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Chapter 9
Climate Resilience Technologies  
for Wheat Production

Zahoor Ahmad, Ejaz Ahmad Waraich, Celaleddin Barutçular, Aiman Hina, 
Asim Abbasi, Muhammad Mohiuddin, Inzamam Ul Haq, 
Muhammad Ashar Ayub, and Sundas Sana

Abstract  Climate change has greatly influenced overall agricultural production. 
Pakistan is an agricultural economy, and agriculture is the source of income for the 
majority of the population. Unfortunately, agriculture is most sensitive to climatic 
irregularities because drought, salinity, and heat stress are major causes of yield 
decline in both major and minor crops. This chapter provides useful insights regard-
ing strategically utilization of the most recent research findings to speed up the 
development of wheat genotypes having resistance against climatic irregularities. 
The recommended strategies discussed in this chapter develop a link between trans-
lational research and breeding strategies. This chapter also addresses research gaps 
which together are anticipated to enhance wheat yield particularly under heat and 
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drought stress. In addition to meet the demand of local growers, breeders must 
ensure the release of improved varieties having wider adaptation to support the effi-
cacy of selection program. The genotype × environment interactions (GEI) are 
directly or indirectly linked to the existing biotic and abiotic stresses, soil 
nourishment status, agronomic practices as well as genetic composition of any crop. 
In order to enhance the efficiency of different breeding strategies, understanding the 
basis of GEI is prerequisite. Furthermore, modeling techniques that take into 
account environmental and genomic data could be used to locate genetic locus 
underlying stability across multiple locations and abiotic stress response. In addi-
tion, the technique of crop simulations will help to understand the fundamentals of 
GEIs and could be useful in predicting morphological characterization and growth 
trend in wheat genotypes when projected to various stressed of varying intensity. It 
is also possible to transfer genes between artificially hybridized and bread wheat by 
the backcrossing breeding method. By backcrossing with high-yielding wheat cul-
tivars, the breeder could obtain an upraise of 10–40% in yield of synthetic wheat 
even in drought and stress conditions. By using recombinant inbred lines (RILS) 
and near-isogenic lines (NILS), 1RS translocation lines of rye have demonstrated 
high levels of tolerance and greater biomass production under heat and stress condi-
tions. Similar to gene editing, gene cloning is also not very common in developing 
improved genotypes with better adaptation options against stress. Additionally, the 
use and regulation of genome edit technologies such as CRISPR/Cas9 system are 
still in ambiguity which has made it difficult to integrate such technologies into 
breeding program with an international focus.

Keywords  Climate resilience · Wheat · Genomic technologies · Drought · Heat

1 � Introduction

Climate change poses a significant threat to wheat production, as it leads to unpre-
dictable weather patterns and increased incidence of extreme weather events such as 
droughts and floods. Different climate variables have varying impacts on different 
crops and regions. Recent years have seen an expansion of grain-sown area and 
increase in grain production due to increased heat caused by climate change 
(Pickson et al. 2020; Yang et al. 2015). However, high temperatures can negate the 
positive effects of increased rainfall and CO2 concentrations on crop production in 
certain areas (Malhi et al. 2021; Dai et al. 2018). Climate change also negatively 
impacts grain production by increasing the occurrence of pests and diseases, short-
ening crop growth cycles, and increasing the frequency of extreme weather events 
(Wang et al. 2021; Chen et al. 2018).

To mitigate these impacts and ensure the continued productivity of wheat crops, 
farmers are turning to a range of climate resilience technologies for ensuring food 
security and sustainable agricultural practices in the face of increasing climate vari-
ability and extreme weather events. These technologies include a range of genetic, 
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agronomic, and management practices that can help farmers adapt to changing con-
ditions and protect their crops from the effects of drought, heat, and extreme weather 
(Bei et al. 2022; Belton et al. 2021; Jiang et al. 2020).

One technology that can help to increase the resilience of wheat crops to drought 
is the use of drought-tolerant wheat varieties. These varieties have been bred to have 
deeper roots, better water-use efficiency, and improved tolerance to high tempera-
tures (Bapela et al. 2022). Crop rotation is another farming practice that can help to 
increase the resilience of wheat crops to the impacts of climate change. By rotating 
crops, farmers can improve soil health, reduce pest and disease pressures, and 
increase overall crop yields (Jalli et al. 2021). Climate-smart farming practices such 
as conservation agriculture, agroforestry, and the use of weather and climate infor-
mation in crop management can also help to increase the resilience of wheat pro-
duction to climate change. By adopting these practices, farmers can ensure that their 
crops are better able to withstand the impacts of extreme weather events and con-
tinue to produce high-quality wheat. Technologies such as precision irrigation and 
precision fertilization can help farmers use water and fertilizer more efficiently, 
which can be especially important in regions that are becoming drier or more water-
stressed due to climate change. For example, a study found that precision irrigation 
led to higher wheat yields and reduced water use in a region that was experiencing 
drought (Djanaguiraman et al. 2020).

Climate-resilient wheat breeding using precision breeding, genome editing, and 
gene editing can also help to breed more resilient wheat varieties that can adapt to 
the changing climate. This chapter highlights these technologies and discusses their 
role to ensure that wheat crops are better able to withstand the impacts of extreme 
weather events and continue to produce high-quality wheat (Gul et al. 2022; Abbas 
2022; Zhang et al. 2022). These practices are essential for ensuring food security 
and sustainable agricultural practices in the face of increasing climate variability 
and extreme weather events.

2 � Climate Change Trends and Their Impact 
on Agricultural Productivity

Climate consists of complex structures with spatiotemporal dynamics. Naturally, 
the earth’s sphere constantly remains in a variable and unstable state, experiencing 
various configurational dimensions which cause irregularities in climatic condi-
tions. It is stated that the existing climate is different compared to the Mesozoic era 
and is continuously undergoing changes (Mac et al. 1998). Intergovernmental panel 
on climate change (IPCC) endorsed the side effects of climate change, namely, tem-
perature fluctuations, increased water flow from ice caps, and glaciers causing them 
to melt faster and unexpected rise in sea levels around the globe (IPCC 2007). This 
whole scenario has become a burning issue of every debate; therefore, several think 
tanks and people from different schools of thought are sitting together to find appli-
cable and universal preventive measures which can be adopted globally (IPCC 2007).

9  Climate Resilience Technologies for Wheat Production



192

Studies showed that climatic changes may be caused due to natural or man-
made factors, e.g., severe rainfall, deforestation, and extinction of natural flora 
and fauna due to urbanization. Sadly, all these factors are slowly damaging the 
natural ecosystem, destroying the natural habitat of animals, adding poisonous 
gases to human breath, and leading to an unhygienic place for living (Singh 
2007; IPCC 2007). According to the facts stated by several studies, excessive 
emission of toxic gases from fuel consumption has damaged and reduced the 
greenhouse effect which is not only risking human lives but also impacting the 
national economy and food security.

Pakistan is an agricultural economy, and agriculture is the source of income 
for the majority of the population. Unfortunately, agriculture is most sensitive to 
climatic irregularities because drought, salinity, and heat stress are major causes 
of yield decline in both major and minor crops (Deschenes and Greenstone 2007; 
Timmins 2006; Schlenker and Roberts 2006; Ashenfelter and Storchmann 2006). 
Therefore, underdeveloped nations are more vulnerable to the losses and dam-
ages caused by climatic aberrations, 8–11% more compared to developed nations. 
Furthermore, this devastating situation has also increased the cases of depres-
sion, theft, and anxiety among such nations (Alteiri and Nicholls 2017; Lesk 
et al. 2016).

Climate change brings lots of inevitable disasters, among them food insecurity is 
top-ranked. Among the 17 Sustainable Development Goals (SDG), the first and sec-
ond goals focus on no poverty and zero hunger, respectively. Considering these two 
goals, it is predicted to achieve zero hunger by the end of 2030 which seems impos-
sible to attain under the current circumstances of climate change as to statistics 
around 815 million population are suffering from malnutrition (Richardson 
et al. 2018).

The agricultural sector always endures heavy production losses, with each degree 
rise in temperate. Data have shown an instant decline in the yield of both commer-
cial and staple crops after a strong heat wave, flooding, or prolonged drought (Ito 
et al. 2018). The overall crop production is estimated to decline at a much faster rate 
than before because the temperature jumps from 2.6 °C to reached 4 °C (Rogelj 
et al. 2016). Moreover, the existing cropping pattern followed by the farming com-
munity is not enough strong to cope with the seventies of climate (Reckling 
et al. 2018).

Currently, the changes in rainfall patterns, temperature extremes, and increased 
insect pest infestation are paving the way for maximum crop production loss which 
will result in scarcity of basic food items (Dhanker and Foyer 2018; Campbell et al. 
2016; Kang et al. 2009). These fluctuations in temperature and expected decline in 
crop yield are leading toward the onset of World War IV which will be on the issue 
of food security. Therefore, improving and securing food grain should be the funda-
mental objective of future studies. This chapter discusses and highlights the dam-
ages caused by climate change and tried to suggest mitigation strategies to cope 
with the calamities caused by climate irregularities.
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2.1 � Temperature

Temperature elevations are one of the best methods to explain climate change 
because temperature fluctuations or extremes affect almost aspect of human lives as 
well as the national economy of every country (Rasul et al. 2011). For example, 
during the plant growth cycle, temperature balance is very critical as it influences 
the majority of the important growing and reproductive metabolisms. In the case of 
wheat, rice, sorghum, barley, and oats crops, the flowering stage is very critical. 
Under stress conditions, slight temperature changes can cause delayed flowerings or 
permanent sterility (Barnabás et al. 2008; Winkel et al. 1997; Saini and Aspenal 
1982). Similar studies reported about a 35–75% decrease in grain setting because of 
water scarcity (Sheoran and Saini 1996; Saini and Aspenal 1981). If the temperature 
rises to more than 35  °C, it causes hindrance in the process of photosynthesis 
(Griffin et al. 2004). In maize, heat stress is reported to impact antioxidant activity 
(Gong et al. 1997). According to a report, in Mexico, where Zea mays is the leading 
crop, it is predicted that in near future, overall crop production will decline by up to 
25.7%, among them maize would face more yield losses (Hellin et  al. 2014). 
Moreover, when both drought and heat stress are combined in cereal crops, it causes 
more yield loss and destruction (Wang and Huang 2004).

2.2 � Drought

The quality of the grain may alter significantly as a result of the water availability; 
the changes vary depending on whether there is too much or not enough water. 
Drought-affected plants have a lower photosynthetic activity which has an impact 
on grain production (Jiang et al. 2009; Ahmad et al. 2022; Bukhari et al. 2022). 
Proteins must build up in the grain to produce high-quality grain; however, the 
availability of water, a suitable plant-growing environment, and nutrient conditions 
have a significant impact on this process (Rodrigues and Teixeira 2010; Ahmad 
et al. 2021). According to Kobayashi et al. (2018), over a 115-day cycle, wheat used 
an average of 347.2 mm of water or around 3.02 mm daily. The consumption was 
0.70 mm day−1 during the establishment phase, 0.93 mm per day during the tillering 
phase, 2.21 mm day−1 during the booting phase, 3.74 mm per day during the bloom-
ing phase, and 2.12 mm day−1 during the grain maturation phase. Moreover, the 
critical times for water stress are the end of the tillering phase, the commencement 
of stem elongation, throughout head development, and the commencement of the 
blooming period (Sharma and Singh 2022; Yimere and Assefa 2022). Moreover, 
indeed, some tillers will not produce spikes if they experience water stress during 
the stem elongation period. Water scarcity during the milking stage of kernel growth 
also affects the yield of the wheat plant. Conversely, the vegetative development, 
which is often most impacted by the interruption of irrigation in the early heading 
stage, productivity was more vulnerable to stress during the emergence of the head 
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(Moreira and Cardoso 2009). In their study of water stress in four stages of develop-
ment (tillering, booting, grain filling, and physiological maturity), Zulkiffal et al. 
(2021) found that water stress decreased grain yield by 22.7% during the tillering 
stage, 41.6% during booting stage, and 9.1% during grain filling stage. As a result, 
the impacts of low water availability vary depending on the plant’s phenological 
stage, the length of the water stress, and its severity.

2.3 � Rainfall

Current climatic changes such as droughts, floods, cold and heat waves, and abrupt 
rainfall patterns significantly affect the output of field crops particularly those grown 
in areas (Olayide et al. 2016; Rasul et al. 2002). Among these climatic variations, 
rainfall is vital ecological factors that significantly affect crop yield, growth, and 
normal development. Mostly, smallholder farmers are the ones which are greatly 
affected by the uncertain rainfall patterns (Mar et al. 2018; Ndamani and Watanabe 
2015). Rainfall causes soil erosion which depletes soil nutrients and ultimately hin-
ders crop growth and yield (Zike 2019). Preceding crop patterns and future rainfall 
sequences significantly diminish wheat leaf area index, plant height, crop growth, 
and root colonizing arbuscular mycorrhizal fungi (AMF) (Tataw et al. 2016). The 
decline in seasonal rainfall is usually associated with decreased soil humidity which 
exerts pressure on soil moisture resulting in decreased plant growth and yield. 
Moreover, population and damage potential of certain crop pathogens are also 
affected with soil and air moisture contents. An upsurge in soil and air moisture is 
usually correlated with increased rainfalls which provide a conducive environment 
for growth of certain disease-causing pathogens (Coakley et al. 1999).

3 � Climate-Resilient Technologies for Enhancing Wheat 
Growth under Stresses

The recommended strategies discussed in this chapter develop a link between trans-
lational research and breeding strategies. This chapter will also address the existing 
research gaps which together are anticipated to enhance wheat yield particularly 
under different stresses, e.g., drought and heat (Reynolds et al. 2021).

3.1 � Crop Design Targets by Using De Novo Genome Assembly

Breeders must ensure that their varieties offer enough wider adaptation to support 
the investment and scope of their selection program while also ensuring that they 
fulfill the local needs of growers. Hence, plant breeders must find ways to maintain 
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a balance between crop yield and its adaption stability for a particular set of given 
ecological conditions, while ensuring that new crop cultivars should have the ability 
to withstand against multi environments. Hence, the process of crop improvement is 
very delicate and requires a lot of expertise, along with few difficulties. On top, 
selecting a suitable parent is a very crucial step in all breeding programs especially 
under multiple environments where environment interactions (GEIs) are an impor-
tant factor to consider as well. The genotype × environment interactions (GEI) are 
directly or indirectly linked to the existing biotic and abiotic stresses, soil nourish-
ment status, agronomic practices as well as genetic composition of any crop. In 
order to enhance the efficiency of different breeding strategies, understanding the 
basis of GEI is prerequisite (Reynolds et al. 2021).

3.2 � Screening of Stress-Resistant Germplasm to Refine 
Breeding Targets

Although major portion of wheat cultivated area is under severe threat of drought 
and heat, various wheat breeding programs still lack efficient screening protocols of 
wheat cultivars and usually utilize quite general drought and heat stress criteria 
(Braun et al. 2010). Moreover, various breeding programs are vulnerable to global 
climatic changing patterns. During breeding schemes, some important factors can-
not be ignored such as soil nutritional shortages or toxic effects, and biotic stressors, 
because if not correctly detected, it may compromise the genetic gain and under-
standing of molecular and biochemical mechanism of stress adaption (Mathews 
et al. 2011; Bagci et al. 2007).

As a result, elucidating the various stress profiles to which wheat must respond 
such as acquiring morphological and adaptive features and improved yield of a 
specific area. Screening of significant genotypes depicting resistance against 
drought and heat under severely stress affected areas along with diverse range of 
ecological conditions (Opare et al. 2018; Ramírez-Villegas et al. 2011). A few char-
acteristics with maximum response toward GEIs could be used to draw information 
about the combined effect of phenological and physiological dataset as well as 
weather forecasts, soil type, and required agronomic practices could also be pre-
dicted (Reynolds et al. 2004). This method allows the identification of molecular 
markers that are related to tolerance to certain stress profiles, as well as the primary 
consequences of high temperatures and/or drought (Messmer et al. 2009). Selective 
trialing may go further in terms of exact phenotypic expression, critical physiologi-
cal features, and accurate environmental characterization; however, it is only pos-
sible to do so at a limited range of locations based on the resources available. 
However, the results of this research may be utilized to improve the methods for 
data acquisition, which will allow the fundamental issues of GEI to be solved on a 
much broader scale.

9  Climate Resilience Technologies for Wheat Production
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3.3 � Prediction of Phenological Wheat Growth under Drought 
and Heat Conditions

Genotype × environment interactions have strong impact on plant development and 
number of grains produced (Reynolds et al. 2020). The technique of crop simula-
tions will help to understand the fundamentals of GEIs and could be useful in pre-
dicting morphological characterization and growth trend in wheat genotypes when 
projected to various stressed of varying intensity (Wallach et al. 2021). In crops, 
extreme temperature always influences the heading stage, grain filling duration 
whereas unavailability of water causes decline in nutrient intake of crop and eventu-
ally affects crop growth which is detrimental to crop production. Therefore, use of 
global girded crop models (GGCM) combining the crop and climate simulation 
models is suggested to lessen the crop production losses. The consortium was devel-
oped between three members, namely, University of Florida (UF), International 
Food Policy Research Institute (IFPRI), and CIMMYT. This consortium established 
the three global gridded crop models (GGCM) in wheat (NWheat, CROPSIMCERES, 
and CROPSIM) with the idea to increase the spatial modeling capability of wheat to 
assess any climatic irregularities (Pequeno et  al. 2021; Hernandez-Ochoa et  al. 
2019; Gbegbelegbe et  al. 2017). Similarly, another crop simulation technique, 
namely, the mink system is also reported to use in agriculture (Robertson 2017). 
Recently, CIMMYT’s high-performance computer clusters have also been using 
this technology to execute analyses of time period between 1980 and 2010 to calcu-
late the net worth of these 30 years and at the same time to predict future climatic 
conditions during 2040–2070 (Pequeno et al. 2021; Lopes et al. 2018; Asseng et al. 
2002). It is hoped that the use of these simulation models would help in better defin-
ing of future breeding targets by considering the environmental factors, crop devel-
opment, and growth directions and important introgression of important traits that 
contribute adaptation and stability.

3.4 � Introgression of Climate-Resilient Genetic Materials 
from Landraces

The hexaploid wheat developed by hybridizing Triticum durum (AABB) × Aegilops 
tauschii (DD) has demonstrated the ability to survive under the extreme environ-
mental condition which was contributed from the wild diploid ancestor A. tauschii 
(Zhang et al. 2018; Elbashir et al. 2017; Sohail et al. 2011; Trethowan and Mujeeb-
Kazi 2008; Chevre et  al. 1989; Kihara and Lilienfeld 1949). Therefore, without 
interfering with naturally occurring meiotic division, it is also possible to transfer 
genes between artificially hybridized and bread wheat by the backcrossing breeding 
method. By backcrossing with high-yielding wheat cultivars, the breeder can obtain 
a raise of 10–40% in yield of synthetic wheat even in drought and stress conditions 
(Cossani and Reynolds 2015; Lopes and Reynolds 2011; Narasimhamoorthy et al. 
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2006; del Blanco et  al. 2001). To date, almost 85 synthetically developed wheat 
have been approved for general cultivation and are growing on more than 6% of 
field area in India (Aberkane et al. 2020). Wild relatives of bread wheat are blessed 
with the indispensable rich source of elite genetic materials conferring resistance 
against biotic and abiotic stresses and for improved yield. For instance, the transfer 
of the Thinopyrum 7E gene increases the 13% wheat yield (Reynolds et al. 2001).

Similarly, the introgression of A. ventricosa and 1RS translocation Rye is the 
most successful examples of working collections in CIMMYT during the early 
1980s (Juliana et al. 2019; Sharma et al. 2009; Braun et al. 1998; Singh et al. 1998). 
By using recombinant inbred lines (RILS) and near-isogenic lines (NILS), 1RS 
translocation lines demonstrated high levels of tolerance and greater biomass pro-
duction under heat and stress conditions (Sharma et al. 2018; Pinto and Reynolds 
2015; Hoffmann 2008; Zarco-Hernandez et al. 2005; Ehdaie et al. 2003; Villareal 
et al. 1995; Schlegel and Meinel 1994; Ludlow and Muchow 1990). Conversely, 
1RS was reported to decrease grain production under water deficit conditions which 
show the influence of genotype × environment interactions (Tahmasebi et al. 2015; 
Peake et al. 2011). Several translocation lines have been created overall, but because 
of their history and agronomically undesirable traits, they have not been used in 
wheat breeding (Hao et al. 2020; Kishii 2019; Friebe et al. 1996).

Almost 10% of the wild relatives that have been captured are likely to have been 
employed in interspecific crossing also, few of them are examined to assess genetic 
variation linked to a trait that may increase yield or climate resistance (Hao et al. 
2020; Kishii 2019; Friebe et al. 1996). Any Aegilops species can be used to create 
new amphidiploids, which are diploid hybrids to discover novel sources of resis-
tance in addition to creating synthetic hexaploid kinds of wheat. Additionally, cyto-
genetics that is currently being expedited by the marker is a very efficient and 
uncontroversial method for transferring genes between related species to create 
superior lines technology (King et al. 2017).

3.5 � Application of Phenomics for Selection of Elite Parents

The foundation of plant breeding is phenotyping, and the effectiveness of using 
genomic technologies is based on how well and how pertinently phenotyping is 
done. Rigid phenotyping must support genetic and physiological understanding to 
speed genetic gain, particularly using new genetic material into new crossing 
schemes (Reynolds et al. 2020; Molero et al. 2019; Rebetzke et al. 2018). Current 
breeding stock is the most readily available and rich source of genetically diverse 
germplasm for multiple stress-tolerant/resistant/adaptive characteristics. It is inter-
esting to note that choosing parents among advanced breeding lines does not yet 
typically involve comprehensive physiological or genetic dissection (Rai et  al. 
2018; Varshney et al. 2018; Crain et al. 2018). Hence, advances in field phenotyping 
have made it possible to choose adaptable features at a breeding level and have 
eliminated inherent biases associated with dependence on spatial evaluations.
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Although these qualities can contribute to breeding for certain conditions, they 
are also prone to genotype × environment interactions (GEI), namely, crop yield 
(Reynolds and Langridge 2016; Richards 2006). It is obvious from the significant 
efforts of corporate and public sector breeders of adapting high-throughput pheno-
typing (HTP), for effective and accurate selection (Roitsch et  al. 2019; Gaffney 
et al. 2015).

Use of distant remote sensing technologies may help to morphologically charac-
terize crops at reproductive stages in an eco-friendly manner which could help to 
increase the effectiveness of HTP (Araus and Kefauver 2018; Araus and Cairns 
2014). Moreover, high throughput is also considering for precise and accurate phe-
notyping of few traits which are difficult to estimate via HTP (Reynolds et al. 2020; 
Molero et  al. 2019; Reynolds and Langridge 2016; Richards et  al. 2010). Field 
phenotyping technologies have proliferated recently and yet only a few numbers 
have been demonstrated to be effective before and during breeding procedures 
(Araus and Kefauver 2018; Araus and Cairns 2014). Using various spectral reflec-
tance indices, remote sensing may be used to quantify the expression of attributes 
conferring stress adaptability, namely, earliness, vigor, biomass production, pig-
mentation, and water intake capacity of plants.

In addition to performing geographically and temporal growth analyses, few new 
methods, namely, low altitude RGB (red, green, and blue) images have been 
employed to calculate vegetation cover and phenological assessment. Hence, more 
precise phenotyping protocols must be established to discriminate between perti-
nent traits during different phases of breeding schemes and translational research. 
These protocols must take into account considering other factors as well such as day 
time, crop development stage weather, and environmental conditions while collect-
ing data along with mode of cultivation (Reynolds et al. 2020). Root vigor and depth 
play a pivotal role in dealing with heat and drought, making them essential traits. 
Substantial progress has been made in high-throughput phenotyping technologies 
that rely on imaging principles. However, it’s worth noting that these technologies 
often demonstrate their effectiveness primarily in controlled environments. 
Excavating roots for visual inspection or measuring plant DNA extracted from soil 
samples remain the only effective screening method under field conditions, although 
they have a low processing capacity (Pinto and Reynolds 2015).

3.6 � Prediction of Root Features by Developing Selection Index

Currently, in breeding populations, root capacity cannot be taken into serious con-
sideration due to the lack of compatible screening technique with field. However, 
there is reason to believe that root capacity could be predicted by remote sensing 
methods thanks to a few examples (Pinto and Reynolds 2015; Lopes and Reynolds 
2010). A strong association has been observed between canopy temperature (CT) 
with root mass under drought and heat stress conditions (Pinto and Reynolds 2015) 
which suggests the possibility to establish a screening protocol of root on the basis 
of remotely sensed characters, which could generate root index. This advancement 
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could enhance the selection procedure for root characters and could be used in tra-
ditional wheat breeding schemes. In addition to CT, other features such as water 
index (WI), carbon isotope discrimination (CID), and oxygen isotope enrichment 
could be useful for extracting further necessary information (Gutierrez et al. 2010; 
Cabrera-Bosquet et al. 2009). Furthermore, shoot biomass and WI represent strong 
correlation which could facilitate effective assessment of root capacity (Babar 
et al. 2006).

Under different stress conditions, root capacity can also be measured by calculat-
ing WI, CT water scarcity conditions, and then simulating all these factors together 
with oxygen isotope enrichment and CID. This data modeling will give total root 
biomass, estimates of root index, and root capacity; these findings could have sig-
nificant advantages for root research in general as well as other crops.

3.7 � Association of Rhizosphere with Genotype to Determine 
Abiotic Stress

The diversification of soil microbiome is strongly influenced by the plant genotype as 
well as the environment (Latz et al. 2021). The genetic composition and population 
size of the rhizospheric microbiota are also directly influenced by genetic characteris-
tics, e.g., root structure and composition, which vary greatly from one to another spe-
cies (Sasse et al. 2018; Schweitzer et al. 2008). There is a lot of interest in determining 
the effect of rhizosphere microbiota in enhancing overall crop development and 
growth such as nutrient transport in wheat (Azarbad et al. 2018; Ahkami et al. 2017; 
Donn et al. 2015; Yang et al. 2009). For instance, new research indicates that plants 
under drought stress alter the genetics constitution of root exudates for enhanced 
activity of microbes. As a reward, this can produce favorable post-drought circum-
stances brought on by plants, such as increased nutrient availability, for plant regen-
eration. Therefore, it may be assumed that specific genotypes with modified exudation 
patterns following drought events produce a microbiota to develop better resistance to 
drought conditions (de Vries et al. 2019). It raises few more questions such as when 
used in a breeding scheme, whether rhizospheric microbiota could be influenced by 
the association with specific genotype under stress conditions. One study in wheat 
answered to such question by showing significant association between host plant and 
phyllosphere (Bradáová et al. 2019; Hafez et al. 2019; Sapkota et al. 2015).

3.8 � Understanding of Genetic Mechanisms of Climate 
Resilience in Crops

For genetics studies, morphological characters such as plant height in wheat and 
soybean could be an under drought and heat stress conditions and provide useful 
dataset. These genetic mapping studies include nested association mapping (NAM) 
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and genome-wide association studies (GWAS). Quantitative trait loci (QTL) map-
ping can be used to describe and compile information on both well-known and 
unknown genetic areas associated to heat and drought adaptation. To achieve this, 
genomic areas from various mapping studies are matched to pan-genomes or refer-
ence genomes of wheat that are readily available, enabling comparisons between 
research at the level of physical position. By reviewing these comparisons, one can 
then detect hotspot segments or clusters that contain markers associated with stress, 
indicating that these markers have a crucial and consistent role in a range of genetic 
backgrounds and contexts. The results of meta-analysis studies could be used to 
compute global P-value using summary statistics across several GWAS data 
(Soriano and Alvaro 2019; Acuna-Galindo et  al. 2015; Griffiths et  al. 2009). In 
single meta-analysis studies, the estimates of single nucleotide polymorphism 
(SNP) depicted false-positive effects by using larger sample size (Joukhadar et al. 
2021; Montenegro et  al. 2017; Evangelou and Ioannidis 2013). CIMMYT has 
already released high-quality 08 wheat lines, highly adaptable to stress, in addition 
to that, next-generation sequencing profiles of hundreds of important breeding lines 
developed by CIMMYT are now accessible for further exploration. The aforemen-
tioned cross-cutting genetic and agronomic resources will be essential ancillaries 
for manipulating genetic materials, enabling a novel method of identification of 
alleles and the search for highly valuable useful variations. The promise of epi-
genetics is not explored in this chapter because it will require more knowledge than 
is now accessible to translate (Varotto et al. 2020). Similar to gene editing, gene 
cloning is also not very common in developing improved genotypes with better 
adaptation options against stress. Additionally, the use and regulation of genome 
edit technologies such as CRISPR/Cas9 system are still in ambiguity which has 
made it difficult to integrate such technologies into breeding program with an inter-
national focus.

4 � Conclusion

Climate change is bringing inevitable calamities to the earth’s sphere. These changes 
are increasing threats to food security and national economy. In Pakistan, wheat is 
consumed as staple crop; therefore, it is very important not only to improve yield 
but also to develop climate-resilient wheat varieties. Although conventional breed-
ing approaches have played significant role in the development of drought- and 
heat-resistant cultivars, still there is a dire need to take advantage of new technolo-
gies such as introgression of genes from wild species, identification of genomic 
spots harboring stable and elite QTLs, identification of candidate genes underlying 
these QTLs, and genetic manipulation of germplasm by using genome edit tech-
nologies to develop climate-smart wheat.
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