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Preface

Introduction

As is by nowwidely recognized, the study of nonlinear dynamical systems and chaos
was founded by the great French Mathematician and Physicist Henri Poincaré at the
end of the nineteenth century. He was the first to appreciate the vital importance
of geometric methods as a means of understanding qualitatively the solutions of
differential equations describing, for example, the motion of celestial bodies, that
appeared analytically intractable. In the years that followed, Poincaré’s work inspired
many scientists, but it took nearly 60 years before the advent of the Kolmogorov-
Arnold-Moser theory and the progress in computer technology revealed the great
importance of Poincaré’s contributions.

In the 1960’s and 70’s, the science of Chaos, revealed the secrets of unpre-
dictability in the solutions of a great majority of nonlinear dynamical systems of
physical, biological, economic, and technological significance. Moreover, the appre-
ciation of the spatial complexity of objects and shapes that surround us led to the
discovery of Fractal Geometry and by the end of 1980’s Chaos and Fractals formed
the foundations of what we call today Complexity Science.

In Greece, we were fortunate to realize early the significance of these develop-
ments.After organizing an international meeting on “Nonlinear Dynamics and Chaos
in Classical and Quantum Systems”, in August 1986, at Thessaloniki, we decided to
start an annual series of Summer Schools and Conferences on these topics, aiming
to bring together experienced researchers with a new generation of aspiring “non-
linear scientists”. It was a successful endeavor, which has lasted to this day, adopting
Complexity in the title of annual events that continued uninterrupted for 33 years,
leading to 28 Summer Schools and 5 international Ph.D.Schools. The interested
reader can find the history of these activities in a book called “TheMeaning of Educa-
tion”, at the site http://cosa.inn.demokritos.gr/ of the National Center of Scientific
Research of Athens “Demokritos”.

In 2022, the Organizing Committee responsible for the 28th Summer School-
Conference on “Dynamical Systems and Complexity” decided that the event would
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take place at theCulturalCenter ofChania,Crete, 18–26 July and be online, except for
22–25/7, when it would also be live. The first two of these dates were devoted to cele-
brating the 70th birthdayofAthanassios S. Fokas, Professor ofCambridgeUniversity,
while on July 25 thirty selected Greek graduate and undergraduate students followed
an intensive full-day training seminar on Machine Learning.

The remaining days were devoted to introductory talks, as well as more special-
ized lectures, on a wide variety of topics of Nonlinear Science. The invited speakers
presented fundamental theoretical, experimental, and computational advances in
chaos, fractals, and complexity. More details can be found at the site http://cosa.
inn.demokritos.gr/28th-summer-school-dynamical-systems-and-complexity/.

Contents of the Volume

Our Organizing Committee appealed to all the speakers and received a significant
number of contributions on a wide range of theoretical and experimental topics. They
are listed in Parts I, II, and III corresponding to Chaos, Fractals, and Complexity,
respectively. Some authors presented new results and reviewed recent achievements
obtained in collaborationwith Professor Athanassios S. Fokas. As these are primarily
based onmathematical advances, they are contained in Part IV of the volume entitled
“Fokas andMathematics”. Finally,we included as PartV a paper by ProfessorGeorge
Dassios describing the full spectrum of Professor A. Fokas’ achievements to date in
several sciences.

Chaos

The paper by S. Aubry, “DiffusionWithout Spreading of aWave Packet in Nonlinear
Random Models”, offers a remarkable account of what is known to date regarding a
very interesting ongoing debate on the long- time behavior of energy wave packets in
1one-dimensional Hamiltonian lattices in the presence of nonlinearity and disorder.

P.A. Patsis, in his article on “Nonlinear PhenomenaShaping theStructure of Spiral
Galaxies”, reviews dynamicalmodels, which successfully reproduce themorphology
of disck galaxies and their evolution in time. He then shows how the interplay of
order and chaos can explain the presence of bars and spiral arms in the disks.

M. Katsanikas and S.Wiggins, in their paper “Phase Space Transport andDynam-
ical Matching in a Caldera-Type Hamiltonian System”, discuss phase space mech-
anisms by which a Caldera-type potential energy surface exhibits the phenomenon
of dynamical matching and determine the conditions under which it occurs in their
system.

In the paper “The Building Blocks of Spiral Arms in Galaxies”, M. Harsoula
reviews present- day theories regarding the kind of orbits that support spiral arms
in various types of galaxies. The author explains the role of stable periodic orbits of

http://cosa.inn.demokritos.gr/28th-summer-school-dynamical-systems-and-complexity/
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spiral galactic models in creating spiral density waves similar to those observed in
real galaxies.

The paper by A. C. Tzemos on “Ordered and Chaotic Bohmian Trajectories”
reviews recent results on the emergence of chaos in arbitrary two-dimensional
Bohmian dynamical systems. He examines the relation between chaos and entangle-
ment and discusses its role in establishingBorn’s rule for arbitrary initial distributions
of Bohmian particles.

Next, M. Robnik in his paper “A Brief Introduction to Quantum Chaos of Generic
Systems” summarizes the remarkable progress of the last 40 years in the field of
quantum chaos. He analyzes regular eigenstates associated with invariant tori as
well as chaotic eigenstates through their corresponding energy spectra.

T. Bountis, K. Kaloudis, and H. Christodoulidi, in their paper “Dynamics
and Statistics of Weak Chaos in a 4-D Symplectic Map”, study the nature of chaos
near an unstable fixed point of two coupled two-dimensional (2D) MacMillan maps.
They discover “weakly” chaotic states characterized by 1 < q < 3 Gaussian proba-
bility distributions, as well as cases of “strong chaos” obeying purely Gaussian (q =
1) statistics.

Fractals

In the paper by M. Chatzigeorgiou, V. Constantoudis, M. Katsiotis, and N. Boukos,
“Multifractal Analysis of SEM Images of Multiphase Materials: The Case of OPC
Clinker”, the authors study properties of multiphase materials affected by the spatial
distribution of their phases and the geometry of their interfaces. Using multifractal
analysis they provide a novel quantification of phase distributions.

F. Minicucci, F. D. Oikonomou, and A. De Sanctis, in their paper “Fractal Dimen-
sional Analysis for Retinal Vascularization Images in Retinitis Pigmentosa: A Pilot
Study”, regard retinal blood vessels as forming a fractal pattern. They thus show that
retinal vascularization (RV) images can help doctors achieve an early diagnosis of
retinitis pigmentosa.

Finally, V. Basios, in “Extending the Bayesian Framework from Information
to Action”, examines Bayesian inference methods and their connection in biological
processes, where fractals and chaos play a crucial role. In the former, probability
space is contracted, while in the latter it is extended to include latent and observable
variables that elucidate the differences between artificial and biological information
processing.
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Complexity

In the paper byN.E. Protonotarios,K.Kalimeris, andG.A.Kastis, “Fokas onMedical
Imaging: Analytic Reconstructions for Emission Tomography”, the authors summa-
rize the seminal work of Fokas in the area of mathematical image reconstruction,
based on modern methods of complex analysis. They also review the mathematical
theory of emission tomography, focusing on the inversion of non-attenuated and
attenuated Radon transforms.

Authored by G. Paraskevopoulou, A. S. Fokas, A. Charalambopoulos, and S.
Perantonis, the article “Inverse EEG Problem, Minimization and Numerical Solu-
tions” focuses on brain activation, in the form of neuronal electric currents generating
electric fields. In this work, the authors present a novel numerical formulation for
computing the current, which includes a crucial boundary term that was missing in
earlier papers.

The paper “Traveling Waves in Flowing Sand: The Dynamical Systems
Approach”, by Ko van der Weele, D. Razis, and G. Kanellopoulos, addresses the
complex problem of travelling surface waves in a shallow sheet of granular matter.
They simplify the problembyderiving a dynamical system that captures the transition
from a monoclinal shock wave to a periodic train of roll waves.

In the paper by T. Dogkas, M. Eleftheriou, G. D. Barmparis, and G. P. Tsironis,
“Identifying Discrete Breathers Using Convolutional Neural Networks”, the authors
study physical phenomena related to the time evolution of localized periodic oscilla-
tions called Discrete Breathers (DB) in one-dimensional nonlinear chains. They use
Convolutional Neural Networks to differentiate between DB and linearized phonon
modes.

In the next paper, “Subthreshold Oscillations in Multiplex Leaky Integrate-and–
Fire Networks with Nonlocal Interactions”, by K. Anesiadis, J. Hizanidis, and A.
Provata, the authors investigate the complex dynamics of identical Leaky Integrate-
and-Fire (LIF) neurons on a multiplex consisting of two identical ring networks.
They show that inter-ring coupling favors in-phase synchronization and determine
the relevant parameter region.

J. Courson, Th. Manos, and M. Quoy, in their paper “Networks’ Modulation:
How Different Structural Network Properties Affect the Global Synchronization
of Coupled Kuramoto Oscillators”, study how synchronization arises, when different
oscillating objects tune their rhythmof interaction. They investigate different network
architectures on coupled Kuramoto phase oscillators and measure the global degree
of synchrony when different fractions of nodes receive the stimulus.

Finally, in “Neural Correlates of Human-Machine Trust in Autonomous Vehicles
Context”, A. Dragomir, I. Lazarou, M. S. Seet, S. Nikolopoulos, I. Kompatsiaris, and
A. Bezerianos, examine how driver state monitoring systems may be used to support
interfacing between human drivers and automated driving systems to enhance road
safety. They point out that recent progress has revealed promising results that can be
implemented on future intelligent vehicles.
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Fokas and Mathematics

In the paper by Y. Cao, A. S. Fokas, and J. He, “High-Order Localized Wave Solu-
tions of the New (3+1)-Dimensional Kadomtsev-Petviashvili Equation”, the authors
study an integrable extension of the Kadomtsev-Petviashvili equation in three-spatial
dimensions and use Hirota’s bilinear method to construct smooth multi-solitons and
high-order rational and semi-rational solutions.

Alexandrou Himonas, in “Progress in Initial-Boundary Value Problems
for Nonlinear Evolution Equations and the Fokas Method”, focuses on what he
calls the unified transform method, often called the Fokas method, and its success in
solving initial-boundary value problems (IBVP) for linear and integrable nonlinear
PDEs. The author describes how, using this method, one can derive linear estimates
of solutions in Sobolev, Hadamard, and Bourgain spaces.

In the paper by A. Chatziafratis, L. Grafakos, S. Kamvissis, and I. G. Stratis,
“Instabilities of Linear Evolution PDEs via the Fokas Method”, the authors use a
formula provided by the Fokas method for initial-boundary-value problems to study
the linearized KdV equation on the half-line for t > 0. Depending on the sign of the
dispersive term, they discuss how long-range asymptotics can depend very sensitively
on the behavior of the data at the point (0, 0).

D. A. Smith, in his paper on “Fokas Diagonalization”, discusses an approach
for solving linear IBVP formulated as a spectral transform method, through which
the underlying spatial differential operator can be diagonalized in two-point initial-
boundary-value problems on networks of finite intervals. Here, the author extends
these results to problems involving semi-infinite domains, nonlocal boundary
conditions, and PDEs with mixed derivatives.

In their paper “A Novel Difference-Integral Equation Satisfied Asymptotically
by the Riemann Zeta Function”, A. S. Fokas, K. Kalimeris, and J. Lenells first review
some basic results by A. S. Fokas, regarding a novel difference-integral equation
satisfied asymptotically by the Riemann zeta function, ζ(1/2 + it). This equation is
obtained starting with a singular integral equation presented for the first time in 2019
and using a finite Fourier transform representation of the Riemann zeta function.

B. Pelloni and D.A. Smith, in their paper “The Role of Periodicity in the Solu-
tion of Third Order Boundary Value Problems”, first explain how the solution of
certain boundary value problems connected with Airy’s equation can be expressed
as a perturbation of the solution of the periodic problem. They explain that their
motivation is to understand the role of boundary conditions in the analysis of linear
dispersive problems with discontinuous initial data.

Finally, in the paper byD.Mantzavinos on “TheFokasMethod for theWell-posed-
ness of Nonlinear Dispersive Equations in Domains with a Boundary”, the author
discusses the Fokas transform method and elucidates its analogy with the Fourier
transform for both linear and nonlinear dispersive equations. He also discusses a
novel approach for proving the well-posedness of initial-boundary-value problems
for general nonlinear dispersive equations.
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Athanassios S. Fokas: A Renaissance Scientist

As the final paper of this volume, we have included a contribution byGeorgeDassios,
Emeritus Professor of the University of Patras, entitled “Athanassios S. Fokas:
A Renaissance Scientist”. Professor Dassios has co-authored many papers and a
book with Prof. Fokas. His paper in this volume offers a comprehensive account of
Prof. Fokas’ remarkable breakthroughs in many sciences, including Mathematics,
Physics, Engineering, Biology, and Medicine.

A Tribute to Professor Athanassios S. Fokas

On July 22 and 23, 2022, more than 20 scientists from many countries, who had
collaborated with Prof. Fokas over the years, lectured at this Summer School-
Conference. They presented important results related to these collaborations, in areas
of Applied Mathematics, Theoretical Physics, Biology, and Neuroscience, that have
already gained worldwide recognition.

More specifically, these authors reported results obtained with Prof. Fokas on the
solution of key open problems concerning: integrable nonlinear evolution equations,
the development of efficient algorithms for the solution of inverse problems arising in
medical imaging, the asymptotic analysis of the Riemann zeta function, and a novel
approach toward the solution of the Lindelöf hypothesis. Several speakers discussed
various areas impacted by the so-called Fokas Transform method.

Professor Fokas’ remarkable career started with a BSc in Aeronautics from Impe-
rial College and continued with a PhD in Applied Mathematics from Caltech and an
MD from the University of Miami. Since 2002, he has held the Chair of Nonlinear
Mathematical Sciences at Cambridge University. Currently, he is the Director of
the “Legendary Program in Mathematics” at the University of Cambridge and an
Adjunct Professor of the Departments of Civil and Environmental Engineering, and
Biomedical Engineering of the University of South California.

In 2000, he was awarded the United Kingdom’s Naylor Prize in Applied Mathe-
matics; in 2005, he was decorated with the Order of Phoenix by the President of the
Hellenic Republic; and in 2006, he was awarded the Aristeion Prize of the Bodossaki
Foundation in Greece. He is a member of the Academy of Athens (2004), a member
of the European Academy of Science (2010), a Fellow of the American Institute for
Medical andBiological Engineering (2019), and amember of theEuropeanAcademy
of Sciences and Arts (2021).

In 2023, he was elected member of the Academia Europaea and received the
Blaise Pascal Medal in Mathematics from the European Academy of Sciences.

In closing, the Editors wish to dedicate this volume to Prof. Athanassios S. Fokas
and his colleagues for their contributions to the 28th Summer School-Conference
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on “Dynamical Systems and Complexity” and wish Prof. Fokas many more “happy
birthdays” and scientific achievements in his future career.

Patras, Greece Tassos Bountis
Program Chair

28th Summer School-Conference on
“Dynamical Systems and Complexity”

Chania, Crete, July 18–26, 2022
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Diffusion Without Spreading of a Wave
Packet in Nonlinear Random Models

Serge Aubry

Abstract Wediscuss the long time behavior of a finite energywave packet in nonlin-
ear Hamiltonians on infinite lattices at arbitrary dimension, exhibiting linear Ander-
son localization. Strong arguments both mathematical and numerical, suggest for
infinite models that small amplitude wave packets may generate stationary quasiperi-
odic solutions (KAM tori) almost indistinguishable from linear wave packets. The
probability of this event is non vanishing at small enough amplitude and goes to
unity at amplitude zero. Most other wave packets (non KAM tori) are chaotic. We
discuss the Arnold diffusion conjecture (recently proven) and propose a modified
Boltzmann statistics for wave packets valid in generic models. The consequence is
that the probability that a chaotic wave packet spreads to zero amplitude is zero. It
must always remain focused around one or few chaotic spots whichwander randomly
over the whole system and generate subdiffusion. In this paper, we study a class of
so–called Ding Dong models, where the nonlinearities are replaced by hard core
potentials, which also generate subdiffusion. We prove rigorously for these models
that spreading is impossible for any initial wave packet.

Keywords Diffusion · Spreading · KAM tori · Chaos · Arnold diffusion

1 Introduction

It is well-known that wave propagation becomes impossible in linear random systems
with strong enough disorder because of Anderson localization [1]. Such a situation
may also occur in other non random models which are for example incommensurate
[2]. Our purpose is to study the same problem when nonlinearities are taken into
account in models with a purely discrete linear spectrum that is where all the linear
eigenmodes are square summable and spatially localized.

It has been suggested mostly on the basis of numerical simulations and rough
arguments that, in such models, Anderson localization is destroyed. A fully chaotic
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dynamics is supposed to take place as a consequence of the extra nonlinearities which
couple the localized linearmodes to each other [3–6].Nevertheless, it was also proved
that large enough amplitude wave packets cannot spread in some models with norm
conservation [7]. Otherwise, it was suggested that small enough amplitude wave
packets [8, 9] should generate stationary quasiperiodic solutions (KAM tori) despite
the number of degrees of freedom being infinite and moreover that this happens with
probability going to 1, as the amplitude of the wave packet goes to zero. The initial
wave packets which do not generate KAM tori, are chaotic as in the case of finite
systems. In infinite systems, we argued that their spatial spreading will stop after
some transient time [9], when the wave packet will have an amplitude small enough
to reach the region where KAM tori are very dense.

However, we could not predict the behavior of the wave packet beyond this initial
transient time. The aim of this paper is to complete this work. Note, however, that
the end of spreading does not mean the end diffusion as we explain now.

1.1 Difference Between Spreading and Diffusion

Indeed, “spreading” and “diffusion” were generally considered by physicists as
equivalent when considering the behavior of wave packets. We apologize that we
also added to this confusion in our early works on these topics, before we realized
that this was not only a semantic problem. In order to abide by this updated definition,
the word “diffusion” should be replaced by “spreading” everywhere in all our early
papers concerning this topic.

We say that a wave packet with amplitude A(r, t) is spreading when its maximum
amplitude supr |A(r, t)| goes to zero as time goes to infinity. Thus, on spreading
means that the wave packet amplitude does not go uniformly to zero as t → +∞.
This property does not imply that the amplitude has a non vanishing limit, or even
that it does have a limit. Actually, in our situation, the wave packet has no limit.

Diffusion originally concerns particles moving randomly. Their dynamics is
intrinsically chaotic since at each time, if the particle is localized at some position
r, its position as the next time is not completely determined but chosen according
to some probabilistic law. Then we can define the probability density P(r, t) for the
particle to be at position r at time t considering all possible realizations of the random
walk starting for example from the origin at time zero. We say we have diffusion
when supr P(r, t) goes to zero as time goes to infinity.

Our problem here concerns the behavior of initially localized wave packets in
nonlinear lattices at any finite dimension d, with sites labelled i ∈ Zd and a discrete
linear spectrum. First we conclude that, in all cases, M(t) = supi Ei(t) does not
go to zero at infinite time and thus wave packets are never spreading. Then two
different behaviors may occur. Either the wave packet is a stationary regular solution
which remains localized around its initial condition at all time. Or its dynamics
looks chaotic while always remaining focused around one or few peaks which look
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randomly wandering through the lattice. This motion suggests a kind of randomwalk
but it is not if one only consider a single realization.

Since the behavior of each realization is strictly determined by its initial condition
(unlike for a randomwalk), for defining a probability densityP(Ei(t)) for the energy
distribution of a wave packet as a function of time (which have a physical meaning),
we need to define a “good” measurable set of initial conditions for doing a statistics.
When the phase space has infinitely many dimensions, no physical measure can be
defined in it (unlike the standard Liouville measure for finite dimension hamiltonian
system). The most common approach is to use the fact that the system is disordered
that is its Hamiltonian is defined by an infinite set of uncorrelated random numbers
chosen according to some probability law. Then considering a given initial conditions
for a wave packet, it is possible to define the probability (in the space of disorder
realizations) that it generates either a non chaotic stationary regular trajectory or a
chaotic wave packet with a (sub) diffusive behavior. ThenP(Ei(t)) can be defined as
an average over the disorder realizations restricted to those which generates a chaotic
wave packet.With this definition we claim limt→+∞ supi P(Ei(t) = 0 so that we can
say we have diffusion without spreading.

This kind of statistics has already been used in many numerical simulations up to
now. The averaged results suggested subdiffusion of wave packets but could not
claim that wave packets could not spread. Indeed this property should appear for
each disorder realization and becomes invisible when averaging over many disorder
realization. An equivalent approach (which has the advantage it could be also used
in non random systems such as quasiperiodic systems with discrete linear spectrum)
is to make the statistics from the infinite set of Hamiltonians generated from a single
Hamiltonian realization and all its translated Hamiltonian in the lattice i.e. that is we
make a statistics of the dynamical behavior for the same initial wave packet located
at all sites of the same random realization.

Note however that using this statistics has the flaw that the wave packet has not
the same energy for all realizations. Actually, for a given disorder realization, the
detailed diffusive process of a wave packet depends on its initial energy as well as
its initial location and shape. Thus we may choose modified probability measure
according the problem to understand. For example Fröhlich, Spencer and Wayne
[27] define the probability to have a KAM torus with respect to disorder not for
an arbitrary initial wave packet but as the probability (with respect to the disorder
realization) that an arbitrarily given wave packet (determined at the integrable limit
by its set of actions using the angle representation) be continuable from this integrable
limit and thus remains a regular stationary wave packet. It is also possible to consider
different projectedmeasureswith only one disorder realization by choosing the initial
conditions of the wave packet in a (measurable) submanifold with finite dimension
in the phase space as we did numerically is [8] for only on site initial wave packets
with variable amplitudes. This method also has a flaw which is that we only explore
a negligible part of the phase space.
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1.2 Discussion of the Boltzmann Ergodic Hypothesis

We go back to the original theory for statistical mechanics which was mostly devel-
oped by Boltzmann for Hamiltonian systems and do not consider other possible more
recent approaches for statistical mechanics. Boltzmann assumed that most Hamil-
tonian dynamical systems with many degrees of freedom mostly generate chaotic
trajectories so that their physical behavior cannot be described in a deterministic
way. He proposed the well-known Boltzmann Ergodic Hypothesis (BEH) which
assumes that most trajectories generated by a large but finite Hamiltonian system,
are chaotic and uniformly dense in the phase subspace at constant energy (micro-
canonical ensemble) consideredwith the standardLiouvillemeasure. TheBoltzmann
entropy is then kB lnW whereW is the accessible volume in the phase space. In other
words, for most trajectories, after a long enough time, the probability that the sys-
tem visits an arbitrary region of the phase space becomes simply proportional to its
volume.

Most means that the trajectories which do not fulfill this property have zero mea-
sure inside this subspace and thus can be neglected in the statistics. Actually there
are many special trajectories (e.g. periodic or otherwise) among chaotic trajectories
which are not ergodic. These trajectories, however, are assumed to have zero mea-
sure and can be neglected in the global statistics. This hypothesis is fundamental for
constructing the well known theory of statistical mechanics.

This hypothesis is by far not obvious. Indeed there are also special Hamiltonian
systems (called integrable) the trajectories of which are not chaotic but quasiperi-
odic and consequently do not constitute ergodic systems. For example, commonly
used harmonic systems are integrable. However, it was believed in such cases that
infinitely small hamiltonian perturbations completely break integrability and restore
full ergodicity. Since the Hamiltonian of real systems cannot be perfectly known, it
is expected that generally arbitrarily small unknown perturbations should restore the
validity of statistical mechanics. In any case, a weak coupling with a thermal bath
(with a continuous spectrum) forces thermalization. Thus, whatever is the initial state
of a real physical system even far from thermal equilibrium, it was believed it should
relax to a thermal equilibrium at some temperature after some transient time, in other
words it maximizes its entropy.

Fermi even proposed a rigorous proof for ergodicity thus proving the validity of
BEH for it but it was erroneous [10]. Later, the Fermi Pasta Ulam Tsingou model
raised an apparent paradox in chaos theorywhich is still under debate.On the contrary,
the pioneering work of Kolmogorov [11] proved that the ergodic hypothesis was
wrong at least for some finite Hamiltonian near an integrable limit. Later, Arnold
and Moser extended these results and proved that very generally integrability is not
completely destroyed under small but arbitrary perturbations and consequently that
a finite Hamiltonian system, assumed to be perfectly isolated, may not thermalize
spontaneously.

Our problem of relaxation of a wave packet looks similar: We consider an infinite
system in its ground state in which we inject a finite energy as a localized wave
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packet initial condition. Consequently, if the system relaxes to thermal equilibrium
and since the energy density is zero, its temperature at complete thermalization
should be strictly zero. Thus the wave packet would spread to zero which is the
general belief. Actually, the wave packet cannot spread completely but instead it
may become diffusive.

The reason is that the KAM theory (KAM is the acronym of the names of the
main pioneering contributors: Kolmogorov, Arnold andMoser), initially proven only
for finite size systems, may remain valid in the vicinity of integrable Hamiltonian
for infinite systems on lattices under two conditions which are: (1) The linearized
spectrum is purely discrete and (2) the energy of the wave packet is finite.

2 Dynamics of Hamiltonians with a Finite Number
of Degrees of Freedom

We briefly review the main results and some conjectures about KAM theory for
perturbed integrable systems which highlight the role of resonances. For details,
there are many textbooks and reviews in the literature about this topic. We briefly
review the main known results.

2.1 KAM Tori in Finite Nearly Integrable Hamiltonian
Systems

Nearly integrable Hamiltonian systems exhibit quasiperiodic as well as chaotic tra-
jectories. According to Liouville, an integrable Hamiltonian involving n + n degrees
of freedom (i.e. described by n pairs of conjugate variables) is characterized by the
existence of n independent time invariants. The Liouville-Arnold theorem states that
under a few extra assumptions (e.g. the boundedness of the constant energy sub-
manifolds so that no trajectories go to infinity), there exists a canonical change of
variables which define a new set of conjugate variables {Ii , θi }where Ii are real num-
bers called actions and θi are angles defined modulo 2π . With these new variables,
the Hamiltonian becomes independent of the angles and only a function H0({Ii } of
the actions. Then, the Hamilton equations θ̇i = ∂H0/∂ Ii , İi = −∂H/∂θi implies that
the actions Ii are time invariant and the angles are rotating uniformly with frequen-
cies ωi ({I j }) = ∂H0/∂ Ii . Then, most trajectories of such a system are quasiperiodic
with n fundamental frequencies which depend generally on the actions.

However there is a dense subset of so–called resonant invariant tori, for which
there exists a set {ki } of n integers so that

i=n∑

i=1

kiωi = 0 (1)
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Perturbations of such integrable Hamiltonians which may be written as

H = H0({Ii }) + εh({Ii , θi }) (2)

where ε is a small parameter and h({Ii , θi }) an arbitrary Hamiltonian, Then we
know from Poincaré, that in general all resonant tori (1) and a neighborhood of them
(resonance gap) are destroyed and replaced by trajectories which are often chaotic,
or periodic, some of which are linearly stable (with nearby KAM tori).

However, it might be that for very special perturbations h({Ii , θi }), resonance gaps
do not open for some resonant tori (when for example h({Ii , θi }) does not depend on
the angles {θi } in some region of the phase space). We must conclude, therefore, that
the existence of chaotic resonance gaps is a generic property, which means it might
not be fulfilled in rare and special models. Actually the mathematical definition of
the word “generic” which can be found in the literature (e.g. a property valid in Baire
subsets), may not be physically acceptable in some cases. We do not debate here this
question and explain what we mean by generic in the physical context we consider.

Despite the existence of infinitely many resonance gap, all trajectories of the
perturbed Hamiltonian do not become chaotic. The frequencies of the non resonant
(incommensurate) tori which survive the perturbation have to fulfill a diophantine
condition [10], i.e. that is there exist two positive constants α and τ > n−1 such that
for some set of integer {ki } ∈ Zn , we have

|
i=n∑

i=1

kiωi | ≥ α

|k|τ (3)

where |k| = ∑ |ki | It is easy to prove that the set incommensurate tori which fulfills
this condition, has full measure in the phase space.

Under the smoothness conditions that the perturbed Hamiltonian is an analytic
function of its variables (or at least n−1 differentiable with continuous derivatives),
theKAMtheoremstates that eachof these incommensurate tori canbe continuedup to
some critical value of the perturbation εc({ωi }) providing the Jacobianmatrix { ∂ωi

∂ I j
} =

∂2H0({Ii }) be invertible. Moreover KAM theory, states that the global measure in
the phase space of these surviving KAM tori goes to full measure as the perturbation
parameter ε goes to zero.

KAM theory can be used in many situations and especially in the vicinity of lin-
early stable periodic orbits (or just stable fixed point) in any non integrable Hamil-
tonian. It states as a corollary that the quasiperiodic solutions obtained within the
linear approximation near this periodic orbit and which are sufficiently close to it,
survive as exact quasiperiodic solutions on condition of fulfilling again non resonant
conditions (3). Since it can be shown that linearly stable orbits initially appear in the
resonance gaps generated by the perturbation to integrability, new KAM tori appear,
which do not exist for the integrable Hamiltonian. They are called secondary KAM
tori, while those existing at the integrable limit are called primary.



Diffusion Without Spreading of a Wave Packet … 9

Otherwise we expect that near these linearly stable periodic orbits, tori which are
resonant or too close to them are destroyed and new resonant gaps open, where new
linearly stable periodic orbit appear... and so on. Consequently, we obtain a complex
landscape in the phase space with many primary and, secondary KAM tori which
occupy a non vanishing measure of the phase space [12]. The complementary part
is mostly occupied by unstable chaotic trajectories. It has not yet been rigorously
proven that this part of the phase space has a non vanishing measure, though there
is much evidence that this is true.

2.2 Arnold Diffusion Conjecture and Extension

Thus, a consequence of KAM theory is that a finite Hamiltonian system cannot
spontaneously thermalize according to the Boltzmann statistics because of the exis-
tence many non ergodic KAM trajectories which occupy a non vanishing measure
in the phase subspace E at constant energyE . We could, therefore, split the constant
energy subspaceE = K ∪ C into two disjoint complementary measurable parts. The
set K consists of all KAM tori which are linearly stable quasiperiodic trajectories.
The complementary part C consists of the rest which are mostly linearly unstable
trajectories, and are generally chaotic and ergodic. Many other non–chaotic trajec-
tories like periodic, quasiperiodic (such as Cantori), whiskered tori, homoclinic and
heteroclinic trajectories also exist, which all together have zero measure (However,
knowing more about these special solutions could help as a “scaffold” to understand
better the fine structure of C).

The set of KAM tori K is infinitely disconnected, that is given arbitrarily two
KAM tori and a continuous path connecting two points of them, in generic cases,
this path necessarily crosses resonance gaps which contain points not inK. It is a fat
Cantor set (fat because it has non vanishing measure). We also say that this subset is
porous.

When the number of degrees of freedom n is strictly larger than 2, KAM tori
which have dimension n cannot split in two parts, the energy submanifold C which
has dimension 2n−1 (there is no inside and outside regions for a given torus). This
implies that there are continuous paths remaining in C connecting two arbitrary
points of the set C of chaotic trajectories. Consequently C is a connected set when
n > 2. This set is supposed to also have non vanishing measure in E, which is not
equal to the full measure of E, but nevertheless is dense everywhere in E.

Thus, the conjecture of Arnold diffusion [13] claims that when this set C is
connected,(n > 2) that given an arbitrary finite ordered set of open balls in the phase
space, there exists in the generic case, a trajectory which visit these open balls in the
same order when the system is near enough from its integrable limit. Arnold gave a
proof of this only in a special example, while a generic proof was given only recently
[14].

Here, we propose a more general conjecture which extends the Arnold diffusion
conjecture. We call it the Boltzmann-Arnold Ergodic Hypothesis because it is none
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other than the Boltzmann ergodic hypothesis restricted to the only ergodic subspace
C accessible to chaotic trajectories.

Conjecture: Boltzmann-Arnold Ergodic Hypothesis When the number n of
degrees of freedom of the Hamiltonian is strictly larger than 2, then in generic
situations, the subset Cis ergodic that is the average in time of a physical quantity
over a given trajectory is equal (with probability 1) to the same quantity averaged
over C with its induced Liouville measure.

The induced Liouville measure onC is a different measure of the whole subspace
E when the measure of all KAM tori has been removed. As well as the original
Liouville measure, it is invariant under the Hamiltonian flow.

Ergodicity implies that most trajectories in C are dense everywhere in C (and
consequently in the whole subspace E of the phase space at constant energy E). But
note that this conjecture is not a direct consequence of the original Arnold conjecture.
Indeed, it is possible that most the trajectories of a measure preserving dynamical
system be dense everywhere in the phase space without being ergodic. There are
few and rare examples where this kind of behavior may be found for example for
billiard in polygons (which can be associated discontinuous twist maps) or for some
symbolic dynamics [15]. However, we do not consider these very special behaviors
as relevant for the dynamical systems we consider here because they are continuous
and differentiable enough so that they can exhibit KAM tori.

In the case where no KAM tori would exist, the conjecture becomes identical to
the original BEH.

Thismathematical statement about the statistics for the distribution of states after a
very long time, does not say anything about the time needed to achieve this statistics.
This hypothesis needs a physical interpretation because the subset C contains an
infinite number of tiny resonance gaps where, according to the Nekhoroshev theorem
[16], the dynamics is almost the same as those of the neighbouring tori over very
long times. Consequently diffusion through C becomes very slow in such regions,
while it is much faster in regions with strong chaos. The escape time from such
regions (and hence the dense filling of other regions) may become so long that their
observation becomes numerically impossible. Otherwise, note these tiny gaps, where
the trajectories could remain trapped for very long times, have negligible measure
compared to the global measure of C.

2.3 Anti Integrable Limit

We propose an approach different of the earlier proofs where we explain why we
believe this extended conjecture is right. Our arguments are not complete but in
any case proving or disproving our conjectures would be an important help for
understanding the Arnold diffusion conjecture.

We know from KAM theory that regular (quasiperiodic) trajectories may exist in
Hamiltonian systems because they dawn near integrable limits from which a large
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subset of them can be continued (under some diophantine conditions). We also know
from Poincaré that (non regular) chaotic trajectories may appear near resonances.
We believe as a counterpart that all non regular (chaotic) trajectories may dawn at
different (singular) limits we call anti-integrable. At such a limit, all trajectories
should be no more deterministic but purely random (and thus chaotic) essentially
determined by choosing randomly a sequence of numbers among some discrete set
of numbers (as for example for a random walk). However, such trajectories can be
continued (under someconditions) away from the anti-integrable limit thus remaining
still chaotic but now obeying the deterministic dynamical equations of the system.

Up to now, the existence of chaotic trajectories in a deterministic Hamiltonian
dynamics was proven long ago by pioneering works of Poincaré about the studies of
homoclinic or heteroclinic orbits near unstable fixed points. We can also prove their
existence from the concept of anti-integrability [19] for symplectic maps. However,
it is generally not easy to identify such a limit in Hamiltonian with a continuous time.
It is thus necessary to introduce dynamical systems with discrete time analogous to
Hamiltonian systems. Such dynamical systems are known as symplectic maps and
exhibit most features existing in continuous time Hamiltonian systems.

Symplectic maps were already introduced by Poincaré when studying Hamilto-
nian flow at n + n dimensions. He defined a return map (called Poincaré map) near
a periodic orbit which maps a submanifold Swith dimension 2n − 2 into itself. This
submanifold is defined as the transverse intersectionS = M ∩ E of two submanifolds
with dimension 2n−1, where E is the manifold with dimension 2n−1 at constant
energy (identical to those of the periodic orbit) and M is an arbitrary manifold with
dimension 2n−1 which intersects transversally E (not tangent) and such that the
periodic orbit intersects S at some point P . By continuity a trajectory (u(t),p(t))
with arbitrary initial point close enough to P generates a trajectory close to the
periodic cycle. Consequently, there exists a neighborhood V ⊆ S of P so that the
trajectory generated by (u(0),p(0)) ∈ V intersect again S at some strictly positive
finite time t1 > t0 that is (u(t1),p(t1)) ∈ S. Considering the smallest positive value of
t1, the Poincaré map T : V → S is then defined as (u(t1),p(t1)) = T ((u(0),p(0)).
This map is continuous by construction and moreover Poincaré have shown that it
is symplectic in its domain of definition (subsequently he used symplectic represen-
tation for proving theorems the existence of chaotic trajectories. from the existence
of homoclinic or heteroclinic points). A generating function (defined in the next)
can be easily defined for such return map from the original Lagrangian action with
continuous time which yields the trajectories as extrema.

However, the return symplectic map can describe over long time only the trajec-
tories of the continuous Hamiltonian which never escape fromV but sometime can’t
for many others. Thus in order to sidestep this problem, it is simpler to study directly
symplectic map defined in a whole space S and with a generating function.

Some symplectic maps can be defined from (non unique) generating function L :
(u,u′) → L(u,u′) ∈ Rwhere u ∈ Rn−1 and u′ ∈ Rn−1 on condition of invertibility

of the matrix of crossed derivatives −¯̄∂12L(u,u′) with respect to the components of
u and of u′) [18]. We also assume for convenience that this matrix is strictly positive
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with a bounded norm. This condition reduces to the twist map condition in the lowest
dimensional casewhereui are scalar numbersmay be considered as generalized twist
map condition in higher dimension.

Then, a symplectic map is obtained from the set of equations fulfilled by the
extrema of the formal sum

A =
∑

i

L(ui ,ui−1) (4)

which should define a map (ui ,ui−1) → (ui+1,ui ) equivalent to a symplectic map.
∂A = 0, yields

∂̄2L(ui+1,ui ) + ∂̄1L(ui ,ui−1) = 0 (5)

where ∂̄1L(u,u′) denotes the derivative vector of L with respect to the first set
of variables u and ∂̄2L(u,u′) with respect to the second set of variables u′. ui+1

is uniquely determined from the knowledge of ui ,ui−1, since we assumed above

that −¯̄∂12L(u,u′) is always invertible. Note that changing L(u,u′) into L(u,u′) +
F(u) − F(u′)where F is an arbitrary function does not change (4) so that it generates
the same map.

Then, setting pi = ∂̄1L(ui ,ui−1) as the conjugate variable of ui , Eq. (5) deter-
mines a map {pi+1,ui+1} as a function of {pi ,ui } which is the initial symplectic
map.

We may choose an action angle representation so that the components of ui are
angles. Then the model is invariant by global rotations of by multiples of π that is
if {ui } is a trajectory, {ui + 2πm} wherem is any vector with integers components,
is also a trajectory This condition implies that this generating function L has the
periodicity property

L(u,u′) = L(u + 2πm,u′ + 2πm)

It is convenient to redefine a new function A(u,u′ − u) = L(u,u′) so that
A(u, y) = A(u + 2πm, y) is periodic with respect to the first set of variables only.
We then obtain a generalization of the well known twist map which maps a cylinder
onto itself. Thus studying only the properties of discrete symplectic maps is a very
nice method for obtaining properties of continuous time Hamiltonians (note that all
the possible invariants of the initial Hamiltonian beside the energy can be removed by
this method, each invariant removing a degree of freedom of the initial Hamiltonian).

Within this representation, two interesting limits appear: Thefirst situation iswhen
the generating function A(u, y) only depends on its second variable that is when

L(u,u′) = W (u′ − u) where W is a convex function because we assumed −¯̄∂12L
strictly positive. Then the solution of Eq. (5) yields ui − ui−1 = ω independent of
the discrete time i where the rotation vector ω can be arbitrarily chosen. Then the
conjugate momenta pi are constant in time as well. This is an integrable limit near
which KAM theory holds for non resonant tori were ω have to fulfil a Diophantine
condition (3).
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The other limit we call anti-integrable, is obtained when A depends only on its
first variable when

L(u,u′) = V (u) (6)

where V is 2π periodic with respect to each of the component of vector u. Then
Eq. (5) becomes just ∂̄V (ui) = 0. The periodic function V have necessarily a finite
number of extrema (including maxima, minima and others like saddle points) within
a single periodic unit which are denoted bν and of course infinitely many others
which are the same modulo 2π . Then all the solutions of Eq. (5) have the form

ui = ai + 2πmi (7)

where for each i , ai is chosen arbitrarily among the set of vectors bν as well as the
integer components of vector mi. Note at this limit Eq. (5) does not determine a
symplectic map, but it does as soon there is a small perturbation A(u, y) = V (u) +
εB(u, y) of the generating function which involves both variables. Then, it is easy
to prove that each solution of (7) random or not, are continuable versus ε by the
implicit function theorem up to a nonzero value of ε providing two conditions [19].
The first condition is that the extrema the periodic potential (6) are not singular that

is the Jacobian matrix ¯̄∂2V is invertible for ui = bν . The second condition is that for
the considered solution (7), there exists a strictly positive number B so that

|mi+1 + mi−1 − 2mi | ≤ B for all i (8)

(Note that for a random set of mi fulfilling (8)), the sequence ri = mi+1 − m| mi

may be viewed as a random walk of a particle in a n dimensional square lattice
where each jump ri+1 − ri occurs randomly by integer steps in any direction but
with a maximum length smaller or equal to B). A solution of eq. (5) is continuable

when the Jacobian operator ¯̄∂A is invertible, which according to [20] is equivalent
to say that the associated trajectory is uniformly hyperbolic. Consequently this set
of chaotic trajectories has zero measure. Each of these chaotic trajectories fulfilling
condition (8) at the integrable limit can be continued till a certain threshold where
¯̄∂A ceases to be invertible. Since these trajectories may be viewed as extrema of the
generating function (which has infinitely many variables), the disappearance of an
extrema should be associated to bifurcations.

Indeed, itwas numerically observed in the standardmap (where vectorsu becomes
scalars) that the continuation of these chaotic trajectories generally disappear through
bifurcations, where they annihilate one another by pair. Pitchwork bifurcation may
be also observed for hyperbolic trajectories which has a spatial symmetry. Of course
our observation were done for large but finite systems. When the smaller value of
B for which Eq. (8) is fulfilled for all i , is large, the bifurcations occur near the
anti integrable limit, while they becomes more robust when B is smaller. These
bifurcating trajectories are generally chaotic trajectories (with positive Lyapounov
exponent) which are no more uniformly hyperbolic.
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However, as numerically observed in the standard map, few of them where the
sequence mi and ai are chosen non random in a special way where the smallest
possible parameter in (8) is B = 1, can be continued without bifurcations from the
anti-integrable limit till the opposite integrable limit. For example, this is observed
for periodic orbits which are in minimum action configuration [21] and are obtained
by choosing the set of integers mi according to a well defined rule and ai constant at
the unique minimum of V [19]. The same rule applied to well-chosen quasiperiodic
orbits yields Cantori (also called Aubry-Mather sets) which continue beyond their
bifurcation as (primary) KAM tori till the integrable limit.

However, these special configurations do not undergo standard bifurcations, but
a so called “breaking of analyticity”. Beyond this point the trajectory is no more
uniformly hyperbolic but becomes a KAM torus which require a more sophisticated
proof (KAM theory) for continuation. We can also prove that there still exists (sec-
ondary) KAM tori arbitrarily close to the anti integrable limit. They appear because it
can be proven that many periodic orbits must become linearly stable in some interval
before reaching their bifurcation. Such a behavior requires to fulfil a simple parity
rule concerning the choice of ai [19] so that we can say that a large fraction of the
periodic cycles obeys this rule. Though these trajectories become elliptic periodic
cycles, they remain continuablewith the constraint they remain periodic orbits but are
no more uniformly hyperbolic trajectories because they are necessarily surrounded
by secondary quasi periodic KAM tori (with non vanishing measure) in the linear
stability interval near the bifurcation. These intervals can be chosen arbitrarily close
to the integral limit by choosing the minimum constant B in (8) large. However, it
does not prove that all these interval overlaps, that is for any map near the integrable
limit, there are always secondary KAM tori so that the measure of the chaotic tra-
jectory is never the full measure of the phase space. We conjecture however that this
assertion is true.

Continuation from the anti integrable limit, generates only uniformly hyperbolic
trajectories.Complicationsmayappearwhen there are several possible anti integrable
limits in models with more than one parameter which may generate entanglement
of bifurcations between trajectories with different origin. However we suggest that
there are simpler symplectic maps easier to study (such as perhaps the standardmap),
where all uniformly hyperbolic trajectories can be generated just by continuation
from a unique anti integrable limit.

It is known that the set of uniformly hyperbolic trajectories H characterized by a
finite gap in the spectrum of their Jacobian matrix [20], has necessarily zero measure
in the phase space. However, we conjecture that the closure of this set (as well as
the subset of uniformly hyperbolic periodic cycles) which includes zero gap non
uniformly hyperbolic trajectories, is generically identical to the whole phase space
of trajectories. The generic condition is that the set of KAM toriK is porous (that is
when the Arnold diffusion conjecture should hold). Of course this conjecture does
not hold at the integrable limit where uniformly hyperbolic trajectories do not exist
anymore or when the system remains semi integrable in some domains (see the end
of Sect. 5 for our definition of semi integrability). Thus in the generic case, we
expect a dense scaffold of uniformly hyperbolic trajectories (extending the set of the
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trajectories which corresponds only to absoluteminima of the generating function (4)
we studied earlier for twist map on the cylinder). Then varying the model parameter
from the anti integrable limit, the uniformly chaotic trajectories should disappear
gradually through bifurcations at which they are no more uniformly hyperbolic but
remains chaotic but now with finite measure in the phase space. Some special non
chaotic trajectories at the anti integrable limit should undergo special bifurcations
where they become KAM tori (primary or secondary).

More studies and proofs are needed to confirm (or disproof) these conjectures. In
any case we believe that starting from anti -integrable limits may be a good approach
for proving the earlier mentioned Boltzmann-Arnold diffusion conjecture at least in
some class of simple symplectic maps.

3 Dynamics of Hamiltonians on Infinite Lattices

We consider now wave packets Hamiltonian on infinite square lattices at arbitrary
finite dimension. If the system is spatially periodic, the linear spectrum is purely
absolutely continuous with bands and delocalized eigen modes. When the system
is random, the linear spectrum may become purely discrete but in higher dimen-
sion than 2, it may still contain an absolutely continuous part with mobility edges.
When the linear spectrum contains an absolutely continuous part and when a wave
packet is introduced in the nonlinear system, the dynamics of the wave packet can-
not be quasiperiodic or chaotic because the Fourier spectrum of its dynamics which
is dense, necessarily involves frequencies in the absolutely continuous part of the
linear spectrum which radiates energy. However, the wave packet may generate a
periodic solution if its frequency and all its harmonics do not overlap the absolutely
continuous part of the linear spectrum. We may obtain stationary periodic solutions
called Discrete Breathers (DB) [22–24].When DBs exist, two well-known situations
may occur for an arbitrary initial wave packet depending on its initial conditions.
Either the initial wave packet spreads to zero or it converges to a Discrete Breather.
In the later case, a part of its energy spread while the other part remains localized.
Sometime we get a transiently mobile DB.

The situation which was poorly understood, is the topics of this paper. It occurs
when the linear spectrum is purely discrete without any continuous part that is when
the linear spectrum is not dissipative [25].

3.1 KAM Tori in Infinite Hamiltonian Systems on Lattices
with Linear Discrete Spectrum

A common belief [26] is that as the number of degrees of freedom of a Hamiltonian
increases, the relative measure of the KAM tori goes to zero. However this statement
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is too vague because it does specify how the infinite size limit is taken. Actually, this
statement is likely true only in the thermodynamical limit, that is when the energy
of the system diverges proportionally to its size. This is not the situation here since
the initial wave packet energy remains finite.

In a pioneering work, Fröhlich, Spencer andWayne (FSW) [27] proved rigorously
that Anderson localization may persist in the presence of nonlinearities. Their rig-
orous proof holds only for some special class of models chosen so that the complex
KAMmachinery is easier to implement. They consider a random system on a square
lattice at arbitrary dimension, with strong disorder where the eigenstates are mostly
localized at single sites, and chose a quartic nonlinear perturbation, which couples
only nearest neighbor oscillators. i : j denote the bonds of the lattice between site i
and its neighboring site j counted once since i : j is equivalent to j : i .

The FSW Hamiltonian has the form

HFSW =
∑

i∈Zd

hi (ui , pi ) +
∑

i : j
Wi : j (ui , pi , u j , p j ) (9)

where hi (ui , pi ) = 1
2 p

2
i + 1

2ω
2
i is the Hamiltonian of a linear eigenmode at site i

of d dimension lattice arbitrary which has the random frequency ωi . The nonlinear
perturbation is the nonlinear couplingWi : j (ui , pi , u j , p j ) only between neighboring
oscillators i : j . It is an analytic function with respect to its variables which expands
at order 4 at the lowest order.

FSWTheoremChoosing arbitrarily a strongly localized linear solutions (i.e. decay-
ing faster than exponential see [27]) of the linearizedHamiltonianwhich thus is quasi
periodic in time, the probability that there exists an exact quasiperiodic (non resonant
solution) of the perturbed Hamiltonian near this arbitrarily chosen linear solution
(for the L2 topology), is non vanishing when the amplitude of the initial solution
becomes small enough. Moreover this probability goes to 1 as the amplitude goes to
zero. The perturbed solution is also quasi periodic with perturbed frequencies.

To bemore precise, the linear solution is defined at the uncoupled limit by choosing
arbitrarily but with fast decay, its action Ii for each oscillator i . Since there is an
infinite number of oscillators, this solution at the integrable limit necessarily involves
an infinite countable number of fundamental frequencies and harmonics a priori non
resonant. Thus the terminology quasi periodic is not appropriate, we should say that
almost periodic is the proper term as explained in the next. Note that in infinite
systems the non resonance condition defined by Eq.3 does not involve an infinite
number of frequencies but only any arbitrarily finite subset of frequencies (otherwise
this condition would be meaningless).

The probability of existence of these KAM solutions is defined with respect to
the random distribution of frequencies ωi , which are uncorrelated and distributed
according to some probability law. FSW also conjecture that their theorem remains
still valid in general for lattice Hamiltonians with short range interactions whose
linear spectrum exhibits full Anderson localization, and also when the restrictions
requiring fast decay for the initial wave packet are removed.
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When the disorder becomesweaker, themaximum localization length of the eigen-
modes increases so that the nonlinear interactions between these eigenmodes extend
significantly much beyond the nearest neighbors. Then, although the interactions
between them still decay exponentially as a function of the distance, model (9) is
no longer a good model because the nonlinear interaction should extend beyond
the nearest neighbours while remaining short ranged. However, we do not see any
convincing reason to say that in that situation, this theorem does not remain true.
We expect, however, that the small amplitude region where KAM tori becomes very
dense smoothly shrink to zero as the longest localization length increases. The rea-
son is the dynamical behavior should exhibit a kind of global continuity because, as
mentioned above, KAM tori cannot exist anymore when the linear spectrum contains
an absolutely continuous part.

3.2 Numerical Observation of KAM Tori in Large Non
Integrable Hamiltonian Systems

The FSW theorem suggests that the existence of KAM tori as localized solutions in
nonlinear infinite lattices with purely discrete spectrum is a ubiquitous phenomenon.
In [8], we proposed an easy numerical method which does not require too much
time consuming calculations. It is based on the theory of Almost Periodic Functions
pioneered by Harald Bohr in 1924 [29].

BohrDefinitionandTheoremA function f (t) : R → C is said to be almost periodic
when for any ε > 0, there exists L(ε) > 0 so that in any interval with length L(ε)

there exists a pseudo period τ so that | f (t + τ) − f (t)| < ε for all t .
If f (t) is bounded uniformly continuous and almost periodic, then f (t) can

be written as a generalized Fourier series f (t) = ∑
n fneiωn t which is absolutely

convergent and where {ωn} is a countable set of frequencies.

Almost periodic functions involve an infinite number of arbitrary fundamental
frequencies unlike quasiperiodic functions which involve only a finite number of
fundamental frequencies (and their harmonics). In finite systems, KAM theory prove
that there only quasi periodic KAM tori with a number of fundamental frequencies
equal to the dimension of the torus. In that situation each of the coordinates of the
solution is quasi periodic. In infinite system, the FSW theorem proves the existence
of KAM tori we may still call quasiperiodic but actually must be almost periodic
solutions. The two terminologies often tend to be confused. In any case, we do not
see any very good reason to make a formal distinction. We still prefer to always use
the terminology quasiperiodic meaning sometime almost periodic.

The above Bohr’s theorem can be used to find KAM tori in large systems only by
testing for Poincaré recurrences as we explain now.

The Poincaré recurrence theorem states that in a finite Hamiltonian system, a
given trajectory return with probability 1 into any arbitrary neighborhood of its initial
condition (of course after leaving this neighborhood in case of continuous time). Thus
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for most trajectories and an arbitrary neighborhood of their initial conditions, we can
define an unboundedmonotone increasing sequence of times tn where limn→+∞ tn =
+∞ and limn→−∞ tn = −∞ so that the considered trajectory returns at time tn into
this neighborhood. This property looks similar to those required by the Harald Bohr
condition, except that the distribution of return times tn+1 − tn > 0 is not necessarily
bounded.However, considering trajectories so that for any initial neighborhood, there
exist some constant T so that 0 < tn+1 − tn < T is bounded for all n (we called this
property weak periodicity [28]), is not enough to prove quasiperiodicity The reason
is that the Bohr theorem uses the uniform topology not the weak topology as for
Poincaré recurrence. Nevertheless we can prove that if the Poincaré recurrence time
interval of a trajectories are bounded, this trajectory is minimal that is its closure
(which is invariant under the Hamiltonian flow) does not contain any strictly smaller
closed invariant subset.

Actually minimal trajectories which are linearly unstable (with positive Lya-
pounov exponents), are sensitive to the initial conditions (and imbedded in chaotic
regions) cannot be observed numerically over long time (by integration from fixed
initial conditions). Only the minimal trajectories which are linearly stable (with
zero Lyapounov exponents) could be (approximately) observed numerically over
reasonably long time. Since KAM tori (or possibly lower dimension linear stable
quasiperiodic tori) are the only known minimal trajectories which are linearly stable,
we may assume that if we observe Poincaré recurrence into any neighborhood of the
initial condition a given trajectory so that the intervals of time between consecutive
returns are bounded, le trajectory is likely a KAM torus.

Otherwise for testing numerically the possible existence of KAM tori, it is not
necessary to test all coordinates of the trajectory as a function of timebut a fewof them
since the Hamilton equations relate these functions of time one with each other. For
example in 1Dmodel knowing that the coordinates of two consecutive oscillators are
almost periodic implies recursively that all coordinates are almost periodic. Finally
in practice, testing only one coordinate is enough (and thus computer saving). If
we find this coordinate is quasiperiodic, testing any of the other coordinates show
they are also quasiperiodic. Otherwise it makes sense that the generic behavior of
a hamiltonian dynamical system is that all coordinates behaves all together either
quasiperiodic or chaotic (Nevertheless, non generic exceptions can be found in semi
integrable models such as the Ding-Dong models Sect. 5.

In summary, our numerical method based of Bohr theorem is used in a very
loose way for making it easy to use. It is thus rather efficient and fast to roughly
discriminate between chaotic trajectories and KAM tori and get an intuitive idea of
the phase space. But of course because of the unavoidable numerical errors, numerics
cannot strictly discriminate either between weakly chaotic trajectories (near KAM
tori) and these KAM tori. Otherwise, we may have trajectories which look chaotic
for a relatively long time but which actually would generate a high order secondary
KAM torus. It is thus hopeless to analyse the fine structure of the phase space at
microscopic scale with this kind method. The GALI method [30] which has been
recently proposed has the same flaws due these unavoidable numerical integration
errors.
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Using these argument, we searched in a Random DNLS model in 1D for wave
packets localized initially at a single site [8]. We confirmed that for a given disorder
realization, there are indeed many wave packets mostly at small amplitude which
seems to fulfill the Bohr condition, i.e. they are recurrent many times over all the
numerically observed evolution times.

We also observed “sticky” trajectories which appear Bohr recurrent over a time
beyond which recurrences completely disappear. They can be interpreted as trajec-
tories generated by initial conditions which are close to real KAM tori. The KAM
region as expected from theNekhoroshev theorem [16, 17] estimates the perturbation
growth near quasiperiodic integrable solutions. This growth is algebraic and becomes
slower and slower as the initial condition is closer and closer to an integrable limit
that is close to some KAM tori.

Because of Arnold diffusion, such trajectory which is not a true KAM torus finally
escapes from the resonance gap and rejoins themain chaotic region where it becomes
fully chaotic. When this escape time becomes longer than the computing time, this
effect is not numerically observable. On the other side, thewidth of the corresponding
high order resonance gap also drastically goes to zero. Thus in practice we observe
that the region of KAM tori at small amplitude looks connected while we expect the
existence of infinitely many tiny resonance gaps.

We also observed Bohr recurrent trajectories for large amplitude wave packets
which may be interpreted by the fact that initial conditions are close to linearly
stable discrete breathers (which are known exist in that model at large enough ampli-
tude). Studying special trajectories like periodic cycles, homoclinic or heteroclinic
orbits, whiskered tori etc. which occupy a zero measure in the phase space in finite
Hamiltonian, would require different methods, variational or else.

We also noticed that the trajectories which are not Bohr recurrent exhibit chaotic
behavior. We checked that the trajectories that look like KAM tori, according to this
Bohr criterion, have zero Lyapunov exponent, within numerical error, while the all
others exhibit a chaotic trajectories with non zero Lyapunov exponent. Actually, the
Bohr recurrence method is quite efficient for discriminating numerically between
KAM trajectories and chaotic trajectories.

Recently, we became aware of recent works [30] which use a different method
for discriminating between the chaotic trajectories and the others (KAM tori) in a
different model (random discrete KG models). Actually they got basically the same
conclusion as ours in the random DNLS [8] that is the probability to find regular
trajectories (or KAM tori) goes to unity at small amplitude. Discriminating between
localized and spreading chaos is another question discussed the next subsection.

4 Long Time Behavior of Wave Packets

When the initial wave packet generates a KAM torus, the long time behavior is
known since its dynamics is stationary and quasiperiodic. There is no spreading and
no diffusion at all. When it does not generate a chaotic trajectory, we consider our
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infinite systems as usual in physics as a finite system involving N sites where N
becomes large.

The extendedArnold diffusion conjecture described above holds thatmost chaotic
trajectories should visit densely the whole setC of chaotic trajectories which is itself
dense in the whole phase subspace C at constant energy, despite having no full
measure. We propose first a criterion which could be used numerically at least in
systems that are not too large. We define the probability density of the wave packet
in C as a function of its participation number.

4.1 A Criterion for the Long Time Behavior of a Wave Packet

Assume that a wave packet with energy E is spread over the whole system (whatever
its dimensionality) which consists of a large number of sites N , while its energy
density per site is about its average E/N and goes to zero as N grows to infinity.
Near that limit, the energy of the wave packet is mostly obtained from the harmonic
terms in the Hamiltonian, while the contribution to the energy of the nonlinear terms
goes to zero. Consequently, the perturbation from integrability being very small,most
wave packets in that regime should generate KAM tori. Consequently the measure of
the trajectories which are both in C and have a small amplitude becomes negligible.
On the contrary, wave packets which are not spread too much have non negligible
probability to be in C.

In order to quantify this effect, we propose to use a quantitative criterion which
measures how much a given wave packet has spread. The most commonly used
criterion, i.e. the inverse participation number of the wave packet energy seems to be
a convenient choice. To define it, we split the global Hamiltonian H of our system
into a sum H = ∑

i Hi of local hamiltonians Hi at the lattice sites which can be
chosen positive and vanishing when the corresponding oscillator is at rest. We may
choose for example, Hi as the Hamiltonian of the isolated nonlinear oscillator at site
i plus half of its interacting potentials with its neighbors. Thus, we can define the
inverse participation number of a wave packet as

S =
∑

i H
2
i

(
∑

i Hi )2
(10)

In finite systems with size N , we only have 1
N ≤ S ≤ 1 since the participation

number cannot be larger than the size of the system. In the limit of infinite size N ,
this inequality becomes 0 ≤ S ≤ 1.

Then, we define a probability density P(S) for arbitrary configurations in C with
the fixed energy E and a given participation number S. More precisely

P(S)dS = μ(B([S, S + dS]))

μ(C)
(11)
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whereμ(B([S, S + dS])) is the measure of the subsetB([S, S + dS]) of wave pack-
ets in the phase subspace C which have an inverse participation number in the small
interval [S, S + dS] while μ(C) is the total measure of C.

If one assumes that there are no KAM tori that isμ(K) = 0 in the phase subspace
E and consequently μ(C) = μ(E), then the BEH would hold in the whole space
E instead of C. We assume that the initial wave packet thermalizes. Instead of cal-
culating P(S) within the microcanonical ensemble, it is simpler to use Boltzmann
statistics in the canonical ensemble where the system is not strictly isolated. Then
we have to fix a different temperature kBTN = 1/βN for each system with size N in
order that the total energy average of the whole system E be equal to the energy of
the wave packet.

Since e−βN Ei /Z(βN ) = βNe−βN Ei is the Boltzmann probability energy density
for each oscillator, we have < Ei >= 1/βN and kBTN = E/N . The total energy∑

i Ei of this system is not absolutely fixed, as it should be, but its expected fluc-
tuation < (

∑
i Ei − E)2 >1/2= E/

√
N goes to zero at large size N . We neglect

this fluctuation. Then we can calculate the average of S defined by (10) which
is< S >= ∫

P0(S)SdS = Sm = 2/N and< (S − Sm)2 >1/2= √
20/N . This result

shows that P0(S) exhibits a thin peak located very near zero, which becomes a Dirac
peak δ(S) when N = +∞.

The curve P(S) becomes drastically different from P0(S) because most initial
wave packets with a small participation number S generate KAM tori and have to
be removed from the statistics. Thus, we expect that P(S) exhibits a peak roughly at
the participation number Sm which corresponds to the average cross over amplitude
Am ≈ ESm , below which the density of KAM tori sharply increases. (Note that
because of model disorder, this cross-over depends on the location of the wave
packet in the system. Am is thus an average). Thus when the wave packet energy E
increases, its peak at Sm moves toward smaller values proportionally to 1/E . The
shape of P(S) should depend on the model and the amplitude of the disorder which
determine its KAM tori. For example, we expect that Am (as well as Sm for the same
energy) becomes smaller for smaller disorder when the localization length increases,
which does not favor the existence of KAM tori and decreases Am .

We thus conjecture that P(S) should look roughly like a single peak as shown in
Fig. 1 with a maximum located at Sm not near zero but somewhere else in the interval
0 < Sm < 1.

We think that this probability density P(S) should be numerically calculable with
a reasonable accuracy at least for small systems, which would yield more quantita-
tive information about it. One method could be to make the statistics of the initial
inverse participation number S over many random choice of wave packets at the
same energy E discarding all initial wave packets which look KAM tori (actually in
finite systems KAM do exist). Another method would be to integrate one of these
initial chaotic wave packet over very long time and look at the distribution of their
participation number over time. According to the Arnold–Boltzmann hypothesis, the
two methods should be equivalent. However it may be more efficient to combine the
two methods by repeating the time statistics method over many initial wave packets
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Fig. 1 Sketch of the expected probability density P(S) of chaotic wave packets (in C) versus
their inverse participation number S in the limit of large system. Its maximum is obtained for a
participation number Sm . The shape of this curve depends on the model and its nonlinearities but for
a given model Sm should be also roughly proportional to the inverse energy E of the wave packet.
P(S) can also be defined for finite systems but then it depends on the chosen disorder. However, its
fluctuations should disappear in the limit of an infinite system

chosen randomly in C. Increasing the size as much as possible could give a more
precise idea of P(S) at infinite size...

Actually, up to now most numerical experiments were performed for initial wave
packets systematically located only at a single site, or better few sites or a single
linear mode. Their inverse participation numbers near unity were generally very
different from the expected most probable value roughly around Sm at the pseudo
thermal equilibrium in C. Consequently it should be necessary to wait for a certain
transient time (which may be very long) to reach the core of C where the behavior
of the wave packet becomes more typical. Otherwise, although the dynamics of the
inverse participation numbers was investigated, no statistical study of its distribution
was made to my knowledge...

4.2 Discussion of the Long Time Behavior of Wave Packets

The above studies and conjectures imply two essential conjectures about the long
time behavior of finite energy wave packets (not rigorously proven but supported by
strong arguments):

Conjecture 1 In an infinite nonlinear lattice Hamiltonian system with a purely dis-
crete linear spectrum (i.e. with Anderson localization), the probability that a wave
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packet with finite energy spreads (i.e. its maximum amplitude modulus goes to zero),
is zero.

In physical terms it just never spread. Consequently at any given time the wave
packet is spatially localized in the sense that its inverse participation number is always
non vanishing. However this condition does not imply that the wave packet always
remain focused within a single peak. It may also break into a finite (only) number of
smaller wave packets. In any case, since the wave packet does not spread, we expect
it behaves almost the same as in (large enough) finite system over long time (till it
reaches the boundary of this system). In any large finite system, the focused wave
packet should be wandering through the lattice visiting the whole phase space if one
assume the Boltzmann conjecture which says that most chaotic wave packet in C
should go at some time arbitrarily close to any other wave packet inC. Since we have
energy diffusion through any large enough finite system whatever is its size and we
should get diffusion in the infinite system as well.

However this conclusion does not imply that the Boltzmann diffusion conjecture
can be extended the system size is strictly infinite. The first reason first is that the
Liouville measure is no more defined for infinite systems so that we have to find
another appropriate definition for the word probability as we already noticed above.
The second reason is it is really possible that the wave packet does not explore the
whole phase space at constant energy (considered with the l2 norm since we study
wave-packets with finite energy thus square summable).

For illustrating our claim, we consider an intrinsically chaotic dynamical sys-
tem (non Hamiltonian) the trajectories consist of random walks on a square lattice
at arbitrary dimension. Though we believe that simple random walks are not good
models for describing the wave packet diffusion they yield interesting informations.
The phase space in which evolve the random walk just consists of all possible loca-
tions on the square lattice. This is the standard model for diffusion which yields the
well-known diffusion laws from the statistics over all possible realizations of the
random walk. The well-known Polya theorem (proven by combinatorial analysis)
asserts that the probability P(d) that a given random walk on a square lattice returns
to the origin after some finite time is unity when the dimension of the lattice is d = 1
or 2. but at three dimensions and more, P(d) is non vanishing but is no more unity.

A simple empirical physical argument allows to recover this result and more. It
is well-known that after N steps, the random walk is mostly confined into a sphere
with a radius proportional to

√
N . Since the volume of this sphere at d dimension is

proportional to Nd/2 and since a randomwalk at time N visits only N sites (at most),
at long time it is clear that when d > 2 there are too many sites to visit in the sphere
so that considering only a single random walk realization, many sites of the lattice
are never visited. However considering the statistics over many realizations, all sites
have a nonvanishing probability strictly smaller than 1 to be visited (depending on
their distance from the origin). Unlike forArnold diffusion, a single chaotic trajectory
may not visit the whole phase spacewhen the dimension of the lattice is strictly larger
than 2. However if we consider any finite connected part of the lattice (phase space)
whatever its dimension, a single random walk fill densely the whole phase pace with
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probability one. Finally we conclude that Arnold diffusion conjecture is surely true
in that model for any finite system and if the system is infinite but if its dimension is
larger than 2, it is surely wrong.

Sincewe cannot say that the randomwalk is not diffusive in lattice with dimension
larger than 2, we suggest a definition for having a diffusive wave packet which is
acceptable in physics which avoid this problem.We require the condition of compact
support for the wave packet in order to avoid spurious initial conditions where the
finite energy wave packet is already broken into an infinite number of smaller wave
packet spread over the whole system.

Definition of Diffusive A wave packet is diffusive in a finite system if it generates a
chaotic trajectory dense in the phase space (fulfilling theArnold diffusion conjecture).
A wave packet with compact support is diffusive in the infinite system if there exists
L0 > 0 so that it is diffusive in all finite connected subsystems defined by ‖i‖ < L
with L > L0.

In other words we assume (as done in practice in numerical simulations) that the
dynamics of the wave packet in the infinite system can be well approximate over
arbitrary long time in finite subsystems providing they are large enough. Actually
physical systems are always finite though they could be very large butwe approximate
them as infinite systems in theoretical models.

A simple observable numerical manifestation of the diffusivity of a wave packet
is that the variation of the second momentum of the energy distribution as a function
of time looks unbounded. Then we suggest the next conjecture valid for infinite
systems:

Conjecture 2 With the same conditions as for the above conjecture 1, wave packets
with a given finite energy may generate either stationary KAM tori (inK) or diffusive
chaotic trajectories (inC) bothwith finite probability (This probability is definedwith
respect to the disorder realization).

Diffusion in our model is different from standard diffusion described by random
walks. Actually we expect that the rate D of diffusion of the wave packet depends
both on its inverse participation number S (which fluctuate as a function of time) and
of its spatial location because of disorder. When S is larger than or of the order of
Sm , the wave packet is fully chaotic because KAM tori are relatively rare, hence we
should get rather faster diffusion. On the other hand, when S becomes smaller than or
of the order of Sm , the KAM tori become denser, so that chaos becomes weaker and
diffusion slower. It may also happen at smaller S that wave packets get trapped for a
very long time in very weakly chaotic domains of tiny resonances gaps. Because of
Nekhoroshev’s theorem, the escape time from such quasi trapping region increases
very fast by order of magnitudes as S becomes small and there is practically no
diffusion during this trapping time.

However, though quasi trapping events last very long, they are also so rare so that
the probability density P(S) remains small for small S. Thus, the diffusion of the
wave packet may be sometimes fast, slow or very slow depending not only on the
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variation of S but also on the local disorder. Such a behavior is reminiscent of a so
called random walk in a random scenery. This fact may explain why standard energy
diffusion is not observed, while slower diffusion with lower time exponents is found
in many models both with disorder and nonlinearities.

Let us summarize now, the consequences of the above conjectures on the qual-
itative interpretation of the numerical observations on the wave packet behavior in
lattice Hamiltonian with discrete linear spectrum:

1. For large energy wave packets, initially well focused and of large amplitude far
above the KAM threshold which exists at small amplitude, the inverse partic-
ipation number S of the wave packet is initially near unity while Sm is small.
Thus its inverse participation should first decay to reach the region of maximum
probability around Sm . This effect appears as a transient spatial spreading of the
wave packet. After this transient time, the inverse participation number of the
wave packet mostly fluctuates around its average value Sm (pseudo thermaliza-
tion inC) whilewave packet spreading stops on average. Thewave packet remains
chaotic but mostly at diffusive spots corresponding to the largest amplitude of the
wave packet. We note that some aspects of certain recent numerical observations
[31, 32] could be interpreted consistently within our predictive model.

2. When the initial wave packet still well focused has a smaller energy, Sm increases
and becomes closer to 1. There is a certain probability that it generates a stationary
KAM torus. When it does not, the transient spreading of the wave packet last a
shorter time and chaos is weaker than in the large energy case.

3. When the initial energy of the wave packet is very small. In most cases, the wave
packet is non chaotic and generates a quasiperiodic and stationaryKAM trajectory
similarly to the case without disorder. However, there is still a small probability
that the wave packet be weakly chaotic near KAM tori. This is in the Nekloroshev
regime which becomes numerically non observable. Thus there is practically no
observable difference between the behavior of very small amplitude wave packets
in the model with nonlinearities and those of the same wave packets in the same
but linearized model. Indeed this feature was already mentioned in [3].

4. Another consequence of the fact that the complementary setC is dense everywhere
which means that giving an arbitrary wave packet with energy E , either it belongs
to K or it is possible to find arbitrarily close to it a wave packet with the same
energy as in C. The consequence is that in principle spatially localized chaos
cannot generically exist (in contradiction with numerical observations) [30].

Actually localized chaos is believed to be numerically observed [30]. We shall
explain this observation in the next section where we study Ding Dongmodels which
are not generic and where localized chaos is proven to exist.

Our general conclusions may not hold in some special models. Let us discuss first
why our conclusions should be modified in case of non genericity in some special
models. Our theory relies on the porosity of the set K of KAM tori at constant
energy E described in subsection (2.2). However porosity may not always occur. It
may be that in some regionR of the phase subspaceE, chaotic resonance gaps which
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generically open near resonant tori, do not do so and thus the KAM tori are locally
dense and compact. Thus, in that region R ⊆ K, the nonlinear perturbation of the
Hamiltonian preserves integrability (we call such an Hamiltonian semi-integrable)
so that the set C of chaotic trajectories is not dense everywhere in E. Moreover it
may become disconnected because the connectivity argument also relies on porosity.
Consequently, if the phase spaceCdoes break intomanydisconnected subsetsCn , full
ergodicity in C will no longer hold. However, ergodicity may still persist separately
in each of the connected subset Cn .

The Ding Dong (DD)model we discuss now is an example of a non generic model
in the sense that it is semi- integrable as defined above. Its advantage is that exact
results can be obtained on it and in particular we prove the first Conjecture 1 of this
section. We also prove that C is disconnected unlike the generic case which implies
the second conjecture does not hold for DD models. This is explained because of
the absence of porosity of the regular (i.e. KAM) trajectories, since KAM barriers
are not porous and hence the existence of localized chaos becomes possible. We also
explain how a tiny perturbation of this model can restore its genericity.

5 Exact Results for Ding Dong Models

The dynamics of wave packets in special models belonging to this class, was numer-
ically studied by Pikovsky [33]. It was observed that the behavior of such wave
packets was also subdiffusive as well as in the other models quoted above earlier.

5.1 Definition

The hamiltonian form of the Ding Dong (DD) model is that of a modified FSW
model where the nonlinear coupling is replaced by hard core potentials. It consists
of an array of random anharmonic oscillators on a lattice of arbitrary dimension d
with nearest neighbor hardcore coupling. We choose square lattices for simplicity
but our results would hold for any networks even random, on the condition that
the coordination number (number of bonds starting from a given site) be finite and
bounded. Consider the Hamiltonian

HDD =
∑

i

⎛

⎝ 1

2mi
p2i + Vi (ui )) +

∑

i : j
W (u j + bi : j − ui

⎞

⎠ (12)

where the smooth anharmonic local potentials Vi (x) are chosen randomly and
expands Vi (ui ) ≈ 1

2miω
2
i + · · · . We assume the existence of a positive constant K

so that
Kx2 ≤ Vi (x) for all i and x (13)
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so that the lowest order of the expansion never vanishes. The masses mi and linear
frequencies ωi are uncorrelated random numbers, with smooth probability density
bounded in intervals 0 < mmin ≤ mi ≤ mmax and 0 < ωmin ≤ ωi ≤ ωmax .

The interaction potential W (x) is a hardcore potential

W (x) = 0 for 0 ≤ x

W (x) = +∞ for x < 0 (14)

{bi : j } is a given collection of positive numbers. These numbers are assumed to be
randomly distributed in an interval 0 < bi : j < bmax , which may include 0 according
to an arbitrary probability density but without divergence at zero. This condition has
the advantage to allow the existence of chaotic trajectories in themodel for very small
energies as well as in the generic case where the coupling potentials are smooth and
not semi-integrable.

Consequently, the algebraic distancebetween twoneighboringoscillatorsdi : j (t) =
u j (t) − ui (t) + bi : j has to remain positive or zero for all trajectories. During some
interval of time between two collisions, each oscillator i has a time constant energy
Ei = 1

2mi
p2i + Vi (ui ) ≥ 0 and oscillates periodicallywith a frequency�i (Ei ), which

generally depends on its energy (except if we choose the potential to be harmonic).
When a collision occurswithin one bond i : j among the 2d bonds connected to i (that
is when di : j (t) vanishes at some time tc), a standard elastic collision occurs between
the two neighboring oscillators i and j where its energy (and frequency) changes
discontinuously according to the conservation laws of the bond energy Ei + E j and
momenta pi + p j at the collision time.

5.2 Regular Trajectories and a Lemma

Exact results about (non) wave packet spreading are rather easy to obtain on this
class of models as a consequence of the following lemma which is straightforward
to prove:

Lemma Considering a bond i : j assumed isolated from the rest of the system, the
two oscillators i and j cannot collide if Ei + E j < Bi : j where Bi : j = minx (Vi (x) +
Vj (bi : j − x))

Because of the inequality (13), we have

min
x

K (x2 + (bi : j − x)2) = K

2
b2i : j < min

x
(Vi (x) + Vj (bi : j − x)) = Bi : j (15)

so that the collection of random numbers Bi : j is bounded from below by uncorrelated
number K

2 b
2
i : j

As a remark this lemma is also a necessary condition for having a pair of non
colliding oscillators with the extra condition that the frequencies�i (Ei ) and� j (E j )
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of these two oscillators be incommensurate, that is ni�i (Ei ) + n j� j (E j ) �= 0 for
any choice of integers ni and n j . Otherwise, there may exist non colliding solutions
at larger energy for example when the two oscillators i and j oscillates at the same
frequency and in phase. In any case, we only need to use the lemma in the next as a
sufficient condition.

Considering now the infinite system, we attach a strictly positive number Bi : j
at each bond i : j . We thus have a collection of random numbers only correlated
between nearest neighbor bonds i : j and i : k or k : i sharing a common lattice site.
We could remove this correlation by choosing miω

2
i constant for all i but this is not

necessary. As a corollary of the above lemma, we obtain

Corollary If at a given time, the oscillator energies Ei of a trajectory generated by
the DD Hamiltonian (12), fulfill the inequalities

Ei + E j ≤ Bi : j for all bond i : j (16)

then no collision occurs between any couple of neighboring oscillators anywhere
and at any time past and future so that this condition holds at all time. Moreover,
condition (16) is also generally necessary for having no collision.

However, when the oscillator frequencies �i (Ei ) and � j (E j ) are commensurate
(i.e. their ratio is a rational number), condition (16) is no longer necessary since the
bound Bi : j can be chosen larger by choosing appropriately their relative phase. Such
situations can be neglected, however, since commensurability has probability zero
to occur.

When inequalities (16) is fulfilled, each oscillator is oscillating periodically with
its own frequency �i (Ei ) independently one from the other, and thus the global
solution is almost periodic. We consider them as KAM tori which are also almost
periodic solutions. Thus, considering in the phase space {pi , ui }, conditions Ei +
E j < Bi : j for all i : j and condition

∑
i Ei = E determines a bounded closed set

R ⊆ K ⊂ E which contains {0}.
Conversely, if only one (or more) of the inequalities (16) are not fulfilled at some

arbitrary time, the considered trajectory necessarily exhibits at least one collision
and then it can be readily proven that it must exhibit an infinite number of collisions
in the past and in the future. Numerical simulations suggest that most colliding
solutions are not almost periodic but are chaotic. Consequently, the two sets R = K
are equivalent neglecting only a zero measure subset. The complementary set in E
of colliding trajectories where most trajectories are chaotic, define the set C.

5.3 Some Exact Results

Using the above lemma and inequalities (15), we readily obtain:

Theorem 1 No wave packet in a DD model (12) can spread
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Proof Let us assume that we find a wave packet with finite energy which would
spread. Then for any ε > 0, there should exist a time t (ε) so that 0 < Ei (t) < ε for
all i and all time t > t (ε).

A bond i : j where inequalities (16) is fulfilled, cannot transfer any energy during
some time. It is called blocked.When ε is chosen small enough, the local energies Ei

become small enough so that there aremany bonds (but not all of them)which become
blocked for all time t > t (ε). When ε decreases the density D(ε) of blocked bonds
increases and reaches 1 as ε goes to zero. Simultaneously, the density 1 − D(ε) of
unblocked bonds decreases and reaches a percolation threshold for a non vanishing
ε < εp where they only form disconnected and finite clusters. The consequence is
that for t > t (εp), the energies confined in each of the finite clusters on unblocked
bonds should remain constant and thus cannot go to zero. Thus it is impossible at this
stage that for t > t (εp), the wave packet continue to spread. Consequently complete
spreading is impossible for any wave packet with finite energy.

For defining a percolation threshold, we assumed that the random numbers Bi : j in
(16) are uncorrelated which is not perfectly true. To be absolutely rigorous, we could
consider a smaller set of blocked bonds defined by the weaker condition Ei + E j <

B

i : j = K

2 b
2
i : j (which implies (16)) but where B


i : j are uncorrelated numbers. The
set of unblocked bonds defined by this condition becomes larger, thus it percolates
more easily, which implies that the original set of unblocked bonds also exhibit their
percolation transition for a larger critical value of ε.

We define a critical energy Ec, small enough and chosen such that all the bonds
where Bi : j < Ec, do not percolate that is there are only finite clustersCn of unblocked
bonds disconnected on from each other by the blocked bonds where Bi : j > Ec. Then
if we choose an initial wave packet with energy E < Ec and also initially excited
oscillators only inside one of the finite clusters of unblocked bonds, it is impossible
that during its time evolution, this wave packet could transfer any energy outside this
cluster since it is surrounded only by blocked bonds where E j + El < E < Bk:l .

The dynamical behavior of the wave packet could be either quasi periodic or
chaotic. It suffices for that to focus enough energy only on the two sites i and j of a
single bond inside the cluster so that E = Ei + E j > Bi : j . Consequently, the wave
packet will necessarily involve collisions and be chaotic in general.

One can do the same trick when distributing the initial energy E over several
bonds inside the same cluster but then it is necessary to choose appropriate finite
clusters Cn where there are several (connected) neighboring bonds where Bi : j are
small enough. This is always possible to find since the lower bound of Bi : j is zero.

Whatever the initial energy E > Ec of the wave packet, it is possible to split it
into a finite sum E = ∑

k Ek where 0 < Ek < Ec and to distribute each component
of the energy Ek on different clusters as explained above. Consequently, we have the
theorem:

Theorem 2 For any choice of the initial energy E, there exist wave packets at this
energy which generate either quasiperiodic trajectories, or localized chaos (which
may consist of one or several chaotic spots). This result implies that the set C of
chaotic trajectories is not fully connected.
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However, it may still be true that when the initial energy E of the wave packet
is large enough, a connected subset C′ ⊂ C of wave packets which generates delo-
calized chaos should exist and be predominant for large initial energy. We have no
proof of this statement but it is necessary to assume its validity to understand why
subdiffusion has been observed at least in some DD models [33]. Otherwise, when
E < Ec the above arguments prove that spreading wave packets cannot exist.

It is possible to calculate the probability density P(S) of the inverse participation
number S in C, but since it is not connected, C, it does not yield useful informa-
tion about the long term behavior because an initial wave packet cannot visit the
whole space of chaotic wave packets at the same energy. Calculating Pn(S) for each
connected component Cn of C would be more useful.

Other exact statements can be easily proven using the above lemma:

Theorem 3 Let us consider a DD model (12) at some non vanishing temperature
kBT = 1/β, and a random configuration chosen according to the Boltzmann statis-
tics, then the probability that this configuration be quasi periodic is zero.

This theorem implies that the existence of regular trajectories does not play any
role for the thermal equilibrium. It confirms that most trajectories are colliding solu-
tions (likely chaotic) so that the BEH is true and that we have spontaneous Boltzmann
thermalization. Another theorem can be proven for confirming that the dynamical
behavior of a finite energy and chaotic wave packet cannot be described according to
Boltzmann statistics in the full phase space, but within a statistics restricted to each
of the zero measure ergodic subset Cn we proposed above:

Theorem 4 Let us consider a sequence of finite size N DDmodels at non vanishing
temperature kBTN = 1/βN , chosen in order that the average total energy E (finite
and non vanishing) of each system is the same and equal to E independently of N .
Then the probability QN according to the Boltzmann statistics that a configuration
generates a quasi periodic trajectory, goes to unity when N goes to infinity.

5.4 Non Genericity of DD Models

Finally, let us explain in this subsection why our results concerning the existence of
localized chaotic wave packets in DD models, seems to disagree with the generic
results described in the previous section. Actually arbitrarily small perturbations of
the Hamiltonian may suppress semi- integrability and replace its generic behavior
with a kind of physical continuity. For example, we may replace in the Hamiltonian
(12), the singular hardcore potential W (x) (14) by a smooth potential Wν(x) =
(1 + tanh x)ν with ν > 0 large so that limν→+∞ Wν(x) = W (x). KAM theory holds
in the modified model which is no longer semi-integrable.

Considering wave packets in the DD model with energy E , located at a blocked
bond i : j characterized Bi : j > E = Ei + E j ,weobtain onlynoncollidingquasiperi-
odic solutions at energy E in the DDmodel. They are replaced in the modified model
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by quasi periodic KAM tori looking almost the same but infinitely many very tiny
chaotic resonance gaps open near each resonant tori. As a result chaotic wave packets
at energy E may occupy this impenetrable DD barrier. They may penetrate inside the
barrier through this tiny resonance gaps thus becoming locally very weakly chaotic
(Nekhoroshev diffusion). The consequence is that DD barriers can no longer stop
energy transfer and consequently wave packet diffusion. However, although between
these pseudo barriers, the dynamical behavior of wave packets is almost unchanged,
the DD barriers persist as pseudo barriers the crossing time of which may become
very long. In the limit ν → +∞, that is when recovering the DDmodel, the crossing
time of such pseudo barrier should diverge so that physical continuity with the DD
model is restored.

6 Concluding Remarks

Our predictions have been developed essentially in order to be consistent with the
known mathematical theorems and well believed conjectures without any numerical
help. Thus we have only qualitative predictions to offer without quantitative infor-
mation. Some of our conclusions agree with the numerical observations which were
done up to now, while for others, there is no agreement. We summarize our main
predictions versus numerical observations and encourage some of our colleagues to
reexamine their interpretations.

1. An initialwave packetmay generate a stationary quasi periodic solutionwith some
non vanishing probability which increases and tends to unity at small amplitudes.
Such trajectories are non chaotic and look the same as in the linear case. Despite
their existence as exact solutions, theywere not believed as important for the wave
packet diffusion problem. Our early numerics deeply supported their existence
[8] in the randomDNLSmodel andmore recent papers also observed such regular
trajectories in different models and with the GALI method [30]. We emphasize
that their existence is indeed essential for understanding the behavior of chaotic
subdiffusive wave packets.

2. For the non stationary (chaotic) wave packets, we expect that subdiffusion char-
acterized by the divergence of the second moment of the energy distribution as
a function of time occurs as a consequence of the Boltzmann diffusion conjec-
ture. Moreover, we have arguments which suggest that this wave packet diffusion
may be similar to a random walk in a random scenery. This fact could explain
a diffusion exponent different and smaller than for standard diffusion. Indeed,
subdiffusion has been numerically observed in many models quoted in this paper.

3. We also predict that the wave packet cannot spread to zero which is equivalent
to say the inverse participation number does not go to zero. We expect it fluc-
tuates around an average value Sm (see Fig. 1). Though this statement may still
be considered as a conjecture in general, it is rigorously proven to be true in the
Ding Dong models where numerical observations done for some of them, exhibit



32 S. Aubry

wave packet subdiffusion similar to those observed in the other nonlinear random
models [33].

4. On the contrary, it has been claimed on the base of numerical observations [31],
that the inverse participation number goes to zero with an exponent σ related to
the subdiffusion exponent α But this is impossible if the wave packet does not
spread.

5. It has been recently claimed on the basis of numerical observations [32] that chaos
persists in the wave packet after a long time [32]. We expect that this result is
a consequence of non spreading since the average value Sm of the inverse par-
ticipation number does not vanish. Otherwise this observation is in contradiction
with the previous statement that the inverse participation number would go to
zero, since the nonlinear terms should become numerically negligible after a long
enough time. As a consequence we should see the wave packet behave as if it
were linear with very weak Nekhoroshev chaos practically non observable and
no chaotic spots.

6. Note also that themeasure of the initial chaoticwave packets (if any) asymptotic to
a quasiperiodic KAM solution at infinite time is zero (the proof of this statement
is a straightforward consequence of the Liouville theorem which states that a
Hamiltonian flow conserves the volume in the phase space). Consequently, the
probability that the dynamics of an initially chaotic wave packet becomes regular
after a long time and non chaotic is zero conversely to expectations.

7. Finallywe predict also the existence of a transient regime duringwhich an initially
well focused wave packet should reach a kind of thermal equilibrium according to
theBoltzmannArnold statistics described above in this paper.During this transient
time, the wave packet exhibits both diffusion and spreading that is both the second
moment and the participation number grow. After this transient time only the
second moment continue to grow, while the inverse participation number stops
to decay and fluctuates around its well-defined average value Sm corresponding
to the maximum of curve Fig. 1. Up to now this transient regime has not been
numerically identified, but this might have been due to a bias following the early
interpretations of numerical observations. Otherwise, this relaxation time may
become very long when the average inverse average participation number Sm is
small and when the wave packet is initially well focused at a single site.

The cause of the absence of spreading of wave packets in the class of models
considered here is essentially an entropic effect, that is the accessible volume in the
phase space that corresponds to spreading wave chaotic packets becomes negligible
compared to the accessible volume for the focused wave packets. This is different
from the absence of spreading which may occur in models which have an extra time
invariant (or more) beside the total energy and where the absence of spreading is
due to topological constraints. An example are DNLSmodels (random or not) which
conserve both energy and total norm. In such models any trajectories must stay both
in the (2n−1) dimensional manifold E corresponding to its constant energy E and
the (2n−1) dimensional manifold N corresponding to its constant initial norm N .
When the ratio of the energy E/N is too large it turns out that the manifold E ∩ N
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does not contain {0} as an accumulation point [7] so that spreading becomes just
impossible when the system size n goes to infinity. Otherwise, this subspace may
contain a subset of KAM toriK ⊂ E ∩ N as well as chaotic trajectories with Arnold
diffusion in the complementary set C ⊂ E ∩ N.

Similar behavior to the one expected in the class of models considered here should
also occur in other non random systems for example quasiperiodic systems [2]. Our
universal conclusion is that spreading of wave packet cannot occur when the linear
spectrum of the system is purely discrete and when nonlinearities are taken into
account. Randomness is not necessary. In some sense, Anderson localization is not
suppressed by non linearities in contradiction with early papers.

This work should suggest new questions about the thermal behavior of the same
models at very low temperature when the average amplitude of the thermal fluc-
tuations becomes smaller than the crossover amplitude, where KAM tori appear.
Then the system should exhibit only few slowly diffusive chaotic spots (or chaotic
breathers) surroundedby anoceanof regular nondiffusive quasi periodicfluctuations.
Such a situation should be associated with a dramatic drop of the thermal conductiv-
ity so that complete thermalization may become impossible within reasonable times.
Numerical experiments of fast quenching in some nonlinear systems have revealed
the spontaneous formation of (time periodic) discrete breathers slowing down the
thermalization, although in these examples the linear spectrum was not discrete but
completely absolutely continuous [34]. The same kind of numerical experiments in
systems with discrete spectrum (for example random) should dramatically enhance
the effect. This may indeed be the situation in real glasses, where many questions
remain unanswered [35], even though the linear phonon spectrum in such bond dis-
order systems should not be purely discrete, but exhibit an absolutely continuous
part corresponding to low frequency and long wave length acoustic phonons.

I acknowledge G. Tsironis and T. Bountis for interesting discussions and ques-
tions. I also thank again T. Bountis for inviting me to this meeting and with Ch.
Skokos for communicating their very interesting recent papers right after my talk. I
am also indebted to R. MacKay for reading in detail the manuscript and his many
interesting comments helping improvements.
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Nonlinear Phenomena Shaping
the Structure of Spiral Galaxies

P. A. Patsis

Abstract The structures observed in disk galaxies can be explained by the presence
of nonlinear phenomena associatedwith dynamicalmechanisms acting in their stellar
and gaseous components. Successful models can reproduce the observed morpholo-
gies and their evolution in time. Here, I summarize, from a personal point of view,
the basic results of nonlinear, orbital galactic dynamics, which explain the presence
of bars and spiral arms in the disks. I also mention the main ideas that have been
discussed in the field during the last sixty years and I refer to some open issues and
alternative possibilities for structure formation in spiral galaxies.

Keywords Galactic dynamics · Hamiltonian systems · Orbital theory ·
Gas-response models

1 Introduction

Spiral galaxies are complex dynamical systems. Their global morphology is the
result of dynamical processes taking place mainly in their stellar component (disk
and bulge), in the gas that lies in the equatorial plane of the galaxy and in the dark
matter halo that surrounds the disk. The stellar and the gaseous components interact
among themselves, as well as with the dark matter halo. The evolution of each one
of these components has to take into account the presence of the others and their
dynamical evolution. In order to understand the dynamics of the structures, which
are observed in this type of galaxies, we have to understand the global dynamics of
a complex system.

The structures that appear in disk galaxies, are the bars, the spiral arms and the
rings (nuclear, inner and outer).Galaxieswith prominent andwell-defined spiral arms
are called “grand design”. The presence of the spiral arms may be accompanied by
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Fig. 1 The grand-design spiral galaxy NGC 5248 dominates in the lower left corner of the figure.
In the upper part of the image are discernible a disk galaxy with a ring and a disk galaxy with an
edge-on orientation. (Observation in B filter with the 2.2m ESO/MPA telescope, La Silla, Chile,
by Patsis, Heraudeau & Grosbøl, 2000)

the presence of a bar and so we speak about normal (non-barred) and barred spiral
galaxies. A typical grand design example (NGC 5248) is given in Fig. 1.

Amajor contribution to the field came in the 1990s, with the development of near-
infrared detectors. Observations in near-infrared wavelengths allowed the imaging of
the old stellar population of the disk, which traces much better the mass distribution
than observations in the optical. The conspicuous differences in the morphologies of
a galaxy in near-infrared and optical images, gives valuable information to be used
as input in theoretical modeling. Stellar models have to be compared with data from
near-infrared observations, while gaseous models with morphologies encountered
mainly in the optical.

Plausible assumptions that reduce the degree of complexity of a galactic system
are necessary in order to be able to construct models that reproduce the dynamical
behavior of galactic disks, remaining, to a large degree, realistic. There are two main
ways of studying the dynamics of galaxies. Either by means of N -body simulations,
or by means of orbital models. N -body models are self-consistent, combine the
evolution of the stellar and gaseous components and offer the possibility to include a
live dark matter halo (see [1] for a review). Although such models are the best way to
describe the time evolution of galactic systems, it is difficult to study with them the
details of the dynamical phenomena that are in action as the system evolves. For that
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purpose have been used orbital models, simple in their initial set up, in most cases
in the form of autonomous Hamiltonian systems that refer to the stellar dynamics of
the galaxy (for a complete introduction in the subject see [2]). The potentials used
are either well behaving analytic functions that match general properties of galactic
disks (see e.g. Chap. 2 in [3]) or, in some cases, potentials that have been estimated
directly from near-infrared images of specific galaxies (e.g. [4, 5]).

A key element for understanding galactic disk dynamics is to find out the location
of the resonances between the epicyclic frequency, κ(R), and the angular velocity
of the stars, �(R), in the rotating with pattern speed �p frame of reference (R is the
radial distance of a test particle, in cylindrical coordinates). Especially the resonances
κ/(�(R) − �p) = ±2/1 (Inner and Outer Lindblad resonances respectively), the
4/1 resonance (defined in a similar way as the 2/1 one), as well as corotation, a
resonance for which�(R) = �p, play a crucial role for understanding the dynamics
of barred and spiral galaxies. These resonances are defined on the equatorial plane of
the galaxy. However, in the same way, we can specify vertical resonances, between
the vertical frequency of the stars, ν(R) and �(R) − �p (see e.g. [6]).

2 Order and Chaos

2.1 Two Dimensional (2D) Models

As their name indicates, disk galaxies are flat objects. Thus, two-dimensional (2D)
modeling has been extensively used as a good approximation for their study. The
initial idea was to associate ordered motion in the vicinity of stable periodic orbits
with the reinforcement of morphological features. Stable periodic orbits trap around
them regular orbits, which remain close to the periodic ones forever. In this way
they enhance the local density and thus they enhance structures that have a certain
similarity with the topology of the periodic orbits (see e.g. Chap. 2 in [2]). This is a
straightforward scenario, that gave the following results:

• Themostwell appreciated result of nonlinear orbital theory in galactic disk dynam-
ics, concerns the orbital content of galactic bars. The bars of barred-spiral galax-
ies are supported by orbits trapped around stable periodic orbits of the family
“x1”, the orbits of which have elliptical-like shapes [7]. Beyond the inner 4/1
resonance, towards corotation, the existing families of periodic orbits in rotating
barred potentials are mainly unstable and practically are found within a chaotic
zone. This zone prevents the bars reaching corotation [8]. In this case Order forms
a structure and Chaos hinders its extent beyond a certain distance, approaching the
region characterized by�(R) ≈ �p, in which we find the Lagrangian equilibrium
points [9].

• In the absence of a bar, a bisymmetric spiral pattern is also supported by a backbone
of elliptical x1 orbits, which however precess in a characteristic way, so that their
apocenters are aligned with the loci of the spiral arms. In this way the stars stay
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longer time in the apocenters regions and enhance locally the surface density of
the disk, forming the arms. This is the idea of the classic density wave theory [10]
expressed by means of periodic orbits (see Fig. 3 in [11]).
The essential parameters for assessing this hypothesis, are the pattern speed and
the amplitude of the spiral perturbation, i.e. of the spiral arms. The pattern speed
determines the location of the resonances and consequently the local morphol-
ogy of the model, while the amplitude of the perturbation defines the degree of
nonlinearity, in other words the importance of chaotic phenomena. The response
morphology can be directly compared with images of galaxies, while the presence
of chaotic phenomena affects, among others, kinematic features, such as the profile
of the dispersion of velocities in the disks. Such profiles provide constraints for the
appearance of chaotic phenomena. Both quantities (pattern speed and amplitude
of the spirals) are very difficult to be estimated from observations. Thus, model-
ing is needed, so that the right values can be deduced by comparing the situation
predicted by the models with the observational data.
In normal (non-barred) spiral models it has been realized that an open spiral struc-
ture has major problems crossing the 4/1 resonance region. Due to the rhomboidal
shape of the orbits in this region and their relative orientation, the 4/1 resonance
becomes a main obstacle for the continuation of the spiral structure towards coro-
tation [12, 13]. This time it is not the presence of Chaos, but the misalignment
of the building blocks (i.e. of the periodic orbits) that imposed the damping of
the density wave. A set of self-consistency tests have shown that this is the case
for the symmetric part of grand-design galaxies of Hubble types Sb to Sc. Such
spiral patterns rotate slowly, so that the end of their symmetric parts corresponds to
the 4/1 resonance, while the estimated amplitudes are characterized by perturbing
forces of the order of 5–10%with respect to the axisymmetric background. On the
other hand, the tightly wound arms of Sa galaxies, could be modeled with spirals
with 1% perturbation in the forces and could reach corotation [14]. However, in
both cases, i.e. in models with big and small pitch angles, order dominates and
this is reflected to the observed velocity dispersions in real galaxies (see e.g. [15,
16]). The relation between pitch angle, amplitude of the perturbation and pattern
speed is also recently investigated in [17].
Gaseous response models have confirmed the above results. In addition, the inclu-
sion of asymmetries in the imposed potentials, for example in the form of m = 1
components, made the models able to reproduce at the right place even secondary
features appearing in images of open spiral galaxies, such as asymmetric bifur-
cations of the arms (see e.g. Fig. 4 in [18]). The inner symmetric part of the
grand-design has been always identified with the location of the 4/1 resonance,
while off-phase, with respect to the imposed spiral perturbation, extensions, could
be found between 4/1 and corotation in the responses (see also the results of three
dimensional models in [19]). In all the above cases, the most sensitive parameter
in order to obtain a morphological similarity of the model with the modeled galaxy
was the pattern speed (�p). This should be that slow, as to put corotation beyond
the end of the inner symmetric part of the spiral arms. Later, models that have
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considered kinematic data as well, have also confirmed this result, by pushing
corotation at, or beyond, the end of the overall observed spiral structure [20].
A characteristic, gaseous (by means of Smoothed Particle Hydrodynamics, SPH)
response model for open normal spirals (pitch angle 25◦) is given in Fig. 2. The
model includes, besides amainm = 2 logarithmic spiral component, also anm = 1
term, with the same pattern speed and shape as the m = 2 one. The ratio of the
amplitudes Am=1/Am=2 = 0.15, while the relative force perturbation at the end of
the symmetric part of the spiral pattern is of the order of 10% of the axisymmetric
force. The long arrows in Fig. 2 point to the locations of the end of the symmetric
part of the spiral pattern, at the 4/1 resonance region, while the short, thicker,
arrows at larger distances from the center, point to weak extensions of the arms,
to which we refer in the next paragraph.

• Anothermechanism for supporting the spiral structure of galaxies started being dis-
cussed in the middle 2000s, applied to barred-spiral systems. Mainly two groups,
elaborated the idea that the spiral structure observed beyond the ends of the bars in
this type of galaxies is guided primarily by the unstable manifolds emanating from
the unstable Lagrangian points L1, L2 at the corotation region [21, 22]. The idea
has been presented earlier [23], without a detailed description of the dynamical
mechanism. The later was known in studies of the three-body problem, however
without relating it with the support of an emerging structure in that case [24, 25].
According to this mechanism, stars following the paths dictated by the manifolds
are on chaotic orbits, as their Lyapunov numbers indicate, so the formed spirals,
have been called “chaotic” spirals. Evidence that the orbital content of these spirals
is associated with the so-called “hot orbital” population [26] is given in [27]. Such
chaotic orbits in autonomous Hamiltonian systems have Jacobi constants, EJ ,
larger than those of L1 and L2 and for some time they may exhibit a 4/1-resonance
orbital behaviour inside corotation. They enhance the spiral arms of the barred-
spiral morphology as they cross corotation through the bottlenecks formed by the
isocontours of the effective potential at various EJ ’s. They are of the same type of
orbits as those building the envelope of the bar in the case of NGC 4314 studied
in [28]. Further orbits of this type have been presented in [29], in models for
NGC 1300.
Since in the chaotic seaswe canfindunstable periodic orbits around the equilibrium
points (Lyapunovorbits) aswell as unstable periodic orbits belonging to the 4/1, 6/1
etc. families, it is natural to conclude that all the families of unstable periodic orbits
near and beyond corotation contribute to the same phenomenon [30]. Manifolds
of unstable 4/1 periodic orbits associated with the reinforcement of chaotic spirals
have been presented in [31].
Besides the spirals, the same mechanism has been proposed for explaining several
types of rings observed around the bars ([22, 32] and subsequent papers by the
same authors). Also in this case, orbits classified by chaos indicators as “chaotic”,
reinforce a well defined morphological structure.
Models in which the two mechanisms for supporting two different spiral patterns
coexist, as the one presented in Fig. 2 (the arrows point to two different sets of
spiral arms), lead to rare, but known grand design morphologies, as in the cases
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Fig. 2 An SPH response model to a logarithmic spiral potential with pitch angle 25◦ that includes
a main m = 2 and a secondary m = 1 component. The long arrows point to the end of the inner,
symmetric spiral arms, at the 4/1 resonance, while the short arrows at larger distances to a weak
continuation of the spiral arms beyond corotation, which are formed following the mechanism of
“chaotic” spirals (see text)

of NGC 1566 or NGC 5248 [31, 33]. In these cases the inner spiral structure is
supported by regular orbits trapped around precessing x1 periodic orbits, while
the outer spiral structure by chaotic orbits that cross the region of the L1 and L2
points and continue beyond corotation. These spiral arms are those indicated with
the short arrows in Fig. 2. The main difference among the regular and the chaotic
spirals is in the flow of material in their regions. In arms supported by regular
orbits, the flow is accross the arms, while in chaotic spirals, the flow is in general
along them [27, 33].

2.2 Three Dimensional (3D) Models

Disk galaxies can be considered in a first approximation as two dimensional objects.
However, the inner part of the bars extends well above the equatorial plane of the
galaxy, reaching heights up to 2 kpc in some cases, forming a characteristic boxy,
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Fig. 3 A set of successive
stable x1v1 periodic orbits in
a Ferrers bar model in a
nearly side-on projection.
The wings of the X are
formed along the |z|-maxima
of the orbits, i.e. along the
directions indicated with the
arrows

peanut-shape morphology when viewed edge-on. In some cases the side-on profiles
of galactic bars outline the pronounced morphology of an “X” shape [34]. These
structures, and their relation with bars, have been identified in early N -body simu-
lations [35].

The study of the orbital content of the peanuts, has been based on the analysis of
the stability of families of periodic orbits in 3D autonomous Hamiltonians [36] as a
parameter of the system, usually EJ , varies [37–40]. Themain dynamicalmechanism
proposed to be in action in this case, is again that of regular orbits trapped around
stable periodic orbits. A family that offers the appropriate orbital content to make
this scenario feasible, is the 3D bifurcation of x1 at the vertical 2/1 resonance, called
x1v1 [38].

As indicated in [40] (their Fig. 11), the “X” structure is not formed as the density
is enhanced along the shape of the orbits of x1v1, but it appears along the maxima
heights from the equatorial plane, of successive orbits of this family. An example of
such a backbone of stable x1v1 orbits supporting a X/peanut structure in a Ferrers
bar model [37, 38] is given in Fig. 3.

The study of 3D autonomous Hamiltonian systems is a field, where various non-
linear phenomena appear and affect their evolution, such as inverse bifurcations,
collisions of bifurcations and complex instability [36]. Especially complex instabil-
ity, a kind of orbital instability that appears when the four eigenvalues of the 4 × 4
monodromy matrix M1, are complex and off the unit circle (see e.g. [38]), appears
in orbits that may participate in supporting the peanut for considerable time intervals
[40]. This is one more case in which chaotic orbits contribute to the reinforcement
of structures by behaving for times significant for the dynamical scales of the system
we study, as regular. Essentially, we have to do with the phenomenon of stickiness
[41], which is ubiquitous in galactic stellar dynamics and upgrades the role of chaotic
orbits in supporting structures.

1 In autonomous Hamiltonian systems, the monodromymatrix relates the final deviation of a neigh-
bouring orbit from the periodic one ξ̄ , with an initially introduced deviation ξ̄0, in a space of section,
i.e. ξ̄ = M ξ̄0.
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3 Discussion

Nowadays there is a general consensus among researchersworking in the field that the
observed structures are the result of the interplay between Order and Chaos. Usually,
both situations coexist in structure-supportingmodels. Regular orbits are the building
blocks of the structures in most of the cases, but not in all of them. The alternative
is sticky orbits near the borders of an island of stability in the phase space of a 2D
dynamical system, or orbits remaining sticky near the unstable asymptotic curves of
unstable periodic orbits in chaotic seas of the phase space. Examples of sticky orbits
of the first kind are those supporting outer boxy envelopes of barred galaxies [28]
or inner boxy structures in the central regions of the bars [42, 43]. Orbits sticky to
unstable asymptotic curves, are those supporting the spiral arms outside corotation.
An extreme example of an ansae-type bar supported mainly by chaotic orbits is given
in [29]. In a case presented in that paper, the shape of the bar is defined by the shape
of the isocontours of the effective potential, allowing particles in chaotic motion to
visit all regions inside the area outlined by the ansae-type isocontour (see their Figs. 2
and 3).

It is not always easy to distinguish which mechanism is behind an observed
morphological feature in a real galaxy. For example, the outer boxiness of a bar may
be due to regular orbits trapped around boxy 4/1 resonance orbits, or due to chaotic
orbits sticky to tiny stability islands in the 4/1 resonance region. When we see a pair
of spiral arms emerging from the ends of a bar, we may conclude that they are due
to chaotic orbits associated with Lyapunov orbits around L1 and L2, provided that
the ends of the bar are close enough to the Lagrangian points. However, the ratio
of the corotation radius, Rc, to the length of the semi-major axis of a bar, Rb, is in
general 1 < Rc/Rb < 1.4 [44], while in some cases it can be assumed even larger,
reproducing successfully barred-spiral morphologies (see e.g. models in [31, 33].
For bars that end away from the Lagrangian points, other mechanisms have to be
invoked for explaining the spirals.

In that respect, imaging in the optical and in the near-infrared, as well as detailed
kinematic data, are always needed to be compared with the predictions of the models
in order to qualify the best scenario behind the emergence of a specificmorphological
feature.
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Phase Space Transport and Dynamical
Matching in a Caldera-Type Hamiltonian
System
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Abstract The goal of this paper is to review the phase space mechanism by which
a Caldera-type potential energy surface (PES) exhibits the dynamical matching phe-
nomenon. Using the method of Lagrangian descriptors, we can easily establish that
the non-existence of dynamical matching is a consequence of heteroclinic connec-
tions between the unstable manifolds of the unstable periodic orbits (UPOs) of the
upper index-1 saddles (entrance channels to the Caldera) and the stable manifolds of
the family of UPOs of the central minimum of the Caldera, resulting in the tempo-
rary trapping of trajectories. Moreover, dynamical matching will occur when there
is no heteroclinic connection, which allows trajectories to enter and exit the Caldera
without interacting with the shallow region of the central minimum. Knowledge of
this phase space mechanism is relevant because it allows us to effectively predict
the existence, and non-existence, of dynamical matching. In this work we explore a
stretched Caldera potential by means of Lagrangian descriptors, allowing us to accu-
rately compute the critical value for the stretching parameter for which dynamical
matching behavior occurs in the system.
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1 Introduction

Dynamical matching is an interesting mechanism originally proposed in [6, 7] that
arises in Caldera-type potential energy surfaces (PES). These potentials are rele-
vant in chemistry since they provide good approximations for the description of
many organic chemical reactions, such as those that occur in the vinylcyclopropane-
cyclopentene rearrangement [3, 14], the stereomutation of cyclopropane [10], the
degenerate rearrangement of bicyclo[3.1.0]hex-2-ene [11, 12] or that of
5-methylenebicyclo[2.1.0]pentane [24].

A study of the nature of trajectories that cross a two dimensional caldera potential
was given in [8]. The caldera potential energy surface studied in that paper possessed
a symmetry (to be described shortly), and the effect of asymmetry, or “stretching”
of the potential, on trajectories was also considered. In [18] an analysis of the phase
space structures that determined the different behaviors of trajectories was given for
the symmetric caldera potential. In particular, we investigated the mechanisms of
trapping trajectories and of dynamical matching in the symmetrical caldera potential
energy surface. The trajectories that have initial conditions on the dividing surfaces
of the unstable periodic orbits of the lower saddles are guided from the invariant
manifolds of the periodic orbits until they are trapped from the invariant manifolds
of the unstable periodic orbits that exist in the central region of the caldera. The
trajectories that have initial conditions at the central region of the caldera have two
options. The first option is to lie on or are inside the Kolmogorov-Arnold-Moser
(KAM) tori that surround the stable periodic orbits of the central area. The second
option is to be trapped by the invariant manifolds of the unstable periodic orbits of the
central region until they are transported from the unstable invariant manifolds to the
exit from the caldera through the four different regions of saddles. The trajectories
that have initial conditions on the dividing surfaces of the unstable periodic orbits
of the upper saddles are not trapped but, on the contrary, we have the phenomenon
of dynamical matching [18]. Dynamical matching is the behaviour of trajectories
having initial conditions on the periodic orbit dividing surfaces of the upper saddles,
that go straight across the caldera and exit via the opposite lower saddle. We showed
that this occurs when there is no interaction of the invariant manifolds of the unstable
periodic orbits of the upper saddles with the central region of the caldera [18]. This
implies that there is no trapping of these trajectories in the symmetric caldera potential
energy surface.

In this paper we investigate the possibility of a mechanism for trapping of trajec-
tories that have initial conditions on the periodic orbit dividing surfaces of the upper
saddles for the stretched version of the caldera potential in a manner that does not
exist in the symmetric caldera potential energy surface. By “stretching” of the poten-
tial we mean that we scale the coordinate x (see (1)) by a parameter λ 0 < λ ≤ 1
and λ → 1. The classical case of the potential is obtained for λ = 1. In this situation
the saddles move away from the central minimum in the x-direction as the stretching
parameter λ becomes smaller.
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We begin our investigation of the stretched potential by first considering if there is
a critical value of λ that controls the existence of dynamical matching? The fact that
the parameter λ plays a role in the dynamical matching phenomenon was evident
in the trajectory studies in [8]. However, no explanation of this behavior was given
in terms of phase space structure and transport. In this paper we provide such an
explanation.

We present our model in Sect. 2. Furthermore, we give a concise introduction
to the Lagrangian Descriptors method used in this paper (see Sect. 3). Finally, we
present our results and the conclusions in Sects. 4 and 5.

2 Hamiltonian Model

We give a brief description of the caldera potential energy surface and Hamiltonian
as described in [8]. The caldera potential has a stable equilibrium point at the center,
referred to as the centralminimum. This potential has an axis of symmetry, the y-axis.
We have also the existence of potential walls around the central minimum. On these
potential walls we encounter four 1-index saddles (two for lower values of energy,
referred to as the lower saddles, and two for higher values of energy, referred to as
the upper saddles). In this paper we consider the stretched version of the caldera
potential:

V (x, y) = c1(y
2 + (λx)2) + c2y − c3((λx)

4 + y4 − 6(λx)2y2) (1)

The potential parameters are c1 = 5, c2 = 3, c3 = −3/10 and 0 < λ ≤ 1. For λ = 1
we have the symmetric caldera potential [8, 18]. The contours of this potential and
the stationary points are depicted for different values of λ in Fig. 1. The positions
of the saddles move away from the center of the caldera as the parameter lambda
decreases.

The Hamiltonian of the system is:

H(x, y, px , py) = p2x
2m

+ p2y
2m

+ V (x, y) (2)

with potential V (x, y) (see the Eq. (1)) and m = 1. The numerical value of the
Hamiltonian we will call it as energy E.
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Fig. 1 The stationary points (depicted by purple points) and contours of the potential for λ = 0.8
(upper left panel), λ = 0.72 (upper right panel), λ = 0.6 (lower left panel) and λ = 0.2 (lower right
panel)

3 Lagrangian Descriptors in Caldera-Type Hamiltonian
Systems

The Lagrangian Descriptors (LDs) is a diagnostic tool that can reveal the phase space
structures. The first time that this technique was used was in the paper [21], were
was aiming to study transport and mixing in geophysical flows. In the last years this
technique has been broadly used not only in fluid mechanics [4, 5, 13, 20, 22, 23]
but also in the area of chemical reaction dynamics [1, 2, 9, 17]. The LDs method
works in the following way: In order to reveal the phase space structures in a given
slice using the method of LDs the steps that we need to follow are very simple. First
we choose the slice and we define in this slice a grid of initial conditions. Then we
integrate this initial conditions forward and backward in time for a given integration
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time τ and while we are integrating we accumulate along these trajectories a positive
quantity defined from the vector field that determines the dynamical system that we
are studying. If you integrate trajectories forwards in time, the LD function is going
to detect the stable manifolds while the backwards in time integration will detect the
unstable manifolds. The scalar output obtained from the method will highlight the
location of the invariant stable and unstable manifolds intersecting this slice, which
are detected at points where the values of LDs display an abrupt change.

There are several definitions for the LDs. In this work we are using the p-norm
definition of the method that relies on variable time integration, where p ∈ (0, 1]
(the reader can find more information about the application of variable time LDs
to Caldera potentials in [15]). We have fixed the value of p to be p = 1/2. This
definition of the LDs is preferable here due to the nature of the Caldera’s potential
energy surface (PES), that is an open potential. That can lead to an increasingly fast
pace escape of the trajectories.

Let’s consider the following dynamical system with time dependence: consider
the following dynamical system with time dependence:

dx
dt

= v(x, t), x ∈ R
n, t ∈ R (3)

where v(x, t) ∈ Cr (r ≥ 1) in x and it is continuous in time. Given an initial condition
x0 at time t0, take a fixed integration time τ > 0 and p ∈ (0, 1]. The method of LDs
in the p-norm definition is as follows:

Mp(x0, t0, τ ) =
n∑

k=1

⎡

⎢⎣
t0+τ∫

t0−τ

|vk(x(t; x0), t)|p dt

⎤

⎥⎦ = M(b)
p (x0, t0, τ ) + M( f )

p (x0, t0, τ ),

(4)
where M (b)

p and M ( f )
p its backward and forward integration parts:

M (b)
p (x0, t0, τ ) =

n∑

k=1

⎡

⎣
t0∫

t0−τ

|vk(x(t; x0), t)|p dt
⎤

⎦ ,

M ( f )
p (x0, t0, τ ) =

n∑

k=1

⎡

⎣
t0+τ∫

t0

|vk(x(t; x0), t)|p dt
⎤

⎦ ,

(5)

The formulation of the p-norm definition that we apply to this model is the
following:

Mp(x0, t0, τ ) =
n∑

k=1

⎡

⎢⎣

t0+τ+
x0∫

t0−τ−
x0

|vk(x(t; x0), t)|p dt
⎤

⎥⎦ (6)
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where
τ±
x0 = min{τ0, |t±||x(t±;x0 /∈R)}

Note that the integration time τ0 is fixed and that t+ is the time that the trajectory
exits the interaction region R in forward time whereas t− is for backward time.

4 Numerical Results

In this section we compute Lagrangian descriptors with τ = 4 in order to study the
phase space structures close to the UPOs associated with the upper index-1 saddles
(for a fixed value of energy above the energy of the upper index-1 saddles, E = 29
see [15, 16]). For this purpose we use the Poincaré surfaces of section y = 1.88409
with py > 0, whichwas also used in [18, 19]. This analysis is carried out for different
values ofλ. Our goal is to understand howLDs are capable of detecting the dynamical
matching mechanism.

The phenomenon of dynamical matching refers to the lack of a mechanism that
would enable transport of trajectories from the region of the upper saddles to the
central area of the Caldera. As we know, trajectories with initial conditions on the
invariant manifolds of unstable periodic orbits move away from the periodic orbit
(unstable manifold) or approach the periodic orbit (stable manifold). A mechanism
that could be responsible for the transport of trajectories from the region of the upper
saddles to the central area of the Caldera, would be heteroclinic intersections of the
unstable invariant manifolds of the unstable periodic orbits of the upper saddles with
the stable manifolds of the unstable periodic orbits that exist in the central area. We
will show that the non-existence or existence of this mechanism determines if we
have dynamical matching or not. For this reason, we compute the invariant manifolds
for different values of λ starting from λ = 1 to zero in order to find the values of λ
that correspond to dynamical matching and trapping.

1. Dynamical matching: The gap in Fig. 2 (for λ = 0.8) indicates that we have no
interaction (heteroclinic intersections) of the unstable invariant manifold of the
periodic orbits associated with the upper saddle with the central area and this
means that we have no mechanism of transport of trajectories from one region
to the other. Consequently, we have in this case the phenomenon of dynamical
matching, the trajectories that have initial conditions on the dividing surfaces of
the periodic orbits of upper saddles go straight across the Caldera and they exit via
the lower opposite saddle as we know from previous papers [18, 19]. An example
of this is given in Fig. 2 for λ = 0.8. As we can see in this figure [15] we choose
an initial conditions (circle) inside the region of the unstable invariant manifold
of the unstable periodic orbits of upper saddles. If we integrate backward the
initial condition that corresponds to the circle the resulting trajectory exits via the
region of the upper saddle. If we integrate it forward the resulting trajectory goes
straight across the caldera and exits via the lower opposite saddle. This means
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Fig. 2 The phase space close to the unstable periodic orbits associated with the upper saddles (first
column) and the enlargement of the region of the phase space that is indicated by a rectangle in the
figures of the first column (figures in the second column) usingLagrangianDescriptors (with τ = 4).
The figures in the third column depict the trajectories in the configuration space that correspond to
a circle and diamond in the figures in the second column. In the first row, the green line indicate the
part of the trajectory at backward integration that corresponds to the circle. In the second and third
row, the red line indicate the part of the trajectories at backward integration that correspond to both
of them, circle and diamond. In addition, black and blue line indicate the part of the trajectories at
forward integration that correspond to the circle and diamond respectively (in all rows). a, b, c are
for λ = 0.8, d, e, f are for λ = 0.778 and g, h, i are for λ = 0.7

that the trajectory comes from the region of the upper saddle and it exhibits the
phenomenon of dynamical matching. This gap decreases in size as we decrease
the stretching parameter λ until we reach a critical value of λ.

2. The critical value: In Fig. 2 we observe for λ = 0.778 (middle row of figures)
the unstable manifolds of the periodic orbits of upper saddles start to interact with
the stable manifolds of the unstable periodic orbits of the central area, resulting
in heteroclinic connections and forming lobes between them. These lobes are
very narrow and cannot be distinguished initially as we can see in Fig. 2. In
order to observe these lobes we magnify the region of the upper saddles, for
example the region of the upper right saddle in Fig. 2. When we magnify these
regions, we see the heteroclinic connections and the lobes between the unstable
invariant manifolds of the unstable periodic orbits of upper saddles and the stable
manifolds of the unstable periodic orbits that exist in the central area. These lobes
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are responsible for the trapping of the trajectories that come from the region of
the upper saddles to the central area. This can be checked very easily. We depict
two initial conditions in Fig. 2 for λ = 0.778, one inside the lobe (the diamond)
and other one outside the lobe (the circle) but inside the region of the unstable
manifold of the unstable periodic orbit of upper saddle. If we integrate backward
the two initial conditions, we see that the corresponding trajectories come from the
region of the right upper saddle because they exit via the region of the right upper
saddle. But if we integrate forward the initial condition, that is inside the lobe, the
corresponding trajectory is trapped and after a long time exits through the region
of the opposite lower saddle. On the contrary, the trajectory that corresponds
to the other initial condition is not trapped and go straight across to the exit
from the caldera. This means that the initial conditions in the lobes between the
unstable invariant manifolds of the unstable periodic orbits associated with the
upper saddles and the stable invariant manifolds of the unstable periodic orbits
of the central area are responsible for the trapping of the trajectories that come
from the region of the upper saddles. This is the first value of λ for which we find
interaction between the unstable invariant manifolds of unstable periodic orbits,
associated with the upper saddles, with the central area. This means that this is
a critical value of the stretching parameter for the non-existence of dynamical
matching, as we have observed in a previous paper [19]).

3. Trapping: Now if we decrease the value of λ, starting from the critical value,
we have again interaction of the unstable invariant manifolds of unstable periodic
orbits of upper saddles with the central area. We have again lobes between the
unstable invariant manifolds of the unstable periodic orbits with the stable invari-
ant manifolds of the unstable periodic orbits that exist in the central region as we
can see for example for λ = 0.7 in Fig. 2. This means that we have again trapping
for values of λ lower than the critical value.

5 Conclusions

In this paper we have shown that heteroclinic connections are the phase space mech-
anism that controls dynamical matching. While we have demonstrated this behavior
for a twoDoF calderamodel, the notion of a heteroclinic trajectory is valid for dynam-
ical systems with an arbitrary number of dimensions. Hence, it would be interesting
to explore the formation of this phase space structure as a mechanism for dynamical
matching in systems with three or more DoF.

Acknowledgements We acknowledge the financial support provided by the EPSRC Grant No.
EP/P021123/1.
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The Building Blocks of Spiral Arms
in Galaxies

Mirella Harsoula

Abstract This is a review paper on the prevailing theories that explain the orbital
content of galactic potentials that can support the spiral arms. In the case of grand
design spiral galaxies there exist families of stable periodic orbits with an approxi-
mate elliptical shape that create waves having a spiral shape. These waves are similar
to those observed in real spiral galaxies. On the other hand, in the case of barred spi-
ral galaxies, the spiral structure is supported by chaotic orbits which stay, due to
stickiness phenomena, close and along the unstable asymptotic manifolds of the
Lagrangian points L1 and L2 for long enough time compared to the Hubble time.
This is called manifold theory and it has been tested for the case of one pattern speed
as well as of two different pattern speeds, for the bar and the spiral structure.

Keywords Galaxies · Chaos · Spiral arms · Periodic orbits

1 Introduction

A great percentage of spiral galaxies possess a bar. Approximately two-thirds of all
spiral galaxies are thought to be barred spiral galaxies. On the other hand, grand-
design spiral galaxies are also observed (Fig. 1 on the left), possessing no bar at their
center and having symmetrical spiral arms. The well known “density wave” theory
can explain the spiral structure in this case. However, there are still questions about
the longevity of these spiral waves (see [1, 9, 13] for reviews).

The amplitude of the spiral perturbation of the galaxy must not exceed a value of
10−20% in order to use the density wave theory. In this case, nonlinear corrections
are necessary [6, 27, 40] to the linear Lindblad-Lin-Shu theory [21–24]. Within
the framework of the density wave theory one can prove the existence of approxi-
mately elliptical stable periodic orbits. These orbits have a main axis that change its
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Fig. 1 The grand design spiral galaxy NGC 4321, on the left (copyright Barry Wilson/LTA/Ruben
Barbosa) and the barred spiral galaxy NGC 1365 on the right (Credit ESO/IDA/Danish 1.5m/
R. Gendler, J-E. Ovaldsen, C. Thöne, and C. Feron.)

orientation with the energy and in such a way they can form a spiral density wave.
Kalnajs [20] gave such examples of density waves made out of precessing ellipses
and he even computed the response potential due to these ellipses. On the other hand,
Contopoulos (1970, 1975) gave all the analytical theory of these orbits using resonant
perturbation theory. He used action-angle variables for constructing the correspond-
ing phase space and studied also the number and the stability of these orbits. These
elliptical orbits supporting spiral density waves have been studied numerically in
analytical models in many papers [5, 8, 14, 28, 29, 33, 36].

We present the results of a recent work [19] of ours using a galactic potential
with an axisymmetric component and a logarithmic spiral potential simulating a
Milky-Way like model. We study the spiral density waves derived from the main
stable periodic orbits in the region between the Inner Lindblad Resonance (ILR)
and the 4:1 resonance. We also find the dependence on the amplitude of the spiral
perturbation.

On the other hand, in the case of barred spiral galaxies (Fig. 1, on the right),
the main theory that prevails is the manifold theory [35, 41]. According to this
theory the spiral arms are supported by chaotic orbits that are connected, through
stickiness phenomena, with the unstable asymptotic curves emanating from the bar’s
Lagrangian points L1 and L2 (see also [11]). We use here the “apocentric manifold’
version of the manifold theory. These chaotic orbits in general create a flow along
the spiral arms [30]. Whereas, in the case of grand design galaxies the flow of
the regular orbits is intersecting the spiral arms. In [31] it is emphasized that this
difference between the flow of the orbits can serve as an observational tool in order
to distinguish regular from chaotic orbits supporting spiral arms.

In [15] we study the manifold theory in the case where the spiral arms have
a different pattern speed than the bar, in barred spiral galaxies. In this case, the
apocentric manifolds are related to the unstable asymptotic curves emanating from
Lagrangian equilibrium orbits, (instead of equilibrium points L1 and L2, in the case
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of one pattern speed). These new apocentric manifolds are time dependent in the
rotating frame of the bar.

The paper is structured as follows: in Sect. 2 we present the galactic model of
a grand design spiral galaxy and we study the dependence of spiral density waves
on the amplitude of the spiral perturbation. In Sect. 3 we give a Milky Way like
model of a barred spiral galaxy and we study the construction of a spiral apocentric
manifold supporting the spiral structures for one pattern speed, as well as for two
pattern speeds. Finally in Sect. 4 we draw our conclusions.

2 Spiral Arms in Grand Design Galaxies

2.1 The Model

The galactic potential that we use consists of an axisymmetric and a spiral potential:

V = Vax + Vsp. (1)

The axisymmetric potential Vax includes a disc, a bulge and a halo:

Vax = Vd + Vb + Vh. (2)

The disc potential Vd is a Miyamoto-Nagai model [26] given by the relation:

Vd = −GMd√
r2 + (ad +

√
z2 + b2d)

2

, (3)

where Md = 8.56 × 1010 M� is the total mass of the disc, ad = 5.3 kpc and
bd = 0.25 kpc. In our case we take z = 0 and r = √

x2 + y2. The component of
the bulge is represented by a Plummer potential Vb given by the relation:

Vb = −GMb√
r2 + b2

, (4)

where Mb = 5 × 1010 M� is the total mass of the bulge, r = √
x2 + y2 and

b = 1.5 kpc.
The halo potential is a γ-model [12] with parameters as in [32]:

Vh = −GMh(r)

r
− −GMh,0

γrh

[
− γ

1 + (r/rh)γ
+ ln(1 + r

rh
)γ

]rh,max

r

, (5)
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where rh,max = 100 Kpc, γ = 1.02, and Mh,0 = 10.7 × 1010M�, and Mh(r) is given
by the function:

Mh(r) = Mh,0(r/rh)γ+1

1 + (r/rh)γ
. (6)

The spiral potential is represented by a logarithmic spiral model Vsp(r,φ, z) intro-
duced by Cox and Gomez [10]. We have on the disc plane:

Vsp = 4πGhzρ0 G(r) exp

(
−

(
r − r0
Rs

))
C

K B
cos

[
2

(
ϕ − ln(r/r0)

tan(α)

)]
, (7)

where

K = 2

r | sin(α) | , B = 1 + Khz + 0.3(Khz)
2

1 + 0.3Khz
(8)

and C = 8/(3π), hz = 0.18 kpc, r0 = 8 kpc, Rs = 7kpc, α = −13◦ is the pitch
angle of the spiral arms. This value is proposed as a mean global pitch angle in the
Milky Way’s spiral arms [39]. The function G(r) is given by the relation G(r) =
b − c arctan(Rs0 − r), with Rs0 = 6 kpc, b = 0.474, c = 0.335. The density of the
spiral arms is ρ0 = 5 × 107, or 30 × 107 M � /kpc3 in the two different models
under study, respectively. These two values of the density correspond to a weak and
a strong spiral perturbation respectively (see for example [2]).

2.2 Spiral Density Waves from Precessing Ellipses

The Hamiltonian, in the rotating frame of reference (with a fixed pattern speed �sp),
is given in polar coordinates by the relation:

H = p2r
2

+ p2ϕ
2r2

− �sp pϕ + Vax(r) + Vsp(r,ϕ), (9)

where, pr is the radial velocity and pϕ is the angular momentum per unit mass.
Now, by using the Hamiltonian (9) we find the stable periodic orbits that have

elliptical shapes and support the spiral densitywave. These orbits are the continuation
of the circular orbits of the axisymmetric part of the potential and are found in the
region between Inner Lindblad Resonance (ILR) and corotation in the model of
Sect. 2.1. For further details see [19]. We fix the value of the pattern speed �sp =
15 km · s−1 · kpc−1 and the pitch angle a = −13◦, which are realistic values for
grand design galaxies. In order to easily locate these stable periodic orbits we use
action-angle variables of epicyclic theory. The pair (ϕ, pϕ) of Eq. (9) are action-angle
variables but the pair (r, pr ) are not, so we define some new “radial” action-angle
variables (ξ, Pξ) (as defined in [19]). We construct Poincaré surfaces of sections



The Building Blocks of Spiral Arms in Galaxies 61

Fig. 2 The Poincaré phase space of the galactic model for action-angle variables (ξ, Pξ) for ρ0 =
5 × 107M � /kpc3 (Eq. (7)), and for radii rc = 1, 2, . . . , 12 kpc. We locate three different periodic
orbits, i.e., the stable x1 family (black dots), the stable x2 family (magenta dots) and the unstable x3
family (blue dots). The periodic orbits that support the spiral density wave are the periodic orbits of
the x1 family that correspond to radii between approximately 5kpc (second ILR) and 11kpc (4:1
resonance). Figures from [19]

(ξ, Pξ) for a fixed Jacobi constant E j ≡ H . For a fixed value of ϕ = π/2 we find a
Poincaré sequence of surfaces of sections of our model.

We now focus on the form of the periodic orbits that support the spiral density
wave in the region between Inner Lindblad Resonance (ILR) and corotation in the
model of Sect. 2.1, as well as the shape of the phase space around these orbits. For
further details see [19]. We choose two different values for the spiral amplitude
(parameter ρ0 in Eq. (7)), with pattern speed �sp = 15 km.sec−1.kpc−1 and pitch
angle a = −13◦, which are realistic values for grand design galaxies.

Figure2 shows thePoincaré surfaces of section (ξ, Pξ) forρ0 = 5 × 107M �/kpc3

in Eq. (7). It shows the phase portraits for twelve different values of the radius rc
namely rc =1, 2, …, 12 kpc, corresponding to a region from the center of the galaxy
and up to a radius just outside the 4:1 resonance.

Contopoulos [7] introduced the nomenclature of the families of periodic orbits in
a spiral galaxy and named x1, x2 (stable periodic orbits) and x3 (unstable periodic
orbit) the three basic families. The family of orbits that supports the spiral density
wave are the stable periodic orbits of the x1 family.
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Fig. 3 a The x1 family of elliptical orbits support a spiral density wave, of the model (9) for pattern
speed �sp = 15 km · s−1 · kpc−1 and density of the spiral potential ρ0 = 5 × 107M � /kpc3,
between the second ILR and the 4:1 resonance. b Same as in a but we also plot the x1 elliptical
periodic orbits inside the second ILR. The green circle corresponds to the second ILR, the blue
circle corresponds to the 4:1 resonance and the black circle to the corotation. The magenta spiral
arms are derived from the minima of the spiral potential (7). We observe a very good coincidence
of the imposed spirals with the spiral density wave created by the x1 family of orbits

In Fig. 2, the black dots (inside the black islands of stability) correspond to the
stable x1 family of periodic orbits. They exist for all the radii rc from the center of
the galaxy and up to the 4:1 resonance. The magenta dots (inside the magenta islands
of stability) correspond to the stable x2 family of periodic orbits and the blue dots
correspond to the unstable periodic orbit x3. The x2 and x3 family of orbits exist only
in the region between the first and the second ILR. Their corresponding orbits do not
support the spiral density wave. The x1 family remains stable at all radii up to the
4:1 resonance (which corresponds to rc ≈ 11).

The orbits of the x1 family support a well defined spiral density wave (Fig. 3a)
between the second ILR (≈ 5 kpc) and the 4:1 resonance, where the correspond-
ing orbits become more rectangular. In Fig. 3b the x1 family of orbits is plotted
also inside the second ILR. Between the first ILR (≈ 1.5 kpc) and the second ILR
(≈ 5 kpc) the orbits of the x1 family form a less dense and well defined spiral density
wave. On the other hand, the orbits of x1 family are circular inside the first ILR and
do not support a density wave at all. The green circle in Fig. 3b corresponds to the
Inner Lindblad resonance, the blue circle to the 4:1 resonance and the black circle
to the radius of corotation. The spiral arms (in magenta) correspond to the minima
of the spiral potential of Eq. (7) and coincide very well with the spiral density wave
made out of the stable elliptical orbits of the x1 family.

In Fig. 4 the same phase portrait as in Fig. 2 is plotted in the case of a much greater
amplitude of the spiral perturbation, i.e. ρ0 = 30 × 107M � /kpc3. We observe that
chaos is introduced outside the ILR and the x1 family becomes unstable. Therefore,
there are no more islands of stability around this orbit and there is no material that
can support the spiral density wave. In fact, this value of ρ0 is unrealistic for real
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Fig. 4 Same as in Fig. 2, but for ρ0 = 30 × 107M � /kpc3. Figures from [19]

Fig. 5 Same as in Fig. 3, but for ρ0 = 30 × 107M � /kpc3. Figures from [19]

grand design spiral galaxies, but we still plot the precessing ellipses of the unstable x1
family in Fig. 5 in order to compare it with the realistic spiral density wave of Fig. 3.
Some interesting correlations between the free parameters of the galactic model ρ0,
�sp and the pitch angle α are found in [19].
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3 Spiral Arms in Barred Spiral Galaxies

3.1 The Model

In order to study a Milky way like barred spiral galactic model we use the axisym-
metric potential of Eqs. (3), (4) and (5) as well as the spiral potential of Eq. (7) of
Sect. 2.1 and we introduce the following bar potential model, as in [25]:

Vbar = GMb

2a
ln

(
x − a + T−
x + a + T+

)
(10)

with T± =
√

[(a ± x)2 + y2 + (b + √
c2 + z2)2], Mb = 6.25 × 1010M�,

a = 5.25 kpc, b = 2.1 kpc and c = 1.6 kpc. The values of a and b correspond
to the major and minor axis of the bar, while, c corresponds to the thickness of the
bar in the z-axis [4, 16, 34]. For a two dimensional model we set z = 0. If we set
the pattern speed of the bar �bar = 45 km/s/kpc, then the radius of the corotation is
set close to 5.4 kpc and the bar’s length close to 4 kpc, as the radius of corotation is
approximately 1.2 − 1.3 times the bar’s length.

3.2 Manifold Spirals

The Hamiltonian of the barred spiral galactic model that we use, in the rotating frame
of reference (of the bar and the spiral arms), is given by the relation:

H = 1

2
(p2x + p2y) − �p(xpy − ypx ) + V (x, y) (11)

where px , py are the velocities in the rest frame and V (x, y) = Vax + Vbar + Vsp is
the total potential of the galaxy consisting of the axisymmetric part, the bar and the
spiral arms.

The manifold theory, in the version of “apocentric manifolds” has been studied
in many papers [15, 18, 37, 38, 41]. We give a brief description of the apocentric
manifolds here: we find the equilibrium Lagrangian point L1 (and its symmetric
point L2) of the Hamiltonian (11), in the rotating frame of reference, which cor-
respond to a solution (x, y, px , py) = (xL1 , yL1 , pxL1 , pyL1) of the equilibrium
equations ∂H/∂x = ∂H/∂y = ∂H/∂ px = ∂H/∂ py = 0. We then plot the unsta-
ble asymptotic manifolds of these points (L1 and L2) on the phase space and take
initial conditions along these manifolds. We integrate the orbits with these initial
conditions for a long enough time. The apocenters of all these orbits, which are
chaotic, form structures that support the spiral arms on the configuration space with
many recurrences back and forth before escaping from the system. The same is true
for all the unstable periodic orbits in the region of corotation as well as for the sticky
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Fig. 6 a The apocentric manifolds of the L1 and L2 Lagrangian points of the galactic model (11)
possessing only a bar and no spiral arms, in the rotating frame of reference. With blue we plot the
manifolds from L1 and with magenta the manifolds from L2. We observe a R1-type of ring around
the bar b Same as in a but with an additional spiral potential termwhich rotate with the same pattern
speed as the bar. Here we observe ‘lobes’, ‘bridges’ and ‘gaps’. c and d: same as in a and b but here
the apocentric manifolds are integrated for a much longer time. The black spiral arms are derived
from the minima of the spiral potential of Eq. (7)

chaotic orbits along these manifolds. Therefore, the conclusion is than these man-
ifolds form the paths along which all the chaotic orbits are forced to move, due to
stickiness phenomena, before escaping from the system. These apocentic manifolds
of chaotic orbits support the spiral structure for long enough time.

In Fig. 6 we plot the apocentric manifolds of the unstable Lagrangian points L1

(blue) and L2 (magenta), in the rotating frameof theHamiltonian (11), in twodifferent
cases: (i) a potential having an axisymmetric part and a bar (Figs. 6a, c), and (ii) a
potential having an axisymmetric part, a bar and spiral arms (Figs. 6b, d). The spiral
arms, in this case, rotate with the same pattern speed as the bar. In the bar only case
(Figs. 6a, c) we observe that the apocentric manifolds induce a R1-type ring-like
structure (see [3] for a review). This kind of ring structure has a main axis which is
perpendicular to the main axis of the bar. On the other hand, in the case were a spiral
potential is added (Figs. 6b, d) we observe ‘lobes’, ‘bridges’ and ‘gaps’ instead of
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ring structures. See [15] for a detailed description of this figure. In Figs. 6c, d, the
apocentric manifolds are integrated for much longer time. We observe that in the
bar-only case spiral arms are developed, while the R1-type of ring is enhanced. On
the other hand, in the case were the spiral potential is added we observe that the
diffusion of these sticky chaotic orbits along the manifolds is very slow and the
spiral arms make many recurrences back and forth supporting the spiral structure for
long enough time compared with the Hubble time.

If we now consider that the spiral arms rotate with a different pattern speed than
the bar, we conclude that the apocentric manifolds, are now time dependent (see
[15]).

The Hamiltonian of the system, in the rotating system of the bar and in polar
coordinates (ρ,φ), is now time dependent:

H = 1

2

(
p2ρ + p2φ

2ρ2

)
− �bar pφ + Vax (ρ) + Vbar (ρ,φ)

+(�sp − �bar )I2 + Vsp(ρ,φ − φ2) (12)

where φ2 = (�sp − �bar )t , the pattern speed of the bar is�bar and the pattern speed
of the spiral arms is �spr . In a time dependent Hamiltonian, there exist no longer
equilibrium points, but equilibrium orbits, namedGL1 (andGL2). The new potential
is time dependent with period T = π/(�bar − �sp). In order to construct the time
dependent apocentric manifolds we use a stroboscopic map at times tsec = κ ∗ T ,
where κ = 0, 1/4, 1/2, 3/4 and plot only the apocenters of the orbits for these times.
The computation of the time dependent unstable apocentric manifolds of the orbits
GL1 and GL2 is described analytically in [15]. These time dependent apocentric
manifolds are exactly the same every tsec = mT , m = 1, 2, 3, . . ..

Figure7 shows the main result: the apocentric manifolds of the GL1 (blue points)
and GL2 (magenta points) equilibrium orbits are shown at four different times tsec,
namely tsec = 0, T/4, T/2 and 3T/4. The black dotted curves superposed to the
manifolds correspond to the maxima of the surface density (or the minima of the
spiral potential). These figures repeat periodically after the time tsec = T . These
spiral arms (black) rotate clockwise with respect to the rotating frame of the bar with
angular velocity equal to (�bar − �sp). These time dependent apocentric manifolds
coincide rather well with the minima of the spiral potential apart the time tsec = T/2,
where the spiral maxima are displaced by an angle π/2 with respect to the bar’s
horizontal axis (Fig. 7c).
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Fig. 7 The time dependent apocentric manifolds of the GL1 equilibrium orbit (blue) and GL2
(magenta) are plotted at four different times tsec as indicated in each panel. Superimposed are
plotted the local minima of the spiral potential of Eq. (7) at the same times t = tsec

4 Conclusion

In the present paperwe review the prevailing theories of the kind of orbits that support
the spiral arms in twodifferent cases, i.e. in the case of granddesign spiral galaxies and
in the case of barred spiral galaxies. In the case of grand design galaxies the prevailing
theory is the densitywave theory.We use a galacticmodelwith an axisymmetric com-
ponent and a spiral potential and we study the different types of periodic orbits that
exist in this model. We conclude that the orbits that support the spiral density wave
are the approximately elliptical x1 orbits that extend from the Inner Lindblad Reso-
nance (ILR) up to the 4:1 resonance where the orbits become more rectangular and
can no longer support the spiral arms. The x1 family of orbits becomes unstable after
the ILR, when the spiral perturbation ρ0 in Eq. (7) becomes ρ0 ≥ 30 × 107 M�/

kpc3. This is a limiting value above which the precessing ellipses can no longer
support the spiral density waves.

On the other hand, in the case of barred spiral galaxies, there exist no longer
regular orbits in the region of corotation. In this case, chaotic orbits along the unstable
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asymptotic manifolds of the Lagrangian points L1 and L2 support the spiral structure
for long enough time. When the bar rotates with a different pattern speed from the
spiral arms then the apocentric manifolds are time dependent but they still support
the time dependent spiral arms. The apocentric manifolds produce features like rings,
lobes and bridges like the ones observed in real barred spiral galaxies.
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Ordered and Chaotic Bohmian
Trajectories

Athanasios C. Tzemos

Abstract Wemake a quick review of some highlights of our studies in 2d Bohmian
order and chaos which are: (a) the development of a generic theoretical mechanism
responsible for the emergence of chaos in arbitrary 2d Bohmian systems (b) the rela-
tion between chaos and Bohm’s quantum potential and (c) the relation between chaos
and entanglement in Bohmian qubit systems and its impact on the establishment of
Born’s rule by arbitrary initial distributions of Bohmian particles.

Keywords Bohmian Mechanics · Chaos · Entanglement · Born’s rule

1 Introduction

Bohmian QuantumMechanics (BQM) [1–6] is a non relativistic pilot wave quantum
theory in which the quantum particles follow certain deterministic trajectories in
spacetime according to the so called Bohmian equations of motion:

mi
dxi
dt

= �Im

(∇iΨ

Ψ

)
. (1)

The wavefunction Ψ is the solution of the Shrödinger equation (SE): − �
2

2m∇2Ψ +
VΨ = i ∂Ψ

∂t . Thus Ψ acts as a background pilot wave which dictates the evolution of
Bohmian particles. BQMpredicts the same experimental results as standardQuantum
Mechanics.

If we insert the polar decomposition of the wavefunction Ψ = R exp(i S/�) in
the SE and split the real from the imaginary part we find the equations ∂R

∂t =
− 1

2m [R∇2S + 2∇R∇S] and ∂S
∂t = −

[
|∇S|2
2m + V + Q

]
. The first equation acts as

a continuity equation for the probability density ρ and the Bohmian velocity field
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v = ∇S
m (provided that ρ = R2), while the second equation differs from the classical

Hamilton-Jacobi equation by the term

Q = − �
2

2m

∇2R

R
, (2)

which is the so called ‘quantum potential’ [7–10] and depends on the curvature of the
wavefuntion. The introduction of quantum potential brings the Bohmian evolution
in a Hamiltonian form.

Bohmian equations are nonautonomous and, in general, highly nonlinear. There-
fore they allow us to study chaos in quantum systems in a straightforward way by
applying all the techniques of classical dynamical system theory.1 Thus, in gen-
eral, ordered and chaotic Bohmian trajectories coexist in a given Bohmian system.
Bohmian chaos has attracted a lot of interest in the last decades (see our review papers
[13, 14] and references therein). In fact, it is an active research field of the Research
Center for Astronomy and Applied Mathematics (RCAAM) of the Academy of
Athens in the last two decades. Our group made several important contributions in
Bohmian Dynamics and in the next sections we are going to quickly review some of
our most significant results in 2d Bohmian quantum systems.

The structure of the paper is the following: in Sect. 2 we present the nodal point-
X-point mechanism for the generation of chaos in 2-d Bohmian systems and its
relation with the quantum potential. In Sect. 3 we talk about chaos, entanglement
and Born’s rule (BR) in BQM by use of Bohmian qubits. Finally in Sect. 4 we make
our summary and talk about our future research plans.

2 Nodal Point-X-Point Complex Mechanism

From the very first works in Bohmian Dynamics it was well understood that chaos is
closely related with the moving nodal points of the wavefunction where Ψ becomes
zero (i.e. ΨReal = Ψim = 0) . In fact, the Bohmian equations become singular at the
nodal points and very close to them the quantum particles evolve very fast in a spiral
way forming the so called Bohmian vortices.

However, in [15, 16] it was shown that in the frame of reference of a moving nodal
point N there exists an unstable fixed point X , the ‘X-point’. Together they form the
so called ‘nodal point-Xpoint complex’ (NPXPC), a characteristic geometrical form
of the Bohmian flow in the close neighbourhood of N . The larger the velocity of N
the smaller the distance between N and X . The NPXPCs evolve in the configuration
space and whenever a Bohmian particle comes close to them it gets scattered by the
X-point. The cumulative effect of many such scattering events is the saturation of

1 While in standard Quantum Mechanics quantum chaos refers to the characterization of the uni-
versal properties of quantum systems that reflect the regular or chaotic behaviour of their classical
analogues [11, 12], in BQMchaos/order refers to the high/low sensitivity of the quantum trajectories
on the initial conditions, as in the classical case.
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the maximum Lyapunov exponent at a positive value, i.e. the emergence of chaos
in Bohmian trajectories. Trajectories that do not encounter the NPXCS are ordered.
TheNPXPCmechanism has been extensively tested in the case of the unperturbed 2d
harmonic oscillator with incommensurable frequencies which is the standard system
in the study of Bohmian chaos (see for example [17–19]).

We proceed now with the wavefunction [20]

Ψ (x, y, t) = aΨ0,0 + bΨ1,0 + cΨ1,1, (3)

where Ψn1,n2(x, t) = Ψn1,n2(x)e
−i Ei t/� and Ψn1,n2(x) are eigenstates of the 2d har-

monic oscillator of the form

Ψn1,n2(x) =
2∏

k=1

(
mkωk
�π

) 1
4
exp

(−mkωk x2k
2�

)
√
2nk nk ! Hnk

(√
mkωk

�
xk

)
, (4)

Moreover, n1, n2 are the quantum numbers, ω1, ω2 the frequencies and E1, E2 the
corresponding energies. Hereafter we set mi = � = 1 and write x1, x2 as x, y. Thus
for every doublet (n1, n2) we have E = ∑2

i=1(ni + 1
2 )ωi , This wavefunction has a

single nodal point N =
(
xN = − a sin(tωx+tωy)√

2ωx b sin(tωy)
, yN = − b sin(tωx )√

2ωyc sin(tωx+tωy)

)
.

We work with a = b = 1, c = √
2/2 and ωx = 1, ωy = √

2/2.2 Its trajectory is
shown in Fig. 1a, where we observe the characteristic arcs which lead to infinity with
very high velocities (when the denominators of xN , yN go to 0). In Fig. 1b we present
two trajectories which are captured by a moving nodal point. The smaller their dis-
tance from N the longer the existence of the Bohmian vortices. When N accelerates
the trajectories cannot follow it anymore and wander around the configuration space
until their next interaction with an NPXPC.

In Fig. 1c we show the coexistence of order and chaos in the same system and
observe that the chaotic and ordered trajectories enter the region of the ordered
trajectories. This is due to the explicit time dependence of the Bohmian velocity
field, i.e. two trajectories may pass through the same points of the configuration
space but always at different times.

The nonautonomous character of the Bohmian flow complicates the study of the
scattering events between particles andNPXPCs, since everything changeswith time.
However, when the velocity of N is small and the Bohmian flow around it varies
slowly in time, we can fix the time t and treat the flow as autonomous. Then we can
introduce a new (fictitious) time s for this autonomous field and draw the invariant
curves of the X-point in the frame of reference of N . By doing so we can see the
geometry of the scattering events for a certain time window. This is the so called
‘adiabatic approximation’ [15, 16]. In Fig. 2 we show two NPXPCs at two different
times. In the first case N has a small velocity while in the second case we have a
fast moving N . We observe the drastical reduction of the size of the NPXPC with

2 We need incommensurable frequencies in order to observe chaos.
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Fig. 1 a The trajectory of a moving nodal point: the nodal point spends some time in the broad
environment of the center of the configuration space. Then accelerates and goes very fast to infinity
until it enters again the configuration space from another direction an so on. b Two particles which
get trapped around a moving nodal point and form Bohmian vortices (spiral part of the red and
green trajectories). The closer the encounter with the nodal point, the denser the vortex and the
longer its existence. After some time the nodal point accelerates and the particles cannot follow it
any more. c Two chaotic (blue and green) and two ordered (red and brown) Bohmian trajectories.
Ordered trajectories do not encounter the NPXPCs. The overlap between different trajectories is
due to the explicit time dependence of the Bohmian field

Fig. 2 Two typical NPXPCs: the moving nodal point N is centered at its own frame of reference
(u = x − xN , v = y − yN ), while the X-point lies nearby. The red and blue curves are the unstable
and stable asymptotic curves of the X-point correspondingly. This structure is time dependent: in
a we show the NPXPC of a slow moving N and in b of a fast moving N . The distance between
N and X decreases with the velocity of N and the asymptotic curve which enters the region of N
changes from unstable (red) to stable (blue)

the increase of the nodal velocity. The small arrows represent the direction of the
Bohmian flow at the current time instances and show us how the Bohmian particles
evolve in such a ‘frozen’ field (in the fictitious time s). Moreover, the red and blue
curves represent the unstable and stable invariant curves emanating from X . We
observe that there is a narrow channel between the two branches of the blue curve
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Fig. 3 Upper panel: The surface of the total potential Vtot from 2 different angles for a slow
moving nodal point. The red dot is the X-point and is close to a local maximum of Vtot . The red
and blue curves are the projections of the unstable and stable asymptotic curves of the X-point on
the surface of Vtot . Lower panel: The same for a fast nodal point: in this case the X-point is on a
very well distinguished maximum of Vtot . In both cases the nodal point is at the centre of the tube
at Vtot = −∞

which gives access to the nodal point. Particles that will enter this region will form
Bohmian vortices. In any other case the incoming particles will be deflected from
the X-point according to the Bohmian flow (scattering events of type I and II in [15,
16]). Therefore it is the X-point and not the nodal point which is responsible for the
production of chaos.

Having in mind that N is the point of the configuration space where the quantum
potential Q goes to−∞ (and so does the total potential Vtot = Q + V ), in our recent
studies we tried to find the position of X on the surface of Q and Vtot . What we found
is that X is always close to the local maximum of Q and Vtot in the close area of N
[21, 22]. Moreover its distance from this local maximum is inversely proportional to
the nodal velocity. This is shown in Fig. 3 where we plot Vtot in the cases of a slow
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and a fast moving nodal point correspondingly. The red dot represents X while the
red and blue curves are the projections of its invariant curves (unstable and stable)
on the surface of Vtot .

3 Chaos and Entanglement in Bohmian Qubits

Quantum entanglement is a fundamental property of quantum systems. Two systems
A and B are entangled whenever their joint wavevector cannot be written in the form
|ΨAB〉 = |ΨA〉 ⊗ |ΨB〉. Entanglement lies at the heart of Quantum Mechanics and is
the prerequisite of most quantum information algorithms and protocols [23].

The fundamental block of quantum information is the so called qubit (similarly to
the classical bit). As a qubit we define a quantum system whose state can be written
in the form Ψ = a|0〉 + b|1〉, where |a|2 + |b|2 = 1 according to Born’s rule and
|0〉 and |1〉 two well separated quantum states, i.e. with a negligible inner product
(overlap) 〈0|1〉 in the Hilbert space. Thus, in sharp contrast with classical bits, qubits
can be in any superposition between the basis states |0〉, |1〉, something that gives
them unique advantanges from an informational point of view [24].

In 2019 we began our studies on the interplay between chaos and entanglement
in Bohmian Mechanics. The major problem that we had to overcome was to find a
model that would be simple enough andwould capture all the features of an entangled
quantum system. In standardQuantumMechanics the simplest choice is to workwith
spin qubits. However, in BQM position representation plays a prominent role, since
we always talk about particle trajectories. Thus we decided to construct qubit states
in the position representation by use of coherent states of the quantum harmonic
oscillator [25].

A coherent state is defined as the eigenstate of the annihilation operator of the
quantumharmonic oscillator: α̂|α(t)〉 = A(t)|α(t)〉where A(t) = |A(t)| exp(iφ(t)).
In the position representation the wavefunction of a coherent state along the axis x
has the form:

Y (x, t) =
(
mω

π�

) 1
4

exp

[
− mω

2�

(
x −

√
2�

mω
�[A(t)]

)2

+ i

(√
2mω

�
	[A(t)]x + ξ(t)

)]
,

(5)

with �[A(t)] = a0 cos(σ − ωt),	[A(t)] = a0 sin(σ − ωt), ξ(t) = 1
2

[
a20 sin(2(ωt

− σ)) − ωt
]
, where a0 ≡ |A(0)| and σ = φ(0) is the initial phase of A. Thus we

studied entangled states of two non interacting 1-d oscillators3 described by wave-
functions of the form:

Ψ (x, y, t) = c1YR(x, t)YL(y, t) + c2YL(x, t)YR(y, t) (6)

3 Namely our Hamiltonian is H = p2x
2mx

+ p2y
2my

+ 1
2mxω

2
x x

2 + 1
2myω

2
y y

2.
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with |c1|2 + |c2|2 = 1, and where YR and YL represent a one-dimensional coherent
state moving to the right or to the left from the center of the oscillation along a certain
axis (x or y) (Fig. 1 of [25]). We worked with common large amplitude a0 = 5/2 so
as the wavefunctions YR and YL have a negligible overlap in Hilbert space, i.e. they
define the basis states of a qubit. Consequently the wavefunction Ψ (x, y, t) refers
to an entangled state of two non interacting qubits made of coherent states along the
x and y directions (see Fig. 1 of [25]). The degree of the entaglement is controlled
by the value of c2, with c2 ∈ [0,√2/2], where c2 = 0 corresponds to a product state
while c2 = √

2/2 corresponds to a maximally entangled state (Bell state).4

This model was proven to be ideal for our goal since:

• It is completely analogous to a spin based two-qubit system and its entanglement
can be found analytically [25–27].

• It has infinitely many nodal points (due to the infinitely many energy eigenstates
contributing in the coherent state) whose position is

xN =
√
2

(
kπ cos

(
ωyt

) + sin
(
ωyt

)
ln

(∣∣∣ c1c2
∣∣∣))

4
√

ωxa0 sin
(
ωxyt

) (7)

yN =
√
2

(
kπ cos (ωx t) + sin (ωx t) ln

(∣∣∣ c1c2
∣∣∣))

4
√

ωya0 sin
(
ωxyt

) (8)

with k ∈ Z , k even for c1c2 < 0 or odd for c1c2 > 0 and ωxy ≡ ωx − ωy . If we
plot the (xN , yN ) for various k’s we will see that they form straight lattices (Fig. 4
of [19]) which move in the configuration space.5 Their footprint for t ∈ [0, 200]
is given in Fig. 4a.

• The form of the probability density is very simple. It has two well defined almost
gaussian blobs which rotate and oscillate in the configuration space and collide
from time to time. For weak entanglement one blob is large (leading blob) and the
other is small (secondary blob). With the increase of the entanglement these blobs
tend to become identical (see Figs. 1 and 10 of [29]).

We found that:

1. The ordered trajectories of this model are deformed Lissajous figures. The initial
conditions which produce ordered trajectories are confined on the region of the
leading blob of the wavefunction (see Fig. 15 of [29]).

2. Chaos is produced due to the collisions between the blobs of P = |Ψ |2 which
take place at the central area of the configuration space. During the collisions the
straight lattices of the NPXPCs become dense in the central area and scatter the
incoming trajectories, while between the collisions the trajectories tend to follow
the Lissajous-like motion of the two blobs (see Fig. 3 of [30]).

4 In the absence of interacting terms the conservation of QE is guaranteed.
5 In fact their position can be found analytically for any number of qubits! [28].
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Fig. 4 Upper left: a The footprint of the nodal points for t ∈ [0, 100] and for k = −23..23 in the
maximally entangled state (c2 = √

2/2). Upper right: b The surface of the quantum potential Q.
We observe the multiple tubes going down to−∞ and the X-points (red dots) at the local maxima of
surface of Q. Bottom left: cA typical colorplot of a chaotic trajectory in the partially entangled state
with c2 = 0.5. All chaotic trajectories with a given c2 have almost the same long limit distribution
of points. Thus the chaotic trajectories are practically ergodic. Bottom right: d The proportion of
chaotic trajectories for different values of the entanglement parameter c2 in 2, 3 and 4 entangled
qubit states (red, green and black dots correspondingly). By increasing the number of qubits we find
a larger number of chaotic-ergodic trajectories in the BR distribution for any given entanglement.
Thus it is reasonable to make the conjecture that BR is going to be always accessible in N -qubit
systems with large N

3. The higher the entanglement the larger the number of the chaotic trajectories
inside the support of Ψ 6 [30, 31].

4. The X-points are on the top of the local maxima of the quantum potential as in
the single nodal point case (Fig. 4b).

After studying in detail the above results with a large number of numerical sim-
ulations we tried to understand the relation between entanglement and chaos in the
long time limit. Our main goal was to understand the mechanism behind the dynam-
ical approximation of Born’s rule in BQM: while in standard Quantum Mechanics

6 The region of the configuration space where |Ψ |2 is not negligible.
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Born’s rule P = |Ψ |2 is an axiom, in BQM one can consider, in principle, initial dis-
tributions of particles with P0 �= |Ψ0|2. The origin of BR is a fundamental question
in the Bohmian framework [32–36].

Our main result was that, in this model, all chaotic trajectories have the same long
time distribution of points in the support of the wavefunction,7 for any given nonzero
value of entanglement,8 i.e. they are ergodic. This property was found by introducing
a dense grid of square cells inside the support of the wavefunction and counting the
number of the passages of the trajectories in every cell of the grid (Fig. 4c). The
resulting colorplots of the chaotic trajectories are almost the same.

Ergodicity gives us the opportunity to have a reliable picture of the long limit
behaviour of any chaotic trajectory9 without having to integrate an enormous num-
ber of individual initial conditions. Combined with the result 3) it implies that the
establishment of BR in this model will depend only on the ratio between ordered and
chaotic trajectories in the Born distribution. Namely, BR is going to be accessible
by any initial distribution with P0 �= |Ψ0|2 but with the same ratio between ordered
and chaotic trajectories with the BR distribution [19].

These results were extended in the cases of 3 and 4 qubits. The increase of the
dimension of the configuration space (every qubit is defined on a different coordinate
and thus contributes to the total dimension of the configuration space, i.e. N qubits→
N coordinates) was found to be crucial for the number of chaotic trajectories inside
the support of the wavefunction: the larger the number of qubits the larger the number
of the chaotic-ergodic trajectories for any given nonzero amount of entanglement and
thus the more accessible is BR to arbitrary initial distributions of Bohmian particles.
Consequently, we expect that in N -qubit systems, with N large (say more than 10),
BR is going to be practically reachable by any initial distribution ofBohmian particles
(Fig. 4d).

4 Summary

BQM is a trajectory based quantum theory which gives us the opportunity to study
chaotic behaviour of quantum systems with all the techniques of classical dynamical
systems. Order and chaos play a fundamental role in the evolution of Bohmian
particles. In this paper we made a quick review of some of our most important results
in Bohmian chaos in 2 dimensional systems based on the NPXPC mechanism.

Aiming at the extensionof theNPXPCmechanism in3-dBohmian systems in [37–
39] we found cases where the wavefunctions of 3-d quantum harmonic oscillators
exhibit the phenomenon of partial integrability, i.e. their Bohmian trajectories evolve
on 2-d integral surfaces embedded in the 3-d configuration space. After gaining a
lot of information about order and chaos in 3 dimensions from these systems we

7 I.e. the region of the configuration space where |Ψ (t)|2 is not negligible.
8 For zero entanglement the Bohmian system is decoupled and all trajectories are ordered.
9 Which is important in the study of Born’s rule.
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Fig. 5 aANPXPC on the spherical surface of a partially integrable 3d quantum harmonic oscillator
Ψ (x, y, z, t) = 1√

3

(
Ψ1,0,0(x, y, z, t) + Ψ0,1,0(x, y, z, t) + Ψ0,0,1(x, y, z, t)

)
.b the footprint of the

nodal trajectory on the sphere

finally managed to extend our mechanism in arbitrary 3-d systems in [40]. The
3d NPXPC mechanism helped us to understand the generation of chaos in 3-qubit
systems. Moreover, recently we studied the case of multinodal Bohmian systems
whose multiple nodal points do not have a certain geometry on the configuration
space (as in the case of qubits) but they are randomly scattered on the x − y plane
[22].

At the present moment we are trying to understand the dynamical establishing of
BR in the case of a simple partially integrable system with spherical integral surface
(Fig. 5) and its possible differences from the 2-d systems with planar configuration
space. From this work we expect to gain new information about the relation between
entanglement and chaos in multipartite Bohmian systems.
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A Brief Introduction to Quantum Chaos
of Generic Systems

Marko Robnik

Abstract This article is an updated revised version of a recent review paper on
quantum chaos in mixed-type systems, between regularity and chaos (Robnik 2020),
covering the topics presented at the 28th Summer School-Conference on Dynamical
Systems andComplexity, held inChania, Crete,Greece, in July 2022, dedicated to the
70th birthday of Professor Athanassios (Thanasis) Fokas. Chaos (chaotic behaviour)
can emerge in deterministic systems of classical dynamics. It is due to the sensitive
dependence on initial conditions, meaning that two nearby initial states of a system
develop in time such that their positions (states) separate very fast (exponentially)
in time. After a finite time (Lyapunov time) the accuracy of orbit characterizing the
state of the system is entirely lost, the system could be in any allowed state. The
system can be also ergodic, meaning that one single orbit describing the evolution
of the system visits any other neighbourhood of all other states of the system. In
this sense, chaotic behaviour in time evolution does not exist in quantum mechanics.
However, if we look at the structural and statistical properties of the quantum system,
we do find clear analogies and relationships with the structures of the corresponding
classical systems. This is manifested in the eigenstates and energy spectra of various
quantum systems (mesoscopic solid state systems, molecules, atoms, nuclei, elemen-
tary particles) and other wave systems (electromagnetic, acoustic, elastic, seismic,
water surface waves and gravitational waves), which are observed in nature and in
the experiments. Here we review the basic aspects of quantum chaos in Hamiltonian
systems. We shall focus on the most general (generic) systems, also called mixed-
type systems, as their classical counterparts in the phase space exhibit regular regions
coexisting with the chaotic regions for complementary initial conditions. We shall
review the basic concepts of quantum chaos in the stationary picture, that is the
properties of the eigenstates of the stationary Schrödinger equation, the structure of
wave functions, and of the corresponding Wigner functions in the quantum phase
space, and the statistical properties of the energy spectra. Before treating the gen-
eral mixed-type case we shall review the two extreme cases, the universality classes,
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namely the regular (integrable) systems, and the fully chaotic (ergodic) systems.
Then the Berry-Robnik (1984) picture will be presented, and the underlying Princi-
ple of Uniform Semiclassical Condensation (PUSC) of the Wigner functions. Next,
we shall consider the effects of quantum (dynamical) localization, which set in when
the classical transport time (like diffusion time) is longer than the Heisenberg time
scale (defined as the Planck constant divided by the mean energy level spacing). It
will be shown phenomenologically that in the case of chaotic eigenstates in the quan-
tum phase space (Wigner functions) the energy spectra display Brody level spacing
distribution, where the level repulsion exponent (Brody parameter) goes from zero in
the strongest localization to 1 in the fully extended states. The Berry-Robnik picture
is then appropriately generalized to include the localization effects. Furthermore, the
localization measures of chaotic localized eigenstates have a distribution, which in
the absence of stickiness structures in the classical phase space is well described
by the beta distribution. We neglect, at high energies, the tunneling effects coupling
the regular and chaotic levels, since they are manifested only in low-lying levels,
because the coupling decreases exponentially with increasing energy (or inverse
effective Planck constant).

Keywords Nonlinear dynamics · Chaotic systems · Quantum chaos · Wave
chaos · Spectral statistics · Generic Hamilton systems · Quantum localization

1 Introduction

This review is based on the recent review papers by the author [1, 2], and other recent
papers with coworkers [3–14]. The first part is an introduction to quantum chaos from
the stationary point of view, where we shall describe the purely regular eigenstates
versus purely chaotic eigenstates. In the second part we shall address the problem of
themixed-type phase space of generic systems, where regular and chaotic eigenstates
coexist. The structure of the eigenstates and their Wigner functions corresponds to
the structure of the classical phase space portrait, where regular classical motion on
invariant tori exists for certain initial conditions, while the motion is chaotic for the
complementary initial conditions. The books byStöckmann [15] andHaake [16] offer
an excellent introduction to quantum chaos. Stöckmann’s book presents also many
experimental applications of quantum chaos, especially on microwave experiments
he has been conducting since 1990 up to date, addressing and realizing practically
all important questions of quantum chaos. Many subjects of this paper can be found
in the reviews [1, 2, 17, 18].

Let us study the solutions of the Schrödinger equation of a point particle in the
potential V (q),

i�
∂ψ

∂t
= Ĥψ = − �

2

2m
�ψ + V (q)ψ. (1)
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By h = 2π� we denote the Planck constant, ψ(q, t) is the wave function depending
on the N -dimensional space coordinate vector q and on time t ,m the mass, V (q) the
potential, and � = ∂2/∂q2 is the N -dimensional Laplace operator. For instance, in
the case N=2 we have

� = ∂2

∂x2
+ ∂2

∂y2
. (2)

We shall mainly restrict ourselves to N = 2.
We study the solutions of the Schrödinger equation and relate them to the cor-

responding classical dynamics. The limiting behaviour � → 0 is of prime interest.
The methods to find approximate solutions for small � are known under the name
semiclassical mechanics, sometimes also quasiclassical approximations. They rep-
resent the connection between the classical and quantum mechanics. See the books
[15, 16]. These approximations should be understood as short wavelength approxi-
mations, applicable to all wave systems.

Here we shall treat purely binding potential V (q), in which the classical motion
is bounded for all initial conditions. The particle cannot escape to infinity (no ion-
ization threshold). Thus the energy spectrum of Ĥ (1) is purely discrete and infinite.
An example is a classical billiard system, where a point particle is moving freely
inside a potential box with hard walls, experiencing an elastic collision when hitting
the boundary. If the potential outside the billiard domain is infinite, the Dirichlet
boundary conditions of vanishing ψ on the boundary must be satisfied.

In a classical Hamilton system we can have either regular quasiperiodic motion
on N-dimensional invariant tori, or chaotic motion. In the latter case we observe the
sensitive dependence on initial conditions, which is characterized by the existence
of the positive Lyapunov exponents. Two nearby orbits diverge exponentially with
time ∝ exp(λt), and the relevant exponent λ is called the largest positive Lyapunov
exponent. In the case of billiards, the type of dynamics is entirely determined by
the geometrical shape of the boundary. However, in quantum mechanics an orbit (in
phase space) and trajectory (in the configuration space) cannot be defined due to the
Heisenberg uncertainty principle. Consequently, the divergence of nearby trajectories
cannot be defined. Any attempt to define a meaningful quantum correspondent of
the asymptotic Lyapunov exponent λ leads to the conclusion that it is always zero.
Therefore in quantum systems the sensitive dependence on initial conditions does
not exist. The time evolution of the wave function ψ(t) (1) is stable, almost periodic,
and reversible, in contradistinction to the classically chaotic systems where for times
much larger than Lyapunov time τ = 1/λ it is fundamentally irreversible once the
accuracy of integration is exhausted. For details see [16]. Therefore, as for the time
evolution the correspondence between the classical chaotic and quantum systems
does not exist.

However, as already mentioned, there is another aspect of classical chaos, namely
the structure of the phase space, the so-called phase portrait. In integrable systems
with N degrees of freedom, the quasiperiodic motion takes place on N -dimensional
invariant tori, for all initial conditions. Integrable systems are very special and rare,
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but important, as we can entirely describe them analytically, and also understand
what happens (to the phase portrait) if we slightly perturb them, by using a variety of
perturbation methods. The opposite extreme are entirely chaotic, ergodic, systems
where each orbit is dense and visits any other point in the phase space, with exception
ofmeasure zero (represented by the periodic orbits). The entire phase space is just one
chaotic invariant component. Therefore the phase space average of functions and the
time average are equal. In between there are the mixed-type systems, which possess
extremely complex structure of the phase space. The regular islands of stability
covered by the invariant tori coexist with chaotic sea surrounding them. The picture
exhibits an infinite hierarchy of statistically selfsimilar structures. The celebrated
fundamentalKAMtheoremexplainswhat can happen to slightly perturbed integrable
Hamiltonian systems. Most of the invariant tori still exist after the perturbation with
the same N frequencies of the quasiperiodic motion, although they are typically
slightly distorted. However, the rational tori are destroyed, and in place of them we
get an even number of periodic orbits, half of them stable and half of them unstable,
surrounded by chaotic region (Poincaré-Birkhoff theorem).

In quantum mechanics, to see the analogies with the classical phase portraits,
we must look at the structure of the eigenfunctions, of their corresponding Wigner
functions in the quantum phase space to be defined below, and at the properties of the
corresponding energy spectra. In this stationary picture there is a very well defined
correspondence: The quantum signatures of classical chaos, as the title of Haake’s
book [16] goes, are very well defined.

Let us consider the solutions of the Schrödinger equation (1) for the eigenstates
with sharply defined eigenenergies En , ψ(q, t) is ∝ ψn(q) exp(−i Ent/�). The cor-
responding eigenfunctions ψn are satisfying the boundary conditions, obeying the
normalizability of ψn ,

∫ |ψn(q)|2dNq < ∞. In billiards we usually require ψ = 0
on the boundary, but other possibilities, e.g. the Neumann boundary conditions of
vanishing normal derivative of ψn , are possible.

The eigenstates satisfy Ĥψn = Enψn , so that the stationary (time-independent)
Schrödinger equation is

�
2

2m
�ψn + (En − V (q)) ψn = 0. (3)

In the following sections we shall deal with the different types of solutions ψn and
the associated energy spectra En .

As the final comment in introduction let us remark that the time-dependent and
time-independent Schrödinger equations, (1) and (3), are some special examples of
some wave equations. Other wave equations of mathematical physics exhibit similar
behavior, such as the wave equations describing electromagnetic, acoustic, elastic,
seismic waves, water surface waves, etc., where the same questions can be addressed,
and the analogous conclusions can be reached. The books by Stöckmann [15] and
Haake [16] cover these aspects. We see that the terminology "quantum chaos" is
much too narrow, and instead, we should speak of "wave chaos". Nevertheless, the
quantum chaos is a well established name, but we should be aware of the great variety
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of wave phenomena that can occur in other wave systems. The wave chaos is closely
related to the opposite effects of the spontaneous formation of ordered structure in
certain wave systems such as e.g. reaction-diffusion systems. We have to understand
under what conditions order or chaos can emerge, which is the subject of Haken’s
fundamental work on synergetics [19].

2 Quantum Mechanics of Classically Integrable Systems

We shall first deal with classically integrable systems. They are very exceptional, but
important, becausewe can treat themanalytically and also analytically and rigorously
study what happens when we (slightly) perturb them. The total energy is conserved
if their Hamilton function does not depend on time (autonomous system). Their
phase space is entirely filled with invariant N -dimensional tori. Some examples are
centrally symmetric potentials where the angular momentum is a conserved quantity
(integral of motion). In billiards we have only two families of completely integrable
systems, the rectangular billiards and the elliptic billiards. In the former case the
absolute values of the momenta are conserved, while in the second case the product
of the angular momenta with respect to the two foci is the integral of motion [20].
The circular billiard is a special case (zero eccenticity), with conserved angular
momentum.

Here we address the question of what can be said to characterize the quantum
mechanics of such systems. Do we observe some characteristic properties of the
eigenfunctions and of the energy spectra? For the heuristic approach, let us first con-
sider the 2-dimensional billiard systems. The Schrödinger equation, in appropriate
units, reduces to the simple 2-dimensional Helmholtz equation

∂2ψ

∂x2
+ ∂2ψ

∂y2
+ Eψ = 0, (4)

where the index (quantum number(s)) n is suppressed. We assume ψ = 0 on the
boundary. The answer to the above questions is yes. In both billiard families the
eigenfunctions have an ordered structure, and in both cases the solutions can be
analytically found, due to the separability of the systems. For the rectangle with
horizontal width a and the vertical width b the solution is given by ψm,n(x, y) =
C sin πmx

a sin πny
b , where the constant C is fixed by the normalization. Here m and

n are the two quantum numbers (positive integers). The nodal lines defined by the
zeros of ψ(q) = 0 are the horizontal straight lines y = jb/n = const., where j =
0, 1, . . . , n, and the vertical lines x = ja/m = const., with j = 0, 1, . . . ,m.

In the circle billiard the nodal lines are defined by the zeros of the radial Bessel
functions, which are circles, and by the zeros of the angular trigonometric function,
which are polar rays, straight lines, emanating from the center of the circle. In the
case of an ellipse, we can introduce the elliptical coordinates and thereby separate
the solution of the Helmholtz equation.
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Ifweperturb the shape of the integrable billiards, and solve theHelmholtz equation
(4), this ordered nodal structure becomes destroyed by a generic perturbation, which
breaks the separability and integrability of the system. Of course, such a transition
is the faster the larger the energy of the eigenstate. In ergodic chaotic systems at
sufficiently high energies the nodal structure is typically entirely random. Exceptions
can exist, associated with so-called scars, but their measure is zero (as a relative
fraction of all eigenstates).

Let us now consider the energy spectra E of the integrable billiards, obtained
by solving (4)? They are certainly characterized by two quantum numbers. For the
rectangle billiard with horizontal width a and the vertical width b, we find using the
above eigenfunctions

Em,n = π2

(
m2

a2
+ n2

b2

)

, (5)

where m, n are the two quantum numbers (positive integers). This energy spectrum
is explicit and simple, and yet its statistical properties are not trivial. We shall see
that the statistical properties of the energy spectra are deeply related to the type of
the dynamics of the corresponding classical Hamiltonian system. If the system is
integrable we find Poissonian statistics, while in classically chaotic ergodic systems
the statistics is well described by the random matrix theory. We shall discuss this in
the next section.

Before starting the statistical analysis we must eliminate the system’s specific
properties, such as the density of energy levels. For this purpose we perform the
spectral unfolding procedure, which means transformation of the actual physical
energy spectrum En to the unfolded energy spectrum en , upon which the mean
spacing �e = 〈(en+1 − en)〉 of en is equal to 1 for all e. The unfolding is simply
en = En/�E = Enρ(En), where ρ(E) is the energy level density. The density of
states is obatined by the Thomas-Fermi rule of filling the classical phase space inside
the energy surface E = H(q,p) = const. with the Planck cells of volume (2π�)N .
Namely, the cumulative numberN of the energy eigenvalues below the energy E is
given by

N (E) = 1

(2π�)N

∫

H(q,p)≤E
dNq dNp. (6)

Therefore,

ρ(E) = dN
dE

= 1

(2π�)N

∫
δ (E − H(q,p)) dNq dNp, (7)

where δ(x) is the Dirac delta function. For 2-dimensional billiards using the units
defined by (4) we can even improve the above asymptotic estimate, valid at E → ∞,
namely

N (E) = AE

4π
− L√

E

4π
+ c.c. (8)
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whereA andL are the area and the circumference of the billiard, while c.c. are some
small constants (curvature and corner corrections) which for large E are unimportant.
The first term in (8) stems from (6), while the second one is the so-called perimeter
correction.Asymptoticallywhen E → ∞ the leading term is dominant, and is known
also as the Weyl formula.

With the unfolded energy spectrum at handwe start the statistical analysis. Instead
of defining all the correlation functions etc., we shall consider only two statistical
measures. The first one is the gap probability E(S), which is the probability that
an interval of length S (of the unfolded spectrum) is empty of levels. The second
one is the level spacing distribution P(S): The probability to have a level spacing
within the interval (S, S + dS), is equal to P(S)dS. They are related through P(S) =
d2E(S)/dS2 (see e.g. [16]).

For the irrational rectangular billiard (a2 and b2 are not rationally connected) we
find the Poissonian statistics, namely

E(S) = exp(−S), P(S) = exp(−S). (9)

We observe that there is no parameter involved in this formula, indicating that some-
thing similar should be found in other integrable systems, like the elliptic billiard.
Indeed, this is the case, and we speak of the universality class of the Poissonian
spectral statistics of integrable systems. Some subtleties around this problem (see
below) were studied in [21], but the validity of the Poissonian statistics is confirmed
in the asymptotic limit. Intuitively we can understand: In a quantum energy spec-
trum with two or more quantum numbers we have generically a superposition of
infinitely many uncorrelated discrete number sequences, and such a superposition
always results in a Poissonian sequence, where there are no correlations between the
levels whatsoever.

A general N -dimensional classically integrable system is defined by the Hamil-
ton function H(q,p). We can perform the construction of such N quantum numbers
in terms of the classical action variables I. In the semiclassical limit of small �

the so-called EBK quantization (torus quantization) is based on the quantization of
the classical actions I. It is named after Einstein, Brillouin and Keller. The phase
space has 2N dimensions, the energy surface E = H(q,p) = const. has 2N − 1
dimensions, and by definition we have N integrals of motion A j , j = 1, . . . , N . A1

is by convention the Hamilton function, the energy E = H . The N -dimensional
invariant surfaces labelled by A have the topology of N -dimensional tori. The
actions - the generalized momenta - are defined by the N circuit integrals on a
torus labelled by A or I,

I j = 1

2π

∮

C j

p · dq (10)

For details see e.g. the references [22, 23]. The Hamilton function H(q,p) is only a
function of I, because after inverting A j = A j (Ik), we have A1(q,p) = H(q,p) =
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H(I). The conjugate angle variables θ j are called cyclic variables, as they do not
appear in the Hamilton function, and thus the actions are of course constants of
motion.

For sufficiently small � we perform the torus quantization, or EBK quantization,
by quantizing the actions of the tori,

Im = (m + α

4
)�, (11)

wherem is a N -dimensional vector of nonnegative integers, and = α1,α2, . . . ,αN

are so-called Maslov indices. They count the number of caustics (singularities of the
wave function in configuration space) encountered in the configuration space upon
traversing round the fundamental circuit C j . Thus, α j depends on how the invariant
torus lies in the phase space and on the structure of its projection singularities in
the configuration space. The energy eigenvalues are then equal to the value of the
Hamilton function at the quantized actions (11),

Em = H(Im) = H
(
(m + α

4
)�

)
. (12)

The formula (12) with (11) is basically the higher dimensional generalization of the
1-dimensional semiclassical quantization, taking into account also the Maslov cor-
rections, which Einstein, Brillouin and Keller were not aware of. It is an approximate
solution at small � of the Schrödinger eigenvalue problem (3). For further details see
[15].

The Poissonian statistics for the quantal energy spectra of classically inte-
grable systems can now be explained: Since we have N quantum numbers m =
(m1,m2, . . . ,mN ), this means generically statistical independent superposition of
infinitely many level sequences, which results in a Poissonian sequence, provided
there are no special and nongeneric rational relationships or correlations between the
individual level sequences. See e.g. [21], where the role of rational relationships in
rectangle billiardwith sides a and b is discussed. If a2 and b2 are rationally connected,
we observe the number theoretic degeneracies, implying that the level spacing dis-
tribution is a sum of Dirac delta functions rather than a smooth distribution. It slowly
converges to the Dirac delta function P(S) = δ(S) peaked at S = 0 asymptotically
at large energies. For irrationally related a2 and b2 we observe Poissonian behaviour
[21].

3 Quantum Chaos in Classically Ergodic Systems

Let us consider the fully chaotic, ergodic systems. We can expect again some kind of
universality of the spectral fluctuations and their statistical properties. One example
of a chaotic and ergodic system is the stadium of Bunimovich [24]. It is a rectangle
of width ε with two semicircles on the opposite sides, of unit radius. The motion
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of a point particle is ergodic and chaotic for any positive ε, but the typical time tT
to fill the entire phase space depends strongly on ε. Namely, for small ε we find a
diffusion process [25], which is very relevant for the quantum chaos of this system
[6]. If ε is large, the diffusion time (or classical transport time) tT is very short, of
order unity, and becomes larger by orders of magnitude for smaller ε. This time scale
has to be compared to another quantal time scale, the so-called Heisenberg time,
which is important time scale in any quantum system with discrete energy spectrum,
and is defined as tH = 2π�/�E , where �E is the average energy level spacing
�E = 1/ρ(E), determined by the Thomas-Fermi rule (7). It is observed empirically
that the quantum diffusion follows the classical diffusion up to the Heisenberg time
(also called break time), and is then stopped due to the destructive interference
effects, resulting in a localization, which is called dynamical localization or quantum
localization, discovered by Casati, Chirikov, Izrailev and Ford in 1979 [26] in the
quantumkicked rotator, an example of a Floquet system. This important phenomenon
of quantum localization manifests itself also in the structure of the Wigner functions
of the stationary eigenstates in the quantum phase space. If the Heisenberg time
is larger than the classical diffusion time (no localization effects present) we find
the universal statistical behaviour of the wave functions and of the energy spectra.
According to the equation (7) �E ∝ (2π�)N , and therefore as � → 0, for N ≥ 2,
tH will be larger than classical tT . Therefore, at some sufficiently small �, in the
semiclassical limit, the quantum localization effects disappear and the universality
of the statistics of energy spectra and of the wave functions can appear.

Indeed, it has been found already by McDonald and Kaufman [27] that the nodal
pattern of the stadium billiard with ε = 1 is entirely irregular, in contradistinction
to the integrable billiards (rectangle and ellipse billiard). Berry [28] has proposed
that the wave functions of classically fully chaotic ergodic systems should behave
as Gaussian random functions, such that the probability amplitude ψn(x, y) has a
Gaussian distribution, and this has been widely confirmed (see e.g. [29]). Therefore
we have a good reason to expect universal statistics of energy spectra. Bohigas,
Giannoni and Schmit have shown in 1984 [30] in the case of the stadium billiard that
(after spectral unfolding) the level spacing distribution P(S) is well described by the
Wigner distribution (also called Wigner surmise), as an excellent approximation of
the so-called GOE distribution to be discussed below, given by

PW (S) = πS

2
exp

(

−πS2

4

)

, (13)

and the corresponding gap probability is

EW (S) = 1 − erf

(√
πS

2

)

= erfc

(√
πS

2

)

(14)

Here, the linear rise of P(S) at small S, starting from zero, is important, meaning
that the levels tend to avoid a degeneracy, and we speak of the linear level repulsion.
This behavior is quite different from the Poissonian P(S) = e−S , where there is
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no level repulsion and the degeneracies are quite likely. Bohigas, Giannoni and
Schmit performed numerical exploration also of other fully chaotic ergodic billiards
with short tT , and proposed what is now well known as Bohigas-Giannoni-Schmit
(BGS) Conjecture, namely that the statistical properties of the energy spectra of
classically fully chaotic and ergodic systems are described by the Random Matrix
Theory (RMT). This conjecture is at the heart of quantum chaos. Percival [31], and
in particular Casati, Valz-Gris and Guarneri [32], have presented some qualitative
ideas pointing in this direction.

Plentiful numerical calculations have confirmed that the conjecture is correct.
The seminal paper by Berry in 1985 [33] has shown on the theoretical side, using the
semiclassical methods developed by Gutzwiller in [34], that the spectral autocorrela-
tion function and its Fourier transform, the so-called spectral form factor, agree with
the RMT. In 2001 Sieber and Richter [35] extended Berry’s work to the next order in
power expansion for short times of the form factor. In 2006 Haake and his group [16,
36] have shown that the semiclassical form factor agrees with the RMT to all orders.
Therefore, BGS Conjecture can be considered as theorem. The Gutzwiller method
rests upon the semiclassical approximation of the Green function (propagator) for
the Schrödinger equation, best approached in terms of the Feynnman path integral.
The result is an expression of the density of the energy levels in terms of classical
periodic orbits. See the book by Stöckmann [15]. This semiclassical theory predicts
also limitations of the universality. For example, the delta statistics saturates at scales
L > Lmax = �/(T�E), where �E is the mean energy level spacing and T is the
period of the shortest periodic orbit. However, in the semiclassical limit � → 0 we
see Lmax → ∞, because�E ∝ �

N , thuswe see the universality region for arbitrarily
large L by taking sufficiently small effective � (or sufficiently large energy).

The RMT has been developed mainly byWigner, Dyson, Mehta [16, 37] and oth-
ers to describe level statistics of heavy complex nuclei. It was a major surprise that
this theory applies also in few degrees of freedom systems, provided they are classi-
cally chaotic ergodic, even with just two degrees of freedom, such as billiard model
systems, if the semiclassical condition tH > tT is satisfied. The idea is that complex-
ity of a system implies randomness of the matrix elements, where this complexity
can be either due to many degrees of freedom, or due to chaotic classical dynamics in
a low dimensional system, such as just N = 2. The main interest is in the statistical
properties of the eigenvalues of appropriate ensembles of random matrices, that is
matrices with randommatrix elements each having a certain probability distribution.

Here we discuss only the main idea of RMT, assuming the Gaussian random
distribution of the matrix elements, such that they are statistically independent of
each other. Their distribution is invariant w.r.t. the transformations that preserve the
symmetry of the Hamilton matrices of the ensemble. In the case of real symmet-
ric Hamilton matrices the transformations are orthogonal transformations, and the
ensemble of such random matrices is called Gaussian Orthogonal Ensemble (GOE).
If H are complex Hermitian matrices, the group of symmetry preserving transforma-
tions are the unitary transformations, and the ensemble is called Gaussian Unitary
Ensemble (GUE). The main question, among others, is what are the statistical prop-
erties of the eigenvalues of random matrix ensembles.
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Instead of the general treatment, we consider just two-dimensional randommatrix
ensembles, and derive the level spacing distribution for them. For a general Hermi-

tianmatrix

(
x y + i z

y − i z −x

)

, with x, y, z real, and i2 = −1, the two eigenvalues are

λ = ±√
x2 + y2 + z2 and therefore the level spacing is S = λ1 − λ2 =

2
√
x2 + y2 + z2. We assume that x, y, z have so far general distributions gx (x),

gy(y), gz(z), correspondingly. The level spacing distribution is

P(S) =
∫

R3
dx dy dz gx (x)gy(y)gz(z)δ(S − 2

√
x2 + y2 + z2). (15)

For the 2D GUE we assume gx (u) = gy(u) = gz(u) = 1
σ
√

π
exp(− u2

σ2 ), and impose
the normalization < S >= 1, determining σ. Using the spherical coordinates r =√
x2 + y2 + z2 and ϕ, θ, we can do the integral, followed by the normalization

< S >= 1, yielding 2D GUE formula

P(S) = 32S2

π2
exp(−4S2

π
), (16)

now exhibiting the quadratic level repulsion.
If we restrict the ensemble to the real symmetric class, taking gz(u) = δ(u)

while gx and gy are unchanged Gaussian, and employing the polar coordinates
r = √

x2 + y2 andϕ, 2DGOE formula follows P(S) = πS
2 exp(− πS2

4 ), now exhibit-
ing linear level repulsion, the result being identical to PW (S) from equation (13).

There is a clear cut criterion for the GOE or GUE case: If the system has an
antiunitary symmetry exemplified by - but not limited to - the time reversal symmetry,
then there exists a large and nontrivial family of basis in the Hilbert space where
the representation of the Hamilton operator (matrix) is real symmetric, and GOE
statistics applies. If there is no antiunitary symmetry, the system is a general complex
Hermitian and the statistics is GUE [37–39]. (The systems with spin are entirely
neglected in this review.)

In both RMT cases as well as in the Poissonian case there is no free parameter:
Universality, the energy level statistics does not depend on any specific features of
the classical dynamics, except that it must be ergodic in the first two RMT cases,
and entirely integrable in the Poissonian case. Thus we have established universality
classes of spectral statistics. According to the important paper by Hackenbroich and
Weidenmüller [41] the result applies also to a very large class of other non-Gaussian
random matrix ensembles, under the condition that the limiting distribution of the
eigenvalues is smooth and confined to a finite interval. As those are mild conditions,
this is the evidence that the universality classes are very robust. We have numerically
verified this wider universality for a number of various non-Gaussian ensembles [42].
An elementary evidence for the robustness of the linear level repulsion is demon-
strated [40, 42] by using (15). We assume gz(u) = δ(u), and for general gx , gy we
can integrate over the (x, y) plane by means of polar coordinates, yielding:
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P(S) = S

4

∫ 2π

0
gx

(
S

2
cosϕ

)

gy

(
S

2
sinϕ

)

dϕ, (17)

and for small S we obtain

P(S) = πS

2
gx (0)gy(0). (18)

Thus if gx , gy at x = 0 and y = 0 are finite and nonzero, the level repulsion
will be always linear, independent of the details of gx (x), gy(y). Indeed, for the
Gaussian case, with the normalization < S >= 1, we get σ = 1/

√
π, and then

gx (0) = gy(0) = 1 and see at once P(S) = πS/2 for small S, which agrees with
(13). The result for the GUE case follows by using the general gz(z), yielding the
quadratic level repulsion,which for small S in the special case ofGaussian gx , gy, gz
agrees with (16).

4 Quantum Chaos in Generic Systems

Classically integrable and fully chaotic (ergodic) systems are exceptional and rare,
they have measure zero in the space of Hamiltonians. Typical classical Hamilto-
nian systems are of the the mixed type, having divided phase space. Quite generally,
they have extremely complex selfsimilar fractal structure, with the rare exceptions
such as the mushroom billiards introduced by Bunimovich, where we have exactly
one rigorously integrable (regular) component, and exactly one ergodic chaotic
component.

In the general generic case the regular regions consisting of N -dimensional invari-
ant tori coexist in the phase space with chaotic regions. Typically there is an infinite
hierarchy of statistically selfsimilar structure consisting of islands of stability sur-
rounded by the chaotic sea, which by itself might comprise several disconnected
invariant chaotic components. The phase portrait has a very rich structure and is
difficult to describe in detail. The quantum mechanics of such systems is also dif-
ficult. In the semiclassical limit � → 0 the quantum mechanics of the stationary
Schrödinger equation must somehow tend to the classical mechanics. It was the idea
of Percival in 1973 [31] who was the first to suggest, qualitatively, that one should
distinguish between the regular eigenstates and the chaotic eigenstates (he called
them irregular). However, the question is: How? It is rather obvious that we must
introduce some kind of the quantum phase space, where the quantum structures can
be compared with the classical ones. This can be achieved by introducing theWigner
functions of the quantum eigenstates.
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4.1 The Wigner Functions

We define the Wigner functions of eigenstates, in terms of the orthonormal eigen-
functionsψn(q) in configuration space, in thequantumphase space (q,p), as follows:

Wn(q,p) = 1

(2π�)N

∫
dNX exp

(

− i

�
p.X

)

ψn(q − X
2

)ψ∗
n(q + X

2
). (19)

They are real valued but not positive definite, and possess the following properties:

(P1)
∫
Wn(q,p)dNp = |ψn(q)|2 (= probability density in configuration space)

(P2)
∫
Wn(q,p)dNq = |φn(p)|2 (= probability density in momentum space)

(P3)
∫
Wn(q,p)dNq dNp = 1 (normalization)

(P4) (2π�)N
∫
dNq dNpWn(q,p)Wm(q,p) = δnm (orthogonality)

(P5) |Wn(q,p)| ≤ 1
(π�)N

(no singularities; Cauchy-Schwartz inequality)

(P6 = P4)
∫
W 2

n (q,p)dNq dNp = 1
(2π�)N

(divergence in the limit � → 0)

(P7) � → 0 : Wn(q,p) → (2π�)NW 2
n (q,p) > 0 (positivity in the limit � → 0)

From this we see that in the semiclassical limit � → 0 the Wigner function becomes
predominantly positive definite, that it is supported in a volume cell of size (2π�)N ,
and thus condenses in such a cell. Since the Wigner functions are orthogonal, they
must "live" in disjoint supports and therefore become statistically independent of
each other. The question is, what is the geometry/structure of such a cell.

4.2 The Principle of Uniform Semiclassical Condensation
(PUSC) of Wigner Functions

The Principle of Uniform Semiclassical Condensation (PUSC) of Wigner functions
of eigenstates is based on the papers by Percival [31], Berry [28], Shnirelman [43],
Voros [44], Robnik [17], and Veble, Robnik and Liu [45]. It states that the Wigner
function Wn(q,p) condenses uniformly on a classical invariant component in the
classical phase space, when � → 0 and if tH > tT . The invariant component can be
an N -dimensional invariant torus, a chaotic component, or the entire energy surface
in the case of classical ergodicity:

(C1) Invariant N -torus (integrable or KAM):

Wn(q,p) = 1

(2π)N
δ (I(q,p) − In) . (20)
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(C2) Uniform on a chaotic region:

Wn(q,p) = δ(En − H(q,p)) χω(q,p)
∫
dNq dNp δ(En − H(q,p)) χω(q,p)

(21)

where χω(q,p) is the characteristic function on the chaotic component labeled by ω

(C3) Ergodicity (microcanonical Wigner function):

Wn(q,p) = δ(En − H(q,p))
∫
dNq dNp δ(En − H(q,p)

(22)

Here we also define μ as the relative Liouville measure of the relevant classical
invariant component indexed by ω:

μ(ω) =
∫
dNq dNp δ(En − H(q,p)) χω(q,p)

∫
dNq dNp δ(En − H(q,p))

(23)

This principle has a great predictive power, as shown e.g. in [45]. The important
condition for the uniformity of the Wigner functions of chaotic eigenstates is: The
Heisenberg time tH must be larger than classical transport time scales tT .

4.3 Spectral Statistics in the Mixed-type Systems

PUSC predicts that in the semiclassical limit the eigenstates can be clearly classified
as regular or chaotic, based on the criterion whether they overlap with an invari-
ant N -dimensional torus or with a chaotic region. One can separate regular and
chaotic energy level sequences, and perform their statistical analysis separately. As
theWigner functions are nonoverlapping the spectral sequences become statistically
independent of each other. The regular sequences obey the Poissonian statistics,while
the chaotic ones obey the RMT statistics (if the semiclassical condition tH ≤ tT is
satisfied). The total spectrum can be theoretically represented as a statistically inde-
pendent superposition of regular and chaotic level sequences. All the regular ones
can be represented by a single Poissonian sequence, simply because a statistically
random superposition of Poissonian level sequences is a Poisson sequence again. On
the other hand, the chaotic sequences must be treated one by one, each of them asso-
ciated with its relevant supporting classical chaotic region. Under these conditions
the gap probability E(S) factorizes: The probability of having no level on interval
of length S is the product of probability of having no level of the regular type, times
probability of having no level of the chaotic types. In the special case of just one

chaotic sequence with the approximate gap probability EW (S) = erfc
(√

πS
2

)
and one

Poissonian sequence with the gap probability EP(S) = exp(−S) we obtain
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E(S) = EP(μ1S) EW (μ2S) = exp(−μ1S) erfc

(√
πμ2S

2

)

. (24)

Byμ1 wedenote the relative fraction of the phase space volumeof the classical regular
regions in the classical phase space, whileμ2 = 1 − μ1 is the complementary relative
Liouville measure of the chaotic region. At the same time, μ1 is the average relative
density of the regular energy levels, while μ2 is the average relative density of the
chaotic levels. Since the general relationship P(S) = d2E(S)/dS2 applies, we derive
at once the so-called Berry-Robnik level spacing distribution [46]

PBR(S) = e−μ1Se− πμ22 S
2

4

(

2μ1μ2 + πμ3
2S

2

)

+ e−μ1Sμ2
1erfc

(√
πμ2S

2

)

. (25)

Naturally, it is normalized < 1 >= 1, and by definition (after unfolding!) has the
normalized first moment < S >= 1. It has been tested in many various billiard
systems, and in order to see it, it is very often necessary to reach the high-lying
levels, even up to 106. Surely, the semiclassical condition (of the time scales) must
be satisfied, and for this to be true usually very high energies are required, which
is technically very demanding. The best confirmation so far has been achieved by
Prosen and Robnik (1994, 1999) [47, 48], 10–15 years after the derivation of (25).
The generalization to many chaotic components is quite straightforward [17, 46].

4.4 Quantum Localization of the Chaotic Eigenstates

Here we shall discuss the appearance and the consequences of the quantum (or
dynamical) localization for the level statistics. If the condition tH > tT is not satisfied,
the Wigner functions of chaotic eigenstates are not uniformly spread on the relevant
classical chaotic component, but are localized, meaning that their effective support
is smaller than the classically available chaotic region. For example, this has been
found in the stadium billiard if ε is sufficiently small. We have shown empirically
[3–6, 49] that the aspects of quantum localization in time-independent eigenstates
are quite analogous to the dynamical localization phenomena in time-dependent
Floquet systems, exemplified by the quantum kicked rotator [50]. Below we shall
show examples of localized chaotic states.

We can neglect the tunneling effects, which couple regular and chaotic levels and
break the statistical independence assumption, at sufficiently high energies (small
effective �), because tunneling effects decrease exponentially with the energy or
effective 1/�. On the other hand,when analyzing the quantum localization effects, we
observe empirically [3–6, 47] even at high energies that the level spacing distribution
of the localized chaotic eigenstates is very well described by the Brody distribution

PB(S) = C1S
β exp

(−C2S
β+1) , (26)
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where the two parameters C1 and C2 are determined by the two normalizations

< 1 >=< S >= 1, namelywehaveC2 =
[
�

(
β+2
β+1

)]β+1
, andC1 = (β + 1)C2. The

corresponding gap probability is

EB(S) = 1

α(β + 1)
Q

(
1

β + 1
, (αS)β+1

)

(27)

where α = �
(

β+2
β+1

)
and Q(a, x) is the incomplete Gamma function

Q(a, x) =
∫ ∞

x
ta−1e−t dt. (28)

Here β is the level repulsion exponent in (26), which also measures the degree
of localization of the chaotic eigenstates: if the localization is the strongest, the
eigenstates practically do not overlap in the phase space (of the Wigner functions)
and we find β = 0 and Poissonian distribution, while in the case of maximal uniform
extendedness (no localization) we have β = 1, and the RMT statistics of levels
applies. Thus, by replacing EW (S) with EB(S) we get the BRB (Berry-Robnik-
Brody) distribution, which generalizes the Berry-Robnik distribution such that the
localization effects are included [3].

5 The Poincaré-Husimi Functions in Billiards

We have established the formalism of the Wigner functions, thereby introducing a
kind of quantum phase space. We will use it to separate the regular and chaotic
eigenstates in mixed-type systems. To do this we simply look whether the given
eigenstate Wn(q,p) overlaps with a classical regular or classical chaotic region.
Moreover, we shall look whether the chaotic Wigner function is localized or not, and
if so, to what degree. The method and approach is general, but technically difficult to
implement in general. Therefore it is necessary to study some specificmodel systems,
for which the billiard systems seem to be most suitable.

Let us consider 2D billiard, using the natural coordinates in the phase space (s, p):
the arclength s round the billiard boundary, s ∈ [0,L], whereL is the circumference,
and the sine of the reflection angle, which also is the component of the unit velocity
vector tangent to the boundary at the collision point, equal to p. These coordinates are
canonically conjugate, known as the Poincaré-Birkhoff coordinates. The bouncemap
(s1, p1) → (s2, p2) is area preserving [20], and the phase portrait does not depend
on the energy. For the quantum billiard we have to solve the stationary Schrödinger
equation, which (using the apropriate units) reduces to theHelmholtz equation�ψ +
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k2ψ = 0 with the Dirichlet boundary conditions ψ|∂B = 0. The energy is E = k2.
The important quantity is the boundary function

u(s) = n · ∇rψ (r(s)) , (29)

which is the normal derivative of the wavefunction ψ at the point s (n is the outward
unit normal vector). The boundary function u(s) satisfies the integral equation

u(s) = −2
∮

dt u(t) n · ∇rG(r, r(t)), (30)

where G(r, r′) = − i
4H

(1)
0 (k|r − r′|) is the Green function in terms of the Hankel

function H0(x). The boundary function u(s) contains complete information about
the quantum system, because the wavefunction at any point q inside the billiard can
be determined by the equation [51]

ψ j (r) = −
∮

dt u j (t) G (r, r(t)) . (31)

When going over to the quantum phase space we can calculate the Wigner functions
based on ψn(r) and perform the procedure developed in the previous section. How-
ever, in billiards it is advantageous to calculate the Poincaré-Husimi functions, which
are generally just Gaussian smoothedWigner functions. Such smoothingmakes them
positive definite, so that we can treat them as quasi-probability densities in the quan-
tum phase space. Following Tualle and Voros [52] and Bäcker et al [53], we use [4]
the properly L-periodized coherent states centered at (q, p), as follows

c(q,p),k(s) =
∑

m∈Z
exp{i k p (s − q + mL)} exp

(

−k

2
(s − q + mL)2

)

. (32)

The Poincaré-Husimi function is defined as the absolute square of the projection of
the boundary function u(s) onto the coherent state, namely

Hj (q, p) =
∣
∣
∣
∣

∫

∂B
c(q,p),k j (s) u j (s) ds

∣
∣
∣
∣

2

. (33)

In Fig. 1 we show examples of a regular and of a chaotic eigenstate for the billiard
introduced by Robnik in [54, 55], which is the conformal complex mapw = z + λz2

of the unit disc |z| = 1. Here we take the shape parameter λ = 0.15.
Now we can classify the eigenstates as regular and chaotic according to their pro-

jection onto the classical surface of section. As we are very deep in the semiclassical
regime we can expect with probability almost one that either an eigenstate is regular
or chaotic, with exceptions having measure zero, ideally. To automate this technical
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Fig. 1 Poincaré-Husimi functions of a chaotic (left) and regular (right) eigenstate, for the Robnik
billiard at λ = 0.15. The values k (M) are: chaotic: k (M) = 2000.0181794 (0.981); regular: k (M)
= 2000.0777155(−0.821). The gray background is the classically chaotic invariant component.
Only one quarter of the surface of section is shown, (s, p) ∈ [0,L/2] × [0, 1], since due to the
reflection symmetry and time-reversal symmetry the four quadrants are equivalent. Taken from [4]

task we have ascribed to each point on the grid a number Ai, j whose value is either
+1 if the grid point lies within the classical chaotic region or −1 if it belongs to
a classical regular region. This has been done as follows. We have taken an initial
condition in the chaotic region, and iterated it up to about 1010 collisions, enough
for the convergence such that we are not missing any chaotic cells. Each visited cell
(i, j) on the grid has then been assigned value Ai, j = +1, the remaining ones were
assigned the value −1.

The Poincaré Husimi function H(q, p) (33) (normalized) has been calculated on
the grid points and the overlap indexM has been calculated according to the definition
M = ∑

i, j Hi, j Ai, j . In practice, M is not exactly +1 or −1, but can have a value in
between. There are two reasons: the finite discretization of the phase space (the finite
size grid), and the finite wavelength (not sufficiently small effective Planck constant,
for which we can take just 1/k). If so, the question is, where to cut the distribution
of the M-values, at the threshold value Mt , such that all states with M < Mt are
declared regular and those with M > Mt chaotic.

We have considered two natural criteria: (I) The classical criterion: the threshold
value Mt is chosen such that we have exactly μ1 fraction of regular levels and μ2 =
1 − μ1 of chaotic levels. (II) The quantum criterion: we choose Mt such that we get
the best possible agreement of the chaotic level spacing distribution with the Brody
distribution (26).

Using this method we can separate the regular and chaotic eigenstates and the cor-
responding eigenvalues, using the classical criterion (I). The corresponding threshold
value of the index M is found to be Mt = 0.431. The level spacing distributions are
shown in Fig. 2. We see perfect agreement with Brody distribution with β = 0.444
for the chaotic levels and almost perfect Poisson distribution for the regular levels.
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Fig. 2 Level spacing distributions for separated chaotic (left) and regular (right) levels in the
Robnik billiard with λ = 0.15. We use the classical separation criterion with Mt = 0.431. For the
chaotic subspectrum, after unfolding, there is perfect agreement with the Brody distribution with
β = 0.444. For the regular part of the spectrum, after unfolding, we see excellent agreement with
Poisson. Taken from [4]

6 The Phase Space Localization Measures of Chaotic
Eigenstates

After the separating regular and chaotic eigenstates wewant to introduce localization
measures, which quantify the degree of localization of the chaotic eigenstates in the
phase space [5]. We express the localization measures in terms of the discretized
and normalized Husimi function. For the entropy localization measure denoted by
A we write A = e〈I 〉/Nc, where I = − ∫

dq dp H(q, p) ln
(
(2π�)N H(q, p)

)
is the

information entropy and Nc is a number of cells on the classical chaotic domain. The
mean 〈I 〉 is obtained by averaging I over a sufficiently large number of consecutive
chaotic eigenstates. In the case of uniform distribution Hi j = 1/NC the localization
measure is A = 1, while in the case of the strongest localization I = 0, and A =
1/NC ≈ 0.

The correlation localization measure, denoted by C , is defined by the overlap

(correlation matrix) Cnm = 1
Qn Qm

∑
i j H

n
i j H

m
i j , where Qn =

√∑
i j (H

n
i j )

2 is the nor-

malizing factor. Then C = 〈Cnm〉, and the averaging is over all n,m and a large
number of consecutive chaotic eigenstates.

Again we use the billiard like in Sect. 5 with λ = 0.15. For a good approximation
of the localization measures A and C it was sufficient to separate and extract about
1.500 consecutive chaotic eigenstates. The two localization measures are linearly
equivalent as shown in Fig. 3. In order to calculate β with sufficient accuracy we need
much more levels, and therefore the separation of eigenstates is then technically too
demanding. We have instead calculated spectra on small intervals around k ≈ 2000
and k ≈ 4000, about 100.000 consecutive levels (no separation), and obtained β by
fitting the P(S) by the BRB distribution derived in Sect. 4.4 using the classical μ1.
The functional dependence ofβ on A is shown in Fig. 3. For aesthetic reasonswe have
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Fig. 3 Quantum localization in the Robnik billiard λ = 0.15, using about 1500 consecutive chaotic
eigenstates. (Left:) Linear relation between the two entirely different localization measures, namely
the entropy measure A and the correlation measure C , calculated for several different billiards at
k ≈ 2000 and k ≈ 4000. (Right:)We show the functional relation between the Brody level repulsion
parameter β and A. Arrows connect points corresponding to the same λ at two different k. Taken
from [5]

Fig. 4 The Brody parameter
β as a function of the
localization measure A for a
large number of stadium
billiards of different shapes ε
and energies E = k2. Taken
from [8]

rescaled the measure A → A/Amax such that it goes from 0 to 1. The maximal value
of A, Amax = 0.68, was estimated as Amax = eImax/Nc, where Imax is the maximum
entropy of 1500 consecutive states of the almost fully chaotic λ = 0.25 billiard. Thus
for fully chaotic systems the procedure always yields A = 1. Namely, in real chaotic
eigenstates we never reach a perfectly uniform (constant) distribution H(q, p), since
their Poincaré -Husimi functions always have some oscillatory structure.

Let us emphasize that there is a functional relationship between A and β, as
shown in Fig. 3. By increasing k from 2000 to 4000 we increase the dimensionless
Heisenberg time by factor 2, therefore A must increase, but precisely in such a way,
that the empirical points stay on the scaling curve, as it is observed and indicated
by the arrows. We do not have yet a semiempirical functional description of the
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Fig. 5 The Brody parameter
β is a rational function of α
(34), where tT is extracted
from the exponential
diffusion law, for a large
number of stadium billiards
of different shapes ε and
energies E = k2, as in Fig. 4.
Here β∞ = 0.98 and
s = 0.20. Taken from [6]

relationship β(A). In the quantum kicked rotator it is just almost linear [49, 50, 56].
Similarly it is found to be almost linear in the stadium of Bunimovich, as recently
published in reference [6] and shown in Fig. 4. The level repulsion exponent β is
also found to be a unique function of α = tH/tT , well described empirically by the
rational function

β = β∞
sα

1 + sα
, (34)

as shown in Fig. 5, discussed in reference [6]. There is a great lack in theoretical
understanding of the physical origin of the relationship β(A), even in the case of (the
long standing research on) the quantum kicked rotator, except for the intuitive idea,
that energy spectral properties should be only a function of the degree of localiza-
tion, because the localization gradually decouples the energy eigenstates and levels,
switching the linear level repulsion β = 1 (extendedness) to a power law level repul-
sion with exponent β < 1 (localization). The full physical explanation is open for
the future.

One should notice some scattering of points around the mean value in the Fig. 5,
noted already by Izrailev [56] in the case of the quantum kicked rotator, which
indicates that the localization measure has a certain distribution rather than being
a sharp number, as has been observed recently in the kicked rotator by Manos and
Robnik [57]. In the next section we address the question of the statistical properties
of the localization measure A.

7 The Distribution of the Localization Measures

Recently we have shown two important results. The first one is the empirical obser-
vation [7], in the billiard family devised and studied in [54, 55], that the localization
measures A of chaotic eigenstates have a distribution, which generally speaking
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depends strongly on the structure of the classical phase space, namely on the exis-
tence of the stickiness regions in the chaotic component. However, if the chaotic
region becomes uniformly chaotic, ergodic without stickiness, we find universality:
The distribution function of A, P(A), is the beta distribution on a compact interval
[0, A0], where A0 is empirically found to be around A0 ≈ 0.7. The beta distribution
is defined as

P(A) = CAa(A0 − A)b, (35)

and the two exponents a and b are positive real numbers, whileC is the normalization
constant such that

∫ A0

0 P(A) d A = 1, i.e.

C−1 = Aa+b+1
0 B(a + 1, b + 1), (36)

where B(x, y) = ∫ 1
0 t x−1(1 − t)y−1dt is the beta function. In Fig. 6 we show the

results for the distribution P(A) of the chaotic eigenstates for three different mixed-
type lemon billiards at three diffrent energies E0 = k20 , and the excellent agreement
with the best fitting beta distribution is obvious. For the details see [10]. In the ulti-
mate semiclassical limit the beta distribution approaches the Dirac delta distribution
δ(A0 − A) peaked at the maximum value of A = A0 ≈ 0.7.

Fig. 6 The histograms P(A) of the chaotic eigenstates for themixed-type lemon billiards B = 0.42
(first row), B = 0.55 (second row), and B = 0.6 (third row), at various energies E0 = k20 : (a,d,g)
k0 = 640, (b,e,h) k0 = 1760, and (c,f,i) k0 = 2880. All states are of odd-odd parity. The agreement
with the best fitting beta distribution is obvious. The parameters (a, b) of the beta distribution (35)
are, from (a) to (i): (20.100, 12.380), (44.209, 29.091), (59.477, 40.172), (28.982, 22.380), (52.361,
39.027), (80.315, 57.947), (31.734, 19.835), (63.872, 41.757), (90.748, 59.885). Taken from [10]
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The second result is that the entire picture does not depend much, very weakly,
on the definition of the localization measure A, so that e.g. the same conclusions can
be met by using the normalized inverse participation ratio, rather than the (Shannon,
information) entropy localization measure. It has been demonstrated [7, 8, 12] that
the entropy localization measure and the normalized inverse participation ratio are
almost linearly related.

These results have been reconfirmed in the stadium billiard of Bunimovich [8],
and in the family of lemon billiards [10], as well as in the Dicke model [12] and in
kicked top [59]. Therefore, we believe that this is a universal behaviour.

8 Semiclassical Limiting Approach to the Regime of PUSC

As discussed in the previous sectionswe expect that in the ultimate (sufficiently deep)
semiclassical limit, according to PUSC, each quantum eigenstate in the quantum
phase space (Wigner function or Husimi function) should approach either a regular
state localized on an invariant torus, or should be uniformly spread on a chaotic
region, such that the corresponding phase space localization measure distribution
P(A) is Dirac delta function P(A) = δ(A0 − A). Therefore, in this asymptotic limit
the mixed-type eigenstates should disappear, their relative fraction should tend to
zero. However, before reaching this limit, we do observe mixed-type eigenstates,
which has been analyzed in detail in themost recent paper [14] on the phenomenology
of eigenstates in a mixed-type regime in the family of lemon billiards. There, we
succeeded to demonstrate for the first time the quantitative description of this limiting
monotonic disappearance of mixed-type eigenstates: It turns out that the vanishing
of the relative fraction of mixed-type states is governed by a power law as a function
of the unfolded energy with an exponent γ ≈ −0.29. The precise mechanism for the
existence of mixed-type eigenstates is still not entirely clarified. Its understanding
will contribute to the theoretical explanation of the underlying power law and its
exponent. Further work along these lines is in progress [60].

9 Discussion and Conclusions

Quantum chaos, or wave chaos, studies the manifestations of classical chaos in
the quantum domain, or more generally, it concerns the ray dynamics in the sense
of the short-wavelength approximations, by building the quantum features on this
classical skeleton. It turns out, that quantum mechanics "jumps" on any structure
in the classical phase space that exists, and exhibits universality if the classical
dynamics has some uniformity, like in the class of integrable systems or in the class
of uniformly chaotic, ergodic, systems without significant stickiness regions. While
the classical chaotic dynamics with positive Lyapunov exponents and the implied
sensitive dependence on initial conditions is fundamentally irreversible, the quantum
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evolution of bound systems with purely discrete spectrum in time is always almost
periodic and stable, fundamentally reversible. Therefore quantum chaos in the time
evolution does not exist. However, the eigenstates, as solutions of the stationary
Schrödinger equation, of bound quantum systems exhibit features that are directly
and precisely linked to the classical dynamics, to the structure of the phase portrait of
the underlying and corresponding classical Hamilton system. This is revelaed in the
structure of Wigner functions. If the effective Planck constant is sufficiently small,
in such semiclassical limit, the Heisenberg time scale is larger than the classical
transport time scale (diffusion time), the Wigner functions of chaotic eigenstates are
uniformly extended over the entire available chaotic region. In this limit the regular
eigenstates "live" on the invariant tori of the regular regions, while the chaotic ones
cover uniformly the underlying chaotic region. The energy spectra belong then to
the universality classes: the regular spectra obey the Poissonian statistics, while
the chaotic ones are well described by the Gaussian random matrix theory. If the
two time scales, Heisenberg time tH and the classical transport time tT , do not
satisfy the semiclassical condition tH > tT , the chaotic Wigner functions (or Husimi
functions) are localized due to the quantum (or dynamical) localization. The degree
of localization can be quantified in various ways, but they are found to be equivalent,
linearly proportional or very close to that. The Brody parameter describing the level
repulsion, entering in the level spacing distribution, turns out to be a unique function
of the average localizationmeasure.By looking at the overlapof theWigner orHusimi
functions with the classically invariant components, the invariant tori and the chaotic
regions, we can classify the eigenstates as regular and chaotic, respectively, and
separate them. We find that the regular levels obey the Poissonian statistics, while
the localized chaotic ones obey the Brody level spacing distribution. This picture
goes back to the early work of Percival (1973), Berry and Robnik (1984), with the
generalization capturing the localization effects by Batistić and Robnik (2010-2013).
The localization measure of chaotic eigenstates has a distribution, which in the case
of no stickiness in the classical phase space is the beta distribution, demonstrated to be
valid for three types of billiards, in the Dicke model and in the kicked top. Moreover,
the most recent result based on the phenomenology of the quantum lemon billiards
shows that in the semiclassical limit the relative fraction of mixed-type eigenstates
as a function of the unfolded energy decreases as a power law with the exponent
γ = −0.29, thereby showing quantitatively the monotonic approach to the regime
of the Principle of Uniform Semiclassical Condensation (PUSC) of the Wigner (or
Husimi) functions [14].

When leaving the semiclassical limit and considering larger values of the effective
Planck constant (at lower energies), we observe the tunneling effects, where the
regular and chaotic eigenstates can overlap considerably, and thus no longer can be
classified clearly as regular or chaotic. This line of thoughts is a subject of further
research [3, 58]. However, the tunneling effects decline very fast with increasing
energy, in fact exponantially, and therefore are not present at very high energies,
whereas the localization effects can persist.

The fully chaotic ergodic and the regular eigenstates are meanwhile quite well
understood, except in cases of very strong stickiness regions in the classical chaotic
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regions, where further work has to be done. Moreover, the theoretical description of
the quantum localized chaotic eigenstates (theirWigner or Husimi functions), as well
as of the corresponding phenomenological Brody level spacing distribution is open
for the future. This includes the theoretical derivation of the apparently universal beta
distribution of the localization measures. The detailed description of the mixed-type
systems in general, in the strict semiclassical limit as well as at the larger values of
the effective Planck constant, is topics of the current research.

Thus, several important aspects of quantum chaos are open for the future, which
has meanwhile applications in many branches of theoretical physics, like e.g. solid
state physics, quantum field theory, high energy physics, fluid dynamics, and of
course in all wave systems.

Acknowledgements This workwas supported by the Slovenian ResearchAgencyARRS under the
grant J1-4387 “Quantum localization in few and many-body chaotic systems”, and by the research
program P1-0306 “Applied Mathematics, Theoretical Physics and Intelligent Systems”.

References

1. Robnik, M.: Recent advances in quantum chaos of generic systems: wave chaos of mixed-type
systems. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science. Springer,
Berlin (2020)

2. Robnik, M.: Eur. Phys. J. Special Topics 225, 959 (2016)
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Dynamics and Statistics of Weak Chaos
in a 4-D Symplectic Map

Tassos Bountis, Konstantinos Kaloudis, and Helen Christodoulidi

Abstract The important phenomenon of “stickiness” of chaotic orbits in low dimen-
sional dynamical systems has been investigated for several decades, in view of its
applications to various areas of physics, such as classical and statistical mechan-
ics, celestial mechanics and accelerator dynamics. Most of the work to date has
focused on two-degree of freedom Hamiltonian models often represented by two-
dimensional (2D) area preserving maps. In this paper, we extend earlier results using
a 4–dimensional extension of the 2D MacMillan map, and show that a symplectic
model of two coupled MacMillan maps also exhibits stickiness phenomena in lim-
ited regions of phase space. To this end, we employ probability distributions in the
sense of the Central Limit Theorem to demonstrate that, as in the 2D case, sticky
regions near the origin are also characterized by “weak” chaos and Tsallis entropy,
in sharp contrast to the “strong” chaos that extends over much wider domains and
is described by Boltzmann Gibbs statistics. Remarkably, similar stickiness phenom-
ena have been observed in higher dimensional Hamiltonian systems around unstable
simple periodic orbits at various values of the total energy of the system.
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1 Introduction

The behavior of nonlinear dynamical systems described by differential and differ-
ence equations has been a topic of intense interest for several decades [1–5]. As is
well-known, one the most important questions in this field concerns the distinction
between solutions of the equations that are called “regular”, since their evolution
can be predicted for long times, and those termed “chaotic”, whose time evolu-
tion becomes unpredictable after relatively short times. This is typically decided
by calculating the Lyapunov exponents, measuring the distance between two nearby
solutions, represented by trajectories (or orbits) in the 2N− dimensional phase space
of the system [6], with N position and N momentum variables, with time as the sin-
gle independent variable. If none of the Lyapunov exponents is positive we call the
orbit regular, while if at least one exponent is positive we call it chaotic.

But is this “duality” between order and chaos all there is? While there is no
uncertainty about regular orbits, it has been realized that “chaos” is a lot more subtle
to describe by a simple definition. One possibility is to study chaotic phase space
domains from a statistical point of view, in terms of correlations and probability
distributions. If these correlations decay exponentially away from a chaotic orbit, one
might adopt a Boltzmann Gibbs (BG) thermodynamic description of the dynamics
(as in the case of an ideal gas) and look for Gaussian probability functions (pdfs) to
describe the associated statistics. What happens, however, if correlations decay by
power laws and the pdfs of positions and/or momenta are no longer Gaussian? What
would that imply about the corresponding chaotic behavior?

One such widely known example occurs in cases of “stickiness”, where chaotic
orbits of generally low-dimensional dynamical systems tend to remain confined for
very long times trapped within thin chaotic layers surrounding regions of regular
motion [4, 7, 9–12]. Remarkably, this phenomenon does not occur only in low
dimensions. It has also been observed in multidimensional Hamiltonian lattices [8,
13–17], often in cases where chaotic regions arise around simple periodic orbits,
when they have just turned unstable, as the total energy of the system is increased.

Regarding dynamical systems in discrete time, it is well–known that 2D Poincaré
maps describe intersections of the orbits of a 2-degree of freedom continuous dynam-
ical system with a 2D surface of section [4]. Thus, one may consider directly area
preserving transformations of a plane onto itself to study the qualitative features of
such maps [19].

One famous model in this regard is the 2D MacMillan (2DMM) area preserving,
non-integrablemap [18]. Itmay be interpreted as describing the dynamics of focusing
a “flat” proton beam in a circular particle accelerator model describing the repeated
passage of a “flat” beam through a periodic sequence of thin nonlinear lenses [21]:

xn+1 = yn

yn+1 = −xn + 2Kyn
1 + y2n

+ μyn, (1)
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where xn and yn represent a particle’s position and momentum at the nth crossing
of a focusing element, while μ, and K are physically important parameters. Note
that the Jacobian of the transformation is unity, so that (1) is area-preserving and
thus may represent the conservative (Hamiltonian) dynamics of proton beams whose
radiation effects are considered negligible [21]. If μ = 0 the map is integrable, as it
possesses a constant of the motion given by the one parameter family of curves [20]:

x2n + y2n + x2n y
2
n − 2Kxn yn = const.

In [18], (1) was studied following a nonextensive statistical mechanics approach,
based on the nonadditive Tsallis entropy Sq [22]. According to this approach, the
pdfs optimizing Sq , under appropriate constraints, are q–Gaussian distributions that
represent quasistationary states (QSS) of the dynamics, with 1 < q < 3 (q = 1 being
the Gaussian). As was shown in [18], there are several cases of K > 1 and μ > 0
parameters, where the chaotic layer around a saddle point at the origin does not
satisfy BG statistics associated with “strong chaos”, but is well described by a q > 1-
Gaussian pdf, associated with “weak chaos”.

It is, therefore, natural to ask whether similar phenomena of spatially limited,
weakly chaotic dynamics occur in 4D symplectic maps, such as one encounters e.g.
in 3-degree-of-freedom hamiltonian systems commonly encountered in problems of
celestial mechanics, see e.g. [7, 9–11] and particle accelerator dynamics [23, 24].

In this paper, we extend for the first time the above approach to study 4DMacMil-
lan (4DMM) maps of the form

xn+1 = −xn−1 + 2K1xn
1 + x2n

+ μxn − εxn y
2
n

yn+1 = −yn−1 + 2K2yn
1 + y2n

+ μyn − εx2n yn (2)

where xn, yn represent horizontal and vertical deflections of the proton beam as it
passes through the nth focusing element and study the chaotic domain arising about
the origin of (2), using values of K1, K2 and μ for which the origin is unstable.
Note that (2) is symplectic, as the evolution of xn and yn is determined by a potential
function V (xn, yn), whose partial derivatives with xn and yn respectively yield the
two equations of (2).

We choose suitable K1 and/or K2 values, for fixed μ > 0, ε > 0 small, such that
the origin is (linearly) unstable and calculate the pdfs of the rescaled sums of N
iterates of the map, in the sense of the Central Limit Theorem, in the large N limit
for large sets of initial conditions. We then relate our results to specific properties of
the phase space dynamics of the maps and distinguish cases where the pdfs represent
long–lived QSS described by q-Gaussians.

We begin by describing in Sect. 2 the statistical methods used in this paper to
obtain the pdfs describing our data in all cases of the 4DMMmap studied here. Next,
in Sect. 3, we apply this analysis to find weak chaos characterized by q− Gaussian
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pdfs, for different parameter values connected with an unstable fixed point at the
origin of our 4DMM map. We end with our conclusions in Sect. 4.

2 Statistical Analysis of Weak Chaos

Before turning to the 4DMM mapping studied here, we first carried out the same
computations for the 2DMM map (1) and compared them to results depicted in
Fig. 3(a) of [18]. Employing the same choices of initial conditions and the same
number of iterations, we verified that we obtain practically identical results.

For the benefit of the reader,we state that the approachwe followhere is to evaluate
the solution xn, yn , n = 0, . . . , N of the 4DMM map (2) and construct probability
distributions for xn (similarly for yn) of appropriately large rescaled sums Sj (N )

obtained by adding the corresponding N iterates

Sj (N ) =
N∑

n=0

x ( j)
n

where j refers to the j-th realisation, taking values from 1 to the total number of
initial conditions Nic. As in [18], we generate the centered and rescaled sums

s j (N ) ≡ Sj (N ) − μ j (N )

σN
=

⎛

⎝
N∑

n=0

x ( j)
n − 1

Nic

Nic∑

j=1

N∑

n=0

x ( j)
n

⎞

⎠ /σN (3)

where μ j (N ) is the mean value and σN the standard deviation of Sj (N ) over N
iterations

σ 2
N = 1

Nic

Nic∑

j=1

(
Sj (N ) − μ j (N )

)2 = 〈
S2j (N )

〉 − μ2
j (N ),

where < · > denotes averaging over N iterations. We thus find many cases, where
the obtained empirical distributions are well–described by a q-Gaussian distribution
of the form

P
(
s j (N )

) =
√

β

Cq

[
1 + β(q − 1)s2j (N )

]1/1−q
(4)

where q is regarded as an indicator measuring the divergence from the classical
Gaussian distribution, β is the ‘inverse temperature’ fitting parameter and Cq is a
normalizing constant.

To describe the statistical properties of the above rescaled sums of the system,
we employ standard parameter estimation techniques. Specifically, we are interested
in identifying the q-Gaussian distribution that best describes the observed data. One
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of the most widely used methods for such estimations, is the Maximum Likelihood
Estimator (MLE) [25]. This is a parametric method typically used for statistical
fitting among distributions belonging to the same family, e.g. the family of Gaussians
parameterized by their mean and standard deviation or the family of q-Gaussians
parameterized by (q, β).

The main idea behind the MLE is that the most suitable distribution (of a given
family) describing a given data set, is the most probable to describe the observed
data. More formally, we are interested in maximizing the likelihood function, which
describes “how likely” it is to observe a certain random sample, for the various values
of the unknown parameters of the assumed statistical model.

To determine the likelihood function p (θ |X), we first calculate the joint proba-
bility function of the observed sample X = (X1 = x1, . . . , Xn = xn) as a function
of the parameters of the problem, θ = (β, q) ∈ R

+ × [1, 3). Then, the MLE is the
value of θ ∈ Θ that maximizes the likelihood function, i.e. θ̂ = argmaxθ∈Θ p (θ |X).
For computational purposes, it is convenient to maximize the logarithmic likelihood
function, which for a q-Gaussian statistical model has the form:

lX (β, q) =
n∑

i=1

log

√
β

Cq

[
1 + β(q − 1)x2i

]1/1−q
.

In all simulations that follow, we perform our numerical optimization using the so-
called “nlm” (nonlinear minimization) command of the R software for statistical
computing [26].

An alternative approach to derive optimal q-Gaussian parameters is to apply non-
linear least-square fitting to binned estimates of the probability density (via his-
tograms), using such methods as Gauss-Newton (see e.g. [27]). However, from a
statistical point of view, it is more accurate to use MLE instead of curve-fitting
estimates, as the MLE are theoretically guaranteed, under general (regularity) con-
ditions, to have such desirable properties, as efficiency, consistency and asymptotic
normality [28]. For an interesting discussion of the comparison between curve-based
estimates and MLEs for the case of q-Exponential distributions, we refer the reader
to Shalizi [29].

3 Evidence of Weak Chaos in 4DMMMaps

3.1 Weak Chaos in an Example of the 4DMM Map

We start by fixing the values ofμ = 0.2 and ε = 0.01, which we will use throughout
the paper, as they do not significantly affect the results. Observe now in our Fig. 1a
a typical example of an optimal pdf of a q-Gaussian obtained for the choice of
parameters K1 = 1.6, K2 = 0.5. This is a casewe shall call hyperbolic–elliptic (HE),
referring to the first 2D map in (2) having a hyperbolic fixed point at the origin, and
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Fig. 1 a The computation of the pdf for the xn variable in (2) with parameters K1 = 1.6, K2 = 0.5,
μ = 0.2, and ε = 0.01. The dashed line represents an optimal fitting of the data by a q-Gaussian
function (4) with q = 1.38 and β = 1.19. b The 2D phase space plot of the xn, xn+1 projections of
the 4Dmap (2) for the orbits and parameters used in a, while c shows the 2D phase space projection
in the yn, yn+1 plane variables

the second 2D map having an elliptic point. In a later subsection, we also discuss
examples of the hyperbolic–hyperbolic (HH) type, where the origin is unstable in
both 2D maps of (2). Note that the case EH is entirely analogous to HE due to the
symmetrical form of the two 2D maps.

Throughout our study, we use 106 random initial conditions for each of the vari-
ables, i.e. x0, x1 and y0, y1, within the domain (0, 10−6) close to the origin. To
facilitate the visualization of stickiness phenomena, observe the phase plane picture
shown in Fig. 1b. The “warm” colors represent themore dense parts of the plot, where
solutions stick around for very long times, whereas “cold” colors depict orbits that
scatter diffusively in phase space. We also show in Fig. 1c projections of the orbits
in the yn, yn+1 plane, which rotate around the origin due to our choice of K2 < 1.

Each of our initial conditions is iterated 2 · 105 times, to achieve reliable statis-
tics. To obtain the results shown in Fig. 1, we have employed appropriate statistical
techniques (see e.g. [25, 29]) to optimize both the specific class of suitable pdfs and
their parameters to obtain the best fit for such large data sets.
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Clearly, a crucial role in this study is played by the fixed point at the origin and its
stability properties. A simple linearization of the equations of our 4DMM map (2)
about xn = yn = 0 shows that the conditions for stability of the central fixed point
with respect to deviations in xn and/or yn are:

|Ki + μ/2| < 1, i = 1, 2 (5)

Thus, we identify as EE (doubly elliptic) the case when both conditions i =
1, 2 in Eq. (5) hold, EH (elliptic hyperbolic) if the i = 2 inequality is reversed,
HE (hyperbolic elliptic) if the i = 1 inequality in (5) is inverted, and HH (doubly
hyperbolic), when both inequalities in Eq. (5) are reversed. Clearly, if the origin is
doubly elliptic (EE), it will be surrounded mostly by quasiperiodic orbits and no
large scale chaos will be present in its vicinity. Hence, in what follows, we will study
both “partly” unstable HE and “fully” unstable cases of the HH type. We start with
both Ki positive, but will also consider cases with Ki < 0, for i = 1, 2.

3.2 HE Cases of the 4DMM Map

Webeginwith a hyperbolic elliptic (HE) case of the 4DMMmapproblem (2),with the
main parameters chosen so that the x-map has K1 > 1, and the y-map 0 < K2 < 1,
i.e hyperbolic in the xn plane and elliptic in the yn plane.

Setting K2 = 0.5 and gradually increasing the value of K1 we observe that the
thin ‘figure–eight’ of Fig. 2a thickens around the origin as chaos slowly expands,
and eventually occupies a wider “cellular” domain in phase space shown in Fig. 2d.

The pdfs for each of the panels in Fig. 2 are depicted in Fig. 3. We observe that
as the trajectory winds around a thin figure–eight in Fig. 2a in a nearly organized
manner, the corresponding distributions of the sums s( j)

N displayed in Fig. 3a follow
a q–Gaussian function for two orders of magnitude, while the tails of the pdf diverge
to higher values. The presence of weak chaos, however, for K1 = 1.5, 1.7 in Fig. 2b,
c leads to the emergence of optimal q–Gaussian distributions in Fig. 3b and c, which,
for q = 1.57, 1.67, respectively, describe well the numerical data for five orders of
magnitude!

On the other hand, for a higher K1 = 2 value (see Fig. 2d) where the orbits form
complex “cellular” structures, the q-Gaussian distribution that best describes the
data in Fig. 3d is successful only over two orders of magnitude and corresponds to
q = 1.87. It appears, therefore, that with increasing K1 the value of q increases also.

3.3 HH Cases of the 4DMM Map

Let us now describe some results obtained when the origin of the map is “fully
unstable”, i.e. a double saddle point, which we call hyperbolic-hyperbolic (HH). To
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Fig. 2 2D phase space plots for the xn plane for different K1 values. The rest of the parameters,
K2 = 0.5, μ = 0.2 and ε = 0.01 remain constant for all panels. a K1 = 1.2, b K1 = 1.5, c K1 =
1.7, and d K1 = 2. The number of iterations is always 2 × 105

this end, we will take values of K1 and K2 that violate the condition (5) and are either
positive and negative or both negative as follows:

(1) K1 = −1.25, K2 = 1.25: The dynamics is close to weak chaos, as the phase
space plot in Fig. 4a shows, since its pdf in Fig. 4c is close to a q-Gaussian for three
orders of magnitude with q = 2.97.

(2) With K1 = −1.25, K2 = −1.25: The phase space plot in Fig. 4b corresponds
to what we call “strong” chaos, since its pdf, plotted in Fig. 4d is very close to a
Gaussian with q = 1.09.

Observing Fig. 4 more closely, we suggest that the statistical results may be
explained as follows: In the first column, where the orbits form a more “sparse”
pattern in Fig. 4a, the associated q-Gaussian implies weak chaos, while in the second
column, a more uniformly filled pattern in Fig. 4b is characterized by a true Gaussian
representing strong chaos.
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Fig. 3 The pdfs for the sums s( j)
N corresponding to the chaotic domains shown in Fig. 2a–d respec-

tively. The black dashed line corresponds to the optimal fitting with the q–Gaussian distribution
and the red dashed line is the normal distribution

Let us also compare, for these HH cases, the above results, with those correspond-
ing to the yn, yn+1 data as plotted in Fig. 5. Clearly, due to the x − y symmetry of the
map, there are strong similarities between Figs. 4 and 5, validating the conclusions
of weak chaos on the left column and strong chaos on the right column of the two
figures.

3.4 Close to the Instability Transition

We also examined a case close to the transition of instability for one of the maps.
In particular, as shown in Fig. 6, we set K1 = 1 and plot for K2 = 0.9, 1.3, 1.5 in
Fig. 6a, c, e the xn, xn+1 projections of the orbits, while in Fig. 6b, d, f we present
the corresponding statistical analysis. Clearly the pdfs in this case are very well
described by a q-Gaussian with q increasing from 1.5 to 1.94 and 2.04, close to the
value q = 2, which is the case of the Cauchy distribution.
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Fig. 4 Top row: Phase space plots on the xn, xn+1 plane for a K1 = −1.25, K2 = 1.25, b K1 =
K2 = −1.25. Bottom row: c and d present the pdf plots corresponding to a and b respectively

Fig. 5 a Top row: Phase space plots on the yn, yn+1 plane for a K1 = −1.25, K2 = 1.25 and b
K1 = K2 = −1.25. In c and d respectively we plot the pdfs corresponding to a and b. Note the
similarities with Fig. 4
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Fig. 6 Close to the instability transition: Here we set K1 = 1 and present in a-c-e the phase space
plots for xn and in b-d-f the corresponding pdf plots. The first row corresponds to K2 = 0.9, the
second row to K2 = 1.3 and the third row to K2 = 1.5
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4 Conclusions

The stickiness of orbits observed in the vicinity of unstable periodic orbits of higher
dimensional symplectic maps, or Hamiltonian systems of more than 2 degrees of
freedom, is clearly a complex phenomenon. It has been termed “weak chaos” in
the literature mainly because its statistical analysis reveals that it is associated with
q-Gaussian probability distributions, as opposed to the simple Gaussians one finds
when studying uniformly spread stochasticity associated with Boltzmann Gibbs
statistics. This is because the motion in weakly chaotic situations is correlated over
long ranges, while in strongly chaotic regions the correlations are short ranged.

In this paper, we attempted to study this phenomenon, for the first time, in a 4-
D symplectic map, serving as a paradigm for Hamiltonian systems of 3 degrees of
freedom. Our results suggest that “weak chaos” arises typically near unstable fixed
points of 2N -dimensional maps and may very well be present also near unstable
periodic orbits in higher dimensional settings.

In most examples we considered, chaos tends to form “organized” patterns in
phase space, while the pdfs describing their statistics attain 1 < q < 2 values sug-
gesting the presence of strong correlations in the dynamics. However, we have also
observed cases where chaos spreads more uniformly in phase space and q tends to
approach the value q = 1 yielding purely Gaussian distributions.

We also observed that as the main nonlinear parameters of the model Ki , i = 1, 2
increase, the values of the index q of the distributions also grow. However, the
genericity of these results remains open and needs to be studied further in more
general classes of 4-D symplectic maps.

Clearly, every high–dimensional conservative dynamical systemwill have its own
particular features determining the nature of chaos present near its unstable periodic
orbits. We believe, however, that the results presented in this paper suggest that weak
chaos is generic and may have important implications regarding the dynamics of
higher dimensional conservative systems of physical significance.
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Multifractal Analysis of SEM Images
of Multiphase Materials: The Case
of OPC Clinker

M. Chatzigeorgiou, V. Constantoudis, M. Katsiotis, and N. Boukos

Abstract Several properties of multiphase materials are affected by the spatial dis-
tribution of their phases and the geometry of their interfaces. Given the spatial com-
plexity of phase distributions, their quantitative characterization is a real challenge
which remains largely unexplored. A widely used technique to inspect multiphase
materials is the top-down Scanning Electron Microscope (SEM) images obtained in
Back Scattered Electron (BSE) mode on which the different phases are depicted with
different pixel intensities. On these images, the challenge is to quantify the spatial
distribution of image segments characterized by different pixel intensities. Since the
areas of phase segments range in multiple scales, multifractal analysis seems to be a
reasonable approach to provide an insightful quantification of phase distributions. In
this paper, first we demonstrate the benefits of multifractal analysis to characterize
the spatial scaling behavior of different phases in a widely used multiphase material
in cement industry such as clinker. Then, we focus on two issues related to the relia-
bility of the obtained multifractal spectrum and the impact of measurement artifacts
on it. A recently proposed alternative method to multifractal spectrum calculation is
employed to meet the first challenge while concerning the second one we detail the
effects of image artifacts on the two branches of the calculated multifractal spectrum.
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1 Introduction

Multiphase materials such as metal alloys, concrete, polymer and glass composites
are used in several industry sectors (energy, construction and automobile etc.) since
they exhibit a great repertoire of combinations of phase properties enhancing their
performance in each specific application. The behavior of a multiphase material is
controlled by the properties of its components and the way they co-exist in the bulk
of material. Two crucial factors are (a) the fraction of material occupied by each
component [1] and (b) the fashion that each component is spatially distributed in the
whole volume of multiphase material [2]. The latter is critical since it is related to the
geometrical properties of the interfaces separating the different phases and therefore
the amount and type of interactions between phases. In most cases, the interfaces
exhibit complicated shapes in a wide range of scales reaching the limit of micro and
nanoscale. Due to this wide-scale complexity of phase distributions and interfaces,
their quantitative measurement and characterization is a real challenge which needs
further investigation.

The characterization of multiphase materials can be made with both imaging [3]
and non-imaging techniques. Among the former, the acquisition and inspection of
top-down SEM images collecting Back-Scattered Electrons (BSE-SEM images) is
of prime interest. In BSE-SEM images, different phases are depicted with pixels of
distinct intensities (luminosities) and hence they can be straightforwardly identified
down to SEM resolution which can be on nanometer scale [4]. The quantification
of the relative fraction of phases can be achieved by means of a properly designed
segmentation process of BSE-SEM images which will cluster pixels according to
the phase they belong to. The segmentation method can use information alone from
intensity distribution of pixels or alternatively can be empowered by the spatial
positioning of pixels to enhance accuracy of segmentation output [5]. In any case,
after the successful application of the chosen segmentation method, the image pixels
are matched to the material phases to obtain the map of phases in the analyzed
SEM image. Then, we can proceed to the quantitative characterization of this map
in two steps. First, we calculate the fraction of each phase in material by simply
summing the pixels corresponding to the specific phase. The second step is the
characterization of the fashion that phases are distributed spatially in the image. The
spatial distribution of phases affects the geometry of interfaces between phases and
therefore the combination of their properties in the multiphase material. Usually
the phase distributions exhibit spatial complexity with boundaries covering multiple
scales. To explore the scaling aspects of phase distributions, multifractal analysis
seems to be a reasonable choice taking advantage of the fact that it differentiates
scaling behavior versus image intensity and thereforematerial phase. In literature, the
spatial distribution of phases in heterogeneousmultiphasematerials have beenmainly
investigated by using spatial correlation functions such the two-point correlation
function, lineal-path function or the two-point cluster correlation function andFourier
of wavelet analysis [6]. During the last years, sporadic studies have emphasized the
significance of multifractal analysis in quantifying specific aspects of cement-based
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composites such as the tendency to quantify the cluster forming tendency of C-S-H
gel or the scaling statistics of pores independently of their shapes or the relationship
with crack growth and anomalous behavior [7–12]. In the most recent study, Gao
et al. [13] has studied the multifractal spectrum of both ordinary and blast furnace
slag blended Portland cement pastes from their X-Ray CT images to account for
the degree of heterogeneity of their local porosity. In this paper, we differentiate
our approach in terms of both methodology and data. Concerning methodology, we
elaborate an alternative method for the estimation of multifractal spectrum which
has been designed to overcome the instabilities usually occurring at the negative
generalized exponents which undermine the accuracy of multifractal analysis. As
regards data, we collect and analyse BSE-SEM images of clinker samples depicting
phase distributions on nanoscale resolution. The aim has been first to demonstrate
the benefits of multifractal analysis of BSE-SEM images for the quantification of the
scaling behavior of phase distribution complexity and use it for detection of image
artifacts. To this end, the paper is organized as follows. In the next Sect. 2, we describe
shortly the basic steps of multifractal analysis and we focus on the alternative method
we propose to provide reliable calculation of the full scale multifractal spectrum.
Then, the composition of the analysed multiphase material (clinker) along with the
obtained BSE-SEM images are reported in Sect. 3. Section 4 delivers the results of
the multifractal analysis and discusses their meaning and significance. The paper
closes with a summary of the main findings within Sect. 5.

2 Multifractal Analysis

Fractal analysis has been widely used to provide a quantitative characterization of
the scaling behavior of surface roughness or image texture. A limitation that occurs
in this analysis is the assumption that a single scaling behavior dominates in the
whole surface morphology or image texture. In many cases this assumption is not
justified. A broader analysis of scaling behavior has been developed in the framework
of multi-fractal analysis. The aim of this analysis is to quantify the involvement of
multiple scales in a surface in order to provide a more complete description of its
morphology. For example, multifractal analysis can capture the subtle differences
in the scaling behavior of peaks and surface valleys or alternatively of almost flat
and steep regions. One of the most commonly used techniques for multifractality
measurements is the box counting method. A fundamental quantity in this approach
is the measure of mass. In this work, mass corresponds to the grayscale intensities of
an SEM image I. Assuming that the desirable observation scale is s, the image should
be covered by non-overlapping square boxes of side s. Subsequently the normalized
mass can be calculated by the following formula:

p(s, v) =
∑s2

i Ii
∑Ns

v=1

∑s2

i Ii
, (1)
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Where the summation of grayscale intensities Ii in the numerator takes place within
the v-th box of size s while the sum in the denominator is over all image pixels to
normalize p(s, v). The total number of squares of size s covering the structure is
denoted by Ns and v is the index that enumerates these square boxes. The partition
function is then utilized for the distinction between the boxes with large and small
masses (intensities) by raising every term in the sum to a power q according to the
following relation (2):

χ(s, q) =
Ns∑

v=1

p(s, v)q , (2)

Where positive exponents q emphasizes the largemass segments of image containing
pixels of high intensity (bright regions) while at negative q the boxes with low
intensity pixels (dark regions) dominate in the sum. If the dependence of the partition
function χ(s, q) on scale s follows a power law for all q, then one can conclude that
the analyzed image texture exhibits a fractal behavior, i.e.

χ(s, q) ∼ sτ (q), (3)

The multifractality emerges when the generalized fractal dimension Dq defined
through τ (q) with the following formula:

Dq = τ (q)

q − 1
, (4)

varies with exponent q. The spectrum of the generalized dimensions Dq can be used
to quantify themultifractal structure of image texture. Another measure that provides
an insight in the image scaling properties is the singularity spectrum, which is the
Legendre transform of τ (q).

α = dτ (q)

dq
and f (α) = α(q) · q − τ (q) (5)

An indicative example of the singularity spectrum of an image texture is shown in
Fig. 1.

The x-axis of the singularity spectrum diagram is the local dimension α while the
y-axis shows the singular spectrum f (α). It is easier to gain an intuitive understanding
of the local dimension and the singularity spectrum with Chhabra equations [14]:

f (α) = lim
s→0

Ns∑

v=1

μ(q, s, v)
lnμ(q, s, v)

lns
and α = lim

s→0

Ns∑

v=1

μ(q, s, v)
lnp(s, v)

lns
, (6)

where,

μ(q, s, v) = (p(s, v))q
∑Ns

v=1(p(s, v))
q

(7)
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Fig. 1 A typical example of a singularity spectrum f(α) of an image texture. The right branch of
spectrum (black points and line) indicates the scaling behavior of the “valleys” of image texture
(dark areas) whereas the left branch (red points and line) quantifies the scaling of peaks (bright
areas of image)

As Eq. 6 reveals, local dimensions α are similar to the fractal dimension with the
difference that is weighted by the factor μ. At high positive q exponents and when
local measures of mass (pixel intensities) are large, this factor takes a large value
and hence, the local dimensions quantify the scaling behavior of the bright image
areas. On the contrary, for negative q exponents the factor μ enhances in image
areas dominated by small masses (dark image regions). The local dimensions which
are larger than the topological dimension (i.e. α > 2), characterize the fraction of
surface that is dominated by values of small masses. On the contrary, for α < 2
the local dimensions describe the areas of the image that are dominated by bright
pixels. The singularity spectrum f (α) reveals how areas that are described by the
same scaling law are dispersed in the surface. A large deviation from the topological
dimension ( f (α = 2) = 2) indicates a sparse pattern of areas with the same local
scaling behavior. A very frequent source of miscalculations in the computation of
the power law exponent τ (q) is the exceedingly small masses, i.e. the image areas
with very dark pixels. In the case of negative exponents q, the terms in the partition
function relating with boxes within these areas often result in instabilities. These
instabilities undermine our ability to extract correctly the multifractal measures i.e.
Dq ,α and f (α) by strongly biasing the power law slopes [15]. An indicative example
of miscalculating multifractality is shown in Fig. 2 where the singularity spectrum
of a gaussian monofractal rough texture is depicted with the black squares and line.
Theoretically one expects a symmetric spectrum due to the same behavior of peaks
and valleys. However, this is not the case for the spectrum calculated with the con-
ventional box-counting method, in which the right branch of the spectrum is much
more extended than the left one, despite the same scaling behavior of peaks and
valleys in the Gaussian texture.
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Fig. 2 The singularity spectrum f (α) of a rough image texture with Gaussian distribution of
pixel intensities calculated with the conventional box-counting method (black squares) and the q-
positive alternative method (red triangles). The spectrum of the conventional method is strongly
asymmetrical with strongly elongated right branch contrary to what we expect for a texture with
symmetrical bright and dark areas. On the other side, the q-positive method corrects the calculation
and derives a symmetrical spectrum about (2, 2) point

This problem can be overcome by reconsidering the reason of applying negative
exponents q, i.e. the scaling analysis of image dark areas. Due to the very small
values that p(s, v) can take on at boxes inside these areas, their contribution to the
sum of the partition function at negative q values leads to infinities and instabilities.
The key observation is that the calculations for positive q do not suffer from similar
problems even in the boxes with very bright pixels. Therefore, one could take the
complement I− of the original image I

I− = max(I ) − I (8)

and then calculate the multifractal spectrum of I− for positive q (see Fig. 3). Since
the bright areas of the complement image have the same spatial distribution at all
scales with the dark areas of the original image, the above calculation can replace the
q-negative spectrum of the original image eliminating the instability issue. We can
name this method q-positive since it is based on the estimation of the multifractal
spectrum of both the original and complement image using only positive q.

In the generalized version of the q-positive method, the normalizedmasses should
be changed to the following equations:

P+(s, v) =
∑s

i Ii
∑Ns

v=1

∑s
i Ii

and P−(s, v) =
∑s

i I
−
i

∑Ns
v=1

∑s
i I

−
i

(9)
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Fig. 3 An example of a grayscale image with rough texture (a) along with its complement in inten-
sity (b). The original image is used normally for the calculation of positive q branch of multifractal
spectrum while the complement one for the branch of the negative q values

and the partition function should be replaced by the following one:

χ(s, q) = 1 + sgn(q)

2

Ns∑

v=1

(P+(s, q))|q| + 1 − sgn(q)

2

Ns∑

v=1

(P−(s, v))|q| (10)

In the updated partition function, when the sign of q is positive it takes the well-
known conventional formula, whereas in the case of negative q the analysis will be
done in the complement image using again the positive q. The rest of multifractal
analysis remains unaltered. The q-positive method that is described above is able to
correctly extract the multifractality spectrum as shown in Fig. 3 where it has been
applied in a Gaussian rough texture deriving the expected symmetrical spectrum.

3 Data

The images that are analyzed in this work are back-scattered electron, scanning
electron microscopy images (BSE-SEM) of OPC clinker. In these images, there are 5
clinker phases visible, Periclase, Celite, BeliteAlite, and Ferrite in an ascending order
based on their back-scattered coefficient and hence on their grayscale intensities.
The samples were prepared by impregnating clinker in a low viscosity epoxy resin in
vacuum and then samples are grinded and polished with the use of Silicon Carbide
papers of grid sizes 280, 400, 1200, 2500, 4000 and finally polished with diamond
paste of 6 μm and 1 μm. A deodorized oil is also used to lubricate the surface after
grinding and polishing process [16]. Finally, to avoid charge effects a thin carbon
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Fig. 4 TheBack-Scattered Electron Scanning ElectronMicroscopy (BSE-SEM) images of samples
of OPC clinker analyzed in this paper. Details about the preparation of samples and the acquisition
of images are given in the text

layer has been deposited on the sample surface. The BSE-SEM Images have been
acquired with a FEI Inspects 400 SEM under the same conditions with the same
acceleration voltage (15 kV), beam current 2nA measured with Faraday cage, the
working distancewas set at 10mmwhilst contrast and brightness settings are constant
for all images. The resolution of images is 4096 by 3535 pixels with pixel size equal
to 26nm. In this work, six images have been acquired according to the conditions
mentioned above and they are shown in Fig. 4.

4 Results

The application of multifractal analysis in the Back-scattered Electron images of
clinker reveals the capability of multifractal spectrum to characterize the scaling
behavior of the spatial distribution of crystallographic phases as they are depicted
in a BSE-SEM image. However, before explaining this statement in the multifractal
analysis of the BSE-SEM images of Fig. 4, we would like to emphasize the signif-
icance of applying the alternative implementation of multifractal analysis with the
q-positive method in real BSE-SEM images. Figure 5 a illustrates the singularity
spectra of the images shown in Fig. 4a–c as they have been calculated by the con-
ventional box-counting method. One can clearly notice the strongly asymmetrical
shape of the f (α) curves in all cases caused by the awkward enhancement of the
right branches of spectra which are crossing zero to take on even negative values. As
we explained in the Sect. 2, the miscalculation is due to the loss of linearity in the
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Fig. 5 a The singularity spectra f (α) of the BSE-SEM images shown in Fig. 4a–c calculated from
the conventional box-counting method. One can easily notice the problematical shape of the right
branches of spectra which cross zero to reach negative values of f. The reason for this is the image
areas with black pixels which lead to instabilities in the calculation of χ(s, q) and deviations from
power-law behavior as demonstrated by the doubly logarithmic diagrams of χ(s, q) versus s for
negative q displayed in b

log(χ(s, q)) vs log(s) plot at negative q values which correspond to the right branch
of f (α) spectrum (see Fig. 5b). Since this part of spectrum quantifies the scaling
behavior of dark image areas, the deviation from linearity is coming from the appear-
ance of zero-intensity boxes in the calculation of χ(s, q) leading to instabilities and
undermining the correctness of the total multifractal analysis. These miscalculations
of partition function and therefore of the slope of log-log plots can be remedied by
using the q-positive method, as described in the Sect. 2. This is demonstrated in the
log-log plot shown in Fig. 5a where the linearity of χ(s, q) curves of the image of
Fig. 4a is restored by the q-positive method in the whole spectrum of pixel intensities
including the problematical black image areas.

After the demonstration of the need to apply the q-positive method in the analysis
of real BSE-SEM images, we can proceed to the comparison of multifractal singu-
larity spectra calculated from all BSE-SEM images shown in Fig. 4. We separate
the presentation of our results in the analysis of the triplet of Fig. 4a–c first and
then of the triplet of the BSE-SEM images of Fig. 4d–f. The first image (Fig. 4a)
of the first triplet is dominated by Alite i.e., grayish area and periclase (dark areas).
Between Alite grains and Periclase grains there are the so-called liquid phases, i.e.
Ferrite phase (Bright areas) and Celite (dark gray areas). A different distribution
occurs in the second image of Fig. 4b, where the same phases are present. However,
in this image Periclase is more packed comparing to the previous one, and Ferrite
along with Celite phases are more dominant. Finally in the third image (Fig. 4c)
Periclase grains are dispersed on the image whilst Ferrite and Celite phases occupy
a larger proportion of the image. The multifractal spectra of these images are shown
in Fig. 4b with blue (a), green (b) and red (c) lines respectively. The left branch of the
shown spectra concerns the scaling behavior of bright areas. By observing minimum



134 M. Chatzigeorgiou et al.

Fig. 6 a Theχ(s, q) versus s diagrams calculated applying the q-positivemethod in themultifractal
analysis of the image shown in Fig. 4a. One can notice the restoration of the power law behavior
in all cases justified by the linearity of χ(s, q) in the log-log scale of the shown diagram, b The
corrected singularity spectra f (α) of the BSE-SEM images shown in Fig. 4a, b, c. The spectra have
been calculated by the q-positive method and depicted in the diagram with the blue (a), green (b)
and red (c) line respectively

local dimensions α one can understand the size of bright aggregates. In the image a,
where the bright aggregates are small,αmin deviates slightly from the support dimen-
sion of the image (=2) in comparison with the other images. In contrary, image c is
dominated by large local bright aggregates, which leads to the larger deviation of
αmin from the support dimension. The deviation of minimum singularity spectrum
f (αmin) from the support dimension, in the left branch of the diagram, highlights the
spatial homogeneity of bright aggregates in an image. In the case of image a, where
bright aggregates are concentrated along the diagonal of the image, the deviations of
f (αmin) from the support dimension are expected to be small. Indeed, this is justi-
fied by the singularity spectra of Fig. 6b since the f (αmin) of the image a is closer
to 2 than those of images b and c. In the dark side of the diagram maximum local
dimensions reveals the size of dark aggregates in images. In image b where both the
size and the number of dark aggregates is large αmax is considerably smaller than
αmax of other images. In addition, the coverage of dark aggregates on the image a
as f(αmax ) uncovers is less scattered than other images. One might argue that in the
image a of Fig. 4, a fraction of dark pixels does not originate from z-contrast exclu-
sively, but includes scratches and pores of the material. This type of sample artifacts
may lead the multifractal analysis to misleading results. In order to investigate more
systematically the effects of these artifacts, we focus on the multifractal analysis of
BSE-SEM images shown in Fig. 4d–f in which the dark pixel areas originate mainly
from artifacts of the sample preparation.

By examining these images it is obvious that their dark pixels come from scratches
and microporosity on sample surface. These artifacts are expected to influence the
right branch of singularity spectrum which quantifies the scaling behavior of dark
areas. On the other side, the results of the left branch of the singularity spectrum
should be more robust to the presence of such artifacts since they are calculated
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Fig. 7 a The corrected singularity spectra f (α) of the BSE-SEM images shown in Fig. 4d, e, f.
The spectra have been calculated by the q-positive method and depicted in the diagram with the
blue (1 for Fig. 4d image), green (2 Fig. 4e image) and red (3 Fig. 4f image) line respectively,
b Magnification of the left portion of f (α) curves to highlight the differences among images
concerning the multifractal analysis of their bright regions

by analyzing the scaling behavior of bright pixels depicting Ferrite phase. These
observations can be shown in the singularity spectrum of these images in Fig. 4. The
right branch of the singularity spectrum of the image of Fig. 4d (blue line 1 in Fig. 7a
diagram) exhibits the lowest αmax and higher f (αmax ) value versus the other two
images, revealing the lesser influence of scratches in the image texture. On the other
hand, the image of Fig. 4f (red line 3 in Fig. 7a) is characterized by a large thick
scratch, which contributes to the reduction of f (αmax ). The left branch of the spectra
(see Fig. 7b) revealing the scaling behavior of bright pixels, indicates a very similar
behavior for the images 1 (Fig. 4d) and 2 (Fig. 4e). Whilst in image 3 (Fig. 4f), αmin

gets a value significantly closer to 2 which means that the brighter pixels in this
case are less scattered over the image shaping more bulk aggregates. Nevertheless,
the differences are slight revealing the overall similarity of phase distributions in
these images. The above analysis reveals that the multifractal analysis is selectively
sensitive to the presence of sample artifacts such as scratches. They affect only the
right branch of singularity spectrum diagram which in this case does not describe
the scaling behavior of low z-effective phases but the distribution of artifacts in the
image.

5 Summary

Multiphase heterogeneous materials is a rapidly emerging area of research in both
academia and industry since they seem to be the next step after nanomaterials era.
A crucial challenge in this research field is to quantify and characterize the spatial
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distribution of material phases comprising the final heterogeneous material since it
affects greatly the properties and performance of material. In this paper, we propose
the multifractal analysis of microscopy images as a useful tool to meet this challenge
and provide a systematic methodology for the quantitative characterization of the
spatial distribution of different phases in amultiphase heterogeneousmaterial paying
special emphasis on their scaling behavior. To this end, first we present an alternative
of the standard box-counting technique (namedq-positivemethod) to provide reliable
multifractal results even in the deep dark image areas. Then we apply this method for
the estimation of the multifractal spectra in a series of top-down BSE-SEM images
depicting the surfaces of samples of OPC clinker which is widely used in cement
industry. We show that both right and left branches of multifractal spectra can be
used to quantify the spatial aspects of phase distribution and to detect the presence of
artifacts in sample preparation and/or imaging. Future work can be oriented towards
two directions. First, we can apply the elaborated method in the analysis of more
materials and microscope images to justify the insights that it delivers in quantitative
material analysis. Secondly, we can focus more on the method itself to optimize
its performance and remedy its downsides using synthesized greyscale images with
predetermined multifractal characteristics.
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Fractal Dimensional Analysis for Retinal
Vascularization Images in Retinitis
Pigmentosa: A Pilot Study

Francesca Minicucci, Fotios D. Oikonomou, and Angela A. De Sanctis

Abstract Retinal blood vessels form a complex branching pattern that has been
shown to be fractal. The fractal dimension (FD) of the retinal vascular tree lies
between 1 and 2. In the literature for healthy human subjects, the retinal vascular-
ization FD was estimated at around 1.7, but it can be changed by the rarefaction
or proliferation of blood vessels in the disease scenario. The aim of this paper is
to investigate whether fractal analysis of retinal vascularization images can help for
the early diagnosis of genetic retinal diseases as, in particular, retinitis pigmentosa
(RP). This would be very useful because it represents the only defense against these
illnesses. We use the results from two different imaging techniques, including Opti-
cal Coherence Tomography Angiography, to show that for retinal vascularization in
patients with RP the FD is lower with respect to the corresponding healthy control
group.
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1 Introduction

Fractals are geometric objects widely studied since they were first introduced by the
mathematician Benoit Mandelbrot in his book entitled “Les Objets Fractals” (1975)
[1]. Fractals are shapes whose main characteristic is self-similarity, which means
they repeat patterns on decreasing scales. In other words, each part of a fractal is
similar to the whole shape.

Fractal analysis is a non-Euclidean geometrical framework used to assess the frac-
tal nature of structures. The degree of complexity of a fractal is primarily described
by the parameter “fractal dimension”, first introduced in 1983 [2].

Fractal dimension is different from Euclidean dimension, where the dimension of
a point is zero, the dimension of a line is one, the dimension of a rectangle is 2 and
the dimension of a cube is 3. The fractal dimension is a real number that describes
how an object’s details change at different magnifications and its value is less than
the dimension of the space where the shape is embedded. Thus, a fractal in two-
dimensional space will have a FD between 1 and 2 and a fractal in three-dimensional
space will have a FD between 2 and 3.

A simple method to measure the FD of a shape in the two-dimensional space,
and the method used in this study, is to divide the shape into a grid of squares (box-
counting).

Fractals are shapes often found in nature and biological systems, for example,
the coastline of Britain is fractal and its fractal dimension is 1.2. In medical science,
fractal structures are ramifications of the blood vessels of the human circulatory
system [3, 4]. The occurrence of changes or pathologies can be signaled by variations
in the fractal dimension.

The retina is of crucial importance to ophthalmologists as retinal diseases are the
leading cause of blindness worldwide. The retina is a thin, light-sensitive neural layer
and is supplied by a sophisticated microvascular network, that delivers nutrients and
carries away waste. As part of the human circulatory system, the network’s devel-
opment tends to seek configurations that minimize operational energy expenditure.
Often diseases will have a vascular component that can manifest as abnormalities in
this network and thus the network can be studied to acquire insight into the presence
(or absence) of disease.

Identification of abnormality in eye fundus can be done by examining fundus
image photography using a digital fundus camera. With advancements in non-
invasive ocular imaging techniques such as optical coherence tomography angiogra-
phy (OCTA) permitting the segmentation of the vasculature into well-defined layers
[5], the retinal vasculature has become more accessible to researchers than ever
before. Hence, increasing attention has been paid to analyzing its quantitative char-
acteristics as a potential diagnostic tool.

The retinal blood vessels form a complex branching pattern that has been shown
to be fractal [6]. Therefore, a natural parameter for describing the retinal vasculature
is the fractal dimension, introduced in ophthalmology in 1989 [7]. The fractal dimen-
sion of the retinal vascular tree lies between 1 and 2 [6], indicating that its branching
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pattern fills space more than a line, but less than a plane. Thus, the retinal fractal
dimension provides a measure of the tree’s global branching complexity, which can
be altered by the rarefaction or proliferation of blood vessels in the disease scenario.
In healthy human subjects, the retinal FD is around 1.7, which is similar to that of
a 2D diffusion-limited aggregation process [6, 7]. It has been postulated that this is
because the retinal vasculature grows through the diffusion of angiogenic factors in
the retinal plane [8].

In 2021 [9] the authors summarize the current scientific literature on the asso-
ciation between FD and retinal disease. The results of the meta-analysis show
decreased fractal dimension associated with the presence of glaucoma, hypertension
and myopia. However, the decrease is strong with diabetic retinopathy and myopia,
and weak for diabetes, glaucoma and hypertension. In particular, in 2016 [10], using
the OCTA, it is proved that FD is significantly reduced in the superficial and deep
capillary plexuses in eyes with diabetic retinopathy.

Due to variances in methodological setups for retinal image processing and FD
calculation, it is difficult to form a consensus on this matter. Hence, before moving
onto clinical applications of FD, it is necessary that a standardized protocol for image
acquisition/processing be established to facilitate inter-study comparison.

The aim of this paper is to investigate how fractal analysis could help ophthal-
mologists for diagnosis of genetic retinal diseases, in particular, retinitis pigmentosa
(RP). From a methodological point of view, this could mean that the geometry of the
retina is fixed by genetics. To our knowledge, this is the first study on fractal analysis
regarding a genetic retinal disease.

We will use FD of retinal images because one of the hallmarks of retinitis pig-
mentosa is the changes of retinal vasculature with vessel attenuation, especially in
the early course of the disease [11, 12].

In the first part of the paper, we consider eye fundus images to classify RP using
fractal analysis. The first phase was the image segmentation process using the green
channel, and other mathematica commands aiming to extract the tree-shaped struc-
ture of blood vessels. Then the fractal dimension of the segmentation processed
image was calculated using the box-counting method. Based on these results, it can
be concluded that the classification of RP, using fractal analysis, can be very useful.

In the second part, we consider a recent kind of OCTA, the widefield OCTA
with longer wavelengths and higher speed, which allows a better analysis of deeper
tissue such as choriocapillaris and the visualization of a wider retinal field of view.
In this way, it provides more details of retinal and vascular disorders not limited to
the posterior pole [13]. In RP, the primary defect lies in the rod photoreceptors thus
beginning in the far andmid-peripheral retina, later involving the cone photoreceptors
localized more centrally [12]. In this part of the study, we consider images of retinal
vascular plexuses and choriocapillaris in selected retinal areas from the foveal zone
toward mid-peripheral retina in RP patients using widefield swept-source OCTA
(WSS-OCTA).
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2 A Brief Introduction to Fractal Dimension

In this paragraph we briefly recall the concept of fractal dimension. More details
on fractals and fractal dimension can be found in [14–17]. Let us suppose that we
have an “object” in d dimensions. If d = 1 this “object” could be a collection of line
segments, if d = 2 a collection of parts of a plane, if d = 3 a part of the 3-dimensional
space etc. It is well known that to this “object” we can assign a “measure” M . In the
first case (d = 1) this “measure” is the length of the line segments, in the second case
(d = 2) is the area of the plane parts, in the third case (d = 3) is the volume of the
3-dimensional part, etc.

We can cover this object with “boxes” with a small enough side l. The “boxes” in
the case d = 1 are small line segments, in d = 2 are small squares and in d = 3 small
cubes.

If N (l) is the minimum number of boxes with side l needed to cover the object,
it is obvious that,

M ≈ N (l)ld

since ld is the length or area or volume, in general the measure, of each box [14]. If
we solve the above equation relatively to d we have

d ≈ logM

logl
+ logN (l)

log(l−1)

Since l is a small number andM is a constant, the term logM/ logl can be ignored,
so,

d ≈ logN (l)

log(l−1)

The number d computed from the above formula is not necessarily an integer.
That is, to be precise, the number D

D = lim
l→0

logN (l))

log(l−1)

is any real number (less than the embedding dimension) and is called the “Fractal
Dimension” of the above object [15–17].

We will find the Fractal Dimension (FD) of a simple image (Koch curve) as a sim-
ple implementation of the above analysis. The so-called “Koch curve” is generated
from a line segment, by repeatedly removing the middle third of this (and subsequent
segments) and replacing it with a triangle. So, using mathematica (Fig. 1).

Let us consider for simplicity the Koch curve at level n = 2 (Fig. 2). We will
approximately compute the Fractal Dimension (FD) of this curve using the “box—
counting” method.
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Fig. 1 Koch curve

Fig. 2 Box counting method

Initially we cover the whole image with boxes (squares) of decreasing side. In
case (a) we use boxes of side l ≈ 400 pixels, in case (b) of side l ≈ 240 pixels and
in (c) of side l ≈ 120 pixels. Then, we count the minimum number N of boxes that
have in their interior a part of the Koch curve, colored purple in the figure. In case
(a) we have N = 8 boxes, in case (b) N = 20 boxes and in (c) N = 44 boxes.

Then we place the points (logl−1, logN ) on the plane (Fig. 3—red dots) and find
the line that best fits to them (least squares approximation). The equation of this
line is

y = 1.39988x + 10.5403

Since we know that
logN ≈ dlogl−1

it is obvious that, for the Fractal Dimension d , we have

d ≈ 1.39988 ≈ 1.4

This result is close enough to the FD of the Koch curve as the level n goes to
infinity, which is 1.26.
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Fig. 3 Plot of the line logN ≈ dlogl−1

3 Retinitis Pigmentosa

Retinitis pigmentosa is a hereditary degenerative pathology of the chorio-retina,
characterized by the presence of pigment in the nervous tunic of the eye [23]. Since
it may have a wide clinical variability, it is better to consider retinitis pigmentosa
as a heterogeneous group of retinal dystrophies, genetically determined and with a
progressive course [26]. The common pathogenetic mechanism is represented at first
by the degeneration of photoreceptors and retinal pigment epithelium cells, based on
mutations of some proteins of the visual cycle. Due to the molecular dysfunctions of
the rods, the cones also die secondarily [24]. It is a bilateral pathology, even if the
two eyes are affected asymmetrically.

RP is a rare genetic disease. The total of clinical variants, syndromic and non-
syndromic, has a variable prevalence in the different populations whichwere studied:
in theUSA, it is about 1: 3500-1: 4000,with significant variations in the various states,
in Switzerland 1: 7000, in China 1: 4016, in Norway 1: 4440, in Israel 1: 4500. In
Italy, it affects one out of every 3,500 inhabitants, with an expected number of about
18,000 patients. The global worldwide frequency (syndromic and non-syndromic
variants) is 1 case for every 3.000-5.000 inhabitants (about 1.5 million cases in the
world).

The clinical features of the disease are [25]:

• The so-called “bone spicule” pigmentation of the retina, which can be observed
in ophthalmoscopy

• The dysfunction of the photoreceptors, evidenced by anomalies of the elec-
troretinographic trace

• Night—blindness (nyctalopia), which means it is difficult or impossible to see in
relatively low light

• Progressive narrowing of the peripheral visual field (tubular or telescope vision)
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The most common imaging techniques used for the diagnosis of retinitis pigmen-
tosa are [27]:

• Digital fundus photography
• Fundus fluorescein angiography (AF)
• Optical coherence tomography angiography (OCTA)
• Scanning laser ophthalmoscopy.

3.1 First Methodology: Digital Fundus Photography

We consider the images of Fig. 4 for a healthy eye (control group) which are found
in the Messidor Database (Kindly provided by the Messidor program partners (see
https://www.adcis.net/en/third-party/messidor/)) [18].

In Fig. 5 we see the images of an eye with RP,1 in particular, Image 3 shows
an initial level and the others (Image 4 and Image 5) more advanced levels of the
disease.

To compute the Fractal Dimension of the above images, we have analyzed them
first using mathematica. We have used the commands “ColorSeparate” choosing the
“Green” channel, then “ImageAdjust” and “MorphologicalBinarize” to extract the
tree-shaped structure of the blood vessels.

Then we proceed with fractal dimensional box-counting analysis which is per-
formed using Fractalyse (ThéMA, Besançon Cedex, France). We get the results of
Table 1 below, where r2 is a measure for the quality of the linear regression anal-
ysis in our model (r2 = 1 means best fitting). Fractalyse uses the p-value approach
to hypothesis testing. Since p-values are very small there is strong evidence that
logN (l), log(l−1) are linearly related.

The results of table 1 are shown in the diagram of Fig. 6.

Fig. 4 Images of healthy eyes (control group)

1 The images were kindly provided by the Ophthalmology Clinic, Department of Medicine and
Science of Ageing, University “G. d’Annunzio” of Chieti-Pescara.

https://www.adcis.net/en/third-party/messidor/
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Fig. 5 Images of eyes with RP

Table 1 Fractal dimensions of images

Image FD r2 Confidence (95%) p-value

1 1.902 1.000 1.891−1.913 0.000

2 1.948 1.000 1.942−1.955 0.000

3 1.846 0.999 1.783−1.909 5.055E-10

4 1.687 1.000 1.656−1.718 1.247E-11

5 1.718 0.999 1.680−1.757 4.123E-11

Fig. 6 Fractal dimensions of images

From this diagram, we deduce that the FD of the eye fundus is smaller for patients
with RP compared to that of a healthy eye (control group). More precisely, the FD
of eye fundus, in patients with RP, is smaller than that of a healthy eye from the
beginning and further decreases in time, maybe due to the aging process of the eye.
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3.2 Second Methodology: Optical Coherence Tomography
Angiography

Recall that retina is the innermost of the three tunics of the eye. It has a nervous nature,
due to its embryological derivation, its histological structure, and its connectionswith
the optic nerve. The choroid, on the other hand, constitutes the most extended and
posterior part of the uvea. It covers the inside of the sclera and is in turn covered by
the retina. It is an electively vascular organ and has characteristics similar to corpus
cavernosum, which allows for one of the highest blood flows in the human body.
The choroid has the function of nourishing the outermost layers of the retina, in
particular, the pigment epithelium and the outer segment of the photoreceptors [19].

The following are of particular interest for the study of chorioretinal vessels:

• Superficial capillary plexus (SCP): Layer of ganglion cells and nerve fibers
• Deep capillary plexus (DCP): Inner nuclear and outer plexiform layer
• Choriocapillary plexus (CC): Between the Bruch membrane (BM) and the Sattler
layer, at the choroidal level

Optical coherence tomography angiography (OCTA) is a new imaging technique
that allows indirect visualization of the chorioretinal vessels through the normal
movement of blood in the capillaries [20].

The instrument, starting from a sequence of OCT images, provides a three-
dimensional reconstruction of the perfused vessels of both the retina and the choroid.
The OCTA allows viewing of the neuro-retinal vascular texture by layers and with
a resolution of micrometers. The advantage with respect to fluorescein angiography
(AF) is that it does not require the injection of a dye. The OCTA allows obtaining
of separate images of the retinal and choroidal plexi in vivo. For OCTA we can use
two different amplitudes of field so we distinguish:

OCTA Small Field

• Limited to the posterior pole (macula and optic disc)
• Acquisition areas of 3x3mm or 6x6mm
• Not very useful for investigating the pathologies affecting the vascularization of
the peripheral retina

OCTA Wide Field

• It allows analyzing a larger retinal area
• 12x12 mm acquisition areas
• It collects more details on the retinal circulation in the middle periphery
• Useful in pathologies such as PR, which mainly affects the periphery

Let us now consider the images from OCTA Wide field of superficial capillary
plexus, deep capillary plexus and choriocapillaris plexus of a healthy eye (a) and
retinitis pigmentosa (RP) patient (b), which are taken from [21, Fig. 1]. The images
are referred to an experiment of 12 patients with previous diagnosis of either mid-
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or late-stage RP and a control group of 20 healthy age-matched subjects, at the
University “G. d’Annunzio” of Chieti-Pescara, Italy.

The fractal dimensional box-counting analysis is performed again using Fractal-
yse. The input are these images, processed now by using ImageJ (National Institutes
of Health [NIH], Bethesda, Maryland, USA) [22]. We transform the type of each
image to 8 bit and then we run the macro

setAutoThreshold(“Default dark”);
setThreshold(0, a(i));

setOption(“BlackBackground”, false);
run(“Convert to Mask”)

for a(i) = 25i and i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 i.e. 0 ≤ a(i) ≤ 250, where
a(i) is a cutoff value such that every pixel with “luminosity” less than that value
is considered “background”, while every pixel greater than that value is considered
“foreground”. This procedure is necessary because the initial picture contains shades
of gray.Wewant a binary image consisting solely of pure black pixels we have called
“background” and pure white ones we have called “foreground”. If an imaginary
box contains white pixel(s) the box is counted during box-counting analysis. On the
contrary, if contains no white pixel is not. Thus, the “setThreshold(0,a(i))” command
helps us divide the image into two classes of pixels (black and white) and then
perform box-counting analysis.

The above procedure is carried out for each image and we get the results shown
in Table 2.

We remark again that due to the kind of images under study, the tree of blood
vessels is not clearly defined (there are different levels of grey), so we have a variety

Table 2 Fractal dimensions of images

i for
parameter
a(i)

Healthy
eye
superficial
plexus

RP eye
superficial
plexus

Healthy
eye deep
plexus

RP eye
deep
plexus

Healthy eye
choriocapillaris
plexus

RP eye
choriocapillaris
plexus

0 1.978 1.980 1.975 1.976 1.980 1.980

1 1.975 1.948 1.970 1.942 1.980 1.974

2 1.960 1.880 1.946 1.878 1.980 1.964

3 1.919 1.765 1.881 1.772 1.979 1.942

4 1.856 1.628 1.778 1.653 1.977 1.893

5 1.775 1.528 1.648 1.543 1.968 1.765

6 1.686 1.462 1.519 1.431 1.883 1.554

7 1.594 1.493 1.440 1.343 1.541 1.562

8 1.556 1.515 1.377 1.318 1.500 1.601

9 1.594 1.543 1.333 1.367 1.608 1.603

10 1.700 1.528 1.490 1.433 1.601 1.635
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Fig. 7 Fractal dimensions of superficial plexus images, taken from [21, Fig. 1], for various values
of threshold parameter

Fig. 8 Fractal dimensions of deep plexus images, taken from [21, Fig. 1], for various values of
threshold parameter

of binary images, depending on the threshold parameter, with different FD. We
consequently obtain curves of FD depending on the threshold parameter, which are
shown in the following diagrams, for all three plexi considered here, where the blue
curves refer to the healthy eye and the orange curves to the RP eye (Figs. 7, 8 and 9).

The error bars in these diagrams represent the 95% confidence intervals which
provide a measure of precision for the estimated FDs.

It is encouraging to see that, for most values of the parameter a(i), the FDs of
images of healthy eyes are above these of images of patients with RP, even if, possible
variations indicated by the error bars are considered. This is not the case for very
small or very large values of the threshold parameter, but we must expect it since in
these boundaries we have a very distorted image. This numerical result is coherent
with the clinical analysis observing the blood vessel attenuation [11, 12].
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Fig. 9 Fractal dimensions of choriocapillaris plexus images, taken from [21, Fig. 1], for various
values of threshold parameter

4 Discussion

Genetics determines the geometry of the retinal vascularization. Genetical patholo-
gies, such as RP, modify this geometry, which becomes unable to allow complete and
effective vision (such as tubular or telescope vision and nyctalopia). In the image
analysis, the retinal vascularization curve is less dense since the beginning of the
young age and the process of rarefying increases with aging.

To verify this quantitatively, we used fractal analysis of retinal vessels images,
obtained with two types of different techniques (Digital fundus photography and
OCTA), to compare the healthy eye with the eye affected by retinitis pigmentosa.
In all cases, we showed that FD of retinal vascularization, in retinitis pigmentosa,
is smaller than that of the healthy eye from the beginning and further decreases in
time. For our aim, OCTA Wide Field seems to be the better imaging technique in
pathologies such as RP, which mainly affects the periphery of the eyes.

For the three plexi of blood vessels in the retina, observed by OCTA Wide Field,
we have constructed curves of FD depending on the threshold parameter. Such curves
in RP patients are below those of the control group in most of the values, compatible
with vessel attenuation clinically observed.

It would be important to compare FD in RP with FD in other genetic retinal
pathologies. In general, we can suppose from our research that FD of retinal vascu-
larization imaging inRP, inmature age, is lower as comparedwith other non-genetical
retinal pathologies such as diabetic retinopathy or glaucoma.

Anyway, before moving onto clinical applications using FD, it is necessary that a
standardized protocol for image acquisition/processing be established first to facili-
tate inter-study comparison. Besides, as a future work, this research aims to perform
the analysis in a sample of patients with enough data to allow a quantitative estima-
tion of FD based on statistical evidence. Therefore, this study can be considered as
a pilot study.
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We think that FD of retinal vascularization imaging could be very useful in the
early diagnosis of RP, which represents the only defense against this illness. Indeed,
an efficient and lasting cure does not exist even nowadays, guaranteeing neither
complete healing nor sight recovery. The only possibility for a cure is to slow down
the illness progression through a daily consumption of vitaminA, omega-3 and lutein,
as well as, more recently, to apply gene therapy, by using stem cells.
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Extending the Bayesian Framework
from Information to Action

Vasileios Basios, Yukio-Pegio Gunji, and Pier-Francesco Moretti

Abstract In this review, we examine an extended Bayesian inference method and
its relation to biological information processing. We discuss the idea of combining
two modes of Bayesian inference. The first is the standard Bayesian inference which
contracts probability space. The second is its inverse, which extends and enriches
the probability space of latent and observable variables. Their combination has been
observed that, greatly, facilitates discovery. Moreover, this dual search during the
updating process elucidates a crucial difference between biological and artificial
information processing. The latter is restricted due to nonlinearities, while the former
utilizes it. This duality is ubiquitous in biological information process dynamics
(‘flee-or-fight’, ‘explore-or-exploit’ etc.) as is the role of fractality and chaos in its
underlyingnonequilibrium, nonlinear dynamics.Wealso propose a newexperimental
set up that stems from testing these ideas.
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1 Introduction

Explore different areas. The statement that one cannot be both deep and broad is a myth.
Actually, the importance of being a polymath is that it allowsone tomake remote associations,
and thus to understand the deeper essence of things. Understanding is nothing more than
elucidating associations. – A. Fokas [1].

In its wide range and seminal work of Professor Athanasios Fokas one finds
important contributions in an interdisciplinary research fashion on the interface
between applied and pure mathematics. Among other important contributions, Pro-
fessor Fokas worked and taught a lot about the challenge that inverse problems pose:
how to hypothesise and determine the most plausible set of causal interconnections
and identify the physical and/or statistical laws that govern the acquired data.

We too, find inspiration and try our best to follow his tall order of ‘exploring
different areas’.And in that spirit we approach this interdisciplinary area of biological
information processing. In particular, we trace the development of the idea that chaos,
affording indeterminacy and criticality, is the ‘conditio sine qua non’ for biological
information processing and we highlight the importance of fractal basin boundaries
for such an interpretation.

Moreover, we shall see how this entails a nonlinear closed feedback loop with the
forward and inverse inference problems interlaced. The ’forward problem’, in this
case is that of categorization, i.e to propose models that calculate the results from,
and reactions to, their causes. In our case it is the framework of the classical Bayesian
theorem. The ‘inverse problem’ here deals data acquisition, i.e to calculate causes
from results. And in our case connects with the converse of the Bayesian theorem, a
fertile but less travelled road, which expands its original, classic, framework [2–7].

The paper is organized as follows: in Sect. 2 we review aspects that differentiate
biological from artificial information processing, and dynamics, focusing on the role
of chaos and fractals. In Sect. 3 we discuss the connection of Bayesian inference
to the free energy principle and present an outline of our proposed extension. With
Sect. 4 we conclude with a short discussion of forthcoming research plans and their
outlook.

2 Biological Versus Artificial Information Processing

Life is abundant with information processing, this is commonplace, in our era though
information flow is not bound to life’s biological processes. We are surrounded by
artificial technological contraptions serving, processing and acquiring information.
Some of them are bio-inspired some are based in Turing’s and Shannon’s prototypical
mechanistic theories of information. Evidently natural systems differ in structure and
function fromhuman-made computers asmuch as natural patterns differ fromhuman-
made ones. As the father of Fractal Geometry Benoît Mandelbrot famously put it
Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
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Fig. 1 Upper right: Subjects see the photograph, on the left panel, by moving their eyes in a
seemingly erratic, fractal-like, Levy-flight fashion. Lower right: When machines scan the same
photograph, on the left panel, they sweep the area by retracing a lattice of pixels. (The figure is
our synthesis from the original Fig. 116 of [8] and its revisits in Figs. 20.1 and 20.3 of [9, 24]).
Paraphrasing Benoît Madelbbrot one can say, ‘clouds are not spheres, mountains are not cones ...
and seeing is not scanning’

is not smooth, nor does lightning travel in a straight line, and biological information
processing is not machine-information processing; and fractals do appear here, too.

From the early times of information machinery it became evident that acquisition
and storage of information in biological systems happens in a radically different
way (see for example the first reported study of how human visual system treats an
image [8] and for an updated review see [9, 24]). In humans it happens in a fractal
itinerary, what it came to be known as a Levy flight [10]. In a scanner it happens via a
serial-sweep on a lattice, as Fig. 1. Moreover, biological systems process information
at a multitude of levels. Or, as a pioneer of the subject, John S. Nicolis, put it
[11] The smallest biological information processor is the enzyme; the biggest is the
(human) brain. They are separated by nine orders of magnitude. Yet their complexity
is comparable. Hence, fractality is obviously the most compatible property of choice
for such cases of distributed probabilistic computations as the ones encountered from
proteins, to organs and organisms, even to groups of organisms.

The Role of Chaos, Fractals and Complexity: It has been established,since the
early days of Chaos theory that a reliable information processor must allow for
chaos [12]. In particular it must afford the regimes known as ‘edge of chaos’ or ‘self
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organized criticality’ that are ubiquitous in systems with coexistent negative and
positive nonlinear feedback circuits. Chaos Theory has shed new light in phenomena
associated with biological information processors, see for example [13, 14]. Such
type of chaotic dynamics allows also for adaptivity, flexibility and resilience during
information processing. Moreover, since biological information is contextual, mean-
ingful, has depth of memory and historicity. Other related types of chaotic dynamics,
such as stochastic resonance, intermittency and chaotic itinerancy were also found
to play key roles [12, 17].

The role of chaos in biological systems is exemplified: (i) at the macroscopic
level in the analysis of chaos-order transitions in the brain and other organs (ii)
at the microscopic level, modeling of neurons as systems of nonlinear differential
equations, even revealing new dynamics (blue sky catastrophe and spike-trains),
and (iii) at the mesoscopic level in groups of neuron communities where chimera
states, non-local synchronization and modular collective dynamics were identified.
So, it comes with no surprise that even the new trends of bio-inspired Information
processing paradigms (e.g. artificial neural networks) discover the constructive role
of chaos.

The importance of being Fractal and Chaotic: The essence of biological infor-
mation processing can be expressed as the emergence of nonlinear feedback loops
with two branches: The branch that provides stability and facilitates data storage, i.e.
data-categorization. This is modelled via attractors in the phase space with dynam-
ics characterized by a negative Lyapunov exponents’ sum, Λ < 0. While the other
branch provides instability and facilitates data acquisition actions, i.e. observation.
This in turn is modeled via chaotic exploration of the phase space, with dynamics
characterized by a positive Lyapunov exponents’ sum, Λ > 0, [3, 12].

Wemust take note that the physical and biological parameters, here, are not always
constant in time and a more complete treatment, albeit much more complicated and
demanding, would have to account for ‘chaotic itinerancy’. Chaotic itinerancy [12,
17] is a quite generic mechanism for high dimensional systems with coexisting fast-
slow dynamical subsystems. It captures the complexity, plasticity and flexibility of
biological systems, particularly neural dynamics, and since it is contingent upon
history and parameter switching allows transitions to be stochastic [13, 18].

This emergent feedback loop is reminiscent of the ‘fight or flee’, ‘exploit or
explore’ phenomena in biological systems at large. Only here the negative-feedback,
contracting, branch (fight/exploit) has to do with comprehension via pre-existing
categories, while the positive-feedback, expanding, branch has to do with seeking
the knowledge of new data. Moreover a well functioning loop has to be well tuned,
poised on the border of chaos and order. The following scheme summarizes this
ubiquitous closed feedback loop pair:
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Categorization: exploiting of phase space.
Stability, Λ < 0 �−→ Data Storage/Memory: Inhibitory modes
Observation: exploring in phase space.
Chaos, Λ > 0 �−→ Data Acquisition/Input-Output: Excitatory modes

or as J.S. Nicolis and I. Tsuda put it To observe you need a priori categories, but to
form categories you need observations [12].

Fractal Basin Boundaries: Another key aspect of chaotic dynamics is the coex-
istence of attractors. And it is well known that these coexisting attractors are,
most often than not, separated by fractal basin boundaries [3, 18]. One of the
most well known systems with this property is the celebrated ‘Newtons Fractal’
a Julia set associated to Newton’s iteration method for finding roots of polynomials
f (z) : zn+1 := zn − f (zn)

f ′(zn) , z ∈ C. For degree 3, f (z) = z3 − 1 the attracting roots
of unity and their fractal basin boundaries are shown in Fig. 2a (generated with the
code available in [16]). Models with fractal basin boundaries have been proven to
capture well the affinity of concepts in their apprehension and categorization and the
intermittent successions among them. This kind of multistability and its stochastic
switching is exemplified in the study of optical illusions. Bistable transitory dynam-
ics, such as the ones found in the perception of the Necker Cube, or Wittgenstein’s
favourite linguistic paradigm of the Rabbit/Duck picture, were of the first to highlight
the importance of inhibitory and excitatory connections in neural correlates during
perception.

Furthermore, fractal basin boundaries of coexisitng (strange or not) attractors pro-
vide also for the probabilistic, stochastic, aspect inherent in biological processors.
As it is well known a chaotic system under coarse-graining cannot be distinguished
from a stochastic one [18]. This is due to two facts: Firstly, the practical impossi-
bility to fully determine initial conditions, or any point of the phase-space for that
matter, with infinite accuracy. Secondly, the inherent sensitive dependence on initial
conditions of chaotic systems which renders unpredictable the course of their evo-
lution beyond their Lyapunov time (τ ≈ 1/Λ). Hence, for any point on the fractal
basin boundary, which is necessarily determined with finite accuracy, we can only
assign a probability, weighted by the boundary’s fractal measure, of arriving at a
neighbouring attractor of the coexisting ones.

It is customary to partition the phase-space of a dynamical system by the preim-
ages, periodic points and/or other critical points, or by a simple lattice that is refined
iteratively, as in the cases of fractal-dimension determination by box-counting. For
example, in Fig. 2c the highlighted region contains the fractal boundary. We can then
use a rough set or a coarse- graining scheme, e.g. the partition determined by the
curves R+ and R− marked with the white and black lines in Fig. 2c that enclose the
fractal boundary of the basin of attraction of the first cubic-root of unity, in this case,
(z1 = 1). Every point inside R− will end up in z1, every point outside R+ will not
end up in z1 while any point in the (highlighted region) could end up either end up
in z1 with a given probability, determined by the underlying fractal measure, or end
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Fig. 2 Coexisting attractors with fractal basin boundaries in biological information processing
provide models for multistable perception and semantic/categorical polyvalence

up in either z2 or z3, the other two cubic-roots of unity. Similar argument holds for
the other two attractors around z1 and z2, with respective partitions.

Figure2c illustrates the above mechanism that gives rise to a tri-stable visual per-
ception of the famous Penrose Triangle shown in Fig. 2b. When the visual cortex is
impinged upon with such ambiguous stimuli, it is impossible to categorize it in a
single perspective. So, all three pre-existing possible and competing categories of per-
spective are excited. The inhibitory part of the circuit drives the system towards one
of these three, but in a probabilistic fashion. Because the uncertain data on the fractal
basin provides the fluctuations for stochastic transitions from one category/fixed-
point to the other. Note that, such a loop puts data (stimuli) and representations
(attractor-basins) on a shared basis.

These typical far-from-equilibrium processes are directly related to the ever
present dissipative structures’ dynamics in biological systems [18]. It results in a
measurable effect with well determined transition probabilities, for a detailed model
of tri-stability see [19]. Indeed ambiguous figures are found as guiding paradigmatic
cases in every other textbook in cognitive sciences and neuroscience as a ‘gateway to
perception’. They are markedly elucidating cases of the dynamics of cognition since
here the perception changes but not the signal. Which echoes another’s pioneer take
on the subject, Walter Freeman’s, who stated that: perception depends dominantly
on expectation and marginally on sensory input, see his contribution in [11].
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Moreover, it has been established [2, 4, 20] that such transition between inter-
related categories, as exemplified here, when treated within an extended Bayesian
framework give rise to a logic with clear non-Boolean characteristics in accordance
with the theory of Quantum Cognition [21–23].

3 Extended Bayesian Inference: Two Modes in One Loop

If biological, or even bio-inspired, information processing did not have this emergent
nonlinear loop of inhibitory/excitatory dynamics as its defining characteristic, then
classical Bayesian inference would suffice to describe categorization, the stable part,
as it is implemented via computers’ mechanical information processing. Bayesian
inference is formally equivalentwith a variational free-energy principleminimization
problem or a ‘least action variational problem’ [2, 24, 25]. It is a classical optimiza-
tion problem encountered in statistical mechanics and thermodynamics among other
disciplines. It is often pictured as climbing up one mountain top (or equivalently
descending in one valley basin depending on the choice of sign).

The Free Energy Principle in cognition and action: One way that Friston and
co-workers [24, 25] express this fact is by using the following succinct formula for
the free energy functional, F :

F(q(s), p(μ); η) = Energy − Entropy = −〈ln p(s; η)〉q + 〈ln q(μ; η)〉q (1)

where p(s; η) and q(μ; η) are probabilistic representations (i.e. variational densities)
of sensory inputs, s, from the environment, and the system’s internal representations,
μ, both weighted with respect to the system’s external states, η and conditioned
over q. Other, alternative, expressions are derived and presented in [24, 25]. One
consequence of such an optimisation of the variational free-energy is that it provides
a bound on surprise and enables system’s resiliencewhile driving it to an equilibrium.

Free energy principle works well when functional minimization works well. That
is, when dealing with a single basin descent, as also the standard Bayesian inference
procedure does. It is well known that this is true for all gradient descent methods
which essentially describe approach towards equilibrium, the minimum. But, when
one encounters multiple coexisting basins of attraction, stochastic terms have to enter
into the picture. Then the need to extend the classic Bayesian framework arises [2].
The situation is analogous of the metastable state-transitions in statistical thermo-
dynamics driven by stochastic fluctuations, a typical far-from-equilibrium process.
Indeed, this analogy has been noted [24, 25] and, normative connections with formal
analogies have been established with self-organization, autopoiesis, second order
cybernetics and other theories with similar minimization challenges.

Extending the Bayesian Approach: Parallel thoughts about the Bayesian inference
in the presence of missing or incomplete data led statisticians and data-scientist
to consider the inverse problem of the Bayesian theorem and supply the converse
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Bayesian theorem [26, 27]. In other words as the classic Bayes’ theorem provides
a better estimate, called ‘the posterior’, for an original hypothesis expressed as a
probability distribution, called ‘the prior’, taking in consideration given data, called
‘the likelihood’; so the converse Bayes theorem provides a prior distribution that is
compatible with the given likelihood furnished by the data (even if there are some of
them missing: hence the name ‘missing data problems’ [27]) for a given knowledge
of the posterior.

F. T. Arrechi, another pioneer of nonlinear science, made a further breakthrough
when he explained neurophysiological data from ambiguous pictures, the Necker
Cube in particular, based on an argument of QuantumCognition theory and proposed
a scheme for interlacing Bayesian and Inverse Bayesian (BIB) inference [28, 29], in
a closed feedback loop, see also his chapter contributed to [11]. Further studies [3, 4,
20] revealed that the underlying logic of Arrechi’s experiments is a quantum-type of
non-Boolean logic (an orthomodular lattice of propositions) in agreement with the
tenets of the theory of Quantum Cognition [21–23].

One can start by denoting d and h the variables representing data and hypotheses,
respectively. By definition, the conditional probability of an event A given an event
B, is customary written as P(A|B)while the probability of events A and B (i.e. (A ∩
B) = (B ∩ A), which is the overall probability of event A and of event B occurring,
but not necessarily together at once) is expressed as P(A, B), obviously P(A, B) =
P(B, A). Thus, the conditional probabilities P(d|h) = P(d,h)

P(h)
and P(h|d) = P(d,h)

P(d)

give the celebrated Bayes Theorem:

P(h|d)P(d) = P(d|h)P(h)

Since for changing hypotheses froma set H = {hk, k = 1, 2, . . . N } at each time-step
t we have P(d) = ∑

k P(d|hk)P(hk), and we obtain the iteration process, indexed
with the time-step t :

Pt (h|d) = Pt (d|h)Pt (h)
∑

k

Pt (d|hk)Pt (hk) ⇒ Pt+1(h) = Pt (h|d) (2)

The data D = {dk, k = 1, 2, . . . N } and hypotheses H = {hk, k = 1, 2, . . . N }, are
analogous to external stimuli and their internal representations, or categories. This is
the classical Bayes inference compatible with the free energyminimization principle.
Expressed in an operator form as:

Pt+1(h) = BPt (h|d) (3)

The Inverse Bayesian inference (IB) can be expressed, also formally, as (Fig. 3):

Pt+1(d|h) = IBPt (d),Eq.(3)&Bayestheorem, ⇒ Pt+1(h) = B � IBPt (h) (4)

dropping indexes for clarity and where the operator � denotes a special, non-
deterministic, composition, respecting the tenets of the converse Bayesian theorem



Extending the Bayesian Framework from Information to Action 161

Fig. 3 Bayesian Inference
(B, straight arrow) amounts
to descending to a given
basin, i.e. a category, or a
hypothesis. Inverse Bayesian
(IB, curved arrow) inference
amounts to hopping and
switching among different
basins/hypotheses

[26, 27]. One way t do this is be letting the joint probability between a hypothesis
and data to be transformed into a binary relation R ⊆ H × D such that (h, d) ∈ R if
Pt (d, h) > θ; otherwise, (h, d) /∈ R. Here θ is a threshold probability derived from
the measure of the coarse-graining partition enclosed by the set (R+) − (R−), e.g.
as in the Figs. 2c and 3. Once a binary relation between a hypothesis and data is
established, one can estimate a non-Boolean logical structure with respect to an,
orthomodular, lattice. In particular, a lower approximation on hypotheses and an
upper approximation on data, furnish a ‘Rough Set Approximation’ [20]. The iter-
ative, non-algorithmic, part of the inverse Bayesian inference operator, IB, is not
simply ‘solving for P(h)’ in Bayes’ formula of Eqs. (2), (3). As with the Converse
Bayes theorem, a correctly chosen functional space with proper convergence topol-
ogy is crucial [26].

This picture of a landscape of data and hypotheses with multiple coexisting attrac-
tors is a challenge for any deterministicminimization process and, hence, also for free
energy principle schemes. It is reminiscent of out-of-equilibrium self-organization
as it brings forth the role of stochastic fluctuations in state transitions and/or other
non-deterministic factors.

Nevertheless, probabilistic strategies and ‘on the fly’ construction of step-by-step
solutions can work even if the process can be characterized as non-deterministic,
or non-Turing-computable, in the normative sense of the words. Figure4 illustrates
these two Bayesian Inference processes.

Again, here, we encounter the ‘exploit-explore’ dual feedback loop as an instru-
mental and distinct feature of biological information processing. Now reflected in
the probability space contraction/ expansion interplay during BIB inference:
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Fig. 4 The extended Bayesian (BIB) feedback loop. Left: its classical Bayesian inference branch.
Right: the Inverse Bayesian inference branch with its extended probability distributions space that
provide a set of competing hypotheses

Bayesian Inference: exploiting probability space
Given: Likelihood & Prior distribution �−→ Posterior distribution
Inverse Bayesian Inference: exploring probability space
Given: Likelihood & Posterior distribution �−→ Prior distribution

4 Outlook and Forthcoming Experiments

Apart from elucidating the logical, non-Boolean, structure of apprehension and
judgement and the correspondence with the conceptual framework of Quantum
Cognition, so far BIB has been successfully been implemented in explaining the
appearance of fractal-type Levy flight super-diffusion and other aspects of collec-
tive behaviour of swarms [5, 6, 30, 31]. These are typical macroscopic biological
processes. The extended Bayesian framework may also find application in the study
of the capability of dealing with ambiguities, exploiting affordances and explore the
adjacent space of possibilities, typical of natural organisms [32, 33].

Yet, as new technologies emerge, we are now able to describe the dynamics
of neural morphology with spatial resolution down to the nanoscale level. Nano-
electromechanical vibrations became recently a powerful tool to investigate the role
of oscillations, and noise trait, in the functioning of single neurons and the interaction
with the environment [14] (e.g. effects of drugs, motor activity etc.).
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In this context, experiments aiming at the analysis of such nano-vibrations of
neurons have been designed and developed. We currently consider, the simplest
complex system of neurons, consisting of just three neurons. This set-up allows the
investigation of their collective behaviour in presence of different stimuli [34]. The
ultimate goal is to infer what processes make the simplest complex alive neuronal
network to act as a collective entity.

Along side and in complementing classical deterministic modeling of synchro-
nization modes of three coupled neurons [35], BIB is expected to uncover other, not
so commonly studied phenomena, in the simplest collective of neurons that never-
theless exhibit very complex behaviours, even infer new ones.
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Abstract Mathematical problems associated with the theoretical foundations of
emission tomography involve the inversion of the celebrated Radon transform of a
function, defined as the set of all its line integrals, as well as the inversion of a certain
generalization of the Radon transform of a function, the so-called attenuated Radon
transform, defined as the set of all its attenuated line integrals. The non-attenuated
and attenuated versions of the Radon transform provide the mathematical basis of
emission tomography, particularly of two of the most important available medical
imaging techniques, namely positron emission tomography (PET), and single-photon
emission computed tomography (SPECT). Although Radon himself derived in 1917
the inversion of the transform bearing his name, seventy four years later Novikov
and Fokas rederived this well-known formula by considering two classical problems
in complex analysis known as the d̄-problem and the scalar Riemann-Hilbert prob-
lem. The inversion may be obtained in a simpler manner by the use of the Fourier
transform, however the derivation of Novikov and Fokas allowed Novikov to invert
the attenuated Radon transform in 2002. Four years later Fokas, Iserles and Mari-
nakis established amore straightforward derivation of this inversion. In this work, we
present the seminal work of Fokas in the area of mathematical image reconstruction,
based on the mathematical machinery of modern methods in complex analysis.
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1 Introduction

In his seminal article for the Reports of the SaxonAcademy of Sciences andHumani-
ties of Leipzig [1, 2], entitled “Über die Bestimmung von Funktionen durch ihre Inte-
gralwerte längs gewisser Mannigfaltigkeiten,” the Austrian mathematician Johann
Karl August Radon (1887–1956) introduced an integral transform pair that was
meant, several decades later, to give birth to the fields of computed tomography
and mathematical image reconstruction. This transform would later be referred to
as the Radon transform. Radon followed Hendrik Antoon Lorentz’s (Nobel Prize
in Physics 1902) unpublished work in 1905, where the initial Radon problem was
introduced, and a three-dimensional function was recovered from its integrals over
corresponding planes [3]. The inversion of the integral transform in three dimen-
sions was given in 1906 by Hermann Bockwinkel, in his work on the propagation of
light in biaxial crystals [4]. It is worth noting that in his work, Bockwinkel cites the
inversion equation as Lorentz’s [5]. The Radon transform pair provides the mathe-
matical framework for a variety of inverse problems, not only in mathematics and
medical imaging, but also in physics and certain other areas [6]. Nowadays, Radon
is universally recognized as the pioneer of image reconstruction from projections.
In order to honor his contributions to science, in 2003 the Austrian Academy of
Sciences named the “Institute for Computational and Applied Mathematics” after
Radon. Today, more than 105 years after his groundbreaking publication, Radon’s
work remains highly influential in the research community worldwide; see [7] for a
review on recent achievements.

The Radon transform of a two-dimensional function is defined as the set of all
its line integrals [8]. There exists a certain generalization of the two-dimensional
Radon transform, namely the attenuated Radon transform, defined as the set of
all line integrals of a two-dimensional function, attenuated with respect to a corre-
sponding attenuation function. These Radon transforms provide the mathematical
foundation of the most important medical imaging techniques, referred to as com-
puted tomography (CT) [9] and as positron emission tomography (PET) [10, 11]
for the non-attenuated version, and single-photon emission computed tomography
(SPECT) [12, 13] for the attenuated version, respectively.

The non-attenuated Radon transform gives rise to the mathematical problem of
“reconstructing” a function from its line integrals. PET consists of the numerical
implementation of the inversion of the non-attenuated Radon transform. Similarly,
SPECT is based in the inversion of the attenuated Radon transform, namely the
reconstruction of a function from its attenuated line integrals.

In 1991, Fokas and Novikov rederived the well-known inversion of the Radon
transform [14] by performing the so-called spectral analysis on the following eigen-
value equation:



Fokas on Medical Imaging: Analytic Reconstructions … 171

[
1

2

(
k + 1

k

)
∂x1 + 1

2i

(
k − 1

k

)
∂x2

]
u(x1, x2; k) = f (x1, x2), k ∈ C, k �= 0,

(1)
where subscripts denote partial differentiation. This analysis encompasses two cer-
tain problems in modern complex analysis known as the d̄-problem and the scalar
Riemann-Hilbert (RH) problem, respectively.

The inversion of the Radon transform can be obtained in a less complicated fash-
ion, namely by employing the two-dimensional Fourier transform. However, the
advantage of the derivation of [14] was established more than a decade later, in
2002, by Novikov [15]. In his paper, Novikov demonstrated that the inversion of
the attenuated Radon transform can be obtained by applying an analysis analogous
to the one performed in the eigenvalue equation (1). To this end, he performed the
spectral analysis of a slight generalization of equation (1), namely of the following
eigenvalue equation:

[
1

2

(
k + 1

k

)
∂x1 + 1

2i

(
k − 1

k

)
∂x2 − μ(x1, x2)

]
u(x1, x2; k) = f (x1, x2),

k ∈ C, k �= 0. (2)

By employing the results of the analysis of both Eqs. (1) and (2), Fokas, Iserles and
Marinakis, four years later, in 2006, derived the inverse attenuated Radon transform
in a more straightforward manner [16]. The main result of the present work is the
formulation of an equivalent inversion for the attenuated Radon transform, following
the pioneering work of Novikov and Fokas.

2 Radon Transform and Its Attenuated Version in Two
Dimensions

Via the Radon transform, a function f on R
n is integrated over its corresponding

hyperplanes [17], it involves line integration along lines, and more precisely along
families of parallel lines. The line integral of a continuous function f : D ⊂ R

2 → R

along a differentiable curve C : [a, b] → D ⊂ R
2 is defined by:

∫
C
f ds =

∫ b

a
f (r(τ ))

∣∣∣∣r′(τ )
∣∣∣∣
2 dτ , (3)

where r : [a, b] → C is a bijective map, namely the parameterization of the curve
C , and || · ||2 denotes the L2-norm in R

2.
A line L on the x1x2-plane can be specified by the signed distance from the origin,

ρ, (−∞ < ρ < ∞), and the angle with the x1-axis, θ (0 � θ < 2π), see Fig. 1. We
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Fig. 1 Radon transform:A two-dimensional function, f (x1, x2), and its corresponding projections,
f̂ (ρ, θ), in Cartesian (x1, x2) and local (ρ, τ ) coordinates

denote the corresponding unit vectors parallel and perpendicular to L by e‖ and e⊥,
respectively:

e‖ = (cos θ, sin θ) , and e⊥ = (− sin θ, cos θ) .

Every point x = (x1, x2) on L in Cartesian coordinates can be expressed in terms of
the line coordinates (ρ, τ ) via

x = ρ e⊥ + τ e‖,

where τ denotes the arc length, namely,

x1 = τ cos θ − ρ sin θ, and x2 = τ sin θ + ρ cos θ. (4)

If we choose the following parameterization r, resulting from Eq. (4),

r(τ ) =
[
τ cos θ − ρ sin θ
τ sin θ + ρ cos θ

]
, (5)

then Eq. (4) imply that τ represents the arc length of the line L , and that Eq. (5) is a
natural parameterization of the lines L . Taking into account the above, if the curve
C is a line L naturally parameterized by the arc length τ , the initial line integral (3)
may be rewritten as follows:

∫
C
f ds =

∫ ∞

−∞
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ) dτ . (6)
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Furthermore, Eq. (4) can be expressed in the local coordinates (ρ, τ ), as follows:

ρ = x2 cos θ − x1 sin θ, and τ = x2 sin θ + x1 cos θ. (7)

Definition 1 The space of rapidly decreasing (Schwartz) functions onRn is denoted
by S(Rn) and is defined as:

S(Rn) = {
f ∈ C∞(Rn) : || f ||α,β < ∞} ⊂ C∞(Rn), (8)

where

|| f ||α,β = sup
x∈Rn

∣∣xαDβ f (x)
∣∣ , ∀ multi-index α,β,

∣∣xαDβ f (x)
∣∣ → 0, as |x | → ∞. (9)

Definition 2 The Radon transform, R, is the line integral of a two-dimensional
Schwartz function f (x1, x2), f ∈ S(R2) along straight lines on the plane and is
denoted by f̂ (ρ, θ). It is expressed by:

f̂ (ρ, θ) = (R f ) (ρ, θ) =
∫ ∞

−∞
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ)dτ ,

0 � θ < 2π, − ∞ < ρ < ∞.

(10)

The main mathematical problem associated with the Radon transform, R, and,
by extension, with PET imaging involves the reconstruction of the the function
f (x1, x2), given the function f̂ (ρ, θ) = (R f )(ρ, θ), 0 � θ < 2π, −∞ < ρ < ∞.
There exists a certain generalization of theRadon transform, namely the attenuated

Radon transform. The attenuation notion is represented by an attenuation function
μ(x1, x2), and is indicated in what follows by the subscript μ.

Definition 3 The attenuated Radon transform, Rμ, is the line integral of a two-
dimensional function f (x1, x2), attenuated with respect to the attenuation function
μ(x1, x2). It is denoted by f̂μ(ρ, θ), and is expressed as follows:

f̂μ(ρ, θ) = (Rμ f
)
(ρ, θ) =

∫ ∞

−∞
e− ∫ ∞

τ μ(s cos θ−ρ sin θ,s sin θ+ρ cos θ)ds×
f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ)dτ , 0 � θ < 2π, − ∞ < ρ < ∞. (11)

Themathematical problem associated with the attenuated Radon transform,Rμ, and,
by extension, with SPECT imaging involves the reconstruction of the the function
f (x1, x2), given the functions f̂μ(ρ, θ) = (Rμ f )(ρ, θ), 0 � θ < 2π,−∞ < ρ < ∞
and μ(x1, x2), −∞ < x1, x2 < ∞, see Fig. 2.
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Fig. 2 Attenuated Radon transform: A two-dimensional function, f (x1, x2), an attenuation func-
tion, μ(x1, x2), and its corresponding attenuated projections

3 Inversion of the Radon Transform in Two Dimensions

3.1 Fourier-Based Inversion of the Radon Transform in Two
Dimensions

Themost commonly attributedmethod for inverting the non-attenuated version of the
Radon transform is the central slice theorem. This theorem provides a fundamental
tool for the Fourier-based inversion of the Radon transform [9].

Theorem 1 (Central slice theorem) The two-dimensional Fourier transformF2 of a
function f (x1, x2) is the one-dimensional Fourier transform F1 of the Radon trans-
formR of the same function f , i.e.,

F2 { f } = F1 {R { f }} , (12)

where R is defined in Eq. (10), F2 is defined by

(F2 { f }) (ξ1, ξ2) =
∫ ∞

−∞

∫ ∞

−∞
f (x1, x2)e

−2πi(ξ1x1+ξ2x2)dx1dx2, (13)

F1 is defined by

(F1 {g}) (r) =
∫ ∞

−∞
g(ρ)e−2πirρdρ. (14)

Proof See Section 2.2 of [9]. �
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Corollary 1 The central slice theorem implies that the Fourier-based inversion of
the Radon transform may be written in the following operator form:

R−1 = F−1
2 F1. (15)

The inversion of the Radon transformmay be accomplishedwithout Fourier analysis,
namely by employing tools arising in modern complex analysis. The computational
benefit of the non-Fourier inversion are significant, as will become clear in the next
Section.

3.2 Complex Analysis Tools

In order to highlight the seminal ideas of Fokas in the area of mathematical image
reconstruction, we introduce the appropriate mathematical machinery of modern
methods in complex analysis. In this direction, we will be able to solve the inverse
problem defined in Eq. (10) without Fourier analysis and, ultimately, to invert the
Radon transform.

Lemma 1 (Generalized Cauchy or Pompeiu’s formula) Assume that the function
f (z, z̄) is continuous and has continuous partial derivatives in a finite region D
and on the simple closed boundary ∂D. Let ∂D denote the closed boundary of D
(counterclockwise). Then, f (z, z̄) can be evaluated at any interior point z via:

f (z, z̄) = 1

2πi

(∮
∂D

f (ζ, ζ̄)
dζ

ζ − z
+

∫∫
D

∂ f

∂ζ̄
(ζ, ζ̄)

dζ ∧ dζ̄

ζ − z

)
, (16)

where the so-called wedge product dζ ∧ dζ̄, ζ = ξ + iη, ζ̄ = ξ − iη, is defined as

dζ ∧ dζ̄ = (dξ + idη) ∧ (dξ − idη) = −2idξdη. (17)

Proof See Theorem 2.6.7 of [18]. �

Corollary 2 If f (z) is analytic in D̄ = D ∪ ∂D, then Pompeiu’s formula (16)
reduces to Cauchy’s integral formula, namely,

f (z) = 1

2πi

∮
∂D

f (ζ)

ζ − z
dζ. (18)

Proof If f (z) is analytic in D̄ = D ∪ ∂D, then ∂ f/∂ζ̄ = 0. Hence, Pompeiu’s for-
mula (16) implies Cauchy’s integral formula (18). �



176 N. E. Protonotarios et al.

Lemma 2 (Plemelj formulæ) Let L be a smooth, simple curve, and let ϕ(t) satisfy
a Hölder condition on L. Then, the Cauchy-type integral

Φ(z) = 1

2πi

∫
L

ϕ(τ )

τ − z
dτ , (19)

as z approaches L from the right and the left, has the limiting values Φ−(t) and
Φ+(t), respectively, given that t is not an endpoint of L, namely

Φ±(t) = ±1

2
ϕ(t) + 1

2πi
PV

∫
L

ϕ(τ )

τ − t
dτ , (20)

where PV
∫
denotes the Cauchy principal value integral defined by

PV
∫
L
g(τ )dξ = lim

ε→0

∫
L−Lε

g(ξ)dτ , (21)

and Lε denotes the part of the contour L of length 2ε, that is centered around t.

Proof See Lemma 7.2.1 of [18]. �

Remark 1 Equation (19) yields a function which is analytic both in the interior and
the exterior of the curve L , which we denote as Φ±(z), respectively.

Lemma 3 Let L be a smooth, closed simple curve, and Φ(z) = Φ±(z) analytic in
the interior and exterior of L, respectively. Then, the solution of the following scalar
Riemann-Hilbert problem

Φ+(t) − Φ−(t) = g(t), t ∈ L , (22a)

Φ(z) = O

(
1

z

)
, z → ∞, z /∈ L , (22b)

is given by

Φ(z) = 1

2πi

∫
L

g(τ )

τ − z
dτ . (23)

Proof Equation (22a), along with Liouville’s theorem [19], implies that the unique
solution of the scalar Riemann-Hilbert problem represented by Eq. (22) is given by
Eq. (23). �



Fokas on Medical Imaging: Analytic Reconstructions … 177

3.3 The Inversion of the Radon Transform in Two
Dimensions Without the Fourier Transform: The Fokas
Approach

In 1991, Novikov and Fokas rederived the well known inversion of the Radon trans-
form [14] by performing spectral analysis of the eigenvalue equation (1). As already
noted, the Radon transform inversion can be obtained via Fourier in a more straight-
forward manner. However, the advantage of the derivation of [14] was manifested by
Novikov in 2002 [15]. Novikov established that the inverse attenuated Radon trans-
form can be derived by applying spectral analysis to a generalization of equation (1),
namely equation (2). The spectral analysis of the eigenvalue equation (1) consists of
two steps:

1. Direct problem (d̄-problem): Solve equation (1) in terms of the function f for
all complex eigenvalues k. The solution must be bounded for all k ∈ C.

2. Inverse problem (Riemann-Hilbert): Derive an equivalent representation of u
which, instead of f , depends on f̂ , i.e., the Radon transform of f .

Definition 4 The Hilbert transform of a function u(t), is defined as:

H {u(t)} = 1

π

(
PV

∫ ∞

−∞
u(ξ)

ξ − t
dξ

)
. (24)

Proposition 1 The inverse of the Radon transform f̂ (ρ, θ) defined in Eq. (10), of a
function f (x1, x2) ∈ S(R2), is given by

f (x1, x2) = − 1

4π

∫ 2π

0

[
∂(H f̂ )(ρ, θ)

∂ρ

]
ρ=x2 cos θ−x1 sin θ

dθ, (25)

with −∞ < x1, x2 < ∞, and H defined in Eq. (24).

Proof The spectral analysis of the eigenvalue equation (1) will unveil the inverse
Radon transform, as follows.

3.3.1 d̄-Problem (Direct)

For the direct problem, we solve equation (1) for all k ∈ C. To this end, the following
change of variables from (x1, x2) to (z, z̄) is necessary:

z = 1

2i

(
k − 1

k

)
x1 − 1

2

(
k + 1

k

)
x2, (26a)

z̄ = − 1

2i

(
k̄ − 1

k̄

)
x1 − 1

2

(
k̄ + 1

k̄

)
x2. (26b)
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Employing the chain rule yields

∂x1 = 1

2i

(
k − 1

k

)
∂z − 1

2i

(
k̄ − 1

k̄

)
∂z̄, (27a)

∂x2 = −1

2

(
k + 1

k

)
∂z − 1

2

(
k̄ + 1

k̄

)
∂z̄ . (27b)

Therefore, if we introduce the function ν,

ν(|k|) = 1

2i

(
1

|k|2 − |k|2
)

, (28)

then, we may rewrite Eq. (1) in the following form:

ν(|k|)∂u(x1, x2, k)

∂ z̄
= f (x1, x2), k ∈ C, |k| �= 1, (29)

Equation (29) may be simplified:

uz̄ = f

ν
, |k| �= 1. (30)

It is important to emphasize that if u was analytic, then uz̄ = 0. Furthermore, we
supplement Eq. (29) with a boundary condition at infinity, namely,

u = O

(
1

z

)
, z → ∞, i.e. ∃ α > 0 such that |u| � α

|z| . (31)

It follows from Lemma 1 that the solution of equation (29) with the boundary
condition (31) is represented by

u = 1

2πi

∫∫
R2

f (x ′
1, x

′
2)

ν(|k|)
dz′ ∧ dz̄′

z′ − z
, k ∈ C, |k| �= 1. (32)

Inserting

dz′ ∧ dz̄′ = 1

2i

∣∣∣∣ 1

|k|2 − |k|2
∣∣∣∣ dx ′

1dx
′
2,

in Eq. (32) produces another representation for u, namely,

u(x1, x2, k) = 1

2πi
sgn

(
1

|k|2 − |k|2
)∫∫

R2
f (x ′

1, x
′
2)
dx ′

1dx
′
2

z′ − z
. (33)
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Equation (33) demonstrates that u depends on k only through the term

z − z′ = 1

2i

(
k − 1

k

)
(x1 − x ′

1) − 1

2

(
k + 1

k

)
(x2 − x ′

2). (34)

Therefore, u(x1, x2) is a sectionally analytic function with a jump across the unit
circle of the complex plane. In other words, Eq. (33) is perceived as the solution of
the direct problem in terms of the function f , for all k ∈ C.

3.3.2 Riemann-Hilbert Problem (Inverse)

For the inverse problem, we solve Eq. (1) in terms of f̂ . Equation (33) implies

u = O

(
1

k

)
, k → ∞, (35)

hence, the solution u of equation (1) is bounded for all k ∈ C. We examine the
behavior of u as k approaches the unit circle, by letting

k± = (1 ∓ ε)eiθ, 0 � θ < 2π, ε > 0. (36)

Therefore,

k+ ∓ 1

k+ = (1 − ε)eiθ ∓ (1 + ε)e−iθ + O(ε2), (37a)

k− ∓ 1

k− = (1 + ε)eiθ ∓ (1 − ε)e−iθ + O(ε2). (37b)

Taking into account equation (26a) yields

z − z′ = ρ − ρ′ ± iε(τ − τ ′) + O(ε2). (38)

If we denote the limits of the function u as k approaches the unit circle from inside
and outside, respectively, as u±, then

u± ≡ lim
ε→0

u(x1, x2, (1 ∓ ε)eiθ). (39)

In Eq. (33), we replace z − z′ by the representation (38), i.e.,

u± = ∓ 1

2πi
lim
ε→0

∫∫
R2

ϕ(ρ′, τ ′, θ)dρ′dτ ′

ρ′ − [ρ ± iε(τ ′ − τ )] , (40)



180 N. E. Protonotarios et al.

where ϕ is the function f expressed in the local coordinates defined as:

ϕ(ρ, τ , θ) = f (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ) . (41)

In order to further elucidate the limit (40), we aim to control the sign of τ ′ − τ by
splitting the integral

∫
dτ ′ in the following manner:

u± = ∓ 1

2πi
lim
ε→0

∫ ∞

−∞

{∫ τ

−∞
ϕdτ ′

ρ′ − [ρ ± iε(τ ′ − τ )]
+

∫ ∞

τ

ϕdτ ′

ρ′ − [ρ ± iε(τ ′ − τ )]
}
dρ′. (42)

In Eq. (42), (τ ′ − τ ) is negative in the first integral, and positive in the second integral,
therefore

u± = ∓ 1

2πi

∫ τ

−∞

{∓πiϕ(ρ, τ ′, θ) + (Hϕ)(ρ, τ ′, θ)
}
dτ ′

∓ 1

2πi

∫ ∞

τ

{±πiϕ(ρ, τ ′, θ) + (Hϕ)(ρ, τ ′, θ)
}
dτ ′. (43)

In Eq. (43), we have utilized the Plemelj formulæ, see Lemma 2, and the Hilbert
transform, see Definition 4. We add and subtract ∓ 1

2πi

∫ ∞
τ πiϕ(ρ, τ ′, θ)dτ ′ on the

right-hand side of equation (43), to obtain

u± = ∓(P∓ f̂ )(ρ, θ) −
∫ ∞

τ

ϕ(ρ, τ ′, θ)dτ ′, (44)

where P± denotes the set of projectors in ρ

(P∓g)(ρ) = ±g(ρ)

2
+ 1

2πi
PV

∫ ∞

−∞
g(r)

r − ρ
dr = ±g(ρ)

2
+ 1

2i
(Hg)(ρ). (45)

Equation (44) via Eq. (45) implies

u+ − u− = i(H f̂ )(ρ, θ). (46)

Equation (46), alongwith theboundary condition (35), forma scalarRiemann-Hilbert
problem. Employing Lemma 3 yields the solution, namely,

u = 1

2πi

∫
|k ′|=1

(u+ − u−)(ρ, θ′)dk ′

k ′ − k
. (47)
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Equation |k ′| = 1 may be written as k ′ = eiθ
′
, which implies dk ′ = ieiθ

′
dθ′, i.e.,

u = 1

2πi

∫ 2π

0

(u+ − u−)(ρ, θ′)ieiθ′
dθ′

eiθ′ − k
. (48)

In Eq. (48), we replace u+ − u− by Eq. (46) to obtain

u = − 1

2πi

∫ 2π

0

eiθ
′
(H f̂ )(ρ, θ′)dθ′

eiθ′ − k
, k ∈ C, |k| �= 1, ρ ∈ R. (49)

Via Eq. (49), the asymptotic analysis of the behavior of u for large k yields

u =
{

1

2πi

∫ 2π

0
eiθ

′
(H f̂ )(ρ, θ′)dθ′

}
1

k
+ O

(
1

k2

)
, k → ∞. (50)

In Eq. (1), if we substitute the above expression, we conclude that the O(1) term
involves f in the following manner:

f = 1

4πi

(
∂x1 − i∂x2

) ∫ 2π

0
eiθ(H f̂ )(ρ, θ)

∣∣∣∣
ρ=x2 cos θ−x1 sin θ

dθ. (51)

Since (∂x1 − i∂x2) = e−iθ(∂τ − i∂ρ), Eq. (25) follows from Eq. (51). �

4 Inversion of the Attenuated Radon Transform in Two
Dimensions

Wewill derive the inversion of the attenuatedRadon transformvia theFokas approach
[16], which is rather simpler than the one followed by Novikov in [15].

4.1 The Inversion of the Attenuated Radon Transform in Two
Dimensions Without the Fourier Transform: The Fokas
Approach

An immediate consequence of Proposition 1 is the following corollary.

Corollary 3 Let k± denote the limits of k, defined in Eq. (36), and let z and ν be
defined in Eqs. (26a) and (28), respectively. Then,
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lim
k→k±

(
∂−1
z̄

{
f (x1, x2)

ν(|k|)
})

= ∓ (
P∓ f̂

)
(ρ, θ) −

∫ ∞

τ

ϕ(ρ, s, θ)ds,

(ρ, τ ) ∈ R
2, θ ∈ (0, 2π), (52)

where f̂ denotes the Radon transform of f (defined in Eq. (10)), and P±, (ρ, τ ) and
ϕ are defined in Eqs. (45), (7) and (41), respectively.

Proof It is straightforward to observe that Eq. (30) implies

u(x1, x2, k) = ∂−1
z̄

{
f (x1, x2)

ν(|k|)
}

. (53)

By taking the limit of equation (53) as k approaches the unit circle from inside and
outside, respectively, we obtain

u±(x1, x2) = lim
k→k±

(
∂−1
z̄

{
f (x1, x2)

ν(|k|)
})

, (54)

where u± is defined in Eq. (39). Equation (52) follows from the insertion of equation
(44) in Eq. (54). �

Proposition 2 The inverse of the attenuated Radon transform f̂μ(ρ, θ) defined in
Eq. (11), of a function f (x1, x2), attenuated with respect to the function μ(x1, x2)
(with f,μ ∈ S(R2)), is given by

f (x1, x2) = 1

4π
(∂x1 − i∂x2)

∫ 2π

0
eiθ J (x1, x2, θ)dθ, −∞ < x1, x2 < ∞, (55a)

with J being defined by

J (x1, x2, θ) = eM(τ ,ρ,θ)Lμ(ρ, θ) f̂μ(ρ, θ)

∣∣∣∣
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

, (55b)

where M and Lμ are given by

M(τ , ρ, θ) =
∫ ∞

τ

μ (s cos θ − ρ sin θ, s sin θ + ρ cos θ) ds, (55c)

Lμ(ρ, θ) = eP
−μ̂(ρ,θ)P−eP

−μ̂(ρ,θ) + e−P+μ̂(ρ,θ)P+eP
+μ̂(ρ,θ), (55d)
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with μ̂ denoting the Radon transform of μ, namely

μ̂(ρ, θ) =
∫ ∞

−∞
μ (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ)dτ , 0 � θ < 2π, ρ ∈ R,

(55e)
and the projection operators P± are defined in Eq. (45).

Proof We rewrite Eq. (2) as follows:

uz̄ + μ

ν
u = f

ν
. (56)

Furthermore, we multiply both sides by e∂−1
z̄ { μ

ν } to obtain

uz̄e
∂−1
z̄ { μ

ν } + μ

ν
ue∂−1

z̄ { μ
ν } = f

ν
e∂−1

z̄ { μ
ν }. (57)

Hence,
∂

∂ z̄

(
ue∂−1

z̄ { μ
ν }

)
= f

ν
e∂−1

z̄ { μ
ν }, (58)

and

e∂−1
z̄ { μ

ν }u = ∂−1
z̄

{
f

ν
e∂−1

z̄ { μ
ν }

}
, (x1, x2) ∈ R

2, k ∈ C. (59)

Equation (59) is an expression of the solution to the direct problem,which defines a
sectionally analytic function uwith a jump across the unit circle. Further investigation
of the jump involves the limits of ∂−1

z̄ ( f/ν) as k → k±, which, in turn, involves
Corollary 3. As k → k±, we employ Eq. (52) into Eq. (59) to obtain

e(∓P∓μ̂−∫ ∞
τ Φ(ρ,s,θ)ds)u± = lim

k→k±
∂−1
z̄

{
f

ν
e(∓P∓μ̂−∫ ∞

τ Φ(ρ,s,θ)ds)
}

, (60)

where μ̂ is defined in Eq. (55e), and Φ denotes the function μ expressed in the
local coordinates, i.e., Φ(ρ, τ , θ) = μ (τ cos θ − ρ sin θ, τ sin θ + ρ cos θ). Employ-
ing Corollary 3 on the right-hand side of equation (60) yields

∓ P∓e∓P∓μ̂ f̂μ −
∫ ∞

τ

ϕ(ρ, τ ′, θ)e∓P∓μ̂e− ∫ ∞
τ Φ(ρ,s,θ)dsdτ ′, (61)

where, in Eq. (52), instead of f , we used
(
e∓P∓μ̂e− ∫ ∞

τ Φ(ρ,s,θ)ds
)
f .

In Eq. (61), the term e∓P∓μ̂ is independent of τ ′, i.e., the jump is given by

u+ − u− = −J, (62)
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where J is given by Eq. (55b). Hence, it follows from Eq. (48) that

u = − 1

2π

∫ 2π

0

J (ρ, τ , θ′)eiθ′
dθ′

eiθ′ − k
, (63)

which implies

u =
[
1

2π

∫ 2π

0
eiθ J (ρ, τ , θ)dθ

]
1

k
+ O

(
1

k2

)
, for k → ∞. (64)

Finally, we insert Eq. (64) in Eq. (2); the O(1) term of the resulting equation yields
(55a). �

4.2 A Novel Method for the Inversion of the Attenuated
Radon Transform in Two Dimensions

In what follows, it is convenient to define F as half the Hilbert transform of μ̂

F(ρ, θ) ≡ 1

2
H {μ̂(ρ, θ)} = 1

2π

(
PV

∫ ∞

−∞
μ̂(r, θ)

r − ρ
dr

)
. (65)

Proposition 3 The inversion formula for the attenuated Radon transform, defined
in Eq. (11), of a function f (x1, x2) attenuated with respect to a function μ(x1, x2) is
equivalent to the representation

f (x1, x2) = − 1

2π

∫ 2π

0
eM(τ ,ρ,θ)

[
Mρ(τ , ρ, θ)G(ρ, θ) + Gρ(ρ, θ)

] ∣∣∣∣
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

dθ,

(66)
where M is defined in Eq. (55c) and G is defined by

G(ρ, θ) = e− 1
2 μ̂(ρ,θ)

[
cos(F(ρ, θ))GC(ρ, θ) + sin(F(ρ, θ))GS(ρ, θ)

]
, (67)

with the functions GC and GS defined by

GC(ρ, θ) = 1

2π
PV

∫ ∞

−∞
e

1
2 μ̂(r,θ)cos F(r, θ)

f̂μ(r, θ)dr

r − ρ
, (68a)

GS(ρ, θ) = 1

2π
PV

∫ ∞

−∞
e

1
2 μ̂(r,θ)sin F(r, θ)

f̂μ(r, θ)dr

r − ρ
. (68b)
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Proof We apply the operator Lμ on the attenuated Radon transform f̂μ, i.e.,

(
Lμ f̂μ

)
(ρ, θ) =

{
eP

−μ̂(ρ,θ)P−eP
−μ̂(ρ,θ) + e−P+μ̂(ρ,θ)P+eP

+μ̂(ρ,θ)
}
f̂μ(ρ, θ). (69)

Equations (45) and (65) imply

eP
±μ̂ = e± μ̂

2 −iF . (70)

Hence,

eP
−μ̂P−

{
e−P−μ̂ f̂μ

}
= e− μ̂

2 −iF

[
−1

2
e

μ̂
2 +iF f̂μ + 1

2i
H

{
e

μ̂
2 +iF f̂μ

}]
, (71a)

e−P+μ̂P+
{
eP

+μ̂ f̂μ
}

= e− μ̂
2 +iF

[
1

2
e

μ̂
2 −iF f̂μ + 1

2i
H

{
e

μ̂
2 −iF f̂μ

}]
. (71b)

We simplify Eq. (69), taking into account equations (65), (70), and (71), namely,

(
Lμ f̂μ

)
(ρ, θ) = 1

2i
e− μ̂

2

[
e−iFH

{
e

μ̂
2 +iF f̂μ

}
+ eiFH

{
e

μ̂
2 iF f̂μ

}]
. (72)

Using Euler’s formula, i.e., eiF = cos F + i sin F , and further expanding yields

(
Lμ f̂μ

)
(ρ, θ) = −2iG(ρ, θ). (73)

It is important to note that Eq. (73) implies that the function
(
Lμ f̂μ

)
(ρ, θ) is purely

imaginary, i.e., Re
{(
Lμ f̂μ

)
(ρ, θ)

} = 0. Thus,

J (x1, x2, θ) = −2i
[
eM(τ ,ρ,θ)G(ρ, θ)

]
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

. (74)

Calculating the action of the differential operator (∂x1 − i∂x2) = e−iθ(∂τ − i∂ρ) on
J yields

(∂x1 − i∂x2)J = −2e−iθeM
[−iμG + MρG + Gρ

]
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

, (75)

considering that Mτ (τ , ρ, θ)
∣∣∣

τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

= μ(x1, x2) and Gτ (ρ, θ) = 0 [13, 20].

Inserting the above in the right-hand side of equation (55a) and combining Eqs.
(74) and (75), yields

f (x1, x2) = − 1

2π

∫ 2π

0
eM

[−iμG + MρG + Gρ

] ∣∣∣∣
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

dθ. (76)
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The first term of the integral on (76) vanishes; hence, Eq. (66) is obtained. Indeed,
the first term of the integral on (76) can be simplified as follows:

−i
∫ 2π

0
μ(x1, x2)

[
eM(τ ,ρ,θ)G(ρ, θ)

]
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

dθ

= 1

2
μ(x1, x2)

∫ 2π

0
J (x1, x2, θ)dθ. (77)

Furthermore, Eq. (2.9) of [16] evaluated at λ = 0 yields

u(x1, x2, 0) = 1

2π

∫ 2π

0
J (x1, x2, θ)dθ.

Taking the limit λ → 0 in Eq. (2.2) of [16] implies uz̄(x1, x2, 0) = 0. Therefore,
u is analytic everywhere, including infinity. Proposition 2.1 of [16] imposes the
boundary condition u = O

(
z−1

)
, as z → ∞. From Liouville’s theorem, it follows

that the entire function u must be zero, hence

∫ 2π

0
J (x1, x2, θ)dθ = 0. (78)

Equation (77) implies that

∫ 2π

0
μ(x1, x2)

[
eM(τ ,ρ,θ)G(ρ, θ)

]
τ=x2 sin θ+x1 cos θ
ρ=x2 cos θ−x1 sin θ

dθ = 0,

which, in turn, implies that (76) simplifies to (66). Hence, Eq. (55a) is equivalent to
Eq. (66). �
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Inverse EEG Problem, Minimization
and Numerical Solutions

Georgia Parakevopoulou, Athanassios S. Fokas, Antonios Charalambopoulos,
and Stavros Perantonis

Abstract Mental processes are associated with brain activation, which in turn gives
rise to neuronal electric currents, generating electric fields. Electroencephalography
(EEG) is based on the measurements of the electric potential on the scalp and has
a variety of neurophysiological and clinical applications. In recent years, there have
been efforts to use EEG for determining the underlying neuronal electric current.
This gives rise to a mathematical inverse problem for which one of the authors made
pioneering contributions. In particular, he established that, although the EEG inverse
problem suffers from lack of uniqueness, the assumption that the primary current
minimizes the L2-norm yields a unique solution. Here, we present the completion of
the analytical formulation presented earlier by analyzing a specific boundary term
that was neglected until now. Furthermore, a first attempt is made towards a more
efficient use of a neural network approach for the numerical solution of this problem.
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1 Neurophysiology of EEG

The fundamental cells of our nervous system are the neurons. Each neuron has a
soma, an axon, and a large number of dendrites. Neurons communicate to each other
through action potentials which are generated via the ionic currents flowing across
the sodium and potassium channels of the neuronal membrane. When an action
potential reaches the presynaptic terminal it triggers the release into the synaptic
cleft of an appropriate neurotransmitter (the synaptic cleft is a tiny gap between the
presynaptic axon terminal and the postsynaptic dendrite). After travelling across the
synaptic cleft, the neurotransmitter attaches to the postsynaptic receptors. This gives
rise to postsynaptic potentials which drive the postsynaptic cell away of its resting
state and alters the probability that an action potential will be produced [1]. A post
synaptic potential creates an extracellular voltage near the neural dendrites that is
more negative than elsewhere along the neuron or vice versa, depending on the kind
of neurotransmitter involved and the position of the synapse. In both cases a dipole is
created [2]. Therefore, a specific mental process is associated with brain activation of
a unique form which in turn expresses itself via the generation of a specific neuronal
electric current.

Michael Faraday was the first to establish that there is a relation between electric-
ity and magnetism. The precise mathematical form of this relationship is expressed
by Maxwell’s equations, which capture the following fact: an electric current gives
rise to both a magnetic field and an electric potential. This implies that the activation
of neurons generates a magnetic field and an electric potential. Electroencephalog-
raphy (EEG), is based on the measurements of the electric potential on the scalp,
which is generated by the primary current density distribution which arises from
neuronal post-synaptic processes. Each electrode detects the sum of charges from a
large number of neurons in their vicinity [2]. Since electrodes measure the sum of
both the positive and negative charges beneath them, only neurons that are activated
synchronously and are arranged in a parallel form produce a measurable signal [3].
There is much literature indicating that EEG measurements depend not only on the
location of electrodes, but also on the specific mental function performed by the
subject during the recordings [4].

2 The Importance of EEG

EEG has a variety of neurophysiological and medical applications. It is a mini-
mally invasive technique, that provides almost real time information about mental
processes. EEG’s temporal resolution is better than 1 millisecond, which is several
orders of magnitude better than the imaging techniques of fMRI, PET and SPECT.
In most clinical applications EEG uses 19 electrodes, but for research purposes there
exists a high-density EEG cap with 256 sensors.
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In normal subjects there exist several characteristic rhythms, distinguished by their
frequencies, depending on the state of the patient (e.g. alert wakefulness, drowsiness,
sleep). It has also been shown that electroencephalograms obtained during different
types of clinical conditions exhibit characteristic patterns [3]. For the above reasons,
EEG is widely used for diagnosing and predicting many abnormal neurological
conditions, such as epilepsy, sleep disorders and autism. In addition, neuroscientists
use EEG to elucidate various mental processes [5] including the neuronal processes
characterising various emotional states and the processes of decision making.

It is important to note that EEG is increasingly explored in the field of Brain-
Computer Interfaces (BCI) in order to enable people with disabilities (including
those who are not able to communicate with others) to control and direct mechanical
and electronic devices, see for example [6]. EEG devices have also been used for
educational purposes [7] or measuring the reading ability or confusion levels of
students during several tasks [5]. As EEG devices are becoming inexpensive and
more accessible, it is expected that the impact of EEG in research and medical fields
will increase further. In addition to price, another important factor is the precision
of the information that can be obtained via EEG. This work aims to enhance this
important direction.

In recent years, there have been efforts to use EEG for the ambitious purpose
of estimating the underlying neuronal electric current. This gives rise to the fol-
lowing inverse mathematical problem: assuming that the electric potential is known
everywhere on the scalp, determine the electric current that gave rise to this poten-
tial. The problem of computing the electric potential for a given head model and a
given configuration of dipole sources is known as the forward problem. The solu-
tion of this problem is a prerequisite for solving the inverse problem. There has
been extensive research investigating the forward problem. In particular, the use of
a boundary element solver (BEM), OpenMEEG [8] is well established. It solves the
forward problem for an arbitrary piecewise homogeneous conductor and a set of
dipole sources by analyzing the related boundary integral equations. Regarding the
solution of the inverse problem one should mention the low-resolution brain electro-
magnetic tomography technique (sLORETA) [9], which uses a discrete formulation.
Other discrete formulation approaches are presented in [10].

Fokas and collaborators have investigated extensively the forward and the inverse
EEG problem [4]. In contrast to the above discrete approaches, they have modelled
the neuronal electric current as a continuous vectorial function. Furthermore, they
have decomposed the primary neuronal current into its irrotational and solenoidal
components. This approach, apparently, provides a more accurate representation of
the underlying physics. Importantly, Fokas [11] established that although the inverse
problem suffers from lack of uniqueness, the assumption that the primary current
minimizes the L2 -norm, yields a unique solution. Furthermore, under the assumption
that the underlying primary neuronal current vanishes on the cortical surface Sc; a
hybrid analytical-numerical solution for the inverse EEG problem is implemented
in [12]. This assumption leads to the absence of a specific boundary term in the
associative mathematical formulation.
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Although the above assumption simplifies the mathematical formulation it cannot
be justified for physical considerations. Thus, here we consider this model without
this assumption. Furthermore, we present a modification of the neural network used
for the regression of the electric potential on the scalp. We note that this step plays
an essential role for the solution of the earlier model as well as for the analysis of the
more complete model presented here. It is expected that the new modification will
be important for the complete numerical solution which will be presented elsewhere.

3 Head Model

The first step for solving both the direct and the inverse problems is to model the head
as an appropriate conductor. A standard model consists of the nested compartments
that can be seen in Fig. 1. The bounded domain Ωc represents the cerebrum. The
shells Ω f , Ωb and Ωs model the spaces occupied by the cerebrospinal fluid (CSF),
the skull and the scalp, respectively. These compartments are distinguished by their
different values of conductivity, which are denoted by σc, σ f , σb and σs . The spaces
Ωc, Ω f , Ωb and Ωs are bounded by the surfaces Sc, (Sc, S f ), (S f , Sb) and (Sb, Ss),
respectively. The domain exterior to the head is denoted by Ωe and it is assumed
that it is not conductive. Table1 presents the conductivity values of the head model
as documented in [12–14]. For numerical purposes, the domain Ω f can be ignored,
since the brain-CSF interface has a negligible effect in the forward model (see the
detailed analysis of [15]).

Fig. 1 The different
compartments of the head
model

Table 1 The conductivity
values for the different
compartments of the head
model

Domain Ω Conductivities σ (S/m )

Cerebrum Ωc 0.33

CSF Ω f 1.0

Skull Ωb 0.0042

Scalp Ωs 0.33
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4 Basic Equations for the EEG Formulation

Let Jp(τ ) denote the primary neuronal current, where τ ∈ Ωc. Under the assump-
tion that J p has sufficient smoothness, we can employ Helmholtz decomposition to
express it in terms of its irrotational and solenoidal components:

Jp(τ ) = �τ Ψ (τ ) + �τ × A(τ ), τ ∈ Ωc, (1)

where A(τ ) satisfies the constraint �τ · A(τ ) = 0. The function Ψ (τ ) is a scalar
and characterises the irrotational part, whereas A(τ ) is a vector and characterises
the solenoidal part of the current. Due to the constraint of its vanishing divergence,
A(τ ) consists of two independent scalar functions.

The basic equation expressing the relation between the primary current Jp(τ ) and
the electric potential on the scalp, us was derived in [11] and corrected in [4]:

us(r) = 1

4π

∫
Ωc

Jp(τ ) · �τ vs(r, τ )dV (τ ), r ∈ Ss, (2)

where vs(r, τ ) is an auxiliary function that depends on the brain-head system com-
partments and their conductivities, but it does not depend on Jp(τ ).

The divergence integral theorem implies that

∫
Ωc

�τ · (vs(r, τ )Jp(τ ))dV (τ ) =
∫
Sc

vs(r, τ )n̂(τ ) · Jp(τ )dS(τ ). (3)

Hence, we obtain

us(r) = − 1
4π

∫
Ωc

vs(r, τ )(�τ · Jp(τ ))dV (τ )

+ 1

4π

∫
Sc

vs(r, τ )(n̂(τ ) · Jp(τ ))dS(τ ), r ∈ Ss . (4)

Next, decomposing the current J p via the Helmholtz representation, we find

�τ ·Jp(τ ) = �τ Ψ (τ ). (5)

Thus, (4) becomes

us(r) = − 1
4π

∫
Ωc

vs(r, τ )(�τ Ψ (τ ))dV (τ )

+ 1

4π

∫
Sc

vs(r, τ )(n̂(τ ) · Jp(τ ))dS(τ ), r ∈ Ss . (6)

The volume integral of the right hand side of (6) can further be expressed as a surface
integral Sc, using Green’s second identity and the fact that the auxiliary function
vs(r, τ ) is harmonic [4]:
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∫
Ωc

vs(r, τ )(�τ Ψ (τ ))dV (τ )

=
∫
Sc

n̂(τ ) · [vs(r, τ ) �τ Ψ (τ ) − Ψ (τ ) �τ vs(r, τ )]dS(τ ). (7)

Consequently,

us(r) = 1

4π

∫
Sc
n̂(τ ) · [Ψ (τ ) �τ vs(r, τ ) − vs(r, τ ) �τ Ψ (τ ) + vs(r, τ )Jp(τ )]dS(τ ), r ∈ Ss .

(8)
In view of the decomposition (1), Eq. (8) can be written as

us(r) = 1

4π

∫
Sc

n̂(τ ) · [Ψ (τ ) �τ vs(r, τ ) + vs(r, τ ) �τ ×A(τ )]dS(τ ), r ∈ Ss .

(9)
This shows that the potential us depends on both the scalar function Ψ and the
tangential components of the vector function A.

Following [4], in order to decouple the EEG problems we assume that A satisfies
the condition

n̂(τ ) · �τ × A(τ ) = 0, τ ∈ Sc. (10)

This implies that only the scalar function Ψ affects the EEG data:

us(r) = 1

4π

∫
Sc

n̂(τ ) · [Ψ (τ ) �τ vs(r, τ )]dS(τ ), r ∈ Ss . (11)

This equation can be rewritten:

us(r) = 1

4π

∫
Ωc

[�τ Ψ (τ ) · �τ vs(r, τ )]dV (τ ), r ∈ Ss . (12)

At this point it should be mentioned that the main difficulty for determining brain
activity using EEG is the highly ill-posed nature of the associated spatial inverse
problems: different electric currents can yield identical measurements for the electric
potential. This follows from Eqs. (11) and (12).

Interestingly, using the natural principle of minimal energy, we impose that the
current minimizes the L2-and this leads to a unique current. In this connection, we
define the functional E (energy) by

E =
∫

Ωc

|Jp|2dV (τ ). (13)

Using again the Helmholtz decomposition (1), E can be written in the form

E =
∫

Ωc

[| �τ Ψ |2 + | �τ ×A|2 + 2 �τ Ψ · (�τ × A)]dV (τ ). (14)
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However, it is shown in Proposition 9.1 and Lemma 1 of [16] that

∫
Ωc

�τΨ · (�τ × A)dV = 0. (15)

Thus

E =
∫

Ωc

(| �τ Ψ |2 + | �τ ×A|2)dV (τ ). (16)

Moreover, considering that the electric potential on the scalp depends only onΨ (see
Eqs. (11), (12)), it follows that the minimization of E is equivalent to minimizing

E =
∫

Ωc

| �τ Ψ |2dV (τ ). (17)

In summary, the unique solution of the inverse problem of EEG is based on the
solution of the following minimization problem:

minimize
∫

Ωc

| �τ Ψ |2dV (τ ), (18)

under the constraint that

us(r) = 1
4π

∫
Sc
n̂(τ ) · [Ψ (τ ) �τ vs(r, τ )]dS(τ ), r ∈ Ss .

5 Configuration of the Numerical Solution

For the numerical implementation of the constrained minimization problem (18),
the first step is to consider an electrode cap with M electrodes and to discritize the
cerebrum region Ωc using N cubic voxels. For this purpose, triangulated surface
meshes for the cerebrum, skull and head are needed. A visualization of the above
steps is available in Fig. 2.

The next step is to compute the values of the auxiliary function vs following [12]:

vs(r, τ ) − vs(r, 0) = 4π
∫ τ

0
us(r, t τ̂ , τ̂ )dt, (19)

where τ̂ is the unit normal vector of τ . The centroid c is estimated from the triangu-
lated cerebrum surface mesh, by fitting a sphere to its nodes; then vs(r, 0) ≈ 0.

In order to compute the line integral of (19), a datasetus(r, τ , r̂ · τ̂ ) is generated via
OPENMEEG. Furthermore, a surrogate model is used, which is a machine learning
model for regression of the function us . A two layers neural network was trained for
the regression of us function, depending on the inputs (r, τ , r̂ · τ̂ ). The variable r is the
radial distance from the center of the coordinate system to the sensor position, τ is the
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Fig. 2 aVisualization of the realistic headmodel, taken from the sample dataset in the OpenMEEG
package. Electrodes are represented bywhite spheres.bExample of triangulated surface of cerebrum
with 2562 nodes and 5120 triangles. c Example of voxelized cerebrum mesh with 3.293 voxels,
marked with red crosses

Table 2 Experimental results of the surrogate model. The proposed NN provides a better approx-
imation of us function than the one obtained in [12]. It is expected that this modification will be
important for the full numerical solution which will be presented in a future publication

Metric Hashemzadeh et al. (2020) Proposed NN

RDM 0.2102 0.1781

ln(MAG) −0.0208 −0.0159

RMSE 3.3396 2.8955

radial distance from the center of the coordinate system to the source position vector,
and (r, τ , r̂ · τ̂ ) is the cosine of the angle between the source and observation unit
vectors. The relativemeandistance (RDM)andnatural logarithmof themagnification
factor (ln(MAG)) were employed as metrics to evaluate the surrogate model. Root
mean square error (RMSE) was also computed (see Table2). The function Ψ was
expanded using radial basis functions (RBFs). Using synthetic data and minimizing
the energy, the function Ψ was reconstructed, achieving (RMSE) = 0.1122.

It is noted that a hybrid numerical-analytical solution of the inverse EEG problem
was published [12], using the extra assumption that the primary current vanishes
on the cortical surface. The minimization problem (18), presented in this work,
represents the solution of the inverse EEG problem without the assumption that Jp

vanishes on the cortical surface. Following the aforementioned steps, this version
of EEG problem can be solved. The surrogate model’s step is exactly the same in
both approaches. In this connection, we are using the neural network (NN) of Fig. 3,
which uses ReLU (rectified linear unit) [17] as an activation function and the Adam
optimizer [18]. It is trained for a maximum of 4000 epochs with a batch size of
400, using early stopping to avoid overfitting. The sample dataset in the OpenMEEG
package was adopted for comparison reasons. Standardization of inputs was also
applied before the training process. Results of the proposed NN after 5-fold cross-
validation can be seen in Table2 in comparison with the previous work’s results
published in [12].
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Fig. 3 Visualization of proposed neural network

6 Future Work

As stated earlier, our aim is to solve the inverse EEG problemwithout the assumption
that Jp vanishes on cortical surface, expecting a more accurate reconstruction of the
only functionΨ that affects theEEGdata, in terms of rootmean square error (RMSE).
Our algorithmwill be tested using real data of human EEG recordings. In a following
publication an algorithm will be presented that can easily be applied for different
datasets and headmodels.

References

1. Holmes, G.L., Khazipov, R.: Basic neurophysiology and the cortical basis of EEG. Clin. Neu-
rophysiol. Primer 19–33. (2007). https://doi.org/10.1007/978-1-59745-271-7_2

2. Jackson, A.F., Bolger, D.J.: The neurophysiological bases of EEG and EEG measurement: a
review for the rest of us. Psychophysiology 51(11), 1061–71 (2014). https://doi.org/10.1111/
psyp.12283

3. Britton, J.W., Frey, L.C., Hopp, J.L. et al.: Electroencephalography (EEG): an introductory text
and atlas of normal and abnormal findings in adults, children, and infants. In.: St. Louis, E.K.,
Frey, L.C. (eds.) American Epilepsy Society (2016)

4. Dassios, G., Fokas, A.S.: Electro-Encephalography and Magneto-Encephalography: An
Analytical-Numerical Approach. De Gruyter, Boston (2020)

5. Soufineyestani, M., Dowling, D., Khan, A.: Electroencephalography (EEG) technology
applications and available devices. Appl. Sci. 10(21), 1–23 (2020). https://doi.org/10.3390/
app10217453

6. Carrino, F., Dumoulin, J., Mugellini, E., Khaled, O.A., Ingold, R.: A self-paced BCI system
to control an electric wheelchair: evaluation of a commercial, low-cost EEG device. In: 2012
ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer
Living (BRC) (2012). https://doi.org/10.1109/brc.2012.6222185

7. Frey, J., Gervais, R., Lainé, T., Duluc, M., Germain, H., Fleck, S., Lotte, F., Hachet, M.:
Scientific outreach with Teegi, a tangible EEG interface to talk about neurotechnologies. In:

https://doi.org/10.1007/978-1-59745-271-7_2
https://doi.org/10.1111/psyp.12283
https://doi.org/10.1111/psyp.12283
https://doi.org/10.3390/app10217453
https://doi.org/10.3390/app10217453
https://doi.org/10.1109/brc.2012.6222185


198 G. Parakevopoulou et al.

Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing
Systems - CHI EA ’17 (2017). https://doi.org/10.1145/3027063.3052971

8. Gramfort, A., Papadopoulo, T., Olivi, E., Clerc, M.: OpenMEEG opensource software for
quasistatic bioelectromagnetics. BioMed. Eng. OnLine 9(45) (2010)

9. Pascual-Marqui, R.D.: Standardized low-resolution brain electromagnetic tomography
(sLORETA): technical details., Methods Find Exp Clin Pharmacol (2002)

10. Darbas M., Lohrengel S.: Review on mathematical modelling of electroencephalography.
Jahresber. Dtsch. Math.-Ver. 121, 3–39 (2019)

11. Fokas, A.: Electro-magneto-encephalography for a three-shell model: distributed current in
arbitrary, spherical and ellipsoidal geometries. J. Roy. Soc. Interface 6(34), 479–488. (2009).
https://doi.org/10.1098/rsif.2008.0309

12. Hashemzadeh, P., Fokas, A.S., Schönlieb, C.B.: A hybrid analytical-numerical algorithm for
determining the neuronal current via electroencephalography. J. Roy. Soc. Interface 17(163)
(2020). https://doi.org/10.1098/rsif.2019.0831

13. Hashemzadeh, P., Fokas, A.S.: Helmholtz decomposition of the neuronal current for the ellip-
soidal head model. Inverse Prob. 35(2) (2019)

14. Mosher, J.C., Leahy, R.M., Lewis, P.S.: EEG andMEG: forward solutions for inverse methods.
IEEE Trans. Biomed. Eng. 46(3) (1999)

15. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., Papadopoulo, T.: A common
formalism for the integral formulations of the forward problem. IEEE Trans. Med. Imaging
24(1), 12–18 (2005)

16. Cantarella, J., DeTurck, D., Gluck, H.: Vector calculus and the topology of domains in 3-space.
Am. Math. Mon. 109(5), 409–442 (2002)

17. Agarap, A.: Deep Learning using Rectified Linear Units (ReLU) (2018)
18. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization (2014). CoRR,

abs/1412.6980

https://doi.org/10.1145/3027063.3052971
https://doi.org/10.1098/rsif.2008.0309
https://doi.org/10.1098/rsif.2019.0831


Traveling Waves in Flowing Sand:
The Dynamical Systems Approach

Ko van der Weele, Dimitrios Razis, and Giorgos Kanellopoulos

Abstract An overview is given of the various types of traveling surface waves
that may be encountered in a shallow sheet of dry granular matter flowing down a
chute. On the basis of the generalized Saint-Venant equations, and assuming that the
material flows continuously and nowhere stagnates, we derive a dynamical system
capturing all traveling waveforms that can possibly occur in the sheet. In particular,
this approach enables us to elucidate the transition from a monoclinal flood wave
to a periodic train of roll waves as the Froude number F0 of the incoming flow
is gradually increased through the critical value Fcr (which equals 2/3 for smooth
spherical particles). We show that this transition involves a series of intermediate
stages, including an “undular bore” and a “solitary roll wave” that had hitherto not
been reported for granular flows.

Keywords Granular chute flow · Traveling waves · Shallow water model ·
Dynamical systems approach

1 Introduction

Chute flow of dry granular matter is ubiquitous in agriculture, mining, and numerous
other human activities where particles are transported [1–3]. In nature, the chute
may be as large as a mountainside and the flow in question may take the form of a
devastating landslide or rock avalanche [4–6]. One can also generate such flows in
the laboratory (see Fig. 1); typically, the thickness of the granular sheet will be in the
order of 10 to 15 particle diameters, and on its surface one may witness the formation
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Fig. 1 Granular chute flow in the laboratory of the Manchester Centre for Nonlinear Dynamics.
Left: The “sluice gate” of the reservoir at the top is lifted (by the second author) to a certain small
height, upon which a thin sheet of granular particles flows downwards. The chute has an inclination
angle of ζ and has intentionally been roughened by glueing a layer of particles on it. Right: Oblique
view of the flow, showing three roll waves that have appeared spontaneously on the surface of the
flowing sheet

of waves of relatively long wavelength and small amplitude. In the present paper we
will treat the granular material as an incompressible fluid, assuming constant density
throughout the flowing sheet. For the flows under consideration this is a very accurate
approximation. In a more general context, however, this condition could be seriously
violated, e.g. when a rapid flow of particles meets an obstacle and the grains are
catapulted into ballistic flights [7] or when a fast and thin granular flow undergoes
a “hydraulic jump” [8]; on such occasions, considerable density variations will be
observed.

The fact that—for the flows considered here—the wavelength of the waves is
considerably larger than the thickness of the sheet, which in turn is markedly larger
than the wave amplitude, means that the situation is well suited for employing the
so-called shallow water approximation, in which the flow is described by just two
quantities: (a) the height of the sheet h(x, t) and (b) the depth-averaged velocity
ū(x, t). These quantities are governed by two equations known as the generalized
Saint-Venant equations for granular chute flow [9, 10]. This is a pair of coupled
nonlinear partial differential equations for h(x, t) and ū(x, t), namely, the mass
balance (or continuity equation):

∂h

∂t
+ ∂

∂x
(hū) = 0, (1)

and the momentum balance (or equation of motion):

∂

∂t
(hū) + ∂

∂x
(hū2) = gh sin ζ − ∂

∂x

(1
2
gh2 cos ζ

)

−μ(h, ū)gh cos ζ + ∂

∂x

(
νh3/2

∂ū

∂x

)
. (2)
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The mass balance expresses the fact that a net influx in any control volume within
the sheet results in an increase of the local height h(x, t), and vice versa. Themomen-
tum balance states that the rate of change of momentum of the granular matter in the
control volume is equal to the sum of the forces acting upon it. In order of appearance
these forces are (i) the gravity component in the x-direction (i.e., along the chute),
(ii) the gradient of the depth-averaged pressure, (iii) the friction exerted by the chute,
with μ(h, ū) a variable friction coefficient introduced by Pouliquen and Forterre
specifically for granular chute flow [11], and (iv) a diffusive term stemming from
the in-plane stresses in the sheet, introduced by Gray and Edwards on the basis of
μ(I )-rheology [9]. The analytical expressions for μ(h, ū) and ν(ζ), which embody
the various special properties of flowing granular materials as opposed to ordinary
Newtonian fluids, are quite complicated and the reader is referred to the original
literature for details [9–13].

During the past fewdecades, variouswaveforms have been found in granular chute
flow. The granular counterpart of the hydraulic jump was first investigated in 1983
by Brennen et al. [8], granular roll waves were studied by Forterre and Pouliquen in
2003 [14], granular surface waves with intermediate stopping regions were examined
by Edwards and Gray in 2015 [15], and the granular version of the monoclinal flood
wave was predicted in 2018 by Razis et al. [12]. These waveforms were discovered
separately, and described as individual case studies, until in 2019 a unified view
was presented by Razis et al. [13] making use of the so-called dynamical systems
approach. Apart from unifying the already discovered waveforms, this approach also
brought to light several types of waves that were thus far unknown in the granular
context. For reasons of brevity, we will restrict the discussion to traveling waves for
sheets consisting of monodisperse, smooth spherical particles. We further assume
that the sheet is “fully dynamic”, meaning that it is everywhere in motion and does
not exhibit any stopping regions.

In Sect. 2 we describe the granular monoclinal wave. In Sects. 3 and 4 we then
derive the dynamical system that captures all steady traveling waveforms that can
possibly occur within the framework of the generalized Saint-Venant equations (1)–
(2). Then, in Sect. 5, we present the succession of different traveling waveforms as
the system parameters are varied gradually. In particular, we show the transition
from a monoclinal wave to periodic roll waves as the Froude number F0 of the
incoming flow is raised through the critical value 2/3. According to our model
this transition involves several intermediate stages including an “undular bore” and
a “solitary roll wave”, which still await experimental verification. Finally, Sect. 6
contains concluding remarks.

2 Steady Uniform Flow and the Monoclinal Flood Wave

The basic solution to the above Eqs. (1)–(2) is the steady uniform flow, where the
granular sheet has a constant thickness h(x, t) = h0 and a corresponding constant
depth-averaged velocity ū(x, t) = ū0. For this solution, all derivatives vanish (both
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with respect to x and to t), and hence the mass balance Eq. (1) is trivially satisfied. As
for the momentum balance Eq. (2), this reduces to 0 = gh sin ζ − μ(h, ū)gh cos ζ,
i.e., a simple balance between the forces of gravity and friction. This balance can also
be written in the form μ(h, ū) = tan ζ, which yields—using the explicit expression
for μ(h, ū) [10]—the relation between the depth-averaged velocity and the thickness
under uniform flow conditions, ū0(h0) ∼ h3/20 .

The uniform flow turns out to be stable as long as the Froude number, which
measures the relative importance of the inertial forces versus the gravitational force
in the direction of the chute,

F(x, t) = ū(x, t)√
h(x, t)g cos ζ

, (3)

lies in the interval Fstop < F(x, t) < 2/3. Below Fstop the flow is prone to developing
stopping regions, which forms a fascinating subject [9] but will not be pursued here;
our interest lies with granular sheets that are fully dynamic. We should also mention
that, for the sake of simplicitywedisregard a possible offset of theFroude number [14,
16–18], meaning that the results presented here concern the flow of smooth glass
beads rather than the irregularly shaped particles of sand or fragmented mineral ores
such as carborundum.

For the same range Fstop < F(x, t) < 2/3 we may also, starting from a uniform
flow, generate a combination of two uniform flows of different thickness by opening
the inlet a bit further, as shown in Fig. 2. The result is a traveling shock wave con-
necting two uniform flows of thickness h0 and h+ < h0, respectively, known as the
“granular monoclinal wave” [12]. Its wave speed is given by

c = h0ū0 − h+ū+
h0 − h+

, (4)

in agreement with the Rankine-Hugoniot conditions across the shock.

Fig. 2 Starting from a uniform flow situation, one can generate a flood wave by opening the inlet
at the top of the chute a bit further. The resulting waveform is a traveling shock wave known as the
granular monoclinal wave, connecting two uniform flows of different heights. It propagates along
the chute with the shock speed c given by Eq. (4)
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In the flat regions of the monoclinal waveform, the only forces acting on the sheet
are gravity and friction, just as for the uniform flow. In the shock region, however,
all forces of Eq. (2) contribute. Gravity and friction are still the main players, yet
now also the pressure gradient, inertial forces (from the deceleration of the sheet
in the shock region) and the diffusive term come into effect. The latter is by far
the smallest but nonetheless quite essential, since without it, the shock wave could
become infinitely steep, and even break [12].

It is interesting to note that the monoclinal wave has a mechanical analogue in
the so-called antikink soliton propagating along an array of pendulums coupled via
torsion springs, modeled by the sine-Gordon equation [19]. Also this antikink is a
nonlinear wave connecting two plateau values (both corresponding to the downward
equilibrium position of the pendulums, but differing by 2π radians) in a smooth,
monotonically descending fashion.

3 One Equation to Rule All Traveling Waveforms

3.1 Focusing on Traveling Wave Solutions

In order to find possible further traveling waveforms, we introduce the traveling
wave variable ξ ≡ x − ct (where c stands for the wave speed) and limit our search
to solutions of the form h(x, t) = h(x − ct) = h(ξ), ū(x, t) = ū(x − ct) = ū(ξ).

So the two independent variables x and t have now been combined and form
a single variable. Accordingly, the mass conservation Eq. (1) takes the form of an
ordinary differential equation (ODE):

− ch′ + (hū)′ = 0, (5)

with the prime denoting differentiation with respect to ξ. This ODE is readily inte-
grated to give

− ch + hū = −Q, (6)

where the integration constant −Q = h(ū − c) is the constant flux of material per
unit width measured in the co-moving frame.

Now, with ū = c − Qh−1 (and hence ū′ = Qh−2h′, etc.) we can eliminate ū and
all its derivatives from the momentum balance Eq. (2), which then becomes

νh′′

Qh3/2
− ν

(
h′)2

2Qh5/2
+

(
1

h3
− g cos ζ

Q2

)
h′ + 1

Q2

(
g sin ζ − μ(h)g cos ζ

)
= 0. (7)
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This is a second-order ODE for h(ξ), which—within the model used here—governs
all traveling waveforms on the chute. Interestingly, in the absence of diffusion
(ν = 0), the ODE (7) would only be of first order, which would severely restrict
the possible variety of waveforms.

3.2 Non-dimensional Form

It is convenient and insightful to write Eq. (7) in non-dimensional form. This
can be done by expressing all length scales in terms of h0 (the height of the incoming
base flow), i.e., ξ → ξ̃ = ξ/h0 and h → h̃ = h/h0, which also means that the wave
speed is rescaled as c → c̃ = c/ū0, where ū0 is the velocity of the base flow. We
then get the following non-dimensional form of Eq. (7) [9, 13]:

1

R

(
h̃′′ − (̃h′)2

2h̃

)
− h̃3/2

F2
0 (̃c − 1)

((
F2
0 (̃c − 1)2

h̃3
− 1

)
h̃′ + tan ζ − μ(̃h)

)
= 0,

(8)
where the prime now stands for differentiation with respect to ξ̃, the R denotes the
“granular Reynolds number” [9], and F0 is the Froude number of the base flow. Using
the identity R = 9F2

0 /(2 tan ζ) [13], Eq. (8) can also be written as:

h̃′′ − (̃h′)2

2h̃
− 9h̃3/2

2 (̃c − 1) tan ζ

((
F2
0 (̃c − 1)2

h̃3
− 1

)
h̃′ + tan ζ − μ(̃h)

)
= 0. (9)

The above equation contains three dimensionless parameters: ζ (the inclination
angle of the chute), F0 (the Froude number of the uniform base flow), and c̃ (the
dimensionless wave speed). Instead of c̃ one may just as well use h̃+ (the height
of the downstream uniform part of the monoclinal waveform, see Fig. 2), since c̃
is a single-valued function of h̃+ as can be seen from the non-dimensional form of
Eq. (4): c̃ = c̃(̃h+) = (1 − h̃5/2+ )/(1 − h̃+). In what follows we will sometimes use
c̃ and sometimes h̃+, depending on the occasion.

Equation (9) is a nonlinear and highly nontrivial ODE, so we will not attempt to
solve it analytically but rather take the geometric approach of Dynamical Systems,
where the solutions present themselves as trajectories in phase space. This has in
fact been the main theme of our research programme of the past five years: to apply
the methodology of dynamical systems to fluid mechanical problems [13, 17, 18,
20–22]. Since the ODE (9) is of second order and autonomous, the corresponding
phase space will be two-dimensional.



Traveling Waves in Flowing Sand: The Dynamical Systems Approach 205

4 Dynamical Systems Approach

Just like any second-order autonomous ODE, Eq. (9) can be written as a system of
two coupled first-order ODEs:

h̃′ = s̃, (10a)

s̃ ′ = s̃2

2h̃
− 9h̃3/2

2(̃c − 1) tan ζ

((
F2
0 (̃c − 1)2

h̃3
− 1

)
s̃ + tan ζ − μ(̃h)

)
, (10b)

where we have chosen the symbol s̃ to represent the slope dh̃/d ξ̃ of the height profile
h̃(ξ̃). Equations (10a) and (10b) constitute an autonomous dynamical system in the
(̃h, s̃) phase plane.

The fixed points of this system are found by setting both h̃′ = 0 and s̃ ′ = 0. The
first one of these conditions means that s̃ = 0 (for any fixed point), so the fixed
points correspond to flat regions of the flow, where the slope is zero. Inserting s̃ = 0
into the second condition gives two fixed points: (̃h, s̃) = (1, 0) (corresponding to
the incoming base flow) and (̃h, s̃) = (̃h+, 0) (representing the downstream part of
the monoclinal waveform). A linear stability analysis reveals that the latter fixed
point is a saddle for all parameter values of interest. The point (1, 0), however,
can be anything (a node, a spiral, a center, a saddle, or a hybrid borderline case)
depending on the parameters ζ, F0 and h̃+. The full range of possibilities is depicted
in Fig. 3, which shows the (F0, h̃+) parameter diagram (at a fixed value ζ = 33.3◦)
in the neighbourhood of the multi-critical point (F0, h̃+) = (2/3, 1). In the next
section we will follow a typical path through this diagram, namely the vertical path
at h̃+ = 0.999, for increasing values of F0. This will illustrate how the monoclinal
wave is destabilized and, via a series of intermediate stages, eventually is replaced
by a periodic train of roll waves.

Fig. 3 The parameter
diagram F0 vs. h̃+ (at a fixed
value ζ = 33.3◦ of the
inclination angle), showing
the varying nature of the
fixed point (̃h, s̃) = (1, 0) of
the dynamical system
(10a)-(10b). In this picture,
the reader may recognize the
famous Poincaré diagram for
the classification of fixed
points in two dimensions
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5 From Monoclinal Waves to Roll Waves

5.1 Stage 1: The Monoclinal Wave

We start from the value F0 = 0.664, just below the critical value 2/3, and—as men-
tioned before—we will keep h̃+ = 0.999 and ζ = 33.3◦ fixed along the entire path.
At this first stage, the fixed point (1, 0) is an unstable node, while (̃h+, 0) is a saddle
point as always. The (̃h, s̃) phase plane around these two fixed points is shown in
Fig. 4. All trajectories in the phase plane correspond to solutions of the dynamical
system (10a)-(10b), but one trajectory is of special interest, namely the heteroclinic
orbit (solid red curve) connecting the fixed points (1, 0) and (̃h+, 0). The form of
this orbit tells us that the incoming base flow (with height h̃0 = 1) connects to the
downstream flow (with height h̃+) in such a way that the slope s̃ is always negative.
The waveform associated with this orbit is precisely the monoclinal wave which we
already encountered in the context of Fig. 2.

In normal fluids, the monoclinal flood wave is a well-known phenomenon, being
the generic waveform with which a discharge of water propagates along a chan-
nel [23]. In granular chute flow, however, it has yet to be observed in experiment.

Fig. 4 Stage 1: For the parameter values F0 = 0.664, h̃+ = 0.999 (indicated by a green disk in
the inset) and ζ = 33.3◦, the unstable node (1, 0) is seen to have a heteroclinic connection with the
saddle point (̃h+, 0). The waveform corresponding to this heteroclinic connection is the monoclinal
flood wave (cf. Fig. 2)
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5.2 Stage 2: The Undular Bore

When we increase the Froude number of the incoming base flow to F0 = 0.666,
extremely close to the critical value 2/3, we witness that the fixed point (1, 0) turns
into an unstable spiral (while (̃h+, 0) remains a saddle point). In the (̃h, s̃) phase
plane of Fig. 5 this means that the heteroclinic orbit now first spirals around (1, 0)
before it connects to the saddle at (̃h+, 0). In other words, the incoming base flow
develops undulations (around the height h̃0 = 1) before it permanently descends to
the level of the uniform downstream flow at height h̃+. This waveform is called an
undular bore and is depicted in Fig. 5.

Fig. 5 Stage 2: For F0 = 0.666, h̃+ = 0.999 (green disk in the inset) and ζ = 33.3◦, the fixed point
(1, 0) has become an unstable spiral and the heteroclinic connection first makes several turns around
(1, 0) before it heads towards the saddle point (̃h+, 0). The wave corresponding to this spiraling
heteroclinic connection is an undular bore

The undular bore is a common phenomenon in ordinary fluids (e.g. the tidal bores
encountered in rivers and estuaries around the world [23, 24]), yet in granular chute
flow this type of wave still awaits its first experimental observation.

5.3 Stage 3: Roll Waves

The third stage sets in with a crisis event: soon after F0 crosses the critical value
2/3, the saddle’s unstable and stable manifolds precisely connect onto each other
and form a homoclinic loop; see the (̃h, s̃) phase plane of Fig. 6 (green curve).
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Fig. 6 Stage 3: For F0 = 0.667484, h̃+ = 0.999 (green star in the inset) and ζ = 33.3◦, the unstable
and stable manifolds of the saddle precisely coalesce and form a homoclinic orbit (green curve,
partly dashed), which corresponds to a solitary wave (dashed green-black wave in the middle plot
on the right). Simultaneously, a stable limit cycle is created around the fixed point (1, 0), indicated
by the solid red closed curve in the (h̃, s̃) phase plane. The undulations around the incoming base
flow h̃0 = 1 build up to a stable periodic train of roll waves, as shown in the lower right plot

This homoclinic loop corresponds to the solitary waveform (dashed green-black
curve) shown in the middle right plot. It starts at the level h̃(ξ̃) = h̃+ for ξ̃ → −∞,
then forms a single hump (rising well above the level 1) and falls back to h̃(ξ̃) = h̃+
for ξ̃ → +∞. It is reminiscent of the celebrated solitary waves in open channel flow,
such as the one described by the KdV equation [19], although it is lopsided—due
to the inclination of the chute—and the forces that define its shape are different. In
the KdV soliton it is dispersion that balances the nonlinear wave-steepening effects,
while here it is diffusion (stemming from shear and in-plane stresses within the
granular sheet) that plays this role.

Since our analysis indicates that this granular solitarywave requires a great amount
of fine-tuning of the system parameters, it may be anticipated to be quite challenging
to reproduce this wave in experiment.

However, simultaneous with the momentary closing of the homoclinic orbit, we
witness the creation of a stable limit cycle surrounding the unstable spiral. Hence
any trajectory spiraling outwards from the point (1, 0) ends up on this limit cycle.
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Fig. 7 Stage 3 continued: For F0 = 0.667487, h̃+ = 0.999 (green disk in the inset) and ζ = 33.3◦,
the homoclinic orbit has vanished just as suddenly as it appeared. The stable limit cycle (solid red
curve) persists but has shrunk in size. Hence, the roll waves around the level of the incoming base
flow (̃h0 = 1) now have a smaller amplitude

As we show in Fig. 6 (red solid line), this means that the undulations around the level
h̃(ξ̃) = h̃0 = 1 now build up to a periodic train of roll waves.

Roll waves are a familiar phenomenon in open water channels, and they can also
be seen on sloping streets on a rainy day, with the thin film of rain water typically
organizing itself in the form of a series of roll waves. This same type of waveform
has also been observed in the flow of granular matter on a chute; an example is seen
in Fig. 1. Indeed, it is the only granular waveform from those discussed so far that
has been observed experimentally [14, 15, 25].

Raising the Froude number further, the homoclinic orbit disappears again (having
been in existence only fleetingly at one specific value of F0) but the stable limit cycle
persists. This situation is sketched in Fig. 7. For growing F0, the limit cycle quickly
shrinks in size, until at F0 = (1 − h̃+)/(̃h+(1 − h̃3/2+ )) = 0.66750 it disappears alto-
gether: it has shrunk to a point and coincides with (1, 0), causing the latter to undergo
a reverse Hopf bifurcation, turning it into a stable spiral [13, 18].

One may of course raise the Froude number F0 still further, but we will not pursue
this here [13]. Suffice it to say that for all F0 > 2/3 the flow organizes itself in such
a way that a stable pattern of roll waves is established, always in such a way that the
amplitude of the roll wave (or equivalently, the size of the limit cycle) ismaximal. The
self-organization required for this involves transient states that depend on the time
t and which are not captured by the dynamical system (10a)–(10b). To study these
transients one must return to the original partial differential equations expressing the
balances of mass and momentum, i.e., Eqs. (1) and (2) [13, 18, 20].
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6 Conclusion

In conclusion, the hydrodynamic-like description of flowing granular matter via the
generalized Saint-Venant equations presented here, predicts a one-to-one correspon-
dence between the traveling waves observed in shallow water and (fully dynamic)
thin granular sheets. That is, our analysis indicates that each of the traveling wave-
forms known from open channel flow has its counterpart in granular chute flow.

To be precise, this correspondence concerns the so-called long-wavelength wave-
forms. The short-wavelength capillarywaves onwater,which are caused by the action
of surface tension, are exempt from this correspondence. In the classical Saint-Venant
equations, surface tension is simply ignored. In their granular version used here, sur-
face tension is absent due to the lack of cohesion between the particles in dry granular
matter.

As we have seen, when the Froude number F0 of the incoming base flow is
raised through the critical value 2/3, our analysis predicts that the transition from the
monoclinal wave to the roll wave pattern takes place via an intermediate waveform,
namely the undular bore. The challenge now is to check this in experiment.

Observing the granular undular bore (and the monoclinal wave, for that matter)
may be anticipated to require a sensitive experiment, since the amplitude of the
undulations is typically very small. In order to make the undulations observable they
should at least exceed the size of a granular particle, preferably by a large margin. As
a roadmap for future experiments, in [13] we have outlined the desired specifications
of the granular material and the chute which will optimize the chances of detecting
the waveforms in question.

Let us stress that the waves studied in the present paper (traveling waves in the
fully dynamic regime) by no means exhaust the possible waveforms that may be
encountered in granular chute flow. For instance, for relatively small values of F0,
granular materials are able to sustain traveling waveforms that propagate over a
static sublayer of the same material, with the waves crawling forward (like continu-
ous caterpillar tracks) via a mechanism of erosion and deposition. These waves leave
stopping regions behind them, i.e., the deposited material remains temporarily stag-
nant until it is swept into motion again by the eroding action of the next wave front.
These intriguing waveforms, which in recent years have been studied by Edwards
and Gray and co-workers [15, 16, 26–28], have opened up a whole new spectrum of
traveling waves that have no counterpart in the flow of ordinary fluids.

Another interesting class of waveforms that we have left aside is that of standing
waves, the most iconic example of which is the so-called granular jump [7, 8, 21, 22,
29–36]. The spectrum of possible waveforms becomes even wider when one consid-
ers the fact that granular materials are often multi-disperse (with particles of varying
sizes and shapes, introducing segregation effects and stratification [37]) or multi-
phase (when the particles interact with an ambient fluid, such as in aeolian transport,
mud flow or sediment migration, see e.g. [38, 39]). Indeed, granular flows can sup-
port a plethora of waveforms only matched by the multitude of wave phenomena
encountered in the fields of Newtonian and non-Newtonian fluids combined.
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Identifying Discrete Breathers Using
Convolutional Neural Networks

T. Dogkas, M. Eleftheriou, G. D. Barmparis, and G. P. Tsironis

Abstract Artificial intelligence in the form of deep learning is now very popular
and directly implemented in many areas of science and technology. In the present
work we study time evolution of Discrete Breathers in one-dimensional nonlinear
chains using the framework of Convolutional Neural Networks. We focus on dif-
ferentiating discrete breathers which are localized nonlinear modes from linearized
phonon modes. The breathers are localized in space and time-periodic solutions of
non-linear discrete lattices while phonons are the linear collective oscillations of
interacting atoms and molecules. We show that deep learning neural networks are
indeed able not only to distinguish breather from phonon modes but also determine
with high accuracy the underlying nonlinear on-site potentials that generate breathers.
This work can have extensions to more complex natural systems.

Keywords Discrete breathers · Convolutional neural networks

1 Introduction

Discrete breathers (DBs) or Intrinsic Localized Modes (ILMs) are time periodic
and space localized modes that appear in discrete nonlinear lattices [1]. During
the last over thirty year period there has been substantial amount of theoretical and
experimentalwork that generated a body of precise knowledge regarding thesemodes
[2]. In the present work we use modern tools of Machine Learning (ML) in order
to address an entirely different question, viz. whether DBs can be recognized in
some automatic form without the need of direct human intervention. We believe that
this is a significant question since its precise answer may lead to much easier and
direct detection of nonlinear modes in natural systems. In this preliminary work we
sharpen the question to: Is it possible to recognize DBs and phonon modes in simple
one-dimensional chains with nonlinear on-site potentials usingConvolutional Neural
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Networks (CNNs)? In order to construct DBs we use the numerically exact method
introduced by Aubry for generation from the anticontinuous limit [3].

In this brief account we have four sections. In the first section we give some details
on the generation of DBs and phonon samples to be used subsequently. In the second
section a CNN model is developed in order to distinguish DBs from phonons. In
the following section a CNN model is developed to identify the on-site nonlinear
potential through which the linear and nonlinear modes were generated. Finally, in
the last section we conclude and give some further perspectives of this work.

2 Creation of Breather and Phonon Samples

For the ML analysis in this work we create 459 samples of breathers and phonons
using the anticontinuous limit method in 1D lattice with the Hamiltonian [4–6] and
three different nonlinear on-site potentials as outlined in Table1. The DBs have fre-
quencies outside the phonon spectrum and their stability is checked through Floquet
analysis. We give some details on the methods used below.

The Breather Solution
We outline very briefly the procedure we follow in order to obtain numerically exact
breathers and make sure they are stable. We use a Hamiltonian in the form:

H =
∑

N

p2n
2

+ V (xn) + W (xn) (1)

where xn the displacement at the node n of the 1D lattice, pn is the correspond-
ing momentum, V is one of the three nonlinear on-site potentials used, while W
is the interaction potential, viz. W (xn) = k(xn−1 + xn+1 − 2xn). The value of the
parameter k is quite important since it affects the existence as well as the shape of
DBs.

In the numerical procedure we first obtain the breather solution (see below) and
subsequently we linearize the equations of motion around this solution. The small
amplitude plane waves of the form xn(t) = ei(ωbt−qn) propagate with frequencies:

Table 1 The three nonlinear
on-site potentials used in this
work, are the hard φ4, the
Morse and double-well
potentials

Potentials

Hard φ4 V (x) = x2
2 + x4

4

Morse V (x) = − 1
2 (1 − e−x )2

Double well V (x) = − (x−1)2

2 + (x−1)4

4
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ωb = V
′′
(0) + 4W

′′
(0) sin(

q

n
) (2)

We solve the full equations of motion at zero coupling in order obtain a trivial
breather with specific amplitude-period relationship [3, 4]. Subsequently, we create
a vector U (x1, x2, · · · , xn, p1, p2, · · · , pn) for the N lattice sites (we take N = 40)
and set in the middle of the lattice the initial condition xn = 0.9 and pn = 0, i.e.
the trivial breather. Subsequently, we increase the coupling k in small steps and
solve the equations of motion; this iterative procedure is repeated until the desired
coupling value is reached. Since the DBs are time periodic solutions, for periodic
evolution derived from the map T we have Uk + � = T (Uk + �) ⇔ Uk + � =
T (Uk) + ∂T x�, where ∂T = M the tangent map of the system. By minimizing the
square of norm ||T (U ) + M� − (U + �)||2 we obtain the matrix � that gives the
final solution for the breather and its stability. We repeat this procedure with each
breather sample and thus obtain stable DB solutions as shown in Fig. 1.

Phonon Spectrum
Thephonon spectrum for different couplings is given byEq.2.Wedesignate the upper
limit of the phonon band as ωb, while the lower limit as ω′

b. We get acoustic-like
breathers when the breather frequency, �b, is less than ωb′ and optic-like breathers
when �b > ωb. In Fig. 2, we present the phonon frequency band with upper limit
ωb = 1.095, lower limit ωb′ = 1 and coupling k = 0.05 for the hard φ4, and with
upper limitωb = 1.483, lower limitωb′ = 1.414 for theMorse potential, respectively.
Snapshots and the time evolution of phonons for the hard φ4, Morse and double
well potential with coupling k = 0.1, and frequencies f = 1.042, f = 1.001, and
f = 1.415, respectively, are shown in Fig. 3.

Fig. 1 A snapshot at t = 0 and the time evolution of an arbitrary breather for hard φ4, Morse and
doublewell potentialswith coupling k = 0.1 and frequencies f = 1.317, f = 0.967 and f = 0.949
respectively
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Fig. 2 Phonon frequency bands as a function of the wave-vector q, with upper limit ωb = 1.095,
lower limit ωb′ = 1 and coupling k = 0.05 for hard φ4 and Morse potentials and with upper limit
ωb = 1.483, lower limit ωb′ = 1.414 for the double well potential

Fig. 3 A snaphot at t = 0 and the time evolution of phonons for the hard φ4,Morse and double well
potentials with coupling k = 0.1 and frequencies f = 1.042, f = 1.001, f = 1.415 respectively

Stability of Discrete Breathers
We use two different methods to examine the stability of DBs. The first method is
the Floquet analysis (Fig. 4), where we obtain the eigenvalues of the tangent map M.
Stable DBs solutions give Floquet eigenvalues where their imaginary and real part
lie on a circle with radius r = 1. The second method is by direct observation the time
evolution of DBs. In Fig. 5, we present the time evolution of a stable (left) and an
unstable (right) breather for the hard φ4 potential.
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Fig. 4 The real and the imaginary part of the eigenvalues, λ, of the tangent map M matrix of a
breather with potential hard φ4, frequency f = 1.227 and coupling k = 0.1

Fig. 5 Images of the time evolution over 15 periods of a stable breather with frequency f = 1.099
(left) and an unstable breather with frequency f = 1.17 (right), with coupling k = 0.05 and hard
φ4 potential in both cases

3 Machine Learning Training Process and Results

We create a dataset of 459 samples, with equally distributed phonons and DBs using
several arbitrary values for both their coupling and their frequency. Each sample is a
single channel gray-scaled, 2D image of size 40× 822 pixels, of the time evolution
of a DB or phonons. Each image was constructed in a way that at least one time
period is included. In Fig. 6, we present a colorized sample of each category of DBs
and phonons. The dataset was shuffled to avoid biases. Twenty percent of the samples
were separated to create a hold-out set for testing. The rest 80% of the samples was
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Fig. 6 Contour plots of the time evolution of a breather with frequency f = 1.332 and a phonon
with frequency f = 1.4161, with coupling k = 0.1 for the double well potential, respectively. The
x-axis represents the time, the y-axis the position of each node of the 1D chain and the colorbar the
amplitude

Fig. 7 The training accuracy and loss and the validation loss as a function of the number of epochs,
for the breather-phonon classification (left) and the potential classification (right)model respectively

split to create a training (80%) and a validation (20%) set. The dataset was normalized
using the ImageDataGenerator package [7]. Two models of identical CNNs were
created. The features extractor part of each model consisted of 3 convolutional layers
with 32, 64 and 64 (3× 3) kernels, respectively and a relu activation function. The
first two convolutional layers in each model were followed by a (2× 2) Max-pooling
layer. The classifier of each model contains two fully connected layers with 64 and
2 nodes respectively, for the case of the DB/phonons classifier, and 64 and 3 nodes
layers for the three potentials classification. A relu activation function was used for
the first layer and a softmax one for the output layer of each classifier. The models
were allowed to train for 100 epochs, while an early stopping criterionwith patience 5
epochswasmonitoring the validation error in order to avoid over-fitting. The f1-score
was used to evaluate the performance of the models.
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Fig. 8 The confusion matrix of the hold-out test set for the breather-phonon classification (left)
and the potential classification (right) model, respectively

Table 2 Table of the accuracy and the f1-score of the test set for each model

Test set—Classification results

Breather-Phonon Potentials

Accuracy 95.7% 93.5%

f1-score 0.955 0.934

In Figs. 7, 8 and in Table2, we present the training process and the results of
our analysis. Both the f 1 score is high while the confusion matrix shows very high
degree of classification accuracy.

4 Conclusions

This preliminary work that applies CNNs to the breather-phonon classification prob-
lem gives promising results as a previous ML work did in chaotic systems [8]. We
note that similar results were also found through the use of different ML methods
in the breather problem [9]. We find here that it is indeed possible to perform an
accurate classification based on the assumptions presented previously. The quanti-
tative result of the confusion matrix on the test set shows that the classification is
excellent provided the CNNs are trained appropriately. This result, however, is not
unexpected since breathers and phonons as 2D images can be easily distinguished
by a human eye. What is more noteworthy, however, is the possibility to find the
underlying potential these modes stem from. Indeed, we see that with proper train-
ing the ML model may distinguish the specifics of the underlying dynamics. This
strong feature opens up the possibility for a deeper use of Deep Learning in nonlinear
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physics. It is not unreasonable to expect that under specific, controlled conditions,
we may be able to use experimental data to infer the precise underlying dynamics
of a complex system. We note that similar indications are also found in the study of
chaotic systems with ML methods [8]. We conclude that a more detailed study of
the potential of machine learning in complex systems is necessary.
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Subthreshold Oscillations in Multiplex
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with Nonlocal Interactions

K. Anesiadis, J. Hizanidis, and A. Provata

Abstract We study the dynamics of identical Leaky Integrate-and-Fire (LIF) neu-
rons on a multiplex composed of two identical ring networks with symmetric nonlo-
cal coupling within each ring and one-to-one connections between rings. By varying
the control parameters (intra-ring and inter-ring coupling strength) we investigate
the system’s behaviour and show that, under the above connectivity scheme, inter-
ring coupling favors in-phase synchronization and we numerically determine the
corresponding parameter region where it occurs. We also highlight the peculiar phe-
nomenon of subthreshold oscillations occurring in one of the two rings while the
elements of the other ring perform full-cycle oscillations. In the case of solitary
states, the subthreshold oscillations may switch erratically between the two rings.
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1 Introduction

In recent years, numerical studies on networks of coupled nonlinear oscillators have
shown interesting synchronization patterns that are otherwise difficult to predict.
Synchronization in large systems of interacting elements is of great importance both
in physical and biological processes, including human physiology and brain func-
tionality, as well as in technical human activities [1, 2]. A notable synchronization
example is a spatiotemporal state of partial synchrony, called a chimera state, inwhich
the system exhibits domains of coherence and incoherence at the same time. Chimera
states, first introduced in networks of Kuramoto phase oscillators [3, 4], have been
reported also for several other nonlinear oscillators, including the Leaky Integrate-
and-Fire (LIF) [5], the FitzHugh-Nagumo (FHN) [6, 7], and the Hindmarsh-Rose
(HR) [8, 9] neuronal oscillators. Especially for the former model, another peculiar
phenomenon is the coexistence of oscillators that perform complete cycles and oth-
ers fluctuate below the threshold potential without completing full cycles. These
are called subthreshold oscillations [10] and are in the general category of partially
synchronized states called bump states [11].

Regarding the network topology, various connection schemes in numerical stud-
ies have been used including global, (symmetric) nonlocal, and hierarchical/fractal
[12–16]. More specifically, fractal connectivities are of particular interest as they are
among the irregular connectivites for which we have observed chimeras in simu-
lations. Furthermore, in the area of neuroscience, Diffusion Tensor Magnetic Res-
onance Imaging (DT-MRI) studies indicate a hierarchical/fractal geometry of the
neuronal network [17, 18], encouraging the study of such connectivities for neural
oscillators.

As the connectivity specifies the information flow, it may lead to full or partial
synchrony or in-phase synchronization or subthreshold oscillations (bump states)
and is considered essential in driving the network dynamics. Real-world networks
are often composed of many interconnected subnetworks, such as neuronal networks
and social networks, where each may obey a different connectivity. Since the aim
of numerical investigations is to uncover the mechanisms producing nontrivial syn-
chronization phenomena, the connectivity in the numerical simulations is kept to a
considerably lower complexity than what is observed in reality.

Previous studies of LIF neuronal dynamics on a low complexity network (ring
connectivity) have demonstrated the presence of solitary states which dominate for
negative coupling strength σ in the parameter range−0.5 � σ < 0 [10, 13]. Solitary
states are weak chimeras where there is complete in-phase synchronization except
for some small clusters of incoherent oscillators. The term “weak chimeras” refers
to chimera states whose incoherent domains are of infinitesimal size, while typical
chimeras have both coherent and incoherent domains of finite sizes [19]. In the same
studies, chimera states were reported for σ < −0.5 until they collapse in full disorder
by decreasing σ towards −1. The critical value where the transition from solitary to
chimera state depends on the parameters of the LIF oscillator and the network.
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In this study, we consider a more general multilayered network (or multiplex)
of two identical ring networks, each one of them consisting of symmetric nonlo-
cally coupled LIF neuronal oscillators while between them there are one-to-one
connections. In a previous study the LIF multiplex has been studied for low interac-
tion between the layers [20]. Here, we examine a parameter range for the coupling
strength within each ring and the coupling strength between the two rings, in which
significant differenceswere observed in the calculated time averages of theKuramoto
order parameter of the two rings. We show how these control parameters affect the
phase synchronization in the two layers of the multiplex. Although the ring networks
are identical, we have identified a range of parameter values where one of the rings
performs complete oscillations below the threshold while the other does not.

In Sect. 2 we introduce the single LIF model, the coupled LIF model, and the
Kuramoto order parameter. In Sect. 3 we show the heatmaps of the Kuramoto order
parameters for the two rings of the multiplex, independently, highlighting the area
in the maps where they are distinctively different. In addition, we present the pecu-
liar phenomenon of subthreshold oscillations. For a particular range of the control
parameters, either the elements of one ring perform full-cycle oscillations while the
elements of the other are not, or they switch roles irregularly in time. We conclude,
in Sect. 4, by summarizing our results and presenting open problems.

2 The Model

The LIF model describing the dynamics of isolated neurons was first proposed in
1907 by Louis Lapicque [21, 22]. If we let u(t) to be the time-dependent membrane
potential of a nerve cell, the dynamics of the single LIF model is described by the
following Eq.1a and condition 1b:

du(t)

dt
= μ − u(t) + I (t) , (1a)

lim
δt→0+

u(t + δt) = urest , when u(t) > uth . (1b)

Equation1a represents the integration of the membrane potential, while influx I (t)
may originate from external stimuli or the neighbouring neurons’ collective con-
tribution. Condition 1b represents the resetting of the potential after reaching the
threshold uth. Namely, the potential u(t) is reset at urest immediately after its value
surpasses the value of uth. The parameterμ in Eq.1a corresponds to the limiting value
of the potential if resetting is not considered. Equation1a can be analytically solved,
when I (t) is constant or zero. Then, the constant is incorporated in the parameter
μ and the solution is u(t) = μ − (μ − urest)e−t , for urest ≤ u(t) ≤ uth. The period
Ts of oscillations of the single LIF is calculated as Ts = ln [(μ − urest) / (μ − uth)].
Typically, a LIF neuron spends a period of time at the rest state after resetting, but
for simplicity, we will omit this refractory period.
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2.1 The Coupled LIF Dynamics in the Multiplex

There are studies of the LIF dynamics on a ring network that demonstrate a variety
of synchronization patterns depending on the connectivity (nonlocal, hierarchical,
reflecting, small-world, etc.), the coupling strength, and the coupling range [5, 10,
13]. In this study, we consider a two-layered multiplex, where each layer is a ring
network of identical LIF oscillators. Both rings are considered identical and for
convenience, we name them ring L (for left) and ring R (for right), respectively. To
keep the system as simple as possible from the point of view of connectivity, we
consider typical symmetric nonlocal connectivity within each ring and one-to-one
connectivity across rings.

Let us denote by σ L
jk the intra-ring connectivity between nodes ( j, k) in ring L;

similarly for ring R. To avoid having many different parameters, we assume that
the connections within each layer are tantamount. Since both rings are considered
identical, the general form of the nonlocal intra-ring connectivitywith coupling range
K around node j is:

σ L
jk ≡ σR

jk ≡ σ jk =
{

σ, ∀k : [ j − K ≤ k ≤ j + K ]
0, elsewhere

(2)

Regarding the inter-ring connections, let us denote byσ L→R
j the connectivity between

the j-th nodes of rings L and R, and, similarly, for the opposite direction (note that
these are the only connections between the two rings if any). As before, for the sake
of simplicity, we assume common values for all connections, σ L→R

j ≡ σR→L
j ≡ s.

Let uLj (t), j = 1, . . . , N represent the membrane potential of the j-th neuron in
the left ring, where N is the ring size. Then, the dynamics of the j-th coupled LIF
neuron of the ring L in the multiplex is described as follows:

duLj (t)

dt
= μ − uLj (t) + σ

2K

j+K∑
k= j−K

[
uLk (t) − uLj (t)

] + s
[
uRj (t) − uLj (t)

]
, (3a)

lim
δt→0+

uLj (t + δt) = urest , when uLj (t) > uth . (3b)

The notation and definitions are similar for the ring R. In Eq.3, we consider nonlocal
diffusive-like connectivity with coupling range K , common in both rings. In the
above expressions all the indices in the rings L and R are taken mod N . Other
common parameters of all nodes are the limiting membrane potential value μ, the
rest state potential urest and the threshold potential uth.

In this study we use as working parameter set: μ = 1, urest = 0, uth = 0.98,
N = 500 and K = 120. For these parameters, the single (uncoupled) rings present
chimera states when coupling strengths take negative values and subthreshold oscil-
lations for positive ones. The inter-ring coupling s in the multiplex connectivity
varies in the range 0 ≤ s ≤ 1, while the intra-ring coupling σ varies in the range
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−1 ≤ σ ≤ 0. All simulations start from random initial conditions, while periodic
boundary conditions are considered for all indices.

2.2 Kuramoto Order Parameter

For quantifying the synchronization within each ring the Kuramoto order parameter
Z is employed [3, 6], denoted by ZL and ZR for the rings L and R respectively. To
define Z we first need to define the phase of every oscillator. Then, the instantaneous
Kuramoto order parameter which measures synchronization in ring L is defined as:

ZL(t) = 1

NL

∣∣∣∣∣
N∑

k=1

eiφ
L
k (t)

∣∣∣∣∣ (4)

where |·| stands for the magnitude of the complex number in the argument. Similarly,
the Kuramoto order parameter ZR(t) is defined for ring R. The order parameter gen-
erally takes values in the range 0 ≤ Z(t) ≤ 1.When Z � 0 then the ring elements are
asynchronous andwhen Z � 1 they are in-phase synchronous. Intermediate values of
Z indicate partial network synchronization. Typically, solitary states exhibit almost
absolute coherence with the incoherent oscillators consisting only of a small fraction
of the network and thus Z is very close to 1. On the other hand, typical chimeras
have finite domain of incoherence, reflected in the Kuramoto order parameter taking
values considerably less than 1.

A reasonable choice for the phase definition of a LIF oscillator is by setting a
Poincaré section at the threshold potential uth, the point that signifies the completion
of a full oscillation cycle, as seen in [5]. However, phases of oscillators that perform
subthreshold oscillations for long times in the numerical simulations are ill-defined.
Instead, in this study the instantaneous phase φL

j (t) of the j-th oscillator in ring L is
defined as:

φL
j (t) = 2πuLj

uth
. (5)

Similarly, are defined the phases in the ringR. Both definitionswere found to produce
consistent results.

3 Results

We investigate themultiplex for negative (repulsive) intra-ring couplings and positive
(attractive) inter-ring couplings. Our numerical results for (σ, s) ∈ [−1, 0] × [0, 1]
indicate that the multiplex hosts complete synchrony and disorder, solitary states,
chimera states, and traveling waves. The Kuramoto order parameter can demonstrate
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Fig. 1 Heat maps showing the magnitude of the time-averaged Kuramoto order parameters of the
rings L and R for varying coupling strength values−1 ≤ σ ≤ 0, 0 ≤ s ≤ 1, as well as their absolute
difference. For each value in the heat maps, the evolution time of the system was 3000 Time Units
(TUs). The initial 600 TUs were discarded as transient. Other parameters are: N = 500, K = 120,
μ = 1, urest = 0 and uth = 0.98. All simulations were performed starting from the same random
initial conditions

the synchronization state. Figure1 shows the calculated Kuramoto order parameter
for the rings L and R in the multiplex, as well as their absolute difference, for varying
σ (horizontal axis) and s (vertical axis). The calculations were performed for a step
of 0.02 for σ and s, resulting in a heat map of 51 × 51 color boxes. The heat map
indicates where the phase transitions are andwhat synchronization patterns to expect.

The bottom areas in each of the first two maps, corresponding to a low coupling
between rings, are consistent with what we know about the uncoupled network. In
panels Fig. 1a, b (from left to right) Z values ascend from 0 to 1 as σ increases from
−1 to just below0,with a discontinuity at the critical point. The critical point is shifted
to the left (it becomes more negative) as s increases from 0 to 0.30, together with the
purple area that hosts chimera states. This is shown in Fig. 2, where the Kuramoto
order parameter versus the intra-ring coupling σ is plotted for four different levels
of s. Together with the critical point, the purple area that hosts chimera states is also
moved. For instance, both layers of the multiplex for σ = −1.00 and s = +0.10 are
disordered within. However, for s = +0.20 a drifting chimera state is developed; see
also last row of Fig. 2. Overall, the degree of in-phase synchronization of the network
appears to be enhanced by the synergy of the two rings, expressed by s.

3.1 Subthreshold Oscillations

Another critical region seen in Fig. 1 is the boundary where the absolute difference
of the Kuramoto order parameters goes from zero to finite values; see Fig. 3 for
σ = −1.00. We notice in the whole range that there are some scattered tuples (σ, s)
for which the two rings have large variations in synchronization, although it is more
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Fig. 2 In the first and second rows, we show the average Kuramoto order parameters for the two
rings versus the intra-ring coupling strength σ , for s = 0.00, 0.10, 0.20 and 0.30. Temporal averages
are taken over�T = 3000 TUs, after excluding the first 600 TUs as transients. The rest of the rows
(from top to bottom) show the spacetime plots of the multiplex for σ = −0.10, s = 0.20 (in-phase
sync), for σ = −0.40, s = 0.30 (solitary states), and for σ = −1.00, s = −0.20 (chimera states).
Other parameters are as in Fig. 1

pronounced for σ < −0.5 and s > 0.3. To investigate this discrepancy we plot in
Fig. 4 the spacetime plots of the multiplex for σ = −0.90 and s = 0.90. For these
values, ZL � 0.95 and ZR � 0.35.

In this case, the ring with the high-order Kuramoto parameter exhibits throughout
its range non-complete cycles of the nominal oscillation called subthreshold oscil-
lations, in the sense that none of its oscillators reaches the threshold potential. The
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Fig. 3 The average Kuramoto order parameters for the two rings versus the inter-ring coupling
strength s, for σ = −1.00. Both rings exhibit the same degree of coherence, but after a critical value
of s, the Kuramoto order parameter in rings L and R diverges significantly. Temporal averages are
taken over �T = 3000 TUs, after excluding the first 600 TUs as transients. Other parameters are
as in Fig. 1

Fig. 4 Spacetime plots of the multiplex (rings L and R) for σ = −0.90 and s = 0.90. Ring R
exhibits a chimera state, while ring L exhibits exclusively subthreshold oscillations

Z value of the subthreshold oscillatory ring is high due to the small deviation of the
oscillators’ states as the network evolves in time. Indicatively, Fig. 4 shows such a
case of the multiplex for σ = −0.90 and s = 0.90. The spacetime plot on the right is
a typical one-headed chimera state (with one coherent and one incoherent domain),
whereas the spacetime plot on the left follows in pattern the other plot but without any
of ring L oscillators completing a full cycle (the coherent domain continues drifting
for the next 4000 TUs). In fact, while in the ring R all oscillator potentials take values
uR ∈ (0, 0.98), in the ring L uL ∈ (0.70, 0.98). This is not the usual subthreshold
oscillations, where the elements’ potential stay and fluctuate slightly just below the
threshold. They now perform oscillations of finite range but never reaching the rest
state potential. This is a result of multiplexing and has not been observed in other
connectivities, so far.

Subthreshold oscillations, however, are also observed outside this candidate crit-
ical area but in a switching manner; that is, as the multiplex evolves in time, the state
switches from one ring to the other erratically. Indicatively, Figs. 5, 6 show such a
case of the multiplex for σ = −0.40 and s = +0.80. Both spacetime plots exhibit
either solitary state and subthreshold oscillations or vice versa. The switch is random
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Fig. 5 Spacetimeplots of ringL and ringR,where switchingbetween solitary state and subthreshold
oscillation occurs. The coupling strengths are set σ = −0.40 and s = +0.80

Fig. 6 Time-series of an oscillator in ring L and its homologous in ring R (red) where switching
between solitary state and subthreshold oscillation occurs. The coupling strengths are setσ = −0.40
and s = +0.80

but takes some time to happen, the time depending on the magnitude of the coupling
strengths (for low magnitude the switching goes unnoticed). Note that this kind of
behaviour is not observed for regular (non-weak) chimera states, although we cannot
rule out the possibility.

4 Conclusions and Open Problems

In the presented study we discuss the interplay of negative intra-ring σ and posi-
tive inter-ring s coupling strength in a multiplex of two identical layers for (σ, s) ∈
[−1, 0] × [0, 1]. Each layer consists of a ring network of symmetric nonlocally cou-
pled LIF oscillators. The two layers are coupled together via one-to-one connections.
The single-ring network case is known in the bibliography, as well the case of weak
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inter-ring connectivity (s = 0.10), thus we focus on stronger interaction between the
two rings (s > 0.10).

For small magnitude of s, the σ value where a phase transition occurs becomes
more negative for both rings of the multiplex while their Kuramoto order parameters
coincide; ZL = ZR (Z is defined in Eq.4). However, when s is greater than 0.30
and −1.00 < σ < −0.50, the Kuramoto order parameters of the two rings deviate
significantly from each other. In this region of the parameter plane, we observe the
phenomenon of subthreshold oscillations where elements oscillate below the thresh-
old, without completing full-cycle oscillations. Two types of subthreshold oscilla-
tions are observed: stationary and switching. In the stationary type, subthreshold
oscillations occur only in the elements of one of the two rings (presumably for long
periods of time); see Fig. 4. In the switching type, solitary states and subthreshold
oscillations alternate erratically in the two rings (the switching type is seen only for
solitary states); see Figs. 5, 6. Notice that the boundaries of criticality might depend
on the model parameters as well as the network configuration.

A number of open problems may be proposed for further studies. There are other
candidate control parameters to be explored with interesting effects on synchro-
nization in the multiplex network, such as the coupling range K and the refractory
period. The nature of the stationary versus switching subtheshold oscillations needs
to be further explored. Other questions relate to the phenomenon of the subthresh-
old oscillations itself; for example, is it a long-lived transient? How robust it is if
noise is induced in the system? A more immediate direction concerns the numerical
investigation of the multiplex in other regions of the parameter plane to gain a better
understanding of the interplay between the inter- and intra-ring connectivities.
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Networks’ Modulation: How Different
Structural Network Properties Affect
the Global Synchronization of Coupled
Kuramoto Oscillators

Juliette Courson, Thanos Manos, and Mathias Quoy

Abstract In a large variety of systems (biological, physical, social etc.),
synchronization occurs when different oscillating objects tune their rhythm when
they interact with each other. The different underlying network defining the connec-
tivity properties among these objects drives the global dynamics in a complex fashion
and affects the global degree of synchrony of the system. Here we study the impact
of such types of different network architectures, such as Fully-Connected, Random,
Regular ring lattice graph, Small-World and Scale-Free in the global dynamical
activity of a system of coupled Kuramoto phase oscillators. By fixing the external
stimulation parameters, we choose different fractions of nodes from the system first
randomly and then informed by their respective strong/weak connectivity properties
(centrality, shortest path length and clustering coefficient) and wemeasure the global
degree of synchrony. Our main finding is, that in Scale-Free and Random networks a
sophisticated choice of nodes based on graph connectivity properties exhibits a sys-
tematic trend in achieving higher degree of synchrony. For the other types of graphs
considered, the choice of the stimulated nodes (randomly vs selectively using the
aforementioned criteria) seems to not have a noticeable effect.
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1 Introduction

Complex networks is a powerful tool in various fields that allow us to investigate and
understand the real world [4]. For example, different ensembles of neurons connected
by synapses coordinate their activity to perform certain tasks (in biology), infrastruc-
tures like the Internet are formed by routers and computer cables and optical fibers
(in hardware communication) and the human personal or professional relationships
(in social sciences) to name a few [10].

Nonlinearity is a very important feature in complex systemsgiving a rich repertoire
of different activity patterns, such as stable, unstable, periodic etc. A modification
of some parameter might also produce a change in their stability, and therefore in
the dynamics of the system. Furthermore, such systems may have a high sensitivity
to initial conditions, or to any external input, that could completely change their
dynamics [30].

Such dynamics often yield to a self-organized coherent activity, i.e. to synchro-
nization. The latter can be loosely defined as the capacity of different oscillat-
ing objects to adjust their rhythm due to their interaction and plays a key role in
a large variety of systems, whether biological, physical, or even social (see e.g.
[23]). In a more formal way, synchronization emerges from the interaction of sev-
eral autonomous oscillators, also called self-sustained oscillators. That is, nonlinear
dynamical systems that produce oscillations without any need of external source.
Their dynamics is given by a nonlinear differential equation or, in the case of multi-
ple coupled oscillators, by several coupled differential equations.

The relativeway that autonomous oscillators are connectedwithin a given network
can affect their global activity and synchronization properties. Neural networks can
be represented as a graph of connections between the different neurons. Since the
introduction of small-world networks and scale-free networks (see e.g. [2, 31]), the
field of network graph analysis has attracted the attention of many studies aimed
to better understand complex systems (see e.g. [5, 6, 14, 17, 29]). Furthermore,
modern network connectivity techniques allow us to capture various aspects of their
topological organization, as well as to quantify the local contributions of individual
nodes and edges to network’s functionality (see e.g. [27]).

In neuroscience, synchronization plays a very important role. The human brain
is a very large and complex system whose activity comprises the rapid and precise
integration of a gigantic amount of signals and stimulus to perform multiple tasks
(see e.g. [8, 12, 27]). One example occurs in epileptic seizures, where periods of
abnormal synchronization in the neural activity can spread within different regions
of the brain, and cause an attack in the affected person (see e.g. [32]). More examples
are found in other brain diseases such as Parkinson disease, where an excessively
synchronized activity in a brain region correlates with motor deficit (see e.g. [7, 18]
and references therein) or tinnitus (see e.g. [11, 19, 20] and references therein).

In this study, we focus at a rather theoretical framework. We set out to investigate
the impact of different network architectures, such as Fully-Connected, Random,
Regular ring lattice graph, Small-World and Scale-Free in the global dynamical
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activity of a system of coupled Kuramoto phase oscillators [16]. The Kuramoto
model has been broadly used to study various types of oscillatory complex activity,
see e.g. [1, 24, 26] (to name only a few) and references therein. Our goal is to
investigate the impact of the network (graph) structure in the system’s global degree
of synchronization when applying identical and fixed external stimulus to different
subsets of nodes which are chosen according to various network connectivity criteria.
Wefind that, in scale-free and randomnetworks, a sophisticated choice of nodes based
on graph connectivity properties exhibits a systematic trend in achieving higher
degree of synchrony. For the other types of graphs considered, the choice of the
stimulated nodes (randomly vs selectively using the aforementioned criteria) seems
to not have a noticeable effect.

2 Methods and Materials

2.1 Connectivity Measurements

We here study the dynamics of phase oscillators coupled via binary, undirected
graphs G = (V, E), containing a set of N vertices V = {v ∈ �1 : N�} and a set
E = {(v,w) ∈ �1 : N�2} of edges. Let A be the corresponding adjacency matrix,
with Avw = 1 if there is a connection between node v and node w, 0 otherwise.
Self-connections are excluded, so Avv = 0 for any vertex v. For our analysis later
on, we will use the following graph connectivity measurements [22]:

– Shortest path length. The shortest path length Lv,w between any two nodes v and
w is the number of connections on the shortest path going from one to another,
computed following Dijkstra’s algorithm. We define the shortest path length of a
node v as the average shortest path between v and any other node of the network:

< Lv >=
∑

w∈V

Lv,w

N
. (1)

Note that Lv,w might not be defined if there is noway connecting node v to nodew.
The lower the shortest path length, the fastest the information goes from one node
to another. For example, when building a subway network (that is, a graph where
different stations are interconnected), one might want to minimize the stations’
average shortest path length so the users can easily navigate across the city.

– Centrality. The eigenvector centrality is used to quantify the importance of a node
in the network. Let λ be the highest eigenvalue for A, so that all the corresponding
eigenvector’s components are non null. The eigenvector centrality xv of vertex v

is defined as the vth component the eigenvector, namely:
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xv = 1

λ

∑

w∈V
Awvxw. (2)

Keeping in mind the subway network example, a station with a high centrality
would be densely connected to other stations, in particular to other central ones.

– Clustering. Let kv = ∑
w Avw be the degree of node v. In the case of a undirected

graph, kv(kv−1)
2 edges can exist in the direct neighborhood of v. With nv the number

of edges that actually exist in this neighborhood, the local clustering coefficient is
defined as [12]:

Cv = 2nv

kv(kv − 1)
. (3)

That is, in a subway network where stations B and C are the next stop after station
A on their line, clustering would give the probability that there exists a line directly
connecting B and C .

2.2 Neural Networks as Graphs

We investigate synchronization properties in various network configurations that
exhibit in general different characteristics. In more detail we here employ the neural
networks described in the following list (see e.g. [31]):

– Fully-Connected networks. They contains (N − 1)2 edges connecting every node
in one layer to every node in the other layer.

– Regular networks. They consist of a lattice of N nodes, each being connected to
their k nearest neighbors.

– Small-World networks. A Small-World network is constructed from a Regular
one after multiple random rewiring phases: going clockwise over the lattice, a
vertex and the edge to its nearest neighbor are selected. The edge is removed, and
the vertex reconnected to a random node with probability p, without duplicating
any existing edge. This random rewiring is repeated, considering the following
nearest neighbour, until having rewiredwith probability p all edges of the network.
Choosing p in an adequate range of values, the built network exhibits both high
mean clustering and low mean characteristic path length, that is small-worldness.

– Random networks. Using the same procedure as for Small-World networks,
setting p = 1 produces a Random graph, with all edges being systematically
randomly rewired.

– Scale-Free networks. They are networks whose degree distribution follows a
power-law:

P(k) ∝ k−γ . (4)

with k the node degrees, γ a real constant. The Barabási-Albert model gives a
procedure for the construction of scale-free networks [3], by starting with a small
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Fig. 1 Network graphs. Small graphs of size N = 20 showing the different network structures:
a Fully-Connected graph, b Scale-Free graph with initial size m0 = 5, c Regular graph with node
degree k = 4, d Small-World graph with initial node degree k = 4 and rewiring probability p = 0.2
and (c) Random graph with initial node degree k = 4. See text for more details

Fully-Connected network ofm0 nodes then adding one by one the N − m0 remain-
ing nodes, connecting them to the m already present nodes with probability

pv = kv∑
w

kw

, (5)

w ∈ �0 : m − 1�. Scale-free networks exhibit nodes with degrees that are several
standard deviations away from the average degree of the network. These highly
connected nodes are called hubs. Note that, however, for smaller networks with
size N < 100, the scale-free property might not be properly observable.

Figure 1 provides a visual representation of the above mentioned graphs. Note that
for visualization purposes we here show only a small fraction of the actual networks
that we use later in our simulations where the number of nodes is set be N = 500.

2.3 The Kuramoto Model

We use of the Kuramoto model to study the neural activity of the coupled system.
To this end we consider a population of N phase oscillators [16]:
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θ̇i = ωi + Fδi,C sin(Ωt + θi ) + K

ki

∑

j

Ai j sin(θ j − θi ), (6)

where θi denotes the phase of the i−th oscillator, ωi its respective frequency (Hz)
drawn from a Lorentz probability distribution g(ω) of scale parameter γ = 0.5,
centered in x0 = 1. A is the binary adjacency matrix coupling the oscillators, ki
the degree of oscillator i and K is the global coupling constant. We apply external
stimulus in a subset of the oscillators with fixed amplitude F and frequency Ω . The
term δi is a binary function indicating this subset of nodes where the stimulation is
applied in different realization in our simulations,

δi =
{
1 if node i is in the stimulated subset
0 else.

(7)

We set the time-step at 0.01s and we integrated the system with an Euler scheme (no
noise is considered).

The system’s degree of synchrony is measured using its order parameter r [16]:

reiψ = 1

N

N∑

j=1

eiθ j , (8)

where � denotes the population’s mean phase. The order parameter r tends to 1
for a perfectly synchronized population and to 0 in the absence of synchronization
respectively. Due to the presence of strong fluctuations, all r time-series shown in
this paper are determined using a moving average on r , on time windows of length
2s sliding each 0.1s. The final states of a population, r f , are computed by averaging
these moving-averaged r time-series over a 15s time-window where the system has
reached its stable state. The system’s degree of synchrony depends on the coupling
strength K ’s relative position to a critical coupling strength Kc, whose value depends
on the network configuration (see e.g. [9, 21]). Here, we set this value at K = 0.2
so that all considered networks are desynchronized in the absence of any external
stimulation.

3 Results

Network modulation. In order to adequately tune the stimulus’ amplitude and fre-
quency values such that they can lead the system into a synchronous state, we first
perform a systematic analysis in the parameter space (F,Ω). Hence, we begin by
applying external stimulus to all the nodes for each pair of parameters and mea-
sure the final order parameter r f . Such a parameter map reveals the presence of the
well-known Arnold tongues [23], namely regions in the plane (F,Ω) for which the
system gets synchronized.
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Fig. 2 Synchronization regions in the stimulation frequency-amplitude parameter space for a
Regular network. Final order parameter reached for a Regular network of size N = 20, and degree
k = 4 where all nodes are stimulated, for different pairs of stimulus intensity (F) and frequency
(Ω) values in Eq. (6). Each data point corresponds to a single simulation over 30s, the final order
parameter being averagedover the last 15s. The colormap shows largemain synchronization regions,
as well as small higher-order synchronization areas. The white star symbol at the bottom-left part
of the figure indicates the chosen parameters (F,Ω) = (5, 1) for the forthcoming simulations

In Fig. 2, we present the different synchronization regions (presence of several
Arnold tongues) for a Regular network of a relatively small size N = 20 and mean
neighborhood k = 4. For every other studied network, the maps depicts similar
features with large synchronization regions at relatively small amplitudes of the
external current, F < 200. These tongues get thinner with higher values of F . Inside
the main Arnold tongues, the oscillators are phase-locked at the forcing frequency
Ω and r f ≈ 1. Inside zones of weaker degree of synchrony r f < 1, some oscillators
are phase-locked, while the oscillators of higher natural frequencies keep rotating
independently. The white star symbol in the bottom-left part of the figure indicates
the chosen parameters (F,Ω) = (5, 1) for our forthcoming simulations, resulting in
a partial phase-locking of the network. Note that we have performed similar analysis
with larger sizes but smaller parameter grid size and the overall picture turns out
to be consistent. We have also prepared similar plots for all considered network
configurations (figures not shown here).

Simulation protocol. We set the values F = 5, Ω = 1Hz for the stimulus intensity
and frequency in Eq. (6), so that the network is weakly entrained without being com-
pletely phase-locked. We then measure the degree of synchronization (with the order
parameter) in different networks described in Sect. 2.2. The system starts evolving
for 4s without any external input before we start applying the stimulation to a subset
of nodes until 30s. More precisely, we stimulate different fractions of nodes, i.e.,
25, 50 and 75% in each given network. These nodes can be either chosen randomly,
or depending on particular connectivity properties (as described in Sect. 2.1). For
the latter case, we first sort the nodes according to their connectivity relative mea-
surements (from higher to lower), i.e. the eigenvector centrality, average shortest
path length and clustering coefficient. The resulting time series are smoothed with a



240 J. Courson et al.

Fig. 3 Representative r time-series for different stimulation setups of Scale-Free networks.
The order parameter as a function of time, for N = 500 oscillators, when stimulating 0% (blue),
25% (orange), 50% (red) and 75% (black) of the nodes. The stimulated nodes are chosen randomly,
then based on their a eigenvector centralityb average shortest path length and c clustering coefficient
values. Bold solid lines (resp. dashed lines) correspond to the stimulation of nodes with the highest
(resp. lowest) values, while thin solid lines correspond to the stimulation of randomly chosen nodes

moving average, and their r f is averaged over the last 15s. In order to obtain a statisti-
cally relevant value of the final value of the order parameter r f , we performed 20 sim-
ulations for each different network-setup (randomizing the initialization/generation
of the networks, the natural frequencies and the initial conditions for each simula-
tion).

In Fig. 3, we show representative time-series for various stimulation setups for
Scale-Free networks of size N = 500 and initial size m0 = 5. Each panel corre-
sponds to a different initialization, from which the order parameter evolution is com-
puted depending on the amount of stimulated nodes and the way they are selected.
Thin solid lines correspond to randomly selected nodes. In that case, a first subset
containing 25% of the nodes is created. Then for the stimulation of larger in size
subsets, another 25% of nodes is successively added, so that larger subsets of random
nodes always contains the smaller one. The bold solid lines (resp. dashed lines) show
the time-series when the stimulated nodes are the ones with the highest (resp. low-
est) eigenvector centrality (panel (a)), average shortest path length (panel (b)) and
clustering coefficient (panel (c)). Note that higher values of the connectivity mea-
surement do not necessarily lead to stronger synchrony. In particular, lower values
for the nodes’ average shortest path length depicts shorter connections to the rest of
the network, and therefore a more efficient synchronization.

Optimization of global synchronization. In Fig. 4, we present the main finding of
our work, namely a systematic comparison of the synchronization efficiency when
applying identical stimulus in different types of graph networks. Each panel is split
into 3 columns showing the statistical summary for the ensembles of different real-
izations and choosing to stimulate different subsets of nodes, i.e. randomly (middle-
orange boxplots in the legends) or with highest (upper-red boxplots in legends)
or lower (lower-blue boxplots in the legends) connectivity measurement. Panel (a)
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Fig. 4 Synchronization efficiency comparison for different types of graph networks. Final
order parameter obtained, for a Small-World networks b Random networks c Scale-Free networks
of size N = 500. The final value of the order parameter r f is computed for different stimulation
subset sizes, composed of randomly chosen nodes (middle-orange boxplots in the legends), nodes
with the highest connectivitymeasurement (left-redboxplots) andnodeswith the lowest connectivity
measurement (right-blue boxplots). r f shown are an average over 20 simulations. The analysis is
performed with three different connectivity measurements: eigenvector centrality (left column in
each panel), average shortest path length (central column in each panel) and clustering (right column
in each panel)

refers to a Small-World network of size N = 500, initial degree k = 4 and rewiring
probability p = 0.2, (b) to a Random network of size N = 500, initial degree k = 4
and rewiring probability p = 1 and (c) to a Scale-Free network of size N = 500
and initial size m0 = 5 respectively. Note this analysis is not performed on Regu-
lar and Fully-Connected networks, since all nodes of such networks have identical
connectivity properties and does not allow any connectivity-based selection.
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In Scale-Free networks, the global order parameter reaches higher valueswhen the
stimulus is applied to the nodes with higher eigenvector centrality or lower average
shortest path length. In such networks, a small fraction of the nodes have signifi-
cantly higher connectivity, and stimulating preferentially these nodes enables strong
synchronization compared to stimulating random nodes.

In Random networks, selecting stimulated nodes according to their lowest aver-
age shortest path length instead of randomly enhances synchronization. However,
there is no benefit in choosing more central nodes. Indeed, the high degree of ran-
domness (induced by a rewiring probability p = 1, see Sect. 2.2) in these networks’
connections causes disparity in the nodes’ average shortest path length, without cre-
ating any node of way higher centrality. In Small-World networks, the connections
are distributed in a more homogeneous way, and hence the node selection has no
substantial impact on the system’s final synchrony.

For all three aforementioned networks and all stimulation subset sizes, the selec-
tion of the nodes according to their clustering coefficient does not show any advan-
tage over a simple random choice. Finally, for all networks and stimulation subset
selection methods, although they overall achieve higher degree of synchrony, larger
stimulated subsets containing 75% of the population do not allow to observe any
clear advantage in particular selection of the nodes, since all three possible subsets
largely overlap.

4 Summary and Discussion

In this study, we investigated the impact of structure and connectivity properties
in a modulated network. We sought out to identify efficient ways to synchronize a
population of Kuramoto phase oscillators using nodes’ stimulation with fixed small
amplitude and frequency. To this end, we first performed a parameter sweep explo-
ration for stimulus amplitude and frequency parameters to identify settings that allow
the system to synchronize. Then, we computed the evolution of characteristic net-
works of Kuramoto oscillators, where external stimulation is applied to different
subpopulations with identical fixed low amplitude and frequency. In order to mea-
sure the system’s synchrony of each network-type and stimulation configuration,
we calculated the global order parameter for ensembles of different random system
initializations.

We showed that by choosing this subpopulations based on their respective net-
work connectivity properties (i.e. high eigenvector centrality and lower short-path
length), we were able to enhance the networks’ global degree of synchronization in
comparison to the one achieved by randomly choosing them. However, this is not
the case when using the clustering coefficient as a selection criteria.

From a neuroscience point of view Scale-Free networks play an important role in
the structure and function of mammal brains, see for example [25] (a study on the
scale-free dynamics and the emergence of collective organisation occurs in rodents)
or [13] (investigating the fractal structure of the human brain and its dynamics).
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Furthermore, in Alzheimer patients’ brain, the functional connectivity structure is
found to exhibit properties similar to Random network graphs (see e.g. [15, 28] and
references therein). Thus, understanding how to optimally synchronize systems with
similar network structures can improve the overall expected performance of a given
external simulation protocol.
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Neural Correlates of Human-Machine
Trust in Autonomous Vehicles Context
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Abstract Poor mental states-such as fatigue, low vigilance and low trust-in-
automation-have been known to interfere with the appropriate use and interaction
with vehicular automation. This has spurred strong interest in driver state monitoring
systems (DSMS) that support adaptive interfacing between human drivers and auto-
mated driving system to enhance road safety and driver experience. While there have
been thriving developments in fatigue and vigilance monitoring, research on trust
monitoring is still in its infancy. Trust-in-automation has predominantly been mea-
sured subjectively via self-report measures, with fewer studies attempting tomeasure
trust objectively owing to the difficulties in capturing this relatively abstract mental
state. Nevertheless, recent progress has unveiled promising potential for objective
trust monitoring that can be implemented in future intelligent vehicles. This review
presents a framework for understanding the cognitive, affective and behavioural
components of driver trust, and surveys current approaches and developments in
objective trust measurement in autonomous vehicle contexts using behavioural and
brain-based techniques. Approaches are evaluated for strengths and limitations in
both their conceptual validity in capturing trust-relevant information, measure reli-
ability, and their practical value in real-world driving settings. Future directions for
improving trust monitoring towards practical implementation are also discussed.
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1 Introduction

Major advances in automated driving technology are making autonomous vehicles
(AV) increasingly feasible for widespread public use in the foreseeable future. Large-
scale implementation of fully automated driving can precipitate many potential soci-
etal benefits, chief among which is significant improvement to transportation safety
[1]. Currently, a substantial proportion of traffic accidents and injuries are caused by
human errors related to poor driver vigilance [2], fatigue [3], stress [4, 5] etc. With
the introduction of AVs, the driving task can be delegated to vehicular automation
which can drive more safely than human drivers [6].

Ironically, concerns have been raised about how the safety improvements associ-
ated with driving automation might be negated by deteriorated driver states induced
by automated driving. Fully automated driving (SAE Level 5) is still far from fea-
sible given the current state of technology, and so the first generations of intelligent
vehicles for public road use would be equipped with partially automated functions
(SAE Levels 3–4). Under partial automated driving, human drivers are required to
standby to take over vehicular control whenever a take-over request (TOR) is issued
due to system limits [7], or to intervene during system malfunctions [8]. The process
of taking over control requires situational awareness, action planning and execution
[9]; all of which place acute demands on drivers’ perceptual, cognitive and motor
functions. To complicate this issue, long periods of automated driving will likely
see human drivers being visually and cognitively disengaged from the driving task
[10] or experiencing stress and mental fatigue due to prolonged monitoring [11].
These driver states have been shown to compromise the ability to regain situational
awareness and manoeuvre the vehicle towards safety on short notice [9]. Another
driver mental state that will be relevant in the era of automated driving is trust-in-
automation, defined as the attitude concerning whether the vehicular automation can
perform the driving task without compromising the safety of the driver and other
road user. Over-trust or “complacency” promotes vigilance reduction and cognitive
disengagement [8], which subsequently affects take-over performance as described
above. Meanwhile, under-trust encourages drivers to revert to lower levels of auto-
mated driving or fully manual driving (SAE Level 0), re-introducing the risk of
human errors into the driving task [7].

These issues have motivated strong interest in adaptive automation that flexibly
adjusts its functions based on the current state of the driver. For example, when the
human driver is losing attentiveness during automated driving, the vehicle may issue
an alert to remind the driver to pay attention [12]. If the driver is showing signs of
fatigue, the vehicle may activate advanced driver assistance systems (ADAS) and/or
recommend the driver to take a break. These systems rely on driver state monitoring
systems (DSMS) that record vehicle behaviour patterns or driver bio-behavioural
signals, use them to estimate driver state information which is then relayed to the
vehicle control/interface system. Over the last few decades, there have been thriv-
ing developments in monitoring systems for many driver states (including vigilance
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[2, 13], fatigue [14, 15], workload [16]). Some forms of DSMS (e.g. driver drowsi-
ness and attentiveness) have already been implemented in commercially available
vehicles [17].

In contrast, the frontier on monitoring trust-in-automation is in its infancy. Inter-
est in trust monitoring emerged relatively recently when driver trust-in-automation
becomes increasingly pertinent as partially automated driving becomes increasingly
achievable. It is highly desirable to track driver trust online during automated driving,
so that the vehicle can adapt role allocation or interactions with the driver in real-time
to calibrate appropriate trust-in-automation [18]. For example, if a driver is losing
trust-in-automation, an interface can communicate to make system operations more
transparent, issue a trust-recovering message that addresses a system error [9], or
issue an invitation for the driver to take over vehicle control [19]. The aim is to foster
optimal interactions between human drivers and autonomous vehicles that mitigates
the safety concerns of over-trust or under-trust.

However, quantifying trust can be difficult because it is a relatively abstract psy-
chological construct. Most research thus far measured trust-in-automation via self-
report questionnaires. However, subjective measures of trust are based on intro-
spection and thus have limited accuracy. Moreover, continually probing trust with
questionnaires is too disruptive for the driver, and so is not feasible for a trust mon-
itoring system. This has spurred researchers to seek for objective measures of trust,
but this quest has proven difficult because trust is a high-level cognitive construct that
does not have intuitively identifiable manifestations in behaviour or physiology. This
stands in contrast with other mental states like stress and vigilance that have more
direct physiological proxies, namely heart rate variability and eye behaviour respec-
tively. Nonetheless, recent studies have experimented with and have found promise
in objective measures that exploit indirect effects of trust. These developments unveil
potential for driver trust monitoring that may be practically implemented in future
intelligent vehicles.

The present focused review will survey the state-of-the-art advances in trust mon-
itoring in AV contexts via brain measurements. In this paper, a unified theoretical
framework is presented to help understand the cognitive, affective and behavioural
components of driver trust. Then, current approaches in objective trust measurement
are examined and evaluated. Lastly, future directions are recommended for advancing
the practical potential of driver trust monitoring.

2 Understanding Trust-in-Automation

Driver trust-in-automation can be defined as an attitude concerning whether the
vehicular automation can perform the driving task without compromising the safety
of the driver and other road users [20]. When there is high trust, the driver accepts
being made vulnerable to the actions of the vehicular automation while being confi-
dent that doing so will not result in any negative outcome. Conversely, when there
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is low trust, the driver becomes unwilling to accept that vulnerability due to lack of
confidence of the automation’s capabilities.

Trust-in-automation has focused on two broad aspects: factors of trust and effects
of trust. Concerning the first aspect, a large body of research have identified the many
factors influencing trust-in-automation [21], which have been organised in proposed
frameworks. These factors include (1) individual factors such as age, personality, trust
propensity, beliefs and expectations about driving automation; (2) automation fac-
tors such as the level of automation, vehicle appearance/anthropomorphism, system
reliability and system transparency; and (3) environment factors such as situational
uncertainty and risk. This article will only cover briefly how these factors modulate
trust, in the next section (see section Psychological and Cognitive Factors of Trust
Between Drivers and AVs); for an in-depth review, please refer to [21, 22].

The second aspect–the effects of driver trust–will be themain interest of the present
review, as it holds the key to discovering objective trust measures. To discern the
best approaches to operationalise and measure driver trust, it is useful to organise the
effects of trust in a theoretical framework. No known comprehensive framework has
been proposed before. Therefore, to meet this need, we present a unified framework
of how trust-in-automation manifests in driver cognition, affect and behavioural.
Such an approach is commonly used to systematically analyse abstract psychological
constructs in terms of more concretely defined and observable components.

2.1 Cognitive Component

The cognitive effects of trust-in-automation include risk/reward evaluation, con-
fidence, expectancy, mental engagement and situational awareness. High-trusting
drivers evaluate automation use as more beneficial/rewarding than risky. They tend
to havemore confidence in automation performance and lower expectancy for errors,
and so are less mentally engaged with the driving task and have reduced situational
awareness. On the other hand, low-trusting drivers evaluate automation use as more
risky than beneficial/rewarding. They tend to have lower confidence in automation
performance, higher error expectancies and so are more mentally engaged and more
acutely aware of the situation-these mental states heighten alertness and predispose
the driver toward intervening. These cognitive constituents would be reflected in
brain activity, with some, such as reward/risk evaluation, rooted in subcortical struc-
tures located deep in the brain (such as the amygdala and the ventral striatum) [23],
and others, such as expectancy and mental engagement, based in cortical regions
found on the outer layers of the brain (such as the orbitofrontal cortex, the anterior
and posterior cortex) [24].
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2.2 Affective Component

Trust-in-automation influences drivers’ affective experience, which encompasses
stress, arousal, and comfort [25]. Low trust is associated with high stress/arousal
and low comfort: these experiences are underpinned by uncertainty of automation
performance, and/or a sense of vulnerability or anxiety for any negative outcomes of
automated driving errors (e.g. accidents, near-misses, injuries). On the other hand,
high trust tends to be associated with low stress/arousal and high comfort, as the
driver becomes relaxed while accepting the reliability of the automated vehicle.
These affective components of trust bring about changes in periphery physiological
activity such as heart rate, electrodermal activity and muscular tension [25].

2.3 Behavioural Component

Trust-in-automation impacts drivers’ behaviour in two respects: Interventional
behaviour and Anticipatory behavior. (1) Interventional behaviour refers to drivers’
actions that reduces the level of automation or takes control away from it entirely.
The general assumption is that a driver with lower trust would be more likely to
take over vehicle control when the vehicular automation is functioning normally.
This behavioural component would be reflected in the duration and frequency of
automation disengagements [25]. (2) Anticipatory behaviours refer to actions that
indicate driver preparation to intervene during automating driving [26]. Reduced
trust would compel the driver to be increasingly observant of the driving task and be
in a physically ready state to re-control the vehicle, despite no explicit instruction
to do so from the vehicle (e.g. no TOR). These behavioural components would be
reflected in eye-gaze patterns and body motion of the driver. Under this framework,
driver trust is most directly reflected in cognition, with affect and behaviour being
the consequent, downstream effects [27]. In other words, drivers’ affective experi-
ence and behavioural patterns are primarily driven by the driver’s cognitive stances
regarding the automation. This premise should be considered when evaluating the
extent to which different measures are truly capturing driver trust.

3 Psychological and Cognitive Factors of Trust Between
Drivers and AVs

Several studies have indicated that people are reluctant with regards to vehicle
automation due to safety reasons [28, 29]. In particular, American Automobile Asso-
ciation in 2018 reported that over 70% of U.S. drivers are afraid of using a fully AV,
while approximately 75% of participants in a recent study [28] havemoderate to high
skepticism and apprehensions about AVs [29]. To improve the safety and acceptance
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of AVs, many studies have underlined the necessity of understanding driver’s behav-
ior and expectation in different situations according to each driving behavior [30].
Therefore, interacting with the vehicle technology, drivers usually exhibit specific
cognitive processes that are regarded as behavioural adaptation (BA). In particu-
lar, several studies have demonstrated that the movement and type of surrounding
vehicles can influence driving behavior, including driver reaction time and decision-
making [31], drivers’ expectations, perceived risk influences, trust in automation
the driver’s obstacles [32], poorer lane discipline, sudden reactions to safety-critical
events, increased speed, or decreased time headway [33].

A previous study of vehicle technology indicated that BA should be considered
in three stages: immediate, short term, and long term [34], which refers to adapta-
tion that may occur soon after a driver experiences a change in a safety system or
to a significant but lower rate of behavioural change for drivers, where the adap-
tation may be characterized by gradual changes in drivers [34]. Previous research
has demonstrated that drivers exhibit decreased vigilance, such as increased mind
wandering and less frequent eye blinks [35]. In this common vein, other studies have
demonstrated that pre-existing knowledge and experience may influence trust of the
drivers [32]. In particular, aspects of the driver’s personality such as confidence and
locus of control can also influence trust that rely on AVs [36]. Moreover, driving
experience usually increases self-reported trust in automation through learning the
reliability and predictability of the system [32]. Recent studies have suggested that
people have a strong desire to be able to take control back from automated systems
[37]), likely because they feel safer when they are in control of the vehicle rather
than riding as a passive passenger. For example, a recent study [38] modeled risk
acceptability for self-driving vehicles in a sample of responses from Chinese partic-
ipants. On the other hand, another concern with AVs is overtrust in the automation
as the driver is still responsible for certain aspects of driving such as monitoring the
roadway. Drivers may over-rely on the automation and disengage from driving [39].
One on-road study showed that the interaction between AV maneuvers (e.g., lane
change, immediate acceleration) and their parameters (e.g., acceleration, jerk, and
quickness) influenced driver comfort [40]. For example, participants with a high level
of trust tended to monitor the road less [41]; and longer fixation duration and higher
fixation count on the driving environment were associated with greater situation
awareness [42].

Recent advances have shown that drivers have reported greater intentions to
behave more aggressively towards AVs compared to other human drivers [38]. For
instance, survey-based work has revealed trust in AVs to be influenced by factors
such as gender [28, 43], age [44, 45], personality [46], cultural differences [47],
daily driving behaviours [43] and experience [44]. Regarding age and in particular,
older adults, research has indicated that they raise concerns using AVs due to issues
related to trust and confidence, such as not having an operator nearby during failures
[48]. Nonetheless, the results of recent surveys have suggested that trust in self-
driving technology is extremely low in the general population but especially older
adults do not yet perceive the benefits or question the usability. In general, older
adults tend to suffer the negative performance effects of imperfect automation more
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than younger age groups. Situations such as night-time driving [49], prolonged driv-
ing [50], and extreme temperatures [51] can induce fatigue; whereas mobile phones
[52], in-vehicle systems [53], and other non-driving linked behaviors can induce
problems with regards to sustained attention. Cognitive dysfunction and attentional
deficits during driving with AV, have been demonstrated by measures of visual atten-
tion indexed by ocular behaviors. On the other hand, some may indicate overtrust
and this over-reliance may come from older adults’ inability to properly identify and
diagnose automation errors due to age related limitations in working memory. Lower
working memory may also make it more difficult for older adults to generate alter-
native courses of action, a working memory-intensive activity, if they are conscious
of an automation failure.

4 Current Approaches to Objective Trust Measures Using
Brain Signals

Researchers have increasingly explored neuro-monitoring of trust-in-automation.
This interest has been fuelled by recent work suggesting that driver behavioural cues
may not necessarily reflect driver trust [27]; instead, trust is rooted in driver cognition
which is best probed with brain-based measures.

Consequently, this section will examine how neuroimaging techniques have been
used tomeasure trust-in-automation. Current techniques which offer high spatial res-
olution when assessing brain activity, such as functional magnetic resonance imag-
ing (fMRI) or magnetoencephalography (MEG), have limited practical application
when investigating human trust in automation due to their lack of portability, as
well as reduced temporal dynamic resolution. On the other hand, techniques such as
electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS)
couple their higher temporal dynamics resolution with reduced equipment size and
wearability making them more suitable to inherently out-of-the-lab context needed
to objectively assess trust.

4.1 Approaches Based on EEG

Given that trust is predominantly a cognitive construct, EEG probably stands as the
most direct and accurate method of assessing driver trust with the highest signal-to-
noise ratio and in dynamic contexts [25]. However, EEG-based measures are often
less practical than other measures. Gel-based EEG may give the best signal quality,
but they are time-consuming and laborious to set up and have limited portability.
Nevertheless, there have been promising developments in wireless wearable EEG
devices using dry sensors that significantly improve ease and speed of setup and
allow for extended experimental times [54].
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Fig. 1 Overview of most popular EEG measures used to assess neural correlates of trust in AV
contexts.A EEG signals are recorded during driving task; B Recorded signals are decomposed into
frequency bands and power spectral density (PSD) is estimated to quantify trust-related changes in
brain activity; C functional connectivity measures are estimated to assess signal interdependencies
and their changes correlated with changes in trust; D Time domain measures (such as peak-to-peak
amplitude, signal variance, event related potentials) are estimated directly from the recorded EEG
signals. (Adapted with permission from [55])

Depending on the device type and sensors coverage across the scalp, EEGprovides
adequate coverage to assess trust-related brain activity. Themain regionswhere trust-
relevant information can be accurately detected include the frontal, temporal and
occipital areas [55, 56]. From recorded EEG signals a number of measures can be
estimated that can subsequently be used in quantitative analyses. The most popular
measures include: event related potentials (ERPs) and other time-domain measures,
power spectral density (PSD) and functional connectivity (FC) (Fig. 1).

4.1.1 Time-Domain Measures

ERPs have limited practicality, as they can only be quantified with respect to a
precisely defined events that are difficult to specify outside of controlled laboratory
conditions. As such, few studies used ERPs to directly investigate trust in AVs.
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Relevant examples are the works of [57, 58], which used passenger-driver trust as a
paradigm for investigating trust in AV, arguing that passenger comfort is an important
factor in the acceptance of AVs on a wide scale. Authors investigated whether certain
driving events, such as braking, lane changing and aggressive driving, are correlated
with brain measures. Specifically, in [58] authors showed that the neural response of
passengers in the interval 200–500 ms after the event (also called the P300 ERP) is
sensibly stronger in the case of low trust, compared to high trust condition (Table1).
This was noted for ERPs recorded in frontal and parietal regions. In [57] authors
demonstrate that it is possible to predict with high accuracy (>80%) the driving
events based on ERPs occurring prior to the actual event, and that ERPs timing may
reflect the level of passenger trust.

Other time-domain measures, such as EEG signal mean amplitude, variance or
pairwise correlations between signals are noise prone and thus less reliable. Never-
theless, studies showed that they can be effectively used to objectively classify the
level of trust of a driver in a vehicle equipped with an automated obstacle detec-
tion system [59]. Authors showed that time domain measures recorded over frontal,
central and parieto-occipital regions, in conjunction with frequency domain features
and electrodermal activity measures can be used in a binary classification context
(trust–distrust), with an accuracy of about 70%.

4.1.2 Power Spectral Measures

Power-based metrics are more flexible when compared to ERPs, as EEG power is
sustained over a longer period. They also allow for amechanistic interpretation of the
results, when decomposing the signals into frequency bands which can subsequently
be linked to known cognitive functions and the related brain areas. The typical fre-
quency bands in which EEG signal activity is investigated are: delta ([1–4]Hz), theta
([4–8]Hz, alpha ([8–13]Hz), beta ([13–30]Hz) and gamma ([30–40]Hz).

An example of a study which investigated trust and its relation to related cogni-
tive functions (e.g. motivational state and action planning) is that of Seet el at. [55]
(Table1). In this study, the authors investigate the differential impact of AV mal-
function on human trust and the relevant neural correlates. The authors found that
human trust in AV is specifically affected in vehicles operating in full autonomous
mode (SAE level 5), when drivers are unable to take over control from the vehicle
in situations of malfunctions. They conclude that the deterioration in trust does not
originate from the malfunctions but is rather due to the inability of human operators
to react and avoid the risk of negative outcomes (such as crashing) resulting from
the AV malfunctions. The cognitive origins of the trust alterations in the are under-
lined by the selective decrease of right frontal power in the alpha band. This has as
consequence an increase in left-lateralised frontal activity, which according to the
framework of activation versus withdrawal motivation [60], points to an increased
motivational preference to be actively engaged in the task.

Power spectral measures, estimated using the discrete wavelet transform, have
been used also in [59] to develop a multimodal (EEG and electrodermal signals)
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Table 1 Overview of studies investigating neural correlates of trust in AV contexts. ERP = event
related potentials; PSD = power spectral density; wPLI = weighted phase lag index; PLI = phase
lag index; VLPC = ventrolateral prefrontal cortex; DLPC = dorso-lateral prefrontal cortex; VMPC
= ventromedial prefrontal cortex; AV = autonomous vehicle; HV = human-driven vehicle

Paper Trust manipulation
approach

Technique Relevant brain locations

DSouza et al. [58] Passenger-driver trust,
changes with driving
events (braking
aggressive acceleration,
lane changes)

EEG, ERP Frontal and parietal
regions, 200–500 ms after
event (P3)

Belcher et al. [57] Passenger-driver trust,
changes with driving
events (braking
aggressive acceleration,
lane changes)

EEG, ERP Across cortex (20
channels); prediction
prior to the driving event,
250–500 ms

Akash et al. [59] Driving with an
automated obstacle
detection sensor (random
faults in detecting
obstacles)

EEG, time domain (signal
amplitude, variance)

Frontal, central and
parieto-occipital regions

Seet et al. [55] AV malfunction (fails to
stop at traffic lights), SAE
levels 3 and 5

EEG, PSD Frontal asymmetry in the
alpha frequency band
(8–13 Hz)

Akash et al. [59] Driving with an
automated obstacle
detection sensor (random
faults in detecting
obstacles)

EEG, frequency domain
(discrete wavelet
transform)

Parietal and central
regions in the theta
(4–8 Hz) and beta
frequency bands
(16–32 Hz)

Seet et al. [55] AV malfunction (fails to
stop at traffic lights), SAE
levels 3 and 5

EEG, functional
connectivity (wPLI)

Frontal regions,
clustering coefficient
metric in the alpha
frequency band (8–13 Hz)

Xu et al. [64] AV malfunction (fails to
stop at traffic lights), SAE
levels 4 and 5

EEG, functional
connectivity (PLI)

Across cortex, path
length, local efficiency
and clustering coefficient
metrics in the theta band
(4-8Hz); global efficiency
and small-worldness
metrics in the beta band
(13–30 Hz)

Perello-March et al. [68] Manipulation of
participants’ expectations
regarding AV credibility
(SAE levels 3 and 4)

fNIRS Increased hemodynamic
activity in the VLPC;
lateralized activation in
the DLPC for the low
trust group

Unni et al. [69] Safety critical situations
in which drivers interact
with other traffic
participants (AVs and
HVs)

fNIRS Increased activation in
the left and right DLPC
and left VLPC, as well as
VMPC in high trust
compared to low trust
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classifier model for determining human trust in an automated driving system. Power
spectral measures were estimated from a 9 channel EEG system covering frontal,
central and parieto-occipital regions. The most relevant spectral measures for dis-
criminating trust versus distrust conditions were found in the theta, alpha and, espe-
cially, beta bands. Authors speculated that the relevance of the beta band in trust
classification might indicate the interplay between trust and cognitive task demands,
as well as emotion, given the known role of beta oscillations in modulating cognitive
workload and emotional states. Furthermore, the relevance of the theta band activity
was linked to the involvement of this oscillatory rhythm in decision-making related
mechanisms as previously reported by other studies [23].

The relevance of the alpha and beta bands in characterizing trust in automation
was highlighted also by the study of Oh et al. [61], who investigated trust level
and its neural correlates during the decision of choosing between manual and auto-
mated control in a driving task. Similarly to the observations of other studies, authors
reported significantly higher alpha and beta band power in high trust (vs. low trust)
experimental trials in the majority of study participants. Furthermore, authors inves-
tigated also gamma band power and reported decreased power in high versis low
trust trials for the majority of study participants.

4.1.3 Functional Connectivity Measures

Approaches based onFCmeasures are relatively newer and they assess correlations or
interdependencies (in time and/or in phase) among signals recorded in different areas
of the brain. This allows for a natural modeling of brain function which accounts for
the information transfer across the brain that occurs during cognitive function [62].
Specifically, after estimating interdependencies, pairwise connections (or edges) are
established between brain regions represented byEEGsensors (or underlying cortical
regions), giving rise to a representation typically know as functional connectivity
networks (or brain networks). These functional networks change configuration as a
result of cognitive manipulations, tasks performance or after exposure to stimuli. The
changes in networks’ configuration across different conditions can then be quantified
using graph theoretic metrics.

Seet et al. [55] employed graph theoretic measures estimated from functional
connectivity networks to investigate the differential impact of AV malfunction on
human trust, in addition to the power spectral measures described above (Fig. 1). As
functional connectivity measure they used the weighted phase-lag index, a measure
which indexes phase synchonization in electrophysiological signals and is less sen-
sitive to volume conduction effects [63]. They found that the clustering coefficient
(a measure of how much brain regions tend to cluster, or interact, together) in the
frontal right region significantly decreases in the alpha band, in cases when AV mal-
functions occur in full automation mode. The authors interpret this as a decrease
in frontal right hemisphere’s functional segregation that underpins the disruption of
cortical function supporting executive cognition.
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In a similar experimental paradigm, Xu et al. [64] investigated the changes in the
networks’ functional integration (characterized by graph theoretic measures such as
path length and global efficiency), as well as local segregation (characterized using
graph theoretic measures such as clustering coefficient and local efficiency). The bal-
ance between optimal functional network integration and segregation is a hallmark
of higher cognition function. The authors investigated changes in these measures
in the theta and beta bands between normal and malfunction trials, separately for
conditional automation (SAE level 4) and full automation (SAE level 5) modes.
They found significantly higher path length and decreased network efficiency in the
theta band in malfunction trials in the conditional automation mode, specifically for
the low trust condition. Moreover, there was increased local efficiency and cluster-
ing coefficient in the theta band in the case of malfunction trials (when compared
to normal function trials) in the high trust condition. In the full automation mode
results indicated a decrease in functional integration in the case of malfunction tri-
als, characterized by global efficiency, in the high trust condition. Furthermore, a
disruption of regular functional network architecture was observed in the beta band,
quantified by a decreased small-worldness measure in malfunction trials, in the low
trust condition. Collectively, these results suggest the significant changes, both in
local-specialized and in global-integrative brain function, that are associated to trust
in AV, in the context of vehicle malfunction.

4.2 Approaches Based on fNIRS

fNIRS is a relatively newer neuroimaging technique, which combines the advantage
of fMRI in terms of spatial resolution and that of EEG in terms of portability, mak-
ing is suitable for out-of-the-lab testing. It assesses brain activity by measuring the
hemodynamic response to neural activity relying on the different absorption proper-
ties of biological chromophores. This makes it different from fMRI, which relies on
the paramagnetic properties of hemoglobin [65]. fNIRS passes near-infrared light
(650–950 nm) between pairs of source and detector sensors, located on the scalp at
a fixed separation distance, typically between 2 and 5 cm. However, it must be noted
that fNIRS is limited to measuring only the neural activity of superficial layers of
the cortex, in contrast to fMRI which allows whole brain coverage.

fNIRS has been increasingly used recently in cognitive assessment studies in AV
contexts, particularly in areas such as monitoring cognitive workload, attention and
fatigue [66] (please see [67] for a review of fNIRS applications in driving research).
However, while cognitive assessment studies based on fNIRS abund, there are only
a handful of works investigating trust in AV contexts. Recently, Perello-March et al.
[68] investigated trust by manipulating drivers expectations on AV (SAE Levels 3–4)
credibility. Their results provide support for the hypothesis suggesting two distinct
but interrelated cortical mechanisms for trust and distrust (low trust). High trust is
suggested by the authors to be behaviorally linked to decreased attentional monitor-
ing and working memory, while low trust is rather tied to affective (or emotional)
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mechanisms. Authors reported increased hemodynamic activity in the ventrolateral
prefrontal cortex (VLPC), as well as a lateralized activation in the dorso-lateral pre-
frontal cortex (DLPC) for the low trust group, when compared to the high trust group.
These findings are supported also by previous literature on trust in automation in other
areas (e.g. human-robot collaboration [24].

In another recent work, Unni et al. [69] used fNIRS to investigate trust related
decision-making in AV driving contexts in which drivers were confronted with safety
critical situations in which drivers interact with other traffic participants (AVs and
human drivers–HV). Specifically, human drivers were asked to find traffic gaps to
turn left in front of incoming rightwards traffic (AV and HV) in an intersection. Their
behavioral results showed that participants were more certain in decision-making
when confrontedwithAV incoming traffic, observation underscored by smaller traffic
gap size, when compared to HV incoming traffic. When comparing cortical activity,
largest activation changeswere observed in the left and right DLPC and left VLPC, as
well as ventromedial prefrontal areas (VMPC), with increased activation differences
being noted when turning in front of AV as compared to HV traffic.

5 Conclusions and Future Directions

Trust is a crucial element which pervades the realm of human-human interaction.
Human-machine trust plays a significant role in the acceptance and adoption of new
technologies, as well as in optimizing human performance in environments which
require collaboration or ergonomic interaction between humans and machines [70].
Studying trust and particularly trust-related changes, in human cognition, affect and
behaviour is essential for designing human-machine interfacing to mitigate trust-
eroding effects.

While current trust assessment approaches are dominated by self-reports, behav-
ioral and physiological measures, brain-based techniques have a significant potential
for objective assessment of human-machine trust, particularly in AV related appli-
cations. Self-report measures, while very well established, have the disadvantage of
being obtrusive to the task, unable to capture sufficient dynamic variations, and being
often to subjective, or lacking accuracy [25]. Behavioral measures, while less obtru-
sive, are often more difficult to capture and interpret, as trust is not the sole factor
influencing behavior. In addition, there is significant individual behavioral variability
and strong internal determinants influencing trust. Physiological measures (such as
electrodermal activity, eye gazing, heart rate, while being easier to capture/record
have significant disadvantages aswell. Specifically, they reflect physiological activity
downstream from the brain, where the main mechanisms of trust are modulated. As
such, peripheral physiological measures are often less reliable, due to confounding
cognitive and behavioral factors.

Approaches for assessing human-machine trust in AV based on neural signals
are still in their infancy. Most existing studies utilize EEG and fNIRS due to their
portability and ease of applying them in ecological experiments. AV contexts, and
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vehicular transportation research generally, require mobility and the capability to
capture dynamic changes in human-machine trust and in underlying neural correlates.
However, research in this area can still make use of the vast body of research in the
trust in automation area, as well as human–machine interaction, both in terms of
rigorous theoretical models of trust, as well as in terms of neuroimaging findings
and related neural mechanisms [24, 25]. So far, findings of AV studies confirmed
previously known neural mechanisms of trust, as well as behavioral aspects from
cognitive neuropsychology research, such as: (i) the relevance of the approach versus
withdrawal motivation and decision-making mechanisms [55]; (ii) the role played by
cognitive load and affect on trust [59]; and (iii) attentional monitoring and working
memory [68]. With respect to these, neural activity in the theta, alpha, beta and
gamma bands was reported to be highly correlated with different levels of trust in
AV, as overviewed in Sect. 4.1.

The promise of AV of improving public road safety and driving experience
depends on public acceptance and and uptake of this technology and human-machine
trust plays a key role in this process. Current research challenges stand in translating
the findings and the brain signals measurement techniques from lab-based, simulated
driving conditions to actual road driving conditions. For this to happen, streamlined
approaches using reduced sensor layouts for unobtrusive monitoring are needed.
Seet et al. [55] showed that it is possible to capture trust dynamics using only few
frontal EEG sensors. Future studies can use dry sensor, wireless devices to expand
these findings to actual driving conditions. Additionally, it would be beneficial if
future work will focus on contextualizing existing theoretical models of trust with
actual brain and physiological measurements to create rigorous, unifying theoretical
frameworks for investigating trust in AV.
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High-Order Localized Wave Solutions
of the New (3+1)-Dimensional
Kadomtsev-Petviashvili Equation

Yulei Cao, Athanassios S. Fokas, and Jingsong He

Abstract The Korteweg-de Vries equation (KdV) is a classic representative of one-
dimensional integrable systems, while the Kadomtsev-Petviashvili (KP) equation
is a representative of two-dimensional integrable systems, which is an extension
of the KdV equation in two dimensions. However, constructing three-dimensional
integrable nonlinear equations has always been the most vital open problems in
integrability. In this paper, a new three-dimensional KP equation is investigated.
By applying Hirota bilinear method and long wave limit method, the multi-soliton,
rational and semi-rational solutions are presented.

Keywords (3+1)-dimensional KP equation · Bilinear method · Long wave limit
method · High-order localized wave

1 Introduction

There are a range of integrable nonlinear evolution equations in (1+1)-dimensional
and (2+1)-dimensional systems [1, 2]. The most celebrated models in (1+1)-
dimensional systems are the KdV equation and the nonlinear Schrodinger (NLS)
equation [3–6]. As is well known, every one-dimensional integrable nonlinear equa-
tion has several integrable extensions in (2+1)-dimensions. The two physically
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essential extensions of KdV are the KPI and KPII equations. A two-dimensional
analogue of the NLS equation is the DS equation. Integrable nonlinear evolution
equations are widely used in physical systems. KP and DS equations have significant
applications in weak dispersive media [7–10], optics and fluid dynamics [11–13].

One of the most essential tasks in soliton theory is to construct the (3 + 1)-
dimensional [(3 + 1)-d] integrable evolution equations [14]. Substantial progress in
this direction was made in [15], which introduced a 4 + 2 dimensional generaliza-
tion of KP and DS equations. Furthermore, Refs. [15–17] provide the solution of the
Cauchy problem for the generalization of KP and DS equations in 4+2 dimensions.
Additionally, Ref. [18] indicates the existence of integrable nonlinear evolution equa-
tions in any dimension, which involve a nonlocal commutator. Moreover, the issue
of degenerating the nonlinear equation from the (4 + 2) to a (3 + 1)-d equation has
also been discussed [15, 16, 19, 20]. Recently, we introduced a new (3+1)-d KP
equation [21]

uxt + αuxxxx + β(uux )x + γ

4
uyy − γ

4
uzz + i

γ

2
uyz = 0, u ∈ C, x, y, z, t ∈ R,

(1)
the α,β, γ are complex constants. In this paper, various nonlinear wave solutions of
Eq. (1) are proposed, and their dynamics are also discussed.

2 Soliton Solutions of the (3+ 1)-Dimensional KP Equation

The (3 + 1)-d KP equation admits Lax pairs and is completely integrable [21]. In
this section, based on the Hirota bilinear method the multi-soliton solutions of the
(3 + 1)-d KP Eq. (1) are presented [22]. Through the variable transformation

u = 12
α

β
(ln f )xx , (2)

the (3 + 1)-dimensional KP Eq. (1) possess the following bilinear form

(
Dx Dt + αD4

x + γ

4
D2

y − γ

4
D2

z + γ

2
i DyDz

)
f · f = 0, (3)

the function f is a complex, and D is the Hirota’s bilinear differential operator [22],
defined as

Dm
x D

n
t f (x, t) · g(x, t) = (

∂

∂x
− ∂

∂x ′
)m(

∂

∂t
− ∂

∂t ′
)n f (x, t)g(x

′
, t

′
)

∣∣∣∣
x ′ =x,t ′ =t

.

Based on this bilinear form, the (3 + 1)-d KP Eq. (1) has the following N -soliton
solutions:
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u = 12
α

β
(ln f )xx , f =

∑
μ=0,1

exp

⎛
⎝

(N )∑
j<k

μ jμk A jk +
N∑
j=1

μ jη j

⎞
⎠ , (4)

with
η j = k j

(
x + p j y + q j z −

[γ

4
(p j + i q j )

2 + αk2j
]
t
)

+ η0
j ,
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(
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(
p j − pk + i q j − i qk
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(
k j + kk

)2 ,
(5)

the k j , p j , q j , η
0
j are real constants, and the subscript j represents an integer. The

(N )∑
j<k

summation is over all possible combinations of the N elements with the specific con-
dition j < k. The notation

∑
μ=0 indicates summation over all possible combinations

of μ1 = 0, 1,μ2 = 0, 1, · · · ,μn = 0, 1.
The above parameters must satisfy the condition

γI q
2
j − 2γR p jq j − 4αI k

2
j − γI p

2
j = 0, (6)

Fig. 1 The three-dimensional plots of multi-soliton solutions of the (3 + 1)-d KP Eq. (1); a
One-soliton solution with parameters N = 1,α = 2,β = 2, γ = 2 + i

2 , k1 = 1
2 , p1 = 2, q1 = 1;

b Two-soliton solution with parameters N = 2,α = 2,β = 2, γ = 2 + i
2 , k1 = 1

2 , p1 = 2, q1 =
1, k2 = 1

2 , p2 = 1, q2 = 2; c Three-soliton solution with parameters N = 3,α = 2,β =
2, γ = 2 + i

2 , k1 = 1
2 , p1 = 2, q1 = −1, k2 = 1

2 , p2 = 1, q2 = 2, k3 = 1
2 , p3 = 1, q3 = 1

2 ;
d Four-soliton solution with parameters N = 4,α = 2,β = 2, γ = 2 + i

2 , k1 = 1
2 , p1 = 2, q1 =

−1, k2 = 1
2 , p2 = 1, q2 = 3, k3 = 1

2 , p3 = −2, q3 = 2; k4 = 1
2 , p4 = 3, q4 = 0
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here we have assumed that γ = γR + iγI and α = αR + iαI . The dynamics of these
soliton solutions are revealed in Fig. 1.

3 Rational Solutions of the (3+ 1)-Dimensional KP
Equation

In this section, we investigate the rational solutions of the (3 + 1)-d KP Eq. (1).
Apply the following parameter restrictions to the Eq. (4)

N = 2n, η0
j = i π (1 ≤ j ≤ N ), (7)

and letting k j → 0, then the function f in (4) consists of polynomial functions [23,
24]. Further utilizing (2), we obtain the N-th order rational solutions of the (3 + 1)-d
KP equation, where the function f is defined as

f = f [n] =
N∏

k=1

θk + 1

2

(N )∑
k, j

αk j

N∏
l �=k, j

θl + · · · + 1

M !2M
(N )∑

i, j,...,m,n

M︷ ︸︸ ︷
αk jαkl · · · αmn

N∏
p �=k, j,...m,n

θp + · · · ,

(8)
with

α jk = 24α
1
2

[
(p j − pk)2 − (q j − qk)2

] + i (p j − pk)(q j − qk)
,

θ j = x + p j y + q j z − γ

4

(
p j + i q j

)2
t.

(9)

In what follows, we will discuss the dynamics of these rational solutions. Firstly,
the simplest rational solution of the (3+1)-d KP equation is considered. By taking

N = 2, α = αR + i αI , p1 = p∗
2 = pR + i pI , γ = γR + i γI , q1 = q∗

2 = qR + i qI ,
(10)

in Eq. (8), where we impose the constraints

pI =
√

γ2
R + γ2

I − γR

γI
qI , pR =

γ2
R + γ2

I − γR

√
γ2
R + γ2

I

γI

√
γ2
R + γ2

I

qR . (11)

The analytical expression of the firs-order rational solution of the (3 + 1)-d KP
Eq. (1) is written as
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If

αR

(√
γ2
R + γ2

I − γR

)
> 0 or αI �= 0, (13)

this first-order rational solution is smooth. Taking

α = 1, p1 = √
2 − 1 + (

√
2 − 1)i, q1 = 1 + i, γ = 1 + i,

in (12), the first order rational solution of (3 + 1)-d KP Eq. (1) is a real function,
rewritten as

u = 12(ln f )xx ,

f = [x + (
√
2 − 1)y + z]2 + [(√2 − 1)y + z + (2

√
2 − 2)t]2 + 3(2 + √

2).
(14)

As seen in Fig. 2, this rational solution is a lump wave in the (x, y)-plane.
Furthermore, we also give the second-order lumps by taking N = 4 in Eq. (8).

The expression of function f is as follows

f = θ1 θ2 θ3 θ4 + a12 θ3 θ4 + a13 θ2 θ4 + a14 θ2 θ3 + a23 θ1 θ4

+ a24 θ1 θ3 + a34 θ1 θ2 + a12 a34 + a13 a24 + a14 a23,
(15)

Fig. 2 The first-order lump solution (14) of the (3 + 1)-d KP equation with parameters
α = 1, p1 = p∗

2 = √
2 − 1 + (

√
2 − 1)i, γ = 1 + i, q1 = q∗

2 = 1 + i,β = 1, t = 0, z = 0;
a a three dimensional plot; b a density plot; c a contour plot
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Fig. 3 The second-order lumps of the (3 + 1)-d KP equation with parameters α =
1 + i, q1 = q∗

2 = 1 + i,β = 1, p1 = p∗
2 = (

√
2 − 1) + (

√
2 − 1) i, q3 = q∗

4 = 2 + i, p3 = p∗
4 =

(
√
2 − 1) + (

√
2 − 1) i, γ = 1 + i, t = 0, z = 0; a a three dimensional plot; b a density plot;

c a contour plot

where θ j and a jk are defined in (9). Figure3a represents a three dimensional plot of
corresponding lumps, Fig. 3b represents the density plot, Fig. 3c is the contour plot.

4 Semi-rational Solutions of the (3+ 1)-Dimensional KP
Equation

In this section, by using the long-wave limit method semi-rational solutions of the
(3 + 1)-dimensional KP equation are also revealed. Taking

1 < 2 j < N , 1 ≤ k ≤ 2 j, η0
k = iπ, (16)

and letting k j → 0 for all k j , then the functions f in (4) consists of polynomial
function and exponential function. The case of N = 3 is first considered. Taking

N = 3, α = 1 + i, η0
1 = η0

2 = iπ, γ = 1 + i, β = 1, (17)

and taking k1, k2 → 0 in Eq. (4), we obtain

f = (θ1θ2 + a12) + (θ1θ2 + a12 + a13θ2 + a23θ1 + a12a23)e
η3 ,

a j3 = 48αk3
(p j − p3)2 − (q j − q3)2 + 2i(q j − q3)(p j − p3) − 12αk23

, j = 1, 2,

(18)
where θ j , a12 , η3 are given by Eqs. (9) and (5). Further, we take q1 = q∗

2 = 1 +
i, p1 = p∗

2 = (
√
2 − 1) + (

√
2 − 1) i, k3 = 1, p3 = 1

3 , q3 = 1, and η0
3 = 0 in

Eq. (18), as shown in Fig. 4, this semi-rational solution is composed of a lump and a
soliton.
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Fig. 4 The semi-rational solution composed of a lump and a soliton of the (3 + 1)-d KP equation
with parametersβ = 1, q1 = q∗

2 = 1 + i, γ = 1 + i, p1 = p∗
2 = (

√
2 − 1) + (

√
2 − 1) i,α = 1 +

i, k3 = 1, p3 = 1
3 , q3 = 1, t = 0, z = 0; a a three dimensional plot; b a density plot; c a contour

plot

Fig. 5 The semi-rational solution composed of a lump and two solitons of the (3 + 1)-dKP equation
with parametersα = 1 + i, q1 = q∗

2 = 1 + i,β = 1, p1 = p∗
2 = (

√
2 − 1) + (

√
2 − 1) i, γ = 1 +

i, k3 = 1
2 , k4 = 1, q3 = −2 + √

7, q4 = −3+√
2

2 , p3 = 2, p4 = 3
2 , t = 0, z = 0; a a three dimen-

sional plot; b a density plot; c a contour plot

Additionally, the semi-rational solutions consisting of more solitons and more
lumps are also proposed for larger N . Taking

N = 4, α = 1 + i, η0
1 = η0

2 = iπ, γ = 1 + i, β = 1, (19)

and taking k1, k2 → 0 in Eq. (4), we obtain

f = eA34 (a13a23 + a13a24 + a13θ2 + a14a23 + a14a24 + a14θ2

+ a23θ1 + a24θ1 + θ1θ2 + a12)e
η3+η4 + (a13a23 + a13θ2

+ a23θ1 + θ1θ2 + a12)e
η3 + (a14a24 + a14θ2 + a24θ1 + θ1θ2

+ a12)e
η4 + θ1θ2 + a12 ,

a js = 48αks
(p j − ps)2 − (q j − qs)2 + 2i(q j − qs)(p j − ps) − 12αk2s

, j = (1, 2), s = (3, 4),

(20)
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here θ j is shown in (9). As described in Fig. 5, this semi-rational solution is super-
imposed by a lump and two solitons.

5 Discussion

In this paper, the multidimensional analogue of KP equation is investigated, namely
the (3 + 1)-d KP equation, which is completely integrable and has Lax pairs. We
constructed nonsingular multi-soliton solutions of the (3 + 1)-d KP equation using
the Hirota bilinear method and the perturbation expansion technique. Additionally,
high-order lumps and semi-rational solutions of the (3 + 1)-d KP equation are also
revealed by using the long-wave limit method.
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Abstract The unified transform method (UTM), also known as the Fokas method
[13], provides a novel approach for solving initial-boundary value problems (ibvp)
for linear and integrable nonlinear partial differential equations. In particular, it gives
solution formulas for forced linear ibvp. This motivated the initiation of a new pro-
gram (by Fokas and collaborators) for studying the well-posedness in Sobolev spaces
of ibvp for nonlinear evolution equations by employing this method, which is analo-
gous to the way well-posedness of initial value problems (ivp) are studied. Using the
Fokas formula we are able to derive linear estimates in Sobolev, Hadamard and Bour-
gain spaces. Then, using as an iteration map the one defined by the UTM formula
when the forcing is replaced by the nonlinearity, and utilizing the linear estimates in
combination with the multilinear estimates suggested by the nonlinearity we show
that this map is a contraction in appropriate solution spaces. For the Korteweg-de
Vries (KdV) and Nonlinear Schrödinger (NLS) equations this program has been
implemented for ibvp in one-space dimension [16, 17, 29] and significant progress
has been made in higher dimensions [24]. In this review we will try to present key
points of this remarkable story. It is based on collaborative work with A. Fokas,
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1 Introduction

Given a partial differential equation (PDE), supplemented with appropriate data,
three basic questions arise:

(1) Existence. Does a solution exist in a “good” function space?
(2) Uniqueness. Is the solution unique in this space?
(3) Stability. Is the solution “stable”? i.e. do small errors (disturbances) in the data

result in small errors in the solution?

If the answer to the above three properties is yes, then the given PDE problem is
calledwell-posed. Otherwise it is called ill-posed. Well-posedness is very important
for PDE problems modeling physical or socioeconomic situations.

Well-posedness study—a story of analogy. Here we will see that, thanks to Fokas
unified transform method, the well-posedness study of initial-boundary value prob-
lems (ibvp) is analogous to the well-posedness study of initial value problems (ivp)
based on the Fourier transform method.

Studying nonlinear ivp—The three steps:
Step 1: We derive the solution formula to the linear forced ivp thanks! to Fourier
transform.

Step 2:We derive linear estimates for data and forcing in “good” spaces, using the
solution formula, and classical analysis.

Step 3:We prove that the iteration map defined by the Fourier solution formula when
the forcing is replaced with the nonlinearity is a contraction in a “good” solution
space, by deriving appropriate multilinear estimates.

In each of the three sections that follow, we number the equations starting from
(1.1) to help the reader appreciate them as separate entities. All equation referencing
within each section, concerns only equations of the section itself.

The Korteweg-de Vries equation ivp story. Next, we focus on the celebrated
Korteweg-de Vries (KdV) equation [22, 39, 40, 46], and apply the three steps above
to study the well-posedness of its initial value problem (ivp)

∂t u + ∂3
x u + uux = 0, (1.1)

u(x, 0) = u0(x), t ∈ R, x ∈ R. (1.2)

Step 1. Solving the forced linear ivp thanks to Fourier. To solve the linear KdV
ivp with forcing f

∂t u + ∂3
x u = f (x, t), (1.3)

u(x, 0) = u0(x), t ∈ R, x ∈ R, (1.4)

we take x-Fourier transform, which for a function ϕ(x) on R is defined by
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ϕ̂(ξ)
.=

∫

R

e−i xξϕ(x)dx, ξ ∈ R, (1.5)

and we get the time ivp: ∂t û + (iξ)3û = ̂f (ξ, t), û(ξ, 0) = ϕ̂(ξ). Then, solving it
gives the Duhamel solution formula:

u(x, t) = S[u0, f ](x, t) (1.6)

= 1

2π

∫ ∞

−∞
ei(ξx+ξ3t)û0(ξ)dξ + 1

2π

∫ t

0

∫ ∞

−∞
ei[ξx+ξ3(t−t ′)]

̂f (ξ, t ′)dξdt ′.

Step 2. Deriving Linear Estimates. For data in Sobolev spaces Hs(R), defined by
the norm

‖u0‖2Hs
.=

∫

R

(1 + |ξ|)2s |û0(ξ)|2dξ, (1.7)

and forcing in Bourgain (solution) space Xs,b(R2) defined by the norm [5, 6]

‖ f ‖2Xs,b = ‖ f ‖2s,b .=
∫

R

∫

R

(1 + |ξ|)2s(1 + |τ − ξ3|)2b| ̂f (ξ, τ )|2dξdτ , (1.8)

we derive the following estimates for the solution S[u0, f ] localized.
Lemma 1 (KdV Linear Estimates) For any s ∈ R and 1

2 < b < 1, there is c =
c(ψ, s, b) such that:

‖ψ(t)S[u0, f ]‖s,b ≤ c‖u0‖Hs + c‖ f ‖s,b−1. (1.9)

Here and in the sequel ψ is a time localizer, which is defined as follows:

t

ψ

0−1 1

1

1
2− 1

2

ψ ∈ C∞
0 (−1, 1), 0 ≤ ψ ≤ 1 and ψ(t) = 1 for |t | ≤ 1/2. (1.10)

Step 3. Proving that the iteration map is contraction. Replacing in solution
formula (1.6) the forcing f by the nonlinearity −uux we obtain the iteration map of
the KdV ivp

Φ(u)(x, t)
.= ψ(t)S[u0,−uux ](x, t) (1.11)

= ψ(t)

2π

∫ ∞

−∞
ei(ξx+ξ3t)û0(ξ)dξ − ψ(t)

2π

∫ t

0

∫ ∞

−∞
ei[ξx+ξ3(t−t ′)]ûux (ξ, t

′)dξdt ′.
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Then, from the linear estimates (1.9) we see that we need the following crucial
bilinear estimates for the KdV nonlinearity, proved for s ≥ 0 by Bourgain [5] and
for s > − 3

4 by Kenig, Ponce and Vega [36].

Theorem 1 (KdV bilinear estimates) Given s > −3/4, there exists b ∈ (1/2, 1)
such that

‖∂x ( f · g)‖Xs,b−1 ≤ c‖ f ‖Xs,b‖g‖Xs,b , f, g ∈ Xs,b. (1.12)

Combining bilinear estimate (1.12) with linear estimate (1.9) gives that the iteration
mapΦ is a contraction with fixed point (local solution) in Bourgain spaces Xs,b, thus
obtaining the next result, proved for s ≥ 0 in [5], and for s > − 3

4 in [36].

Theorem 2 (KdVWell-posedness) If s > −3/4, then for any data u0 ∈ Hs(R) the
KdV ivp has a unique solution in the space Xs,b for appropriate b > 1/2. Moreover,
the data to solution map is Lipschitz continuous.

For additional results on the well-posedness of the KdV initial value problem with
rough data we refer the reader to [7, 32–35, 37, 38, 44] and the references therein.

2 Initial-Boundary Value Problems via the Fokas Method

Now, in analogy to ivp, we describe the three steps for studying nonlinear initial-
boundary value problems (ibvp) based on the Fokas method [13].

Step 1: We derive the solution formula to the forced linear ibvp thanks! to Fokas
unified transformmethod (UTM).

Step 2:We derive linear estimates for data and forcing in “good” spaces, using the
Fokas solution formula and classical analysis.

Step 3:We prove that the iteration map defined by the Fokas solution formula when
the forcing is replaced by the nonlinearity is a contraction in a “good” solution
space, where appropriate multilinear estimates hold!

The KdV ibvp story. Next we demonstrate the analogues to ivp three steps for
studying the well-posedness of the following KdV equation ibvp

ut + uxxx + uux = 0, x ∈ (0,∞), t ∈ (0, T ), (2.1a)

u(x, 0) = u0(x), x ∈ (0,∞), (2.1b)

u(0, t) = g0(t), t ∈ (0, T ). (2.1c)

Step 1. Solving the forced linear KdV ibvp thanks! to the Fokas method,

ut + uxxx = f (x, t), x ∈ (0,∞), t ∈ (0, T ), (2.2a)

u(x, 0) = u0(x), x ∈ (0,∞), (2.2b)

u(0, t) = g0(t), t ∈ (0, T ), (2.2c)
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we get the UTM solution formula via a deformation in the complex plane utilizing
the analyticity of the half-line Fourier transform defined below

u(x, t) =S[u0, g0; f ] (to be used with f = −uux ) (2.3)

.= 1

2π

∫ ∞

−∞
eiξx+iξ3t [̂u0(ξ) + F(ξ, t)]dξ σ = e2iπ/3

+ 1

2π

∫

∂D+
eiξx+iξ3t {σ[̂u0(σξ) + F(σξ, t)] + σ2 [̂u0(σ2ξ) + F(σ2ξ, t)]}dξ

− 3

2π

∫

∂D+
eiξx+iξ3tξ2g̃0(ξ

3, T )dξ.

û0(ξ)
.=

∫ ∞

0
e−iξxu0(x)dx, Im(ξ) ≤ 0, (Half-line Transform),

F(ξ, t)
.=

∫ t

0
e−iξ3τ

∫ ∞

0
e−iξx f (x, τ )dxdτ , Im(ξ) ≤ 0,

g̃0(ξ, t)
.=

∫ t

0
e−iξτ g0(τ )dτ , (Temporal Transform).

Step 2. Decomposing the linear ibvp (2.2) into simpler problems and using Fokas
solution formula (2.3) we derive the linear estimates for initial data in Sobolev
spaces Hs(0,∞) and boundary data H (s+1)/3(0, T ), where (s + 1)/3 is the KdV
time regularity. More precisely, we obtain the following result.

Theorem 3 (Linear Estimates in modified Bourgain spaces) For rough data, i.e.
− 3

2 < s < 3
2 , s �= 1

2 , the Fokas formula (2.3) defines a solution u to the ibvp (2.2)
with the compatibility condition

u0(0) = g0(0), 1/2 < s < 3/2, (2.4)

which is in the space Xs,b,α
R+×(0,T ) and satisfies the estimates

‖S[

u0, g0; f
]‖Xs,b,α

R+×(0,T )

≤c
[‖u0‖Hs

x (R
+) + ‖g0‖

H
s+1
3

t (0,T )
+ ‖ f ‖Xs,−b,α−1

R+×(0,T )

+ ‖ f ‖Y s,−b
R+×(0,T )

]

, (2.5)

where 1/2 < α < min{ s3 + 1, 1}, and 0 < b < 1/2.
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For smooth data, i.e. 1/2 < s < 3/2, we have the linear estimates in the Hadamard
space C([0, T ]; Hs

x (0,∞)) (see [16])

sup
t∈[0,T ]

‖S[

u0, g0; f
]

(t)‖Hs
x (0,∞)

≤cs
[

‖u0‖Hs
x (0,∞) + ‖g0‖

H
s+1
3

t (0,T )
+ max{T 2−s

3 , T
3−2s
3 }

(∫ T

0
‖ f (t)‖2Hs

x (0,∞)dt

)
1
2 ]

.

ModifiedandTemporalBourgain spaces. ThemodifiedBourgain space Xs,b,α(R2)

is defined by the norm [5]

‖u‖2Xs,b,α
.=
∫∫

R2

[

(1 + |ξ|)2s(1 + |τ − ξ3|)2b + χ|ξ|<1(1 + |τ |)2α
]

|û(ξ, τ )|2dξdτ ,

where α > 1
2 and χ|ξ|<1 is the characteristic function of the interval (−1, 1). The

“temporal” Bourgain space Y s,b(R2) is defined by the norm [11]

‖u‖2Y s,b
.=

∫∫

R2
(1 + |τ |) 2s

3 (1 + |τ − ξ3|)2b |̂u(ξ, τ )|2dξdτ . (2.6)

Step 3. Proving that the Iteration map is Contraction. From the above linear
estimates (2.5) with the forcing f being replaced by the nonlinearity ∂x (u2), we see
that to show that iteration map is a contraction, we need to estimate ‖∂x ( f g)‖Xs,−b,α−1

R+×(0,T )

and ‖∂x ( f g)‖Y s,−b
R+×(0,T )

. This is done in the next result.

Theorem 4 (Bilinear estimates in modified and temporal Bourgain spaces) For s >

− 3
4 , we have the bilinear estimates in the modified Bourgain spaces

‖∂x ( f g)‖Xs,−b,α−1 ≤ c1‖ f ‖Xs,b′ ,α′ ‖g‖Xs,b′ ,α′ . (2.7)

For − 3
4 < s < 3, we have the bilinear estimates in the “temporal” Bourgain spaces

‖∂x ( f g)‖Y s,−b ≤ c1‖∂x ( f g)‖Xs,−b + c1‖ f ‖Xs,b′ ‖g‖Xs,b′ . (2.8)

In estimate (2.7), it suffices to have 1
2 − β1 ≤ b′ ≤ b < 1

2 < α′ ≤ α ≤ 1
2 + β1, where

β1 =
{

1
36 , s ≥ 0,
1
96

[

s + 3
4

]

, − 3
4 < s < 0.

(2.9)

In estimate (2.8), it suffices to have 1
2 − β ≤ b′ ≤ b < 1

2 < α′ ≤ α ≤ 1
2 + β, where

β
.= min

{

β1,
3 − s

36

}

. (2.10)
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Finally, using iteration map defined by the Fokas solution formula, the linear esti-
mates (2.5), and the bilinear estimates above, we show the three properties of well-
posedness in Bourgain spaces (existence, uniqueness and stability) for the same
(optimal) critical exponent s = −3/4 as in the case of the line.

Theorem 5 (Well-posedness ofKdV ibvpviaFokasMethod) If− 3
4 < s < 3

2 , s �= 1
2 ,

then for any initial data u0 ∈ Hs(0,∞), boundary data g0 ∈ H
s+1
3

t (0, T ) and some
lifespan 0 < T0 ≤ T < 1

2 , there is a solution for the KdV ibvp (2.1), which is in

Xs,b,α
R+×(0,T0)

and which satisfies the size estimate

‖u‖Xs,b,α
R+×(0,T0)

≤ C(s, b,α)
[

‖u0‖Hs (R+) + ‖g0‖
H

s+1
3

t (0,T )

]

, (2.11)

for some b ∈ (0, 1
2 ) andα ∈ ( 12 , 1). Also, an estimate for the lifespan is given by T0 =

c0
[

1 + ‖u0‖Hs (R+) + ‖g0‖
H

s+1
3

t (0,T )

]−4/β
,where β is defined in (2.10). Furthermore,

the solution is unique in the space Xs,b,α
R+×(0,T0)

. Finally, the data to solution map
{u0, g0} 	→ u is locally Lipschitz continuous.

For smooth data, i.e. 1
2 < s < 3

2 , we have well-posedness in the Hadamard space
C([0, T ]; Hs

x (0,∞)) (see [16]).

Reduced pure ibvp. Next we outline the proof of the linear estimates for the most
fundamental linear KdV ibvp – the reduced pure ibvp:

∂tv + ∂3
xv = 0, 0 < x < ∞, 0 < t < 2, (2.12a)

v(x, 0) = 0, (2.12b)

v(0, t) = h(t), supp h ⊂ (0, 2). (2.12c)

The time transform of data h(t) over (0, 2) is its Fourier transform over R h̃(ξ, 2)
.=

∫ 2
0 e−iξτh(τ )dτ = ∫

R
e−iξτh(τ )dτ = ̂h(ξ). So, the Fokas solution formula for ibvp

(2.12) on R
+ × (0, 2) reads as follows

v(x, t)
.= S[0, h; 0] = − 3

2π

∫

∂D+
eiξx+iξ3tξ2̂h(ξ3)dξ, (2.13)

and satisfies the following key estimate in the modified Bourgain spaces.

Theorem 6 (Linear Estimates for reduced pure ibvp) For rough data, i.e. s > − 3
2 ,

we have:

‖S[0, h; 0]‖Xs,b,α
R+×(0,2)

≤ cs,b,α‖h‖
H

s+1
3

t (R)
, 0 ≤ b <

1

2
< α ≤ s

3
+ 1. (2.14)
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For smooth data, i.e. s > 1
2 , we have (see [16])

sup
t∈[0,2]

‖S[0, h; 0](t)‖Hs
x (R

+) ≤ cs‖h‖
H

s+1
3

t (R)
. (2.15)

Proof of estimate (2.14). Using the parametrization [0,∞) � ξ 	→ aξ (or a2ξ) ∈
∂D+, with a = ei

π
3 , we write the solution as v(x, t) 
 vr (x, t) + v�(x, t), where vr

corresponds to integration on the right contour and v� on the left contour

vr (x, t) =
∫ ∞

0
eiaξx−iξ3tξ2ĥ(−ξ3)dξ, (2.16)

v�(x, t) =
∫ ∞

0
eia

2ξx+iξ3tξ2ĥ(ξ3)dξ. (2.17)

Since the estimation of v� is similar to vr , here we only estimate vr . For vr we split
the ξ-integral in formula (2.16) for ξ near 0 and for ξ near ∞. That is, we write
vr = v0 + v1, where a = aR + iaI = 1

2 + i
√
3
2 ,

v0(x, t)
.=

∫ 1

0
e−iξ3t eiaRξxe−aI ξxξ2̂h(−ξ3)dξ, x ∈ R

+, t ∈ (0, 2), (2.18)

v1(x, t)
.=

∫ ∞

1
e−iξ3t eiaRξxe−aI ξxξ2̂h(−ξ3)dξ, x ∈ R

+ t ∈ (0, 2). (2.19)

Estimate for v0. Using the smooth version ϕ1(x) of |x | defined below

ϕ1(x) =

⎧

⎪

⎨

⎪

⎩

x, x ≥ 0

−x, x ≤ −1

smooth on R,

(2.20)

we extend v0 as an “almost” even function of x from R
+ × (0, 2) to R × R via

V0(x, t)
.=

∫ 1

0
eiaξϕ1(x)e−iξ3tξ2̂h(−ξ3)dξ, x ∈ R, t ∈ R. (2.21)



Progress in Initial-Boundary Value Problems for Nonlinear … 283

Multiplying the extension V0 by the cutoff function ψ4(t)
.= ψ(t/4), we obtain

‖v0‖Xs,b,α
R+×(0,2)

≤ ‖ψ4V0‖Xs,b,α � ‖h‖
H

s+1
3

t

, ∀s, b,α ∈ R,

which completes the proof of estimate (2.14) for v0.

Estimate for v1. Using the identity ξ[eiaRξxe−aI ξx ] = 1
ia∂x [eiaRξxe−aI ξx ] and the fact

that e−aI ξx is exponentially decaying in ξ (since x > 0), we can take the ∂x -derivative
outside the integral sign in (2.19) to rewrite v1(x, t) as follows

v1(x, t) = 1

ia
∂x

∫ ∞

1
e−iξ3t eiaRξxe−aI ξxξ̂h(−ξ3)dξ, x ∈ R

+ t ∈ (0, 2). (2.22)

Next, we extend v1 from R
+ × (0, 2) to R × R via the formula below

V1(x, t)
.=∂x

ia

∫ ∞

1
e−iξ3t eiaRξxe−aI ξxρ(aI ξx)ξ̂h(−ξ3)dξ, x ∈ R, t ∈ R,

(2.23)

where ρ(x), 0 ≤ ρ(x) ≤ 1, x ∈ R, is an one-sided C∞ cutoff function defined as
follows outside the interval (−1, 0), and is increasing inside (−1, 0)

x

ρ
ρ(x)

0−1

ρ(x)
.=

{

1, x ≥ 0,

0, x ≤ −1.
(2.24)

Using the extension V1, for s > − 3
2 we get the desired estimate (2.14) for v1

‖v1‖Xs,b,α
R+×(0,2)

≤ ‖V1‖Xs,b,α ≤ cs,b‖h‖
H

s+1
3

t (R)
, 0 ≤ b <

1

2
< α ≤ s

3
+ 1. �

Other approaches for studying ibvp. There are two other approaches for studying
ibvp. The first method, developed by Bona, Sun and Zhang [2–4], uses the Laplace
transform in the time variable for solving the forced linear ibvp (see also [10]). The
second method, developed by Colliander and Kenig [8], and by Holmer [30, 31],
expresses an ibvp as a superposition of ivp.
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3 A Higher Dispersion KdV on the Half-Line

Next, we demonstrate the Fokasmethod for provingwell-posedness for the following
mth order KdV (KdVm) initial-boundary value problem

∂t u + (−1) j+1∂m
x u + uux = 0, x > 0, 0 < t < T, (3.1a)

u(x, 0) = u0(x), x > 0, (3.1b)

u(0, t) = g0(t), . . . . . . , ∂ j−1
x u(0, t) = g j−1(t), 0 < t < T, (3.1c)

where m = 2 j + 1, j = 1, 2, 3, . . . , and T < 1.

Step 1. Solving the forced linear ibvp. For KdVm this ibvp is

∂t u + ∂2 j+1
x u = f (x, t), x > 0, 0 < t < T, (3.2a)

u(x, 0) = u0(x), x > 0, (3.2b)

u(0, t) = g0(t), . . . . . . , ∂ j−1
x u(0, t) = g j−1(t), 0 < t < T . (3.2c)

Applying the Fokas unified transform method we get the solution formula

u(x, t) =S[u0, g0, . . . , g j−1; f ] .= 1

2π

∫ ∞

−∞
eiξx+iξmt [̂u0(ξ) + F(ξ, t)]dξ (3.3)

+
j

∑

p=1

j+1
∑

n=1

Cp,n

∫

∂D+
2p

eiξx+iξmt [̂u0(αp,nξ) + F(αp,nξ, t)]dξ

+
j

∑

p=1

j−1
∑

�=0

C ′
p,�

∫

∂D+
2p

eiξx+iξmt (iξ)2 j−�g̃�(ξ
m , T )dξ. αp,n

.= ei[m−(2p+1)+2n] π
m

We recall that the half-line Fourier transform û0(ξ) and the temporal Fourier
transform g̃� are defined as for the KdV (see (2.3)), while the time integral of the
half-line Fourier transform of the forcing f (·, t) is defined by

F(ξ, t)
.=

∫ t

0
e−iξmτ f̂ (ξ, τ )dτ =

∫ t

0
e−iξmτ

∫ ∞

0
e−iξx f (x, τ )dxdτ , Im(ξ) ≤ 0.
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The modified Bourgain space Xs,b,α(R2) for KdVm is defined by the norm

‖u‖2Xs,b,α
.=
∫∫

R2

[

(1 + |ξ|)2s(1 + |τ − ξm |)2b + χ|ξ|<1(1 + |τ |)2α
]

|û(ξ, τ )|2dξdτ ,

and the “temporal” Bourgain space Y s,b is defined by the norm

‖u‖2Y s,b
.=

∫∫

R2
(1 + |τ |) 2s

m (1 + |τ − ξm |)2b |̂u(ξ, τ )|2dξdτ . (3.4)

Step 2. Deriving Linear Estimates. For the Fokas solution formula (3.3), we have
the following result [29].

Theorem 7 (KdVm Linear estimates) For − j − 1
2 < s ≤ j + 1 the Fokas formula

(3.3) defines a solution u to the KdVm ibvp (3.2) (under appropriate compatibility
conditions) which is in the space Xs,b,α

R+×(0,T ) and satisfies the estimates

‖S[u0, g0, . . . , g j−1; f ]‖Xs,b,α(R+×(0,T )) (3.5)

�
[

‖u0‖Hs
x (0,∞) +

j−1
∑

�=0

‖g�‖
H

s+ j−�
m

t (0,T )
+ ‖ f ‖Xs,−b,α−1

R+×(0,T )

+ ‖ f ‖Y s,−b
R+×(0,T )

]

,

for some 0 < b < 1
2 and 1

2 < α < 1 (that can be described more precisely [29]).

Step 3. Proving that the iteration map is contraction. Like in the proof of KdV
ibvp, to show that the iteration map defined by the Fokas solution formula is contrac-
tion, we need to derive the bilinear estimates indicated by the KdVmnonlinearity and
the linear estimates (3.5) above. These are contained in the following result, which
is proved in [29].

Theorem 8 (KdVm (optimal) Bilinear estimates) For s > − j + 1
4 , we have the

bilinear estimates in the modified Bourgain spaces

‖∂x ( f · g)‖Xs,−b,α−1 ≤ cs,b,α‖ f ‖Xs,b′ ,α′ ‖g‖Xs,b′ ,α′ . (3.6)

For − j + 1
4 < s < m, we have the bilinear estimates in the “temporal” Bourgain

spaces
‖∂x ( f g)‖Y s,−b ≤ ‖∂x ( f g)‖Xs,−b + cs,b‖ f ‖Xs,b′ ‖g‖Xs,b′ . (3.7)

In the above estimates, b′ ≤ b and α′ ≤ α are some numbers in (0, 1).

Finally, using the linear and bilinear Estimates we show that the Fokas iteration map
has a fixed point in modified Bourgain spaces, thus establishing the well-posedness
of our KdVm ibvp (3.1) for the same critical Sobolev exponent as in case of the ivp
on the line proved in [12]. More precisely, we obtain the following optimal result
[29].
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Theorem 9 (KdVm ibvp (optimal) well-posedness) If − j + 1
4 < s ≤ j + 1, s �=

1
2 ,

3
2 , . . . , j − 1

2 , then for any initial data u0 ∈ Hs(0,∞), boundary data g� ∈
H

1
m (s+ j−�)(0, T ), � = 0, 1, . . . , j − 1, and some lifespan 0 < T0 ≤ T < 1

2 , there
is a solution for the KdVm ibvp (3.1), which is in Xs,b,α

R+×(0,T0)
and which satisfies the

size estimate

‖u‖Xs,b,α
R+×(0,T0)

≤ C

(

‖u0‖Hs (R+) +
j−1
∑

�=0

‖g�‖H
s+ j−�

m (0,T )

)

, (3.8)

for some b ∈ (0, 1
2 ) and α ∈ ( 12 , 1). Also, an estimate for the lifespan is given by

T0 = c0
(

1 + ‖u0‖Hs (R+) +
j−1
∑

�=0
‖g�‖H

s+ j−�
m (0,T )

)−4/β
, where β > 0 is depending on

s, b and m. Furthermore, the solution is unique in Xs,b,α
R+×(0,T0)

. Finally, the data to
solution map {u0, g0, . . . , g j−1} 	→ u is locally Lipschitz continuous.

Progress in ibvp and Conclusion. Via the Fokas method, for the KdV ibvp we have
obtained analogues to ivp optimal well-posedness results. The Fokas method works
equally well for higher order nonlinear equations, like the KdVm, providing again
optimal ibvp results. Also, via the Fokas method we have studied the NLS ibvp on
the half-line [17, 25], and the NLS ibvp on the half-plane [24, 26]. Concluding, we
recall that the Fokasmethod [13, 15], is motivated by the inverse scattering transform
and provides a novel approach for solving initial-boundary value problems for linear
and integrable nonlinear partial differential equations. It is the first and crucial step of
our work here. It provides the solution formula for the forced linear ibvp and opens
the way for deriving good linear estimates analogues to those for ivp. For further
results on ibvp for KdV, NLS, Boussinesq, heat, and related equations we refer to
[1, 9, 13, 14, 14, 18–21, 23–25, 27, 28, 41–43, 45] and the references therein.
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Abstract In this short article, we use the formula provided by the Fokas method
for initial-boundary-value problems (ibvp) for the linearised KdV equation on the
half-line for positive time. Depending on the sign of the dispersive term, the long
range asymptotics can depend in a very sensitive way on the behavior of the data
at the point (0, 0). Such instabilities have apparently not been noticed before and
they are expected to appear for a large set of equations. As to which equations are
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1 Introduction

When the Fokas method was introduced by Fokas about 25 years ago [5] (see also
[6–8]), it was initially conceived as a method for solving initial-boundary value
problems for completely integrable nonlinear equations like KdV, NLS, or more
generally equations that can be formulated as evolutions in time of a linear differential
operator L(t) governed by the famous Lax pair equation dL/dt = BL − LB, where
B(L) is usually some auxiliary anti-symmetric linear differential operator.

While the study of an initial-value problem for KdV involves the study of the
scattering transform for the associated linear Schrödinger operator L , the role of
B being somewhat trivialised, the study of the initial—boundary value problem
involves the joint study of scattering data for both operators L , B; thus the term
“Unified Transform”. The interdependence of the two operators renders this new
method a highly nontrivial extension of the standard scattering method.

Even though this method was initially proposed for nonlinear problems, it soon
became evident that it was also applicable to linear problems. While, before the new
method, the existing tools for boundary value problems of linear PDEs (like the
Laplace or the sine transform) were explicitly applicable to very specific equations,
the newmethod has been spectacularly successful in a muchwider class of problems,
of any order, even elliptic [1], even with non-constant coefficients and in all sorts
of domains in the (x, t)-plane; see, for instance, [2–4] and references cited therein.
In fact, the linear method even offered some insights to the nonlinear integrability
theory by helping to realize that Lax pairs provide the generalization of the divergence
formulation from a separable linear to an integrable nonlinear PDE [9]. Not only very
explicit formulae for the solutions are provided, but such formulae are very efficient
numerically. It is fair to say that the Fokas method has thus rejuvenated the study of
linear equations.

In this paper, we focus on one simple consequence of the Fokas theory. We report
on the discovery of an instability phenomenon, apparently not noticed before. Let
us, for example, consider the very specific initial-boundary value problem for the
two linear KdV equations:

⎧
⎨

⎩

∂t u + ∂xxxu = 0, (x, t) ∈ R
+ × R

+
u(x, 0) = u0(x), x ∈ R

+
u(0, t) = g0(t), t ∈ R

+,

(1)

and ⎧
⎪⎪⎨

⎪⎪⎩

∂t u − ∂xxxu = 0, (x, t) ∈ R
+ × R

+
u(x, 0) = u0(x), x ∈ R

+
u(0, t) = g0(t), t ∈ R

+
ux (0, t) = g1(t), t ∈ R

+,

(2)

where the initial and boundary data u0, g0 and g1 are functions defined in R
+ and

satisfy appropriate conditions (see Theorem1 and Sect. 3).
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2 The Equation ∂t u + ∂xxxu = 0

The Fokas formula for the solution of (1) is

u(x, t) = 1

2π

∞∫

λ=−∞
eiλx−ω(λ)t û0(λ)dλ

+ 1

2π

∫

λ∈Γ

eiλx−ω(λ)t [αû0(αλ) + α2û0(α
2λ)]dλ

− 1

2π

∫

λ∈Γ

eiλx−ω(λ)t3λ2 g̃0(ω(λ), t)dλ, (3)

where û0(λ) =
∞∫

y=0
e−iλyu0(y)dy (defined for λ ∈ C with � λ ≤ 0), g̃0(ω(λ), t) =

t∫

τ=0
eω(λ)τ g0(τ )dτ with ω(λ) = −iλ3, α = e2π i/3, and Γ = ∂Ω− with Ω− = {λ ∈

C : Im λ ≥ 0 and Reω(λ) ≤ 0} (Fig. 1).
Theorem 1 (see [3]) If u0(x) ∈ S([0,∞)

)
and g0(t) ∈ C∞([0,∞)

)
then the func-

tion u(x, t), defined by (3), satisfies the following relation

lim
x → +∞

∂ku(x, t)

∂xk
= 0 (4)

for every nonnegative integer k, uniformly for t in compact subsets of (0,∞).

Proof Firstly, let us fix a t > 0. By appropriate deformation of the contours, we have
that

Fig. 1 The contour Γ is the
boundary of Ω−
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1

i k
∂k

∂xk

[ ∞∫

λ=−∞
eiλx−ω(λ)t û0(λ)dλ

]

=

1∫

λ=−1

λkeiλx−ω(λ)t û0(λ)dλ

+
( −1∫

λ=−∞
+

∞∫

λ=1

)

λkeiλx−ω(λ)t [û0(λ) − σN (λ)]dλ

+
∫

Im λ=1
−∞<Re λ≤−1 or 1≤Re λ<∞

λkeiλx−ω(λ)tσN (λ)dλ

+
∫

λ∈[−1+i,−1]∪[1,1+i]
λkeiλx−ω(λ)tσN (λ)dλ (5)

provided that N > k.
We claim that

lim
x → ∞

∂k

∂xk

[ ∞∫

λ=−∞
eiλx−ω(λ)t û0(λ)dλ

]

= 0. (6)

For its proof, it suffices to show the following:

lim
x → ∞

1∫

λ=−1

λkeiλx−ω(λ)t û0(λ)dλ = 0 (7)

lim
x → ∞

( −1∫

λ=−∞
+

∞∫

λ=1

)
(
λkeiλx−ω(λ)t [û0(λ) − σN (λ)]dλ

) = 0 (8)

lim
x → ∞

∫

Im λ=1
−∞<Re λ≤−1 or 1≤Re λ<∞

λkeiλx−ω(λ)tσN (λ)dλ = 0 (9)

lim
x → ∞

∫

λ∈[−1+i,−1]∪[1,1+i]
λkeiλx−ω(λ)tσN (λ)dλ = 0. (10)
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Applying the Riemann–Lebesgue lemma to the function

ϕ(λ) =
{

λke−ω(λ)t û0(λ) for −1 ≤ λ ≤ 1
0 for λ ∈ R − [−1, 1]

which is clearly L1 in R, we obtain (7).
Similarly, (8) follows from the Riemann–Lebesgue lemma applied to the function

Φ(λ) =
{

λke−ω(λ)t [û0(λ) − σN (λ)] for λ ∈ R − [−1, 1]
0 for −1 ≤ λ ≤ 1

which is also L1 in R, since N > k.
Now, for λ = ξ + iη with η = 1,

∣
∣eiλx

∣
∣ = e−x . Therefore, the absolute value of

the integral in (9) is

≤ e−x
∫

Im λ=1
−∞<Re λ≤−1 or 1≤Re λ<∞

∣
∣λke−ω(λ)tσN (λ)

∣
∣d|λ|,

and (9) follows.
Finally, for λ = ξ + iη,

∣
∣eiλx

∣
∣ = e−ηx . It follows that if λ = ξ + iη ∈ [−1 +

i,−1] ∪ [1, 1 + i] and λ 	= ±1 then η > 0, whence lim
x → ∞[λkeiλx−ω(λ)tσN (λ)] = 0.

Therefore, (10) follows from Lebesgue’s dominated convergence theorem.
Also,

lim
x → ∞

∫

Γ

λkeiλx−ω(λ)t [αû0(αλ) + α2û0(α
2λ)]dλ = 0, (11)

since the factor eiλx in the above integral has absolute value e−√
3x |λ|/2 when λ ∈ Γ ,

and, for x ≥ 1, the integrand is dominated by |λ|k−1e−√
3|λ|/2—up to a constant—and

∫

Γ

|λ|k−1e−
√
3
2 |λ|d|λ| < +∞.

Similarly,

lim
x → ∞

∫

Γ

λkeiλx−ω(λ)t3λ2 g̃0(ω(λ), t)dλ = 0. (12)

Now, (4) follows from (3), (6), (11) and (12).
Finally, it is easy to see that all the above limits are uniform for t in compact

subsets of (0,∞). �

Theorem 2 ([3])With the assumptions as in Theorem1, the function u(x, t), defined
by (3), satisfies the following equation
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lim
x → +∞[xu(x, t)] = 0 (13)

uniformly for t in compact subsets of (0,∞).

Proof With N sufficiently large, integration by parts gives

i x

∞∫

λ=−∞
eiλx−ω(λ)t û0(λ)dλ

=
1∫

λ=−1

d

dλ
(eiλx )e−ω(λ)t û0(λ)dλ

+
( −1∫

λ=−∞
+

∞∫

λ=1

)(
d

dλ
(eiλx )e−ω(λ)t [û0(λ) − σN (λ)]dλ

)

+
∫

Im λ=1
−∞<Reλ≤−1 or 1≤Re λ<∞

d

dλ
(eiλx )e−ω(λ)tσN (λ)dλ

+
∫

λ∈[−1+i,−1]∪[1,1+i]

d

dλ
(eiλx )e−ω(λ)tσN (λ)dλ

= −
1∫

λ=−1

eiλx
d

dλ
[e−ω(λ)t û0(λ)]dλ

−
( −1∫

λ=−∞
+

∞∫

λ=1

)(

eiλx
d

dλ
{e−ω(λ)t [û0(λ) − σN (λ)]}dλ

)

+
∫

Imλ=1
−∞<Re λ≤−1 or 1≤Re λ<∞

eiλx
d

dλ
[e−ω(λ)tσN (λ)]dλ

−
∫

λ∈[−1+i,−1]∪[1,1+i]
eiλx

d

dλ
[e−ω(λ)tσN (λ)dλ], (14)

since the “intermediate evaluations” cancel each other.
Now, the integrals in RHS of (14) tend to zero, as x → +∞, by the Riemann–

Lebesgue lemma, as in the proof of Theorem1. Therefore, (14) implies that

lim
x → ∞

(

x

∞∫

λ=−∞
eiλx−ω(λ)t û0(λ)dλ

)

= 0. (15)
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Next, by the presence of the factor eiλx and the fact that integration is taken on
Γ ∩ {|λ| ≥ 1},

lim
x → ∞

[

x
∫

Γ ∩{|λ|≥1}
eiλx−ω(λ)t [αû0(αλ) + α2û0(α

2λ)]dλ

]

= 0,

lim
x → ∞

[

x
∫

Γ ∩{|λ|≥1}
eiλx−ω(λ)t3λ2g̃0(ω(λ), t)dλ

]

= 0. (16)

On the other hand, writing xeiλx = d(eiλx )/ idλ and integrating by parts, we obtain

lim
x → ∞

[

x
∫

Γ ∩{|λ|≤1}
eiλx−ω(λ)t [αû0(αλ) + α2û0(α

2λ)]dλ

]

= 0,

lim
x → ∞

[

x
∫

Γ ∩{|λ|≤1}
eiλx−ω(λ)t3λ2g̃0(ω(λ), t)dλ

]

= 0, (17)

Now, (13) follows from (15), (16) and (17). �

Examining the proofs of the previous two theorems, we easily see that we can prove
the following more general theorem.

Theorem 3 ([3])With the assumptions as in Theorem 1, the function u(x, t), defined
by (3), satisfies the following equation:

lim
x → +∞

(

x� ∂ku(x, t)

∂xk

)

= 0

for nonnegative integers k and �, uniformly for t in compact subsets of (0,∞).

3 The Equation ∂t u − ∂xxxu = 0

Assuming that u0(x) ∈ S([0,∞)
)
and g0(t), g1(t) ∈ C∞([0,∞)

)
, the Fokas solu-

tion for (2) is

u(x, t) = 1

2π

[ ∞∫

λ=−∞
eiλx−ω(λ)t û0(λ)dλ −

∫

∂Ω−
1

eiλx−ω(λ)t û0(αλ)dλ −
∫

∂Ω−
2

eiλx−ω(λ)t û0(α
2λ)dλ

]

+ 1

2π

[ ∫

∂Ω−
1

eiλx−ω(λ)t (1 − α2)λ2 g̃0(ω(λ), t)dλ +
∫

∂Ω−
2

eiλx−ω(λ)t (1 − α)λ2 g̃0(ω(λ), t)dλ

]
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− i

2π

[ ∫

∂Ω−
1

eiλx−ω(λ)t (1 − α)λg̃1(ω(λ), t)]dλ +
∫

∂Ω−
2

eiλx−ω(λ)t (1 − α2)λg̃1(ω(λ), t)]dλ

]

,

(18)

for x > 0 and t > 0, where ω(λ) = iλ3, α = e2π i/3,

Ω−
1 = {λ ∈ C : Im λ ≥ 0, Re λ ≤ 0, and Reω(λ) ≤ 0}

= {λ ∈ C : (2π/3) ≤ arg λ ≤ π},

and

Ω−
2 = {λ ∈ C : Im λ ≥ 0, Re λ ≥ 0, and Reω(λ) ≤ 0}

= {λ ∈ C : 0 ≤ arg λ ≤ π/3}.

See also Fig. 2.

Fig. 2 The sets Ω−
1 and

Ω−
2 , and their boundaries

For the function u(x, t), defined by (18), the following theorems hold. (Detailed
proofs will appear in [2].)

Theorem 4 ([2])With fixed t1 > t0 > 0, the solution u(x, t), given by (18), satisfies
the following:
As x → +∞ and uniformly for t0 ≤ t ≤ t1,

1st u(x, t) = [u0(0) − g0(0)]
√
3 4
√
3√

π

t1/4

x3/4
sin

(
2

3
√
3

x3/2√
t

− 5π

12

)

+ O(1/x),
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2nd
∂u(x, t)

∂x
= [u0(0) − g0(0)]2

√
3 4
√
3√

π

1

t1/4x1/4
cos

(
2

3
√
3

x3/2√
t

− 5π

12

)

+[u′
0(0) − g1(0)]

√
3 4
√
3√

π

t1/4

x3/4
sin

(
2

3
√
3

x3/2√
t

− π

12

)

+ O(1/x),

3rd
∂2u(x, t)

∂x2
= −[u0(0) − g0(0)]2

4
√
3√

π

x1/4

t3/4
sin

(
2

3
√
3

x3/2√
t

− 5π

12

)

+[u′
0(0) − g1(0)]2

√
3 4√3√
π

1

t1/4x1/4
cos

(
2

3
√
3

x3/2√
t

− π

12

)

+ O(1/x),

4th
∂3u(x, t)

∂x3
= −[u0(0) − g0(0)] 2

4
√
3
√

π

x3/4

t5/4
cos

(
2

3
√
3

x3/2√
t

− 5π

12

)

+[u′
0(0) − g1(0)]2

√
3 4
√
3√

π

x1/4

t3/4
sin

(
2

3
√
3

x3/2√
t

− π

12

)

+[u′′′
0 (0) − g′

0(0)]
√
3 4
√
3√

π

t1/4

x3/4
sin

(
2

3
√
3

x3/2√
t

− 5π

12

)

+ O(1/x).

Theorem 5 ([2])With the notation and in the sense of Theorem4, we have:

1st If u0(0) = g0(0) and u′
0(0) = g1(0), then

∂3u(x, t)

∂x3
= [u′′′

0 (0) − g′
0(0)]

√
3 4
√
3√

π

t1/4

x3/4
sin

(
2

3
√
3

x3/2√
t

− 5π

12

)

+ O(1/x).

2nd If lim
x → ∞

∂2u(x, t)

∂x2
exists for some t > 0, then u0(0) = g0(0). Conversely, if

u0(0) = g0(0) then

∂2u(x, t)

∂x2
= [u′

0(0) − g1(0)]2
√
3 4
√
3√

π

1

t1/4x1/4
cos

(
2

3
√
3

x3/2√
t

− π

12

)

+ O(1/x),

uniformly for t in compact subsets of (0,+∞).

3rd For n ≥ 4,

∂nu(x, t)

∂xn
= [u0(0) − g0(0)] 2

3(2n−3)/4
√

π

x (2n−3)/4

t (2n−1)/4
·

· Re
{

i n−1 exp

[

i

(
2

3
√
3

x3/2√
t

− 5π

12

)]}

+ O(x (2n−5)/4).

4th Let k ∈ N. If the limit lim
x → ∞

∂4k−1u(x, t)

∂x4k−1
exists for some t > 0, then

u(3�−3)
0 (0) = g(�−1)

0 (0) and u(3�−2)
0 (0) = g(�−1)

1 (0), for � = 1, 2, . . . , k. (19)

Conversely, (19) implies that



298 A. Chatziafratis et al.

lim
x → ∞

∂nu(x, t)

∂xn
= 0,

uniformly for t in compact subsets of (0,+∞), for n = 0, 1, 2, . . . , 4k.

Comment: The above theorems show that the behavior of the solution, for large x ,
depends in a very sensitive way on the given data at the point (x, t) = (0, 0).

4 Conclusion

Given the enormous power of today’s computers, the role of PDE theory is partly rele-
gated to the qualitative study of solutions, with particular attention to instabilities. An
interesting consequence of the spectacularly successful Fokas theory for the solution
of initial-boundary value problems for linear PDEs is the observation of instabili-
ties. For some (not all) equations, the behavior of the solution, for large x , depends
in a very sensitive way on the compatibility conditions at the point (x, t) = (0, 0).
Apparently this is a phenomenon not observed before. In the nonlinear case, the
stable/unstable dichotomy is apparent mostly in the zero dispersion (semiclassical)
limit and is related to the self-adjoint/non-self-adjoint dichotomy for the associated
(spatial) Lax operator ([10]). It would be interesting to study what kind of linear evo-
lution equations exhibit long-range instabilities and which equations do not. Also,
it will be interesting to study whether there is a similar effect on long-time asymp-
totics. Such investigations for large values of spatial and temporal variables, for a
variety of dispersive equations, are in progress and results will appear in subsequent
publications. For the particular case of the linearized NLS with t-periodic boundary
data, we refer to [11] where the large-t behavior of the solution is considered.
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Fokas Diagonalization

D. A. Smith

Abstract Amethod for solving linear initial boundary value problems was recently
reimplemented as a true spectral transform method. As part of this reformulation,
the precise sense in which the spectral transforms diagonalize the underlying spatial
differential operator was elucidated. That work concentrated on two point initial
boundary value problems and interface problems on networks of finite intervals. In
the present work, we extend these results, bymeans of three examples, to new classes
of problems: problems on semiinfinite domains, problems with nonlocal boundary
conditions, and problems in which the partial differential equation features mixed
derivatives. We show that the transform pair derived via the Fokas transform method
features the same Fokas diagonalization property in each of these new settings, and
we argue that this weak diagonalization property is precisely that needed to ensure
success of a spectral transform method.

Keywords Spectral method for PDE · Fourier transform · Unified transform
method · Initial boundary value problem

1 Introduction

Fourier transform methods for solving initial boundary value problems for partial
differential equations were instrumental to the advances of mathematical physics
in the 19th century. They essentially all work by reexpressing a spatial differential
operator as a diagonal multiplication operator acting in the spectral domain. This
diagonalization reduces the spatiotemporal partial differential equation to an ordinary
differential equation in the time variable only. After determining the solution of the
ordinary differential equation, an inverse transform is used to map back from the

D. A. Smith (B)
Division of Science, Yale-NUS College, Singapore, Singapore
e-mail: dave.smith@yale-nus.edu.sg

Department of Mathematics, National University of Singapore, Singapore, Singapore

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Bountis et al. (eds.), Chaos, Fractals and Complexity, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-031-37404-3_21

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37404-3_21&domain=pdf
dave.smith@yale-nus.edu.sg
 854 54435 a 854 54435 a
 
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21
https://doi.org/10.1007/978-3-031-37404-3_21


302 D. A. Smith

spectral domain to coordinate space, yielding the solution of the original initial
boundary value problem.

In the present work, we describe an advance on this method. Specifically, we
explain how a family of solutionmethods for initial boundary value problems, known
collectively as the Fokas transform method, or unified transform method, and devel-
oped over the past quarter century, can be interpreted as an advance on the classical
Fourier transform method. We identify, within the Fokas transform method, pairs
of transforms and inverse transforms that can be used to solve each problem. We
show that, although these transforms do not diagonalize the relevant spatial differ-
ential operators in the usual sense, they each posses precisely the diagonalization
property that is required for their use in a spectral transform method. This weak
diagonalization property is motivated in Sects. 1.1–1.4, and characterized informally
in Criterion2. In Sect. 2, it is precisely stated and proved for three examples which
are all beyond the class covered in the recent article [1].

1.1 The Classical Spectral Transform Method

Suppose we wish to solve a problem like

Problem (Half line Dirichlet problem for the heat equation)

[∂t − ∂2
x ]q(x, t) = 0 (x, t) ∈ (0,∞) × (0, T ), (1.1.PDE)

q(x, 0) = Q(x) x ∈ [0,∞), (1.1.IC)

q(0, t) = 0 t ∈ [0, T ], (1.1.BC)

in which.Q ∈ S[0,∞), the space of smooth functions on the half line, rapidly decay-
ing along with all of their derivatives. The differential operator .L defined by

Lφ = −φ′, Dom L = {φ ∈ S[0,∞) : φ(0) = 0} (1.2)

is such that, interpreting .L as always acting in the spatial variable, we may
express (1.1.PDE) as .[∂t + L]q(x, t) = 0.

Consider some hypothetical transform .F which accepts a function of the spatial
variable .x and returns a function of a new “spectral” variable .λ. We will apply this
transform in the spatial variable to functions of space and timeto yield functions of.λ
and .t . We suppose that this can be done in such a way that the transform commutes
with the temporal derivative operator. Suppose also that the transform is linear.

We can apply such a transform, to (1.1.PDE) to get

d

dt
F[q](λ; t) + F[Lq](λ; t) = 0.
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If.F has further the diagonalization property that.F[Lφ](λ) = λ2F[φ](λ), then this
simplifies to the temporal ordinary differential equation

d

dt
F[q](λ; t) + λ2F[q](λ; t) = 0

for .F[q](λ; t). Its solution is

F[q](λ; t) = e−λ2tC(λ),

and evaluation at .t = 0 combined with appeal to (1.1.IC) establishes that .C(λ) =
F[Q](λ). Finally, we suppose that there exists another transform.F−1 which allows
us to map back from functions of the spectral variable to functions of.x , and that this
second transform is an inverse of the original transform in the sense that, for all .x ,
.F−1[F[φ]](x) = φ(x). Then

q(x, t) = F−1
[
F[q]( · ; t)](x) = F−1

[
e−·2t F[Q]

]
(x).

This is a representation of the solution of problem (1.1) which relies only on the
initial datum .Q and this speculative spectral transform. So it remains only to find
such a transform and the method is complete. It is worth noting that, because we have
not explicitly used (1.1.BC) in the solution method, they must be connected to the
transform itself. Consequently, if problem (1.1) and another with different boundary
conditions are to have different solutions, then they must have different associated
transforms. However, this makes the method very general; by simply selecting a
different transform, the method is immediately applicable to the Neumann or Robin
problems for the heat equation on the half line. The method also requires little
modification before its application to partial differential equations with different .L ,
or even different domains.

For this problem, of course, such.F is well known: the Fourier sine transform. For
the Neumann problem, the .F should be the Fourier cosine transform. For the finite
interval Dirichlet heat problem, the discrete Fourier sine transform, whose inverse
is more commonly called the Fourier sine series, is the right transform. But with a
new transform required for each problem, we quickly exhaust the classical spectral
transforms.

1.2 Derivation of Transforms

For finite interval problems, the appropriate transform is typically derived by sep-
aration of variables and solution of an appropriate Sturm–Liouville problem. The
classical Sturm–Liouville theory does not apply to problems of higher order, non-
selfadjoint problems, or problems with more general types of boundary conditions,
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butmuch is known formany such problems. Twopoint boundary value problems have
seen the most attention, where Birkhoff’s work [4] was instrumental in showing that
the crucial completeness and orthogonality results of Sturm–Liouville theory may
be extended to a broad class. This work was greatly expanded on over the next few
decades, but Jackson and Hopkins soon identified examples where completeness of
eigenfunctions fails [22, 23], dooming the usual approach to definition of transform
pairs using eigenfunctions of the spatial differential operator and those of its adjoint.
Operators have been classified as “regular”, “irregular”, and “degenerate”, with var-
ious definitions of each class, but the general theme of regular operators having all
the properties we need to construct transform pairs, irregular operators having some
impediments that make the construction more delicate, and degenerate operators,
such as those identified by Jackson and Hopkins, usually considered beyond scope.
Full surveys are given by Locker [25, 26], with updates for irregular operators and
beyond two point operators provided by Freiling [20].

An alternative approach is required to derive the appropriate transform pair, at
least for degenerate irregular operators. As the Fokas transform method is a spectral
method, it is reasonable to hope that it may be a source for the appropriate transforms.
As we shall argue, the situation is slightly more complex: the transformmethod itself
must be modified to admit the transforms derived via the Fokas transform method,
but the modification is natural. A brief discussion of the problems solved via the
Fokas transform method is appropriate. Rather than attempting a full survey, we
shall refer to a few examples that emphasize the classes of problems solved, because
such variations may impact on the spectral transform method. The Fokas transform
method has been used to solve problems on the finite interval [15, 31], the half
line [19], and interface domains [8–10]. It has also been used to solve problems with
multipoint [30] and nonlocal [27] conditions replacing the usual boundary conditions.
Extension to partial differential equations involving mixed derivatives have been
addressed [12, 24], and the method is also well understood for linear systems of
partial differential equations [7]. The Fokas transform method is much broader than
the examples listed so far, having been applied to elliptic and hyperbolic equations
without a time variable [5, 6, 13] and integrable semilinear equations. These, along
with semidiscrete problems [3], and problems where the boundaries [16, 17] or
boundary conditions [21, 33] move in time, are not discussed in this paper, because
spectral methods in which the spectrum is time dependent are necessarily more
complex. See [14, 28] and their references and citations for a picture of the broader
Fokas transform method and [11] for an introduction.

1.3 Example Problems

We list here three problems which cannot be treated using the classical spectral trans-
forms. All of these problems have been solved using the Fokas transformmethod, and
references are provided for the derivation of their corresponding Fokas transforms.
We select these particular problems for attention because their solution representa-
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tions are relatively simple, yet the problems are sufficiently varied both to highlight
the broad applicability of the Fokas transform method itself and to demonstrate
that our reinterpretation of this method is equally universal. Among these examples
appear no two point boundary value problems, multipoint problems on finite inter-
vals, nor interface problems on networks of finite intervals, because there already
exists a complete charecterization of Fokas diagonalization in these settings [1].

Problem (Half line Neumann problem for the Stokes equation)

[∂t + ∂3
x ]q(x, t) = 0 (x, t) ∈ (0,∞) × (0, T ), (1.3.PDE)

q(x, 0) = Q(x) x ∈ [0,∞), (1.3.IC)

qx (0, t) = 0 t ∈ [0, T ], (1.3.BC)

in which .Q ∈ S[0,∞). We also define the differential operator .L by

Lφ = φ′′′, Dom L = {
φ ∈ S[0,∞) : φ′(0) = 0

}
(1.4)

to represent the spatial part of the problem.

The Dirichlet version of problem (1.3) was solved using the Fokas transformmethod
in [11, Sect. 3.3]. It is straightforward to adapt their argument to the Neumann
case. The finite interval two point analogue of .L , with two supplementary boundary
conditions provided at the other end of the spatial interval is precisely the operator
Jackson and Hopkins identified as having incomplete eigenfunctions [22, 23].

Problem (Finite interval problem for the heat equation with a nonlocal condition)

[∂t − ∂2
x ]q(x, t) = 0 (x, t) ∈ (0,∞) × (0, T ), (1.5.PDE)

q(x, 0) = Q(x) x ∈ [0, 1], (1.5.IC)
∫ 1

0
K (y)q(y, t)dy = 0 = qx (1, t) t ∈ [0, T ], (1.5.BC)

in which.Q ∈ C[0, 1] and.K : [0, 1] → R is both supported in a neighbourhood of.0
and globally sufficiently smooth. The corresponding differential operator .L is given
by

Lφ = −φ′′, Dom L =
{
φ ∈ C[0, 1] :

∫ 1

0
K (y)φ(y)dy = 0 = φ′(1)

}
. (1.6)

Problem (1.5) was solved using the Fokas transformmethod in [27]. It has a physical
application in the problem of determining the concentration of a translucent mixture
using a light sensor of finite width.
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Problem (Half line Dirichlet problem for the linearized BBM equation)

[∂t (1 − ∂2
x ) + ∂x ]q(x, t) = 0 (x, t) ∈ (0,∞) × (0, T ), (1.7.PDE)

q(x, 0) = Q(x) x ∈ [0,∞), (1.7.IC)

q(0, t) = 0 t ∈ [0, T ], (1.7.BC)

where .Q ∈ S[0,∞) and .Q(0) = 0. We also define the differential operators .L and
.M by

Lφ = φ′, Dom L = {φ ∈ S[0,∞) : φ(0) = 0} , (1.8a)

Mφ = 1 − φ′′, Dom M = Dom L , (1.8b)

so that the partial differential and boundary conditions can be represented as.[∂t M +
L]q( · , t) = 0.

Problem (1.7) was solved in [12] using the Fokas transform method, as part of the
full class of Robin problems. We specialise here to the Dirichlet problem so that the
exposition may be aided by simpler formulae. Problem (1.7) represents the small
amplitude linearization of the bidirectional water wave model derived by Benjamin,
Bona, and Mahoney [2].

1.4 A More General Spectral Transform Method

Suppose we aim to solve one of the above problems. The classical Fourier sine and
cosine transforms (or their discrete analogues for the finite interval problem) will
not work. Indeed, for the above problems, there are no known transforms that have
both properties of diagonalizing the spatial differential operator and being invert-
ible. Therefore, our simple transform method will not succeed. We provide here the
archetype of a more general transformmethod which, as we argue in Sect. 2, is appli-
cable to these problems.We describe the method for problem (1.3), but the method is
identical for problem (1.5) and requires only natural generalization to problem (1.7).

Suppose we have a transform.F and apply it in the spatial variable to (1.3.PDE),
obtaining

d

dt
F[q](λ; t) + F[Lq](λ; t) = 0,

for a certain set of complex .λ. Because our transform may not diagonalize the dif-
ferential operator .L , we must admit the possibility that .L is diagonalized with a
remainder:

F[Lq](λ; t) = ω(λ)F[q](λ; t) + R[q](λ; t). (1.9)
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Then
d

dt
F[q](λ; t) + ω(λ)F[q](λ; t) + R[q](λ; t) = 0.

Integration by parts tells us that the “eigenvalue”.ω(λ)must be.−iλ3 and the boundary
terms are collected into the remainder transform.R[q](λ; t).

We solve the ordinary differential equation for.F[q](λ; t), treating the remainder
transform as if it were an inhomogeneity. Indeed, multiplying by .eω(λ)t yields

d

dt

(
eω(λ)t F[q](λ; t)) + eω(λ)t R[q](λ; t),

and integration in time from.0 to.t , followed by application of (1.3.IC) and rearrange-
ment yields

F[q](λ; t) = e−ω(λ)t F[Q](λ) −
∫ t

0
eω(λ)(s−t)R[q](λ; s). (1.10)

Arriving at (1.10) has required no special properties of the transform other than
linearity and commutativity with the temporal derivative, both in the first step. We
have not yet assumed that the transform diagonalizes.L . At this point, so that we may
obtain an expression for .q itself, we must assume that the transform is invertible.
We denote the inverse by .F−1, and assume it too is linear. Then equation (1.10)
simplifies to

q(x, t) = F−1
[
e−ωt F[Q]] (x) − F−1

[∫ t

0
e(s−t)ωR[q]( · ; s)ds

]
(x). (1.11)

Unfortunately, our earlier pretence notwithstanding, .R[q] is not data, so (1.11) does
not provide an effective representation of the solution to problem (1.3). To proceed,
let us suppose further that the latter term evaluates to zero whenever .q satisfies the
boundary conditions. Then the solution of the initial boundary value problem has
been obtained:

q(x, t) = F−1 [
e−ωt F[Q]] (x). (1.12)

The extra assumption is a restriction on.R, so may be seen as part of the replace-
ment for the diagonalization property of the transform. Therefore, the requirements
on the transform.F to make the spectral transform method work are:

Criterion 1 .F is invertible, and both .F and its inverse .F−1 are linear.

Criterion 2 .F diagonalises the differential operator .L (which describes the spatial
part of the initial boundary value problem) in the sense of (1.9), with remainder .R
having the property that, provided.q is sufficiently smooth and satisfies the boundary
conditions, the latter term of (1.11) evaluates to .0.

Clearly, each initial boundary value problem will require its own transform .F .
But transforms obeying analogues of both criteria 1 and 2 have been constructed for
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problems posed on the finite interval, with arbitrary constant coefficient differen-
tial operator and any linear boundary conditions [1]. Because these transform pairs
were discovered via the Fokas transform method, we call the weak diagonalization
criterion 2 Fokas diagonalization. As we shall argue below, there exist transforms
that are tailored to each of the problems introduced above, which also exhibit Fokas
diagonalization, so the above generalized transform method may be applied without
hindrance. Specifically, for each problem, we shall define the transform pair and
prove Criteria1 and 2 as theorems. Beyond [1], the papers [18, 29, 32] provide an
earlier view of Fokas diagonalization and the spectral transform method for two
point problems and half line problems in which the spatial operator has monomial
character.

2 Results

2.1 Half Line Neumann Problem for the Stokes Equation

Adapting [11, Sect. 3.3], the Fokas transform pair

F[φ](λ) =
{∫ ∞

0 e−iλyφ(y)dy λ ∈ R,
∫ ∞
0 φ(y)

[
α2e−iαλy + αe−iα2λy

]
dy λ ∈ ∂D+,

(2.1a)

F−1[ f ](x) = 1

2π

∫

R∪∂D+
eiλx f (λ)dλ x ∈ [0,∞), (2.1b)

may be derived. Here, .D+ is the sector .arg(λ) ∈ ( π
3 , 2π

3 ), .∂D+ is the positively
oriented contour traversing its boundary, the contour denoted .R is oriented in the
increasing sense, and the primitive cube root of unity .α = e2πi/3.

Proposition 3 If .F, F−1 are defined by (2.1), then they are both linear and, for all
.φ sufficiently smooth and all .x ∈ (0, 1), .F−1[F[φ]](x) = φ(x).

Proof These are integral transforms, so they inherit linearity from the improper
definite integrals and contour integrals of which they are composed.

By definition,

F−1[F[φ]](x) = 1

2π

∫ ∞

−∞
eiλx F[φ](λ)dλ + 1

2π

∫

∂D+
eiλx F[φ](λ)dλ

= φ(x) + 1

2π

∫

∂D+
eiλx F[φ](λ)dλ, (2.2)

where the second equality holds for all .x ∈ (0,∞) at which .φ is continuous, and is
justified by the usual Fourier inversion theorem for piecewise smooth .φ. It remains
only to show that the remaining contour integral term evaluates to .0.
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The definition of.F[φ](λ) is analytically extensible from.∂D+ to a neighbourhood
of the sector .D+. Doing so will necessarily overwrite the definition of .F[φ](λ) on
part of .R, but that is inconsequential as we have already removed that part of the
domain from consideration; we, for the purposes of the rest of this proof, consider
.F[φ](λ) as being defined by its.∂D+ formula everywhere on.C. Integrating by parts,
we see that, as .λ → ∞ from within .clos D+,

F[φ](λ) = i

λ

{[
φ(y)

(
αe−iαλy + α2e−iα2λy

)]∞
0

−
∫ ∞

0
φ′(y)

(
αe−iαλy + α2e−iα2λy

)
dy

}
= O (

λ−1) ,

and this decay is uniform in .arg(λ) within the given sector. Hence, by Jordan’s
lemma and Cauchy’s theorem, the remaining integral on the right of (2.2) evaluates
to .0. �

Theorem 4 Suppose.F, F−1 are definedby (2.1). There exists a remainder transform
.R for which, for all .λ ∈ R ∪ ∂D+ and all .φ ∈ Dom L,

F[Lφ](λ) = −iλ3F[φ](λ) + R[φ](λ). (2.3)

Moreover, if, for all .t ∈ [0, T ] .q( · , t) ∈ Dom L then, for all .t ∈ [0, T ] and all .x ∈
(0,∞),

F−1

[∫ t

0
e−i·3(s−t)R[q]( · ; s)ds

]
(x) = 0. (2.4)

Proof Integrating by parts thrice in the definition of.F[φ](λ) and applying the bound-
ary condition .φ′(0) = 0, we find that (2.3) holds with

R[φ](λ) =
{

−r(λ;φ) if λ ∈ R,

r(λ;φ) if λ ∈ ∂D+,
r(λ;φ) = φ′′(0) − λ2φ(0),

in which we think of the polynomial .r( · ;φ) as having domain all of .C. Note that it
is entire, and is .o(λ3) as .λ → ∞.

Let .E+ be the union of sectors .arg(λ) ∈ (0, π
3 ) ∪ ( 2π3 ,π). Then, integrating by

parts, as .λ → ∞ from within .clos E+,

∫ t

0
e−iλ3(s−t)r(λ; q( · , s))ds

= i

λ3

{[
e−iλ3(s−t)r(λ; q( · , s))

]t

0
+

∫ t

0
e−iλ3(s−t)r(λ; qt ( · , s))ds

}
= O (

λ−1
)
,
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uniformly in .arg(λ) within those closed sectors. Therefore, by Jordan’s lemma and
Cauchy’s theorem,

∫

∂E+
eiλx

∫ t

0
e−iλ3(s−t)r(λ; q( · , s))dsdλ = 0.

Hence, by comparing the sector boundaries .∂E+ and .∂D+,

∫

∂D+
eiλx

∫ t

0
e−iλ3(s−t)rdsdλ =

∫

∂D+∪∂E+
eiλx

∫ t

0
e−iλ3(s−t)rdsdλ

=
∫ ∞

−∞
eiλx

∫ t

0
e−iλ3(s−t)rdsdλ,

in which we have suppressed the dependence of .r on .λ, q( · , s). Therefore,

F−1

[∫ t

0
e−i·3(s−t)R[q]( · ; s)ds

]
(x)

= 1

2π

∫ ∞

0
eiλx

∫ t

0
e−iλ3(s−t)

(
r − r

)
dsdλ = 0.

�
In Proposition3 we have fulfilled Criterion1, and Theorem 4 establishes Crite-

rion 2. Therefore, the general transform method of Sect. 1.4 can be implemented for
this problem to derive solution (1.12).

The argument is presented above in such a way that it requires minimal modifi-
cation for the Dirichlet problem; the transform pair may be found in [11, Sect. 3.3]
and .r(λ;φ) is replaced with .φ′′(0) + iλφ′(0), which is still entire and .o(λ3).

2.2 Finite Interval Problem for the Heat Equation with a
Nonlocal Condition

As derived in [27], the Fokas transform pair is

F[φ](λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ 1

0
e−iλyφ(y)dy λ ∈ R,

−ζ+(λ;φ)/Δ(λ) λ ∈ ∂D+
ρ ,

−e−iλζ−(λ;φ)/Δ(λ) λ ∈ ∂D−
ρ ,

(2.5a)

F−1[ f ](x) = 1

2π

∫

R∪D+
ρ ∪D−

ρ

eiλx f (λ)dλ x ∈ [0, 1], (2.5b)

where
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Δ(λ) =
∫ 1

0
K (y) cos([1 − y]λ)dy, (2.6)

ζ+(λ;φ) =
∫ 1

0
K (y) cos([1 − y]λ)

∫ y

0
e−iλzφ(z)dzdy

+
∫ 1

0
K (y)e−iλy

∫ 1

y
cos([1 − z]λ)φ(z)dzdy, (2.7)

ζ−(λ;φ) =
∫ 1

0
K (y)

∫ 1

y
sin([z − y]λ)φ(z)dzdy, (2.8)

and .D±
ρ = {λ ∈ C

± such that .�(λ2) < 0 and .|λ| > ρ} for .ρ sufficiently large to

ensure all zeros of .Δ have imaginary part bounded between .±ρ/
√
2, and .∂D±

ρ

indicates the positively oriented contour traversing the boundary of the region .D±
ρ .

The existence of such .ρ was proved in [27, Lemma 2.1].

Proposition 5 If .F, F−1 are defined by (2.5), then they are both linear and, for all
.φ sufficiently smooth and all .x ∈ (0, 1), .F−1[F[φ]](x) = φ(x).

Proof Linearity follows from linearity of the definite real integral and the contour
integral. With .ζ± defined by (2.7) and (2.8), it was shown in [27, Lemma 2.2] that,
provided .K is of bounded variation, .K is continuous and supported in a neigh-
bourhood of .0, and .‖φ′‖∞ is bounded, then, as .λ → ∞ from within .clos D±

ρ ,
.ζ±(λ;φ)/Δ(λ) = O (

λ−1
)
, uniformly in .arg(λ). The ratios .ζ±/Δ are, because of

the choice of .ρ sufficiently large, analytic in neighbourhoods of .clos D±
ρ . It follows

by Jordan’s lemma and Cauchy’s theorem that the integrals along the boundaries of
.D±

ρ appearing in .F−1[F[φ]](x) both evaluate to .0. Therefore,

F−1[F[φ]](x) = 1

2π

∫ ∞

−∞
eiλx F[φ](λ)dλ.

The proposition follows from the usual Fourier inversion theorem. �

Theorem 6 Suppose.F, F−1 are definedby (2.5). There exists a remainder transform
.R for which, for all .λ ∈ R ∪ D+

ρ ∪ D−
ρ and all .φ ∈ Dom L,

F[Lφ](λ) = λ2F[φ](λ) + R[φ](λ). (2.9)

Moreover, if .q : [0, 1] × [0, T ] → C is such that, for all .t ∈ [0, T ], .q( · , t) ∈
Dom L, and .q is sufficiently smooth in .t , then, for all .t ∈ [0, T ] and all .x ∈ (0, 1),

F−1

[∫ t

0
e·2(s−t)R[q]( · ; s)ds

]
(x) = 0. (2.10)
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Proof Integration by parts and application of the boundary and nonlocal conditions
yield that

R[φ](λ) =

⎧
⎪⎨

⎪⎩

r−(λ;φ)e−iλ − r+(λ;φ) if λ ∈ R,

r+(λ;φ) if λ ∈ ∂D+
ρ ,

r−(λ;φ) if λ ∈ ∂D−
ρ ,

where
r+(λ;φ) := −φ′(0) − iλφ(0), r−(λ;φ) := −iλφ(1).

Note that, for each of the three contours on which.R[φ] is defined, it may be analyti-
cally extended to all of.C, yielding a triply defined function on.C, with each definition
entire.

We denote by .E±
ρ the sets .{λ ∈ C

± such that .�(λ2) > 0 and .|λ| > ρ}. Then,
integrating by parts, and suppressing the dependence of .r± on .λ, q( · , s),

∫ t

0
eλ2(s−t)r+ds = O (

λ−2
)

as .λ → ∞ from within .clos E±
ρ , uniformly in .arg(λ). Hence, by Jordan’s lemma,

∫

∂E+
ρ

eiλx
∫ t

0
eλ2(s−t)r+dsdλ = 0.

It follows, by comparing the paths of the contours, that

∫

∂D+
ρ

eiλx
∫ t

0
eλ2(s−t)r+dsdλ =

∫

γ+
ρ

eiλx
∫ t

0
eλ2(s−t)r+dsdλ,

in which.γ+
ρ is the contour that extents from.−∞ to.−ρ, then follows the semicircular

path in.C
+ from.−ρ to.ρ, then proceeds from.ρ to.∞. Because the integrand is entire,

the contour .γ+
ρ may be deformed to the real line. Similarly, but noting that the real

part of.λ decreases as.λ traverses.∂D−
ρ , whereas it increased when.λ followed.∂D+

ρ ,

∫

∂D−
ρ

eiλ(x−1)
∫ t

0
eλ2(s−t)r−dsdλ = −

∫ ∞

−∞
eiλ(x−1)

∫ t

0
eλ2(s−t)r−dsdλ.

Using the previous two displayed equations to justify the second equality, it fol-
lows that
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F−1

[∫ t

0
e·2(s−t)R[q]( · ; s)ds

]
(x) =

∫ ∞

−∞
eiλx

∫ t

0
eλ2(s−t)[r−e−iλ − r+]dsdλ

+
∫

∂D+
ρ

eiλx
∫ t

0
eλ2(s−t)r+dsdλ +

∫

∂D−
ρ

eiλ(x−1)
∫ t

0
eλ2(s−t)r−dsdλ

=
∫ ∞

−∞
eiλx

∫ t

0
eλ2(s−t)[r−e−iλ − r+]dsdλ +

∫ ∞

−∞
eiλx

∫ t

0
eλ2(s−t)r+dsdλ

−
∫ ∞

−∞
eiλ(x−1)

∫ t

0
eλ2(s−t)r−dsdλ = 0.

�

Because Proposition5 and Theorem6 follow exactly the archetypes of Criteria1
and 2, the transformmethod is effective at finding the solution of problem (1.5), with
.ω(λ) = λ2.

2.3 Half Line Dirichlet Problem for the Linearized BBM
Equation

Deconinck and Vasan show in [12, Sect. 3] that the Fokas transform pair is

F[φ](λ) =

⎧
⎪⎨

⎪⎩

∫ ∞

0
e−iλyφ(y)dy λ ∈ R,

−1

λ2

∫ ∞

0
e

−i
λ yφ(y)dy λ ∈ ∂C,

(2.11a)

F−1[ f ](x) = 1

2π

∫

R∪C
eiλx f (λ)dλ x ∈ [0,∞), (2.11b)

where .C is a small positively oriented simple closed contour enclosing .λ = i.

Proposition 7 If .F, F−1 are defined by (2.11), then they are both linear and, for all
.φ sufficiently smooth and all .x ∈ (0,∞), .F−1[F[φ]](x) = φ(x).

Proof These are integral transforms, so they are linear. By definition,

F−1[F[φ]](x) = 1

2π

∫ ∞
−∞

eiλx
∫ ∞
0

e−iλyφ(y)dydλ − 1

2π

∫

C
1

λ2

∫ ∞
0

e
−i
λ yφ(y)dydλ.

The integral of the second contour integral is analytic in.C
+, in which.C lies. There-

fore, byCauchy’s theorem, the second contour integral evaluates to.0. The proposition
follows by the usual Fourier inversion theorem. �
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Theorem 8 Suppose .F, F−1 are defined by (2.11). There exists a remainder trans-
form .R for which, for all .λ ∈ R ∪ C and all .φ ∈ Dom L = Dom M,

F[Lφ](λ) = ωL(λ)F[φ](λ) + RL [φ](λ), (2.12a)

F[Mφ](λ) = ωM(λ)F[φ](λ) + RM [φ](λ), (2.12b)

where

ωL(λ) =
{
iλ if λ ∈ R,
i
λ

if λ ∈ C,
ωM(λ) =

{
1 + λ2 if λ ∈ R,

1 + 1
λ2 if λ ∈ C.

Moreover, if .q is sufficiently smooth, .q( · , t) ∈ Dom L = Dom M then, for all .t ∈
[0, T ] and all .x ∈ (0,∞),

F−1

[∫ t

0
e(s−t)ω RL [q]( · ; s) + RM [qt ]( · ; s)

ωM
ds

]
(x) = 0, (2.13)

where .ω(λ) = ωL(λ)/ωM(λ) = iλ/(1 + λ2).

Proof Integration by parts and application of the boundary condition demonstrates
(2.12) with .RL = 0 and

RM [φ](λ) =
{

φ′(0) if λ ∈ R,

−φ′(0) 1
λ2 if λ ∈ C.

Therefore, the left side of (2.13) is

1

2π

∫ ∞

−∞
eiλx

∫ t

0
e

iλ
1+λ2

(s−t)qxt (0; s)ds 1

1 + λ2
dλ

− 1

2π

∫

C
eiλx

∫ t

0
e

iλ
1+λ2

(s−t)qxt (0; s)ds 1

1 + 1
λ2

(
1

λ2

)
dλ. (2.14)

The integrand of the first contour integral in expression (2.14) is analytic on.C \ {±i},
It is straightforward to show that .�(ω(λ)) � 0 on.closC+ except on the closed disc
with radius .1 and center at .0. Hence, as .λ → ∞ from within .closC+,

∫ t

0
e

iλ
1+λ2

(s−t)qxt (0; s)ds 1

1 + λ2
= O (

λ−2
)
,

uniformly in.arg(λ), and the same function is analytic everywhere but.±i. Hence, by
Jordan’s lemma and Cauchy’s theorem, the first contour integral in expression (2.14)
may be deformed from.R to .C, whereupon it cancels with the other contour integral
in that expression. Thereby, (2.13) is established. �
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Transform Method Theorem8 does not follow the archetype of Criterion2. But
(1.7.PDE) has formdifferent from (1.3.PDE), forwhich the general transformmethod
of Sect. 1.4was developed, so it is unsurprising that the formof Fokas diagonalization
is different. Below, we implement the transform method applicable to problem (1.7),
noting how Theorem8 is used.

Applying the transform.F to (1.7.PDE), we obtain

0 = d

dt
F[Mq](λ; t) + F[Lq](λ; t),

for all .λ ∈ R ∪ C. It follows from (2.12) that

0 = d

dt

(
ωM(λ)F[q](λ; t) + RM [q](λ; t)

)
+ ωL(λ)F[q](λ; t) + RL [q](λ; t).

Rearranging and multiplying by .eω(λ)t/ωM(λ), we find

0 = d

dt

(
eω(λ)t F[q](λ; t)) + eω(λ)t RL [q](λ; t) + RM [qt ](λ; t)

ωM(λ)
.

Integrating in time from.0 to .t , applying (1.7.IC) and rearranging, we find

F[q](λ; t) = e−ω(λ)t F[Q](λ) −
∫ t

0
eω(λ)(s−t) RL [q](λ; s) + RM [qt ](λ; s)

ωM(λ)
ds.

When we apply the inverse transform, because .q obeys (1.7.BC), Theorem8 guar-
antees that the latter term evaluates to .0. Hence the solution of problem (1.7) is

q(x, t) = F−1
[
e−ωt F[Q]( · ; t)] (x).

3 Conclusion

Weaimedboth to show that theFokas transformmethod canbe reformulated to appear
as a generalized spectral transform method for initial boundary value problems and
to provide a unified characterization of Fokas diagonalization.

With the detailed work [1] already demonstrating the former claim for finite
interval problems with two point, multipoint and interface type boundary conditions,
the ambit of the present work is to demonstrate the generalization to other settings
by means of a few examples. There exist important classes of initial boundary value
problems for which the Fokas transform method has been implemented that are not
represented among the examples studied above. But significant progress has been
made towards this aim.
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Regarding the second aim, Fokas diagonalization in the first two examples exactly
matches Criterion2, which also matches Fokas diagonalization for finite interval
problems [1]. The final example demonstrates that the statement of Fokas diagonal-
ization is properly considered as a property of the boundary value problem under
study, rather than any particular (local) differential operator. But it also reinforces
the point that the statement of Fokas diagonalization may be read directly from the
spectral transform method; it is precisely the necessary and sufficient condition for
the spectral transform method to succeed. Although, for the sake of brevity, not
demonstrated in the current work, this extends to Fokas diagonalization for system
problems such as those studied in [7, 24].

3.1 On Pedagogy

Having taught a few cohorts of undergraduates a typical course on boundary value
problems, the author has observed that those learning spectral transform methods
for the first time find it helpful to have an alternative viewpoint, or even introductory
experience, in which the following two concepts are presented as separate:

C1. How a transform pair is used in a spectral method to solve an initial boundary
value problem.

C2. How the transform pair suitable for any particular problem may be derived.

It is to the detriment of students’ learning, when the particular discrete Fourier trans-
form appropriate for a given initial boundary value problem is derived by separation
of variables only as part of a long solution method, and the definitions of the forward
and inverse transforms are not explicitly identified as such. Students may see solving
a particular Sturm Liouville problem as part of solving a boundary value problem,
but less commonly understand that they are deriving the spectral transform that will
diagonalize the spatial differential operator for that problem.

Because C2 is quite difficult and technical, the relative simplicity and astonish-
ingly broad applicability of C1 remain mysterious to many students. The author has
had some success in teaching first C1, with a hypothetical transform, and gently
guiding students to discover for themselves C2: separation of variables and enough
Sturm–Liouville theory to explicitly construct the desired transform.

In a similar way, the Fokas transform method is usually presented in the literature
as a monolithic method, at the end of which a solution has been derived, but the
transform itself is rarely emphasized. It is the author’s intention that concept C1 for
the Fokas transformmethod be essentially captured in Sect. 1.4. It is the author’s hope
that, by drawing attention to the crucial properties of the Fokas transform, Criteria1
and 2, this work may lighten the burden of learning the Fokas transformmethod, and
inspire more to study it.
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A Novel Difference-Integral Equation
Satisfied Asymptotically by the Riemann
Zeta Function

Athanassios S. Fokas, Konstantinos Kalimeris, and J. Lenells

Abstract In 2009 Fokas began a program of study of the investigation of the large t-
asymptotics of the Riemann zeta function, ζ(σ + i t). In the current work we present
a novel difference-integral equation which is satisfied asymptotically by ζ(1/2 + i t).
This equation is obtained starting with a singular integral equation presented for the
first time in 2019 and using a finite Fourier transform representation of the Rie-
mann zeta function. The relevant analysis involves a plethora of tools and techniques
developed by Fokas and collaborators during the last decade.

1 Introduction

In 2009, one of the authors, motivated by the understanding of the importance of
complex analysis in the investigation of asymptotics, begun a program of study of
the investigation of the asymptotics of the Riemann zeta function ζ(s), s ∈ C.

It is well known that the leading asymptotics of ζ(s) as t = Ims → ∞, is
expressed in terms of two transcendental sums whose ranges of summation are from
0 to x and from 0 to y, where x and y satisfy the constraint xy = t/2π. Siegel, in his
classical paper [8] presented the asymptotics of ζ(s) to all orders in the important
particular case of x = y = √

t/2π. In a recent publication in the Memoirs of the
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American Mathematical Society [5], two of the authors presented analogous results
for ζ(s), as well as for a novel two parameter generalization of ζ(s), for any x and
y to all orders.

Fokas pioneered a new approach to the asymptotics of ζ(s) based on the derivation
of a novel integral equation satisfied by |ζ(s)|2, see Eq. (2.1). The large t analysis of
this equation led to an interesting asymptotic result, namely, it provided the analogue
of the famousLindelöf hypothesis for a certain variation of ζ(s) [3].Additional results
were derived in [6, 7].

The analysis of the novel integral equation mentioned above is based on the
following: the interval of integration of the associated integral is decomposed into
four subintervals. For the first two of the resulting integrals it is possible to obtain
explicit estimates, whereas for the remaining two integrals one needs to use an
appropriate representation for ζ(s). In all our earlier works, we replaced ζ(s) by
its leading asymptotics. This has two limitations. First, it makes it very difficult to
control the relevant errors, and second, it introduces sums, for which it is difficult to
obtain rigorous estimates.

Herewe introduce a new idea: we express ζ(s) in terms of its the Fourier transform
representation. It isworth noting that this developmentwasmotivated by the so-called
unified transform, also known as the Fokas method [2, 4]. Indeed, if a function is
defined on the full line it is well known that it can be represented in terms of the
Fourier transform, whereas if it is defined on the half line it is often represented in
terms of the Laplace transform, which is equivalent to the Fourier transform defined
on the half-line. If a function is defined on a finite interval, traditionally, it is expressed
in terms of a Fourier series. However, the unified transform suggests a paradigm shift:
such a function should be expressed in terms of the Fourier transform defined on a
finite domain. Using this idea and employing some earlier results of [3] we are led
to the following difference-integral equation satisfied by the Riemann zeta function
of σ = 1/2:

∣
∣
∣
∣
ζ

(
1

2
+ i t

)∣
∣
∣
∣

2
∼Re

{√

2

π

(

c − e−i π
4 e−i

)

t−i

} ∣
∣
∣
∣
ζ

(
1

2
+ i(t − 1)

)∣
∣
∣
∣

2 (

1 + O

(
1

ln t

))

+ Re

{√

2

π
e−i π

4 t−i t
∫ t−1

tδ2

ei(t−ρ) ln(t−ρ)+iρ ln ρ

√
t − ρ

∣
∣
∣
∣
ζ

(
1

2
+ iρ

)∣
∣
∣
∣

2
dρ

}

+ ln t + 2γ − ln 2π, t → ∞, (1.1)

where c is a complex constant given by

c =
∫ +∞

1

e−i x

x1−i
dx ≈ −0.0713 − 1.0417i. (1.2)

This paper is organised as follows. In Sect. 2 we review some of the basic results
of [3], which includes decomposing the integral appearing in (2.1) into 4 integrals,
I j , j = 1, 2, 3, 4. In Sect. 3 we express the leading asymptotic behaviour of I3 and
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I4 in terms of the finite Fourier transform of ζ(s). In Sect. 4 we sketch the derivation
of (1.1). In Sect. 5 we present numerical evidence of the validity of (1.1).

2 Review of Some of the Results of [3]

In this sectionwe review the singular integral equation for the Riemann zeta function,
as well as associated results which were derived in [3].

We start with the singular integral equation for all t > 0:

t

π

∮ ∞

−∞
Re

{

Γ (i t − iτ t)

Γ
(
1
2 + i t

) Γ

(
1

2
+ iτ t

)} ∣
∣
∣
∣
ζ

(
1

2
+ iτ t

)∣
∣
∣
∣

2

dτ + G(t) = 0, (2.1)

where the principal value integral is defined with respect to τ = 1, and the function
G(t) is defined by the formula

G(t) = Re

{

�

(
1

2
+ i t

)}

+ 2γ − ln 2π + 2

1 + 4t2
, (2.2)

with �(z) denoting the digamma function, i.e.,

�(z) =
d
dzΓ (z)

Γ (z)
, z ∈ C,

and γ denoting the Euler constant.
It is shown in [3] that for δ1 > 0, δ4 > 0, δ14 = min(δ1, δ4), Eq. (2.1) simplifies

to the equation

t

π

∮ 1+tδ4−1

−tδ1−1
Re

{

Γ (i t − iτ t)

Γ
(
1
2 + i t

) Γ

(
1

2
+ iτ t

)} ∣
∣
∣
∣
ζ

(
1

2
+ iτ t

)∣
∣
∣
∣

2

dτ + G(t)

+O
(

e−πtδ14
)

= 0, t → ∞, (2.3)

where the principal value integral is defined with respect to τ = 1.
We split the above interval of integration into the following subintervals:

L1 = [−tδ1−1, t−1], L2 = [t−1, tδ2−1], L3 = [tδ2−1, 1 − tδ3−1],
L4 = [1 − tδ3−1, 1 + tδ4−1], δ2 > 0, δ3 > 0. (2.4)
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Denote by I j the integrals along the intervals L j . It is shown in [3] that

I1(t, δ1) = O
(

t−
1
2 + 4

3 δ1
)

, I2(t, δ2) = O
(

t−
1
2 +δ2 ln t

)

,

G(t) = ln t + 2γ − ln 2π = O(ln t), t → ∞. (2.5)

Thus, if δ1 ≤ 3
8 and δ2 < 1

2 , Eq. (2.3) becomes

I3 + I4 = − ln t − 2γ + ln 2π + o(1) t → ∞. (2.6)

Let Ǐ3 and Ǐ4 denote the leading order terms as t → ∞ of I3 and I4, respectively.
Then, Eq. (2.6) is

Ǐ3 + Ǐ4 = O(ln t) −
(

I3 − Ǐ3
)

−
(

I4 − Ǐ4
)

, t → ∞. (2.7)

A rigorous treatment of the RHS of (2.7), which will be presented in forthcoming
publication, yields

(

I3 − Ǐ3
)

+
(

I4 − Ǐ4
)

= o(1), t → ∞. (2.8)

Employing (2.8) into (2.6) yields

Ǐ3 + Ǐ4 = − ln t − 2γ + ln 2π + o(1) t → ∞. (2.9)

In what follows we will present arguments suggesting that (2.9) leads to the
difference-integral Eq. (1.1) for

∣
∣ζ
(
1
2 + i t

)∣
∣
2
. The rigorous derivation of (1.1) will

be presented in forthcoming publication.

3 Computation of Ǐ3 and Ǐ4

Preliminaries for I3

Letting τ = ρ
t in the definition of I3, we find

I3 = 1

π

∫ t−tδ3

tδ2
Re
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1
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)Γ
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2
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2

dρ. (3.1)

Using
Γ (i t − iρ)

Γ
(
1
2 + i t

)Γ

(
1

2
+ iρ

)

∼
√
2πe−i π

4 eit F(
ρ
t )√

t − ρ
, t → ∞, (3.2)
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where F(x) is defined by

F(x) = (1 − x) ln(1 − x) + x ln x, (3.3)

we find that the leading contribution of I3 is given by

Ǐ3 :=
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dρ. (3.4)

Preliminaries for I4

Letting τ = ρ
t in the definition of I4, we find

I4 = 1
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where the principal value integral is definedwith respect to ρ = t . Letting x = t − ρ,
we obtain

I4 = 1
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where the principal value integral is defined with respect to x = 0. It is well-known
that the Gamma function admits the integral representation

Γ (i x) = 1

e−πx − eπx

∫

H1

ez

z
zixdz, (3.7)

with H1 denoting the Hankel contour with a branch cut along the negative real axis,
see Fig. 1, defined by

H1 = {re−iπ|1 < r < ∞} ∪ {eiθ| − π < θ < π
} ∪ {reiπ|1 < r < ∞} . (3.8)

Using the asymptotic formula
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Fig. 1 The Hankel contour
H1

as well as the estimate
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→ 0,

we find that the leading contribution of I4 is given by
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with the principal value integral defined with respect to x = 0.

The Finite Fourier Transform

In order to compute the large t asymptotics of the RHS of (3.4) and (3.10) we will
employ the finite Fourier transform, where it turns out that it will be more convenient
to integrate from t = 1:

Φ(ν) :=
∫ T
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Remark 1 Equations (3.11) and (3.12) imply
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In the case of the Fourier transform on the full line the analogue of the LHS in (3.14)
equals δ(k − ν). In the case of the finite Fourier transform, Eq. (3.13) is a direct
consequence of analyticity: Φ(ν) is an entire function for which

Φ(ν) ∼ 1

iν

[

eiνT
∣
∣
∣
∣
ζ

(
1

2
+ iT

)∣
∣
∣
∣

2

− eiν
∣
∣
∣
∣
ζ

(
1

2
+ i

)∣
∣
∣
∣

2
]

, ν → ∞. (3.15)

Thus, e−iνTΦ(ν) is an entire function for which

e−iνTΦ(ν) ∼ 1

iν

[∣
∣
∣
∣
ζ

(
1

2
+ iT

)∣
∣
∣
∣

2

− e−iν(T−1)

∣
∣
∣
∣
ζ

(
1

2

)∣
∣
∣
∣

2
]

.

Hence we rewrite (3.13) as

1

2iπ

∫

R̃
Φ(ν)

eiT (k−ν)

k − ν
dν − 1

2iπ

∫

R̃
Φ(ν)

ei(k−ν)

k − ν
dν,

where R̃ is the real line slightly deformed at the point ν = k, with a small semicircle
of radius ε → 0 contained in the lower half complex plane. Thus, the first integral
vanishes, by closing at C−, whereas the second integral gives Φ(k), by closing
at C+.

Remark 2 Using in (3.11) the fact that
∣
∣ζ
(
1
2 + i t

)∣
∣
2
is real yields the condition

Φ(ν) = Φ(−ν).

The Derivation of Ǐ4

Equation (3.12) yields

∣
∣
∣
∣
ζ

(
1

2
+ i(t − x)

)∣
∣
∣
∣

2

= 1

2π

∫ ∞

−∞
Φ(ν)e−iνt eiνxdν, t ∈ [1, T ]. (3.16)

Using the above equation into (3.10), we obtain

Ǐ4 = Re

{
1

2π

∫ ∞

−∞
Φ(ν)e−iνt Ĩ4dν

}

, (3.17)

with

Ĩ4 = 1

π

∫

H1

ez

z

∮ tδ3

−tδ4

e
πx
2

e−πx − eπx
Aixdxdz, A := z

t
eν . (3.18)



326 A. S. Fokas et al.

Using the result of Proposition 6.3 of [3], namely the estimate

1

π

∫

H1

ez

z

∮ tδ3

−tδ4

e
πx
2

e−πx − eπx
Aixdxdz ∼ −1 + 1

π

∫

H1

ez

z

eit
δ3 ln A− πtδ3

2

π
2 − i ln A

dz, (3.19)

we obtain

Ĩ4 ∼ −1 + 1

π

∫

H1

ez

z

eit
δ3 ln(Mz)− πtδ3

2

π
2 − i ln(Mz)

dz, M = eν

t
, t → ∞. (3.20)

Furthermore, Proposition 6.4 of [3] yields

1

π

∫

H1

ez

z

eit
δ3 ln(Mz)− πtδ3

2

π
2 − i ln(Mz)

dz = 2e− i
M + ESD

4 (ν, t), (3.21)

where the first term occurs iff eν ∈ (t1−δ3 , t
)

and

ESD
4 (ν, t) = 1

π

∫

H1

eλ[w+i ln( iw
α )]

−iw ln
(
iw
α

) dw, λ = tδ3 , α = t1−δ3

eν
. (3.22)

Hence,
Ĩ4 ∼ −1 + 2e−i te−ν + ESD

4 , t → ∞, (3.23)

where the second term occurs iff eν ∈ (t1−δ3 , t
)

.

Thus, Ǐ4 takes the form

Ǐ4 = Re

{

− 1

2π

∫ ∞

−∞
Φ(ν)e−iνt dν + 1

π

∫ ln t

(1−δ3) ln t
Φ(ν)e−i t(ν+e−ν)dν

+ 1

2π

∫ ∞

−∞
Φ(ν)e−iνt E SD

4 (ν, t)dν

}

.

Using the fact that Φ(ν) = Φ(−ν), see Remark 2, the term Ǐ4 can also be written in
the following form:

Ǐ4(t) = 1

2π

∫ ln t

(1−δ3) ln t
Φ(ν)e−i t(ν+e−ν)dν + 1

2π

∫ (δ3−1) ln t

− ln t
Φ(ν)e−i t(ν−eν )dν

+ 1

4π

∫ ∞

−∞
Φ(ν)e−iνt E SD

4 (ν, t)dν + 1

4π

∫ ∞

−∞
Φ(ν)e−iνt E SD

4 (−ν, t)dν

− 1

2π

∫ ∞

−∞
Φ(ν)e−iνt dν. (3.24)
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Proposition 1 Let Ǐ4 be defined by (3.24). Then

Ǐ4 = −
∣
∣
∣
∣
ζ

(
1

2
+ i t

)∣
∣
∣
∣

2

(3.25)

+ Re

{
1

π

∫ ln t

(1−δ3) ln t
Φ(ν)e−i t(ν+e−ν)dν + 1

2π

∫ ∞

−∞
Φ(ν)e−iνt E SD

4 (ν, t)dν

}

,

where

ESD
4 (ν, t) = 1

π

∫

H1

eλ[w+i ln( iw
α )]

−iw ln
(
iw
α

) dw, λ = tδ3 , α = t1−δ3

eν
. (3.26)

Proof Employing (3.12) in the last term of the RHS of Eq. (3.24) yields (3.25).

The term 2e−i/M appearing in the RHS of (3.21) arises from the evaluation of the
contribution of the pole zP = −i/M and gives rise to the second term in the RHS of
(3.25). Thus, we will use the notation Ǐ P4 (t) for this term. Similarly, we denote the
last term (3.25) as Ǐ SD4 .

Hence, (3.25) takes the form

Ǐ4 = −
∣
∣
∣
∣
ζ

(
1

2
+ i t

)∣
∣
∣
∣

2

+ Re
{

Ǐ P4 + Ǐ SD4

}

, (3.27)

where

Ǐ P4 (t) = 1

π

∫ ln t

(1−δ3) ln t
Φ(ν)e−i t(ν+e−ν)dν (3.28)

and

Ǐ SD4 (t) = 1

2π

∫ ∞

−∞
Φ(ν)e−iνt E SD

4 (ν, t)dν. (3.29)

4 Sketch of the Derivation of (1.1)

It can be shown that Ǐ SD4 is negligible, compared to Ǐ P4 ; the rigorous derivation
will be presented in forthcoming publication. Thus, in what follows we analyse the
contribution of Ǐ P4 .

Using (3.11) in (3.28) yields

Ǐ P4 (t) = 1

π

∫ ln t

(1−δ3) ln t

∫ T

1

∣
∣
∣
∣
ζ

(
1

2
+ iτ

)∣
∣
∣
∣

2

e−i t(ν+e−ν− τ
t ν)dτdν

= 1

π

∫ T

1
J (τ ; t, δ3)

∣
∣
∣
∣
ζ

(
1

2
+ iτ

)∣
∣
∣
∣

2

dτ , (4.1)
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where

J (τ ; t, δ3) =
∫ ln t

(1−δ3) ln t
e−i tg(ν, τ

t )dν, (4.2)

with
g
(

ν,
τ

t

)

= ν + e−ν − τ

t
ν. (4.3)

The stationary phase method yields the estimate

∫ ln t

(1−δ3) ln t
e−i tg(ν, τ

t )dν ∼ √
2πe−i π

4
e−i(t−τ )ei(t−τ ) ln(t−τ )e−i(t−τ ) ln t

√
t − τ

,

if τ ∈ (t − tδ3 , t − 1
)

. (4.4)

Indeed, the stationary point is given by solving gν = 0, which yields ν∗ =
− ln

(

1 − τ
t

)

. Hence,

ν∗ ∈ ((1 − δ3) ln t, ln t
)⇐⇒ τ ∈ (t − tδ3 , t − 1

)

.

It is interesting to note that the RHS of (4.4) can be rewritten in the form

1

π

∫ ln t

(1−δ3) ln t
e−i tg(ν, τ

t )dν ∼
√

2

π
e−i π

4
eit F(

τ
t )√

t − τ
, if τ ∈ (t − tδ3 , t − 1

)

, (4.5)

with F defined in (3.3). This can be derived by using

e−i(t−τ )ei(t−τ ) ln(t−τ )e−i(t−τ ) ln t = eit F(
τ
t )
[

1 + O
(

t2δ3−1
)]

, t → ∞, (4.6)

into (4.4). In order to prove (4.6) we observe that

e−i(t−τ )ei(t−τ ) ln(t−τ )e−i(t−τ ) ln t = eit F(
τ
t ) exp

{

−i
[

t − τ + τ ln
(τ

t

)]}

.

Making the change of variables τ = t − x, x ∈ (1, tδ3), we find

t − τ + τ ln
( τ

t

)

= x + (t − x) ln
(

1 − x

t

)

= x + (t − x)

(

− x

t
+ O

( x

t

)2
)

∼ x2

t
,

hence

exp
{

−i
[

t − τ + τ ln
(τ

t

)]}

= 1 + O

(
x2

t

)

.

The fact that x ∈ (1, tδ3) yields (4.6).
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The stationary point of J coincides with the endpoint ln t if τ = t − 1. Evaluating
the RHS of (4.4) at τ = t − 1 we find

√
2πe−i π

4 e−i t−i . Thus, as ν → ln t and τ →
t − 1, we obtain the following contribution:

1

π

[

Ĵ (t; δ3) − √
2πe−i π

4 e−i t−i
]
∣
∣
∣
∣
ζ

(
1

2
+ i(t − 1)

)∣
∣
∣
∣

2

where Ĵ (t; δ3) denotes the contribution of J (τ , t; δ3) in the neighbourhood of τ =
t − 1. It turns out that

Ĵ (t; δ3) = √
2πJ (t − 1, t; δ3) = √

2π
∫ ln t

(1−δ3) ln t
e−i(ν+te−ν)dν.

In order to evaluate the above integral we let ν = ln t − ln x , and find

∫ ln t

(1−δ3) ln t
e−i(ν+te−ν)dν = t−i

∫ tδ3

1

e−i x

x1−i
dx = t−i

∫ ∞

1

e−i x

x1−i
dx − t−i

∫ ∞

tδ3

e−i x

x1−i
dx .

(4.7)

Using integration by parts we find that the second integral in the RHS of (4.7) is
O
(

t−δ3
)

.
Similar considerations apply to the case that τ = t − tδ3 , where the stationary

point approaches the other endpoint, (1 − δ3) ln t , but now the relevant contribution

is O
(

t−
δ3
2

)

. Hence we find,

Ǐ P4 ∼
√

2

π
e−i π

4

∫ t−1

t−tδ3

eit F(
τ
t )√

t − τ

∣
∣
∣
∣
ζ

(
1

2
+ iτ

)∣
∣
∣
∣

2

dτ (4.8)

+
√

2

π

(

c − e−i π
4 e−i

)

t−i

∣
∣
∣
∣
ζ

(
1

2
+ i(t − 1)

)∣
∣
∣
∣

2 (

1 + O

(
1

ln t

))

, t → ∞,

with F and c defined in (3.3) and (1.2), respectively.
Simplifying t F

( ρ
t

)

, we find,

(t − ρ) ln
(

1 − ρ

t

)

+ ρ ln
(ρ

t

)

= (t − ρ) ln (t − ρ) − (t − ρ) ln t + ρ ln ρ − ρ ln t

= (t − ρ) ln (t − ρ) + ρ ln ρ − t ln t.

Hence, (1.1) follows by employing (3.4), (3.27) and (4.8) in (2.9).



330 A. S. Fokas et al.

5 Numerical Evidence

In this section we check numerically the validity of the difference-integral Eq. (1.1),
namely

∣
∣
∣
∣
ζ

(
1

2
+ i t

)∣
∣
∣
∣

2
∼ Re

{√

2

π

(

c − e−i π
4 e−i

)

t−i

} ∣
∣
∣
∣
ζ

(
1

2
+ i(t − 1)

)∣
∣
∣
∣

2

+
√

2

π

∫ t−1

tδ2

Re
{

e−i π
4 eit F

( ρ
t

)}

√
t − ρ

∣
∣
∣
∣
ζ

(
1

2
+ iρ

)∣
∣
∣
∣

2
dρ + ln t + 2γ − ln 2π

+ O

⎛

⎜
⎝

∣
∣
∣ζ
(
1
2 + i(t − 1)

)∣
∣
∣

2

ln t

⎞

⎟
⎠ , t → ∞, (5.1)

with F(x) and c defined in (3.3) and (1.2), respectively.
In Fig. 2 we depict the LHS by the blue curve, and the RHS (ignoring the error

term) by the red dashed line, for the range t ∈ (357, 440). In Fig. 3 we depict the
difference of LHS minus the RHS, for the same range of t . In Fig. 4 we observe that

this difference is dominated by the error termO

( |ζ( 1
2 +i(t−1))|2

ln t

)

; we plot the absolute

value of the above-mentioned difference in green, and the |ζ( 1
2 +i(t−1))|2

ln t in black. We

Fig. 2 The LHS (blue) and the RHS (red dashed), for the range t ∈ (357, 440)
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Fig. 3 The difference of LHS minus the RHS

Fig. 4 The absolute difference of LHS minus the RHS (green), versus

∣
∣
∣ζ
(
1
2 +i(t−1)

)∣
∣
∣

2

ln t (black)
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Fig. 5 The absolute difference of LHS minus the RHS (green), versus
√

π
∣
∣
∣

(

c−e−i π
4 e−i

)∣
∣
∣

ln t
∣
∣ζ
( 1
2 + i(t − 1)

)∣
∣
2
(black)

find interesting that if we scale |ζ( 1
2 +i(t−1))|2

ln t by
√

π
∣
∣
(

c − e−i π
4 e−i

)∣
∣ ≈ 0.276, Fig. 5

illustrate clearer that the error term O

( |ζ( 1
2 +i(t−1))|2

ln t

)

‘captures the peaks’ of the

explicit difference LHS minus RHS.
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The Role of Periodicity in the Solution
of Third Order Boundary Value
Problems

B. Pelloni and D. A. Smith

Abstract In this short paper, we elucidate how the solution of certain illustra-
tive boundary value problems for the Airy equation ut + uxxx = 0 on [0, 1] can
be expressed as a perturbation of the solution of the purely periodic problem. The
motivation is to understand the role boundary conditions play in the properties of
the solution. This is particularly important in related work on the solution of linear
dispersive problems with discontinuous initial data and the phenomena of revivals
and fractalization.

Keywords Initial boundary value problems · Regularity of solutions · Fokas
transform method · Revivals and fractalization

1 Introduction

Linear dispersive equations such as the free-space Schrödinger or Airy equations,
respectively

iut − uxx = 0 or ut + uxxx = 0, where u = u(x, t),

are important models in the mathematical modelling of reality, as they constitute a
powerful way to capture the dominant linear behaviour driving the time evolution of
many physical phenomena that propagate in a wave-like manner. We consider them
in one space dimension, so x ∈ R, with t > 0 denoting time. These are the simplest
equations that, mathematically, capture the main features of the behaviour of even-
and odd-order linear dispersive problems.

B. Pelloni (B)
Heriot-Watt University and Maxwell Institute for the Mathematical Sciences, Edinburgh, Scotland
e-mail: b.pelloni@hw.ac.uk

D. A. Smith
Yale-NUS College and National University of Singapore, Singapore, Island
e-mail: dave.smith@yale-nus.edu.sg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Bountis et al. (eds.), Chaos, Fractals and Complexity, Springer Proceedings
in Complexity, https://doi.org/10.1007/978-3-031-37404-3_23

333

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37404-3_23&domain=pdf
mailto:b.pelloni@hw.ac.uk
mailto:dave.smith@yale-nus.edu.sg
https://doi.org/10.1007/978-3-031-37404-3_23


334 B. Pelloni and D. A. Smith

Our physical reality demands that we pose these equations on a finite interval.
We will assume in all that follows that x ∈ [0, 1], and that we are given initial and
boundary conditions that yield a well-posed problem that admits a unique solution.

While the method of solution of these linear boundary value problems, via sepa-
ration of variables or eigenfunction expansion, has been a standard tool of the math-
ematical trade for a very long time, these techniques are not universally applicable.
In particular, they rely on the full and explicit knowledge of the spectral structure of
the spatial linear differential operator. However, when the boundary conditions are
such that this operator is not self-adjoint, this spectral structure may not be known
or easily determined. This is particularly true for odd-order operators, which is the
case we focus on in this note.

We also remark that care must be taken when the given initial or boundary data
are not sufficiently regular, as it is then necessary to interpret the solution and its
representation in a suitably weak sense. We will not dwell on this aspect in this note,
but it is an important consideration for some of the applications, notably the study
of revivals and weak revivals, that motivated the considerations in this paper.

More precisely, our motivation is recent work on the so-called Talbot effect, or
revival phenomenon [2, 10]. This phenomenon, first described experimentally in
the mid 1850’s by scientist and pioneer of photography, William Henry Fox Tal-
bot [14] and rediscovered several times since in other dispersive systems (notably
by Olver [9]), occurs when an initial datum with jump discontinuities is propagated
periodically. What happens then is that the behaviour of the solution at times that
are rational multiples of a certain quantity related to the length of the interval, that
we call rational times, is markedly different from the behaviour at generic times. At
rational times, the solution is a superposition of translated and dilated copies of the
initial conditions, so in particular it is spatially discontinuous, while at generic times
the solution is spatially continuous (albeit nowhere differentiable). See [13] for a
recent survey of these phenomena.

The revival phenomenon occurs and is fully understood in the case of linear
dispersive PDEswith periodic boundary conditions [1, 4, 9].When studyingwhether
this phenomenon persists in more general situations, for example for more general
boundary conditions, or for nonlinear dispersive PDEs, it is natural to consider what
echo is left by the solution of the linear periodic problem (for example, if a weaker
form of revivals occurs). Whether a specific signature of the periodic problem can
be identified within the solution of more general problems is the question that we
consider, for selected examples, in this paper.
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2 A Motivating Example and the Unified Transform
of Fokas

One particularly natural and surprisingly hard problem, illustrating the limitations
of the eigenfunction expansion technique, is the following.

Assume u(x, t) solves the following Dirichlet type boundary value problem on
[0, 1] for the Airy equation:

ut + uxxx = 0,
u(x, 0) = f (x),
u(0, t) = u(1, t) = ∂xu(1, t) = 0,

x ∈ (0, 1), t > 0,
x ∈ (0, 1),
t > 0.

(1)

Here, and in what follows, we do not make specific assumptions on the regularity of
the initial datum f (x). If f (x) is sufficiently smooth, we might expect the solution
representation to be valid pointwise, though this depends on the compatibility at the
corners (0, 0) and (1, 0) (see also e.g. [15]). The regularity assumptions on f (x) can
be relaxed by adopting a weaker notion of solution.

It is remarkable that, while the associated differential operator has an infinite
number of discrete eigenvalues, the associated eigenfunctions do not form an uncon-
ditional basis, so that there is no generalised Fourier series representation for the
solution of this problem. Although this was formally established as far back as
1915 [8], the knowledge fell into obscurity until the problem was rediscovered and
solved within a more general setting [5, 6, 11].

However, the problem can be fully and effectively solved using the Fokas trans-
form method [7]. Indeed, using this approach it can be shown that this problem
has a unique solution u(x, t), [11]. The solution admits the explicit contour integral
representation

2πu(x, t) =
∫
R

eikx+ik3t û0(k)dk

+
∫

Γ +
eikx+ik3t ζ

+(k)

Δ(k)
dk +

∫
Γ −

eik(x−1)+ik3t ζ
−(k)

Δ(k)
dk,

where �± are the contours in C
± defined as the locus of �(ik3) = 0, û0(k) denotes

the Fourier transform of u0(x), and ζ±(k), Δ(k) are entire functions of k only,
fully determined by the function u0(x). The zeros of Δ are the cube roots of the
eigenvalues of the spatial differential operator, and it can be shown that they are not
on the integration contours [11, Sect. A]. Hence the integrals are well defined.

This leaves open the question of how this problem relates to the simpler case of
periodic boundary conditions, whose solution has a classical representation in terms
of a Fourier series. This is the question we consider below, for this example as well as
for examples of boundary conditions that couple the two ends of the interval [0, 1].



336 B. Pelloni and D. A. Smith

3 Non-periodic Boundary Value Problems

Let u(x, t) denote the solution of a given boundary value problem of the form

ut + uxxx = 0, x ∈ (0, 1), t > 0, (2a)

u(x, 0) = f (x), x ∈ (0, 1), (2b)

three homogeneous boundary conditions on u(x, t). (2c)

We assume that the prescribed boundary conditions are not periodic ones, and that
they are such that the solution exists and is unique. For theAiry equation, the boundary
conditions forwhich thiswell-posedness holds are characterised in [12]. In particular,
this is the case for the illustrative examples we examine below.We stress that we rely
crucially on the Fokas transform approach to guarantee that such existence results
hold for the examples given.

To relate the solution of such a boundary value problem with the solution of
the periodic problem, we consider a natural decomposition of the solution u(x, t).
Namely, let v(x, t) denote the solution of the purely periodic problem, with the same
initial condition v(x, 0) = f (x), so that v(x, t) satisfies

vt + vxxx = 0, x ∈ (0, 1), t > 0; v(x, 0) = f (x), x ∈ (0, 1); (3)

∂ j
x v(0, t) = ∂ j

x v(1, t), j = 0, 1, 2, t > 0. (4)

The function v(x, t) admits the following explicit representation as a Fourier
series, pointwise if v(x, t) is sufficiently smooth (e.g. at least Hölder continuous),
and in L2[0, 1] otherwise:

v(x, t) =
∑
n∈Z

eikn x+ik3n t f̂ (kn), kn = 2πn. (5)

The spectral structure of this problem is entirely understood: the spectrum is fully
discrete and given by {kn, n ∈ Z}, while the associated eigenfunctions {eikn x , n ∈ Z}
form a complete basis with respect to the L2 Hilbert structure.

We then define the auxiliary function w as

w(x, t) := u(x, t) − v(x, t). (6)

The function w is fully determined by the given functions u and v, hence all its
boundary values are known. This function encodes information on how the given
boundary conditions change the nature of the solution when compared with the
solution of the periodic problem.

In each of the following sections,wewill select different boundary conditions (2c),
and examine the properties of the resulting w, in particular its regularity, with the
aim of characterising u as a w-regularity perturbation of v.
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Table 1 Summary of problems, examples, and results

u Problem v Problem w Problem Result Eg

Dirichlet type Periodic Forced periodic Theorem3 Section3.1

Section3.2

u(0, t) = u(1, t) Periodic Forced periodic Theorem 3 Section3.3

quasiperiodic Periodic Forced
quasiperiodic

Remark 5 Section3.4

u(0, t) = eiθu(1, t) Quasiperiodic Forced
quasiperiodic

Remark 6

For most of the u problems considered here, it is appropriate to select v as the
solution of a periodic problem and then w can be viewed as the solution of a prob-
lem with zero initial condition and with boundary conditions that are, formally,
inhomogeneous periodic or quasiperiodic conditions. To emphasize the role of the
inhomogeneities in the boundary conditions of w, we describe such problems as
“forced (quasi)periodic”.

In the last case, we choose v as the solution of a quasiperiodic, rather than periodic,
problem.

In Table 1 we summarise the type of boundary value problem given for u and
selected for v. Once these are given, the function w is fixed but the boundary value
problem for it can be given either in terms of the boundary values of u or of v,
resulting in a different problem for w; the third column in this table summarises
what particular problem is selected for w for each of the examples we treat in this
paper.

3.1 Uncoupled BC of Dirichlet Type

Here we consider the problem (1) for u(x, t). In this case, the function w(x, t)
satisfies

wt + wxxx = 0, x ∈ (0, 1), t > 0; w(x, 0) = 0, x ∈ (0, 1); (7a)

w(0, t) = w(1, t), t > 0; (7b)

∂xw(0, t) = ∂xw(1, t) + h1(t), t > 0; (7c)

∂xxw(0, t) = ∂xxw(1, t) + h2(t), t > 0. (7d)

The known, smooth functions h1(t) and h2(t) are given by

h1(t) = ∂xu(0, t),

h2(t) = ∂xxu(0, t) − ∂xxu(1, t).
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Hence w can be regarded as the solution of a forced periodic problem, with zero
initial condition.

Lemma 1 The function w(x, t) that solves (7) is a continuous function of x and
admits the representation

w(x, t) =
∑
n∈Z

eikn x+ik3n t [iknH1(kn, t) + H2(kn, t)] , (8)

with kn = 2πn,

H1(k, t) =
∫ t

0
e−ik3sh1(s)ds, H2(k, t) =

∫ t

0
e−ik3sh2(s)ds. (9)

Proof Consider the Fourier transform of w(x, t) on [0, 1], defined by

ŵ(k, t) =
∫ 1

0
e−ikxw(x, t)dx .

Then, using the Fourier transform and integration by parts, the PDE forw(x, t) yields
the following ODE for ŵ(k, t):

(
e−ik3t ŵ(k, t)

)
t = −[k2w(0, t) − ikwx (0, t) − wxx (0, t)]

+e−ik[k2w(1, t) − ikwx (1, t) − wxx (1, t)].

We set

F(k, t) =
∫ t

0
e−ik3s[k2w(0, s) − ikwx (0, s) − wxx (0, s)]ds, (10a)

G(k, t) =
∫ t

0
e−ik3s[k2w(1, s) − ikwx (1, s) − wxx (1, s)]ds. (10b)

Then, since ŵ(k, 0) = 0, the solution of the ODE is given by

ŵ(k, t) = eik
3t
[−F(k, t) + e−ikG(k, t)

]
.

Using the boundary conditions, we find

F(k, t) = G(k, t) − ikH1(k, t) − H2(k, t),

with H1(k, t), H2(k, t) defined in (9). Hence

ŵ(k, t) = eik
3t
[
(e−ik − 1)G(k, t) + ikH1(k, t) + H2(k, t)

]
.
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Evaluating this expression at k = kn for n ∈ Z, we obtain

ŵ(kn, t) = eik
3
n t
[
ikH1(kn, t) + H2(kn, t)

]
.

Hence, using the Fourier series representation

w(x, t) =
∑
n∈Z

eikn x ŵ(kn, t), (11)

we arrive at the representation (8) for w(x, t).
Since the functions h1(t) and h2(t) are differentiable, the coefficients in the series

(8) decay at least as 1/k2n , which guarantees the continuity of w(x, t) with respect
to x . �

Remark 2 It is crucial in the argument above that the first boundary term in the
Fourier transform of the PDE, namely the two terms k2w(0, t) and k2w(1, t), van-
ish. Indeed the presence of either of these terms would make the decay in k of
the coefficients in the Fourier series (11) too slow to guarantee that the solution is
continuous.

Fromall thiswe infer that the solutionu(x, t)of the originalDirichlet typeproblem
has the formal representation

u(x, t) = v(x, t) + w(x, t) =
∑
n∈Z

eikn x+ik3n t f̂ (kn)

+
∑
n∈Z

eikn x+ik3n t
∫ t

0
e−ik3n s(iknux (0, s) + uxx (0, s) − uxx (1, s))ds.

If we did not have the a priori knowledge that the function u(x, t) exists and is
unique, the above would be purely a formal expression, with nothing new to offer;
it would not yield a way to represent u(x, t) effectively. However, because we do
have wellposedness of (1), expressing u(x, t) in this way gives information on how
its regularity properties depend on the regularity of initial and boundary conditions.

For the solution v(x, t) of the purely periodic problem, the regularity depends
only on the functional class of f (x). It is less known that if f (x) is only of bounded
variation, but not continuous, the regularity of the solution remains in the same class
at certain values of the time in a dense set of measure 0, but improves for almost all t .
This is known in the context of the periodic problem as the phenomenon of revivals.

The second sum on the right hand side of the expression above for u(x, t) con-
veys information on how the regularity is affected by the (homogeneous) boundary
conditions. Lemma 1 implies that the second term is always continuous as a function
of x . Therefore, u itself is a continuous perturbation of v.
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3.2 Mixed BC of Dirichlet Type

If the boundary conditions for u(x, t) include the Dirichlet-type condition u(0, t) =
u(1, t) = 0, plus another condition possibly coupling the ends of the interval [0, 1],
the analysis of the previous examples remain essentially unaltered. For example, if
the third condition is ux (0, t) = γux (1, t), for some γ ∈ (0, 1), the argument detailed
above follows through with

H1(k, t) =
∫ t

0
(γ − 1)ux (1, s)e

−ik3sds,

and the value of H2(k, t) given by the latter of Eq. (9). Therefore, the same conclusion
canbe drawn: regardless of the regularity (or lack of regularity) ofu(x, t) as a function
of x , the function w(x, t) is continuous in x , so u is a continuous perturbation of v.

Note that, unlike the previous example, in this case the spatial operator admits
an L2 basis of eigenfunctions, even though the eigenvalues cannot be determined
explicitly other than as roots of a transcendental equation. Using the Fokas transform
approach, the associated generalised Fourier series can be determined by a contour
deformation technique [6, 11].

3.3 Coupled BC: Pseudo-periodic

We now turn to boundary conditions that couple the endpoints of the interval [0, 1],
and assume that the given boundary conditions for u(x, t) are the pseudo-periodic
conditions

β j∂
j
x u(0, t) = ∂ j

x u(1, t), j = 0, 1, 2, β j ∈ C. (12)

Conditions need to be imposed on the β j ’s to ensure the problem is well-posed, see
[12]. We assume this to be the case.

The function w(x, t) satisfies, along with a zero initial condition, the boundary
conditions

∂ j
xw(0, t) = ∂ j

xw(1, t) + h j (t), j = 0, 1, 2, (13)

where, in this case,

h j (t) = (1 − β j )∂
j
x u(0, t), j = 0, 1, 2.

A lemma entirely analogous to Lemma 1 yields for w(x, t) the representation

w(x, t) =
∑
n∈Z

eikn x+ik3n t
[−k2n H0(kn, t) + iknH1(kn, t) + H2(kn, t)

]
, (14)
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where kn = 2nπ and

Hj (k, t) =
∫ t

0
e−ik3s(1 − β j )∂

j
x u(0, s)ds.

As noted in Remark 2, the function w(x, t) now has coefficients that can be
guaranteed to decay only as n−1, and therefore it may have lower regularity than the
given initial datum f (x), assumed Hölder continuous. However, if it so happens that
β0 = 1, then H0 = 0, so the coefficients in Eq. (14) decay like n−2, w is continuous
and, as before, u is a continuous perturbation of v.

The results presented in the previous sections can be summarised and generalised
as the following theorem.

Theorem 3 Suppose problem (2) is wellposed and u is its solution. If the given
linearly independent boundary conditions (2c) are either

u(0, t) = 0, u(1, t) = 0, one other boundary condition on u

or
u(0, t) = u(1, t), two other boundary conditions on u,

then u(x, t) = v(x, t) + w(x, t), for v the solution (5) of periodic problem (3) and
w a continuous function of x.

3.4 An Outlier: Quasi-periodic BC

For the particular case that β0 = β1 = β2 in example (12), known as the quasi-
periodic case, one can pursue an alternative argument to give some interesting quali-
tative information about the function u(x, t). This information is consistent with the
fact that quasi-periodic problems for the Airy equation do not in general exhibit the
phenomenon of weak revivals [2]. It is also consistent with the fact that the spectral
structure of the quasi-periodic spatial operator can be easily derived by a shift on the
structure of the periodic operator, and is well known.

Assume that the given boundary conditions for u(x, t) are the quasi-periodic
conditions

∂ j
x u(0, t) = eiθ∂ j

x u(1, t), j = 0, 1, 2, θ ∈ R. (15)

The function w(x, t) satisfies, along with zero initial conditions, the boundary con-
ditions

∂ j
xw(0, t) = eiθ∂ j

xw(1, t) + (1 − e−iθ)∂ j
x v(1, t), t > 0, (16)
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where v(x, t) is the solution of the purely periodic problem (3). It is still true that w
obeys boundary conditions (13) with β0 = β1 = β2 = e−iθ, but we shall make use
of the alternative characterisation (16) in the following argument.

Lemma 4 The function w(x, t) solution of (7a), (16) admits the representation

w(x, t) =
∑
n∈Z

ei(kn−θ)x+i(kn−θ)3t
∫ t

0
(1 − eiθ)V (kn − θ, s)e−i(kn−θ)3sds, (17)

with kn = 2nπ and

V (k, t) = k2v(0, t) − ikvx (0, t) − vxx (0, t). (18)

Proof Consider the Fourier transform of w(x, t), which satisfies as before the fol-
lowing ODE: (

e−ik3t ŵ(k, t)
)
t = −F(k, t) + e−ikG(k, t),

with F(k, t) and G(k, t) given by Eq. (10). Then, since ŵ(k, 0) = 0, the solution of
the ODE is given by

ŵ(k, t) = eik
3t
[−F(k, t) + e−ikG(k, t)

]
.

Using the boundary conditions, we find

e−iθF(k, t) = G(k, t) + (1 − e−iθ)

∫ t

0
e−ik3sV (k, s)ds,

with V (t, k) defined in (18). Hence

ŵ(k, t) = eik
3t

[
(e−i(k+θ) − 1)F(k, t) + (e−i(k+θ) − e−ik)

∫ t

0
e−ik3sV (k, s)ds

]
.

Evaluating this expression at k = kn − θ for n ∈ Z, we obtain

ŵ(kn − θ, t) = ei(kn−θ)3t (1 − eiθ)
∫ t

0
e−i(kn−θ)3sV (kn − θ, s)ds.

We now invert this to obtain the generalised Fourier series expression

w(x, t) =
∑
n∈Z

ei(kn−θ)x ŵ(kn, t), (19)

which is the representation (17) for w(x, t). �
From all this, we infer that the solution u(x, t) of the original quasi-periodic

problem has the formal representation
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u(x, t) =v(x, t) + w(x, t) =
∑
n∈Z

eikn x+ik3n t f̂ (kn)

+
∑
n∈Z

ei(kn−θ)xei(kn−θ)3t
∫ t

0
(1 − eiθ)e−i(kn−θ)3sV (kn − θ, s)ds. (20)

The function V (k, t) is made up of the boundary values of the x-periodic function
v(x, t). Knowledge of this function as well as the characterisation of the eigenvalues
of the spatial operator, is enough to represent u(x, t) effectively, and V (k, t) can
easily be calculated from representation (5).

Remark 5 Note that the presence of the term k2nv(0, t) in the definition of the gen-
eralised Fourier coefficient ŵ(k, t) implies that the convergence of the series for
w(x, t) is slow and not uniform; unless v(0, t) = 0, this term implies a no better
regularity of w than that of the solution of the purely periodic problem.

Note also that the second term on the right of representation (20) contains the
exponential ei(kn−θ)x+i(kn−θ)3t which is both space- and time-periodic with a period
congruent to θ + Q, while v(x, t) is periodic with period in Q. Therefore if θ /∈ Q,
the function u(x, t) cannot have any periodicity property. This confirms the result
of [2], namely the fact that this quasi-periodic problem, surprisingly, does not exhibit
revivals if θ /∈ Q.

Remark 6 Suppose the boundary conditions for u are

u(0, t) = eiθu(1, t), two other boundary conditions on u, (21)

with θ ∈ R but, to avoid the regime already covered by Theorem 3, suppose θ is not
an even integer multiple of π. Suppose this problem for u is wellposed. Note that this
includes certain pseudoperiodic problems (12), but not all wellposed such problems.

We can make the decomposition u(x, t) = v(x, t) + w(x, t)with v satisfying the
quasiperiodic problem

vt + vxxx = 0, x ∈ (0, 1), t > 0; v(x, 0) = f (x), x ∈ (0, 1);
∂ j
x v(0, t) = eiθ∂ j

x v(1, t), j = 0, 1, 2, t > 0,

and w satisfying the boundary forced quasiperiodic problem

wt + wxxx = 0, x ∈ (0, 1), t > 0; w(x, 0) = 0, x ∈ (0, 1);
∂ j
xw(0, t) = eiθ∂ j

xw(1, t) + h j (t), j = 0, 1, 2, t > 0,

in which

h0(t) = 0, h1(t) = ux (0, t) − eiθux (1, t), h2(t) = uxx (0, t) − eiθuxx (1, t).

Then, as discussed above, the (non)existence of revivals for v is determined by the
(ir)rationality of θ and, using an argument exactly paralleling the proof ofLemma1,w
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is continuous. Therefore, u, being a continuous perturbation of v, exhibits continuous
perturbations of revivals if and only if θ ∈ Q. This is the analogue of Theorem 3 for
boundary conditions (21).

Conclusion We have embedded the solution of the periodic problem in the solution
of certain classes of homogeneous boundary value problems to determine how the
boundary conditions perturb the qualitative properties of the periodic solution.

For homogeneousDirichlet type separated boundary conditions, and for boundary
conditions that describe continuous extension from [0, 1] to (−∞,∞), we found that
the remaining one or two boundary conditions add a component that superimposes
a continuous function of x onto the periodic solution, irrespective of the overall x
regularity of the full solution.

On the other hand, in the case of some particular quasi-periodic problems, which
in the case of second order problems can always be recast in terms of periodic
boundary conditions, this approach confirms that while the solution depends only on
the boundary values of the periodic solutions, the boundary conditions not only add
a less regular component to the purely periodic solution, but also that the interaction
between the periodic and the non-periodic part of the solution can silence completely
the echo of periodicity.

These remarks have particularly significant consequences in case of low-regularity
initial data and the phenomenon of weak revivals. This is explored further in [3].
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Abstract The Fokas method, also known as the unified transform, is one of the most
remarkable breakthroughs noted in the study of linear and integrable nonlinear partial
differential equations at the turn of the new millennium. Its numerous implications,
along with the elegance of the ideas forming its foundation, led the great Israel
Gelfand to once describe it as one of the most exciting developments in the area
of partial differential equations since the time of Fourier. In this article, we offer
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1 Introduction

Dispersive partial differential equations describe phenomena in which waves of dif-
ferent wavelengths propagate at different speeds. Two prominent examples are the
Korteweg-de Vries (KdV) equation1

ut + uxxx + uux = 0 (1)

and the (cubic) nonlinear Schrödinger (NLS) equation

iut + uxx ± |u|2u = 0. (2)

In the above equations, u = u(x, t) is a function of space x and time t , with the
various indices denoting partial derivatives with respect to the relevant variable.
Moreover, in Eq. (2), the positive sign in front of the nonlinearity corresponds to the
focusing NLS and the negative sign to the defocusing NLS. Both KdV and NLS are
nonlinear evolution equations that arise as approximations, under certain regimes, of
the fundamental Euler equations for incompressible and inviscid flow. Furthermore,
NLS has a ubiquitous presence in mathematical physics, being a central model in
such diverse areas as optics, plasmas, and Bose-Einstein condensates.

When considered on the infinite line −∞ < x < ∞, Eqs. (1) and (2) must be
supplemented with an initial condition of the form

u(x, 0) = u0(x) (3)

for some given function u0(x). This is known as the initial value problem (IVP) or
Cauchy problem. One can then ask whether such an IVP can be solved and, if so,
how and in what sense. In particular, one can also ask whether the choice of initial
data u0(x) affects the solvability of the IVP and the various properties of its solution.

A key element in regard to the above questions is the fact that both KdV and
NLS have a remarkably rich structure as completely integrable systems. For KdV,
this feature was discovered by Gardner et al. [18], and for NLS it was established by
Zakharov and Shabat [43], while the seminal 1968 work of Lax [36] provided a solid
theoretical framework for studying completely integrable equations with the help of
what are nowadays known as Lax pairs. These are systems of linear equations that
allow integrable nonlinear equations to be “linearized” by means of expressing them
as compatibility conditions of these linear systems. For example, a Lax pair for the
KdV Eq. (1) is given by the 2 × 2 linear system

μxx + (
1
6u − k

)
μ = 0,

μt + (
1
3u + 4k

)
μx − 1

6uxμ = 0,
μ = μ(x, t, k), k ∈ C, (4)

1 Although KdV also contains the linear term ux , for our purposes it suffices to consider the sim-
plified form (1).
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Fig. 1 Outline of the inverse
scattering transform method

since KdV follows from that system under the simple symmetry condition μxxt =
μt xx (which for continuous mixed derivatives follows by the Clairaut/Schwarz the-
orem). In [18], the authors studied the IVP (1), (3) for KdV on the infinite line by
introducing the inverse scattering transform method. For the NLS equation and the
IVP (2), (3), the corresponding formalism was developed in [43]. The method con-
sists of three main steps that can be outlined as follows (see also the diagram of
Fig. 1):

• the spectral analysis of the t-independent component of the Lax pair (first equation
in (4)), thus mapping the initial data u0(x) to spectral data û0(k);

• the evolution of the spectral data û0(k) via the t-dependent component of the Lax
pair (second equation in (4));

• the inversion of the resulting time-dependent spectral function û(k, t) from the
spectral kt-space to the physical xt-space, in order to recover the solution u(x, t)
of the IVP. This step typically involves the formulation and analysis of a Riemann-
Hilbert problem.

The above procedure is conceptually identical to the well-known Fourier transform
method for solving the IVP of linear evolution equations. In this sense, the inverse
scattering transform can be regarded as a nonlinear analogue of the Fourier transform.

When available, the inverse scattering transform is a truly powerful method.
Nevertheless, from the broader perspective of the analysis of nonlinear dispersive
equations (and, more generally, nonlinear evolution equations), the method has
some important limitations in its applicability. First and foremost, it can only be
employed for integrable equations.2 In addition, even then it comes with certain
restrictions on the smoothness and decay at infinity of the initial data, e.g. on the
infinite line these must belong in the class of “rapidly decaying” functions satisfying∫ ∞
−∞ (1 + |x |) |u0(x)| dx < ∞. These limitations rule out the vast majority of non-
linear evolution equations and, importantly, any such equation in space dimension
three or higher. Moreover, even when studying integrable equations like KdV and
NLS, conditions like the one above exclude large and significant classes of initial
data. Indeed, as noted on page 257 of [33], the inverse scattering transformmachinery
seems to break down “even under very mild relaxations” of the “rapidly decaying”
condition (see also [7]).

2 There does not exist a universally accepted definition of complete integrability. Here, we identify
an integrable equation by its ability to be “linearized” via a Lax pair.
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Although the above limitations cannot be overcome in the context of the inverse
scattering transform method, they do not pose a problem if one changes perspective
and revisits the IVPs with a different goal, i.e. without the ambition of constructing
an explicit solution map like the one produced via inverse scattering. In fact, the
most fundamental question for the KdV and NLS IVPs is that of well-posedness.
Originally formulated by Hadamard, this notion refers to the existence and unique-
ness of solution of a given equation, as well as to the continuous dependence of
that solution on the data. In the absence of well-posedness, the analysis of a model
becomes pointless, regardless of the other features that this may have. For example,
the “bad” Boussinesq equation, the first equation for which a soliton solution was
written down, is not particularly useful otherwise since it is ill-posed. Through the
years, various techniques have been developed for proving the well-posedness of
IVPs that involve evolution equations. In the case of dispersive equations, a very
effective such technique combines the powerful tools of harmonic analysis and the
Fourier transform with the contraction mapping theorem for studying these equa-
tions in suitable Banach spaces. We hereafter refer to this technique as the Fourier
transform approach.

It iswidely known thatwell-posedness is affected by anumber of factors, including
the nature of the equation and the regularity and decay of the data. However, it is
often less emphasized that it is also affected by the nature of the associated physical
domain. In the case of a fully unbounded domain like the infinite line, one has an
IVP; on the other hand, when the spatial domain involves a boundary (e.g. in one
dimension, the half-line 0 < x < ∞ or the finite interval [0, 1]), one instead has an
initial-boundary value problem (IBVP). For any given equation, these two types of
problems are generally very different, and this is also reflected in the analysis of
their well-posedness. In fact, the well-posedness of nonlinear dispersive equations
in the context of IBVPs is much less studied (and understood) than their IVP well-
posedness.

Through a systematic effort that began in 2012, Alex Himonas and the author
introduced a new approach for the well-posedness of IBVPs for nonlinear dispersive
equations which takes advantage of the Fokas method in analogy to the way that
the classical Fourier transform approach utilizes the Fourier transform. In that sense,
the Fokas method can be regarded as the natural analogue of the Fourier transform
in the IBVP setting. This novel well-posedness approach is reviewed in Sect. 3.
Of course, the connection of the Fokas method with the Fourier transform dates
back a lot further—specifically, its origins can be traced back to the 1994 paper of
Fokas and Gelfand [14], where the Fourier transform pair is rediscovered through
an inverse scattering analysis of the linear Schrödinger equation on the infinite line.
This understanding later contributed to the realization that the Fokas method has
significant implications at the level of IBVPs for linear equations, despite the fact
that it had originally been motivated through the study of IBVPs for integrable
nonlinear equations. For that reason, and due to the fact that the linear component
of the Fokas method plays a fundamental role in the new well-posedness approach
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discussed in Sect. 3, in Sect. 2 we review the derivation of the Fourier transform pair
in the style of [14], using some of the ideas that later led to the integrable nonlinear
component of the Fokas method.

2 Inverse Scattering for Linear Equations: Rediscovering
the Fourier Transform

Themotivation behind the discovery of Lax pairs and the introduction and subsequent
development of the inverse scattering transform method had to do with the study of
integrable nonlinear equations; linear equations were not part of that motivation,
since their IVP could be easily solved via the Fourier transform. Nevertheless, Fokas
and Gelfand [14] came to the realization that every linear evolution equation can
also be expressed as the compatibility condition of a Lax pair. Let us, for example,
consider the Airy equation

ut + uxxx = 0, (5)

which corresponds to the linear part of the KdV Eq. (1). With the help of the
formal adjoint equation −ũt − ũxxx = 0, which is obtained by replacing ∂ j with
(−1) j∂ j in the x and t partial derivatives, we can write (5) in the divergence
form (e−ikx−ik3t u)t + (e−ikx−ik3t [uxx + ikux − k2u])x = 0, k ∈ C. Seeking M =
M(x, t, k) such thatMx = e−ikx−ik3t u andMt = −e−ikx−ik3t (uxx + ikux − k2u), we
see that the above divergence form (which is equivalent to (5)) is nothing but the sym-
metry requirementMxt = Mtx . That is, theAiry Eq. (5) is the compatibility condition
of the linear system for M , which is therefore a Lax pair for that equation. In fact, the
exponential term can be absorbed by letting M(x, t, k) = e−ikx−ik3tμ(x, t, k), giving
rise to the Lax pair

μx − ikμ = u, μt − ik3μ = − (
uxx + ikux − k2u

)
. (6)

Following the above realization, Fokas and Gelfand applied the inverse scattering
transform formalism to Lax pairs like (6) in order to solve the IVP of linear evolution
equations analogously to their integrable nonlinear counterparts, i.e. as if Fourier
transform were not known/available. This direction was especially motivated by
a long-standing open problem, namely the advancement of the inverse scattering
transformmethod from the IVP to the IBVP setting, e.g. for solving theKdV equation
on the half-line with nonzero Dirichlet data. Indeed, as noted on page 1 of [13], when
this problem was first suggested to Ablowitz and Fokas by Julian Cole in 1982, they
first attempted to solve the corresponding linear problem, namely the Airy Eq. (5) on
the half-line, by using an appropriate spatial transform. The reason for first seeking
a spatial transform for the linear IBVP had to do with the observation that, in the
case of the IVP, in the linear limit the inverse scattering transform reduces to the
Fourier transform [2]. Thus, knowledge of the relevant spatial transform in the case
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of the linear IBVP could provide the basis for developing the analogue of the inverse
scattering transformmethod for integrable nonlinear IBVPs. To their surprise, Fokas
and Ablowitz could not find an appropriate spatial transform for solving the linear
Airy equation on the half-line; in fact, such a transform does not exist for any linear
evolution of spatial order higher than two3 [13]. Taking into account that even the
“simple” task of solving linear IBVPs via spatial transforms was an open problem, it
becomes evident that any progress made in the study of linear equations via inverse
scattering ideas, like the one pursued in [14] as mentioned above, could have far-
reaching implications also for integrable nonlinear equations.

Let us now follow the approach of [14] in order to integrate the Lax pair (6)
and hence solve the IVP for the Airy equation on the infinite line.4 As usual in the
inverse scattering transform method, we work under the assumption of existence of
solution and, in particular, we assume sufficient smoothness and decay at infinity as
necessary. As noted earlier (see diagram of Fig. 1), there are three main steps: the
direct problem, the inverse problem, and the time evolution of the spectral data.

Direct problem. Treating t , k as parameters—and thus suppressing them from the
arguments of μ, u—we integrate the t-independent part of the Lax pair (6) to obtain
the following expressions for the particular solutions μ± that correspond to zero
“boundary” conditions at ±∞, i.e. limx→±∞ μ±(x) = 0:

μ+(x) =
∫ x

−∞
eik(x−y)u(y)dy, μ−(x) = −

∫ ∞

x
eik(x−y)u(y)dy. (7)

Inverse problem. Changing our perspective, we use the expressions (7) in order to
define μ as a piecewise function of k (this time, we suppress the dependence on x , t)
by μ(k) = μ+(k) for Im(k) > 0 and μ(k) = μ−(k) for Im(k) < 0. Then, introducing
the notation

û(k) :=
∫ ∞

−∞
e−iky u(y)dy, k ∈ R, (8)

we observe that μ(k) satisfies the following scalar Riemann-Hilbert problem:

• μ(k) is analytic in C \ R (by the form of (7) and a Paley-Wiener theorem like
Theorem 7.2.4 in [40]);

• along R, μ(k) satisfies the jump condition μ+(k) − μ−(k) = eikx û(k), k ∈ R;
• integration by parts in (7) implies μ(k) = O(1/k) as |k| → ∞.

The solution of this scalar Riemann-Hilbert problem is readily obtained via the
Plemelj formulae (Lemma 7.2.1 in [1]) as

3 Although a temporal Laplace transform is available, it comes with certain disadvantages, most
notably its inability to generalize to the integrable nonlinear equations.
4 In [14], the authors illustrated their approach via the linear Schrödinger equation; the analysis is
essentially the same in both cases.
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μ(x, k) = 1

2iπ

∫ ∞

−∞
eiλx û(λ)

λ − k
dλ, k /∈ R. (9)

Inserting this expression into the t-independent part of the Lax pair (6) and taking
|k| → ∞ yields the following representation for u(x) in terms of the notation û(k)
introduced by (8):

u(x) = 1

2π

∫ ∞

−∞
eikx û(k)dk, x ∈ R. (10)

Time evolution.Observe that the expressions (7) satisfy limx→±∞(e−ikxμ±) = ±û.
Therefore, restoring the time variable t and taking the two limits x → ±∞ of the
t-dependent part of the Lax pair (6) while assuming that u, ux , uxx → 0 in those
limits, we obtain the equation ût − ik3 û = 0. In view of the initial condition (3) and
the notation (8), this equation implies û(k, t) = eik

3t û0(k), which can be combined
with the representation (10) to yield the solution to the IVP (6), (3) in the explicit
form

u(x, t) = 1

2π

∫ ∞

−∞
eikx+ik3t û0(k)dk, x ∈ R, t ≥ 0. (11)

What is truly remarkable is the fact that the spectral transform (8), which arises
spontaneously in the above analysis, is nothing but the celebrated Fourier transform!
Furthermore, the solution of the relevant inverse (Riemann-Hilbert) problem readily
yields the inversion of this spontaneously emerging transform, namely the inverse
Fourier transform (10)! That is, in addition to providing the explicit solution for-
mula to the Airy equation IVP (6), (3) (which is, of course, the well-known Fourier
transform solution of this problem), the analysis of [14] leads to the rediscovery of
the Fourier transform itself, and also to an elegant proof of its inversion!

In this regard, as noted at the beginning of this section, the contribution of [14] was
of crucial importance because it suggested that devising a method for the spectral
analysis of the Lax pairs of linear equations in the IBVP setting could provide
the correct way of generalizing the inverse scattering transform method from the
IVP to the IBVP setting. Soon after, this turned out to be indeed the case with the
introduction and subsequent development of the Fokas method for both linear and
integrable nonlinear equations in the IBVP setting.

3 A Novel Approach for the Well-posedness of IBVPs

The Fokas method, also known as the unified transform, was introduced by Fokas
in 1997 [12] and subsequently developed by him and numerous collaborators (see
[13, 17] and the references therein). Themethod has groundbreaking implications not
only for integrable nonlinear equations, but also for linear equations. In the nonlinear
case, it provides the extension of the inverse scattering transformmethod to the IBVP
setting. In the linear case, it produces novel solution formulae for IBVPs formulated
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in various physical domains, with different types of nonzero boundary conditions,
and in any number of spatial dimensions; as such, the linear component of the Fokas
method is the direct analogue of the Fourier transform in the IBVP setting.

As noted in the introduction, a fundamental question for any given nonlinear dis-
persive equation is the one of (Hadamard) well-posedness, i.e. existence, uniqueness,
and continuous dependence of the data-to-solutionmap. Although this topic has been
studied extensively in the direction of the IVP (see, for example, the books [6, 8,
34, 37, 42] and the vast number of references therein), until recently it had remained
largely unexplored in the case of IBVPs (essentially, the works [3, 9–11, 29, 30,
38]), despite the fact that this latter class of problems is very significant with regard
to applications.

The main reason for this disproportion is the absence of the Fourier transform
from the IBVP setting. Indeed, in the case of dispersive equations, the proof of well-
posedness for the IVP relies heavily on the rich and powerful collection of harmonic
analysis techniques that surround the Fourier transform. Importantly, the solution via
the Fourier transform of the associated forced linear IBVP provides the starting point
for defining the iteration map used for proving existence and uniqueness of solution
via a fixed point argument (contraction mapping approach). Hence, in the case of
IBVPs, without even a way of solving the linearized equations (recall discussion
in Sect. 2), it is not surprising that very little progress had been made towards a
general approach for establishing well-posedness of these problems in the case of
(dispersive) nonlinear equations.

A systematic effort towards this goal began in 2012, when the author arrived at the
University of Notre Dame to work under the mentorship of Professor Alex Himonas.
The main idea had been proposed to Himonas by Fokas a few years earlier, in 2008,
and consisted in employing the explicit solution formulae produced by the Fokas
method in the case of (forced) linear IBVPs in order to set up the iterations for
proving the well-posedness of the corresponding nonlinear problems via contraction
mapping. The main source of optimism in regard to this suggestion was that, as
mentioned earlier, for linear equations, the Fokas method is the analogue of the
Fourier transform in the IBVP setting. Hence, it seemed reasonable to expect that
the Fokas solution formulae could fulfill the role of generating iteration maps for
nonlinear IBVPs in the same way that the Fourier transform formulae do in the case
of nonlinear IVPs.

Regardless of how natural this idea may at first seem, however, when attempting
to implement it one is quickly met with important challenges. For example, one
must figure out how to obtain estimates in those function spaces that are natural
to dispersive equations—such as Sobolev spaces or Bourgain spaces, which are
typically studied (and even defined) with the help of the Fourier transform—when
the Fokas solution formulae involve integrals along complex contours of the spectral
k-plane (as opposed to the Fourier transform (8), which is defined only for k ∈ R).

Another challenge has to do with the correct function space for the boundary
data. For example, in the case of the IVP (2), (3) for the NLS equation, the initial
datum u0(x) is typically placed in Sobolev spaces Hs and the solution is obtained
in the associated Hadamard-type spaces Ct Hs

x (at least for smooth enough data, i.e.
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high enough s). However, on the half-line, one must additionally prescribe data at
the boundary x = 0, e.g. via the Dirichlet boundary condition u(0, t) = g0(t) and
so one must determine a suitable function space also for g0(t). Whether or not this
space depends on the space Hs for u0(x) and if so, the precise relationship between
the two spaces, is a question that adds to the complexity of IBVPs when compared
to the IVP.5

A combination of ideas inspired by aspects of the Fokas method, together with
suitably adapted results from the classical harmonic analysis toolbox used for the
IVP, made it possible to pursue Fokas’s suggestion and introduce an approach for
establishing the well-posedness of IBVPs for nonlinear dispersive equations in a
way conceptually analogous to the Fourier transform approach used for the IVP.
This new approach has been employed for various problems involving the NLS,
KdV, “good” Boussinesq, and biharmonic Schrödinger equations [15, 16, 20, 22,
24, 25, 35, 39], while it has also proved effective outside the dispersive class, for a
nonlinear reaction-diffusion model [26]. In the new approach, the key to overcoming
the challenges described above was the study of what we refer to as the pure linear
IBVP. This problem consists of the homogeneous linearized version of the equation
under study, supplementedwith zero initial data andnonzero but compactly supported
boundary data. The pure linear IBVP can be thought of as the simplest genuine IBVP,
since it incorporates the challenges of an IBVP without the “distractions” caused by
the initial data and the nonlinearity/forcing.

In the case of the Dirichlet half-line problem for the NLS Eq. (2), the pure linear
IBVP is given by

iut + uxx = 0, 0 < x < ∞, 0 < t < T,

u(x, 0) = 0, u(0, t) = g(t), supp(g) ⊂ (0, T ),
(12)

where T > 0 is fixed (since we are interested in local well-posedness). Using the
Fokas method, the solution of problem (12) is found to be

u(x, t) = 1

π

∫

C
eikx−ik2t k ĝ(−k2)dk, (13)

where ĝ(−k2) is the Fourier transform (8) of g(t) evaluated at −k2 and the complex
contour C is the positively oriented boundary of the first quadrant of the complex
k-plane. Below, we illustrate how the Fokas formula (13) can be used in order to
estimate the solution of (12) for each t ∈ [0, T ] as a function in the Sobolev space
Hs(0,∞), s ≥ 0, on the half-line. Note that this space can be defined either as a
restriction of the infinite-line space Hs(R) or, directly, via the norm equal to the
sum of the L2(0,∞)-norms of the derivatives up to order s (using the Slobodeckij

5 In some cases, there exist results on the time regularity of the IVP solution that can provide helpful
insights about the regularity of the boundary data [32]. In general, however, such results may not
be available.
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seminorm if s is fractional). We shall only provide the details for the case s = 0,
which corresponds to L2(0,∞); the full estimation can be found in [15].

The contour C comprises the positive halves of the real and imaginary axes.
Denoting the respective parts of the solution by ure and uim, we have u = ure + uim
with

ure(x, t) = 1

π

∫ ∞

0
eikx · e−ik2t k ĝ(−k2)dk, uim(x, t) = 1

π

∫ ∞

0
e−kx · eik2t k ĝ(k2)dk.

Since the expression for ure also makes sense for x < 0, it can be regarded as a
function on the infinite line. Thus, by the Plancherel theorem,

sup
t∈[0,T ]

‖ure(t)‖L2
x (0,∞) �

∥∥e−ik2t k ĝ(−k2)
∥∥
L2
k (0,∞)

� ‖g‖
H

1
4
t (R)

. (14)

On the other hand, the expression for uim does not make sense for x < 0, thus a
different idea is needed. In particular, observe that, up to a constant, the L2

x (0,∞)-
norm of uim is just the L2

x (0,∞)-norm of the Laplace transform with respect to k
of the quantity eik

2t k ĝ(k2). Hence, by the boundedness of the Laplace transform in
L2(0,∞) [19],

sup
t∈[0,T ]

‖uim(t)‖L2
x (0,∞) �

∥
∥eik

2t k ĝ(k2)
∥
∥
L2
k (0,∞)

� ‖g‖
H

1
4
t (R)

. (15)

Together, estimates (14) and (15) imply that if the boundary datum of the pure
linear IBVP (12) belongs to H 1/4

t then the solution of this problem belongs to
Ct L2

x (0,∞). Furthermore, through the generalizations of these estimates for s ≥ 0,
the Sobolev space H (2s+1)/4

t spontaneously emerges as the correct space for the
Dirichlet boundary datum g0(t). This fact is corroborated via a separate analysis of
the time regularity of the homogeneous and forced linear Schrödinger IVPs, which
actually shows that the above choice of space for the boundary datum is sharp.
Eventually, via a contraction mapping argument, the various linear estimates derived
with the help of the Fokas method solution formula (12) imply the Hadamard well-
posedness of the Dirichlet problem for NLS on the half-line. More precisely:

Theorem ([15]). Suppose 1/2 < s � 3/2. Then, the IBVP for the cubic NLS Eq. (2)
on the half-line with initial data u0 ∈ Hs(0,∞) and Dirichlet boundary data g0 ∈
H (2s+1)/4(0, T ) is well-posed in the sense of Hadamard. In particular, there exists a
unique solution u ∈ C ([0, T ∗] ; Hs(0,∞)), which satisfies

sup
t∈[0,T ∗]

‖u(t)‖Hs (0,∞) � cs
( ‖u0‖Hs (0,∞) + ‖g0‖H

2s+1
4 (0,T )

)

with cs = c(s) > 0 and 0 < T ∗ � min
{
T, cs

( ‖u0‖Hs (0,∞) + ‖g0‖H
2s+1
4 (0,T )

)−4}
,

and the data-to-solution map {u0, g0} 
→ u is locally Lipschitz continuous.
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The above result can also be established for the general semilinear Schrödinger
equation of nonlinearity α > 1. Moreover, by adapting the proof of the famous
Strichartz estimates [41] that are used for sharp well-posedness of the NLS IVP, it
is possible to extend the above result to the interval 0 ≤ s < 1/2 and hence obtain
sharp well-posedness on the half-line (like for the IVP, the solution will now belong
in a finer space motivated by the Strichartz estimates). Indeed, a sharp result of this
kind was proved in [21], where the approach introduced in [15] was advanced for
the first time to higher than one spatial dimensions for the NLS equation on the
half-plane R × R

+.
In fact, the analysis carried out in [21] and, more recently, in [23], led to a remark-

able and perhaps unexpected discovery, namely that the celebrated Xs,b spaces,which
were introduced by Bourgain [4, 5] as solution spaces for proving the sharp well-
posedness of the periodic and non-periodic NLS and KdV IVPs, now arise spon-
taneously as boundary data spaces in the estimation of the Fokas method solution
for the pure linear IBVP associated with NLS on the half-plane. More precisely,
for initial data u0 ∈ Hs(R × R

+), it is shown in [21] that the Dirichlet boundary
data must belong to a certain restriction of the space Xs,1/4 ∩ X0,(2s+1)/4. In the case
of the Neumann and Robin problems studied in [23], the corresponding space is a
restriction of Xs,−1/4 ∩ X0,(2s−1)/4.

In lieu of an epilogue, we emphasize that, despite the substantial progress made
during the last decade on the well-posedness of nonlinear IBVPs via the novel Fokas-
method-inspired approach outlined above, a plethora of important problems remain
open. For example, recently the new approach was further extended in the direction
of Bourgain spaces [27, 28], improving the result of [16] for the KdV equation on
the half-line from Hs with 3/4 < s < 1 (which is consistent with the IVP result of
[31]) down to s > −3/4, matching the IVP result of [32]. Nevertheless, although the
results of [27, 28, 32] are optimal with respect to contraction mapping techniques,
they are not sharp in general, since it was recently shown in [33] without using a
contraction mapping technique that the KdV IVP is well-posed in H−1. Whether or
not this result also holds on the half-line is currently unknown. The adaptation of
the new approach to other higher-dimensional equations and/or domains such as the
quarter-plane is another interesting direction that should be explored.

In conclusion, the Fokas method has provided the key to developing an effective,
universal approach for the rigorous well-posedness of IBVPs that involve nonlinear
dispersive (and non-dispersive) equations. This is yet another aspect of the remark-
able impact that the method has had on the analysis of linear and nonlinear IBVPs
since its introduction in 1997. Furthermore, it is also indicative of the influence that
the method will continue to have on the field for the years to come.
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Abstract In what follows, some of the seminal contributions of Thanassis (short
version of Athanassios) Fokas are reviewed. The goal is to justify the characteri-
zation by Israel Gelfand that “Fokas is a rare example of a scientist of the style of
Renaissance”. Gelfand’s statement reflects the fact that Thanassis’ career follows
parallel academic paths involving Mathematics, Physics, Engineering, Biology and
Medicine. In this talk, I will try to justify Gelfand’s characterization, utilizing my
memories from the nearly half a century that I know Thanassis, as a collaborator and
a close friend. I will focus my presentation on his fundamental scientific contribu-
tions. Additional achievements, including awards and prizes, can be easily found on
the web.

Thanassis was born at Argostoli, Kefalonia, in 1952, where he attended primary and
secondary education. He was a very good goalkeeper and for some time during his
early youth he had to decide between science and soccer. He studied Aeronautics
at Imperial College, London. Why Aeronautics? Perhaps, because during the 70’s
Aeronautics was an exciting scientific area, but more importantly because it is very
mathematical. For his undergraduate thesis, he studied the Wiener-Hopf technique,
which is a special case of a more general method known as the Riemann-Hilbert
(RH) formalism. This formalism, which belong to Complex Analysis, later played a
crucial role in many of his research efforts.

The glamour of aeronautics was not enough to drag him away from mathematics,
and in 1975 he moved to USA where he started graduate studies in Applied Math-
ematics at the California Institute of Technology. He received his Ph.D. in 1979,
submitting a dissertation on the investigation of a new type of non-geometrical sym-
metries, calledLie-Bäcklund symmetries.AtCaltech, he began his research by study-
ing ordinary differential equations (odes) which possess additional non-geometric
symmetries. Such odes are distinguished and can be solved analytically. This led
Thanassis to pose the question of whether there also exist nonlinear partial differ-
ential equations (pdes) possessing non-geometric symmetries. He understood that
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nonlinear pdes with additional symmetries are precisely the particular class of pdes
known as integrable, which at that time were studied by several different groups
worldwide. These pdes can also be solved analytically via the Inverse Scattering
Transform. Importantly, they possess certain remarkable solutions, called solitons,
withmany applications, from nonlinear optics to particle physics. In a joint workwith
Yannis Yortsos, they identified such a nonlinear pde which appears in the modeling
of water flooding used for oil extraction.

At that time, one of themain international centers in the field of integrable systems
was Clarkson University. In 1979, Thanassis met the Chairman of the Department
of Mathematics and Computer Science of Clarkson University, Mark Ablowitz. It
immediately became clear that they had a lot to share in mathematics and thus Mark
became Thanassis’ de facto mentor.

While still at Caltech, Thanassis tried to contact the great mathematician Israel
Gelfand, in order to send him his joint paper with Fuchssteiner on symmetries (this
important paper has nearly 2000 citations). Because Gelfand’s address was in a
department of biology, he assumed that Gelfand was involved with mathematical
biology. This was the main motivation for his decision to leave mathematics for
a few years to study biology and medicine. Meanwhile, he needed a mathematics
position for a short period of time, and because of his relationship with Ablowitz, he
accepted in 1980 a position at Clarkson University.

There, he concentrated on the solution of nonlinear integrable evolution pdes.
At that time, the solution of the initial value problem of such pdes in one space
dimension was well understood, but the analysis of the analogous problem in two
space dimensionswas “terra incognita”. Ablowitz realized that the next breakthrough
would be in this area. Thus, they studied a particular pde, called the Benjamin-Ono
equation,which due to the involvement of theHilbert transform is, in a sense, between
one and two space dimensions. They hoped it could provide a bridge from one to
two dimensions. The Lax pair of this equation involves a Riemann Hilbert (RH)
problem, for which, as already mentioned, Thanassis had earlier expertise. It turned
out that this work was of pivotal importance: Fokas and Ablowitz, not only solved
this equation by a slight generalization of a RH problem [2], but also solved with the
same method several integrable pdes in two space dimensions [3]. Furthermore, they
showed that the remaining nonlinear integrable pdes in two spatial dimensions could
be solved by the so-called d-bar technique, which provides a major generalization
of the RH method [4].

The very fruitful collaboration of Fokas and Ablowitz led them, within three most
productive years, to achieving the following remarkable unification: (a) Integrable
ODEs, as well as evolution pdes in one spatial dimension, can be analyzed via the
RH method. (b) Certain integrable evolution pdes in two spatial dimensions can be
analyzed via a non-local version of the RH method. (c) The remaining integrable
evolution pdes in two spatial dimensions can be analyzed via the d-bar method. In
this case one goes beyond the realm of analytic functions and considers functions
which are nowhere analytic.

The satisfaction of achieving the above unification, together with the disappoint-
ment that boundary value problems for very simple linear pdes could not be solved
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analytically (such problems had to wait for the emergence of the Fokas method),
provided additional motivation for Thanassis to attempt to swim in different waters:
It was time for medicine.

As he admits, studying medicine was the most difficult and most rewarding expe-
rience of his entire academic life. He started at the lowest step of the ladder: out of
the 32 students admitted to the two-year Ph.D.-MD program of the University of
Miami in 1983, he was the only person with no background in biology or medicine.
His fellow students had a Ph.D. in anatomy, physiology, pharmacology, etc., whereas
he had a Ph.D. in mathematics. The first six months, when he had to cover all rele-
vant basic sciences, were extremely hard. However, by the time he moved to clinical
rotations, it was a different story, and things became much better.

Hemanaged to complete hismedical degreewithin the top three of his class, which
he considers one of his most important achievements. Unable to decide if he should
return to mathematics, he stayed a year longer in medical school where he took many
electives in neurology. Subsequently, he was offered a position at theMedical School
of Stanford University for his specialization, and although he did start his internship
in medicine, sleep deprivation and the loss of excitement, led Thanassis to his final
decision to return to mathematics. His stay in Stanford University, however, gave
him the opportunity to meet and work with the preeminent applied mathematician
of that period, the great Joe Keller. The paper they wrote at that time on chronic
myelogenous leukemia continuous to be cited to this day.

Upon his return to Clarkson University, he formed a strong group in the area
of integrable systems. This group included the distinguished mathematician from
the former Soviet Union, Alexander Its, who became one of his closest friends and
most valuable collaborators. Its is a world expert on the Painlevé equations, and
Fokas together with Its and two of Its’ former students wrote a comprehensive book
on these classical odes [5]. Related to this work, they visited a famous physicist at
Princeton University who suggested that they analyze a particular double limit of one
of the Painlevé equations. According to this physicist, the computation of this limit
was needed in one-dimensional quantum gravity. Thanassis considers this problem
as the most challenging problem in asymptotics he has worked on, until his recent
analysis on the Riemann zeta function. Together with Its and a former student of Its
they managed to solve it, but much to their disappointment, when they returned to
Princeton to announce their success, they were informed that this problem was not
physically important after all!

Fortunately, mathematical efforts are often rewarded proportionally, and in this
case, the associated formalism introduced in that work led to a huge development
in the important area of orthogonal polynomials and random matrices: their work
implies that these mathematical entities can be re-cast in the framework of the RH
formalism [6]. A few years earlier, Percy Deift and Xin Zhou had developed a pow-
erful technique for computing the asymptotics of RH problems. Thus, combining the
new formulation with the Deift-Zhou technique it became possible to obtain results
in this area which at that time were beyond any expectation. A particular application
of the work in the asymptotics of the Painlevé equations is contained in the talk of
Rogers at this Conference [1].
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Meanwhile, Thanassis felt that he had some unfinished business in the field of
symmetries: in collaboration with Fuchssteiner they had achieved a complete under-
standing of the symmetry structure of integrable evolution pdes in one space dimen-
sion. However, the analogous problem in two spatial dimensions remained open. In
an unexpected breakthrough, Thanassis, in collaboration with Paolo Santini, solved
this problem in 1987 [7].

In order to announce his return to integrable systems, Thanassis asked the great
Russian mathematical physicist Vladimir Zakharov to co-edit with him a book sum-
marizing important developments in integrable systems. In this connection, he con-
tactedGelfand, asking him towrite the chapter on symmetries. Gelfand, who knew of
the recent breakthrough of Fokas and Santini, suggested that they write this chapter
jointly. This was the beginning of a long and close collaboration with Gelfand,
which produced twelve papers. More importantly, this collaboration had an enor-
mous impact on Thanassis’ career. In his own words: “Mark Ablowitz was my early
mentor, but no one has influenced me more than Israel Gelfand”.

One of the reasons that Gelfand liked to interact with Thanassis was Thanassis’
medical background. Interestingly, in his entire life Gelfand refused to mix mathe-
matics and biology; indeed, he led two parallel lives. Thanassis managed to convince
Gelfand to collaborate with him on a problem which was strictly mathematical, but
at the same time it was important in Medicine. In this way they could both be happy.
This was an inverse problem arising in magnetoencephalography (MEG). It involves
the reconstruction of the electric current inside the brain from the knowledge of the
magnetic flux outside the headmeasuredwith the extremely sensitive apparatus of the
SQUID (Superconductive QUantum Interference Device). As it was already known
since 1853 to Helmholtz, this problem does not have a unique solution. Actually, no
one knew until the work of Thanassis which part of the current can be determined
from the data. This is a hard problem, since the conductivity of the brain generates
induction currents which “hide” the primary neuronal current that needs to be iden-
tified. Fokas and Gelfand, in collaboration with the late Yaroslav Kurylev, obtained
in 1994 the first important result for MEG: they characterized explicitly the part of
the current that can be reconstructed from the data in the very special (and physically
unrealistic) case of a spherical, homogeneous conductor.

In the summer of 1991, Gelfand spent one month at the island of Kefalonia as
a guest of Thanassis. There, a conceptually important breakthrough was achieved.
They were able to show that within the unification scheme of Fokas and Ablowitz
of the early 1980s, they could also include the most well-known pdes, namely, the
linear ones! Indeed, the classical way of solving linear evolution pdes in one and two
spatial dimensions involves using the Fourier transform in one and two dimensions.
Remarkably, these transforms can be constructed via a RH and a d-bar formalism
respectively, which are precisely the tools used in the analysis of integrable evolution
pdes in one and two spatial dimensions.

In 1995, 20 years after his graduation from the Department of Aeronautics,
Thanassis returned to Imperial College in a Chair in Applied Mathematics. Since
1983, when a good understanding of the solution of the initial value problem of evo-
lution pdes in one and two spatial dimensions was achieved, Thanassis had devel-
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oped a true obsession: solving, for these nonlinear pdes, the class of physically more
important and mathematically much more demanding boundary value problems.

His first attempt to study such problems, just before going tomedical school, was a
failure. Actually, until 1997, the solution of boundary value problemswas considered
the most important open problem in the analysis of integrable systems. Finally, after
15 years of hard work he was able to solve a typical such problem [8]. Interestingly,
in this process he obtained much more than he ever expected: he realized that his
new method provided a completely new way of solving boundary value problems
for linear pdes. Earlier on, he was skeptical regarding the novelty of his approach for
linear pdes. After all, the relevant classical techniqueswere introduced by some of the
giants of the 18th century, including Fourier and Laplace. In addition, he never forgot
an advice of Gelfand’s: “There is no problem competing with your contemporaries
but be extremely careful when you compete with the classics!”

After the publication of hundreds of papers by experts in many different groups,
including the groups of Bernard Deconinck and Beatrice Pelloni, it became clear that
the new Unified Transform introduced by Thanassis, also referred to as the Fokas
method, is indeed new and much superior to anything achieved earlier. Importantly,
it has the advantage that it is computationally friendly, so that even undergraduates
can use it for the computation of the solution of physically important boundary value
problems. In fact, it is already taught at the undergraduate level at several universities.
Recently, his newmethod has allowed him to return to his roots: Fokas, together with
collaborators at theUniversity of Cambridge, were able to demonstrate that the Fokas
method makes the classical Wiener-Hopf technique obsolete.

Many talks at the 28th Summer School–Conference on “Dynamical Systems and
Complexity” of 18–26 July, 2022, (see [1]) were dedicated to this seminal develop-
ment, starting with the introductory talk by Kaxiras. I note that Fokas and Kaxiras
just published a remarkable book containing a variety of techniques in applied math-
ematics [9]; in this book, for the first time, the Fokas method is presented in a
pedagogical way. In their talks, Himonas and Manzavinos review yet another appli-
cation of the Fokas method: it provides a new powerful approach for establishing the
well-posedness of boundary value problems for nonlinear pdes. In [1], Turker pre-
sented unexpected results in the important area of control theory; Colbrook reviewed
the numerical implication of the Fokas method to elliptic pdes; Smith and Pelloni [1]
discussed remarkable implications to the classical area of spectral theory; Fernandez
presented interesting implications in the area of fractional calculus, and Saridakis
discussed a problem arising in the modeling of glioblastoma; Lenells discussed the
most important so far applications of the Fokas method to integrable nonlinear pdes,
presenting the recently obtained complete solution of the x-periodic problem, which
had remained open since the mid 1970s despite the involvement of several outstand-
ing mathematical figures [10].

In 2002, Thanassis was appointed to the newly inaugurated Chair of Nonlinear
Mathematical Science at the Department of Applied Mathematics and Theoretical
Physics of the University of Cambridge. As I mentioned earlier, Fokas and Gelfand
had shown that the RH and d-bar formalisms provide a completely new way of
rederiving the classical Fourier transform in one and two dimensions. Actually, this
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approach provides a new and powerful algorithm for deriving a variety of integral
transforms. In 2002, Roman Novikov used this method to derive the attenuated
Radon transform, which plays the same crucial role in the important medical imaging
technique of Single Positron Emission Computerized Tomography (SPECT), that
the classical Radon Transform plays in Computerized Tomography. After studying
Roman’s paper, Thanassis realized that this result could be easily derived via a small
modification of the results of his earlier paper with Roman, where their method with
Gelfand was used for the rederivation of the Radon Transform. At that time, he
was elected a member of the Academy of Athens and was able to establish at the
Academy a Center of Mathematics, with George Kastis as its Director. He made the
decision that this Center should concentrate on the imaging techniques of Positron
Emission Tomography (PET) and of SPECT. The goal was to implement numerically
the analytical formulae obtained via the Fokas-Gelfand approach. Actually, it took 15
years to achieve this goal [11]. The relevant results are reviewed in the presentations
of Kastis and Protonotarios [1].

Thanassis continued his efforts on MEG. The basic question was clear: is it pos-
sible to extend the earlier result of Fokas-Gelfand-Kurylev, which is mathematically
beautiful but physiologically useless, to a result which is both beautiful and useful?
In 2005, the European Union announced the funding of 15 Honorary Marie Curie
Chairs of Excellence for 15 scientists from all over the world to spend three years
at a European university. Thanassis and I submitted a proposal to collaborate on
“the electromagnetic activity of the human brain”, and we were successful. In the
period of 2005 to 2008 we worked together in Cambridge trying to eliminate from
the existing results on Electroencephalography (EEG) and MEG the restriction of
spherical geometry. In this project, I had once more the opportunity to use the theory
of ellipsoidal harmonics which is a most important component of my work of the
last 30 years. After a series of 15 papers, which includes works with collaborators
in my group in the University of Patras, the problem has been completely solved.

In 2009, 156 years after the fundamental result of Helmholtz, Thanassis published
a paper announcing the final analytical result [12]. It states that, within the EEG
modality, no more than one of the three scalar functions specifying the neuronal
current can be recovered, whereas within the MEG modality two of these scalar
functions are visible from outside the head (one of these two functions being the
same with the one obtained via EEG). Remarkably, this result is true for any smooth
geometry of the brain-head system, as well as a shell type inhomogeneous brain
model. This result gave rise to a beautiful mathematical formula for the part of the
current that could be determined from the data. However, the question of whether
this formula could be implemented numerically, so that finally a useful result could
be obtained, remained open. This was indeed achieved in the period 2009–2019,
through continuous support from the UK and Europe, in collaboration with Parham
Hashemzadeh. The EEG-MEG results are presented in our joint book with Thanassis
[13]. Recent further developments are presented in the talk of Paraskevopoulou, at
this School [1].

In 2010, Thanassis taught at Cambridge a course that included a short summary
of the Riemann Hypothesis, which remains the most famous open problem in the
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history of Mathematics. This hypothesis involves a certain function, the Riemann
zeta function, which is defined in the complex z-plane. The Riemann Hypothesis
states that the Riemann zeta-function has all its roots on the negative even integers
(trivial roots) and on the line Rez= 1/2 (non-trivial roots). The difficult problem is to
show that there are no roots for points which satisfy 0 < Rez < 1/2 and have a large
imaginary part. Indeed, using today’s powerful computers, it has been verified that
the Riemann zeta function does not have any zeros for Imz up to approximately 10 to
the power 13,which is a large number, but still very small in comparisonwith infinity!
This discussion implies that it is crucial to understand the large Imz-asymptotics of
the Riemann zeta function.

Lindelöf postulated the relevant asymptotic behavior. In terms of importance, the
Lindelöf hypothesis is considered second only to the Riemann Hypothesis. Thanas-
sis decided to use his expertise in complex analysis and asymptotics to attack this
hypothesis. In this connection, together with the outstanding analyst Jonatan Lenells,
they published a major contribution in the Memoirs of the American Mathematical
Society [14]. After many unsuccessful attempts and with the crucial input of Lenells
and his remarkably original Ph.D. student AnthonyAshton, Thanassis finally derived
a novel integral equation satisfied by the Riemann zeta function. The computation
of the large Imz-asymptotics of this equation gave the proof of the Lindelöf Hypoth-
esis for a slight variant of the Riemann zeta function [15]. New progress has been
achieved by representing the Riemann zeta function in terms of its finite Fourier
transform. This expression was motivated by the application of the Fokas method to
the solution of pdes in a finite domain. A summary of recent results is presented in
the talk of Kalimeris [1].

In the last ten years of his life, Israel Gelfand concentrated on the solution of one
of the most important open problems in biology, namely, protein folding. Since a
protein is uniquely determined by its amino acid sequence, given this sequence, one
should be able to predict its three-dimensional structure, which is responsible for the
biological properties of the given protein. However, this problem remained open, in
spite of the efforts of many brilliant scientists. Gelfand tried to convince Thanassis
to collaborate with him on protein folding. However, for several years Thanassis
refused, for several reasons. First, he knew about the difficulty of this problem since
he was a medical student. Second, he was aware that several powerful groups were
dedicated to the solution of this problem. Third, Gelfand refused dogmatically to use
mathematics in biology, believing that the mathematics needed to solve biological
problems had not yet been invented. Finally, Thanassis agreed to look at this problem,
only because of his love and respect for Gelfand.

Somehow, togetherwith the late Theodore Papatheodorou, theymanaged to obtain
an important result: they discovered certain topological rules which limit enormously
the possible associated three-dimensional arrangements. Gelfand was very excited
with this result but refused Thanassis’ suggestion to supplement it with the mathe-
matical technique of optimization. After Gelfand’s death Thanassis stopped working
in this area, and since their three associated papers in the Proceedings of the National
Academy of Sciences were not getting many citations, he thought for several years
that this was the only project that he had wasted his time. However, one of the most
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active groups in this area, the group of the late Christodoulos Floudas, at Princeton
University, made a crucial use of this result. Floudas wrote just before his untimely
death that, “We are now able to predict the 3D structure of beta proteinswith a success
rate of 80%. This is based on the seminal works of Fokas andGelfandwho discovered
unexpected topological properties of these proteins, which we have incorporated in
our optimization mathematical model”.

In September 2015, Thanassis was awarded a five-year Senior Fellowship by
the Engineering and Physical Science Research Council of United Kingdom. This
relieved him from any teaching and administrative obligations at Cambridge, allow-
ing him to live what he called a “dream life”. This fellowship was awarded for three
projects: the Fokas method, medical imaging, and the asymptotics of the Riemann
zeta function. At the same time, he was honored by the University of Southern
California with an Adjunct Professorship at the Viterbi School of Engineering.

More than ten years ago, Costas Vayenas, a foreign member of the USA National
Academy of Engineering, proposed an iconoclastic model for Particle Physics. He
suggested that the three quarks within a neutron are not confined as a result of
the strong interactions, but because of super-relativistic gravity. Furthermore, he
claimed that these light quarks are, actually, electron neutrinos. Using an ad hoc
simple formula for the relativistic gravitational force, as well as a simple Bohr type
model, Vayenas was able to compute from first principles the mass of the neutron
and to obtain its well-known value. Thanassis, in order to justify this model, decided
to derive the relativistic gravitational law from first principles, i.e., from the theory
of general relativity. It should be noted that the problem of computing the force
between even two relativistic particles, the so-called two-body problem of general
relativity, remains open despite the efforts of many brilliant physicists, beginning
with Einstein. However, the above case, due to the occurrence of the small masses,
corresponds to the so-called Minkowskian approximation, for which it is possible to
obtain asymptotically analytical results.

Thanassis, in collaboration with Luc Blanchet (a world expert in this type of
computations) obtained an explicit formula for the relevant force [16]. Furthermore,
Thanassis also computed the limit of this formula when the speed of the particles
approaches the speed of light. Remarkably, this yields a force which possesses the
basic characteristics of the strong force, namely confinement and asymptotic free-
dom! However, a variety of experiments suggest that the mass of the light quarks is
much larger than the mass of the electron neutrinos. Using for the mass of the quarks
the experimentally verified value, instead of the value of the mass of the electron
neutrino used by Vayenas, one finds a force which is quite large, but much smaller
than the needed value. Recent developments were presented in the talk of Manolis
Floratos, see [1].

Concluding, Imustmention Thanassis’ very recent contribution to integrable non-
linear evolution pdes in three spatial dimensions. A fundamental open question in
the field of integrability has been the question of the existence of integrable nonlin-
ear evolution equations in higher than two spatial dimensions. In 2006, Thanassis
obtained 4+2 generalizations of the Kadomtsev-Petviashvilli (KP) and the Davey-
Stewartson (DS) equations, by constructing integrable analogues of the KP and DS
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in four spatial and two temporal dimensions. The solution of the Cauchy problem
of these equations was obtained using a non-local d-bar formalism. For this work
Thanassis used a nonlinear Fourier transform in four real dimensions.

The question of reducing integrable equations from 4+2 to 3+1, and establishing
that the initial value problems of the resulting 3+1 equations arewell posed, although
discussed in several papers, remained open. This is reviewed in the talk of van der
Weele, see [1]. Finally, Thanassis solved this problem in a paper just published in the
Proceedings of the Royal Society [17]. The unexpected achievement of the results
of this work is the derivation of a formalism capable of dealing with the case that
the time dependence of the nonlinear Fourier transform contains an exponential with
a non-vanishing real part. Remarkably, this has interesting implications beyond the
area of nonlinear integrable pdes: it introduces a new transform for solving a large
class of linear pdes. Particular solutions of the new integrable KP in three spatial
dimensions are presented in the talk by Jingsong He [1].

It should be noted that Thanassis has made several additional important contribu-
tions that time limitations prevent me from discussing. They include, his recent very
interesting work on the modeling of the Covid-19 pandemic reviewed in the talk of
Dikaios [18], as well as the work on the fractal nature of some of the paintings of
Piet Mondrian reviewed by Bountis [19]. In addition, I must mention the remarkable
extension of classical results on conformal mappings, obtained jointly with Darren
Crowdy [20] (a work that somehow, remains largely unknown).

Perhaps the best way to end my presentation is to return to the title of my talk:
Athanasios Fokas: A Renaissance Scientist. Taking into consideration Thanassis’
seminal contributions in somany different areas, as well as his remarkable, soon to be
published deep book “Ways of Comprehending”, which in addition to mathematics,
physics, engineering, biology, and medicine, also contains philosophy and painting,
I hope you will agree with me that Gelfand was right!
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