
Chapter 4
Fracture of Materials Loaded Along
Cracks: Approach and Results

Viacheslav Bogdanov, Aleksander Guz, and Vladimir Nazarenko

4.1 Introduction

Technological processes of manufacturing structural materials and assembling
structure elements made of them often generate fields of initial (residual) stresses
and strains in such materials. Those initial stresses must be taken into account in
the calculations of product strength and durability, especially if crack-like defects
emerge in such products in the processes of their manufacturing and operation. In
the situation when initial stresses act along crack surfaces (and this situation is typi-
cal, e.g., in laminar or unidirectional fibrous composites (Dvorak 2000; Malmeister
et al. 1980; Shul’ga and Tomashevskii 1997), materials with thermal insulation or
anticorrosion coatings) (Ainsworth et al. 2000), the approaches of classical fracture
mechanics (Cherepanov 1979; Kassir and Sih 1975) prove to be inapplicable. This
results from the fact that such initial stresses are not involved in the expressions
for stress intensity factors, J-integral and the values of crack opening, hence, they
do not influence material’s fracture parameters in the framework of Griffiths–Irwin,
Cherepanov–Reiss fracture criteria, critical crack openings or their generalizations
(Guz 1991, 2021; Guz et al. 2020).

In the situations when initial stresses are significantly larger as compared to
additional (operational) stresses, for investigating problems of such kind, in Guz
(1980, 1991) the applicability of the approach within the linearized mechanics of
deformable solid bodies (Guz 1999) was justified, while in Guz (1982, 1991) energy-
and force-based criteria of brittle fracture of materials with initial (residual) stresses
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were formulated. The results of studying some problems of the fracture mechanics
of materials with initial (residual) stresses, which were obtained with reliance on this
approach, were presented in Bogdanov (2007, 2010, 2012), Bogdanov et al. (2015),
Guz (1991, 2021).

Another group of non-classical problems of fracture mechanics is the fracture
of bodies compressed along the parallel cracks they contain, when fracturing pro-
cess is initiated by the local loss of stability in the part of material adjacent to the
crack (Bolotin 1994, 2001; Guz et al. 1992, 2020; Kachanov 1988; Kienzler and
Herrmann 2000; Wu 1979). Under such loading mode, singular parts in correspond-
ing exact solutions of the problems of linear theory of elasticity are absent and,
hence, all stress intensity factors are equal to zero, due to which classical fracture
criteria are not applicable (Guz 2021; Guz et al. 2020). Many engineering problems
related to the calculations of products with predetermined defects are reduced to the
force-based scheme of compression along crack-like defects. Problems of this kind
are rather typical in modeling the action of tectonic forces in mountainous terrain
(model of fissured-layered massif), in calculating various supports, and in evaluat-
ing the strength and durability of concrete structure members. Various approaches
to determining critical compression parameters, which correspond to the above-
mentioned local loss of stability, were analyzed in detail in Guz (2021), Guz et al.
(2020). The results of investigating some problems on body compression along both
isolated and interacting cracks with the use of the approach in the framework of the
three-dimensional linearized theory of stability of deformable bodies are presented
in Bogdanov and Nazarenko (1994), Guz (2014, 2021), and Guz et al. (1992, 2020).

It should be noted that although in terms of research subject the problems on the
fracture of pre-stressed bodies under the action of initial stresses along cracks and the
problemon the compression ofmaterials along cracks are different, in the formulation
of those problems there is an essential common point, viz., the presence of load
components directed in parallel to cracks, whose influence, in fact, cannot be taken
into account with the methods of classical fracture mechanics. This permits the two
abovementioned groups of non-classical problems of fracture mechanics to be united
and considered as problems of materials fracture under the action of forces directed
along cracks. As it will be shown below, they can be investigated jointly, using the
methodology based on relations of linearized mechanics of deformable solid bodies.

4.2 Approach to Studying the Problems

Below, brief information about the procedure used to investigate problems on the
fracture of cracked bodies under the action of loads directed along cracks, and about
the general formulation of corresponding boundary value problems is given.

As noted above, startingwith theworks (Guz 1980, 1991), to investigate problems
of fracture mechanics for pre-stressed materials, when initial stresses act along the
cracks the material contains and these initial stresses are significantly larger than
operational stresses, an approachwithin the linearizedmechanics of deformable solid
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bodies started to be applied consistently. The key factor in substantiating this method
is that the application of linearized relations for investigating the abovementioned
class of fracture mechanics problems, on the one hand, permits broad use of the
advantages of the linear model of the deformable body and, on the other, qualitative
and quantitative description (as opposed to the classical procedures) of the main
phenomenon related to the influence of the stress components acting along crack
surfaces on fracture parameters.

In Guz (1981), Guz et al. (1992), Wu (1979), it was shown that under compres-
sion of bodies along parallel cracks they contain, the beginning (start) of the fracture
process is caused by the loss of material’s stability in local areas near the cracks,
when compressive forces achieve the values critical for the given material and the
geometry of cracks location. Here, to determine the critical values of the compres-
sive forces mentioned, the relations of the three-dimensional linearized theory of
deformable bodies stability (Guz 1999) can be used, since with the involvement of
the abovementioned criterion of the fracture process beginning (start), the possibility
of the transition of a part of the material in the vicinity of cracks into adjacent forms
of equilibrium under small (as compared to the main values of the initial states)
perturbations of stresses and displacements is analyzed.

It should be noted that until recently the abovementioned two classes of frac-
ture mechanics problems, viz., the problems on the fracture of materials with initial
stresses acting along cracks and the problems on the fracture of bodies under com-
pression along cracks were considered separately, but at the same time, taking into
account that there are common features in the formulations of and approaches to
these two classes of problems, namely, the presence of the load component acting
along the cracks and the use of linearized relations for problems solving, in Bogdanov
et al. (2017), Guz et al. (2013), the applicability of the unified approach within the
linearized mechanics of deformable solid bodies was substantiated for investigating
fracture mechanics problems on pre-stressed cracked materials and the problems on
the fracture of bodies compressed along cracks (the information about this method
can also be found in Guz et al. (2020)).

This approach is simpler andmore effective for determining critical (limit) loading
parameters in the problems on bodies compression along the cracks they contain,
since there is no need of individual investigations of eigenvalue problems within the
3D linearized theory of stability. The parameters mentioned are calculated in solving
corresponding boundary value problems of the mechanics of fracture of pre-stressed
materials, when under the continuous change of loading parameters, we determine
the initial compressive stresses which, when achieved, lead to a resonance change
in the amplitude values (of stresses and displacements) near crack tips. The initial
loading parameters determined in this way will correspond to the eigenvalues of
corresponding eigenvalue problems on bodies compression along cracks.

Besides, an important positive feature of this approach is the possibility to conduct
investigations in a single general form for compressible and incompressible isotropic
or transverse isotropic elastic bodies with arbitrary structures of elastic potential as
applied to the theory of finite (large) initial strains, as well as various variants of the
theory of small initial strains. There, the specification of material’s model (e.g., the
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use of elastic potential of one typeor another) is only carried out at thefinal stage of the
investigation—in the numerical analysis of the characteristic equations, the resolving
integral equations, etc., obtained in the general form. It should also be noted that
when considering composite materials in this work, it is assumed that crack sizes are
significantly larger than the sizes of composite’s structural elements, while the cases
of cracks location in the interfaces of composite’s components are not considered.
With such assumptions, following, e.g., Broutman andKrock (1974), Dvorak (2000),
Malmeister et al. (1980), we will use the continuummodel of the composite with the
reduced (averaged) characteristics of the transverse isotropic body.

Now, we present the principal relations of the linearized mechanics of deformable
solid bodies, which will be used for solving particular problems. Figure 4.1 shows
schematically an unbounded body with tensile or compressive initial (residual)
stresses S011 acting along cracks located in parallel planes y3 = const. It should be
noted that to carry out the investigation of the stress-strain state of pre-stressed bodies
is more convenient in the Lagrangian coordinates y j ( j = 1, 2, 3), which are related
to the initial state caused by initial stresses S011. These coordinates can be presented
via the Cartesian coordinates of the non-deformed (natural) state of the body x j

( j = 1, 2, 3) by the following relations

y j = λ j x j , j = 1, 2, 3, (4.1)

where λ j = const are coefficients of elongation (contraction) along coordinate axes
Oyj , which are caused by initial stresses S011. Besides, operational stresses (additional
to the initial ones) also act on the body (normal stresses Q′

33 are shown as an example).
Under the action of initial (residual) stresses S011 only, a homogeneous stress-

strain state emerges in the material (both isotropic and transverse isotropic). (It is
assumed for transverse isotropic material that cracks are located in the planes of
material’s properties symmetry and, thus, initial stresses are directed along the sym-

Fig. 4.1 Cracked body with
initial stresses
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metry axes of material’s properties.) This stress-strain state is characterized by such
expressions for components of the tensor of initial stresses S̃0 and the vector of initial
displacements u0:

S011 = const, S022 = const, S033 = 0, S0i j = 0, i �= j; u0j = λ−1
j

(
λ j − 1

)
y j .
(4.2)

For compressible bodies, linearized equilibrium equations in displacements are
of the form Bogdanov et al. (2017), Guz (1999), Guz et al. (2020)

ω′
i jαβ

∂2uα

∂yi∂yβ

= 0, (4.3)

where uα are displacements caused by the action of initial and operational stresses.
Boundary conditions in stresses on a part of S1 surface are presented as

N 0
i Q

′
i j = P ′

j , (4.4)

where N 0
i are components of the ort of the normal to the surface of the body in the

initial state (the body state caused by initial stresses S011), while boundary conditions
in displacements on a part of S2 surface are of the form

u j = f ′
j . (4.5)

The components of the fourth rank elasticity tensor ω̃′, which are involved in (4.3)
and in the linearized elasticity relations

Q′
i j = ω′

i jαβ

∂uα

∂yβ

, (4.6)

are given by expressions

ω′
i jαβ = λiλ jλαλβ

λ1λ2λ3

[
δi jδαβ Aiβ + (

1 − δi j
) (

δiαδ jβ + δiβδ jα
)
Gi j

]

+ λiλβ

λ1λ2λ3
δiβδ jαS

0
ββ, (4.7)

where δi j is Kronecker symbol, Ai j are elasticity constants, Gi j are shear moduli,
S0ββ are initial stresses, and λm are coefficients of elongation (contraction) along
coordinate axes Oym , that is caused by these initial stresses.

The dependence between components of Piola–Kirchhoff non-symmetric stress
tensor Q̃′ and Lagrange symmetric stress tensor S̃ is given by relations (Bogdanov
et al. 2017; Guz 1999; Guz et al. 2020)

Q′
i j = λiλ j

λ1λ2λ3
Si j + λi

λ1λ2λ3
S0in

∂u j

∂yn
.
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Representations of the general solutions of linearized equilibrium equations (4.3)
via harmonic potentials were constructed in Bogdanov et al. (2017), Guz (1999),
Guz et al. (2020). By assuming that the axis of material’s isotropy coincides with
axis Oy3 of the coordinate system, and conditions λ1 = λ2 �= λ3, S011 = S022, S

0
33 = 0

are satisfied, we have such representations of the general solutions for the circular
cylindrical coordinate system (r , θ , y3) obtained from the Cartesian one (Bogdanov
et al. 2017; Guz 1999; Guz et al. 2020):

in the case of non-equal roots of the characteristic equation (n1 �= n2)

ur = ∂ (ϕ1 + ϕ2)

∂r
− 1

r

∂ϕ3

∂θ
,

uθ = 1

r

∂ (ϕ1 + ϕ2)

∂θ
+ ∂ϕ3

∂r
,

u3 = m1n
−1/2
1

∂ϕ1

∂z1
+ m2n

−1/2
2

∂ϕ2

∂z2
,

Q′
33 = C44

(
d1l1

∂2ϕ1

∂z21
+ d2l2

∂2ϕ2

∂z22

)
,

Q′
3r = C44

(
d1n

−1/2
1

∂2ϕ1

∂r∂z1
+ d2n

−1/2
2

∂2ϕ2

∂r∂z2
− n−1/2

3

1

r

∂2ϕ3

∂θ∂z3

)
,

Q′
3θ = C44

(
d1n

−1/2
1

1

r

∂2ϕ1

∂θ∂z1
+ d2n

−1/2
2

1

r

∂2ϕ2

∂θ∂z2
+ n−1/2

3

∂2ϕ3

∂r∂z3

)
,

z j = n−1/2
j y3, j = 1, 2, 3;

(4.8)

in the case of equal roots of the characteristic equation (n1 = n2)

ur = −∂ϕ

∂r
− z1

∂F

∂r
− 1

r

∂ϕ3

∂θ
,

uθ = −1

r

∂ϕ

∂θ
− z1

1

r

∂F

∂θ
+ ∂ϕ3

∂r
,

u3 = (m1 − m2 + 1) n−1/2
1 F − m1n

−1/2
1 
 − m1n

−1/2
1 z1

∂F

∂z1
,

Q′
33 = C44

[
(d1l1 − d2l2)

∂F

∂z1
− d1l1

∂


∂z1
− d1l1z1

∂2F

∂z21

]
, 
 ≡ ∂ϕ

∂z1
,

Q′
3r = C44

{
n−1/2
1

∂

∂r
[(d1 − d2) F − d1
]

− n−1/2
1 d1z1

∂2F

∂r∂z1
− n−1/2

3

1

r

∂2ϕ3

∂θ∂z3

}
,

Q′
3θ = C44

{
n−1/2
1

1

r

∂

∂θ
[(d1 − d2) F − d1
]

− n−1/2
1 d1z1

1

r

∂2F

∂θ∂z1
+ n−1/2

3

∂2ϕ3

∂r∂z3

}
,

(4.9)

where the roots of the characteristic equations take the form

n1,2 = c′ ±
√

c′2 − ω′
3333ω

′
3113

ω′
1111ω

′
1331

, n3 = ω′
3113

ω′
1221

,

c′ = ω′
1111ω

′
3333 + ω′

3113ω
′
1331 − (

ω′
1133 + ω′

1313

)2

2ω′
1111ω

′
1331

.

(4.10)
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In (4.8) and (4.9), the potentials ϕ j
(
r, θ, z j

)
, ϕ

(
r, θ, z j

)
, and F

(
r, θ, z j

)
( j =

1, 2, 3) satisfy Laplace’s equations; the values C44,mi , di , and li (i = 1, 2) are deter-
mined by the choice of material’s model and are linked with components of elasticity
tensor ω̃′ (4.7) (Bogdanov et al. 2017; Guz 1999; Guz et al. 2020).
in the case of non-equal roots of the characteristic equation (n1 �= n2)

C44 = ω′
1313, mi = ω′

1111ni − ω′
3113

ω′
1133 + ω′

1313

, di = 1 + mi ,

li = ω′
3333mi − ω′

1133ni
nidiω′

1313

, i = 1, 2;
(4.11)

in the case of equal roots of the characteristic equation (n1 = n2) parameters C44,
m1, d1, d2, l1 are determined from (4.11), and parameters m2, l2 take the from

m2 = ω′
1133 − ω′

1313

ω′
1133 + ω′

1313

, l2 = ω′
3333(m1 + m2 − 1) − ω′

1133n1
n1d2ω′

1313

. (4.12)

In the case of axisymmetric linearized problems, the potential function f3 in (4.8)
and (4.9) should be set equal to zero, while the potential functions ϕ1, ϕ2 , ϕ, F are
to be considered independent of coordinate θ .

Taking into account representations (4.8) and (4.9), the general statement of lin-
earized problems (4.3)–(4.5) can be re-formulated in terms of harmonic potential
functions ϕ j

(
r, θ, z j

)
, j = 1, 2, 3 (in the case of non-equal roots) and ϕ (r, θ, z1),

F (r, θ, z1), ϕ3 (r, θ, z3) (in the case of equal roots). For the spatial boundary value
problems on pre-stressed bodies containing circular cracks (which are also referred
to as penny-shaped cracks), considered in this work, we will present the potential
functions mentioned as Henkel integral transform in radial coordinate, reduce the
problems to paired (dual) integral equations and then to Fredholm integral equations
of the second kind, which will be investigated numerically.

4.3 Formulation of the Problems

Consider spatial problems on pre-stressed half-bounded body with a near-surface
circular crack and those on an unbounded body with initial (residual) stresses, con-
taining two parallel coaxial circular cracks. It should be noted that the former geo-
metric scheme permits the analysis of the influence of initial stresses as well as the
effect of the interaction of cracks and the free surface of the body on stress intensity
factors in the vicinity of crack contours and on the critical compression parameters,
which, when achieved, lead to the local loss of material’s stability near cracks. The
latter geometric scheme permits the evaluation of the influence of parallel cracks
interaction on those parameters.
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4.3.1 Initially Stressed Half-Space with a Near-Surface
Circular Crack

Consider an elastic body occupying half-space y3 � −h. There are initial stresses
S011 = S022 acting along a near-surface crack of radius r = a, located in y3 = 0 plane
centered on axis Oy3: {0 � r � a, 0 � θ < 2π , y3 = 0} (Fig. 4.2). We assume that
additional (with respect to initial stresses) fields of normal and shear forces Q′

33 and
Q′

3r act on crack faces, while the half-space boundary is free of loads. Boundary
conditions of such non-axisymmetric problem are of the form

Q′
33 = −σ(r, θ), Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

Q′
33 = 0, Q′

3r = 0, Q′
3θ = 0 (y3 = −h, 0 � r < ∞).

(4.13)

(Here and further 0 � θ < 2π , and subscripts “+” and “–” denote the upper and
lower crack faces respectively).

Besides, the conditions of the attenuation of displacement vector and stress tensor
components at infinity must be satisfied as

u j → 0, Q′
i j → 0 (r → +∞, y3 → +∞). (4.14)

Further, in constructing the solution of the problem examined, it is convenient
to divide the half-space y3 � −h into two domains: domain “1” is the half-space
y3 � 0 and domain “2” is the layer −h � y3 � 0. All the values relating to each of
these domains will be marked with superscripts “(1)” and “(2)”. For such subdivision
into two domains, on the domain boundary (when y3 = 0) outside the crack, it is
necessary that the conditions of continuity for displacement and stress vectors be
satisfied. Then the boundary conditions (4.13) can be written as

Q
′(2)
33 = −σ(r, θ), Q′(2)

3r = −τr (r, θ), Q′(2)
3θ = 0 (y3 = 0, 0 � r � a),

Q′(2)
33 = 0, Q′(2)

3r = 0, Q′(2)
3θ = 0 (y3 = −h, 0 � r < ∞),

u(1)
3 = u(2)

3 , u(1)
r = u(2)

r , u(1)
θ = u(2)

θ (y3 = 0, a < r < ∞),

Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r , Q′(1)
3θ = Q′(2)

3θ (y3 = 0, 0 � r < ∞).

(4.15)

Fig. 4.2 Pre-stressed
semi-infinite body with a
circular near-surface crack
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By using the representations of general solutions in terms of potential harmonic
functions of form (4.8) for non-equal roots and form (4.9) for equal roots, from
(4.15) we obtain the problem formulation in terms of harmonic potential func-
tions ϕi

(k)(r, θ, z j ), k = 1, 2, i, j = 1, 2, 3 (in the case of non-equal roots) and
ϕ(k)(r, θ, z1), F (k)(r, θ, z1) and ϕ3

(k)(r, θ, z3), k = 1, 2 (in the case of equal roots).
The formulations of axisymmetric problems for the pre-stressed half-space with

mode I, mode II, or mode III cracks are carried out in the similar way, if in the
corresponding boundary conditions, it is set that uθ

(k) = 0, Q′
3θ

(k) = 0, k = 1, 2,
while other components of displacement vector and stress tensor are considered to
be independent of angular component θ .

4.3.2 Pre-stressed Body with Two Parallel Circular Cracks

Consider an unbounded elastic body with initial stresses S011 = S022 that contains two
circular cracks of the same radius r = a, which are located in parallel planes y3 = 0
and y3 = −2h with centers on the Oy3 axis (Fig. 4.3). Additional stresses Q′

33 and
Q′

3r (with respect to the initial ones S
0
11 = S022) acting on crack faces and the boundary

condition are

Q′
33 = −σ(r, θ), Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

Q′
33 = −σ(r, θ), Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (−2h)±, 0 � r � a),

(4.16)
where 0 � θ < 2π , and subscripts “+” and “–” denote the upper and lower cracks
faces respectively.

For the case considered, the symmetry of the geometric and force-based schemes
of the problem in respect of plane y3 = −h exists. Due to that, given (4.16), it can
be re-formulated as a mathematically equivalent problem on the half-space y3 � −h

Fig. 4.3 Pre-stressed body
with two parallel coaxial
circular cracks
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with a single mode I or mode II crack located in the plane y3 = 0, with the following
boundary conditions on its faces and on the half-space boundary:

for mode I crack

Q′
33 = −σ(r, θ), Q′

3r = 0, Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

u3 = 0, Q′
3r = 0, Q′

3θ = 0 (y3 = −h, 0 � r � a); (4.17)

for mode II crack

Q′
33 = 0, Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

ur = 0, uθ = 0, Q′
33 = 0 (y3 = −h, 0 � r � a).

(4.18)

Besides, the conditions of the attenuation of the displacement vector and stress tensor
components at infinity (4.14) must be satisfied.

As can be seen from (4.17) and (4.18), the formulation of the problem on a space
with two parallel coaxial cracks (4.16) is mathematically equivalent to the problems
on the half-space y3 � −h with a mode I crack or a mode II crack that is parallel to
its surface when the half-space boundary rests on a smooth rigid foundation.

We will confine ourselves to the axisymmetric problem and will consider individ-
ually the cases when normal stresses Q′

33 (mode I cracks), radial shear stresses Q′
3r

(mode II cracks) or tangential torsional stresses Q′
3θ (mode III cracks) act on crack

faces.
Mode I cracks. Taking into account the symmetry of the geometric and force-

based schemes of the problem in respect of plane y3 = −h, we have the following
boundary conditions specified on the cracks faces and on the half-space boundary
and crack faces

Q′
33 = −σ (r) , Q′

3r = 0 (y3 = (0)±, 0 � r � a),

u3 = 0, Q′
3r = 0 (y3 = −h, 0 � r � ∞).

(4.19)

The half-space y3 � −h is conditionally divided into two domains: “1”—the half-
space y3 � 0 and “2”—the layer −h � y3 � 0. All the values relating to each of the
domains mentioned are marked by superscripts “(1)” and “(2)”. Taking into account
the conditions of the continuity of stresses and displacements on the boundaries of
the domains, new boundary conditions of the problem are obtained from (4.17)

Q′(2)
33 = −σ(r), Q′(2)

3r = 0 (y3 = 0, 0 � r � a),

u(2)
3 = 0, Q′(2)

3r = 0 (y3 = −h, 0 � r � ∞),

u(1)
3 = u(2)

3 , u(1)
r = u(2)

r (y3 = 0, a < r < ∞),

Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r (y3 = 0, 0 � r < ∞).

(4.20)

Mode II cracks. The tangential radial stresses of the intensity tr (r) are applied to
crack faces antisymmetrically in respect of the planes of cracks location. Taking into
account the symmetry of the geometric and force-based schemes of the problemwith
respect to the plane y3 = −h, equidistant from the cracks and dividing the half-space
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y3 � −h into two parts, namely, the half-space y3 � 0 (domain “1”) and the layer
−h � y3 � 0 (domain “2”), we have such boundary conditions of the problem on
mode II cracks:

Q′(2)
33 = 0, Q′(2)

3r = −τr (r) (y3 = 0, 0 � r � a),

u(2)
r = 0, Q′(2)

33 = 0 (y3 = −h, 0 � r � ∞),

u(1)
3 = u(2)

3 , u(1)
r = u(2)

r (y3 = 0, a < r < ∞),

Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r (y3 = 0, 0 � r < ∞).

(4.21)

By using the representations of general solutions for displacements and stresses
via potential functions (4.8) (for non-equal real roots) and (4.9) (for equal roots),
from boundary conditions (4.20) and (4.21) the formulations of problems for mode
I crack and mode II crack are obtained in terms of potential functions ϕi

(k)
(
r, z j

)
,

i, j, k = 1, 2 (in the case of non-equal roots) and ϕ(k) (r, z1), F (k) (r, z1), k = 1, 2
(in the case of equal roots).

Mode III cracks. The tangential torsional stresses of the intensity τθ (r) are applied
to crack faces antisymmetrically in respect of cracks location planes. With this load-
ing scheme, only the components of displacement vector uθ and stress tensor Q′

3θ
will be non-zero, and owing to the axisymmetric nature of the problem they do not
depend on the angular coordinate θ . The boundary conditions of the problem on
mode III cracks can be written as follows

Q′(2)
3θ = −τθ (r) (y3 = 0, 0 � r � a),

u(2)
θ = 0 (y3 = −h, 0 � r � ∞),

u(1)
θ = u(2)

θ (y3 = 0, a < r < ∞),

Q′(1)
3θ = Q′(2)

3θ (y3 = 0, 0 � r < ∞).

(4.22)

The representations of general solutions in this case, given (4.8) and (4.9), are of
the same form for the cases of both equal and non-equal roots, specifically

uθ = ∂

∂r
ϕ3 (r, z3) , Q′

3θ = C44n
−1/2
3

∂2

∂r∂z3
ϕ3 (r, z3) . (4.23)

By using representations (4.23) we obtain the formulation of the problem for
elastic bodywithmode III cracks in terms of the potential harmonic functionϕ3 (r, z3)

C44n
−1/2
3

∂2ϕ
(2)
3

∂r∂z3
= −τθ (r) (y3 = 0, 0 � r � a) ,

∂ϕ
(2)
3

∂r
= 0 (y3 = −h, 0 � r < ∞) ,

∂ϕ
(1)
3

∂r
= ∂ϕ

(2)
3

∂r
(y3 = 0, a < r < ∞) ,

∂2ϕ
(1)
3

∂r∂z3
= ∂2ϕ

(2)
3

∂r∂z3
(y3 = 0, 0 � r < ∞) .

(4.24)
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4.4 Fredholm Integral Equations

The mixed boundary value problems on harmonic potential functions, which were
formulated in the previous section will be solved by first reducing them to paired
(dual) integral equations and then—to systems of Fredholm integral equations of
the second kind. For that, harmonic potentials will be represented via Fourier series
(for non-axisymmetric problems) and Hankel integral expansions in radial coordi-
nates. The process of solving non-axisymmetric problems will be exemplified by the
problem on a half-space with a near-surface crack, and the solution of axisymmetric
problems—by that on a body containing two parallel mode I cracks.

4.4.1 Half-Space with a Near-Surface Circular Crack

We will show calculation procedures for the case of equal roots of the characteristic
equation (n1 = n2); the procedures for non-equal roots (n1 �= n2) are carried out in
the similar way.

The external loads on the crack faces (the right-hand parts of the first two expres-
sions in (4.15)) are presented as Fourier series in coordinate θ , assuming that they
are even functions in this coordinate

σ (r, θ) =
∞∑

n=0

σ (n)(r)cos nθ , τr (r, θ) =
∞∑

n=0

τr
(n)(r)cos nθ , (4.25)

where coefficients in the expansions are of the form:

σ (0) (r) = 1

π

∫ π

0
σ (r, θ) dθ,

τ (0)
r (r) = 1

π

∫ π

0
τr (r, θ) dθ,

σ (n) (r) = 2

π

∫ π

0
σ (r, θ) cos nθ dθ,

τ (n)
r (r) = 2

π

∫ π

0
τr (r, θ) cos nθ dθ, n = 1, 2, . . . .

(4.26)

In the case when σ (r, θ) and τr (r, θ) are odd functions in θ , their transforms into
Fourier series will be similar if cosines are changed to sines in (4.25); in the general
case, when loads are arbitrary functions, the superposition of solutions should be
used.

We present potential functions ϕ(k) (r, θ, z1), F (k) (r, θ, z1) and ϕ
(k)
3 (r, θ, z3) (k =

1, 2) as Fourier series in coordinate θ with coefficients in the form of Hankel integral
equations in radial coordinate r of the order corresponding to the harmonic in θ
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ϕ(1) (r, θ, z1) = −
∞∑

n=0

cos nθ

∫ ∞

0
Bn(λ)e−λz1 Jn(λr)

dλ

λ
,

F (1)(r, θ, z1) =
∞∑

n=0

cos nθ

∫ ∞

0
An(λ)e−λz1 Jn(λr)dλ,

ϕ
(1)
3 (r, θ, z3) =

∞∑

n=1

sin nθ

∫ ∞

0
Cn(λ)e−λz3 Jn(λr)

dλ

λ
,

ϕ(2)(r, θ, z1) =
∞∑

n=0

cosnθ

∫ ∞

0

[
B(1)
n (λ) sinh λ(h1 + z1)

+ B(2)
n (λ) cosh λ(h1 + z1)

]
Jn(λr)

dλ

λ sinh λh1
,

F (2)(r, θ, z1) =
∞∑

n=0

cos nθ

∫ ∞

0

[
A(1)
n (λ) cosh λ(h1 + z1)

+ B(2)
n (λ) sinh λ(h1 + z1)

]
Jn(λr)

dλ

sinh λh1
,

ϕ
(2)
3 (r, θ, z3) =

∞∑

n=1

sin nθ

∫ ∞

0

[
C (1)
n (λ) cosh λ(h3 + z3)

+ C (2)
n (λ) sinh λ(h3 + z3)

]
Jn(λr)

dλ

λ sinh λh3
,

h j = n−1/2
j h, j = 1, 3.

(4.27)

In expressions (4.27), An , Bn , Cn , A(k)
n , B(k)

n , and C (k)
n (k = 1, 2) are unknown func-

tions that are to be determined. It should be noted that the presentation of potential
functions as (4.27) ensures that conditions (4.14) are satisfied.

Substitute expressions (4.26) and (4.27) into boundary conditions (4.15). Then,
from the conditions presented in the second and fourth lines of (4.15), which are set
on all planes y3 = −h, y3 = 0, we obtain six relations linking nine functions An , Bn ,
Cn , An

(i), B(i)
n , and C (i)

n (i = 1, 2)
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B(1)
n (λ) = μ1A(2)

n (λ) +
(
1 − d2

d1

)
A(1)
n (λ),

B(2)
n (λ) = μ1A(1)

n (λ) +
(
1 − d2l2

d1l1

)
A(2)
n (λ), C (2)

n (λ) = 0,

An (λ) =
[μ1

k
(1 + cothμ1 ) − 1

]
A(1)
n (λ)

+
[μ1

k
(1 + cothμ1 ) + 1

]
A(2)
n (λ) ,

Bn (λ) =

[ (
1 − d2l2

d1l1

)
μ1

k
(1 + cothμ1 )

−
(
1 − d2

d1

)
− μ1cothμ1

]
A(1)
n (λ)

+
[ (

1 − d2l2
d1l1

)
μ1

k
(1 + cothμ1 )

+
(
1 − d2l2

d1l1

)
− μ1

]
A(2)
n (λ) ,

Cn(λ) = −C (1)
n (λ), μ1 = λh1, k = d2 (l1 − l2)

d1l1
.

(4.28)

From the remaining boundary conditions (the first and the third lines in (4.15)),
taking into account the following relations (Watson 1995)

2n

λr
Jn (λr) = Jn−1 (λr) + Jn+1 (λr) ,

2
∂ Jn (λr)

∂ (λr)
= Jn−1 (λr) − Jn+1 (λr) ,

and equating to zero the relations at cos nθ , sin nθ , we obtain (individually for each
nth harmonic in coordinate θ ) the system of paired integral equations

∫ ∞

0

{
n−1/2
1 d1

[
μ1A

(1)
n + (k + μ1cothμ1 ) A(2)

n

] − n−1/2
3 C (1)

n

}

× Jn+1 (λr) λdλ = − 1

C44

[
τ (n)
r (r) + τ

(n)
θ (r)

]
, r �a,

∫ ∞

0

{
n−1/2
1 d1

[
μ1A

(1)
n + (k + μ1cothμ1 ) A(2)

n

] + n−1/2
3 C (1)

n

}

× Jn−1 (λr) λdλ = 1

C44

[
τ (n)
r (r) − τ

(n)
θ (r)

]
, r �a,

∫ ∞

0

[
(k − μ1coth 1 ) A(1)

n − μ1A
(2)
n

]
Jn (λr) λdλ

= − σ (n) (r)

C44d1l1
, r � a,

∫ ∞

0
X1 Jn+1 (λr) dλ = 0, r > a,

∫ ∞

0
X2 Jn−1 (λr) dλ = 0, r > a,

∫ ∞

0
X3 Jn (λr) dλ = 0, r > a,

(4.29)
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where the following notations are used

X1 =
(
1 − d2l2

d1l1

)
(1 + cothμ1 )

[μ1

k
A(1)
n +

(
1 + μ1

k

)
A(2)
n

]

− C (1)
n (1 + cothμ3 ) ,

X2 =
(
1 − d2l2

d1l1

)
(1 + cothμ1 )

[μ1

k
A(1)
n +

(
1 + μ1

k

)
A(2)
n

]

+ C (1)
n (1 + cothμ3 ) ,

X3 = 2

(
1 − d2l2

d1l1

)[(
1 − μ1

k

)
A(1)
n − μ1

k
A(2)
n

]
(1 + cothμ1 ) .

(4.30)

To solve the system of paired equations (4.29), in accordance with the substitution
method (Uflyand 1977), we present X1, X2, and X3, given by (4.30) in the form that
provides the identical satisfaction of those parts of the system of paired equations
which are specified in the range r > a. Now, we introduce new unknown functions
ϕ(t), ψ(t), and ω(t), which are continuous along with their first derivatives in the
segment [0, a], and represent via these functions the expressions X j ( j = 1, 2, 3) as

X1 =
√

π

2
λ3/2

∫ a

0

√
tϕ (t) Jn+1/2 (λt) dt

=
√

πλ

2

∫ a

0
ϕ̃(t)

[
a−n+1/2 Jn−1/2 (λa) − t−n+1/2 Jn−1/2 (λt)

]
dt,

X2 =
√

πλ

2

∫ a

0

√
tψ(t)Jn−1/2 (λt)dt,

X3 =
√

πλ

2

∫ a

0

√
tω(t)Jn+1/2 (λt)dt

=
√

π

2λ

∫ a

0
ω̃(t)

[
a−n+1/2 Jn−1/2 (λa) − t−n+1/2 Jn−1/2 (λt)

]
dt,

ϕ̃(t) ≡ d

dt
[tnϕ(t)] , ω̃(t) ≡ d

dt
[tnω(t)] .

(4.31)

ByusingWeber–Schafheitling discontinuous integral (Bateman andErdelyi 1953)

∫ ∞

0

√
λJn+1/2 (λa) Jn (λt) =

⎧
⎨

⎩

0, 0 � a < t√
2

π

t

an+1/2
√
a2 − t2

, 0 < t < a
(4.32)

and differentiation formulas for Bessel functions (Watson 1995)

t−n d

dt

[
tn Jn(λt)

] = λJn−1(λt), tn
d

dt

[
t−n Jn(λt)

] = −λJn+1(λt), (4.33)

it can be shown that the three last equations in system (4.29) (for the range r > a) are
satisfied identically. Then, from the remaining three equations in (4.29) (for the range
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r � a) we obtain Fredholm integral equations of the second kind (the procedure is
shown in more detail in Bogdanov et al. (2017)):

(sk + q) f1 (ξ) + (sk − q) f2 (ξ) + 4

π

∫ 1

0
f1 (η) K11 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K12 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K13 (ξ, η) dη

= 8ξ

π

∫ π/2

0
ν′
1(ξsin θ)dθ, 0 � ξ, η � 1,

(sk − q) f1 (ξ) + (sk + q) f2 (ξ) + 4

π

∫ 1

0
f1 (η) K21 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K12 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K23 (ξ, η) dη

= 8ξ

π

∫ π/2

0
ν′
2(ξsin θ) dθ, 0 � ξ, η � 1,

sk f3 (ξ) + 4

π

∫ 1

0
f1 (η) K31 (ξ, η) dη + 4

π

∫ 1

0
f2 (η) K32 (ξ, η) dη

4

π

∫ 1

0
f3 (η) K33 (ξ, η) dη = −8ξ

π

∫ π/2

0
u′(ξsin θ)dθ,

0 � ξ, η � 1, s = n−1/2
1 d21 l1

d1l1 − d2l2
, q = n−1/2

3 .

(4.34)

The following dimensionless variables and functions are introduced in (4.34):

ξ = x

a
, η = t

a
, β = h

a
,

f1(ξ) = a−n−1ϕ̃(x)

= a−n−1 d

dx
[xnϕ (x)] ,

f2 (ξ) = a−n−1xnψ (x) ,

f3 (ξ) = a−nω̃(x)

= a−n d

dx
[xnω (x)] ,

u (ξ) = ξ n

C44l1
√
n1

σ (n)(aξ),

ν1 (ξ) = ξ 2n

C44

∫ ξ

0
ρ−nτ (n)

r (aρ) dρ,

ν2 (ξ) = 1

C44

∫ ξ

0
ρnτ (n)

r (aρ) dρ.

(4.35)
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The kernels in (4.34) are of the form Bogdanov et al. (2017):

K22 (ξ, η) = 2sknβ1ξ
n−1η−n−1Sn (z11) + 4s

k
nβ3

1ξ
n−2 η−n−2

z211 − 1

×
{[(

8

z211 − 1
+ n (n − 1) + 6

)
4β2

1

ξη
− 6z11

]
Sn (z11)

+ (n − 1)

[
3
(
z211 − 1

) + 16β2
1 z11

ξη

]
Pn (z11)

}

−2snβ1ξ
n−2η−n−2

[(
ξη − 8β2

1 z11
z211 − 1

)
Sn (z11) + 4β2

1 (n − 1) Pn (z11)

]

+2qnβ3ξ
n−1η−n−1Sn (z13) , (4.36)

etc., where

β j = βn−1/2
j = h

a
n−1/2
j = h j

a
, z1 j = 4β2

j + ξ 2 + η2

2ξη
, j = 1, 3,

Sn (z) = Qn (z) − zQn−1(z)

4
(
z2 − 1

) , Pn (z) = Qn−1(z)

4
(
z2 − 1

) ,

Qn(z) is Lagrange function of the second kind. The geometric parameter β = ha−1

is the dimensionless distance from the crack to the boundary surface of the body.
In the similar way, axisymmetric problems on a semi-infinite body containing

near-surface mode I, mode II, and mode III cracks can be reduced to Fredholm
integral equations of the second kind (Bogdanov et al. 2017; Nazarenko et al. 2000).

So, for the axisymmetric problem on mode I crack in a semi-infinite pre-stressed
body, when normal stresses of σ(r) intensity act on crack faces, in the case of equal
roots we obtain such system of Fredholm integral equations of the second kind

f (ξ) + 4

πk

∫ 1

0
f (η) K11 (ξ, η) dη − 4

πk

∫ 1

0
g (η) K12 (ξ, η) dη

= − 4

πk

∫ π/2

0
s(ξsin θ) dθ,

g (ξ) + 4

πk

∫ 1

0
f (η) K21 (ξ, η) dη − 4

πk

∫ 1

0
g (η) K22 (ξ, η) dη = 0,

s (ξ) = ξ

C44d1l1
σ(aξ),

(4.37)

with the kernels
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K11 (ξ, η) = −
[
k

2
I1 (2β1, η) + β1 I2 (2β1, η) + β2

1

k
I3 (2β1, η)

]
,

K12 (ξ, η) = β2
1

k

[
η−1 I2 (2β1, η) − I2 (2β1, 1)

]
,

K21 (ξ, η) = −β2
1

k
ξ I4 (2β1, η) ,

K22 (ξ, η) =
ξ

{
k

2

[
η−1 I1 (2β1, η) − I1 (2β1, 1)

]

− β1
[
η−1 I2 (2β1, η) I2 (2β1, 1)

]

+ β2
1

k

[
η−1 I3 (2β1, η) − I3 (2β1, 1)

]}
.

(4.38)

The following notations are introduced in the expressions for the kernels (4.38):

I1 (β, η) = β

2ξη
[
ζ 2(η) − 1

] ,

I2 (β, η) = I1 (β, η)

[
4ζ(η)I1 (β, η) − 1

β

]
,

I3 (β, η) = 4I 21 (β, η)

{
2

[
3ζ 2(η) + 1

]
I1 (β, η) − 3ζ(η)

β

}
,

I4 (β, η) =
12I 21 (β, η)

{
16ζ(η)

[
ζ 2(η) + 1

]
I 21 (β, η)

− 4

β

[
3ζ 2(η) + 1

]
I1 (β, η) + ζ(η)

β2

}
,

ζ(η) = β2 + ξ 2 + η2

2ξη
.

(4.39)

For the axisymmetric problem on mode II crack in a semi-infinite pre-stressed
body, when radial shear stresses of τr (r) intensity act on crack faces, in the case
of equal roots we obtain such system of Fredholm integral equations of the second
kind:

f (ξ) + 4

πk

∫ 1

0
f (η) K11 (ξ, η) dη − 4

πk

∫ 1

0
g (η) K12 (ξ, η) dη = 0,

g (ξ) + 4

πk

∫ 1

0
f (η) K21 (ξ, η) dη− 4

πk

∫ 1

0
g (η) K22 (ξ, η) dη

= − 4ξ

πk

∫ π/2

0
q ′(ξsin θ) dθ,

q (ξ) =
√
n1ξ

C44d1
τr (aξ),

(4.40)
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where the kernels are of the form (4.38).
For the axisymmetric problem on mode III crack in a semi-infinite pre-stressed

body, when tangent torsional loads of τθ (r) intensity are applied to the crack faces
antisymmetrically in respect of the plane of crack location, we obtain Fredholm
integral equation of the second kind:

f (ξ) − 1

π

∫ 1

0
f (η) K (ξ, η) dη = 4ξ

π

∫ π/2

0
t ′(ξsin θ) dθ,

t (ξ) =
√
n3ξ

C44
τθ (aξ),

(4.41)

where

K (ξ, η) = 8β3ξ
2

[
1

(
4β2

3 + ξ 2 + η2
)2 − 4ξ 2η2

− 1
(
4β2

3 + ξ 2 + 1
)2 − 4ξ 2

]

.

(4.42)

4.4.2 Body with Two Parallel Circular Cracks

Now, we will show the results for the case of non-equal roots of the characteristic
equation (n1 �= n2); the procedures for non-equal roots (n1 = n2) are carried out
similarly.

By performing procedures similar to those presented in the previous subsection,
for the non-axisymmetric problem on a pre-stressed body containing two parallel
coaxial circular mode I cracks, we obtain such system of Fredholm integral equations
of the second kind

(
s
k

k1
+ q

)
f1 (ξ) +

(
s
k

k1
− q

)
f2 (ξ) + 4

π

∫ 1

0
f1 (η) K11 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K12 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K13 (ξ, η) dη = 0,

(
s
k

k1
− q

)
f1 (ξ) +

(
s
k

k1
+ q

)
f2 (ξ) + 4

π

∫ 1

0
f1 (η) K21 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K22 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K23 (ξ, η) dη = 0,

s
k

k2
f3 (ξ) + 4

π

∫ 1

0
f1 (η) K31 (ξ, η) dη + 4

π

∫ 1

0
f2 (η) K32 (ξ, η) dη

+ 4

π

∫ 1

0
f3 (η) K33 (ξ, η) dη = 8ξ

π

∫ π/2

0
u′(ξsin θ) dθ,

(4.43)

where



70 V. Bogdanov et al.

u (ξ) = k1ξ
n

C44k2
σ (n)(aξ), s = n−1/2

2 d1d2l1
d1l1 − d2l2

,

q = n−1/2
3 , k1 = l1

√
n2, k2 = l2

√
n1, k = k1 − k2

(4.44)

The kernels in (4.43) are of the form Bogdanov et al. (2017)

K12 (ξ, η) = 2nξ n−1η−n−1

[
− sk2

k1
β1Sn (z11) + sβ2Sn (z12) − qβ3Sn (z13)

]

+ √
π

�(n + 1)

�(n + 1
2 )

ξ 2n

[
− sk2

k1
Rn (2β1, η) + sRn (2β2, η) − qRn (2β3, η)

]
,

(4.45)

etc., where

β j = βn−1/2
j = h

a
n−1/2
j = h j

a
, z1 j = 4β2

j + ξ 2 + η2

2ξη
, j = 1, 2, 3,

Sn (z) = Qn (z) − zQn−1(z)

4
(
z2 − 1

) , Rn (b, η) = b

4
(
b2 + η2

)n+1 ,

Qn(z) is Legendre function of the second kind, and �(n) is gamma function. Here
the geometric parameter β = ha−1 is the dimensionless half-distance between the
cracks.

The procedure of solving axisymmetric problems will be exemplified by the prob-
lem on a body containing two mode I cracks, for which boundary conditions are of
the form (4.20). The harmonic potential functions involved in (4.8) will be presented
as Hankel integral expansions

ϕ
(1)
1 (r, z1) =

∫ ∞

0
A (λ) e−λz1 J0 (λr)

dλ

λ
,

ϕ
(1)
2 (r, z2) =

∫ ∞

0
B (λ) e−λz2 J0 (λr)

dλ

λ
,

ϕ
(2)
1 (r, z1) =

∫ ∞

0
[C1 (λ) cosh λ (z1 + h1)

+C2 (λ) sinh λ (z1 + h1)] J0 (λr)
∂λ

λsinhμ1
,

ϕ
(2)
2 (r, z2) =

∫ ∞

0
[D1 (λ) cosh λ (z2 + h2)

+ D2 (λ) sinh λ (z2 + h2)]J0 (λr)
∂λ

λsinhμ2
,

(4.46)

where A, B, Ck , and Dk (k = 1, 2) are unknown functions that are to be determined;
μk = λhk = λhnk−1/2.

Substitute expressions (4.46) into boundary conditions (4.20). Then, from the
conditions presented in the second and fourth lines of (4.20), which are set on all
planes y3 = −h, y3 = 0, we obtain four relations linking six functions A, B, Ck , and
Dk (k = 1, 2)
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A (λ) = 1

k

[
(k2 + k1cothμ1 )C1 (λ) + d2l2

d1l1
k1 (1 + cothμ2 ) D1 (λ)

]
,

B (λ) = −1

k

[
d1l1
d2l2

k2 (1 + cothμ1 )C1 (λ) + (k1 + k2cothμ2 ) D1 (λ)

]
,

C2 (λ) = 0, D2 (λ) = 0.

(4.47)

From the remaining boundary conditions (4.20), the following system of paired
(dual) integral equations is obtained

∫ ∞

0
[d1l1cothμ1 C1 (λ) + d2l2cothμ2 D1 (λ)] J0 (λr) λdλ = −σ (r)

C44
,

r � a,∫ ∞

0

[
n−1/2
1 d1C1 (λ) + n−1/2

2 d2D1 (λ)
]
J1 (λr) λdλ = 0, r � a,

∫ ∞

0
X1 J0 (λr) dλ = 0, r > a,

∫ ∞

0
X2 J1 (λr) dλ = 0, r > a,

(4.48)

where

X1 = d1l1
d2l2

(1 + cothμ1 )C1 (λ) + (1 + cothμ2 ) D1 (λ) ,

X2 = d1
d2

√
n2
n1

(1 + cothμ1 )C1 (λ) + (1 + cothμ2 ) D1 (λ) .

Functions X1 and X2 are presented in the form permitting two last equations in
(4.48) (for the range r > a) to be satisfied identically, viz.,

X1 =
√

πλ

2

∫ a

0

√
tϕ (t) J1/2 (λt) dt

=
∫ a

0
ϕ(t) sin λt dt,

X2 =
√

πλ

2

∫ a

0

√
tψ (t) J3/2 (λt) dt,

(4.49)

where ϕ(t) and ψ(t) are unknown functions continuous along with their first deriva-
tives in the segment [0, a]. In that case, from the first two equations in (4.48) we
obtain the system of Fredholm integral equations of the second kind

f (ξ) + 2

πk

∫ 1

0
f (η) K11 (ξ, η) dη + 2

πk

∫ 1

0
g (η) K12 (ξ, η) dη

= − 4

π

∫ π/2

0
s (ξsin θ) dθ,

g (ξ) + 2

πk

∫ 1

0
f (η) K21 (ξ, η) dη + 2

pk

∫ 1

0
g (η) K22 (ξ, η) dη = 0,

(4.50)
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where

f (ξ) ≡ a−1ϕ (aξ) , g (ξ) ≡ a−1 d

dξ
[ξψ (aξ)] ,

s (ξ) = ξ

C44d2l2
σ (aξ) .

(4.51)

The kernels are of the form:

K11 (ξ, η) = k1 I1 (2β1, η) − k2 I1 (2β2, η) ,

K12 (ξ, η) = k1
{
[I0 (2β1, 1) − I0 (2β2, 1)]

− η−1 [I0 (2β1, η) − I0 (2β2, η)]
}
,

K21 (ξ, η) = −k2ξ [I2 (2β1, η) − I2 (2β2, η)] ,

K22 (ξ, η) = −ξ
{
[k2 I 1 (2β1, 1) − k1 I1 (2β2, 1)]

− η−1 [k2 I 1 (2β1, η) − k1 I1 (2β2, η)]
}
,

(4.52)

where

I0 (β, η) = 1

4
ln

ζ (η) + 1

ζ (η) − 1
,

I1 (β, η), I2 (β, η), and ζ (η) are determined from (4.39), and k1, k2, and k—from
(4.44).

Byperforming similar procedures for the axisymmetric problemonmode II cracks
in an unbounded body the following system of Fredholm integral equations of the
second kind is obtained

f (ξ) − 2

πk

∫ 1

0
f (η) K11 (ξ, η) dη − 2

πk

∫ 1

0
g (η) K12 (ξ, η) dη = 0,

g (ξ) − 2

πk

∫ 1

0
f (η) K21 (ξ, η) dη − 2

πk

∫ 1

0
g (η) K22 (ξ, η) dη

= 4

π
ξ

∫ π/2

0
q ′ (ξsin θ ) dθ,

(4.53)

where

q (ξ) =
√
n2ξ

C44d2
τr (aξ) , (4.54)

and the kernels are determined from (4.52).
For the axisymmetric problem on mode III cracks in an unbounded body, such

Fredholm integral equation of the second kind is obtained

f (ξ) + 1

π

∫ 1

0
f (η) K (ξ, η) dη = 4ξ

π

∫ π/2

0
t ′(ξsin θ) dθ,

t (ξ) =
√
n3ξ

C44
τθ (aξ),

(4.55)

where the kernel is of the form (4.42).
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4.5 Stress Intensity Factors

Now we analyze the asymptotic distribution of stresses in the vicinities of crack
edges in the investigated pre-stressed bodies containing cracks and determine stress
intensity factors (SIFs), which like those in classical fracturemechanics (Cherepanov
1979; Kassir and Sih 1975) are coefficients at singularities in the stress distributions
mentioned when approaching crack edges.

4.5.1 Half-Space with a Near-Surface Circular Crack

The procedure of determining stress intensity factors for the non-axisymmetric prob-
lem on a body with a near-surface circular crack will be considered in more detail.

From the representations of stresses via harmonic potential functions (4.9), given
(4.27), (4.28), and (4.30), we obtain expressions for stress tensor components Q′

33,
Q′

3r , and Q′
3θ in the domain y3 = 0, r > a (i.e., in the plane of crack location, outside

its contour, in subdomain “2”). For Q′
33 we have

Q′(2)
33 (r, θ, 0) = 1

4C44skl1
√
n1

∞∑

n=0

cos nθ

{∫ ∞

0
X3 Jn(λr)λdλ

− 2

k2

∫ ∞

0

[
μ2
1 (X1 + X2) +

(
k2

2
+ μ2

1 + μ1k

)
X3

]
e−2μ1 Jn(λr)λdλ

}
.

(4.56)

The analysis of expression (4.56) implies that the singularity when r → a only
involves the first integral in the braces since in the second integral in the braces,
as follows from the corresponding formulas of Bessel function integrals (Prudnikov
et al. 1986b), this singularity is absent. In this connection, the first integral in braces in
(4.56) will be analyzed in more detail. Given expressions (4.31) and formulas (4.33),
performing integration by parts and taking into account the value of discontinuous
integral (4.32), we obtain

∫ ∞

0
X3 Jn(λr)λdλ

=
√

π

2

∫ ∞

0

[∫ a

0

√
tω (t) λJn+1/2 (λt) dt

]
Jn(λr)

√
λdλ

= − anω (a)

rn
√
r2 − a2

+
∫ a

0

ω̃ (t) dt

rn
√
r2 − t2

. (4.57)

The integral
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∫ a

0

ω̃ (t) dt

rn
√
r2 − t2

does not have singularities when r → a (Prudnikov et al. 1986a). Then from (4.56)
and (4.57), taking into account the expression

ω (t) = t−n
∫ t

0
ω̃ (t) dt,

we obtain

Q′(2)
33 (r, θ, 0) = − 1

4C44skl1
√
n1

∞∑

n=0

cos nθ

×
[∫ a

0
ω̃ (t) dt

]
r−n

√
(r − a) (r + a)

+ O(1), (4.58)

where symbol O(1) denotes regular components that do not have singularities when
r → a.

Performing a similar analysis for other stress tensor components in the plane of
crack location, we obtain

Q′(2)
3r (r, θ, 0) = 1

4C44sk
∞∑

n=0

cos nθ
r−n+1

√
(r − a) (r + a)

×
[
ϕ̃(a)

a
+ an−1ψ(a)

]
+ O(1), (4.59)

Q
′(2)
3θ (r, θ, 0) = 1

4C44q
∞∑

n=1

sin nθ
r−n+1

√
(r − a) (r + a)

×
[
ϕ̃(a)

a
− an−1ψ(a)

]
+ O(1). (4.60)

Expressions (4.58)–(4.60) can be written as

Q′(2)
33 (r, θ, 0) = KI√

2π(r − a)
+ O(1),

Q′(2)
3r (r, θ, 0) = KI I√

2π(r − a)
+ O(1),

Q′(2)
3θ (r, θ, 0) = KI I I√

2π(r − a)
+ O(1).

(4.61)

In (4.61), stress intensity factors (SIFs) are expressed by the following relations
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KI = − 1
4C44skl1

√
n1

√
π

a

∞∑

n=0

cos nθ

[
a−n

∫ a

0
ω̃ (t) dt

]

= − 1
4C44skl1

√
n1

√
πa

∞∑

n=0

cos nθ

∫ 1

0
f3 (η) dη,

KI I = 1
4C44sk

√
π

a

∞∑

n=0

cos nθ

{
a−n+1

[
ω̃ (a)

a
+ an−1ψ (a)

]}

= 1
4C44sk

√
πa

∞∑

n=0

cos nθ [ f1 (1) + f2 (1)] ,

KI I I = 1
4C44q

√
πa

∞∑

n=1

sin nθ

{
a−n+1

[
ω̃ (a)

a
− an−1ψ (a)

]}

= 1
4C44q

√
πa

∞∑

n=1

sin nθ [ f1 (1) − f2 (1)] ,

(4.62)

where functions f1 (ξ), f2 (ξ), and f3 (ξ) are determined by solving the system of
Fredholm integral equations (4.34).

Expressions (4.61) and (4.62) imply that the order of singularity in stresses distri-
bution in the vicinity of a near-surface crack edge in a semi-infinite pre-stressed body
is −1/2, i.e., it coincides with the order of singularity in stresses distribution near
the crack edge in a body free of initial stresses (Kassir and Sih 1975). In addition,
it follows from (4.62) that the mutual influence of a near-surface crack and mate-
rial’s free surface causes qualitative changes in the asymptotic distribution of stresses
near the crack edge, viz., non-zero values of KI I and KI I I in the case of loading
crack faces only by normal forces (when σ (r, θ) �= 0, τr (r, θ) = τθ (r, θ) = 0) (in
the problem on a body containing an isolated mode I crack KI �= 0, KI I = 0, and
KI I I = 0 (Bogdanov et al. 2017)) and non-zero values of KI in the case when only
tangent shear forces τr (r, θ) act on crack faces (for such scheme of loading the faces
of an isolated crack in an unbounded body, it was KI = 0, KI I �= 0, and KI I I = 0
(Bogdanov et al. 2017)). Besides, it can be seen from expressions (4.62) that all three
SIFs depend on initial stresses, since parametersC44, s, k, q, l1, and n1 depend on the
elongation (contraction) coefficient λ1, which, in turn, is determined by the action
of initial stresses S011 = S022.

Analyze the limit case of mode I crack location, when the distance between
the crack and half-space boundary tends to infinity. It follows from the analysis of
expressions (4.36) for the kernels of integral equations (4.34) that when β → ∞, all
the kernels in the limit become zero. Then (4.34) implies

f ∞
1 = f ∞

2 = 0,

f ∞
3 = − 8

πsk
ξ

∫ π/2

0
u′ (ξsin θ ) dθ,

f ∞
j ≡ lim

β→∞ f j , j = 1, 2, 3.

(4.63)
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From (4.63), taking into account (4.35) and performing the change of variables
η = ξsin θ , we obtain

f ∞
3 = − 8

πC44skl1
√
n1

d

dξ

∫ ξ

0

ηn+1σ (n)(aη)
√

ξ 2 − η2
dη.

Then, we have from (4.62)

K∞
I ≡ lim

β→∞ KI

= 2

√
a

π

∞∑

n=0

cos nθ

∫ 1

0

ηn+1σ (n) (aη)
√
1 − η2

dη

= 2√
πa

∞∑

n=0

cos nθ

an

∫ a

0

tn+1σ (n) (t)√
a2 − t2

dt,

K∞
I I = 0,

K∞
I I I = 0,

(4.64)

where Fourier coefficients σ (n)(x) (n = 0, 1, 2, . . . ) are determined from relations
(4.26) via the normal load acting on the crack faces.

As can be seen, in this case SIFs do not depend on initial stresses and entirely
coincide with the values obtained in the non-axisymmetric problem on a mode I
crack in an infinite pre-stressed body (Bogdanov et al. 2017). In particular, when
normal loads of the form

σ (r, θ) = σ1cos θ (4.65)

are applied to crack faces, we obtain

K∞
I = 1

2

√
πaσ1cos θ , K∞

I I = 0, K∞
I I I = 0. (4.66)

It should be noted that the values of SIFs obtained by solving the problem on a
pre-stressed body containing a near-surface mode I crack in the limit case of crack
location, when the distance between it and the half-space boundary tends to infinity
(those SIF values are given by expressions (4.64) and (4.66)) also entirely coincide
with the values of SIFs which were obtained in the non-axisymmetric problem on
an infinite body with a penny-shaped mode I crack within fracture mechanics of
materials free of initial stresses (Kassir and Sih 1975).

By performing similar procedures in the case of axisymmetric problem on a half-
space containing a near-surface mode I crack (Bogdanov et al. 2017), we obtain such
expressions for stress tensor components near the crack edge:
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Q′(2)
33 (r, 0) = KI√

2π(r − a)
+ O(1),

Q′(2)
3r (r, 0) = KI I√

2π(r − a)
+ O(1),

Q′(2)
3θ (r, 0) = 0.

(4.67)

In (4.67), SIFs are determined from the expressions

KI = − 1
2C44kd1l1

√
πa f (1),

KI I = − 1
2C44kd1n

−1/2
1

√
πa

∫ 1

0
g (η) dη,

KI I I = 0,

(4.68)

where functions f and g are determined by solving the system of Fredholm integral
equations (4.37). It can also be shown that in the limit case of crack location, when
the distance between the crack and the half-space boundary tends to infinity, we have

K∞
I = 2

√
a

π

∫ 1

0

ηs(η)
√
1 − η2

dη = 2√
πa

∫ a

0

tσ(t)√
a2 − t2

dt,

K∞
I I = 0,

K∞
I I I = 0.

(4.69)

In particular, when uniform normal pressure of the form

σ (r) = σ = const, (4.70)

acts on crack faces, we have from (4.69)

K∞
I = 2σ

√
a

π
. (4.71)

In the case of the axisymmetric problem on a half-space containing a near-surface
mode II crack, SIFs are of the form (4.68), where functions f and g are determined
by solving the system of Fredholm integral equations (4.40). In the limit case of
crack location, when the distance between the crack and the half-space boundary
tends to infinity, we have

K∞
I = 0,

K∞
I I = 2

√
a

π

∫ 1

0

η2q(η)
√
1 − η2

dη = 2

a
√

πa

∫ a

0

t2τr (t)√
a2 − t2

dt,

K∞
I I I = 0.

(4.72)

In particular, when a uniform shear load of the form
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τr (r) = τ = const, (4.73)

acts on the crack faces, we have from (4.72)

K∞
I I = τ

2

√
πa. (4.74)

In the case of the axisymmetric problem on a half-space containing a near-surface
mode III crack, SIFs are of the form Bogdanov et al. (2017):

KI = 0, KI I = 0, KI I I = 1
2C44n

−1/2
3

√
πa

∫ 1

0
f (η) dη, (4.75)

where function f is determined by solving Fredholm integral equation (4.41). In the
limit case of crack location, when the distance between the crack and the half-space
boundary tends to infinity, we have

K∞
I = 0,

K∞
I I = 0,

K∞
I I I = 2

√
a

π

∫ 1

0

η2t (η)
√
1 − η2

dη = 2

a
√

πa

∫ a

0

t2τθ (t)√
a2 − t2

dt .
(4.76)

In particular, when a uniform torsional load of the form

τθ (r) = τ = const (4.77)

acts on the crack faces, we have from (4.76)

K∞
I I I = τ

2

√
πa. (4.78)

It should be noted that from the analysis of the asymptotic distribution of stresses
in the vicinity of the near-surface crack edge we can make conclusions concern-
ing the order of singularities near the crack edges, the influence of initial stresses on
stress intensity factors, as well as the effect of crack interaction with the body bound-
ary, which are similar to those made in the consideration of the non-axisymmetric
problem.

4.5.2 Body with Two Parallel Circular Cracks

For the non-axisymmetric problem on a pre-stressed body containing two paral-
lel coaxial mode I cracks, in the case of non-equal roots (n1 �= n2) we obtain the
asymptotic distribution of stress tensor components as (4.61) with SIFs of the forms
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KI = C44
sk

4k1

√
πa

∞∑

n=0

cos nθ

∫ 1

0
f3 (η) dη,

KI I = C44
sk

4k1

√
πa

∞∑

n=0

cos nθ [ f1 (1) + f2 (1)] ,

KI I I = 1
4C44q

√
πa

∞∑

n=1

sin nθ [ f1 (1) − f2 (1)] ,

(4.79)

where functions f1 (ξ), f2 (ξ), and f3 (ξ) are determined by solving the system of
Fredholm integral equations (4.43). It is seen from (4.79) that the effect of mutual
influence of two parallel coaxial cracks in a pre-stressed body is evident in the
appearance of non-zero values of KI I

∞ and KI I I
∞ only under the action of a normal

load on crack faces. It can also be shown that when the distance between cracks tends
to infinity, in the limit we obtain the values of SIFs KI

∞, KI I
∞, and KI I I

∞ as (4.64)
(while for the special case of a non-axisymmetric normal load acting on crack faces
(4.65) the values of SIFs are of the form (4.66)), which corresponds to physical
considerations.

For the axisymmetric problem on two parallel coaxial mode I cracks located in a
pre-stressed body,we obtain expressions for stress tensor components in the vicinities
of cracks as (4.67), where SIFs are presented by the expressions

KI = − 1
2C44d2l2 f (1),

KI I = 1
2C44d2n

−1/2
2

∫ 1

0
g (η) dη,

KI I I = 0,

(4.80)

while functions f and g are determined by solving the system of Fredholm integral
equations (4.50). In the limit case of cracks location, when the distance between
them tends to infinity, we arrive at the values of SIFs of the form (4.69) (and in the
special case of the load acting on cracks faces as (4.70), KI

∞ is of the form (4.71)).
By solving the axisymmetric problem on two parallel coaxial mode II cracks

located in a pre-stressed body we obtain expressions for SIFs in the form of (4.79),
where functions f and g are determined from the solution of the system of Fredholm
integral equations (4.53). In the limit case of cracks location, when the distance
between them tends to zero, we arrive at the values of SIFs as (4.72) (while in the
special case of the load on cracks faces (4.73), KI I

∞ is of the form of (4.74)).
Finally, when considering the axisymmetric problem on a pre-stressed body con-

taining two parallel mode III cracks, we arrive at the values of SIFs as (4.75), where
functions f and g are determined from the solution of Fredholm integral equation
(4.55). In the limit case of cracks location, when the distance between them tends
to infinity, we obtain the values of SIFs as (4.76) (while in the special case of the
torsional load of the form (4.77) acting on cracks faces, the value of KI I I

∞ is of the
form (4.78)).



80 V. Bogdanov et al.

Fig. 4.4 Dependence of
SIFs ratios KI /K∞

I on the
dimensionless distance
between the crack and the
boundary surface of the body
β = ha−1 for the
harmonic-type potential

4.6 Numerical Results

Below we present the results of numerical investigation for some highly elastic
materials and composites. The parameters of those materials, which are involved in
the resolving Fredholm integral equations of the second kind, and expressions for
stress intensity factors are given, e.g., in Bogdanov et al. (2017), Guz et al. (2020).

Highly elastic material with the elastic potential of harmonic type (a compressible
body, equal roots) (John 1960). Consider the results of numerical calculation for the
non-axisymmetric problem on a body containing a near-surface mode I crack, when
crack faces are under a normal tensile load of (4.65) form.

Figure 4.4 shows the dependence of the stress intensity factors (SIFs) ratios
KI /K∞

I on the dimensionless distance between the crack and the half-space bound-
ary β = ha−1 for the value of Poisson coefficient ν = 0.3. Here, K∞

I is determined
from (4.66) and corresponds to the SIF value in the problem on an isolated mode I
crack in an infinite pre-stressed body (this value, as shown in Sect. 4.5.1, coincides
with the SIF value in the problem on a mode I crack in a body free of initial stresses).
The dependences are given for the values of λ1 = 0.9 (initial compression), λ1 = 1.2
(initial tension) and λ1 = 1.0 (no initial stresses). It can be seen that the interaction
of the crack and the free body boundary increases substantially when the distance
between them decreases. E.g., for λ1 = 0.9 the value of KI/KI

∞ when β = 0.5 is
higher than the corresponding value of KI/KI

∞ when β = 2.0 by a factor of 1.7. On
the other hand, with the increase in the distance between the crack and the half-space
boundary this mutual influence weakens rapidly, and the respective values of SIFs
tend to the values obtained for an isolated crack in an infinite body. The precision
acceptable for practical calculations, the mutual influence between the crack and the
free surface can be neglected when the distance between them exceeds 2 crack radii.

Figure 4.5 illustrates the dependence of KI /KI
∞ on the parameter of initial

stresses λ1 for different values of Poisson coefficient ν when β = 0.5. As can be
seen from the figure, the compressibility of the material with harmonic-type poten-
tial, which is characterized by Poisson coefficient, noticeably influences the values
of SIFs. E.g., when λ1 = 0.95, β = 0.5, the value of KI /KI

∞ for ν = 0.5 exceeds
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Fig. 4.5 Dependence of
SIFs ratios KI /K∞

I on
elongation (or contraction)
ratio λ1 for different values
of Poisson’s ratio (the
harmonic-type elastic
potential)

Fig. 4.6 Dependence of
SIFs ratios KI /K∞

I on
elongation (or contraction)
ratio λ1 for the
harmonic-type potential

Fig. 4.7 Dependence of
SIFs ratios KI I /K∞

I on
elongation (or contraction)
ratio λ1 for the
harmonic-type potential

the value of KI /KI
∞ for ν = 0.1 by 12%, while for λ1 = 0.9, β = 0.5 these values

differ by a factor of 2.2.
Figures 4.6, 4.7, and 4.8 show, respectively, the dependences of KI /KI

∞,
KI I/KI

∞, and KI I I/KI
∞ on the parameter of initial elongation (contraction) λ1

at different values of geometric parameter β = ha−1 for the value of Poisson coeffi-
cient ν = 0.3. As the figures imply, SIFs considerably depend on initial stresses, with
the influence of contractive initial stresses being higher than that of tensile stresses.
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Fig. 4.8 Dependence of
SIFs ratios KI I I /K∞

I on
elongation (or contraction)
ratio λ1 for the
harmonic-type potential

Fig. 4.9 Dependence of the
critical values of relative
contraction ε1 on the
geometric parameter β for
the harmonic-type potential
(non-axisymmetric form of
stability loss)

The curves in Figs. 4.6, 4.7, and 4.8 have vertical asymptotes corresponding to
a sharp (resonance) increase of the stress intensity factors at certain values of the
initial contraction parameter λ1 < 1. According to the unified approach within the
linearized mechanics of deformable solid bodies, described in Sect. 4.1, this effect
permits determining the critical (limit) values of contraction parameters,which,when
achieved, cause local loss of material’s stability in the vicinity of the crack.

Figure 4.9 shows for different values of Poisson coefficient the dependences of the
values of relative critical contraction ε1 = 1 − λ1 corresponding to the local loss of
material’s stability in the vicinity of near-surface crack in the non-axisymmetric form
(the first harmonic in coordinate θ ) of the geometric parameter β = ha−1. The figure
implies that the mutual influence of the crack and the half-space boundary leads to
a substantial decrease in the values of ε1 and, respectively, in the critical contraction
stresses as compared to the case of a single isolated crack in an unbounded body
(in this case for the harmonic-type potential, critical contractions corresponding
to the non-axisymmetric form of stability loss are calculated by the formula ε1 =
(1 − ν)/2 (Guz et al. 1992, 2020)). At the same time, with an increase in the distance
between the crack and the half-space boundary this influence becomes weaker, and
corresponding critical parameters tend to the values obtained for the case of a single
crack in a body.
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Fig. 4.10 Comparing the
critical values ε1 in the cases
of the axisymmetric and
non-axisymmetric forms of
stability loss for the
harmonic-type potential

Figure 4.10 compares for the same material the dependences of ε1 on β that were
obtained from the solution of the axisymmetric problem (the axisymmetric form of
stability loss, solid line) and from the solution of the non-axisymmetric problem (the
non-axisymmetric form of stability loss, dashed line). It should be noted here that
the critical contractions corresponding to the axisymmetric form of stability loss are
calculated for the harmonic-type potential with the formula ε1 = 1/(2 + ν) (Guz
et al. 1992, 2020).

Highly elastic material with Bartenev–Khazanovich elastic potential (an incom-
pressible body, equal roots) (Bartenev and Khazanovich 1960). The results of inves-
tigating the axisymmetric problems on a pre-stressed body containing two parallel
coaxial cracks for this material are given here.

Figures 4.11 and 4.12 illustrate for mode I cracks, when forces of the form (4.70)
act on crack faces, the dependences of the ratios of stress intensity factors KI /KI

∞
and KI I /KI

∞, respectively, (here KI
∞ is determined from (4.71)) on the parameter

of initial stresses λ1 for different values of the dimensionless half-distance between
the cracks β = ha−1. It can be seen from the figures that SIFs KI , KI I significantly
depend on initial stresses. The curves shown in Figs. 4.11 and 4.12 have vertical
asymptotes that correspond to the effect of resonance nature, when the initial con-
traction stresses (and, correspondingly, the parameter of initial contraction λ1 < 1)
achieve the values at which the local loss of material’s stability occurs (in the form
symmetric with respect to the plane y3 = −h) in the vicinity of cracks under con-
traction along the cracks.

Figures 4.13 and 4.14 for mode II cracks, when forces of (4.73) form act on
crack faces, show, respectively, the dependences of the ratios of the SIFs KI I/KI I

∞
and KI /KI I

∞ (where KI I
∞ is determined from (4.74)) on the parameter of initial

stresses λ1 for different values of the dimensionless half-distance between the cracks)
β = ha−1. The figures demonstrate the significant influence of initial stresses on SIFs
KI and KI I .

In the domain of compressive initial stresses (λ1 < 1), the curves have vertical
asymptotes corresponding to the resonance SIF change occurring when the values
of initial compressive stresses tend to the values at which the local loss of material’s
stability in the vicinity of cracks occurs (in the antisymmetric in respect of plane
y3 = −h, or bending, form) under compression by forces directed along the cracks.
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Fig. 4.11 Dependence of
SIFs ratios KI /KI

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Fig. 4.12 Dependence of
SIFs ratios KI I /KI

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Fig. 4.13 Dependence of
SIFs ratios KI I /K∞

I I on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Here, it should be noted that the critical (limit) values of contraction parameters
λ1 < 1 for the antisymmetric (bending) form of stability loss are larger (and the crit-
ical (limit) compressive stresses, correspondingly, smaller) than the critical values
for the symmetric form of stability loss which were obtained above (see Figs. 4.11
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Fig. 4.14 Dependence of
SIFs ratios KI /KI I

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Table 4.1 Critical values of relative contraction ε1 = 1 − λ1 for Bartenev–Khazanovich potential

β 1/8 1/4 1/2 1 10

ε
(1)
1 0.304 0.307 0.307 0.307 0.307

ε
(2)
1 0.035 0.089 0.168 0.242 0.306

ε
(3)
1 0.010 0.039 0.117 0.224 0.306

and 4.12). This is clearly demonstrated in Table 4.1, which gives the values of rel-
ative critical (limit) contraction parameters ε1

(1) = 1 − λ1
(1) and ε1

(2) = 1 − λ1
(2)

at which the local loss of material’s stability occurs under compression along two
parallel coaxial cracks (values ε1

(1) correspond to the symmetric form of stability
loss, and ε1

(2)—to the antisymmetric (bending) form of stability loss). As can be
seen, in the entire range of β change, the values ε1

(2) < ε1
(1), i.e., stability loss for

this material takes place according to the bending form. It is also seen that at small
distances between cracks their mutual influence results in a significant decrease
of critical compression parameters. Yet, with increasing distance between cracks,
the relative critical contraction parameters tend to the value of ε1 = 0.307, which
for Bartenev–Khazanovich potential corresponds to the critical (limit) contraction
parameter in the case of a single isolated crack in an infinite body (Guz et al. 1992,
2020). Besides, this table shows the values of ε1

(3), which are relative critical con-
traction parameters obtained from the solution of the axisymmetric problem on com-
pression of a semi-bounded body containing a near-surface crack.

For mode III cracks, when the crack faces are under load (4.77), Fig. 4.15 shows
the dependences of the ratios of stress intensity factors KI I I/KI I I

∞ (where KI I I
∞

is determined from (4.78)) on initial stress parameters λ1 for different values of
geometric parameter β, which proves a significant influence of initial stresses on the
SIF KI I I . In this case, however, there are no effects of the resonance change of the
stress intensity factor, as opposed to the problems on mode I and mode II cracks,
since, evidently, under compression of the material containing two parallel cracks
there is no stability loss corresponding to the torsion problem.
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Fig. 4.15 Dependence of
SIFs ratios KI I I /KI I I

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Fig. 4.16 Dependence of
SIFs ratios KI /KI

∞ on the
ratio of elastic moduli
E (1)/E (2) for a laminated
composite

Laminated two-component composite with isotropic layers (in macrovolumes,
that is a transversely isotropic medium (Khoroshun et al. 1993), a compressible
body, non-equal roots). For this material, the results of studying the axisymmetric
problem of a pre-stressed body containing two parallel coaxial mode I cracks are
presented.

Figure 4.16 shows that the ratios of stress intensity factors KI /KI
∞ increase

monotonously with the increase in the ratios of elastic moduli of the materials con-
taining composite layers E (1)/E (2) (the materials of the layers have identical Pois-
son’s ratios = 0.3). Besides, it can be seen that for the values of dimensionless
half-distance between the cracks β = 0.25 the corresponding values of KI /KI

∞
(solid lines) are smaller than for β = 0.5 (dashed lines).

Figure 4.17 illustrates the dependence of the ratio KI I/KI
∞ on E (1)/E (2). In

Figs. 4.16 and 4.17, lines 1 and 1’ correspond to λ1 = 0.99 (compressive initial
stresses), lines2 and2’—toλ1 = 1.0 (no initial stresses), lines3 and3’—toλ1 = 1.05
(tensile initial stresses).

Figure 4.18 shows the dependence of the KI /KI
∞ ratios on the glass concentra-

tion factor c1 for different values of initial stress parameters λ1, demonstrating the
influence of initial stresses and mechanical characteristics of the composite on the
values of stress intensity factors in the composition of aluminum/boron/silicate glass
layers with those of epoxy/maleic resin.
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Fig. 4.17 Dependence of
SIFs ratios KI I /KI

∞ on the
ratio of elastic moduli
E (1)/E (2) for a laminated
composite

Fig. 4.18 Dependence of
SIFs ratios KI /KI

∞ on the
glass concentration factor c1
for aluminum/boron/silicate
glass in epoxy/maleic resin

4.7 Conclusions

The results obtained in the research of the stress-strain state of pre-stressed materials
containing near-surface cracks and two parallel coaxial cracks suggest the following
conclusions:

• the order of singularity in the distribution of stresses in the vicinity of near-surface
crack edge in a pre-stressed semi-bounded body and near the edges of parallel
coaxial cracks in a pre-stressed unbounded body is equal to−1/2, i.e., it coincides
with the order of singularity in the distribution of stresses near crack edges in the
bodies free of initial stresses (Kassir and Sih 1975);

• in all the problems considered (with the exception of problems on torsion) a dra-
matic resonance change of stress intensity factors occurs when initial compressive
forces approach the values corresponding to the local loss of material’s stability in
the vicinities of cracks, which permits the critical (limit) compression parameters
to be determined directly from the solutions of corresponding non-homogeneous
problems of the fracture mechanics of pre-stressed materials;

• themutual influence between the crack and the half-space boundary (a near-surface
crack) or between the cracks (two parallel cracks) causes a quantitative change
(especially significant for small distances between cracks or between the crack
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and the half-space boundary) in the values of stress intensity factors as compared
to those obtained for an isolated crack in an infinite body. On the other hand,
with an increase of the distance between the cracks (or the crack and the half-
space boundary) the abovementioned influence gradually becomes weaker, and
the values of stress intensity factors tend to the corresponding values obtained in
the case of an isolated crack in an infinite material;

• the mechanical characteristics of materials produce a significant influence on the
values of stress intensity factors;

• the critical (limit) compression parameters corresponding to the local loss of
material’s stability in the vicinities of cracks significantly depend on the geo-
metric parameters of the problems (crack radii, distances between cracks, or those
between the crack and material’s boundary) and on the mechanical characteristics
of materials.
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