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Chapter 2
Climate Change and Global Crop 
Production

Zahoor Ahmad, Tanveer Ahmad, Asim Abbasi, Ejaz Ahmad Waraich, 
Aiman Hina, Tasmeya Ishfaq, Sumaira Maqsood, Ramish Saleem, 
Musarrat Ramzan, Sundas Sana, and Jawaria Jameel

Abstract  Climate has a substantial impact on human health, livelihood, food, and 
infrastructure. However, rapid shifts in climatic conditions threaten the survival of 
all living creatures. The current abnormalities in precipitation and temperature are 
leading to nonprofitable agricultural production, food insecurity, and depletion of 
natural genetic resources. The changing trends towards diversified diets have posed 
greater challenges for producers in meeting the consumers’ demands, necessitating 
a consistent and reliable food supply. Unfortunately, the current scenario of climatic 
variation has made it hard to put enough food on the table. Because of flooding, 
droughts, and salinity stress, a large number of staple crops and their by-products 
get wasted. Similarly, low production of cash crops also lowers the import–export 
values and affects the national economy. A few preventive measures could be taken 
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to address the challenges of climatic irregularities. Examples include the use of elite 
genotypes, changing harvest dates, sowing either late or early, and cultivating new 
crops rather than just the usual ones. It is compulsory to test, validate, and devise a 
climate-resilient cropping system. In contrast, growers must participate in different 
activities to determine adoption-related barriers and generate alternative options. 
These approaches will minimize insect pest infestation, prevent diseases, improve 
soil fertility, increase water use efficiency, and, above all, help in developing defense 
mechanisms against climate change. The yields of major crops have been declining, 
so efforts have been put into converting marginal lands into agricultural lands to 
compensate for this. However, this practice ultimately degrades the land and threat-
ens the existence of biodiversity in both domestic and wild species. This could 
affect future attempts to address climate risk. Recently, efforts have been made to 
improve the operating system at farms by modifying the percentage of pesticide and 
fertilizer usage, their method of application (foliar/ground), the introduction of the 
sprinkler irrigation technique, and the use of certified seeds to improve both plant 
growth and soil fertility. By adhering to these practices, farmers are hoping to be 
able to deal with climatic variations in a significantly more effective manner. In 
addition, decision-makers establishing appropriate policies and interventions for 
climate-smart agricultural production approaches and methods must carefully 
examine the macroeconomic, social, and ecological interventions. At the same time, 
policies that encourage unsustainable production and aggravate environmental 
issues must also be abolished. Moreover, more funding for research, notably action 
research, is required to deal with forthcoming climate-related threats.

Keywords  Abiotic stress · Climate change · Adaptation strategies · Agriculture

1 � Introduction

Each passing year exacerbates the irreversible climatic shifts triggered by life-
threatening global warming. This transformation does not happen abruptly; instead, 
it has been an ongoing process of steadily accumulating data on meteorological 
shifts, encompassing rainfall patterns and extreme temperatures across the planet. 
(Malhi et al. 2021). The last decades have witnessed notable irregularities in cli-
matic conditions, which are supposed to be either directly or indirectly linked to the 
activities performed by human beings on Earth. Data have shown that after 1750, 
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the percentage of greenhouse gas emission has increased to the higher levels of 
150% in the case of methane (CH4), to 20% for nitrous oxide (N2O), and to 40% for 
carbon dioxide (CO2) (Malhi et al. 2021). At the same time, since 1975, a prominent 
difference has been observed per decade in the average temperature on the sphere, 
ranging from 0.15 to 0.20 °C, which is expected to increase twofold in the coming 
years (Arora et  al. 2005). In the agriculture sector, climate changes bring about 
severe calamities such as water scarcity, temperature rise beyond the threshold 
level, and frost and salt stress, which cause irreversible damage to plant growth, 
reduce the overall crop yield, and threaten food security (Malhi et al. 2020). These 
environmental changes also promote pest attacks and the leaching of soil nutrients, 
which are detrimental to crop growth (Baul and McDonald 2015). Therefore, scien-
tists should develop climate-smart strategies to avoid the disasters resulting from 
climatic alterations.

2 � Intensification and Diversification of Sustainable 
Crop Production

According to a report by the Food and Agriculture Organization (FAO), in 2021, 
globally, almost 828 million people were living under the poverty line and experi-
encing hunger (FAO 2021). To date, on planet Earth, the total population is around 
7.98 billion, which is increasing every second and is predicted to exceed 9.8 billion 
in 2050, which will double the food consumption and demand by up to 50% (FAO 
2021). To deal with this food security problem, efforts should be made to reduce the 
damages caused by unpredictable weather, which greatly influences traditional 
farming practices and lowers crop production (IPCC 2014, 2019). Another practice 
that negatively impacts the conservation of biodiversity and depletion of genetic 
resources is the conversion of agricultural lands into commercial areas, reducing the 
percentage of arable lands (Vignola et al. 2015; Zhong et al. 2018: Tan and Li 2019). 
Lately, diet plan trends have shifted towards diversification instead of simplifica-
tion, placing a burden on stakeholders to meet the escalating demand for various 
food items. This change has led to an immediate surge in costs, posing a significant 
challenge. Moreover, it also jeopardizes the availability of essential resources such 
as fiber, bio-fuel, and animal-source protein (Garnett et  al. 2013; Schiefer et  al. 
2016: Bryan et al. 2014; Henriksson et al. 2018; Scherer et al. 2018). Hence, to 
tackle this challenge, it is imperative to prioritize cultivating additional lands while 
avoiding excessive urbanization. Farmers should consider adopting intercropping 
and diverse cropping methods, while also making systematic use of available 
resources (Foley et al. 2011; Hochman et al. 2013; Godfray and Garnett 2014; Loos 
et al. 2014).

Although short-term economic efficiencies in the agriculture sector can be achieved 
by expanding agricultural lands, the overall ecology of our environment will be 
affected in the long run. Moreover, expanding agricultural lands is impossible due to 
the rapidly increasing human population (Pandey et  al. 2001; Pretty et  al. 2011; 
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Bommarco et al. 2013; Newbold et al. 2015). The current food crisis can only be miti-
gated through effective intensification rather than land expansion (Foresight 2011; 
Garnett et al. 2013; Lu et al. 2020). Hence, it is necessary to grow more sustainable 
food crops on the current agricultural lands without compromising on the needs of our 
future generations and ecological conditions (Lu et  al. 2017; Zhong et  al. 2017; 
Cortner et al. 2019).

Previously, chemical inputs were considered the mainstay of agricultural intensi-
fication; however, they are now recognized as harmful and unsustainable to our 
environment (Omer et al. 2010; Pretty et al. 2011; Bommarco et al. 2013; Zhong 
et al. 2018). The concept of sustainable intensification (SI) is the only viable option 
to address the global food security issues while conserving our global environment 
(Sietz et al. 2017; Smith et al. 2017; Weltin et al. 2018; Karlsson and Roos 2019). 
Intensification without sustainability often leads to severe ecological problems. 
Sustainable intensification is not just an ordinary food production system but is also 
a radical reconsideration of food systems not only to enhance human and animal 
welfare and support rural economies but also to reduce harmful environmental 
impacts (Agarwal et al. 2016; Adhikari et al. 2018).

3 � Adaption Strategies in Agriculture Against 
Climate Change

It is reported that any sudden change in climatic conditions, such as excessive rain-
fall during the monsoon season, disturbs the whole ecosystem, damages the infra-
structure of the affected area, and threatens human lives. Under such conditions, the 
agriculture sector suffers greatly by putting food security at risk (IPCC 2014). While 
modern technology has taken the forefront and resolved numerous agricultural 
issues, it remains unable to withstand the impact of climatic disasters (Jha and 
Vi’svavidyalaya 2015; Ahmad et al. 2021a, b, 2022). Globally, especially in devel-
oping countries, statistics have shown a paramount reduction in crop yields due to 
droughts, flooding, temperature variations, and soil erosion (Abid et al. 2019). One 
of the key strategies suggested is agriculture adaptation, but it cannot serve the pur-
pose alone. A report published by the Intergovernmental Panel on Climate Change 
(IPCC) defines adaptation as a practice of making amendments to the natural eco-
system and developing a sophisticated mechanism in response to any inevitable 
climatic aberrations to reduce the fatality rate along with other destructions (IPCC 
2014). Moreover, adaptation strategies can be implemented at multiple levels, 
including local, regional, provincial, and national levels. However, at the local level, 
as victims of the impacts, it can be challenging to effectively implement adaptation 
measures (UNFCCC 2010).

Similarly, underdeveloped nations have the most number of human beings suf-
fering from the calamities of global warming because they lack adaptive skills 
(IFAD 2011). In the agriculture sector, adaptation is a critical factor because of its 
dependency on the ups and downs of climatic conditions. Therefore, rural residents 
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should prioritize various agricultural interventions for climate change adaptation. 
These may include embracing integrated crop–livestock management, promoting 
sustainable forestry, and implementing rehabilitation practices for degraded pas-
tures (OECD 2011). Therefore, it is suggested that the practical implementation of 
adaptation practices in agriculture will require a dynamic and detailed policy for-
mulation at the national level, which covers solutions to all the related climate 
change issues (Farooqi et al. 2005; Ahmad et al. 2021c). Policymakers should focus 
on introducing stress-tolerant germplasm, developing stress-resistant elite cultivars, 
and training and educating the farming communities, and, so, before planning culti-
vation schemes, they should also consider adaptation measures (Schlenker and 
Lobell 2010). Another important factor is each farmer’s socioeconomic status, 
which makes them choose adaption practices accordingly (Deressa 2007; Deressa 
et al. 2009; Bryan et al. 2013). Similarly, our farming communities do not provide 
updated information, extension services, financial benefits, and other required 
resources, which hinders practicing adaptation strategies (Fahad and Wang 2020; 
Hussain et al. 2020). Otherwise, by practicing these approaches, we could fight the 
challenge of climate change. Therefore, it is suggested that both public and private 
sector organizations come forward and take the responsibility for educating the 
local farming communities (Bryan et al. 2013; Nisar et al. 2022).

3.1 � Changing Cropping Practices

A few preventative steps could be taken to address the challenges posed by the irreg-
ularities in climate. Examples include the use of elite genotypes, changing harvest 
dates, sowing either late or early, and cultivating different crops rather than just the 
usual ones. These approaches will minimize insect pest infestation, prevent diseases, 
improve soil fertility, increase water use efficiency, and, above all, help in developing 
defense mechanisms against climate change (Abid et al. 2016a, b; Ali and Erenstein 
2017). Most farming communities have realized the importance of genetically engi-
neered crop varieties conferring resistance against disease and pest attacks with 
improved crop yields. They have started cultivating them instead of using orthodox 
cultivars (Imran et al. 2018; Ullah et al. 2018; Khan et al. 2021). Previously, farmers 
were cultivating conventionally released cotton varieties, but, because of severe 
insect pest attacks, their focus has shifted toward using genetically modified Bacillus 
thuringiensis (Bt) cotton. Similarly, wheat growers are now using improved varieties, 
which show tolerance against heat stress (Abid et al. 2016a, b).

Furthermore, slight amendments in sowing and harvesting dates could play a sig-
nificant role in coping with changes in climatic conditions. In addition, this is a 
straightforward and cost-effective strategy (Habib ur Rahman et al. 2018; Abid et al. 
2019; Amir et al. 2020; Javed et al. 2020). Due to the current weather oscillations, 
rice-growing farmers are compelled to adjust the sowing dates of rice according to 
the rainfall patterns and temperature extremes (Khan et al. 2020). Similarly, studies 
report that the earlier sowing of sunflowers up to 21 days could reduce the chances 
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of crop production losses caused by climatic variations (Awais et al. 2018). Crop 
diversification is another important phenomenon to lessen the crop production  losses 
caused by the severity of temperature (Bakhsh and Kamran 2019; Bhatti et al. 2019; 
Ahmad and Afzal 2020; Shah et al. 2020). At the same time, the intercropping tech-
nique is gaining popularity among the farming communities due to its outstanding 
output in terms of soil fertility enhancement and efficient water use (Shah et al. 2019).

3.2 � Changing Farm Management Techniques

Recently, attempts have been made to improve the operating system at farms by 
modifying the percentage of pesticide and fertilizer usage, their method of applica-
tion (foliar/ground), the introduction of the sprinkler irrigation technique, and the 
use of certified seeds to improve both plant growth and soil fertility. With the help 
of these practices, farmers are hoping to deal with climatic variations in a much bet-
ter way (Amin et al. 2018; Khalid et al. 2020; Ali and Rose 2021; Shahid et al. 
2021). Studies have shown that following the careful use of pesticides and irrigation 
practices, needful results have been obtained (Salman et al. 2018; Nasir et al. 2020). 
In the water scarcity scenario, farmers are reported to use smart irrigation practices 
at the crop sowing time to save water and reduce the effects of temperature fluctua-
tions (Ashraf et al. 2021; Shahid et al. 2021). Similarly, in some cases where rainfall 
is less than normal, farmers are putting their efforts into proficiently utilizing the 
available water resources. Moreover, the introduction of advanced irrigation sys-
tems such as the “sprinkler irrigation system” has paved the way for farmers to 
practice adaptation strategies in agriculture (Abid et al. 2016a, b).

3.3 � Advanced Land Use Management Measures

The negative effects of climatic variability on crops can be better addressed with 
effective advanced land use management approaches. A majority of the farmers 
have adopted the practice of tree plantation to cope with the ill effects of winds, 
floods, and elevated temperatures (Qazlbash et al. 2021).

However, this practice is not highly common in commercial agricultural farms 
where farmers anticipate that tree plantation will cause a decline in crop yields 
(Shah et al. 2019). Moreover, for preserving soil nutrition, most farmers also use 
organic manure as an adaption strategy to mitigate soil fertility issues. Crops are 
preserved from harsh weather conditions using different water conservation tech-
niques (Bacha et al. 2018; Sardar et al. 2021). Farmers store water using rainwater 
harvesting and later use this water to irrigate crops during severe drought (Ali et al. 
2020). Similarly, rain water in hilly areas is captured by constructing large dams 
around the crop fields. The collected rain water later infiltrates the soil and keeps the 
soil moist to help grow the succeeding crops (Qazlbash et al. 2021).
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4 � Removing Barriers and Creating a Suitable Environment

Initiatives to enhance sustainable crop productivity usually involves long-term 
incentives for developing climate change adaption strategies and alleviating various 
impediments that producers may encounter when embracing climate-smart crop 
production methods and technologies (Tankha 2020). Automated mitigation strate-
gies might become maladaptive if they do not consider forthcoming environmental 
conditions and are not guided by previous experiences. For instance, agricultural 
production using farmland is crucial to human well-being and subsistence. There 
are merely a few perennial plants that have been tamed, developed, and maintained 
to supply sufficient food to the entire planet’s population. Among the food crops, 
grains, rice, millets, and soybeans collectively account for two-thirds of all the calo-
ries consumed by people. To compensate for the yield declines of major crops, 
efforts have been taken to convert marginal lands into agricultural lands, which 
ultimately degrades lands and also threatens the survival of biodiversity in both 
domestic and wild species. This could affect future attempts to address climate risk 
(Richard et al. 2022).

It is more convenient to make the changeover to climate-smart farming systems 
when it is market-driven and intricately intertwined with marketplaces. For crops 
that play an important role in different crop rotation strategies, local, regional, 
national, and worldwide markets must be established as components of mitigation 
and adaptation initiatives. Advancements in market mechanisms, modifications to 
the infrastructural facilities (roadways, water systems, bulking, computation, ware-
houses, information and communication systems required to ease access to mar-
kets), and investment opportunities in rural areas are all necessary for achieving 
success in this sector (Raile et al. 2021). Besides technological improvements in 
infrastructure, the discharge, proliferation, dissemination, allocation, quality assur-
ance, and commercialization of crop seeds are all regulated by laws, regulations, 
and end users’ demands that are essential for the cultivation of climate-smart crops. 
These laws and policies, which control the growth of crop varieties on national and, 
increasingly, regional scales, create the crucially necessary conditions for timely 
access by farmers to the best crop types’ seeds and planting supplies, at prices they 
can afford (Barbon et al. 2022). The potential to fulfill a nation’s nutritional require-
ments in the current scenario of changing weather patterns is offered by climate-
smart agriculture (CSA). Environmental issues need to be adequately resolved by 
the triple-win impact of CSA, which comprises (i) mitigation, (ii) adaptation, and 
(iii) enhanced productivity. The Sustainable Development Goals are better achieved 
with these initiatives and aim at enhancing crop production by adapting to climate 
change harshness (Raile et al. 2021; Waaswa et al. 2021).

Decision-makers establishing appropriate policies and interventions for climate-
smart agricultural production approaches and methods must carefully examine the 
macroeconomic, social, and ecological interventions. However, the implementation 
of such techniques and initiatives is reliant on investment. At the same time, policies 
that encourage unsustainable production and aggravate environmental issues must 
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also be abolished (Barbon et al. 2022). Policies on providing market-based incen-
tives, i.e., tax relief, must be reformed to encourage traders and processors to sup-
port climate-smart and sustainable agricultural production. In addition, the 
stakeholders have proposed the creation of a national CSA fund to be made avail-
able for the farming communities, which plans to start taking notable local CSA 
actions. It enables producers to prosper from policies with high initial costs but are 
economically and environmentally desirable in the long run. Substantial work must 
encourage the mainstream execution of land acquisition principles while emphasiz-
ing regions that require improvement (Ogunyiola et al. 2022).

5 � Integrated Research Priorities

More funding for research, notably action research, is required to deal with future 
climate-related threats. Climate-smart agriculture (CSA) refers to specific cutting-
edge agricultural practices and cultivation methods. Such agroforestry systems and 
water-saving cropping patterns address three crucial twenty-first century issues: 
ensuring nutrient stability, combating climate change, and ensuring food security 
(Ogunyiola et al. 2022).

Food products, primarily millets, wheat, and paddy, along with legumes like pea-
nuts and soya, have been the main focus of the most recent research and agricultural 
modeling studies. Furthermore, extending cropland and incorporating certain less 
economical biennial and perennial species into intercrops will be essential for safe-
guarding agroecosystems’ sustainability under various climatic conditions (Richard 
et al. 2022). The scope of crop research should be expanded so that new edible crop 
species can be added to crop rotation strategies to enhance the climate adaption 
options for the farming communities. For example, in India, drip irrigation (DI) is 
quite renowned among farmers, administrators, and policymakers because of its 
potential to address water and energy shortfalls. However, the primary irrigation 
mode in India is flood irrigation, and DI has not achieved as much success as 
expected (Tankha 2020).

Similarly, the theoretical hindrance imposed by traditional breeding programs 
has been successfully overcome through genetically modified (GM) plants, which 
exhibits better agronomic, yield, and disease-resistant characteristics. Genetic mod-
ification, which provides numerous benefits compared to traditional breeding tech-
niques, primarily entails the implantation or removal of a genome or a gene sequence 
in a specific plant by employing different biotechnological approaches (Rai 2022). 
Preserving a diverse array of wild plant genes, traditional landraces, rare animal 
breeds, and superior offspring of cultivated plants is of utmost importance. 
Establishing a genetic bank allows for their utilization in creating innovative traits 
that result in new and appealing plant varieties. Additionally, this initiative fosters 
commercially viable perennial grains that exhibit resilience to challenges such as 
drought, storm surges, high salt content, pest infestations, and diseases (Richard 
et al. 2022).
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One of the research goals of climate-smart agricultural systems is to investigate 
the methods for adjusting crop practices and technologies to site-specific require-
ments and conditions. Simple assessments of a crop’s applicability to and appropri-
ateness at a certain location for a set of circumstances frequently fail to recognize 
the proper application of numerous climate-smart innovative strategies there. Before 
recommending any intervention, in-depth research must be conducted to determine 
the barriers preventing producers from adopting a multi-cropping, climate-smart 
system. A cropping system that is climate-resilient must be tested, validated, and 
developed, including seeding and harvesting dates, crop sequencing, and seeding 
rates. In contrast, growers must participate in different activities to determine the 
adoption-related barriers and generate alternative options (Waaswa et al. 2021).

Conversely, research institutes relating to agriculture, soil, and water are fre-
quently organized into independent units, each with different objectives. The inte-
grated and effective management of soil, crops, nutrients, and water is greatly 
hampered due to these fragmented research activities. These will also impede the 
adoption of climate-smart agricultural techniques. Moreover, integrated research 
activities also pave the way for producing certain beneficial public entities (Challinor 
et al. 2022). Research outcomes must be communicated in an eco-friendly manner. 
A clear “take-home message” and necessary instrumentation must be delivered to 
policymakers from scientific researchers and development practitioners to prioritize 
potential strategies and policies. It is advised to use a novel agricultural strategy to 
encourage farmers to adopt research and make sure that research priorities are deter-
mined by experiences at the ground level (Martinez-Baron et al. 2018).

6 � Capacity Development for Climate-Smart 
Crop Production

In relation to climate change associated with anthropogenic climate instability, strat-
egies like CSA aim to assist and reconfigure farming programs to ensure food and 
nutrition security (Martinez-Baron et al. 2018). Reinforcing the scientific and tech-
nological capabilities across many stages, along with the organizational level, in dif-
ferent manners, which creates a supportive environment for modification, is essential 
for devising and implementing locally customized and effective global climate miti-
gation and adaption methodologies. The corporate market, notably microenterprises, 
medium-sized businesses, producers, input suppliers, institutional scholars, and poli-
cymakers, belong to the major stakeholder groups. To increase the capabilities of 
extension agents, farmers, agricultural entrepreneurs, and policymakers, regular 
updates and upgrades are needed. Upgrading institutional and legal capabilities, 
especially institutional frameworks, is required under this act (Ogunyiola et al. 2022). 
The long-term viability of modified agricultural production techniques and the dis-
semination of information about climate change are crucial, particularly to farmers. 
Efficiently allocate available resources and mobilize additional ones while formulat-
ing strategies to tackle the constraints affecting agricultural systems. Make strategic 
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investments in both climate change mitigation  and adaptation measures (Salisu 
2022). Diverse and demand-driven extension services are crucial in this regard for 
empowering the agricultural community to make the necessary changes for the suc-
cessful production of climate-smart crops. They also assist in reducing the expected 
anxiety related to changing to a new system and new ways of conducting business. 
For instance, agricultural education programs, which offer regional forums for coop-
eration between producers, experts, and investigators, can help build regionally spe-
cific plans for coping with climate change. However, these extension services have 
not proven to be effective in some world areas. Instructions that were previously 
delivered through traditional means have now been replaced by direct guidance from 
various organizations, including governmental agencies, farming associations, and 
funding agencies. This information is disseminated through smartphones, the inter-
net, radio, and other media channels. As a result, private businesses providing agri-
cultural inputs have assumed a more prominent role in society. Numerous growers, 
especially women farmers, thus fail to obtain development assistance from these 
extension services. Considering that women farmers play a substantial role in gener-
ating food in many regions, it is crucial to examine their capacity development and 
other requirements (Waaswa et al. 2021).

The implementation of climate-smart food processing methods can also be 
enhanced by the support of the private sector, which plays a significant role in the 
manufacturing, delivery, and commercialization of the agricultural machinery. The 
scarcity of locally produced farm equipment and the unavailability of localized 
repair and maintenance services are significant barriers to sustainable industrializa-
tion and cause difficulties in farming production in most emerging economies 
(Challinor et al. 2022).

7 � Use of Advanced Technology for Enhancing Crop 
Production in the Changing Climatic Scenario

The current global variations greatly influence agriculture and food security in the 
environment. The changing weather conditions severely threaten food safety and 
security. However, reasonable efforts have still not been deployed to cope with this 
global issue. Thus, various field-oriented approaches are recommended for crops to 
avoid environmental harshness and survive in the current era of climate change 
(Raza et al. 2019).

7.1 � Biotechnology in Agriculture

Plants undergo various drastic biotic and abiotic stresses during their complete life 
cycle, which result in severe problems of food insecurity, disturb the natural ecosys-
tem, and impact plants’ geographical distribution. It is reported that 40% of 
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water-deficit conditions can reduce the yield of maize and wheat to 40% and 21%, 
respectively (Daryanto et al. 2016). Overall, abiotic stresses strongly and negatively 
affect plants’ physiological and biochemical mechanisms. Heat stress affects the 
rate of seed germination, photosynthetic activity, and leads to reduced crop produc-
tion (Kumar 2013). Similarly, drought and salt stress affect the stomata’s closing 
and interrupt plants’ ion concentration and nutrition level (Hu et al. 2007: Younis 
et al. 2017). However, plants must develop genetic manipulation to increase their 
tolerance level against stresses (Francini and Sebastiani 2019).

Around the world, agricultural biotechnology has more comprehensive applica-
tions in improving plant architecture and quality traits, thus conferring disease and 
pathogen resistance for enhanced crop production with improved food security. 
Recently, omics-based approaches have been used to positively exploit genomic 
information to enhance and improve various crops (Stinchcombe and Hoekstra 
2008). In population genetics, numerous traits have been studied using molecular 
markers across multiple environments to study variations and gene functions (Bevan 
and Waugh 2007; Keurentjes et al. 2008; Hina et al. 2020; Mahmoud et al. 2021). 
Nowadays, it has become easy to identify phenotypic variations under multiple 
environmental conditions with the help of transcriptomic analysis and genetic map-
ping (Des Marais et al. 2013). Genome mapping is considered one of the best tools 
to investigate the molecular mechanism conferring abiotic resistance in crops and 
the evolution of climate-resilient crops with higher yield and biomass production 
and to enhance quality traits (Roy et al. 2011; Jiang 2013; Kiriga et al. 2016; Leon 
et al. 2016).

The commencement of high-throughput phenotyping and sequencing approaches 
is a step forward to cope with the detrimental effects of crop yield losses by under-
standing and manipulating the mechanism of multiple stress. Marker-assisted selec-
tion breeding (MASB) is a valuable tool for the dissection of polygenic and complex 
traits such as crop yield and biotic and abiotic resistance using DNA markers (Da 
Silva Dias 2015; Devi et al. 2017; Wani et al. 2018). A wide range of molecular 
markers are available, which can help identify and differentiate stress-tolerant lines 
from susceptible ones (Jain 2001; Dogan et al. 2012; Bhutta and Amjad 2015; Saleh 
2016). So far, molecular-assisted breeding has been used for developing drought- 
and salinity-tolerant crop varieties such as Brassica (Zhang et  al. 2014), maize 
(Tollefson 2011), Arabidopsis (Nakashima et al. 2009), and rice (Fukao and Xiong 
2013). In wheat, randomly amplified polymorphic DNA (RAPD) markers were 
used to identify resistant genotypes against drought stress (Rashed et al. 2010). In 
rice, two simple sequence repeat (SSR) markers, viz., RM3735 and RM3586, were 
used to express heat tolerance (Foolad 2005; Zhang et al. 2009; Barakat et al. 2011).

7.1.1 � Stress Tolerance via Quantitative Trait Locus Mapping

With the help of quantitative trait locus (QTL) mapping and genome-wide associa-
tion studies (GWASs), screening and selecting elite cultivars with better adaptabil-
ity is possible even under abiotic stresses (Collins et al. 2008; Kole et al. 2015). 

2  Climate Change and Global Crop Production



38

High-density bin markers and high-throughput sequencing techniques are consid-
ered adequate for improving QTL mapping accuracy (Araus and Cairns 2014). 
Understanding the genetic mechanism underlying complex traits is crucial for 
developing a strong association between genotypic and phenotypic data 
(Pikkuhookana and Sillanpää 2014; Zhang et al. 2019; Hina et al. 2020). A wheat 
variety (Ripper) was developed with the help of QTL mapping, conferring drought 
resistance with increased grain yield and improved quality (Haley et al. 2007). Elite 
maize germplasm had a higher yield and drought resistance (Badu-Apraku and 
Yallou 2009). Similarly, marker-assisted studies were conducted to incorporate 
drought tolerance in both durum (Triticum turgidum L.) and bread wheat (Triticum 
aestivum L.) (Merchuk-Ovnat et al. 2016).

In barley, two double haploid populations, who respond differently under 
stress conditions, were selected for mapping malt characters. The results proved 
that marker-assisted selection could be helpful in the improvement of the studied 
character (Kochevenko et al. 2018). Similarly, a study was conducted to eluci-
date the gene function linked to grain productivity by studying the physiological 
response and epistatic mechanism of the identified QTLs, and three major QTLs 
(qDTY3.1, qDTY6.1, and qDTY6.2) were reported to be linked to increased num-
bers of grains (Dixit et  al., 2017). In wheat, recombinant inbred lines (RILs) 
were mapped under different abiotic stresses such as drought, flooding, heat, and 
combined drought and heat conditions. For grain yield, the total phenotypic vari-
ation was 19.6%, which was a success in screening elite wheat under stress con-
ditions (Tahmasebi et al. 2016). Three key points in the bread wheat genome (2B, 
7D, and 7B) were resistant under severe temperature conditions (Scheben 
et al. 2016).

7.1.2 � Stress Tolerance via Genome-Wide Association Studies

Genome-wide association studies (GWASs) have been extensively used in plants 
to investigate any target trait and its underlying allelic variation (Manolio 2010). 
The success of a GWAS is based on a few important factors such as sample size, 
nature of the question, software tools, design of the GWAS (family- and popula-
tion-based), statistics modules, and interpretation of the results (Bush and Moore 
2012; Uffelmann et al. 2021). Recently, GWASs have been used for the complete 
understanding of the genetic mechanism responsible for incorporating drought, 
salt, and flooding stress tolerance in many crops (Kan et al. 2015; Lafarge et al. 
2017; Thoen et al. 2017; Wan et al. 2017; Mousavi-Derazmahalleh et al. 2018; 
Chen et al. 2020; Liu et al. 2020). In soybean, GWASs have been performed to 
identify the single nucleotide polymorphisms (SNPs) associated with seed flood-
ing tolerance-related traits (germination rate, electrical conductivity, normal 
seedling rate, shoot and root lengths) across multiple environments (Yu et  al. 
2019; Zhang et al. 2019). In Arabidopsis thaliana, reverse genetics techniques 
were applied in GWASs to study both proline accumulation under drought condi-
tions at identified specific genomic regions and the underlying the molecular 
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mechanism of the proline accumulation with the help of SNP linkage (Verslues 
et al. 2014). Similarly, Aegilops tauschii possesses multiple genes that regulate 
the species’ abiotic stress resistance (Ashraf 2009). Two different models of 
GWASs (mixed linear model (MLM) and general linear model (GLM)) were 
used in this experiment. The germplasm consisting of 373 varieties of different 
origins was tested using 7185 SNPs to find an association with the phenotype for 
13 drought stress-regulating traits (Qin et al. 2016). In another study on Sorghum 
bicolor, 30 and 12 SNPs were reported to be linked to cold stress-related features 
such as carbohydrate metabolism, expression of anthocyanin, and heat stress-
related traits at the seedling stage (Chopra et  al. 2017). Similarly, Chen et  al. 
(2017) identified traits associated with heat tolerance at the vegetative growth 
stage. Their study results showed that 5 SNPs were linked to leaf blotching and 
9 to leaf firing, whereas 14 genes were reported to express a response against 
abiotic stresses (Chen et al. 2017).

7.1.3 � Stress Tolerance via Genetic Engineering

DNA recombinant technology is the predominant strategy to manipulate genetic 
information for crop improvement. The widespread and significant use of bio-
technology has been reported to cope with both biotic and abiotic stresses. 
Studies have shown that numerous transcription factors (TFs) could play a role 
in developing defense mechanisms against stress resistance in multiple bioengi-
neered crops. These genetically engineered crops depicted a high level of stress 
resistance when compared with that of controls (Reynolds et  al. 2015; Shah 
et al. 2016; Nejat and Mantri 2017). Plant-specific transcription factors such as 
the APETALA2/ethylene-responsive element binding protein (AP2/ERFBP) 
family possess metabolic pathways that generate responses to biotic and abiotic 
stresses (Riechmann and Meyerowitz 1998: Licausi et al. 2010). The TF family, 
viz., AP2/ERFBP, is further subdivided into four categories (AP2, dehydration 
responsive element binding (DREB), ethylene responsive factor (ERF), and 
related to ABI3/VP1 (RAV)) according to their numbers and affinities. Among 
them, both ERF and DREB have been reported to play a vital role in regulating 
drought and cold stress responses in various crops such as maize, barley, soy-
bean, rice, tomato, and Arabidopsis (Stockinger et al. 1997; Agarwal et al. 2006; 
Sharoni et  al. 2010; Mizoi et  al. 2012). In Arabidopsis and rice, DREB1 has 
been reported to regulate cold stress, whereas DREB2 plays a key role in devel-
oping a coping mechanism for drought, extreme temperature, and salt stress 
(Liu et al. 1998; Sakuma et al. 2002). A study reported the overexpression of 
DREB1 in genetically engineered Arabidopsis plants in improving the tolerance 
toward chilling, water deficit, and salinity stresses (Gilmour et al. 1998; Jaglo-
Ottosen et al. 1998). In addition, DREB1 has also been reported to induce resis-
tance against cold and other stresses in rice, wheat, rye, maize, tobacco, tomato, 
and rapeseed (Jaglo et al. 2001; Dubouzet et al. 2003; Kasuga et al. 2004; Qin 
et  al. 2004). Another subfamily, ERF, has been reported to regulate the 
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resistance against extreme temperature in plants (Hao et  al. 1998; Xu et  al. 
2008; Dietz et al. 2010). A few ERF TFs are also involved in regulating biosyn-
thetic pathways, which enables them to confer resistance against various biotic 
and abiotic stresses (Liang et al. 2008). Transgenic rice was developed by over-
expressing the OsDREB2A gene with better salinity and drought resistance 
(Mallikarjuna et  al. 2011). In another study, the TaPIE1 gene was introduced 
into developing transgenic wheat, having resistance against freezing stress and 
pathogen attacks (Zhu et al. 2014). One of the most important transcription fac-
tors, the MYB (myeloblastosis) oncogene family, is widely present in plants and 
has been reported to regulate various physiological, hormonal, and biochemical 
biosynthetic pathways and to play a significant role in developing stress toler-
ance mechanisms in plants (Ambawat et al. 2013; Baldoni et al. 2015; Li et al. 
2015). Among the MYB family, a few members, viz., AtMYB44, AtMYB60, and 
AtMYB61, have been reported to intensify drought resistance in bioengineered 
Arabidopsis through stomatal movement regulation (Cominelli et al. 2005; Jung 
et al. 2008). In 2009, Seo and his co-workers (2009, 2011) conducted a study in 
Arabidopsis to express the AtMYB96 gene either by regulating the metabolic 
pathway of wax or with the help of the ABA signal transduction pathway. In 
another study, transgenic rice was developed with improved chilling, drought, 
and salinity resistance by overexpressing the expression of the OsMYB2 gene 
(Yang et al. 2012).

Similarly, scientists overexpressed the TaPIMP1 gene in wheat to build extraor-
dinary drought and pathogen (Bipolaris sorokiniana) tolerance with the help of 
microarray analysis (Zhang et al. 2012). WRKY is one of the large transcription 
factor families in plants and is considered necessary for stress resistance 
(Muthamilarasan et  al. 2015; Phukan et  al. 2016). In rice, the WRKY gene 
OsWRKY11 was overexpressed to enhance heat and drought tolerance (Wu et al. 
2009). Similarly, Niu et al. (2012) conducted studies to overexpress the function 
of the TaWRKY19 gene to generate drought, salinity, and frost stress resistance. In 
Arabidopsis, two genes, viz., TaWRKY33 and TaWRKY1, were incorporated to 
induce tolerance against heat and water scarcity. These two genes were separated 
from wheat (He et al. 2016). Another important transcription factor family is the 
NAC (NAM, ATAF1/2, and CUC2), which is considered significantly important 
in various biological processes, viz., cell division, flower development, and regu-
lation of plant responses toward different stresses (Nuruzzaman et  al. 2013; 
Banerjee and Roychoudhury 2015). So far, various NAC transcription factors 
have been reported in many plants, for instance, 151 in rice, 117 in Arabidopsis, 
152 in maize, and 152 in soybean (Nuruzzaman et al. 2010; Le et al. 2011; Shiriga 
et al. 2014). In addition, few NAC TFs have shown a direct correlation with stress 
tolerance; for example, 31 and 40 NAC genes were identified in Arabidopsis and 
rice to combat salinity and drought tolerance, respectively (Jiang and Deyholos 
2006: Fang et al. 2008). Similarly, the SbSNAC1 gene isolated from sorghum was 
overexpressed in bioengineered Arabidopsis to develop resistance against drought 
(Lu et al. 2013).
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7.1.4 � Stress Tolerance via Genome Editing Strategies

Although conventional breeding strategies have been used to develop stress tolerance 
in many crop varieties, due to the detrimental effects of abiotic and biotic stresses, 
many crops suffer from depletion of genetic resources (Flint-Garcia 2013; Abdelrahman 
et al. 2017; Abdelrahman et al. 2018a, b). Therefore, more efficient and precise tech-
niques should be practiced for manipulating crop genomes to fight the challenges of 
drought and salinity along with improved yield (Driedonks et al. 2016; Taranto et al. 
2018). Recently, revolutionary gene editing techniques have simplified the process of 
crop improvement by manipulating the genome sequence through the use of target-
specific nucleases (Lu and Zhu 2017; Zong et al. 2017). This advancement offers many 
novel genetic resources and opportunities for discovering and improving desirable 
traits and has proved to be remarkable in developing climate-resilient crops (Liu et al. 
2013; Dalla Costa et al. 2017; Kamburova et al. 2007; Klap et al. 2017).

In past decades, genome editing has become challenging and has shaken crop 
improvement strategies. Among them, zinc-finger nucleases (ZFNs) were the first 
discovered genome editing tools used to generate double-strand breaks (DSBs) at 
targeted genome sites in many organisms (Lloyd et al. 2005; Beumer et al. 2008; 
Doyon et al. 2008). In Arabidopsis, an endogenous gene, ABA-INSENSITIVE4, was 
inactivated using ZFN, which resulted in the generation of homozygous mutants 
exhibiting ABA insensitivity. Later, transcription activator-like effector nucleases 
(TALENs) were added to genome editing techniques that depend on bacterial 
TALENs (Zhu et al. 2017). However, both complexity and high costs are the main 
factors restricting the application of ZFNs and TALENs from developing climate-
smart crops (Gupta et al. 2019; Razzaq et al. 2022).

After the discovery of clustered regularly interspersed short palindromic repeat 
(CRISPR)/CRISPR-associated protein 9 (Cas9), these limitations were addressed. 
They could be used to effectively and precisely develop biotic and abiotic stress-
resistant crops. So far, CRISPR has been used to cope with biotic stresses such as dis-
eases and fungal attacks compared to solving the problem of abiotic stresses in multiple 
crops such as cotton, rice, maize, and wheat (Miao et al. 2013; Char et al. 2017; Gao 
et al. 2017; Wang et al. 2018). However, in tomato, the “sensitivity gene,” viz., aga-
mous-like 6 (SIAGL6), was targeted using the CRISPR/Cas9 system to achieve heat 
tolerance along with better fruit set under stress conditions (Klap et al. 2017). CRISPR/
Cas9 exhibits the required potential and accuracy to rapidly release stress-tolerant crop 
varieties by focusing on and targeting numerous sensitivity genes in novel and high-
yielding sensitive cultivars (Abdelrahman et al. 2018a, b; Zafar et al. 2020).

7.2 � Crop Simulation Modeling Applications in Climate 
Change Research

The potential of crop cultivars in new agronomic areas can be explored with crop 
simulation models before conducting any time-consuming and expensive field 
experimentation. Costly and lengthy modeling and agronomic field trials with many 
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experimental treatments can be easily pre-evaluated in a short time using a laptop or 
a desktop computer (Steduto et al. 2009). These crop simulation models provide 
valuable information regarding the impact of climatic variations and management 
practices on the production of alternative crops. This will lead to adding more crops 
to the cropping systems, thus making our agroecosystem more sustainable 
(Amanullah et  al. 2007; Xiong et  al. 2014; Kadiyala et  al. 2015). These models 
provide a better and more affordable approach to exploring how cropland manage-
ment factors influence agricultural output and the ecosystem (Choruma et al. 2019) 
and also highlight the optimal management practices for achieving cost-effective 
crop yields (Yadav et al. 2012).

Crop simulation models can also be used as a support system in making wise 
decisions regarding assessing the risk and cost-effectiveness of crop and land man-
agement strategies in agriculture. Moreover, Zhao et  al. (2016) assert that if the 
simulation models are evaluated using accurately reported field data, then they can 
offer such conclusions that are sufficiently reliable for formulating sustainable 
farmland management strategies. Farm management practices, such as irrigation 
and fertilizer applications, have been refined using these crop simulation models 
(Khan and Walker 2015). Moreover, these models have also been utilized to test the 
effectiveness of alternative crop management practices under changing climatic 
scenarios (Choruma et al. 2019). The development and maintenance of global food 
security rely heavily on these crop simulation models. They are crucial for eco-
nomic forecasts, although each system involves modules designed for specific crop 
cultivation, which usually incorporate knowledge of agronomic and physiological 
parameters of that particular crop obtained from many years of laboratory and field 
research (Asseng et  al. 2014). The primary food crops include cereals, porridge, 
corn, and lentils, while also encompassing profitable cash crops like sugarcane, 
black tea, and cacao beans. These are predicted to be adversely impacted by envi-
ronmental issues ranging from mild to low (≤3 °C) thresholds of warming (Ramirez-
Villegas et al. 2015) if no integration measures are implemented (Challinor et al. 
2014; Porter et al. 2014a, b). Findings from regional and local investigations and 
worldwide meta-analyses of simulation models have demonstrated that adaptation 
strategies are crucial for limiting any negative outcomes of climate change and 
effectively capitalizing on any beneficial impacts that might occur (Challinor et al. 
2014). Most likely, adaptation measures are the only way to maintain or improve 
food supply and sustainability to meet the rising demand for food production. 
According to the latest estimations based on climate models, even moderate adapta-
tions at the farm level might lead to average yield gains of ~7% (Challinor et al. 
2014; Porter et al. 2014a, b). This indicates that there might be considerable poten-
tial to enhance crop yields if agricultural techniques are modified using these crop 
models (Ramirez-Villegas et al. 2015).

Through simulated water and nutrient constraints to plant growth, models like 
APSIM (Agricultural Production System Simulator) or DSSAT (Decision Support 
System for Agro Technology), based on ecological principles, mimic crop growth 
and development as a function of soil qualities, meteorological conditions, and 
management techniques. The APSIM model, which is based on plant, soil, and 
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management modules, typically includes a number of significant crops, trees, pas-
tures, woodlands, and grasslands as well as soil processes like N and P conversion, 
water balance, erosion, and soil pH.  It also typically includes a wide variety of 
controlled management techniques. APSIM was created in response to a need for 
solutions that could solve long-term management issues while providing exact pro-
jections of crop output in response to the environment, genotype, soil, and manage-
ment characteristics. Specific high-order processes, such as soil water balance and 
crop production, serve as modules in the APSIM model. They are related to each 
other only through a centralized control unit (Schulze and Durand 2016). APSIM 
has been globally utilized to introduce initiatives to improve agricultural methods 
under various management systems (Whitbread et al. 2010).

The DSSAT agricultural system model is similar, in that it incorporates func-
tions for genetic, phenological, physiological, and management-based growth and 
yield. Extremes are possible since the model employs a daily time step. Daily 
rainfall, maximum and lowest temperatures, and solar radiation all serve as cli-
matic variables, and these are utilized to estimate possible reference evaporation 
and CO2 transpiration feedback. These are the main input factors whose variations 
are expected to fluctuate as the climate changes. Both DSSAT and APSIM models 
have been utilized to analyze and assess the agronomic potential of various sys-
tems, comparing simulated produce of crops grown under varying tillage-based 
practices and management at specific sites in diverse edaphic and climatic 
circumstances.

7.3 � Statistical Models for Predicting and Enhancing 
Crop Yields

The effects of climate change on crop plants are being investigated using a variety 
of statistical crop models (Lobell et al. 2006; Almaraz et al. 2008; Iglesias et al. 
2010; Kristensen et al. 2011). To evaluate the dependence of crop output on these 
significant quickly changing climatic variables, these models typically integrate the 
quadratic and linear effects of temperature, precipitation, and radiation (Olesen and 
Bindi 2002).

Regression models are usually utilized to assess the effect of harsh weather 
conditions on crop production and the probability of distribution of these climatic 
variables (Song 2016). Functional production models commonly use time series 
or cross-sectional data to determine the impact of labor, fertilization, rainfall, and 
temperature on crop yields. Crop yields under changing climatic conditions and 
the marginal implications of these environmental variables can be precisely quan-
tified using these regression analysis models. Statistical models usually have 
lower data requirements and are easy to implement compared to some economic 
or agronomic process-based models (Ward et al. 2014). For example, a basic sta-
tistical model only needs data regarding weather and historical yield parameters. 
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Furthermore, statistical models provide accurate and transparent results compared 
to the rest. However, the effectiveness of a statistical model is greatly hampered if 
it does not include the data of the necessary environmental predictors (Lobell and 
Burke 2010).

Process-based models are occasionally substituted by statistical models, 
which use previous agricultural output and climate data to validate simplified 
regression analysis. There are three basic categories of statistical data analysis 
approaches presented in the literature: those based merely on time series data 
from a particular point or region (time series methods), those based on both time 
and space variations (panel strategies), and those based only on space variables 
(cross-sectional methods). The advantage of using a time series model is that it 
can also capture the behavior related to a given area. However, cross-sectional 
and panel methods consider common parameter values for all locations. 
Moreover, the chances of errors in cross-sectional methods are more because 
these models omit certain soil and fertilizer input variables that change drasti-
cally from area to area (Lobell and Burke 2009).

Transparent assessment and limited reliance on field calibration data are the 
prime characters of statistical models and the main reason for their success. For 
instance, if a model does a below-par job of demonstrating crop yield responses 
to changing climate, this will be visible in a low coefficient of determination (R2) 
between modeled and observed quantities as well as in a large confidence interval 
around model coefficients and predictions (Lobell and Burke 2010).

8 � Conclusions

Both the agriculture and the global food security sectors are under constant threat 
due to the rapidly increasing human population and changing climatic scenarios. 
Although the scientific community is not certain about the future impacts of cli-
mate change yet, it is anticipated that crop production will diminish further due to 
changing climatic conditions. The negative effects of climate change can be effec-
tively managed using different field and crop adaptation strategies. The majority 
of the farming communities are currently deploying a score of important adapta-
tion strategies to cope with climate change. These approaches usually include 
development of climate-resilient crop varieties along with planned agronomic 
crop management and pest control tactics. The integrated use of these innovative 
approaches reduces the harmful effects of climatic variations. However, to make 
effective use of these adaptation strategies, proper investments into capacity 
development of farmers and policymakers are required. Moreover, to mitigate the 
vulnerability of the agriculture sector to climate change, outreach of advisory 
extension services must be enhanced at the farm level. Currently, a significant gap 
exists between services provided by local bodies and what is needed to be done at 
the farm level. Moreover, a closer look at the farm level is needed to anticipate the 
outcome of these adaptation strategies.
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