),2)

o {1} {3} {3,4} _ 6 30,2 6
Res (f(2),(1,1)’ f(2),(1,1)f(z),(1,1)) = 262144(2a + b)°(c — 1)°8c” + 1)

{1 {1,2} {3 (3.4}
Res (f(l,l),(l,l)’ f(l,1),(1,1)f(l,1),(1,1)f(1,1),(1,1)>

= 73786976294838206464a'2(2a + b)°(2a — b)*(c — 1)°(8c* + 1)!?

Disc(f) = 77371252455336267181195264a'8(c — 1)°(c + 1)°(8c* + 1)'?
(2a — b)'32a + b)'3.
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Color Image Filtering Using Convolution )
Fuzzy Neural Network Qe
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Keywords Convolution operation - Image filters - Hamming distance -
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1 Introduction

Anil K. Jain [1] discussed the implementation of various problems in image
processing including restoration and enhancement of images, data compression,
and filter design with examples. Image processing based on different structuring
elements was developed by Anita Shanthi et al. [2]. Rishap Anand [3] dealt
with several concepts of digital image processing. Egmont et al. [4] developed
several applications of neural networks in image processing. Van De Ville [5]
presented fuzzy filter to reduce heavy noise in images. Mishra et al. [6] developed
several methods for color image contrast intensification operator. Wang et al. [7]
proposed an effective method for image de-noising. Azad et al. [8] motivated
the use of color in digital image processing. Albawi et al. [9] explained critical
issues related to CNN and its applications in image classification. Chen et al.[10]
proposed a CNN method to learn the perceptive features for identifying classic
image processing operations. Nader et al. [11] introduced the effect of Gaussian
noises and performed experimental analysis to reduce the effect of noise. Coady
et al. [12] gave an overview of image filtering operations using edge detection,
smooth filters, and its advantages. Mirmozzaffari [13] considered four filters for
de-blurring and smoothing of images and performed a comparison analysis. Tomasi
et al. [14] dealt with bilateral filtering Sultana et al. [15] discussed the advancements
in image classification using CNN. Based on these concepts, color image filtering
using CFNN is developed.
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2 Convolutional Neural Network

One of the most popular deep neural networks is the convolution neural network.
It is designated from mathematical linear operations between matrices called con-
volution. CNN has multiple layers including convolution layer, nonlinearity layer,
pooling layer, and fully connected layer. The convolution and fully connected layers
have parameter, whereas pooling and nonlinearity layers do not have parameters.
The input layer consists of the given input image, which is in pixel values.
Convolution is the mathematical operation performed with the filters to extract the
features in the images as shown in Fig. 1.

Convolution Operations Convolution layer generates feature maps, from images.
It contains filters that convert images, and these filters are called convolution filters.
To understand the working of convolution process, 4 x 4 pixel image values are
taken, which are operated upon by a 2 x 2 convolution filter as shown in Fig. 2. At
the final stage, the 4 x 4 pixel image has been converted into a 3 x 3 pixel image.
The feature map extracted depends on the convolution filter.

Input Image Convolution Layer Feature Map

Fig. 1 CNN image features

1215 ]1 £ [1 0] = 5
6lal2 |o 0 1]

g8|o 215

4214 |1

125 |1 « [1 0] _ 5 |4 |5
6|4 |2 o 01 257
glo [21]5s S 104 |22
42 4 |1

Fig. 2 Convolution operation
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Fig. 3 Pooling operation 112 5 1 32535
642 |0 — |2 1.94
80 (21]5
412 (4 |1 6 |5
8 |21

Fig. 4 Original image and its
membership image

Pooling Operations It is used to reduce the size of the image. There are two types
of pooling operations, which are max pooling and mean pooling. Mean pooling:
finding the arithmetic mean of the convolution areas is mean pooling. Max pooling:
this is the maximum value of the convolution area as shown in Fig. 3.

2.1 Image Fuzzification

Definition 1 Let I be the image that is represented as m x n matrix of pixel

values x;;. The image fuzzification membership function is defined by u;; =

[M] ¢, where i and j represent ith row and jth column of the pixel

values. I*E and Fy Values differ for different images. The pixel value of an image
is converted to fuzzy membership value matrix, and the corresponding membership
images are found using MATLAB. Original image and its corresponding member-
ship image are shown in Fig. 4.

2.2 Types of Filters

Mean filter:[3] A box/Mean is a low-pass filter that smoothens the image. The
center pixel value is replaced by the average of all the values of its neighborhood N.
n

Gx,y) = L > f(x,y), when n is the number of neighborhoods.

N
(x,y)eN
Median filter: [6] Median filter is a nonlinear filtering useful in reducing impulsive
or salt and pepper noise. It preserves sharp edges.
Bilateral filter: [14] A bilateral filter is used for smoothing images and reducing
noise while preserving edges.
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Lab filter: Lab is a nonlinear transformation of RGB where the Euclidean distance
between two colors is equal to their preceptual distances.

Noise filter: [12] Noise is always present in digital images during image acquisition,
coding, transmission, and processing steps. Noise removal algorithm is the
process of removing or reducing the noise from the image.

Unsharp filter: [3] Unsharp mask tool increases contrast so that the image is
sharpened.

Standard filter: Standard filter specifies the neighborhood used to compute the
standard deviation.

Gaussian filter: [6] Gaussian filter is a linear type of filter, which is based on
Gaussian function and is much useful at separating frequencies. The (3 x 3)

121
filter value is % 242
121

Fig. 5 Gaussian membership images

Gaussian Membership Value Images
The Gaussian filter along with the membership values from O to 0.9 is applied to the
original image and the resultant images obtained. These images are given in Fig. 5.

2.3 Example

Step 1 Pixel membership values of the image (Rose) is taken, and the Gaussian
filter is applied for three colors RGB of the original image.

Step 2 Apply the Gaussian filter for Red image pixel membership values, and
perform the convolution operation for red image.
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0.1295 0.1543 0.1513 0.1391 0.1369 0.1429
0.1219 0.14 0.1496 0.3397 0.2274 0.1325
0.1198 0.1328 0.1796 0.4804 1  0.1448
0.1210 0.1207 0.1537 0.4082 0.57 0.1369
0.1219 0.1213 0.1348 0.2847 0.1913 9.1474
0.1344 0.1459 0.1357 0.1387 0.1277 0.1474

0.0625 0.125 0.0625
* 1 0.125 0.25 0.125
0.0625 0.125 0.0625

0.1183 0.1712 0.2007 0.2905
0.1063 0.2076 0.4083 0.4673
0.1097 0.1931 0.3655 0.3916

0.0985 0.1485 0.2138 0.2085
Similarly, apply the Gaussian filter for blue and green image pixel membership
values, and perform the convolution operation for green image.

, which is filtered image matrix for Red.

Step 3 Add the three convolution filtered matrices.

0.1487 0.2616 0.4021 0.3204
0.1402 0.2334 0.3483 0.3185
0.1531 0.1892 0.5524 0.2401
0.1425 0.1769 0.2139 0.2045

Step 4 Max pooling yields

0.8252 1.0323
0.6079 1.1394)

Step 5 Weights are taken as trapezoidal fuzzy number indicating the features of the
image.

0.1 0.2 035 0.5

0 0.190.250.42
0.3 0.320.390.52
0.11 0.15 0.43 0.61

Step 6 Peer-to-peer multiplication of the convolution filtered matrix, and the weight
matrix gives the output image pixel values of 6 x 6 membership matrix considered.

0.0573 0.165 0.3212 0.4394

0 0.1359 0.2503 0.4336
0.1415 0.1945 0.4444 0.4639
0.0532 0.08 0.2764 0.3972

HSYV Filter [2] HSV filter converts a color image into three channels, color (hue),
brightness (value), and saturation (shades). It is useful for object detection. Different
colors can be assigned to the background of an image in the HSV color space. In
MATLAB, HSV is a three-dimensional matrix, which represents three components
of HSV as shown in Fig. 6.
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Saturation

Fig. 6 Hue and saturation

modified image |

[}

e e
.

Fig. 7 Hue- and saturation-modified membership images
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Fig. 8 Filtered and its membership images

Hue-modified image with different membership values and saturation member-
ship value images in the range 0.1 to 0.9 are shown in Fig. 7.

2.4 Filtered Images

The different types of filtered images and its membership images are shown in
Fig. 8.
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3 Hamming and Euclidean Distances

Definition 2 Hamming distance on filtered images Hamming distance on filtered

Xij = Xjj

b

images shown in Fig. 9 is denoted by Hp and is defined as Hp = ) ‘
iJ

i, j=1t0256, where x;; and x/ ; denotes pixel values of two filtered image matrices.

Definition 3 Similarity index on filtered images is denoted by SI(Hp) and is
1
defined as SI1(Hp) = Ew s
Definition 4 Hamming distance on membership filtered images shown in Fig. 10
is denoted by sz, and is defined as juz7, = 3 H,L(xij) - ,L(x;j)H, i, j=11to 256,
ij

where p(x;;) and ,u(xlf j) denote pixel values of two filtered image matrices.

Definition 5 Similarity index on membership filtered images is denoted by (57 ()
and is defined as sy (mp) =

I+umy,
HO on MeandMegan HD on MeankBaateral HO on MeansNomy MO on BlaterstANcisy MO on BibteralSharpen MO on BlsteralACaussian
HD on MeanASharpen HO on MeandGaussian MO on MedandBilateral HO on LabAHSY HO on LabdStandan HO on NoisydSharpen

L .

HD on MedanbNoivy HD on MedanbSharpen HD on Medun&Gaussian HD on MeispAGaussian HD on Sharperd Gausalan monn}vnimclrj

v, P
<" v:\
* . .J .
e d
Fig. 9 Hamming distance of filtered images
HO on M{Mean&Medlan) HD on M{Mean&Bilateral) HOD on M{MeandNoke) MO on M{DilstersitNoke D on on M iateral
HD on h HD on M([Me. HO on M{Medians Bilstersf) HD on M(LABAHSY) D on M{LADAStandard) HD on M{NoiseASharpen)
. : , : ’

penHD on

HD on N HD on S3B0 D on M{NcIseh

Fig. 10 Hamming distance on membership filtered images

anHD on M/
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Table 1 Similarity index / SI(Ep)

i ¥
based on hamming distance - Y BSI(Ep)
Mean Median | 0.0031 |0.8379

Mean Bilateral | 0.0149 1.7934
Mean Noise 0.0014 | 0.1619
Mean Sharpen | 0.0062 | 0.4968
Mean Gaussian | 0.0019 0.3777
Median | Bilateral |0.0077 |0.8365
Median | Noise 0.0011 0.1537
Median | Sharpen |0.0051 |0.4384
Median | Gaussian | 0.0035 |0.3928
Bilateral | Noise 0.0014 | 0.1697
Bilateral | Sharpen | 0.0094 | 0.6149
Bilateral | Gaussian | 0.0018 |0.3703
Lab HSV 0.0004 | 0.0006
Lab Standard | 0.0005 | 0.0006
Noise Sharpen | 0.0015 | 0.1262
Noise Gaussian | 0.0011 0.1274
Sharpen | Gaussian | 0.0017 | 0.2943
Hsv Standard | 0.0020 | 0.0279

teraibNome [0 for BibteraldSParpen D for Biateral&Gausaian

s

ED for LabAHSY ED for LadbAStndard ED for NoiseASharpen
» ’ . .

ED for M 5 ED for M ASharpen  ED for MediankGaunaian ED for NodsehGaussian ED for ShapenbGaussion  ED for HEVASLIndard
s e, 3 Baad
e o
37\
ofas, L4 Nt
e 3

Fig. 11 Euclidean distance of filtered images

Similarity index on filtered images and its corresponding membership images are
given in Table 1.

Definition 6 Euclidean distance on filtered images shown in Fig. 11 is denoted by

Ep andis defined as Ep = [} (xj; —xlfj)z, i, j =1to256.
i,J

Definition 7 Similarity index on filtered images is denoted by SI(Ep) and is

defined as SI(Ep) = ﬁ.
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Definition 8 Euclidean distance on membership filtered images shown in Fig. 12 is

denoted by ug, and is defined as wg, = [ w((xij)
=

— (x}))?

Definition 9 Similarity index on membership filtered images is denoted by (57 (1))

and is defined as ps7(g,) =

I+uep *
Similarity index on filtered images and its corresponding membership images are
given in Table 2.
an) ED for M(Me datoral]  EDfor M{Mean&Noiw) ED for M(Bils

ED for M{MeanAShasps

=

D for ) ED for M{Modian&SharperiD for 8(MedianiGa d{NoisedGau

Fig. 12 Euclidean distance on membership filtered images

Table 2 Simi.larity ir.ldex xij

based on Euclidean distance
Mean
Mean
Mean
Mean
Mean
Median
Median
Median
Median
Bilateral
Bilateral
Bilateral
Lab
Lab
Noise
Noise
Sharpen
Hsv

o ED for M(B

Sharpdip

s a0 for M(Sha

s NG I

anjED for M(MedunsBiatoral) CD for M{LABSHSY)  ED for U' LADAStandard) EO for M{NoiseLSharpen)

ssnfD for MHSVAS

X
Median
Bilateral
Noise
Sharpen
Gaussian
Bilateral
Noise
Sharpen
Gaussian
Noise
Sharpen
Gaussian
HSV
Standard
Sharpen
Gaussian
Gaussian
Standard

SI(Ep)
0.0001825
0.0008829
0.00009317
0.0003891
0.000114
0.000437
0.00007333
0.0003166
0.0002023
0.0000939
0.0006161
0.0001064
0.00000374
0.0000664
0.000102
0.0006721
0.0000988
0.0000988

KSI(Ep)
0.1433
0.9671
0.1149
0.2317
0.0304
0.01438
0.0654
0.1105
0.032
0.1235
0.2599
0.0303
0.0403
0.0403
0.1262
0.0322
0.0319
0.3
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4 Conclusion

Different image filters are applied to original and membership images, and the
corresponding images are found using MATLAB. Hamming and Euclidean dis-
tances between different combinations of original and membership filtered images
are calculated and the similarity index values tabulated. It is found that using both
Hamming and Euclidean distances, the similarity index between mean and bilateral
filter images is maximum. This concept is useful in identifying diseases in the leaves
of plants.
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Some Combinatorial Results for Partial )
and Full Symmetric Semigroups oo

F. Al-Kharousi, W. Alnadabi, and A. Umar

Keywords Partial symmetric semigroup - Full symmetric semigroup -
Idempotents

1 Introduction and Preliminaries

Let X, = {1,2,...,n}. A transformation « : Doma C X, — X, is said to be
total or full if Dom @ = X,,; otherwise, it is called strictly partial. Let 7, and P,
be the full and partial transformation semigroups on X,,, respectively. Howie found
some notable combinatorial results in 7, [5], while Garba was interested in P, [4].
Recently Laradji and Umar obtained some interesting results on these semigroups
and some of their subsemigroups [6]. Umar in [10] computed and gathered together
the combinatorial results in P, and 7, and some of their subsemigroups and
highlighted some open problems. Motivated by that paper, we compute some of
the unknown results in P, and 7,. In this section we give necessary definitions.
In Sect.2 we compute the cardinalities of some equivalences defined by equalities
of some parameters in P, and 7,. For basic definitions and standard concepts in
(transformation) semigroup theory, we refer the reader to [3] and [10].

For any transformation @ € P,, the fix and the collapse of o are denoted and
defined by

The results in this chapter are from Wafa Alnadabi’s MSc. thesis (2015) [1]
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Fla)={x € X, : xaa = x}

C(Ol) = {x € X, xx :yand|ya_l| > 2}

respectively. Let b(a) = |Doma|, i(a) = |[Ima|, w™ (@) = max(Ima), f(a) =
|F(a)| and c(0) = |C(x)|. Consider the natural equivalences on P, defined by
equalities of breadths, heights, waist, fix, and collapse. The intersection of these
equivalences can be counted by the following combinatorial function: let S be a set
of partial transformations of X,,; define the combinatorial function

Fn;k,m,p,q,r) =|{e¢eS: wh (@) =k, flw) =m, h(x) = p, c(a)
=q,b(a) =r}|

Here, we introduce a new notation to the combinatorial functions by putting
the parameters k, m, p, g, and r (ordered alphabetically) as subscripts. Then the
six-parameter function F'(n; k, m, p,q,r) can be simply written as Fypqr and
similarly any two-, three-, four-, or five-parameter function.

Stirling numbers of the second kind denoted by S(n, k) are defined to be the
number of partitions of {1, ..., n} into k nonempty subsets and can be calculated by
the explicit formula.

1 . k—j k -n
St k) = 25 (=D ,(j)}_ (1
| &

Lemma 1 ([2]) For all natural numbers n and m, we have

n

3 (’Z)S(m, i)il = n". @)

i=0

Definition 1 ([2]) An r-associated Stirling number of the second kind is the
number of ways to partition a set of n objects into k subsets, with each subset
containing at least r elements and is denoted by S, (n, k). The 2-associated Stirling
numbers of the second kind array can be found in ([9], A008299).

Lemma 2 (Vandemonde’s Convolution Identity [8]) For all natural numbers

m, n, and k,
P k—i i k

N



Combinatorial Results 109
2 Some Combinatorial Results in 7, and P,

Proposition 1 [, Proposition 3.1] Let S = P,,. Then

k k—1
ka — ( )(k + 1)n—kkk—m _ < )(k _ l)k_m_lkn_k+l.
m m

Proof Note that Fi,;, = G — Jrm, Where

Gim=|{aePy: f(e) =mandIma N X,—; = 0}];

Jom=Ha € Py : f(a) =mandIma N X,,_x11 = @}].
For G, there are (;]:1) ways to select the m fixed points from the k elements. The
k —m elements in Xy, are either in the domain or not. If they are in the domain, then
they can map to any of the k elements except themselves. So, they have (k — 1) 4 1
degrees of freedom. The remaining n —k elements in X, \ Xj are either in the domain

or not. If they are in the domain, then they can map to any of the k elements. So,
they have k 4 1 degrees of freedom. Thus, we get,

k
Gian = ( )(k + 1R
m
By a similar argument, we find that
k—1
ka — ( >(k _ 1)k—m—lkn—k+l’
m

and the result follows directly.

Corollary 1 [1I, Corollary 3.15] Let S = T,,. Then
k k—1
ka — ( >(k)n—k(k _ m)k—l _ ( )(k _ Z)k—m—l(k _ l)n—k-ﬁ—l'
m m

Following similar arguments as the ones used to obtain F(n; p,m) in the
semigroup of full transformations 7, [7], we can compute the following:

Theorem 1 [/, Theorem 3.2] Let S = Py,. Then,

o= () () 20 (75)
=1 \m) & p—i

J . . ‘ .
Z(J. m)(" ’.)j”(j—l)”".
I —m r—i

i=m
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Proof There are (fj l) ways to select the images. Let
Gn;m, p,r)y=Ha € Py : ImaNXy—p =0, b(a) =7, h(a) = p, and f(a) = m}|.

Then F(n; k,m, p,r) = (i:ll)G(n; m, p,r). Using the principle of inclusion-
exclusion, we find that

p p
Gn,m, p,r)= |An—p| - <1>|An—p+1| + <2>|An—p+2| -

+(—1)Pm< P >|An_m|
p—m

= Z( 1>f( )|An p+ils

where A, ={a € Py :ImanNX, ,1; =0, b(a) =rand f(a) = m}. Now,

p_] p_j_m p_]_m p+] r—m—i i
|An7p+,-|=<m> Z( l. )(r_m )(p ) (p—Jj—"D"

i=0

Note that we have (1’ ’;j ) ways to choose the m fixed points from the p — j images.
Since these m fixed points are among the domain elements, then we are left with r —
m points to be chosen. We either choose them from the p — j —m images or from the
n— p+ j points, which are notin Im . So, we have Y_/_ J " ("’_~£_m) (= r’”ff) ways
to choose the rest of the domain elements. The i p01nts chosen fromthe p— j —m
elements have p — j — 1 possible images, while the remaining r —m — i points have

p — j possible images. Summing up we get

p—1 s J m

P—j— e _ i )

Z( ! m)(" ””)(p Y == 1
r—m—i

(DR OEC o
R Ol

m

14
1=m

and the result follows.
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Corollary 2 [1, Corollary 3.3(iii)] Let S = P,. Then,

ka,,=( )( )Z( 1)P+f< )( + 1"
Proof By Theorem 1 we see that
kap = Zkapr
r=0
-Gz )z ()
p—1)\m i o

! J—m\ . i—m . n—=7J\ .
Z(i—m>(J_1) ;(r—i)J

1=m

k—1 p) u +-<p—m>.~_m ) e
— 1P+ j +1
(p_l>(m ;( ) o)) G+

Corollary 3 [, Corollary 3.3(i)] Let S = P,,. Then,

n

i =2 ()0 2 ()

p=m

i N ‘
Z(j. m)(” ’.)j“(j—l)”".
S \i—m/)\r—i

Corollary 4 [1, Corollary 3.3(iv)] Let S = P,,. Then,

Fipr = (k N 1)(") S(r, p)p!
p—1/\r

Proof From Theorem 1, we get

p
kar = Z kapr

=S (o)0) zer ()

] m

p—m
—J

j.

)
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J . . _ '
Z(’. ’")(” ’.)j"'(j—l)"'"
£ I —m r—i

k—1\ & : L\ (n— e :
(o) 2 Q)X G E ) )e -
(DB OECD B o

p—1 o, J = r—i/)\i ! i—m
(B OEC

p—1 o Jj g \r—i i
=)z (5 o)0)

p—1 = j = r—i)\i

k—1\/n
=<p—l>(r S(r, p)p! (by Eq. 1)

Similarly from Theorem 1, we get the next corollary.

Corollary 5 [1, Corollary 3.3(ii)] Let S = P,,. Then,

p J . .
n p i(pP—m J—my(n—7J\ . .,._;, . i—m
F’””’:<p><m)z‘ (_l)pﬂ(p—j)Z(i—m)(r—i)] v
j=m

i=m

By similar arguments as in Corollary 4, we deduce the next two corollaries.

Corollary 6 [1, Corollary 3.5(i)] Let S = P,,. Then,
k—1
Fip = Sn+1,p+1p!
p—1
Corollary 7 [1, Corollary 3.5(ii)] and [ 10, Proposition 2.8] Let S = P,,. Then,

n
Fir = <r>[k’ —(k-D"1

Corollary 8 [I, Corollary 3.5(iii)] and [ 10, Proposition 2.2] Let S = Py,. Then,

Fpr = (n> <n>S(V’ p)p!
P r
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Corollary 9 /1, Corollary 3.4] Let S = P,,. Then,

Fm,,_( )( )Z( 1)p+1< )(]_,’_1)11 jii-m

Corollary 10 [1, Corollary 3.16(i)] Let S = T,,. Then

kap=< )( )Z( 1>”+f( J)(J)" I =i

Corollary 11 [1, Corollary 3.17(i)] [7, Proposition 2.6]. Let S = T,,. Then,

Fmp—< )( )Z( 1>”*’( ><J)" TG -1/

Note that a partial transformation « is idempotent if and only if Ima = F(«).
Using this fact, we can recover the formula for Fy,,, and F, in E(P,) as follows:

Corollary 12 [1, Corollary 4.3(ii)] Let S = E(Py). Then,

k—1 —
kar = ( )(n m)mr_m.
m—1)\r—m

Corollary 13 /1, Corollary 4.6(ii)] Let S = E(Py). Then,

n
m

Corollary 14 [, Corollary 3.11] Forn > m > 0,

ZZ( 1>"+f< m)(”_m)(Hl)"‘fjf—m.
p—m/j\p—]

p=m j=m
Proof By [10, Corollary 2.6], F,, in P, is given by (Z)n”_m. So, we get
Fp,
()

()

nn—m —
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2 p=m (;) () Zﬁzm(—l)p"'j (’I’;’}l)(j 4 1y jiem
)
Zrli:m (Z)(Z:ﬁ) ?:m(—l)p"'j (1;:’;’)(1 4 1y jiom
()
nop
=2 2= <n _ m) <p - ”.l) (+ 1) i,
p—J

p=m j=m p—m

Similarly, from [4, Corollary 2], we deduce the identity given in the next corollary.

Corollary 15 [, Corollary 3.12] Forn > p > 0,

p

P

m=0 j=m
Lemma 3 [I, Lemma 3.6] For all natural numbers n and k,

n

S k=3 (';) Sy(n— jk— j).

j=0

Proof Note that S(n, k) is the number of ways to partition n objects into k nonempty
subsets. Let j be the number of one-element subsets. These can be selected in (})
ways. The remaining n — j elements will be partitioned into k — j nonempty subsets,
each with at least two elements in Sp(n — j, k — j) ways. Thus,

n

S k=Y (’;) Sy(n— jik — j).

j=0

Proposition 2 [, Proposition 3.7] Let S = Py,. Then,

k—1\(n\(n—
kaqr=< _1>< >( _q>Sz(q,p+q—r)p!
p q)\r—q

Proof There are (f?:%) ways to select the images and (Z) ways to select the collapse

points. The remaining r — ¢ points of the domain can be selected in ('r':g) ways.
Let j be the number of images that absorb the collapse. Then, since the r — g points
of the domain are not among the collapse, they must be adjoined one-to-one to the
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remaining p — j images. So, p— j = r —¢q. Hence, j = p+q —r, and we can select

those in ( » +Z*r) ways. Now, we partition the g collapse points into S>(q, p+¢q —71)

nonempty subsets, where each has at least two elements, and then permute them in
(p+q —r)! ways. The remaining r —q pre-images and » —g images can be matched
in (r — g)! ways. Thus,

kaqrz(k_1)<”><”_")( P )Sz(q,p+q—r><p+q—r)!(r—q)!
p—1/\g/\r—q/\p+q—r

k—1 -
= < )(n> (n q>Sz(c1, p+q—r)p!
p—1/\g/\r—q

Corollary 16 [, Corollary 3.8(i)] Let S = P,. Then,

_(k=1\(n\x~(n—q
kaq_<P—1)<q>2(r_q>52(‘1’19+q—r)p!

r=q

Corollary 17 [, Corollary 3.8(iv)] Let S = P,,. Then,

kar = <k_ l)(n)s(ra P)P!
p—1)\r

Proof By Proposition 2, we see that

r
kar = Zkaqr

-3 (2:1><Z>(Z_Z>Sz(q,l?+q—r)p!
(k_l>< >p2::< ’ )Sz(q’P—(r—q))

(k_ 1)( )S(r p)p! (by Lemma 3).

Corollary 18 [, Corollary 3.8(iii)] Let S = Py,. Then,

" (k=1
= (OB s

p=0
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Corollary 19 /1, Corollary 3.8(ii)] Let S = P,,. Then,

n\(n\(n—gq
= Q) rea-or
P/ \qg/\r —q

Corollary 20 [, Corollary 3.9(i)] Let S = Py,. Then,

k—1
Fip = (p_ 1>S(n+l,l7+1)p!

Corollary 21 [1, Corollary 3.10(i)] Let S = Py,. Then,
n\ e (1 —q\ (k—1
A= ()X (P2 (52 ) s pta-nm
q) i \F—a/\p—1

Corollary 22 [1, Corollary 3.9(ii)] Let S = P,,. Then,

Fi = (’:)w — (k-1

Proof By Corollary 18, we get

Fir = Zqur

-2()()2

p=0

( )Sz(q p+q—r)p!

r

k—

=)
0k

( >Sz(q p+q—r)p!

( )X (

()X (-

(2 [G)- (s
(7

<

(r, p)p! (byLemmas 1 and 3)

=
Il

<

(K" — (k= D"].
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Corollary 23 [1, Corollary 3.10(iii)] Let S = P,,. Then,
n\ (n\ — (n— q
qu:p!< )()Z( . )Sz(qap—j)-
r/\4q =0 J

By Corollary 19 and Lemma 3, we deduce the next corollary.

Corollary 24 [1, Corollary 3.9(iii)] and [10, Proposition 2].

Fpr = (n) <H)S(rv p)p!
P r

Corollary 25 [1, Corollary 3.10(ii)] Let S = P,. Then,

() ECJsr oo

p=0

Corollary 26 [I, Corollary 3.10(iv)] Let S = P,. Then,

n\ — n\ n—gq
F, :() p!( ) < . )Sz(q,p—j)-
1\ p;) p ]X:(:) j

By [10, Corollary 2.3], we deduce the identity given in the next corollary.
Corollary 27 [1, Corollary 3.13] Forn >r >0

r r

=y 3" <;> (;)Sz(q, p+q—r)p!

=0 p=0

By [4, Corollary 2], we deduce the identity given in the next corollary.
Corollary 28 [1, Corollary 3.14] Forn > p > (,

n n—q _
St+1,p+1) =ZZ(Z>(" . ")Sz(q,p—n.

4=0 j=0

Corollary 29 [, Corollary 3.16(ii)] Let S = T,. Then,

k—1\/n
kaq =< )( )Sz(q,l?-i-q—n)l?!
p—1)\q

From Corollary 29, we deduce the following successive corollaries.
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Corollary 30 /I, Corollary 3.17(ii)] and [10, Proposition 2.11] Let S = T,,. Then,

F — k—1 S(n. p)p!
kp— p—l n’Pp

Corollary 31 /1, Corollary 3.16(iii)] Let S = T,. Then,

n n
Fpg = (p) (q)Sz(p, p+q—np!

Corollary 32 /1, Corollary 3.16(iv)] Let S = T,,. Then,

(k=1
Frg = <n) > (p_ 1)Sz(q,p+q —np!

a) =
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Integrated Tomato Cultivation Using )
Backpropagation Neural Network on Qe
Bipolar Fuzzy Sets

S. Anita Shanthi and R. Preethi

Keywords Bipolar fuzzy set - Activation function - Backpropagation neural
network

1 Introduction

Zadeh [1] introduced fuzzy sets. Zhang [2] introduced bipolar fuzzy set. Akram
et al. [3] described the application of BFS in graph structures. Dongare et al.
[4] proposed artificial neural network (ANN) as a tool for analysis of different
parameters of a system. Wu et al. [5] introduced four characteristics of ANN and its
application. Seenivasan et al. [6] dealt with deep learning. Svozil et al. [7] described
the multilayer feed-forwarded neural network and also discussed the advantages
and disadvantages of this network. Ishibuchi et al. [8] proposed multilayer feed-
forward neural networks and also the learning algorithm of fuzzy neural network.
Jin et al. [9] derived BP algorithm for fuzzy neural network. Li et al. [10] analyzed
the characteristics and mathematical theory of BP neural network. Nawi et al. [11]
proposed an algorithm by introducing the adaptive gain of the activation function
and improved the learning speed of the conventional BP algorithm. Shihab [12]
discussed an efficient and scalable technique for computer network security. Hegazy
et al. [13] effectively improved the process of developing practical neural network.
Chen et al. [14] proposed the privacy-preserving BPNN learning. Zheng et al. [15]
developed a rockburst prediction model to select the evaluation factors based on
the entropy weight gray relational BP neural network. Won et al. [16] proposed
a method of recognition and prediction of nutrient deficiency in tomato plants
based on deep neural network. Walgenbach et al. [17] determined the persistence
of insecticides on tomato foliage and plant growth rate. Schmitz-Eiberger et al. [18]
investigated on the influence of deficient calcium supply on tomato leaves. Based
on these concepts, BP on BFENN is developed.
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2 Backpropagation on Bipolar Fuzzy Neural Network
(BPBFNN)

BP is one of the major concepts of a NN. The input values x,,, weights (b,,,, b;\,)
of the input layer(IL), and bias value b, are feed-forwarded to find hidden layer
(HL). Output g(¢) is found using sigmoid function. If output # target, then the error
is calculated. Weights and bias are revised and BP to achieve the target. Figure 1

represents BPBFNN.
Definition 1 Degree of BF set is defined as dy, = 1 — |b;,, — b\, |.

)4
Definition 2 The entropy measure, E,, = % odumyn=1,2,...,q.
m=1

Definition 3 Using the entropy values, the HL weights are calculated and are
defined as W), = ql_#
S 1-E,

n=1

q

The weights W, = (W1, Wa, ..., W,) satisfy W, = 1.

n=1
Definition 4 HL weight correction, VW, = W, —nwg(G,) where 1 is the assumed
learning rate, g(G,,) is the output of the HL, and w = (T —g(¢)) xg(¢) * (1 — g(¢)),
where T is the targeted value and g(¢) is the calculated output.
IL weight correction,
Negative: Vb,,, = b,,, — nwl, X,
where ¢, = g(G,)) * (1 — g(G,))) * % and x,,’s are the input values.
Positive: Vbl = bl — nwxm
where ¢F = g(G;) * (1 — g(G) * 4.

Definition 5 The bias correction is Vb, = b, — nw,a =1, 2.

Inputs Input Layer Hidden Layer

(CYR:Y)

X1

Output

Xz

X3

Fig. 1 BPNN using BF sets
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3 Algorithm

Step 1:  Set the targeted output 7.
Step 2:  Let the input values be x1, x2, x3 and bias values by and b».
Step 3:  Determine IL weights as bipolar fuzzy set (b,,,, b,\,)-
Step 4: Calculate weighted sum (WS) of positive and negative membership
function of BF set,
p p
G, = Y. |xmb,,, — b1l and G;F = > |xmb}, + b1
m=1 m=1
- +
Step 5:  Applying sigmoid function, g(G,) = w
-\ 1 +\ 1
§(Gy) = 14+e~Cn and g(G) = 57
Step 6:  Calculate the weights of HL,
q
W, = ql*—E" which satisfies Y~ W, = L.
> (1-Ey) n=1
n=1
Step 7:  For the output unit, the weighted sum of HL is,
¢ = Z Wug(Gp) + by.
Step 8:  Use activation function g(¢) = 7 +i — to get the output.
If calculated output # targeted output, then proceed further.
Step 9: To find error, Er = %(T — g(9))>.
Step 10:  For output unit, find weight and bias corrections using Definitions 4 and
5.
Repeat Steps 4 to 8. When calculated output = targeted output, end the process.
Otherwise, repeat the process.

is calculated, where

4 Application

Tomato is a fruit rich in vitamins and minerals. Nutrients are essential for plant
reproduction, growth, and metabolism. Normal life cycle of a plant is incomplete
without minerals. Nutrients such as nitrogen, potassium, and phosphorus are
described below.

1. Nitrogen: Plants require a lot of nitrogen, in order to produce desired crop
growth and obtain maximum benefits.

2. Potassium: It is an essential element for plant growth. It contributes to stem
strength, disease resistance, and growth.

3. Phosphorus: It benefits the formation of new roots and is used in flower, fruit,
and seed production.
Nitrogen-, potassium-, and phosphorus-deficient plants are shown in Fig. 2.

Insecticides control pests that affect plants.

1. Carbosulfan: It is used to control soil dwelling and foliar insect pests.



122 S. Anita Shanthi and R. Preethi

Nitrogen deficiency

Potassium deficiency

Fig. 2 Nutrient-deficient tomato plants

Fig. 3 Tomato plant affected by insects

2. Abamectin: It is a natural fermentation product for the control of mites, leaf
miners, and fire ants.

3. Acetamiprid: It is a broad-spectrum insecticide used to regulate sucking-type
insects.

Tomato plants affected by insects are shown in Fig. 3.

5 Example

Let o1, az, a3 denote the amount of tomato seeds sown in three farms. Let
(b b;n"n) for m,n = 1,2,3 denote the nutrients nitrogen, potassium, and
phosphorus applied to the farms. The returns in three farms are registered in the HL.
W1, Wa, W3 denote the insecticides such as carbosulfan, abamectin, and acetamiprid
sprayed to each farm. The total returns of three farms are found. If the returns
obtained are not the targeted value, BP is carried out, and the error is determined.
Then the optimal quantity of nutrients and insecticides to be supplied is estimated
till the favorable returns are obtained.



Integrated Tomato Cultivation Using BPNN on BFS 123

Step 1:  Assume the targeted output 7 = 0.80.

Step 2:  The input values o1 = 0.15; «» = 0.03; @3 = 0.28 and the bias values
are by = 0.5 and b, = 0.65.

Step 3:  The bipolar fuzzy sets taken as the IL weights are represented in a matrix
form.

Fieldl Field2 Field3
nitrogen (—0.2,0.58) (—0.65,0.1) (—0.11,0.63)
BFM = potassium (—0.09,0.79) (-0.12,0.69) (—0.56,0.3)
phosphorus (—0.28,0.7)  (—0.27,0.6) (—0.51,0.08)

Step 4:  Determine the negative and positive weighted sum.
G| =0.3889, G, =0.3233, G; = 0.3239.
G| =0.8067, G =0.7037, G = 0.6259.

Step 5:  Sigmoid activation function
g(G7) =0.5960, g(G;) = 0.5801, g(G3) = 0.5802.
g(GT) =0.6914, g(G7) = 0.6690, g(G}) = 0.6515.

¢(Gy) = £90HED _ 6437,
Similarly, g(G2) = 0.6245, g(G2) = 0.6159.
Step 6: W, is calculated using d,,,, and E,,.
di1 =0.22,dy; =0.12,d3; = 0.02.
dip =0.25,dy» = 0.19,d3p = 0.13.
di3 = 0.26,dr3 = 0.14, d33 = 0.41.
E{ =0.12, E, = 0.57, E3 = 0.81.
Finally, W) = % = 0.3636, W, = 0.3347, W3 = 0.3016.
Step 7:  Calculate the weighted output.
a=g(GW +g(G) W2 +g(G3)W3 + by
= 0.2340 + 0.2090 4 0.1857 + 0.65 = 1.2789.
Step 8:  Determine the output value, g(«) = 0.7822.
Nutrients added to tomato farms at trial 1 are plotted graphically in Fig. 4.
If the output # target, proceed further.
Step9: Er = 0.00015.
Step 10:  For output unit, Error
o = —0.00302, wg(G1) = —0.00194.
Choose the learning rate n = 0.9.
nwg(G1) = —0.00175.
Weight correction: VW = 0.3653, VW, = 0.3364, VW3 = 0.3033.

Bias Correction:Vby = 0.6527.

Step 11:  For input, Error
¢ =0.0437, ¢, =0.0407, ¢ = 0.0367.
¢" =0.0387, ¢, = 0.0370, ;" = 0.0342.
Weight Correction:
Negative:
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Fig. 4 Nutrients added to plants (trial 1)

Vb, = —0.19998, Vb, = —0.09, Vby, = —0.2799.
Vb, = —0.64998, Vb,, = —0.12, Vb3, = —0.2699.
Vb3 = —0.1099, Vb,y; = —0.56, Vb33 = —0.5099.
Positive:
Vb, = 0.5800, Vb3, = 0.7900, Vb3, = 0.7000.
Vb, = 0.1000, Vb3, = 0.6900, Vb3, = 0.6000.
Vbl = 0.6300, Vb3, = 0.3000, Vb3, = 0.0800.
Bias Correction:Vb; = 0.5027.
Step 12:  Repeat Steps 4 to 8 after updating the weights.
Determine the WS. G| = |x1 Vb +x2Vb;, +x3Vb3, +Vbi| = 0.3916, G, =
0.3260, G5 = 0.3266
G| =0.8094, G5 = 0.7064, G = 0.6286.
Activation function, f(G1) = 0.6443, f(G32) = 0.6252, f(G3) = 0.6165.
Weighted output,e = g(G1)VW| + g(G2)VWa + g(G3)VW3 + by = 1.2854.
Determine the output, g(«) = 0.7833.
Using the UW (updated weight), the output is 0.7833 which is # target.
Nutrients added to tomato farms at trial 2 are plotted graphically in Fig. 5.
Repeating the process n=51 times UW for IL, For input layer,
Vb, = —0.1997, Vb,; = —0.09, Vb3, = —0.2795,
Vb, = —0.6497, Vb,, = —0.12, Vb3, = —0.2695,
Vb3 = —0.1098, Vb, = —0.56, Vb33 = —0.5095.
Vb, = 0.5802, Vb3, = 0.7900, Vb3, = 0.7004,
Vb, = 0.1011, Vb3, = 0.6900, Vb3, = 0.6004,
Vb = 0.6302, Vb3, = 0.3001, Vb3, = 0.0814.
For output layer, VW = 0.39032, VW, = 0.3606, VW3 = 0.3268.
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Fig. 5 Nutrients added to plants (trial 2)

100%
80%
60%
40%
20%

0%

-20%

-40%

-60%

-80%

-100%

Field1 Field2 Field3

ENitrogen @Potassium @Phosphorus

Fig. 6 Nutrients added to plants (trial n)

Bias values,Vb; = 0.5423, Vb, = 0.6923
Using these weights, the targeted output = 0.8018.
Nutrients added to tomato farms at trial n are plotted graphically in Fig. 6.

6 Conclusion

Taking the tomato seeds sown as input, nutrients as IL weight, and insecticides
as HL weight, the total returns of three farms are registered. The total returns
at the end of the first trial are 0.7822. If the returns obtained # the targeted
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value, BP is carried out, and the error is determined. Then the optimal quantity
of nutrients and insecticides to be supplied is registered. The returns after the UW
are 0.7833. The process is repeated for 51 times, and finally, the targeted value,
which is the favorable returns 0.8018, is reached. The correct amount of nutrients
and insecticides that must be supplied in three farms is calculated using BPFNN so
that the farmers attain favorable returns, which could be of great benefit to them.
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Cryptographic Coding of Some Fibonacci = m)
Type Numbers to Determine Repeated Qe
Steps of Their Residues

T. Srinivas and K. Sridevi

Keywords Fibonacci - Lucas - Pell - Pell-Lucas - Jacobistal -
Jacobistal-Lucas - Narayana numbers

1 Introduction

Number theory is the Queen of Pure Mathematics. We can apply the theory of
numbers to our nature, in particular by observation in plant growth (patterns in
leaves, seed distribution, development in flower petals, and branch mechanisms in
the plants). In most of the cases, their mechanism is in the Fibonacci sequence of
numbers, and some of them are represented below. From References [1-5].

We can introduce numbers of Fibonacci type of rth order of linear recurrence
defined as follows:

a, = clay—1 ++cran—o +c3an—3+caan_g4+........ cranp—r,forn>r,r > 2.

Some of them are represented according to their second order as follows:
Fibonacci numbers {1,1,2,3,5,8,13,21... .... .} satisfy following recurrence
relation

F,=F,_1+ F,—y forn=>2, withFp=1,F =1.

Lucas numbers {2,1,3,4,7,11,18,29, ... .... .} satisfy following recurrence
relation
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L,=L,_1+L,—» forn>2, withlLy=2,L; =1.

Pell numbers {0,1,2,5,12,29... .... , } satisfy following recurrence relation

Py =2Py_1+ Paa forn=2, withPy=0P =1

Pell-Lucas numbers {1, 3,7,17,41,99, ..... } satisfy following recurrence relation

0n=20n-1+Qu—2 forn=2, withQp=1,01=23.

Jacobistal numbers {0, 1,1,3,5,11, ..... } satisfy following recurrence relation

Jo=Jn1+2J—2 forn=>2, withJo=0,J1 =1.

Jacobistal-Lucas numbers {2,1,5,7,17, .... .} satisfy the following recurrence
relation

Jon =1 +2Jy—2 forn=2, withJoy=2,J1=1.

Narayana numbers {0,1,1,1,2,3,4, ..... } satisfy following recurrence relation

Ny =Nu—14+ Ny—3 forn=>3, withNo=1,Nj=1,N,=1.

1.1 Fibonacci Numbers

Program

// fibonacci Numbers

decimal[] fibonacci = new decimal [100];

fibonacci[0] = 1; fibonaccil[l] = 1;

for (int i = 2; i1 < fibonacci.Length; i++)

{

fibonacci[i] = fibonacci[i - 1] + fibonacci[i-2];

1

Console.WriteLine (“"Fibonacci Numbers for n values
2 to 100 \n”);

foreach (var item in fibonacci)

{

Console.Write ($“{item}, ") ;

}
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Console.WriteLine ("“\n”) ;
for (int n = 2; n <= 10; n++)

{

Console.WriteLine (“\nReminders of Fibonacci Numbers
when divided by {0} \n”,n);
foreach (var item in fibonacci)

{

o

Console.Write(™0},”, (item % n));

}

Console.WriteLine (“\n”) ;

Reminders of Fibonacci numbers when divided by 2
1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,
0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,
1,0,1,1,0,1,1,0,1,1,0,1,

Reminders of Fibonacci numbers when divided by 3
1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,
2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,
1,1,2,0,2,2,1,0,1,1,2,0,

Reminders of Fibonacci numbers when divided by 4
1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,
2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,
1,0,1,1,2,3,1,0,1,1,2,3,

Reminders of Fibonacci numbers when divided by 5
1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,
0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,
4,0,4,4,3,2,0,2,2,4,1,0,

Reminders of Fibonacci numbers when divided by 6
1’192939592’1,354’195’09595’4’351,495’39295’1’0’1,192’39592’1’3’4,195’09595’4’3’1’495’39
2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,
1,4,5,3,2,5,1,0,1,1,2,3,

Reminders of Fibonacci numbers when divided by 7
1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,
2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,
0,6,6,5,4,2,6,1,0,1,1,2,3,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,
1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,
6,5,4,2,6,1,0,1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,
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Reminders of Fibonacci numbers when divided by 8
1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,
2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,
5,0,5,5,2,7,1,0,1,1,2,3,

Reminders of Fibonacci numbers when divided by 9
1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,
2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,
4,1,5,6,2,8,1,0,1,1,2,3,

Reminders of Fibonacci numbers when divided by 10
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1,6,7,3,
0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,
9,0,9,9,8,7,5,2,7,9,6,5,

Integer modulo m (from 2 to 11) for Fibonacci numbers

Residues
m-modulo | Sequence of residues repeats Nonresidues
2-modulo (1,1,0,1,1,0,1,1,0, ... ... .... ) 3 steps -
3-modulo | (1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0, 8 steps -

1,1,2,0,2,2,1,0,1,1. .. ... )
4-modulo (1,1,2,3,1,0,1,1,2,3,1,0,1,1,23....) 6 steps -
5-modulo | (1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2, ... ... ) | 20 steps -
(3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0.. .. ... )
1,1,2,3,5,2,1,3,4,1,5,0,
6-modulo 5.5,4,3.1 24 steps -
,4,5,3,2,5,1,0
,1,1,2,3,5,2,,3,2,5,1,0,
7-modulo | (1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,2,3,. .. .) 16 steps -
5,1,6,0,6,6,5,4,2,6,1,0, . .. .)
8-modulo | (1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2, 12 steps 4,6
7,1,0,1,1,2,3,...))
9-modulo | (1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0, 24 steps -
1,1,2358,....)
10-modulo | (1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8, 60 steps -

5’3’8’ 1’9’099’9’8’7’592’7’9’6’5’1 ’6’7’3’0’3’3’6’9’
5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,58,3,,....)

1.2 Lucas Numbers

Program:

// Lucas Numbers
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decimal[] lucas = new decimal[100];
lucas[0] = 1; lucas[1] = 1;
for (int i = 2; 1 < lucas.Length; i++)
{
lucas[i] = lucas/[i - 1] + lucas[i-2];
}
Console.WriteLine (“"Lucas Numbers for n values 2 to 100 \n”);
foreach (var item in lucas)
{
Console.Write ($™{item}, ”) ;
}
Console.WriteLine (“\n”) ;
for (int n = 2; n <= 10; n++)
{
Console.WriteLine (“\nReminders of Lucas Numbers
when divided by {0} \n”, n);
foreach (var item in lucas)

{
}

Console.WriteLine (“\n”);

Console.Write(™{0},”, (item % n));

}

Reminders of Lucas numbers when divided by 2
1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,
0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,
1,1,0,1,1,0,1,1,0,1,1,0,1,

Reminders of Lucas numbers when divided by 3
1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,
0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,2,
2,1,0,1,1,2,0,2,2,1,0,1,1,2,0,

Reminders of Lucas numbers when divided by 4
1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0, 1,1,
2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,
3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,

Reminders of Lucas numbers when divided by 5
1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,
0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,1,1,
2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0,

Reminders of Lucas numbers when divided by 6
1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,5,
4,3,1,4,5,3,2,5,1,0,1,1,2,3,5,2,1,3,4,1,5,0,5,54,3,1,4,5,3,2,5,1,0,1,1,2,3,
52,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3,
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Reminders of Lucas numbers when divided by 7 1,1,2,3,5,1,6,0,6,6,5,4,2,6,1,0,1,1,
233’5’1’6707676,534’2’6’1707171,233’5’1’6307676,5’4’2’6’1307171,2’3’5’1’6307676,5’4’2’6’
130’ l 9’ 1 9273757 1 ,6,0’6’695747276, 1 ,0’ l s 1 ’273757 1 ,6,0’6’6’5747276, 1 ,0’ l 9’ 1 ’2737

Reminders of Lucas numbers when divided by 8
1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,
2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3,5,0,5,5,2,7,1,0,1,1,
2,3,5,0,5,5,2,7,1,0,1,1,2,3,

Reminders of Lucas numbers when divided by 9
1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,
6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,5,8,4,3,7,1,8,0,8,
8,7,6,4,1,5,6,2,8,1,0,1,1,2,3,

Reminders of Lucas numbers when divided by 10
1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,1,
6,7,3,0,3,3,6,9,5,4,9,3,2,5,7,2,9,1,0,1,1,2,3,5,8,3,1,4,5,9,4,3,7,0,7,7,4,1,5,6,
1,7,8,5,3,8,1,9,0,9,9,8,7,5,2,7,9,6,5,

Integer modulo m (from 2 to 11) of Lucas numbers

Residues
m-modulo | Sequence of residues repeats Nonresidues
2-modulo | {1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,..} 3 steps -
3-modulo  |{1,1,2,0,2,2,1,0,1,1,2,0,2,2,1,0,} 8 steps -
4-modulo | {1,1,2,3,1,0,1,1,2,3,1,0,1,1,2,3,1,0,} 6 steps -
5-modulo 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4, 20 steps 3

1,0,1,1,2,3,0,3,3
6-modulo 1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3, 1 24 steps B
.4,5,3,2,5,1,0,1,1,2,3
7-modulo 1,1,2,3,5,1,6,0,6,6,5,4,2,6, 1,0, 16 steps 3
1,1,2,3
8-modulo 1,1,2,3,5,0,5,5,2,7,1,0, 12 steps 4.6
1,1,2,3,5,0,5,5,2,7,1,0,1,1,2,3
9-modulo 1,1,2,3,5,8,4,3,7,1,8,0,8,8,7,6,4, 1, 5, 24 steps _
6,2,8,1,0,1,1,2,3,
1,1,2,3,5,8,3,1,4,5,9.4,3,7,0,7,7,4,
7
10-modulo 1,5,6,1,7,8,5,3,8,1,9,0,9,9,8, 60 steps
.5,2,7,9,6,5,1,6,7,3,0,3,3,6,9,5
,4,9,3,2,5,7,2,9,1,0,1,1,2,3
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1.3

Pell Numbers

Program

/7

Pell Numbers

using System.Numerics;

BigInteger[] pell = new BigInteger[100];
pell[0] = 0; pell[1l] = 1;

for (int i = 2; i1 < pell.Length; i++)

{
}

Console.WriteLine (“"Pell Numbers for n values 2 to 100 \n”);
foreach (var item in pell)

{

pell[i] = (2 » pell[i - 1]) + pell[i-2];

Console.Write(s™{item},”) ;
}
Console.WriteLine ("“\n”) ;
for (int n = 2; n <= 10; n++)
{
Console.WriteLine (“\nReminders of Pell Numbers when
divided by {0} \n”, n);
foreach (var item in pell)
{
Console.Write ("“{0},”, (item % n));
1
Console.WriteLine ("“\n”) ;

}

Integer modulo of Pell numbers

14

Jacobistal Numbers

Program

}

// Jacobistal Numbers
using System.Numerics;
BigInteger[] jacobistal = new BigInteger[100];
jacobistal [0] = 0; jacobistal[l] = 1;
for (int i = 2; i1 < jacobistal.Length; i++)

jacobistal [i] = jacobistall[i - 1] +
(2 * jacobistall[i-2]);

Console.WriteLine (“"Jacobistal Numbers for n values 2 to 100
\n”) ;
foreach (var item in jacobistal)

{
}

Console.Write ($"{item}, ”) ;
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n-modulo Sequence of residues Residues repeats Nonresidues
2-modulo 0.1,0.1,0, 2 steps -
1,0,1....... ,
0,1,2,2,
3-modulo 0,2,1,1,0 8 steps -
,1,2,2,00.0,
0,1,2,1,0,1,
4-modulo 2,1,0,1,2,1, 4 steps 3
0,1,2,1....,
0,1,2,0,2,4
5-modulo ,0,4,3,0,3, 1, 12 steps -
0,1,2,0....,
0,1,2,5,0,5,
6-modulo 4.1,0,1,2,5, 8 steps 3
0,5,4,....,
7-modulo 0.1,2,5,5,1, 6 steps 3,4,6
0,1,2,5,5,1
8-modulo 0.1,2.5,4,5,6, 8 steps 3,7
1,0,1,2,....
9-modulo {0,1,2,5,3,2, 24 steps -
7,7,3,4,2,8,0
,8,7,4,6,7,2,
2,6,5,7,1,
0,1,2,5,3}
0,1,2,5,2,9,
10-modulo 0,9,8,5,,8,1, 12 steps 3,4,6,7
0,1,2,5...

Console.WriteLine ("“\n”) ;
for (int n = 2; n <= 10; n++)
{
Console.WriteLine ("“"\nReminders of Jacobistal
Numbers when divided by {0} \n”, n);
foreach (var item in jacobistal)
{
Console.Write (“{0},”, (item % n));
1

Console.WriteLine (“\n”);

}

Integer modulo of Jacobistal numbers
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n-modulo

2-modulo

3-modulo

4-modulo

5-modulo

6-modulo

7-modulo

8-modulo

9-modulo

10-modulo

Sequence of residues

{0,1,1,1,1,}

0,1,1,0,2,
2,0,1,1,0,2,2

0,1,1,3,1,3,
1,3,1,3,1,3

0,1,1,3,0,
1,1,3,0

0,1,1,3,5,
5,3,
1,1,3,5,...

0,1,1,3,5,4,
0,1,1,3, ..

0,1,1,3,5,
3,5,3,5,..
0,1,1,3,5,2,3,
7.4,0,8,8.6,
4,7,6,2,5,
0,1,1,3,
0,1,1,3,51,1,
3,5,1,1,3,5,
1,1,3,5

|

Residues repeats

“1”

Residue is repeated

6 steps

After two steps 1,3 are repeated

4 steps

6 steps (except first residue)

6 steps

After 5 steps, two residues 3,5 are
repeated

18 steps

1,1,3,5 repeats

1.5 Jacobistal-Lucas Numbers

Program

// Jacobistal-Lucas Numbers

using System.Numerics;
BigInteger[] jacobistalLucas = new BigInteger[100];

jacobistalLucas[0] = 2; jacobistalLucas[1]

for (int i = 2; 1 < jacobistalLucas.Length; i++)

{
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Nonresidues

2,4

2,4

2,6

2,4,6,7

2,479

= 1;

jacobistalLucas[i] = jacobistalLucas[i - 1]
+ (2 % jacobistalLucas[i-2]);

}

Console.WriteLine (“Jacobistal-Lucas Numbers for n
values 2 to 100 \n”);

foreach (var item in jacobistalLucas)

{

Console.Write ($™{item}, ”) ;

}

Console.WriteLine (“\n”);
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for (int n = 2; n <= 10; n++)

{
Console.WriteLine (“\nReminders of Jacobistal-
-Lucas Numbers when divided by {0} \n”, n);
foreach (var item in jacobistalLucas)

{

Console.Write(™0},”, (item % n));

}

Console.WriteLine (“\n”) ;

}

Reminders of Jacobistal-Lucas numbers when divided by 2
o1,,,1,11,1,1,,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

Reminders of Jacobistal-Lucas numbers when divided by 3
2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,
1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,
2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,

Reminders of Jacobistal-Lucas numbers when divided by 4
2,1,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,
3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,
3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,1,3,

Reminders of Jacobistal-Lucas numbers when divided by 5
2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,
0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,
2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,2,1,0,2,

Reminders of Jacobistal-Lucas numbers when divided by 6
2,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,
1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,
5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,5,1,

Reminders of Jacobistal-Lucas numbers when divided by 7
2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,
0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,
3,3,2,1,5,0,3,3,2,1,5,0,3,3,2,1,5,0,

Reminders of Jacobistal-Lucas numbers when divided by 8
2,15,7,1,71,71,71,7,1,7,1,71,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,
1,71,7,1,71,71,7,1,71,7,1,71,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1,7,1
7,1,7,1,7,1,7,1,7,1,7,1,7,

Reminders of Jacobistal-Lucas numbers when divided by 9
25 1 55’798’4’2’ 1 755758’492’ 1 ’5’778’452’ 1 95’7’8’4725 1 55’798’4’2’ 1 755758’492’ 1 9
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5,7’8’4927 1 7577,8,4’2’ 1 95777874,2, 1 ’5’79874727 1 ,5,7’8’4927 1 7577,8,4’2’ 1 957
7’8’4’2’ 1 757778,4’2’ l ’5’7787472, 1 ’5’7’8’4727 1 75,7’

Reminders of Jacobistal-Lucas numbers when divided by 10
2,1,5,7,7,1,5,1,71,5,7,7,1,5,7,7,1,5,,7,1,5,/,,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,
1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,
1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,7,1,5,7,

1.6 Narayana Numbers

Program

// Narayana Numbers
using System.Numerics;
BigInteger[] narayana = new BigInteger[100];

narayana[0] = 0; narayanal[l] = 1; narayanal[2] = 1;
for (int i = 3; 1 < narayana.Length; i++)
{

narayana[i] = narayanal[i - 1] + narayanali-3];

}

Console.WriteLine (“"Narayana Numbers

for n values 2 to 100 \n”);

foreach (var item in narayana)

{
Console.Write ($“{item}, ") ;

}

Console.WriteLine (“\n”) ;

for (int n = 2; n <= 10; n++)

{
Console.WriteLine (“\nReminders of Narayana
Numbers when divided by {0} \n”, n);
foreach (var item in narayana)

{
}

Console.WriteLine (“\n”) ;

Console.Write (™{0},”, (item % n));

Reminders of Narayana numbers when divided by 2
0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,
1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,
0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1,1,1,0,1,0,0,1

Reminders of Narayana numbers when divided by 3
0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,
1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,
2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1,2,0,1,0,0,1,1,1
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Reminders of Narayana numbers when divided by 4
0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,
3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,1,1,2,
3,0,2,1,1,3,0,1,0,0,1,1,1,2,3,0,2,1,1,3,0,1,0,0,1,

Reminders of Narayana numbers when divided by 5
0,1,1,1,2,3.4,1,4,3,4,3,1,0,3,4,4,2,1,0,2,3,3,0,3,1,1,4,0,1,0,0,1,1,1,2,3,
4,1,4,3,4,3,1,0,3,4,4,2,1,0,2,3,3,0,3,1,1,4,0,1,0,0,1,1,1,2,3,4,1,4,3,4,
3,1,0,3,4,4,2,1,0,2,3,3,0,3,1,1,4,0,1,0,0,1,1,1,2,3 .4,

Reminders of Narayana numbers when divided by 6
0,1,1,1,2,34,0,3,1,1,4,5,0,4,3,3,1,4,1,2,0,1,3,3,4,1,4,2,3,1,3,0,1,4,4,5,
3,1,0,3,4,4,1,5,3,4,3,0,4,1,1,5,0,1,0,0,1,1,1,2,3,4,0,3,1,1,4,5,0,4,3,3,1,
4,1,2,0,1,3,3,4,1,4,2,3,1,3,0,1,4,4,5,3,1,0,3,4,4,1,

Reminders of Narayana numbers when divided by 7
0,1,1,1,2,3,4,6,2,6,5,0,6,4,4,3,0,4,0,0,4,4,4,1,5,2,3,1,3,6,0,3,2,2,5,0,2,0,
0,2,2,2,4,6,1,5,4,5,3,0,5,1,1,6,0,1,0,0,1,1,1,2,3,4,6,2,6,5,0,6,4,4,3,0,4,0,
0,4,4,4,1,5,2,3,1,3,6,0,3,2,2,5,0,2,0,0,2,2,2 4,

Reminders of Narayana numbers when divided by 8
0,1,1,1,2,34,6,1,5,3,4,1,4,0,1,5,5,6,3,0,6,1,1,7,0,1,0,0,1,1,1,2,3,4,6,1,5,
34,14,0,15,5,6,3,0,6,1,1,7,0,1,0,0,1,1,1,2,3,4,6,1,5,3,4,1,4,0,1,5,5,6,3,
0,6,1,1,7,0,1,0,0,1,1,1,2,3.4,6,1,5,3,4,1,4,0,1,

Reminders of Narayana numbers when divided by 9
0,1,1,1,2,3,4,6,0,4,1,1,5,6,7,3,0,7,1,1,8,0,1,0,0,1,1,1,2,3,4,6,0,4,1,1,5,6,
7,3,0,7,1,1,8,0,1,0,0,1,1,1,2,3,4,6,0,4,1,1,5,6,7,3,0,7,1,1,8,0,1,0,0,1,1,
1,2,3,4,6,04,1,1,5,6,7,3,0,7,1,1,8,0,1,0,0,1,1,1,

Reminders of Narayana numbers when divided by 10
0,1,1,1,2,3,4,6,9,3,9,8,1,0,8,9,9,7,6,5,2,8,3,5,3,6,1,4,0,1,5,5,6,1,6,2,3,9,1,
4,3,4,8,1,5,3,4,9,2,6,5,7,3,8,5,8,6,1,9,5,6,5,0,6,1,1,7,8,9,6,4,3,9,3,6,5,8 4,
9,7,1,0,7,8,8,5,3,1,6,9,0,6,5,5,1,6,1,2,8.9,

2 Conclusion

This paper focused on to study cryptographic coding of linear recurrence relations
of some Fibonacci type numbers to determine repeated steps of their residues for
integer modulo from 2 to 10. It particularly focused to study repeated steps of
residues of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobistal, Jacobistal-Lucas, and
Narayana numbers. In cryptographic coding, repeated steps of residues are useful
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for public sector, and nonresidues are useful for private sector. So we are focused to
generate the Fibonacci type number repeated steps of residues under integer modulo
from 2 to 10.

References

. Bednarj, N.: ON (k,p)- Fibonacci numbers. J. MDPI Math. 9(7), 727 (2021)

. Hazra Matrix, A.K.: Algebra, Calculus and Generalised Inverse (2010)

. Singh, B.: Advanced Abstract Algebra (2002)

. David M.: Burton Elementary Number theory (2003)

. Sridevi, K., Srinivas, T.: A new approach to define integer sequences of Fibonacci type numbers
with using of third order linear recurrence relations. In: AIP Conference Proceedings 2385,
130005 (2022); https://doi.org/10.1063/5.0070691, 06 January 2022

[ R



 5030 16756 a 5030 16756
a
 

On Permutation Distributive BI-Algebras = m

Check for
updates

Nadia M. Ali Abbas @, Shuker Khalil, and Enoch Suleiman

Keywords Cycles - Permutation - Bl-algebras - Compatible relation -
Quasi-associative - Distributive - Symmetric groups

1 Introduction

Imai and Iseki [1] investigated and studied the notion of BCK-algebra, and also they
looked into several connections between d-algebras and BCK-algebras, where the
concept of d-algebras is introduced by Neggers and Kim [2]. Many academics have
intensively examined numerous generalizations of a B-algebra, and properties have
been considered methodically. Next, the concept of B-algebras ([3]) is pioneered.
The B-algebra is an algebra of type (2,0).

The notion of Bl-algebra is shown by Saeid et al. [4]. They discuss the essential
properties of Bl-algebras as well as ideals and congruence relations. A Bl-algebra
is an extension of (dual) implication algebra. Alsalem [5] provides permutation
sets. The permutations of symmetric and alternating groups are examined [6—13].
A permutation set is a nonclassical set such as fuzzy sets [14-21], soft sets [22-27],
neutrosophic sets [28—33], and nano sets [34].

We looked at permutation quasi-associative Bl-algebra, permutation Bl-ideal,
and permutation right (left) distributive Bl-algebra. Moreover, we explored some
new notions in permutation theory for the first time. We also examined permutation
right compatible relation, permutation left compatible relation, and permutation
compatible relation in permutation Bl-algebra.
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2 Preliminaries

This section covers the fundamental principles as well as facts relevant to this topic.

Definition 2.1: [3] Let X # & and O be a constant with a binary operation .. We
say that (X, 4 , ) is a Bl-algebra if it satisfies the following conditions:

(@) x4+ x=0.
® x (ex)=x, Yx,yeX.

Definition 2.2: [5] For any permutation f = ]_[icfl) Al in a symmetric
group S, where {)\i}icfl) is a composite of pairwise disjoint cycles {)\i}iciﬁl)
where N\ = (tll,tlz,...,tfxi),l < i < c(B), for some 1 < «;, c(B) < n. If
A = (t1,t, ..., tx) is k—cycle in S,, we define S—set as A= {t1,t2, ..., ¢}

and is called B—set of cycle A. So the B—sets of {)\i}iciﬁl) are defined

by{x? ={dd, i) <is c(g)}.

3 Permutation BI-Algebras

In this section, we’ll examine some of the core traits of permutation BI-algebras
(PBI — As) and explore some fresh applications.

c(B)
Definition 3.1: Let X = [Af } ) be a collection of S-sets, where B is a
1=

permutation in the symmetric group G = §,. Then X is, namely, a permutation
Bl-algebra (PBI — A) if there exists a mapping # : X x X —> X such that (1)

gl =y, @i 4 (,\f #xf) =2 val A € X We say that (1} is
the fixed element in X.

Example 3.2: Let (S12,0) be a symmetric group and
5 _ (1 2345678910 1112

63524719812 1011 be a permutation in Si. Since f =

(1 2345678910 1112

— (167)(2354
63524719812 1011 ) (167)(2354)(89)

4
(10 12 11). Therefore, we have X = {Af} (U =({1.6.7}. (2.3,5.4], 8.9},
1

{10, {10,12,11}, {1}}. Define # : X x X —> X by % (Af xf) — A;:"#,\f =
ror lifi=j
Ajsif i #j
for )Lf} and Af, respectively. Here, we have (i)Aioki_l =(1) —» )Lf}#)f = {1}, (i)

where Af its cycle Af such that Ay = { , where A; and A; are cycles
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wheni = j — A0 (xiox;‘) =no() M= — AP 4 (kf mn )f) =P also, if
i =2 4 (0 #0) =30 #50 = 2 Then X isa (PBI — 4.
Definition 3.3: Let (X, #,{1}) be a (PBI — A). We introduce a relation “<” on X

defined by o]’ < A/ if and only if A’ 4 27 = {1}. This relation “<” is not partially
ordered. In other side, it is just reflexive.

Proposition 3.4: Let (X, # ,{1}) be a (PBI — A). Then, (1) A¥ # {1} = 27, (2)
W =1, @ #20 = (L #2) 420 @il 43 =2l il e
X then X = {{1}}, (5) It A7 # (xf #,\,’f) =i 4 (x? # Af) vl g e X,
then X = {{1}}, 6) If A7 4 27 = 27, then 2{ 4 27 = A7 and 2/ 4 2f = /.
N If (Af m xf) mn (Af + xf) - (,\f mn Af) + (Af n ,\f) then X = {{1}} for all
BB LB 4B
Mokl ex.
Proof:
(1) Substituting 2 = 27 in (2) of Definition 3.1, we have that A/ = A/ 4
(W #20) =2l 4 11.
o B B B . .
(2) Substituting A ;= A; and A; = {1} in (2) of Definition 3.1, we have that
(=4 (A #0) = =2/ (From (1),
(3) Given that 2/,2] € X, we have that 2/ # 2f = (A #2]) #
By (18 1B\ (28 u B\ u b
(Aj n (,\i #Aj» - (Ai #Aj) 40,
By B _ 1B \pB 4B B _ 2By (1B ush By B
@ 1625 #4f =af ol e Xotmenal =af # (M #al) =2l #4 =
{1}. Thus, X = {{1}}.
; p p p
(5) VAP € X, we have that {1} = {1} # (Ai n {1}) = sy =2~ 4
{1} = A7, Hence X = {{1}}.
6) If Af} # Af = Af, then from (3), we have that Af # )J? = (Af # A'/S) # )J;.j =
By B _ B BusB_ BBy B _ B
A 42 =0 Atso,af 42 =00 4 (A #2) =21
s B _ P s By B
(7) 1t 2 € X, then we have that A¥ = 27 # {1} = (Ai n {1}) n (Ai #Ai) -
(L #20) # (0 #2) = 0 # (0 #2) = (1) # (1) = (1), Hence
X={{1}}.
Definition 3.5: A permutation Bl-algebra X is, namely, permutation right distribu-
tive Bl-algebra (PRDBI — A), if (Af n ,\f) %2/ = (Af n Af) n (Af n Af).
Also, it is, namely, permutation left distributive BI-algebra (PLDBI — A), if Af #
(Af 4+ Af) - (x,’f n )\f) n (xf # xf) forall 27, 3%, 2 € X.
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Proposition 3.6: If (X, #,{1}) is (PLDBI — A), then X = {{1}}.
Proof: Let )\f € X. Thus, substituting Af = Xf} in (2) of Definition 3.1, we have
that 2% = 37 % (,\;3 #Af) - (xf #,\f) 4+ (xf #)\f) — (1) # (1) = {1).

Proposition 3.7: Assume that(X, #) is a permutation groupoid with {1} € X. If it is
such that (1) 22 #22 = {1}, @) 2/ # x*j =2, w2 ,\f € X. Then (X, #,{1})
is a (PRDBI — A).

Proof: Let Al # if # A € X. Then (x{’#,\f) #0f =20 ¢ =

(Af + ,\f) 4+ (xf 4+ /\,’f)

Proposition 3.8: Let (X, # .{1}) be a (PRDBI — A). Then (1) % # 2/ <3/, 2)

(,\ﬁ n ,\ﬂ) 420 <283 (,\ﬁ + xﬂ) 3 (;ﬁ n ,\ﬂ> ER R FUNCISIPYaEPLS

then 2/ 4 2f < 27 427, 5) (Aﬁ #xﬂ) #20 < 28 4 (xf #,\f), and (6) if

Mg =0l 4 /\f, then ()f n Af) #20 = (1) vl e X,

Proof: For all A? , A? € X, we have that

W (L #0) #28 = () & (L #) = & () =
{1} .Thus Af #2F < ,\f.

@) ((kf#/\f)#/\f) # 2 = ((Af#kf)#kﬂ) " (,\ﬂ#,\ﬂ> _
(i #20) # (7 #25)) # (0#20) = (04 (7 427)) #
M) = (004 (4 #22) = (00 Ths, (3 427 ) 27 <.

@ ((F#20)# (5 420)) # (F#20) = ((F#2))#2]) 4

e

2 8) = (G4 62 £2) + (0 (4 #20) -
WPy (Af n xf)) —{1).
Thus, (3 #20) # (2 #0) =20 42/,
@ 162 = 30 hen af # 2 = (1) and hence(a #1f) # (2] #2f) =
(W #27) 80 = (0 #2f = (1) Hence nf #2f <] #4f.

TN NN TN TN

(5) From (1), we have )f # )»f < )»;6. It follows from (4) that (Alﬂ # Af)
#(17 #20) = 0 # (1] #2f). Since X is (PRDBI — A), we have that
(Af #xf)#xf <Py (Af#x,’f).
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©) Letal 4 1/ = if 4 1" Since X is (PRDBI — A), we get that (xf‘ n x,’f) n
M= (xf #,\f) # (,\f #,\f) - (,\;? #A‘f) 4 (A? #Af) — {1}. In other
side, Af < Af does not imply that Af # )f < k,’f # )»7 .

Proposition 3.9: Let (X, #,{1}) be a (PBI — A) with the condition.
(L #20) # (0 #27) =28 20l o e xo1eaf <o hen 2 4

Y Iy
A< 4l

Proof: 162! <2, then 27 4 2% = (1). Now (,\f n Af) # (,\,f 4 xf) =2/ 4
A= (1) Thus, 2§ 4 27 < 2f 427
Definition 3.10: Let (X, # ,{1}) be a (PBI — A). We say it has an inclusion

condition if ()\;3 # ,\f) #20 = {1}vxf,xf € X. Note that any (PRDBI — A)
has the inclusion condition (see Proposition 3.8 (1)).

Definition 3.11: If (X, # ,{1}) is a (PRDBI — A), then (X, # ,{1}) is, namely, a
permutation quasi-associative BI-algebra (PQABI — A).

Proposition 3.12: Let (X, #,{1}) be a (PRDBI — A), and then the induced relation
“<” is a transitive relation.

Proof: If )Lf < )»? and Af < Af, then from Proposition 3.4 (1) A? # Aﬂ =
GLaad) s =(a2l) 4 (0 #0) = (P4 4l = 42 =
{1}. Thus, 2 <27

Definition 3.13: Assume that (X, #,{1})isa (PBI — A), and @ # I C X. The set
I is, namely, an permutation Bl-ideal (PBI — I) of X if (1) {1} € I, and (2) )Lf el

and )»? # k’? € I imply that )»f € [ for all kf, Af € X. Note that each one of {{1}}
and X is (PBI — I) of X. Also, they are, namely, the fixed ideal and the trivial ideal,
respectively. An (PBI — I) I is, namely, a proper (PBI — I) if I # X.

Lemma 3.14: If {I;}; c  is a family of (PBI — Is) of X, then ﬂieA Iiisa(PBI — 1)
of X.

Proposition 3.15: If (X, #,{1}) isa (PBI — A), then (I(X), C) is a complete lattice.

Proof: The result follows from the fact that the set /(X) is closed under arbitrary
intersections.

Proposition 3.16: Let / be (PBI — I) of (PBI — A) (X, # ,{1}). If )\’j € I and
W <l thenal e 1.

Proof: Ifkf e I and )»f < )»5, then )f # )»? = {1} € I. Since A? € [ and [ is
(PBI — I), we have that k? el.
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Definition 3.17: ForallA!’, 3 € X, we define A (1", 2) =il e x| (i # )
#A*j:{l}}. Note that (I)- {1}, A% A(Af,xf), Q)- A(Af,,\f) +
A(xf,xf), and (3)- A(,\f,u}) - {Af €X| (,\f #A?) # (1) = {1}} _
{,\,‘f e X | A 42 = {1}} - {Af €X| (,\,’f #{1}) #2f = {1}} :A({l},x?).
Proposition 3.18: If (X, # ,{1}) is a (PRDBI — A), then A (,\f, Mj) is (PBI — I
of (X, # .{1}) where 7, 2/ € X.

Proof: Let2! 43/ € A (A;Z, A,*?),Af €A (xi, xﬁ). Then ((x{’ 4 ,\f) n x;i) n
A = {1} and (xf#xf;) # 2 = (1). Since X is (PRDBI — A), so
W = ((Faah)#an) # 2l = (L) 4 #00)) # A =
((Faah)#0) # ((F#n)#20) = (L #ah)#40) # ) =
(Af n Aﬁ) 425 Thus, 2% e A ()\51, ,\,’f). Therefore, A (xﬁ, xﬁ) is a(PBI — I) of
X, #.,{1D.

Proposition 3.19: Let (X, 4 ,{1}) be a (PBI — A). Then, (1)-A ({1},,\?) c
A (xf, Af) VAL S e X, @)1 A ({1} : )\f) isa(PBI —I)and 2/ € A ({1} , A’f)
and then A (,\f, Af) cA ({1} , Af) .

Proof: (1) Let Al A({l},,\f‘). Then 2/ # 2/ = (kf#{l}) # Af =
{1}. Hence, (,\,'f#xf) $ 47 = (1) 4 2 = (1) Thus, 2 € A(xf,xf)
and so A ((11,2f) < A(3.2]). @ Let a((1).2]) be a (PBI — 1) and
e a( )l e a(f40), ten (3] #2f) # 2] = (1), Hence,
((x,f#)\f) #{1}) # 2% = (1). Therefore, 2] # A/ < A({1},/\f). Now,
since A ({1},,\5) and 27 € A ({1},1?)%’ cA ({1},A’]3.). Thus, A (A?,Af) c
A({l},,\f).

Proposition 3.20: If (X, 4 ,{1}) is a (PBI — A), then A({l},,\f) -

NexA (W 2]) vl 4l e x.

B
AjeX
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Proof: From Proposition 3.19 (1), we have that A ({1} , Af}) - ﬁk,;;exA ()\;.3, kf) .
I 2/ e ﬂﬂ;exAQfa*?)’ then 3f e A (3, 28) Vil 2] e x. Thus, 2f e
A, A?)'hkﬁ_’eXA (. 2]) ca(m.af).

Proposition 3.21: If & # [ C X, where (X, # ,{1}) is a (PBI — A), then [ is a
(PBI = Iy of X it andonly if A (2, 27) € 1.vAP 2] e 1.

Proof: Assume that[isa (PBI —I) of X and )\;.3, A‘? el. Ifkf €A ()\;.3, Af), then
(Af # A?) # A’f = {1} € I. Since I is a(PBI — I) and A?,Af € I we have that
Af € [.Thus, A (Af} Af) C I. Conversely, assume that A (Af, A]ﬂ) - IVA?, )J; €
1. Since ({1} n ,\f) $if =11} eA (xf’,xf) clLetrl #2% andrf e 1.
Since (k,‘; H# )»5) # (Aﬁ # kf) = {1}, we consider that )\,'?1 €A ()\f, )\51 # Af) C
I, ie., AP eI Hence Iisa(PBI—1I)ofX.

Proposition 3.22: If / is a (PBI — I) of a (PBI — A)X, # ,{1}), then [

B 4B
UA?,A?GIA ()\.i ,)\.j).
Proof: Let I be a (PBI — Iof X and kf e I. Since (Af # {1}) # prg- A,’f #
W = (1). We have that 2f ¢ A({l},kf). Then, I € Uy_,A ({1},xf) c
k

S (W 20) 18 e Upsorer A (. 21). then there exists 2, 4% € 1
such that Af e A ()Js,, Af ) It follows from Proposition 3.21 that Af € I, that is,

U A(A) et

W aler
Proposition 3.23: If [ is a(PBI — I) of a (PBI — A) (X, # ,{1}),then I =
UpperA (111.2f).

Proof: Let I be a (PBI — I)of X and A? € I. Since (Af n {1}) #20 = 20 4
A = (1). We have that 2] € A ({1},]). Hence, I < UpperA (t11.2) e
1€ Uppey A(11.3), then there exists 47, € 1 satisfies 2] € A ({1}.21),
which means that Af # )L,e, = <Af # {1}) # )\,’?, = {1} € I. Since I is a (PBI — I)of
X and Afl € I, we have that Af € I. Thus UxfeIA <{1} , Af) Cc I

Definition 3.24: Let (X, # ,{1}) be a (PRDBI — A) and let I be a (PBI — I) of X
and 3, € X. Define I, = {,\f ex M4l e 1}.
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Proposition 3.25: If (X, #,{1})isa (PRDBI — A), then Iiﬂ is the least (PBI — I) of
k
X containing / and )\51.

Proof: By (1) of Definition 3.1, we have that Aﬁ # Aﬂ {1} for all )»ﬂ € X,
ie., )Lf, € I’ﬁ and so I N # . Assume that kﬂ H# Aﬁ € Ilﬂ and Aﬁ € Il

m m

Then (xﬁ 4+ xﬂ) # ke Tand 2” 4 A € I Since X is (PRDBI — A), we get
()JS #Aﬁ> # (Aﬂ. #Aﬁ) el. Slnce)ﬁ #Aﬁ el, wehavethatkﬁ #kﬂ e I and
sorl e 1!, Then, I', is a (PBI — ) of X. Let 2!’ € I. Slnce(kﬁ 4 xﬁ) # 20 =

()\'3 #xﬁ) n (xﬁ, #Af) — (1) 4 ()\,’; #xf’) — {1} € 1, and I is a (PBI — I) of
X, we have that A’? # Aﬂ € I. Hence, )\‘.9 el T Thus, I C Il Now, let J be a

(PBI — I) of X containing / and Aﬁ Let Aﬂ € Il Then Aﬁ # )Jg I C J. Since

1

Aﬁl € J and J is a (PBI—) of X, we have that )»? € J. Therefore, IC’, cJ.

Definition 3.26: Let/ be a (PBI — I) of a (PBI — A) (X, #,{1}) and Aﬁ e X. We
denote I’ﬁ = {kﬂ e X| Aﬂ # Aﬂ € 1} Note that /7, is not always a (PBI — I) of
X.

Definition 3.27: Let @ £ 1 C X and (X, #,{1}) be (PBI — A). We define a binary
relation “~1” by A?Nﬂ»? if and only if A? # )»? € I and )»f # )f € I. The set

{7 13 ~1211} will be denoted by [2/] .

Proposition 3.28: The relation “~;” on X is an equivalence, where I be a (PBI — I)
of a (PRDBI — A)(X, #,{1}).

Proof: We consider that Afj # A? = {1} e I (since I is a(PBI — I) of X). Thus,
W~ raP . Thus, ~ is reflexive. If 1 # xﬁ {1} € I, then xﬁ #27 = (1) vy
Proposition 3.8 (3). Thus, A?NIA’? — )\f 1)\:.3 and so [ is symmetric. Now, let
Wl and W~ 2l Then, 28 40508 #2008 e 1and 28 40027 #37 e 1.
By Proposition 3.8 (3), we have that (i # 47 ) # () #2f) =2/ # 27 Since
Lisa (PRI =D and 3 4 2 e I, we have that (1 #2]) # (] #3) «

X and so )»f # kf € I. Similarly, we have that kf # )f € I. Thus, )fNMf and
so ~7 is a transitive. Therefore, the relation ~; on X is an equivalence.

Definition 3.29: A binary relation “0” on (PBI — A) (X, #, {1}) is, namely,

(1) A permutation right compatible relation if Aiﬂ Okf and Ag € X, then
B B B B
(W #05) 0 (1] #25).
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(2) A permutation left compatible relation if )»’ig ka and Ag € X, then
(1 #2) 0 (2 #27).
(3) A permutation compatible relation if )f 9)»? and Af;@)»qﬁ , then ()»fs # Af;)
0 (x'f Y4 ) .
A permutation right (left) compatible equivalence relation on (PBI — A)

X, #,{1}) is, namely, a permutation right (left) congruence relation on X [They
are abbreviated by PRCR (PLCR)].

Proposition 3.30: The equivalence relation “~;” as stated in Proposition 3.28 is a
(PRCR) on (PBI — A)l.

Proof: 1If Afw;k? and Afi € X, then Af # )L? € I and Af # )f € I. From
Proposition 3.8 (3), we have that ((Af # A’f;) # <Ajﬂ # )»f,)) # ()\;3 # A’f) =
{1} € I. Since I is a (PBI — I) and )\? # A? € I, we have that (Af # Ag) #
(A #25) e 1. Therefore, (3 4 25) ~1 (11 4 25).

Proposition 3.31: Let / be a subset of a (PBI — A) (X, # ,{1}) with {1} e L. If I
has the condition: If )\f # Af € I, then (Af # )f) # (Af # Af) e€l. ThenX =1
Proof: Let Af = {1} and A" = . Then {1} 4 A{ = {1} € I imply that
(Af n {1}) n (xf mn A,’f) =2/ # (1} = 2P € I. Therefore, X € Tand so I = X.
Proposition 3.32: If ~; is a (PLCR) on (PRDBI — A) (X, #,{1}), then [{1}]; is a
(PBI — 1) of X.

Proof: Obviously, {1} € [{1}],. 1/ and A/’ 4 A" are in [{1}];. then 27 4 2/~ {1}

and xj.%, {1}. It follows that A¥ = 27 # (1} ~;2/ # Ale{l}. Therefore, A €
[{1}];.

4 Conclusion and Future Work

Certain new extensions of Bl-algebras are introduced in this paper, and their
properties are investigated using permutation sets and have been used to study
numerous mathematical issues in recent work. Therefore, in future research, rather
than using permutation sets, we shall also employ neutrosophic sets to broaden our
concepts.
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A Note on Multiplicative Ternary )
Hyperring Qe

Md. Salim Masud Molla

Keywords Multiplicative ternary hyperrings - Hyperideals - Regular equivalence
relations - Quotient multiplicative ternary hyperrings - Isomorphism theorems

1 Introduction

A binary hyperoperation is a mapping o : A x A — £*(A), where A is a nonempty
set and g+ (A) is a nonempty subsets of A. A hyperstructure is a multivalued algebra
[5], expressed as (A, o), and a nonempty set A assigned with the hyperoperation “o.”
In the beginning of the nineteenth century, hyperstructure theory moved forward
by pathfinder F. Marty’s [14] paper on hypergroups. Over the decades, there are
several famous mathematicians and researchers like Corsini [3, 4, 6] who studied
hypergroups, hypergraph, and hypermodules. De Salvo [9] studied hyperrings and
hyperfields. Dehkordi and Davvaz [10] found out I"-semihyperrings. S. Abdullah
et al. [1] introduced I"-hyperideals of I"-semihyperring and developed the theory
of hyperstructure and applied in different fields. In [7], P. Corsini et al. and, in
[8] , B. Davvaz and V. L. Fotea mention their appositeness in different fields like
cryptography, graph theory, computer science, etc. In [11], Krasner initiated Krasner
hyperring (K, +, -) in which addition is a binary hyperoperation and “-” is a binary
operation, and both the distributive laws hold. In 1990, R. Rota [16] launched
multiplicative hyperring (H, +, o), where “+” is the usual binary operation and “o”
is a binary hyperoperation, and (k) +h2) oh3z C hioh3+hyohz, hio(hy+h3) C
hiohy—+ hiohsholds, forall hy, hy, h3 € H.

Schar is a ternary algebraic structure initiated in 1924 by H. Priifer [15]. In [12],
D. H. Lehmer presented the commutative ternary groups, which are a special type of
ternary algebraic structure known to be triplex. After that in 1971, W. G. Lister [13]
initiated the concept of ternary ring 7, a commutative group in which product is
defined on three elements and right, center, and left distributive laws hold.
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In 2015, Md. Salim et al. [17] presented the concept of multiplicative ternary
hyperring (MTH), which is a generalized concept of ternary ring and multiplicative
hyperring. In [17], we studied the regular equivalence relation and strongly regular
equivalence relation and analyzed them. Also we defined quotient MTH over a
regular equivalence relation “t” and analyzed it and gained three isomorphism
theorems on MTH by using the regular equivalence relation “z.” In this note, we
learn on hyperideals of MTH, and we demonstrate a one-to-one correspondence
between the family of all hyperideals and the family of all regular equivalence
relations of a MTH. Also, we obtain quotient MTH over a hyperideal and show
that above two quotient MTHs are coincide. Lastly using the notion of hyperideal,
we obtain three isomorphism theorems on a MTH.

Some earlier works of the author on the MTH may be found in [18, 19].

2 Preliminaries

A ternary hyperoperation is a mapping o : AX A X A —> @ *(A), where g * (A) is
the class of all nonempty subset of the nonempty set A. The image of (aj, az, az) €
A x Ax A will be denoted by ajoazoas (which is known to be a ternary hyperproduct
ofay,ar, a3 € A).

Definition 1 ([18]) Let (R, +,0) be a MTH, that is, an abelian group (R, +)
together with a ternary hyperproduct “o” satisfying the following conditions:

(i) (@oBoy)odon=ao(Boyod)on=aoBo(yodon);

(i) (@+pB)oyod Caoyod+Boyod;ao(f+y)od CaoBod+aoyod;
aoBo(y+48) Caofoy+aopfod;

(iii) (—a)oBoy =ao(—B)oy =aoBo(—y) = —(axoBoy)forale, B,y € R;

(iv) OpoaoB=a00gropB =aofol0r ={0g}Va, B € R(absorbing property
of Og), forall o, B, ¥,68,n € R,

Definition 2 ([19]) Let (/, +) be a subgroup of a MTH (R, +, o) is said to be a
right (resp. a lateral or a left) hyperideal of R if for @, B € R and for all i € I such
thati oo B C I(resp.aocioff S loraoBoi CI).

The additive subgroup / of MTH (R, +, o) is both a left hyperideal and a right
hyperidel of R; then [ is called both sided hyperideal of R.

If I is a right hyperideal, a left hyperideal, and a lateral hyperideal of MTH R,
then [ is said to be a hyperideal.

In [17], we sketch the regular equivalence and strongly equivalence relation on
MTH.

Let t be a equivalence relation over a MTH R and g * (R) = g (R)\{0}, where
© (R) is the subsetes of R. Now T and T are two equivalence relation marked by (i)
XTY holds if and only if for every x € X, 3y € Y such that xty retains and also
for every y’ € Y and 3x’ € X such that x'ty’ retains. (ii) Forallx € X and y € Y,
XTY if an only if xTy retains, for any X, ¥ € p * (R).
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Definition 3 ([17]) Let (R, +, o) be a MTH and 7 be a equivalence relation on it.
Then t is regular equivalence relation if xty = (x+z)t(y+2z),and xty, zTw, UtV
implies (x o zou)T(yowow) forall x, y,z, w,u,v € R.

The relation 7 is strongly regular equivalence relation if xty = (x +2)t(y + 2),
and xty, ztw, utv implies (x o z o u)%(y owov)Vx,y,z,w,u,v € R.

Remark 1 ([17]) From the above definition, we have the following conditions:
xty implies (x ozow)T(yozow), (zoxow)T(zoyow)and (zow ox)T(zo
woy),Vx,y, z,w € R.
xTy implies (x o zow)T(yozow), (zoxow)T(zoyow) and (zow ox)T(zo
woy),Vx,y, z,w € R.

3 Hyperideals and Regular Equivalence Relations

Proposition 1 Let I be a hyperideal of a MTH. Then there exists a regular
equivalence relation t over MTH such that xty ifand only if x — y € I.

Proof Consider I be a hyperideal of a MTH (R, +, o). Let t be a relation marked
by xty if and only if x — y € I for all x, y € R. Obviously, t is an equivalence
relation on R.

Let xty hold for x,y € R. Then x — y € I implis (x +z) — (y + z) € I. This
implies that (x + z)t(y + z) holds for x, y, z € R. Therefore, t is a congruence on
(R, +).

Letx,y € Rand xty. Thenx —y € I. Then x = y + i, for some i € I. Then
xozow=(y+i)ozow S yozow+iozow S yozow+ I.So, for every
a € x oz o w, there exists an element » € y o z o w such that a = b + i for some
i € I.Hence,a —b € I.So ath. Therefore, for each a € x o z o w, there exists
b € y o z o w such that atb holds. Also we can show that for any b € y o z o w,
there exists an element a € x o z o w such that ath. Hence, (x o z o w)T(y oz o w).
By a similar fashion, we get (zox o w)T(zoyow), (zow ox)T(zow o y). Thus,
7 is regular equivalence relation over (R, +, o).

Proposition 2 Let t be regular equivalence relation on a MTH (R, 4+, o). Then
there exists a hyperideal I of (R, 4+, o) such that xty ifand only if x —y € I.

Proof Suppose (R, +, o) is a MTH and t is a regular equivalence on the set R.
Therefore T determines a partition on R into disjoint equivalence classes. Let 0, be
the equivalence class containing 0. Let I = 0,. Now we verify I is a hyperideal
of R.Let x,y € I = 0;. Then xt0 and y70 hold. Since t is congruence on R,
(x — y)T0 holds. So, x —y € I.

Let x € 0. Then xt0 holds. Since 7 is a regular equivalence relation on
(R, +, 0), (rjorpoa)T(riorp00) forall v, r, € R, by Remark 1, i.e., (rjorp0x)T{0}.
So for any x € r; o rp o x, xt0 holds. This implies that x € 0, = I. Therefore
rporpox C I.Likewiserjoxorp, C I andx oryorp C 1. So [ is hyperideal of
(R, +,0). Lastlyatry & (x —y)t0 & x —y €0, = 1.
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Theorem 1 Suppose (R, +, o) is a MTH. Then there exists an inclusion preserving
bijection between the collection of all hyperideals of (R, +, o) and the collection of
all regular equivalence relations on (R, +, o).

Proof Consider Z to be a collection of all hyperideals of the MTH (R, +, o) and £ a
collection of all regular equivalence relations on R. We define a mapping ¢ : £ — 7
by ¢(r) = 0;. Let 71 and 7o be regular equivalence relations on (R, +, o); then,
¢(t1) = ¢(r2). This implies that 0;, = 0. Now, forx,y € R, x11y & (x =
VW10 & (x —y) € 0 =0, & (x —y)10 & x12y. So, 11 = 1, 1€, P is
injective. Let H € Z. Then there exists an equivalence relation T which is regular
on (R,+,0),xtyifandonlyifx —Y € H.Letx € H. Thenx e H & x —0 €
H < x10 & x € 0;. Thus ¢(t) = 0; = H. So ¢ is surjective. Let 71, 7o € £ be
such that 71 € 1p. Let x € 0y = x710 = x120 = x € 0y,. So, 0;; < 0y,. Thus ¢
is inclusion preserving.

Definition 4 ([17]) Let t be a regular equivalence relation on a MTH (R, +, o);
then the MTH (R/t, 4, o) where R/t = {a; : a € R}, is known to be the quotient
MTH of (R, +, o) by 7, where a;+b; = (a+b); and a;ob;oc; = {x; : x € aoboc}
fora, b, c € R.

Definition 5 ([17]) Let i and v be two regular equivalence relations on a MTH
(R, +, o) with u € v. We set a relation v/ on R/ by : a, (v/)b,, if and only if
avb fora, b € R.

Lemma 1 ([17]) v/u is a regular equivalence relation on the quotient MTH
(R/p, +, o).

Theorem 2 (Correspondence Theorem) Suppose (R, +,0) is a MTH and T a
regular equivalence relation over (R, +, o). Then there exists an inclusion pre-
serving bijection between the family of regular equivalence relation over (R, +, o)
containing t and the family of regular equivalence relations on (R/t, +, o).

Proof Suppose 7 is a regular equivalence relation on (R, +, o). Let M be family of
all regular equivalence relations on (R, +, o) containing T and N be the family of
all regular equivalence relation on (R /7). We consider a mapping ¢ : M —> A by
Y (¢) = ¢/t where T C ¢. Let ¢1 and ¢p» € M be such that Y (¢1) = ¥ (¢2). Then
¢1/t = ¢o/t. Then ap1b & ar(p1/1)b; < a(¢2/T)br & agyb. This implies
that ¢1 = ¢2. So, ¥ is a one-to-one mapping. Clearly v is surjective. Therefore v
is a bijective mapping.

Lastly, let ¢, ¢» € M be such that ¢; C ¢o. Now a.(¢1/7)b; = ad1b C
aprb = ar(¢2/t)b,. This implies that ¢/t < ¢o/tr. Thus ¢ is inclusion
preserving.

Proposition 3 Suppose (R, +, o) isa MTH and H is a hyperideal of R. Let R/H =
{a+ H :a € R}. Then (R/H, +) is an abelian group. We define (a + H) o (b +
H)o(c+ H)={p+ H : p € aoboc}. Then with respect to the above ternary
hyperoperation, R/H forms a MTH.
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Proof Let H be a hyperideal of (R, +, o). Then we have the quotient group
(R/H,+). Obviously (R/H, +) is an additive commutative group. Now we shall
show that above defined multiplicative ternary hyperoperation is established. Let
x+H=x'"+H,b+H=b+Handz+H=z7+H.Letp+H € (x+H)o(y+
H)o(z+H).Then p € xoyoz. Againx+H = x'+H = x—x' € H = x = x'+h;
for some h; € H. Similarly y = y’ +hj and z = 7’ + h3 for some hy, h3 € H. Now
xoyoz = (x'+h1)o(y' +h3)o(z/+h3) € x’oy oz/+ H. This implies that p = g+h
where g € x' 0oy’ oz’ Therefore p+ H =g+ H € (x'+ H)o(y/+ H)o (' + H).
So,(x +H)o(y+ H)o(z+ H) € (x' + H)yo (y + h) o (' + H). Similarly
xX'+H)o(y +H)o(Z + H) C (x+ H)o (y+h)o (z+ H). Consequently
(x+H)o(y+H)o(z+H) = (x'+H)oc(y'+H)o(z + H) and ternary hyperoperation
‘o’ is well defined. Leta+H € ((x+H)o(y+h)o(z+H))o(w+H)o(t+ H) where
X,y,z,w,t € R.Thena € powotwhere p+H € (x+H)o(y+H)o(z+H) =
peExoyoz.Thena € (xoyoz)owot =xoyo(zowot),soa+ H €
(x+H)o(y+H)o(b+H), where b € zowot.So,b+H € (z+H)o(w+H)o(t+H).
Thusa+H € (x+H)o(y+H)o((z+H)o(w+H)o(t+ H)). Thus (x+H)o(y+
H)o(z+H))o(w+H)o(t+H) C (x+H)o(y+H)o((z+H)o(w+H)o(t+H)).
Converse inclusion is similar. Hence (x+H)o(y+H)o((z+H)o(w+H)o(t+H)) =
(c+H)o(y+H)o(z+H))o(w+ H)o(t+ H). Similarly (x + H)o ((y+ H) o
(z+H)o(w+H))o(t+H)=(x+H)o(y+H)o((z+H)o(w+ H)o(t+ H)).

Similarly we can prove the distributive laws.

Now, (x+H)o(y+ H)o(0O+H)={a+h:ae€xoyo0={0r}} =0+ H.
Similarly (x + H) o0+ H)o(y+ H) =0+ H)o(x+ H)o(y+ H) =0+ H.

Lastly, So,a = —b forsomeb € xoyoz,ie,a+H=—-b+H=—(b+H) €
—(x+H)o(y+H)o(z+H). Thus (x+H)o(y+H)o(—(z+H)) € —(x+H)o(y+
H)o(z+ H). Likewise we prove —(x+ H)o(y+H)o(z+H) € (x+H)o(y+H)o
(—(z+H)).Hence —(x;  H)o(y+ H)o(z+H) = (x+ H)o(y+ H)0(—(z+ H)).
Comparably we can show (x + H)o (—(y + H)) o (z+ H)=(—(x+ H))o (y +
H)o(z+ H)=—((x+ H)o(y+ H)o (z+ H)). Hence, (R/H, +, o) is MTH.

Theorem 3 Let (R, +,0) be a MTH and I be a hyperideal of (R, +, o). Then
there exists an inclusion preserving bijection from the family of all hyperideals on
(R, +, o) containing H and the family all of hyperideals on (R/H, +, o).

Proof Theorems 1 and 2 comply the proof.

Lemma 2 Let (R, +, o) be a MTH. Let T be the regular equivalence relation on R
and I be a hyperideal corresponding to t, i.e o« — B € I if an only if atf. Then
ar =o+ 1 foralla € R.

Proof Since I is the hyperideal corresponding to t then «¢tf if and only if &« — 8 €
I.Now a € a; & ata & a —«a € I implies and impliedbya € « + I. So,
o =a+ 1.

Proposition 4 Let t be regular equivalence relation on a MTH (R, +, o). Then all
the regular equivalence classes are equipotent.
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Proof Here we show that the regular equivalence classes a, and b, are equipotent
fora,b € R.By Lemma?2,a, =a+ H and by = b+ H, where H is the hyperideal
corresponding to t. Obviously the mapping f from a+ H —— H marked as follows
f(a+i)=iforalli € H,is bijective. So a + H and H are equipotent. Similarly
b+ H and H are equipotent. Hence a; = a + H and b, = b 4+ H are equipotent.

The above proposition enables us to get an example of an equivalence relation,
which is not a regular equivalence relation.

Example 1 Consider the MTH (Z 4, +, o) induced by A, where ZZ is the set of
all integers and A is any subset of Z. Now {Z 4\{1}, {1}} is a partition in ZZ4.
So this gives an equivalence relation on ZZ 4. Since the equivalence classes are not
equipotent, the above equivalence relation is not a regular equivalence relation.

Remark 2 The above condition stated in Proposition 4 is a necessary condition but
not sufficient.

Theorem 4 Let (R, +,0) be a MTH. Let t be the regular equivalence relation
on (R, +,0) and H be the hyperideal on (R, +, o) corresponding to t. Then the
quotient MTH’s (R/t, +, o) and (R/H, +, o) coincide.

Proof As 7 is regular equivalence relation over (R, 4+, 0), R/t = {a; : a € R} =
{fa+H:aeR}=R/H.Leta,b € R.Nowa,; +b; =(aob); =(a+b)+H =
(@a+H)+ b+ H). Againa; ob;oc; ={xy :x €aoboc}={x+H :x €
aoboc}=(a+ H)o(b+ H)o(c+ H) for every a, b, c € R. Hence the quotient
MTHs coincide.

In [17] we define the homomorphism and good homomorphism between two
MTH. An epimorphism (resp. monomorphism) is a surjective (resp. injective) MTH
homomorphism.

Proposition 5 Consider 1 : R — T to be a MTH homomorphism from a MTH
(R, +, o) to another MTH (T, +, o). Then the kernel of w, designed by ker (i),
and marked as {x € R : w(x) = Or}, is a hyperideal of multiplicative ternary
hyperring(MTH) R.

Proof The mapping 7 : R — T is a group homomorphism, since 7 is MTH
homomorphism. Thus 7(Og) = 07 = Og € ker(w). Let x,y € ker(m); then
x —y € ker(w). Now x € ker(w) = n(x) = 0r = nw(riorpox) C w(ry) o
w(rp) om(x) = {07} = riorpox C ker(m). Likewise, rj o x orp C ker(;r) and
x oryory C ker(w). Consequently, ker () is a hyperideal of (R, +, o).

Theorem S Let 7 : (R,+,0) — (T,+,0) be an epimorphism from a MTH
(R, +, o) to another MTH (T, 4, o). Then R/ ker(w) = T.

Proof Since  : R — T is a MTH epimorphism. Then 7 : (R, +) — (T, +) is
a group-epimorphism. Then ¥ : (R/ker(w),+) — (T, +), expressed by ¥ (r +
ker(m)) = m(r) for all r € R is group-isomorphism. For any x,y € R, ¥((x +
ker(m)) o (y +ker(mw))o(z+ker(mw))) =¥ (p+ker(mw)) (where p e xoyoz) =
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m(p) enm(xoyoz) Calx)om(y)on(z) =¥ (x + ker(mw)) oW (y + ker(m)) o
Y (z + ker(m)). Thus, ¥ is MTH isomorphism.

Theorem 6 Let M and N be two hyperideals of a MTH (R, +, o). Then M /(M N
n) =M+ N)/N.

Proof We construct a mapping @ : M/(M NN) - (M + N)/N by ®(a¢ + (M N
N))=a+ Nforallo e M.Leta, B € M.Now (¢ + M)NN = (B+M)NN &
a—BeMNNs (a—BeNsSa+N=F+N&DIa+(MNN)) =
D((B+ M) N N).So, @ is well defined and injective.

Nowletw, 8,y € M. Then ®((a+(MNN))+(B+(MNN))) = Dd(e+8)+
(MNN)) = (@+B)+N = (@+N)+(B+N) = @(@+(MNN))+P(B+(MNN)).
Also 2((@ + (M NN))o(B+(MNN))o(y +(MNN)) =2(p+(MNN))
(where p e xoBoy)=p+N C (@¢oBoy)+ N =(x+N)o(B+N)o(y+N) =
D+ (MNN)o@(B+(MNN))od(y+(MNN)). Thus @ is a homomorphism.
It is obvious that @ is surjective, so @ is an epimorphism. Therefore by Theorem 5,
we gain M/(M N N) = (M + N)/N.

Theorem 7 Suppose M and N two hyperideals of MTH (R, 4+, o) with M C N.
Then (R/M)/(N/M) = R/N.

Proof Consider¥ : R/M — R/NbyW¥(«+M)=a+ N,Va € R.Letw, B,y €
R. Thena + M = B+ M impliesoe — 8 € M < N. This implies that « + N =
B+ N=VY(a+ M)=¥(B+ N).So, definition of ¥ is established.

Leta, B,y € R. Then ¥ ((a+M)+(B+M)) = ¥ ((a+B)+M) = (a+p)+N =
(a+N)+(B+N) = ¥ (a+M)+¥ (B+N). Also ¥ (((a+M)o(B+M)o(y+M))) =
U(p+ M)(where p exofoy)=p+NCaoBoy+N=(@+N)o(B+
N)o(y+N)=¥(a+M)oW(B+M)oW¥(y + M). Thus ¥ is a homomorphism.
Obviously v is an epimorphism. Now ker(¥) = {oe + M € R/M : ¥ (¢ + M) =
O0+N}={o+MeR/M:0+N=0+N}={d+MecR/M:xec N}=N/M.
Therefore by Theorem 5, (R/M)/(N/M) = R/N.
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Neutrosophic N-Ideals and N-Filters ®)
of BF-Algebra oo

B. Satyanarayana and P. Rajani

Keywords BF-algebra - Subalgebra - Ideal - Neutrosophic N-BF-ideal -
Neutrosophic N-BF-filter

1 Introduction

Zadeh [1] introduced the idea of fuzzy set theory. F. Smarandache launched the
concept of Neutrosophic logic and set to deal with uncertainty as a generalization of
the intuitionistic fuzzy set, paraconsistent set, and intuitionistic set [2]. Atanassov
[3] unveiled the degree of nonmembership/falsehood (f) and elucidated the intu-
itionistic fuzzy set. Smarandache devised the term “Neutrosophic,” which means
knowledge of neutral thought, and this third/neutral represents the main difference
between “fuzzy”’/“intuitionistic fuzzy” logic/set and “Neutrosophic” logic/set. He
introduced the degree of indeterminacy/neutrality as an independent component and
developed the Neutrosophic set on three components (t, i, f = truth, indeterminacy,
falsehood). Jun et al. [4] have introduced a new mapping which is called negative-
valued mapping and built N-structures to deal with negative information. Khan et
al. [5] displayed the concept of Neutrosophic N-structure (NNS) and applied it to
a semigroup. Walendziak[6] worked out BF-algebra which is a generic form of
B-algebra and explored some characteristics of ideals and normal ideals in BF-
algebra. Seok-ZunSong et al. [7] presented the concept of Neutrosophic N-ideal
in BCK-algebras and investigated numerous attributes. In this paper, we introduce
the concept of Neutrosophic N-BF-subalgebra (NNSA), Neutrosophic N-BF-ideal
(NNi), Neutrosophic N-positive implicative Bf-ideal (NNPIi), Neutrosophic N-
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near BF-filter (NNNf), and Neutrosophic N-BF-filter (NNf) and examine numerous
attributes. We consider an association among NNSA, types of NNi, and NNf.

2 Preliminaries

Definition 2.1: A BF-algebra is a structure S:=(S#£8, x,0)eK(7) satisfying

pxp =0 (1)
px0=p )
Ox (pxq)=qxp,VYp,q €S 3)

Example 2.2: The following composition table is a BF-algebra (Table 1).
Definition 2.3: A relation “<” on BF-algebra S:=(S#%@, x,0) is defined as

(Yp,q €9) (p < qiffpxq = 0) 4

Definition 2.4: Consider a BF-algebra S:=(S#@,%, 0). M(#@)CS is a subalgebra
if

pxqg € M,Vp,g e M 5)
Definition 2.5: Consider a BF-algebra S:=(S#0, x, 0). M(#@)CS is an ideal if
0eM (6)
and
Vp,geS)(pxgeM,geM= peM) @)

Definition 2.6: Consider a BF-algebra S:=(S#@, %, 0). M(£@)CS is a positive
implicative BF-ideal if (6) holds and satisfies

Table 1 (S={0, 1, 2, 3},%,0)

x |01 |23
001 |23
110132
212301
3 /321|110
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Vp,q,r €S),((pxq)xr) e M,qxr e M => pxr e M ®)

Example 2.7: Let R be the set of real numbers. Then, S=(R, x, 0) where x is given
by
pxqg=4{qif p=0
0 otherwise
is a BF-algebra.
M=R™ U{0} is a positive implicative BF-ideal of S.
Definition 2.8: Consider a BF-algebra S:=(S#%@, %, 0). M(£0)CS is a near BF-
filter if
(Vp.qeS) (qeM=pxqgeM) )

Example 2.9: M=R™ U{0}is a near BF-filter of S for the example defined in 2.5.

Definition 2.10: Consider a BF-algebra S:=(S#, x, 0). M(#@)CS is a BF-filter
if (6) holds and

Vp,gelS) (pxqeM,peM=>qeM) (10)

Example 2.11: For the BF-algebra in Table 1, M={0,1} is a BF-filter of S.

3 Neutrosophic N-Concept on BF-Algebra

Let y(S,[—1,0]) be the family of negative-valued mappings from a set S to [—1,0]
(called N-mapping on S). An N-structure is denoted by (S, g) of S and g is a N-
mapping on S. A NNS over a universe S #@ is

S
S\ = - P Ipes

(nietn) | (YN N Ny D)

where Yy, Iy, and Ny are N-mappings on S, which are called the negative truth
membership mapping, the negative indeterminacy membership mapping, and the
negative falsity membership mapping, respectively, on S.

A NNS Sy over S holds

(Vpes) (-3 =YN (¢ +IN () +NN () 0)
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Let us represent Vp,qe[—1,0], pvq denotes max{p.q}, and pAq denotes min{p,q}.
Definition 3.1: A NNS Sy of a BF-algebra S:=(S#0, x, 0) is a NNSA of S if

YN (pxa) =v [YN . YN @] (11)
IN (Px9) = A {In (). Ix @] (12)
NN (pxa) = v [Ny ().8x @] (13)

for all p,geS
Example 3.2: The following table Sy is a NNSA of Table 1 (Table 2).
Definition 3.3: A NNS S of a BF-algebra S:=(S#8, x, 0) is a NNi of S if

YN O =YN ()= v{YN 0x9). YN @] (14)
INOzIN )z A fIN pxe). N @) (15)
NN O =Ny () =v {Nx (rx9) Ny @] (16)

for all p,geS
Example 3.4: The following table Sy is a NNi of Table 1 (Table 3).
Definition 3.5: A NNS Sy of a BF-algebra S:=(S#0, %, 0) is a NNPIi of S if

YN 0) < YN (p).IN 0) 2 IN (p). Ny (0) <Ny (p) (17)

Table 2 NNSA of Table 1 0 1 2 3
(5={0. 1,2, 3}, %, 0) Yy | -08 08 | -08 | -08

Iy -0.1 08 | 09 | -09

Ny | -08 | -04 | 04 | -06
Table 3 NNi of Table 1 0 1 2 3
(5={0,1,2,3}, %, 0) Yy | 07 | -02 | 06 | 02

Iy 0.1 08 | -09 | -09

Ny | 08 | 04 | 04 | -06
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YN (pxn) VYN (x@) x0), YN @ x0) (18)
IN (pxr) = A {IN (pxq) x).IN @ x0)] (19)
NN (pxn) = VINN (@ x@) x1) NN (g x0) (20)

for all p,q,reS

Example 3.6: The following composition table is a BF-algebra (Table 4).
The NNS Sy of S is NNPIi as shown below (Table 5):

Definition 3.7: A NNS Sy of a BF-algebra S:=(S#8, %, 0) is a NNNf of S if

vp.ges) (YN (rxa) < YN @) @
vp.ges) (IN (Pxa) 21N @) (22)
p.geS) (NN (px) <NN @) (23)

Example 3.8: The following table Sy is a NNNT of Table 4 (Table 6).
Definition 3.9: A NNS Sy of a BF-algebra S:=(S#0, x, 0) is a NNf of S if

vpes) (YN @ =YN ). (IN O =In ). (N O =Ny (1)

24
Table 4 (S={0, 1, 2}, %, 0) x |0 |1 |2
0/0 /|12
11,0
212100
Table 5 NNPIi of Table 4 0 1 2
(5={0, 1,2}, %,0 Yy -1 -1 -1
In -0.2 -0.2 -0.2
Ny -0.5 -0.5 -0.5
Table 6 NNNf of Table 4 0 1 2
(8={0, 1, 2}, %, 0) Y -0.9 -0.9 -0.9
In -0.5 -0.5 -0.5
Ny -0.8 -0.8 -0.8
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YN @ =v{YN (rx0). YN D) Vpig €S) (25)
IN @z A {IN (x9N (] (Vp.ges) (26)
NN @ =v NN xa) . Ny (] (Vp.g e9) 27)

Example 3.10: The following table Sy is a NNf of Table 4 (Table 7).

Definition 3.11: Consider a NNS Sy of a BF-algebra S:=(S # @, %x,0) and N1, N2,
he [—1,0] with —3 < k1 4+ k2 4+ A3 < 0 with the following:

YW = {pes/yN e < ul,
N = {peS/IN® = 22,

NN = [p e S/NN®) < 43}
Then
SN (i1, 42, 43) = {p € S/YN () = a1 IN () = 32, NN () = s}

is the (A1, N2, h3) —level set of Sy.
Note: From the Definition 3.11, it is obvious that Sy (A1, A2, >\3)=YNA' N IN“ N
NNM.

Definition 3.12: For any fixed numbers, Ay, An€[—1,0), Aie(—1,0], and a non-
empty subset G of a BF-algebra S:=(S # @, x, 0), a NNS SNG over S are defined to
be

SN = P est,
N {YNG(m,ING(p), e }

Table 7 NNf of Table 4 0 1 2

(S:{Ov 1, 2}» X, O) YN -0.7 -0.5 -0.5
In -0.5 -0.5 -0.5
Ny -0.7 -0.4 -0.5
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where YNG, ING, NNG are N mappings on S which are shown below:

Ay,
ﬁ&:&»FLmﬂnw%mz{Y

)" ’
]NGIS%{—LOLaMNG@)Z{ !

and
AN,

m&;&»meﬂmm%mz{

Theorem 3.13: Every NNPIi of a BF-algebra is a NNi.

Proof: Let NNS Sy be a NNPIi of a BF-algebra S:=(S # @, %, 0). Then

YN (0) < YN ()
INO=IND |, vpes by
NN (0) < NN ()
and

L YN (p)= YN (px0) < v {YN ((pxq) x 0), YN (gx0)}

Therefore, Yy (p) < v {YN (pxq), YN (9)} Vp,g€S.
Similar proof follows for Ix and Ny also.
Hence, Sy is NNi of S.

ifpeG

0, otherwise

ifpeG

—1, otherwise

ifpeG

0, otherwise

A7)

by (2) & (18)
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Note: Converse of the theorem need not be true, i.e., every NNi need not be

NNPIL.

Example 3.14: The following table Sy is a NNi but not NNPIi of Table 4 (Table 8).
(By (18),YN (0x1) = YN (1) = =0.5> v{YN (0 x 1) x1), YN (1x])} = YN(O) =

-0.7)
Theorem 3.15: Let a NNS Sy be a NNf of a BF-algebra S:=(S#6,x, 0) and then
the sets.
Table 8 NNi but not NNPIi 0 1 2
YN -0.7 -0.5 -0.5
In -0.5 05 | 05
Ny | -07 04 | 05
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@) SN, = {peS/Yn(p) = YN(O)}.
(i) SN, = {peS/In(p) = IN(O)}.
(iii) SNNN: {peS / Nn(p) = Nn(0)} are BF-filters of S.

Proof: Suppose a NNS Sy is a NNf of a BF-algebra S:=(S#%@,x, 0). It is obvious
that0 ESNY N SNI N SNN .

Let p, q € S be such that p, pxquNY N SNI N SNN .
N

This implies Yn(p)=Yn(pxq)=YN(0), INn(p)=IN(pxq)=IN(0),NN(p)=Nn(pxq)=
Nn(0) and

@ YN (O=v{YN (p), YN (px @)}=YN (@)=YN (0) by (24) and (25)

* Yn (@ =YN(0)
* q ESNYN

Similar proof follows for (ii) and (iii) also.

Hence, SN , SN s SN are BF-filters of S.
NN N

Theorem 3.16: Every NNSA of a BF-algebra satisfies (17).
Proof: Proof is straightforward by (1) and Definition (3.1).
Theorem 3.17: Let a NNSA Sy of a BF-algebra S:=(S#0, x, 0) satisfying Vp,qe

S
YN () < YN (@
Ppxq#0)=>| IN® =IN@ (28)
NN () < Ny (@)
and then Sy is a NNNf of S.

Proof: Suppose that a NNSA Sy of a BF-algebra S:=(S#@, %, 0) holds (28). Then
YN (0) < YN ()
INO)=ZIN® | (YpeS) by (Theorem 3.16)
Ny (0) < Ny (p)

Case (i): If px q = 0, then it is obvious that Sy is a NNNf of S.
Case (ii): If p x q#0, then
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@ Yn(px q) = v{YN(P), YN(9}(YP.ge S) by (11)
* Yn(px @) < YN(@)(Vp,g€E S) by (28)

Similar proof follows for Iy and Ny also.
Hence, Sy is a NNNf of S.

Theorem 3.18: If a NNS Sy of a BF-algebra S:=(S#, x, 0) satisfying Vp,q,re S

YN @ = v YN ®. YN D)
t=pxa=>| N@zA{NO.N®]]. (29)
NN @ = v {Ny @, NN )

then Sy is a NNf of S.

Proof: Suppose a NNS Sy of a BF-algebra S:=(S#6, %, 0) holds (29). Then, we
have p x (p x 0) = 0, and by (1) and (2)

YN () < YN ()
INO =IND [ (Ypes) by (4) and (29)
NN (0) < NN ()
and also (p x @)x (p x q) = 0. by (1)
YN (@ =viYN(Pxq), YN (P)
IN@zA{INex). IN®)] | paes) by @) 9)
NN (¢) = vINN (px @), NN (P)

Hence, Sy is a NNf of S.

Theorem 3.19: Let a NNS Sy of a BF-algebra S:=(S # @, x, 0) be a NNPIi. Then,
YN’"1 ,INAz ,NN“ are positive implicative BF-ideals of S, V A1, \p, A3 €[—1,0] with
—3 <M 4+ N2 + A3 < 0 whenever they are non-empty.

Proof: Suppose a NNS Sy of a BF-algebra S:=(S # @, %, 0) is a NNPIi. Let %,
N2, A3 €[—1,0]with =3 <A + Ap + X3 < 0.
Let peYNA‘, quN“, and reNN)‘3 for some p, q, r € S. Then
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YNO) =YNP) =M
IN 0) > IN (p) = A2 | (¥p € S) .Thisimplies by (17)
NN (0) =NN(P) = 23

OEYNMﬁIN)“zﬁNN)L3
Let ((pxq) x 1) €YN™' NI NN YN N IN'2 N N3, Th
N N N axre INT DN N hen

YN ((pxq) x1) < A1, YN (g%1) < Ay
IN ((pxq) x 1) > A2,IN (qxr) > 22
NN ((pxq) x1) < 23,NN (gx1) < A3

and
(1) Yn(pxr) < v{YN (pxq) x 1), YN (gxn)}< g by (18)
. pxreYNkl
Similar proof follows for Iy and Ny also.
Hence, YNA1 , IN)‘Z, NN)‘3 are positive implicative BF-ideals of S.

Theorem 3.20: Let a NNS Sy of a BF-algebra S:=(S+#@, %, 0), and let X, hp, A3
€[—1,0] be such that —3 < \y + X2 + A3 < 0. If Sy is a NNPIi of S, then the
non-empty set (A1, A2, h3) is a level set of Sy and is a positive implicative BF-ideal
of S.

Proof: Suppose a NNS Sy of a BF-algebra S:=(S # @, x, 0) is a NNPIi of S.
Let Ni, Mo, N3 €[—1,0] with =3 <A1 + X2 + A3 <O.

()»1, A2, Ag) ——level set of SN is SN ()\1, Ao, A3)
={peS/YN®) = 21N @ 2 22Ny (0) = 2]

Since

YNO) = YN =t
IN(0) = IN(P) = A2 | (Vp € S), wehave by (17)
NN (0) = NN (p) = A3
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0e SN ()»1, A2, )»3)

Let p, g, r € S be such that (pxq) x r € Sy (A1, A2, A3) and (gxr) € Sy (N q, A2,
\3). Then

YN ((pxq) x1) < A1, YN (g%1) < Ay
IN ((pxq) x 1) > A2,IN (qxr) > 22
N ((pxq) x 1) < 23,NN (qx1) < 23
and
YN@xD) = VviYN((pxq)