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Abstract In 2009 Fokas began a program of study of the investigation of the large t-
asymptotics of the Riemann zeta function, ζ(σ + i t). In the current work we present
a novel difference-integral equation which is satisfied asymptotically by ζ(1/2 + i t).
This equation is obtained starting with a singular integral equation presented for the
first time in 2019 and using a finite Fourier transform representation of the Rie-
mann zeta function. The relevant analysis involves a plethora of tools and techniques
developed by Fokas and collaborators during the last decade.

1 Introduction

In 2009, one of the authors, motivated by the understanding of the importance of
complex analysis in the investigation of asymptotics, begun a program of study of
the investigation of the asymptotics of the Riemann zeta function ζ(s), s ∈ C.

It is well known that the leading asymptotics of ζ(s) as t = Ims → ∞, is
expressed in terms of two transcendental sums whose ranges of summation are from
0 to x and from 0 to y, where x and y satisfy the constraint xy = t/2π. Siegel, in his
classical paper [8] presented the asymptotics of ζ(s) to all orders in the important
particular case of x = y = √

t/2π. In a recent publication in the Memoirs of the
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American Mathematical Society [5], two of the authors presented analogous results
for ζ(s), as well as for a novel two parameter generalization of ζ(s), for any x and
y to all orders.

Fokas pioneered a new approach to the asymptotics of ζ(s) based on the derivation
of a novel integral equation satisfied by |ζ(s)|2, see Eq. (2.1). The large t analysis of
this equation led to an interesting asymptotic result, namely, it provided the analogue
of the famousLindelöf hypothesis for a certain variation of ζ(s) [3].Additional results
were derived in [6, 7].

The analysis of the novel integral equation mentioned above is based on the
following: the interval of integration of the associated integral is decomposed into
four subintervals. For the first two of the resulting integrals it is possible to obtain
explicit estimates, whereas for the remaining two integrals one needs to use an
appropriate representation for ζ(s). In all our earlier works, we replaced ζ(s) by
its leading asymptotics. This has two limitations. First, it makes it very difficult to
control the relevant errors, and second, it introduces sums, for which it is difficult to
obtain rigorous estimates.

Herewe introduce a new idea: we express ζ(s) in terms of its the Fourier transform
representation. It isworth noting that this developmentwasmotivated by the so-called
unified transform, also known as the Fokas method [2, 4]. Indeed, if a function is
defined on the full line it is well known that it can be represented in terms of the
Fourier transform, whereas if it is defined on the half line it is often represented in
terms of the Laplace transform, which is equivalent to the Fourier transform defined
on the half-line. If a function is defined on a finite interval, traditionally, it is expressed
in terms of a Fourier series. However, the unified transform suggests a paradigm shift:
such a function should be expressed in terms of the Fourier transform defined on a
finite domain. Using this idea and employing some earlier results of [3] we are led
to the following difference-integral equation satisfied by the Riemann zeta function
of σ = 1/2:
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where c is a complex constant given by

c =
∫ +∞

1

e−i x

x1−i
dx ≈ −0.0713 − 1.0417i. (1.2)

This paper is organised as follows. In Sect. 2 we review some of the basic results
of [3], which includes decomposing the integral appearing in (2.1) into 4 integrals,
I j , j = 1, 2, 3, 4. In Sect. 3 we express the leading asymptotic behaviour of I3 and
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I4 in terms of the finite Fourier transform of ζ(s). In Sect. 4 we sketch the derivation
of (1.1). In Sect. 5 we present numerical evidence of the validity of (1.1).

2 Review of Some of the Results of [3]

In this sectionwe review the singular integral equation for the Riemann zeta function,
as well as associated results which were derived in [3].

We start with the singular integral equation for all t > 0:
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where the principal value integral is defined with respect to τ = 1, and the function
G(t) is defined by the formula
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, (2.2)

with �(z) denoting the digamma function, i.e.,

�(z) =
d
dzΓ (z)

Γ (z)
, z ∈ C,

and γ denoting the Euler constant.
It is shown in [3] that for δ1 > 0, δ4 > 0, δ14 = min(δ1, δ4), Eq. (2.1) simplifies

to the equation
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where the principal value integral is defined with respect to τ = 1.
We split the above interval of integration into the following subintervals:

L1 = [−tδ1−1, t−1], L2 = [t−1, tδ2−1], L3 = [tδ2−1, 1 − tδ3−1],
L4 = [1 − tδ3−1, 1 + tδ4−1], δ2 > 0, δ3 > 0. (2.4)
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Denote by I j the integrals along the intervals L j . It is shown in [3] that

I1(t, δ1) = O
(

t−
1
2 + 4

3 δ1
)

, I2(t, δ2) = O
(

t−
1
2 +δ2 ln t

)

,

G(t) = ln t + 2γ − ln 2π = O(ln t), t → ∞. (2.5)

Thus, if δ1 ≤ 3
8 and δ2 < 1

2 , Eq. (2.3) becomes

I3 + I4 = − ln t − 2γ + ln 2π + o(1) t → ∞. (2.6)

Let Ǐ3 and Ǐ4 denote the leading order terms as t → ∞ of I3 and I4, respectively.
Then, Eq. (2.6) is

Ǐ3 + Ǐ4 = O(ln t) −
(

I3 − Ǐ3
)

−
(

I4 − Ǐ4
)

, t → ∞. (2.7)

A rigorous treatment of the RHS of (2.7), which will be presented in forthcoming
publication, yields
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)

+
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)

= o(1), t → ∞. (2.8)

Employing (2.8) into (2.6) yields

Ǐ3 + Ǐ4 = − ln t − 2γ + ln 2π + o(1) t → ∞. (2.9)

In what follows we will present arguments suggesting that (2.9) leads to the
difference-integral Eq. (1.1) for
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3 Computation of Ǐ3 and Ǐ4

Preliminaries for I3
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where F(x) is defined by

F(x) = (1 − x) ln(1 − x) + x ln x, (3.3)

we find that the leading contribution of I3 is given by
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Preliminaries for I4

Letting τ = ρ
t in the definition of I4, we find
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where the principal value integral is definedwith respect to ρ = t . Letting x = t − ρ,
we obtain
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where the principal value integral is defined with respect to x = 0. It is well-known
that the Gamma function admits the integral representation

Γ (i x) = 1
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∫
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ez

z
zixdz, (3.7)

with H1 denoting the Hankel contour with a branch cut along the negative real axis,
see Fig. 1, defined by

H1 = {re−iπ|1 < r < ∞} ∪ {eiθ| − π < θ < π
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Fig. 1 The Hankel contour
H1
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we find that the leading contribution of I4 is given by
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with the principal value integral defined with respect to x = 0.

The Finite Fourier Transform

In order to compute the large t asymptotics of the RHS of (3.4) and (3.10) we will
employ the finite Fourier transform, where it turns out that it will be more convenient
to integrate from t = 1:
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In the case of the Fourier transform on the full line the analogue of the LHS in (3.14)
equals δ(k − ν). In the case of the finite Fourier transform, Eq. (3.13) is a direct
consequence of analyticity: Φ(ν) is an entire function for which
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where R̃ is the real line slightly deformed at the point ν = k, with a small semicircle
of radius ε → 0 contained in the lower half complex plane. Thus, the first integral
vanishes, by closing at C−, whereas the second integral gives Φ(k), by closing
at C+.
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The Derivation of Ǐ4
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Using the result of Proposition 6.3 of [3], namely the estimate
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Proposition 1 Let Ǐ4 be defined by (3.24). Then
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Proof Employing (3.12) in the last term of the RHS of Eq. (3.24) yields (3.25).

The term 2e−i/M appearing in the RHS of (3.21) arises from the evaluation of the
contribution of the pole zP = −i/M and gives rise to the second term in the RHS of
(3.25). Thus, we will use the notation Ǐ P4 (t) for this term. Similarly, we denote the
last term (3.25) as Ǐ SD4 .

Hence, (3.25) takes the form
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Ǐ P4 (t) = 1

π

∫ ln t

(1−δ3) ln t
Φ(ν)e−i t(ν+e−ν)dν (3.28)

and
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4 Sketch of the Derivation of (1.1)

It can be shown that Ǐ SD4 is negligible, compared to Ǐ P4 ; the rigorous derivation
will be presented in forthcoming publication. Thus, in what follows we analyse the
contribution of Ǐ P4 .
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where
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The fact that x ∈ (1, tδ3) yields (4.6).
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The stationary point of J coincides with the endpoint ln t if τ = t − 1. Evaluating
the RHS of (4.4) at τ = t − 1 we find
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In order to evaluate the above integral we let ν = ln t − ln x , and find

∫ ln t

(1−δ3) ln t
e−i(ν+te−ν)dν = t−i

∫ tδ3

1

e−i x

x1−i
dx = t−i

∫ ∞

1

e−i x

x1−i
dx − t−i

∫ ∞

tδ3

e−i x

x1−i
dx .

(4.7)

Using integration by parts we find that the second integral in the RHS of (4.7) is
O
(

t−δ3
)

.
Similar considerations apply to the case that τ = t − tδ3 , where the stationary

point approaches the other endpoint, (1 − δ3) ln t , but now the relevant contribution

is O
(

t−
δ3
2

)

. Hence we find,

Ǐ P4 ∼
√

2

π
e−i π

4

∫ t−1

t−tδ3

eit F(
τ
t )√

t − τ

∣
∣
∣
∣
ζ

(
1

2
+ iτ

)∣
∣
∣
∣

2

dτ (4.8)

+
√

2

π

(

c − e−i π
4 e−i

)

t−i

∣
∣
∣
∣
ζ

(
1

2
+ i(t − 1)

)∣
∣
∣
∣

2 (

1 + O

(
1

ln t

))

, t → ∞,

with F and c defined in (3.3) and (1.2), respectively.
Simplifying t F

( ρ
t

)

, we find,

(t − ρ) ln
(

1 − ρ

t

)

+ ρ ln
(ρ

t

)

= (t − ρ) ln (t − ρ) − (t − ρ) ln t + ρ ln ρ − ρ ln t

= (t − ρ) ln (t − ρ) + ρ ln ρ − t ln t.

Hence, (1.1) follows by employing (3.4), (3.27) and (4.8) in (2.9).
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5 Numerical Evidence

In this section we check numerically the validity of the difference-integral Eq. (1.1),
namely

∣
∣
∣
∣
ζ

(
1

2
+ i t

)∣
∣
∣
∣

2
∼ Re

{√

2

π

(

c − e−i π
4 e−i

)

t−i

} ∣
∣
∣
∣
ζ

(
1

2
+ i(t − 1)

)∣
∣
∣
∣

2

+
√

2

π

∫ t−1

tδ2

Re
{

e−i π
4 eit F

( ρ
t

)}

√
t − ρ

∣
∣
∣
∣
ζ

(
1

2
+ iρ

)∣
∣
∣
∣

2
dρ + ln t + 2γ − ln 2π

+ O

⎛

⎜
⎝

∣
∣
∣ζ
(
1
2 + i(t − 1)

)∣
∣
∣

2

ln t

⎞

⎟
⎠ , t → ∞, (5.1)

with F(x) and c defined in (3.3) and (1.2), respectively.
In Fig. 2 we depict the LHS by the blue curve, and the RHS (ignoring the error

term) by the red dashed line, for the range t ∈ (357, 440). In Fig. 3 we depict the
difference of LHS minus the RHS, for the same range of t . In Fig. 4 we observe that

this difference is dominated by the error termO

( |ζ( 1
2 +i(t−1))|2

ln t

)

; we plot the absolute

value of the above-mentioned difference in green, and the |ζ( 1
2 +i(t−1))|2

ln t in black. We

Fig. 2 The LHS (blue) and the RHS (red dashed), for the range t ∈ (357, 440)
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Fig. 3 The difference of LHS minus the RHS

Fig. 4 The absolute difference of LHS minus the RHS (green), versus

∣
∣
∣ζ
(
1
2 +i(t−1)

)∣
∣
∣

2

ln t (black)



332 A. S. Fokas et al.

Fig. 5 The absolute difference of LHS minus the RHS (green), versus
√

π
∣
∣
∣

(

c−e−i π
4 e−i

)∣
∣
∣

ln t
∣
∣ζ
( 1
2 + i(t − 1)

)∣
∣
2
(black)

find interesting that if we scale |ζ( 1
2 +i(t−1))|2

ln t by
√

π
∣
∣
(

c − e−i π
4 e−i

)∣
∣ ≈ 0.276, Fig. 5

illustrate clearer that the error term O

( |ζ( 1
2 +i(t−1))|2

ln t

)

‘captures the peaks’ of the

explicit difference LHS minus RHS.
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