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Abstract The structures observed in disk galaxies can be explained by the presence
of nonlinear phenomena associatedwith dynamicalmechanisms acting in their stellar
and gaseous components. Successful models can reproduce the observed morpholo-
gies and their evolution in time. Here, I summarize, from a personal point of view,
the basic results of nonlinear, orbital galactic dynamics, which explain the presence
of bars and spiral arms in the disks. I also mention the main ideas that have been
discussed in the field during the last sixty years and I refer to some open issues and
alternative possibilities for structure formation in spiral galaxies.
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1 Introduction

Spiral galaxies are complex dynamical systems. Their global morphology is the
result of dynamical processes taking place mainly in their stellar component (disk
and bulge), in the gas that lies in the equatorial plane of the galaxy and in the dark
matter halo that surrounds the disk. The stellar and the gaseous components interact
among themselves, as well as with the dark matter halo. The evolution of each one
of these components has to take into account the presence of the others and their
dynamical evolution. In order to understand the dynamics of the structures, which
are observed in this type of galaxies, we have to understand the global dynamics of
a complex system.

The structures that appear in disk galaxies, are the bars, the spiral arms and the
rings (nuclear, inner and outer).Galaxieswith prominent andwell-defined spiral arms
are called “grand design”. The presence of the spiral arms may be accompanied by
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Fig. 1 The grand-design spiral galaxy NGC 5248 dominates in the lower left corner of the figure.
In the upper part of the image are discernible a disk galaxy with a ring and a disk galaxy with an
edge-on orientation. (Observation in B filter with the 2.2m ESO/MPA telescope, La Silla, Chile,
by Patsis, Heraudeau & Grosbøl, 2000)

the presence of a bar and so we speak about normal (non-barred) and barred spiral
galaxies. A typical grand design example (NGC 5248) is given in Fig. 1.

Amajor contribution to the field came in the 1990s, with the development of near-
infrared detectors. Observations in near-infrared wavelengths allowed the imaging of
the old stellar population of the disk, which traces much better the mass distribution
than observations in the optical. The conspicuous differences in the morphologies of
a galaxy in near-infrared and optical images, gives valuable information to be used
as input in theoretical modeling. Stellar models have to be compared with data from
near-infrared observations, while gaseous models with morphologies encountered
mainly in the optical.

Plausible assumptions that reduce the degree of complexity of a galactic system
are necessary in order to be able to construct models that reproduce the dynamical
behavior of galactic disks, remaining, to a large degree, realistic. There are two main
ways of studying the dynamics of galaxies. Either by means of N -body simulations,
or by means of orbital models. N -body models are self-consistent, combine the
evolution of the stellar and gaseous components and offer the possibility to include a
live dark matter halo (see [1] for a review). Although such models are the best way to
describe the time evolution of galactic systems, it is difficult to study with them the
details of the dynamical phenomena that are in action as the system evolves. For that
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purpose have been used orbital models, simple in their initial set up, in most cases
in the form of autonomous Hamiltonian systems that refer to the stellar dynamics of
the galaxy (for a complete introduction in the subject see [2]). The potentials used
are either well behaving analytic functions that match general properties of galactic
disks (see e.g. Chap. 2 in [3]) or, in some cases, potentials that have been estimated
directly from near-infrared images of specific galaxies (e.g. [4, 5]).

A key element for understanding galactic disk dynamics is to find out the location
of the resonances between the epicyclic frequency, κ(R), and the angular velocity
of the stars, �(R), in the rotating with pattern speed �p frame of reference (R is the
radial distance of a test particle, in cylindrical coordinates). Especially the resonances
κ/(�(R) − �p) = ±2/1 (Inner and Outer Lindblad resonances respectively), the
4/1 resonance (defined in a similar way as the 2/1 one), as well as corotation, a
resonance for which�(R) = �p, play a crucial role for understanding the dynamics
of barred and spiral galaxies. These resonances are defined on the equatorial plane of
the galaxy. However, in the same way, we can specify vertical resonances, between
the vertical frequency of the stars, ν(R) and �(R) − �p (see e.g. [6]).

2 Order and Chaos

2.1 Two Dimensional (2D) Models

As their name indicates, disk galaxies are flat objects. Thus, two-dimensional (2D)
modeling has been extensively used as a good approximation for their study. The
initial idea was to associate ordered motion in the vicinity of stable periodic orbits
with the reinforcement of morphological features. Stable periodic orbits trap around
them regular orbits, which remain close to the periodic ones forever. In this way
they enhance the local density and thus they enhance structures that have a certain
similarity with the topology of the periodic orbits (see e.g. Chap. 2 in [2]). This is a
straightforward scenario, that gave the following results:

• Themostwell appreciated result of nonlinear orbital theory in galactic disk dynam-
ics, concerns the orbital content of galactic bars. The bars of barred-spiral galax-
ies are supported by orbits trapped around stable periodic orbits of the family
“x1”, the orbits of which have elliptical-like shapes [7]. Beyond the inner 4/1
resonance, towards corotation, the existing families of periodic orbits in rotating
barred potentials are mainly unstable and practically are found within a chaotic
zone. This zone prevents the bars reaching corotation [8]. In this case Order forms
a structure and Chaos hinders its extent beyond a certain distance, approaching the
region characterized by�(R) ≈ �p, in which we find the Lagrangian equilibrium
points [9].

• In the absence of a bar, a bisymmetric spiral pattern is also supported by a backbone
of elliptical x1 orbits, which however precess in a characteristic way, so that their
apocenters are aligned with the loci of the spiral arms. In this way the stars stay
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longer time in the apocenters regions and enhance locally the surface density of
the disk, forming the arms. This is the idea of the classic density wave theory [10]
expressed by means of periodic orbits (see Fig. 3 in [11]).
The essential parameters for assessing this hypothesis, are the pattern speed and
the amplitude of the spiral perturbation, i.e. of the spiral arms. The pattern speed
determines the location of the resonances and consequently the local morphol-
ogy of the model, while the amplitude of the perturbation defines the degree of
nonlinearity, in other words the importance of chaotic phenomena. The response
morphology can be directly compared with images of galaxies, while the presence
of chaotic phenomena affects, among others, kinematic features, such as the profile
of the dispersion of velocities in the disks. Such profiles provide constraints for the
appearance of chaotic phenomena. Both quantities (pattern speed and amplitude
of the spirals) are very difficult to be estimated from observations. Thus, model-
ing is needed, so that the right values can be deduced by comparing the situation
predicted by the models with the observational data.
In normal (non-barred) spiral models it has been realized that an open spiral struc-
ture has major problems crossing the 4/1 resonance region. Due to the rhomboidal
shape of the orbits in this region and their relative orientation, the 4/1 resonance
becomes a main obstacle for the continuation of the spiral structure towards coro-
tation [12, 13]. This time it is not the presence of Chaos, but the misalignment
of the building blocks (i.e. of the periodic orbits) that imposed the damping of
the density wave. A set of self-consistency tests have shown that this is the case
for the symmetric part of grand-design galaxies of Hubble types Sb to Sc. Such
spiral patterns rotate slowly, so that the end of their symmetric parts corresponds to
the 4/1 resonance, while the estimated amplitudes are characterized by perturbing
forces of the order of 5–10%with respect to the axisymmetric background. On the
other hand, the tightly wound arms of Sa galaxies, could be modeled with spirals
with 1% perturbation in the forces and could reach corotation [14]. However, in
both cases, i.e. in models with big and small pitch angles, order dominates and
this is reflected to the observed velocity dispersions in real galaxies (see e.g. [15,
16]). The relation between pitch angle, amplitude of the perturbation and pattern
speed is also recently investigated in [17].
Gaseous response models have confirmed the above results. In addition, the inclu-
sion of asymmetries in the imposed potentials, for example in the form of m = 1
components, made the models able to reproduce at the right place even secondary
features appearing in images of open spiral galaxies, such as asymmetric bifur-
cations of the arms (see e.g. Fig. 4 in [18]). The inner symmetric part of the
grand-design has been always identified with the location of the 4/1 resonance,
while off-phase, with respect to the imposed spiral perturbation, extensions, could
be found between 4/1 and corotation in the responses (see also the results of three
dimensional models in [19]). In all the above cases, the most sensitive parameter
in order to obtain a morphological similarity of the model with the modeled galaxy
was the pattern speed (�p). This should be that slow, as to put corotation beyond
the end of the inner symmetric part of the spiral arms. Later, models that have
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considered kinematic data as well, have also confirmed this result, by pushing
corotation at, or beyond, the end of the overall observed spiral structure [20].
A characteristic, gaseous (by means of Smoothed Particle Hydrodynamics, SPH)
response model for open normal spirals (pitch angle 25◦) is given in Fig. 2. The
model includes, besides amainm = 2 logarithmic spiral component, also anm = 1
term, with the same pattern speed and shape as the m = 2 one. The ratio of the
amplitudes Am=1/Am=2 = 0.15, while the relative force perturbation at the end of
the symmetric part of the spiral pattern is of the order of 10% of the axisymmetric
force. The long arrows in Fig. 2 point to the locations of the end of the symmetric
part of the spiral pattern, at the 4/1 resonance region, while the short, thicker,
arrows at larger distances from the center, point to weak extensions of the arms,
to which we refer in the next paragraph.

• Anothermechanism for supporting the spiral structure of galaxies started being dis-
cussed in the middle 2000s, applied to barred-spiral systems. Mainly two groups,
elaborated the idea that the spiral structure observed beyond the ends of the bars in
this type of galaxies is guided primarily by the unstable manifolds emanating from
the unstable Lagrangian points L1, L2 at the corotation region [21, 22]. The idea
has been presented earlier [23], without a detailed description of the dynamical
mechanism. The later was known in studies of the three-body problem, however
without relating it with the support of an emerging structure in that case [24, 25].
According to this mechanism, stars following the paths dictated by the manifolds
are on chaotic orbits, as their Lyapunov numbers indicate, so the formed spirals,
have been called “chaotic” spirals. Evidence that the orbital content of these spirals
is associated with the so-called “hot orbital” population [26] is given in [27]. Such
chaotic orbits in autonomous Hamiltonian systems have Jacobi constants, EJ ,
larger than those of L1 and L2 and for some time they may exhibit a 4/1-resonance
orbital behaviour inside corotation. They enhance the spiral arms of the barred-
spiral morphology as they cross corotation through the bottlenecks formed by the
isocontours of the effective potential at various EJ ’s. They are of the same type of
orbits as those building the envelope of the bar in the case of NGC 4314 studied
in [28]. Further orbits of this type have been presented in [29], in models for
NGC 1300.
Since in the chaotic seaswe canfindunstable periodic orbits around the equilibrium
points (Lyapunovorbits) aswell as unstable periodic orbits belonging to the 4/1, 6/1
etc. families, it is natural to conclude that all the families of unstable periodic orbits
near and beyond corotation contribute to the same phenomenon [30]. Manifolds
of unstable 4/1 periodic orbits associated with the reinforcement of chaotic spirals
have been presented in [31].
Besides the spirals, the same mechanism has been proposed for explaining several
types of rings observed around the bars ([22, 32] and subsequent papers by the
same authors). Also in this case, orbits classified by chaos indicators as “chaotic”,
reinforce a well defined morphological structure.
Models in which the two mechanisms for supporting two different spiral patterns
coexist, as the one presented in Fig. 2 (the arrows point to two different sets of
spiral arms), lead to rare, but known grand design morphologies, as in the cases
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Fig. 2 An SPH response model to a logarithmic spiral potential with pitch angle 25◦ that includes
a main m = 2 and a secondary m = 1 component. The long arrows point to the end of the inner,
symmetric spiral arms, at the 4/1 resonance, while the short arrows at larger distances to a weak
continuation of the spiral arms beyond corotation, which are formed following the mechanism of
“chaotic” spirals (see text)

of NGC 1566 or NGC 5248 [31, 33]. In these cases the inner spiral structure is
supported by regular orbits trapped around precessing x1 periodic orbits, while
the outer spiral structure by chaotic orbits that cross the region of the L1 and L2
points and continue beyond corotation. These spiral arms are those indicated with
the short arrows in Fig. 2. The main difference among the regular and the chaotic
spirals is in the flow of material in their regions. In arms supported by regular
orbits, the flow is accross the arms, while in chaotic spirals, the flow is in general
along them [27, 33].

2.2 Three Dimensional (3D) Models

Disk galaxies can be considered in a first approximation as two dimensional objects.
However, the inner part of the bars extends well above the equatorial plane of the
galaxy, reaching heights up to 2 kpc in some cases, forming a characteristic boxy,
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Fig. 3 A set of successive
stable x1v1 periodic orbits in
a Ferrers bar model in a
nearly side-on projection.
The wings of the X are
formed along the |z|-maxima
of the orbits, i.e. along the
directions indicated with the
arrows

peanut-shape morphology when viewed edge-on. In some cases the side-on profiles
of galactic bars outline the pronounced morphology of an “X” shape [34]. These
structures, and their relation with bars, have been identified in early N -body simu-
lations [35].

The study of the orbital content of the peanuts, has been based on the analysis of
the stability of families of periodic orbits in 3D autonomous Hamiltonians [36] as a
parameter of the system, usually EJ , varies [37–40]. Themain dynamicalmechanism
proposed to be in action in this case, is again that of regular orbits trapped around
stable periodic orbits. A family that offers the appropriate orbital content to make
this scenario feasible, is the 3D bifurcation of x1 at the vertical 2/1 resonance, called
x1v1 [38].

As indicated in [40] (their Fig. 11), the “X” structure is not formed as the density
is enhanced along the shape of the orbits of x1v1, but it appears along the maxima
heights from the equatorial plane, of successive orbits of this family. An example of
such a backbone of stable x1v1 orbits supporting a X/peanut structure in a Ferrers
bar model [37, 38] is given in Fig. 3.

The study of 3D autonomous Hamiltonian systems is a field, where various non-
linear phenomena appear and affect their evolution, such as inverse bifurcations,
collisions of bifurcations and complex instability [36]. Especially complex instabil-
ity, a kind of orbital instability that appears when the four eigenvalues of the 4 × 4
monodromy matrix M1, are complex and off the unit circle (see e.g. [38]), appears
in orbits that may participate in supporting the peanut for considerable time intervals
[40]. This is one more case in which chaotic orbits contribute to the reinforcement
of structures by behaving for times significant for the dynamical scales of the system
we study, as regular. Essentially, we have to do with the phenomenon of stickiness
[41], which is ubiquitous in galactic stellar dynamics and upgrades the role of chaotic
orbits in supporting structures.

1 In autonomous Hamiltonian systems, the monodromymatrix relates the final deviation of a neigh-
bouring orbit from the periodic one ξ̄ , with an initially introduced deviation ξ̄0, in a space of section,
i.e. ξ̄ = M ξ̄0.
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3 Discussion

Nowadays there is a general consensus among researchersworking in the field that the
observed structures are the result of the interplay between Order and Chaos. Usually,
both situations coexist in structure-supportingmodels. Regular orbits are the building
blocks of the structures in most of the cases, but not in all of them. The alternative
is sticky orbits near the borders of an island of stability in the phase space of a 2D
dynamical system, or orbits remaining sticky near the unstable asymptotic curves of
unstable periodic orbits in chaotic seas of the phase space. Examples of sticky orbits
of the first kind are those supporting outer boxy envelopes of barred galaxies [28]
or inner boxy structures in the central regions of the bars [42, 43]. Orbits sticky to
unstable asymptotic curves, are those supporting the spiral arms outside corotation.
An extreme example of an ansae-type bar supported mainly by chaotic orbits is given
in [29]. In a case presented in that paper, the shape of the bar is defined by the shape
of the isocontours of the effective potential, allowing particles in chaotic motion to
visit all regions inside the area outlined by the ansae-type isocontour (see their Figs. 2
and 3).

It is not always easy to distinguish which mechanism is behind an observed
morphological feature in a real galaxy. For example, the outer boxiness of a bar may
be due to regular orbits trapped around boxy 4/1 resonance orbits, or due to chaotic
orbits sticky to tiny stability islands in the 4/1 resonance region. When we see a pair
of spiral arms emerging from the ends of a bar, we may conclude that they are due
to chaotic orbits associated with Lyapunov orbits around L1 and L2, provided that
the ends of the bar are close enough to the Lagrangian points. However, the ratio
of the corotation radius, Rc, to the length of the semi-major axis of a bar, Rb, is in
general 1 < Rc/Rb < 1.4 [44], while in some cases it can be assumed even larger,
reproducing successfully barred-spiral morphologies (see e.g. models in [31, 33].
For bars that end away from the Lagrangian points, other mechanisms have to be
invoked for explaining the spirals.

In that respect, imaging in the optical and in the near-infrared, as well as detailed
kinematic data, are always needed to be compared with the predictions of the models
in order to qualify the best scenario behind the emergence of a specificmorphological
feature.
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