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Preface

The publication of this book is timed to coincide with the 145th anniversary of
Stephen P. Timoshenko (1878–1972)—a prominent, world-renowned scientist in
mechanics, reputable science administrator, and university teacher. He entered the
history of Ukrainian science as a co-founder of the Ukrainian Academy of Sciences
(now theNational Academy of Sciences ofUkraine), the founder and the first director
of the Institute of Mechanics of the National Academy of Sciences of Ukraine, now
named after him.

Stephen Timoshenko (1878–1972)

Stepan Prokofievich Timoshenko (later known as Stephen Timoshenko) was born
on23December 1878 in the village ofShpotovka,UyezdofKonotop in theChernigov
Governorate, which at that time was a territory of the Russian Empire (today in
Konotop Raion, Sumy Oblast of Ukraine) into the family of land surveyor Prokofi
Timoshenko (1847–1932) and his wife Jozefina Sarnavska (1854–1922), a daughter
of a military retiree. In 1896, he finished a vocational school and entered the Institute
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of Railway Engineers in St. Petersburg, where teaching was provided by mathemati-
cian D. A. Grave, civil engineer D. I. Zhuravsky and railway and civil engineer N.
A. Belelubsky, who specialized in mechanics, O. A. Brandt, an expert in thermo-
dynamics, and other distinguished professors. After graduation, S. P. Timoshenko
worked as an assistant in this institute’s mechanical laboratories. In 1901, pursuing
his scientific interests, he visited France. Later, in 1903, he started working at the
strength ofmaterials laboratory of the St. Petersburg Polytechnic Institute, which sent
him to Germany (1904–1906) to study the advances of leading scientific schools in
the field of mechanics. There he attended lectures and trained at the Munich and
Göttingen universities under the guidance of outstanding professionals in mechanics
A. Föppl (1854–1924) and L. Prandtl (1875–1953).

During his work at the St. Petersburg Polytechnic Institute, Timoshenko met
Victor Kirpichov (1845–1913)—a well-known expert in strength of materials, the
founder and first rector of the Kharkov Polytechnic Institute of Emperor Alexander
III (now the National Technical University “Kharkiv Polytechnic Institute”) and the
Kiev Polytechnic Institute of Emperor Alexander II (now the National Technical
University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”)—who, according
to the reminiscences of Timoshenko himself (Timoshenko 1968), made the decisive
influence on his career, research, and teaching. V. L. Kirpichov advised Timoshenko
to participate in the competition for a vacant professor position at the Kiev Poly-
technic Institute. Elected to the position in 1906, Timoshenko moved to Kyiv, where
he soon headed the Chair of Strength of Materials, and in 1909 became the dean
of the Mechanics and Structural Engineering departments (1909–1911). In 1907 he
defended his thesis and got an associate degree in applied mechanics.

The years at the Kiev Polytechnic Institute were very fruitful for the scientist.
He radically changed the teaching courses in the theory of elasticity and strength
of materials, wrote and published fundamental textbooks and tutorials in oscilla-
tion theory, theory of deformable system stability, mechanical engineering, applied
dynamics, theory of structures, and theory of plates and shells. The result of his long
and indefatigable workwas themonograph Stability of Elastic Systems (1910), which
was awarded D. I. Zhuravsky Prize “For outstanding works in structural mechanics.”

After Professor S. P. Timoshenko, in January 1911, signed the protest condemning
police violence against students and teachers, hewas dismissed, together with several
other professors. He returned to St. Petersburg, where he worked for a year and a half
as a teacher in the Electrotechnical and Polygraphy Institutes. In 1912, Timoshenko
went on a scientific trip to Great Britain. In 1912–1917 he again worked in St.
Petersburg, held professorships at the Polytechnic, Electrotechnical Institutes, and
the Institute of Railway Engineers, and was involved as a scientific consultant in
the construction of warships. In those years, Timoshenko wrote textbooks Course
in Strength of Materials (1911) and two-volume Theory of Elasticity (1914–1916),
which became engineering classics.
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Dismissed deans of the Kiev Polytechnic Institute (from left to right): S. P. Timoshenko, O. V.
Nechayev, and K. G. Schindler (1911)

After the Bolshevik coup late in 1917, Timoshenko returned to Kyiv and, at the
invitation of the Polytechnic Institute’s Academic Council, resumed his professor
ship at this institute. In July–October 1918, he actively participated in the work of
theCommission for elaborating a draft law on establishing theUkrainianAcademy of
Sciences (below the Commission), which was led by Professor Vladimir Vernadsky,
a mineralogist and geochemist. Its objective was to elaborate a concept of the
Academy’s research activities, as well as its organizational and personnel struc-
ture (Paton 2018). In the Commission, S. P. Timoshenko was among those few
representatives of natural and engineering branches who laid the foundation of the
future Academy, proposed conceptual principles of natural science development, and
headed the first Academy institutes and departments.

In July 1918, at a meeting of the Commission, Timoshenko made a policy-setting
presentation regarding the organization of research in applied natural science at the
UkrainianAcademy of Sciences (UAS). In the speech, he noted, in particular, that the
time when sciences and engineering were going different ways was over and that the
powerful tools provided by mathematics and mechanics were often used for dealing
with purely technical tasks. He also referred to developed countries, where there
were numerous research institutions in which representatives of “pure” science and
applied knowledge worked hand in hand at the solution of scientific problems that
were of practical importance (TheHistory of Academy of Sciences of Ukraine 1918–
1923). According to Timoshenko, Ukraine began to be independent in challenging
economic conditions, so, first and foremost, it should develop research to raise labor
productivity and explore natural resources, along with the methods to use them. He
proposed that in the future Academy, a class of applied natural science be organized,
joining that way science and technology to pursue major tasks: to advance science
in Ukraine, explore natural resources, develop and improve methods of using them,
participate in the training of professional personnel and professors for the institutions
of higher education. He also expressed the idea about the advisability of granting
the Academy the right to train scientific personnel of the highest qualification and
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awarding academic degrees, the right to award doctoral degrees for outstanding
research activities, which earlier had been the prerogative of universities.

The work of the Commission was finalized by adopting on 14 November 1918
the “Law of the Ukrainian State on the Foundation of the Ukrainian Academy of
Sciences in Kyiv,” which was signed by Hetman of Ukraine Pavlo Skoropadsky. On
the same day, by his order, the first 12 full members (academicians) of the UAS were
appointed, Timoshenko being among them. On 27 November 1918, the Academy
began its activities with the first Constituent Assembly. This meeting, under the
chairmanship of the oldest academician O. I. Levytsky, with S. P. Timoshenko as the
youngest academician doing secretarialwork, unanimously electedAcademicianV. I.
Vernadsky thePresident (Head) of theAcademy.AcademicianM.T.Kashchenkowas
elected the Head of the Department of Physics and Mathematics, and Academician
S. P. Timoshenko became Department’s Secretary, whose functions he faithfully
performed till his departure for emigration early in 1920.

Due to his inexhaustible organizational energy and personal qualities, the Institute
of Technical Mechanics was founded among the first institutions of the Academy.
On 30 November 1918, the session of its General Assembly approved Timoshenko
as the director of this institute. The assembly also elected him the head of the Chair
of Applied Mechanics and the leader of the Construction Materials Section.

The Institute of Technical Mechanics started its work with studies of the strength
of reinforced concrete beams under changing loads and the strength of a spher-
ical film under uniform pressure, which S. P. Timoshenko and E. K. Garf carried
out. Timoshenko wrote his works On the Strength of Airplanes and Calculations
of Arches at that time. He also started publishing Proceedings of the Institute
of Technical Mechanics. Furthermore, developing the ideas of the integration of
science and technology, scientific research and the implementation of joint applied
studies, Timoshenko initiated and headed a specialized council at the laboratory
of construction materials, which was responsible for approving sample norms for
various construction materials, the programs of respective works and reports of the
sampling station.

A special page in active science-administration activities of Timoshenko at the
Academy was his work as the deputy of Vernadsky in the Standing Commission
for Exploring Natural Resources of Ukraine. It united academicians in natural
sciences and leading UAS professionals in nature exploration and started publishing
collectedworksNatural Resources ofUkraine. Several sectionswere set up under this
Commission, particularly the construction materials section headed by Timoshenko.

So, summing up the dedicatedwork of Academician Timoshenko in theUkrainian
Academy of Sciences, it can be stated that he was one of the like-minded partners
of Vernadsky and, together with him, laid the foundation for future achievements of
the National Academy of Sciences of Ukraine. Due to his active participation, the
Department of Physics and Mathematics acquired top priority. Furthermore, he took
the helm of the first research institution in the Academy—the Institute of Technical
Mechanics (Bogdanov 2018; Guz 2008).
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Because of the political and economic situation that developed after Bolsheviks
seized Kyiv in 1919, the activities of the UAS were suspended, forcing S. P. Timo-
shenko to leave Ukraine. In March 1920, he and his family arrived in Serbia. As
he could not find a job in Belgrade, from April 1920, he headed the Department of
Strength of Materials at the Zagreb Polytechnic Institute (at the time, Croatia was a
part of the Kingdom of Serbs, Croats, and Slovenes) (Soderberg, 1878–1972).

In 1922, the scientist accepted the invitation tomove to theUSA,where from 1923
to 1927, he worked in Philadelphia—at first as an engineer and then as a scientific
consultant for the research department of the Westinghouse company. From 1927,
Timoshenko held the Chair of Applied Mechanics at the University of Michigan
(in Ann Arbor), within which, in 1929, he opened a summer school of mechanics
for certified specialists, which was of great importance for the advancement of
these science and training professionals in the USA. There he provided specialized
lecture courses where hundreds of engineers enriched their knowledge. In addition,
quite a few doctoral theses were defended under his guidance. Concurrently, Timo-
shenko organized the Section of Mechanics at the American Society of Mechanical
Engineers.

S. P. Timoshenko in the laboratory of engineering mechanics at Stanford University (1939)

From 1936, for a quarter of a century, the scientist lived in the town of Palo Alto
in California and taught at Stanford University, heading the Chair of Mechanics till
1943 and holding a professorship till 1960. In addition, S. P. Timoshenko devoted
more than 60 years to the development of engineering science in various countries.

After retiring in 1960 from 1964, he lived with his daughter in Wuppertal
(Germany). He died on 29 May 1972 and was buried beside his wife in Palo Alto
(California, USA).
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S. P. Timoshenko (in the center) with his brothers Serhiy (left) and Volodymyr (right) in Palo Alto
(1947)

S. P. Timoshenko revisited Ukraine twice (in 1958 and 1967), where he was
received with honors at leading scientific institutions and universities of Kyiv and
Kharkiv. He recollected his 1958 visit to the Institute of Technical Mechanics, which
had been founded by him (at that time, it was the Institute of Structural Mechanics
of the Academy of Sciences of the Ukrainian SSR): “My tour of the laboratory gave
me much satisfaction. The basic idea of marrying science to engineering, which had
so inspired me when I organized the mechanics department at the Kiev Academy of
Sciences,was a living reality here. This laboratory that I hadplannedwas nowactively
participating in solving the country’s important engineering problems” (Timoshenko
1968).
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S. P. Timoshenko in the Strength of Materials Department of the Kiev Polytechnic Institute (1958)

Due to his bright scientific and engineering talent and phenomenal single-minded
dedication to his work, Timoshenko made a tremendous contribution to world
science. His scientific works became the foundation for the development of many
areas of mechanics. For many years the Ukrainian scientist took a leading place
among U.S. experts in the field of mechanics and was the founder of mechanical
engineering in that country. It was not by chance that when opening the Twelfth
International Congress of Applied Mechanics, which took place in August 1968 at
Stanford University, the president of the Congress, Prof. N. J. Hoff noted that S. P.
Timoshenko “did so much for applied mechanics, particularly in the United States.”

The main areas of the scientist’s research were fundamental works and further
development of highly relevant problems in the mechanics of solids: strength,
stability and oscillations of mechanical systems, structural mechanics, and the theory
of structures. Hemade an especially significant contribution to advancing the applied
theory of elasticity, the theory of stability of shell and plate elastic systems, including
those reinforced with stiffeners. He solved a number of problems on stress concen-
tration near holes and the strength of railway rails. In the theory of thin-walled
systems, the so-called Timoshenko model is widely used, which allows considering
the effect of shear strains. S. P. Timoshenko’s studies dealing with bending, torsion,
oscillation, and impact in structural members are of great importance. Making novel
achievements in science and engineering, S. P. Timoshenko carried out fundamental
works in the strength of materials, applied elasticity theory, and oscillation theory,
which were ahead of their time, yet found broad practical application in developing
modern aerospace equipment, engineering structures, and in shipbuilding. Professor
Timoshenko intensely studied the history of the science of strength of materials
and significantly contributed to the formation of engineering education. He created
a series of unique monographs on the main areas of engineering mechanics (Timo-
shenko 1925; Timoshenko 1930; Timoshenko 1933; Timoshenko 1935; Timoshenko
1937; Timoshenko 1940; Timoshenko 1945; Timoshenko 1948; Timoshenko 1951;



xii Preface

Timoshenko 1953; Timoshenko 1954; Timoshenko 1959), on which many genera-
tions of specialists in the field of mechanics around the world were educated and
continue to be educated.

The scientific achievements of S. P. Timoshenko were acknowledged all over the
world. He was elected a member of the Ukrainian (1918), Polish (1935), French
(1939), Italian (1948) Academies of Sciences, the USSR Academy of Sciences
(1958), and London Royal Society (1944). The title of doctor honoris causa was
conferred on him by Lehigh University (USA, 1936), University of Michigan (USA,
1938), Zurich Institute of Technology (Switzerland, 1947), University of Bologna
(Italy, 1954), Zagreb Polytechnic (Yugoslavia, 1956), and Turin Polytechnic (Italy,
1960). In 1957, he became the first recipient of the S. P. TimoshenkoMedal, instituted
by the American Society of Mechanical Engineers “for the invaluable contribution
and personal example as the leader of new era in applied mechanics.”

In 1993, the outstanding contribution of academician Stephen P. Timoshenko to
Ukrainian and world science was honored by the National Academy of Sciences of
Ukraine (NAS) by bestowing his name to the NAS Institute of Mechanics, whose
founder and first director he was, and by establishing S. P. Timoshenko Prize for
major achievements in theoretical and applied mechanics in 1999.

The S. P. Timoshenko Institute of Mechanics of the NAS of Ukraine was founded
on 30 November 1918 by a resolution of the General Meeting of the Ukrainian
Academy of Sciences (UAS), and it was the first institution conducting research in
engineering at the UAS (now it is the National Academy of Sciences of Ukraine).

Monument to S. P. Timoshenko on the territory of the National Technical University “Igor Sikorsky
Kyiv Polytechnic Institute”

Changes in the Institute’s structure and research areas over the years of its exis-
tence are evidenced by the changes in its name (in 1918–1929, it was referred to as
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the Institute of Technical Mechanics, in 1929–1959—as the Institute of Structural
Mechanics, and since 1959 it has been the Institute of Mechanics).

Besides well-known works by Timoshenko, the major achievements of the first
years of its activities were the new scientific area created by N. M. Krylov and N.
N. Bogolyubov—the asymptotic theory of non-linear oscillations and establishing
the world-recognized Kyiv school of non-linear mechanics. In structural mechanics,
problems of the strength of engineering structures and structure materials, partic-
ularly the strength of aircraft engines, were studied (Paton 2018; Guz 2008; Guz
2019).

Important accomplishments of the Institute in the following years were the devel-
opment of methods for computing rocketry structural elements, including those
that considered the concentration of stresses, numerical methods for investigating
complex rotational shells, and the theory of materials thermoplasticity under non-
isothermal deformation. Among top-priority research results, one shouldmention the
development of the three-dimensional theory of deformable body stability; investi-
gations of the stability of structural elements made of composite materials and the
stability of mine workings on its basis; advancing the theory of elastic wave prop-
agation in bodies with initial (residual) stresses and using it to create a method for
determining biaxial and triaxial stresses in non-destructive ultrasonic testing; the
development of analytical and numerical methods of non-stationary hydroelasticity
of shells; the theory of elastic wave diffraction for the case of multiply connected
bodies; methods to predict physicomechanical properties of composites of various
structures, as well as the theory of multiphase media; the method of matrix-valued
Lyapunov functions in the theory of stability of mechanical system motion (Paton
2018; Guz 2008; Guz 2019).

S. P. Timoshenko with scientists of the Institute of Mechanics
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In recent years, the recognition of the world scientific community has been won
by the research results obtained by associates of the S. P. Timoshenko Institute of
Mechanics of the NAS of Ukraine in the fields of composite materials mechanics,
including nanocomposite mechanics; non-classical problems of fracture mechanics
(in particular, fracture in composites under compression along reinforcing element);
brittle fracture ofmaterials containing cracks, taking into account the initial (residual)
stresses acting along cracks; fracture under compression along parallel cracks; frac-
ture of bodies containing cracks under the action of dynamic loads (with taking
into account interactions of crack faces; fracture of thin-walled bodies containing
cracks under tension in the case of previous loss of stability; long-term fracture
of viscoelastic materials); mechanics of coupled fields in materials and structure
elements, methods for analyzing the dynamics and functional stability of complex
non-linear systems (Paton 2018; Guz 2019). Institute’s scientists have developed
further the theory of anisotropic layered rotational arbitrarily-shaped shells with
layers of variable stiffness and elaborated methods for numerical solutions of a wide
class of problems on their stress state under non-axisymmetric loading, the theory of
thermo-viscoplasticity of materials in the processes of complex loading at elevated
temperatures, the theory of impact interaction of solid and deformable bodies with
liquid and elastic medium, the theory of deformation and damage of homogeneous
and compositematerials of various structures. They have proposed newanalytical and
numerical methods of studying stationary and non-stationary thermoplasticity prob-
lems, solving contact problems for elastic bodies with initial (residual) stresses, and
calculating shells with holes under physically and geometrically non-linear deforma-
tions. The dynamics of solid bodies, liquid drops, and elastic bodies in compressible
viscous fluid, the theory of waves in mixtures, and the model of finite fibers in the
three-dimensional theory of composite materials stability have also been developed.

Over the years of existence of the S. P. Timoshenko Institute ofMechanics ofNAS,
its scientists have published nearly 500monographs, including 8 summarizingmulti-
volume editions covering various areas of mechanics (Guz 2018). Since 1955 the
Institute has been publishing the international scientific journal Applied Mechanics,
which is translated and published as International Applied Mechanics by Springer
Publishers. It publishes research and reviews articles presenting new scientific results
in mechanics of deformable solids, structure elements, and mechanical engineering.
Just in 2000–2009, the journal published about 170 generalizing review articles
authored by renowned scientists from 26 countries.

The S. P. Timoshenko Institute of Mechanics promotes scientific cooperation
with foreign science centers and universities. In recent years, it has conducted
joint research and published co-authored monographs and papers with scientists
of the University of Bologna (Italy), University of Aberdeen (Scotland), Heriot-
Watt University (Scotland), Otto-von-Guericke Universität Magdeburg (Germany),
Sofia University’ St. Kliment Ohridski’ (Bulgaria), Technische Universität Berlin
(Germany), Harbin Institute of Technology (China), Institute of Fundamental
Technological Research of Polish Academy of Sciences (Poland).
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Today’s structure of the National Academy of Sciences of Ukraine has the Depart-
ment of Mechanics, which, besides the S. P. Timoshenko Institute of Mechanics,
includes 5 more institutions: the G. S. Pisarenko Institute for Problems of Strength,
the M. S. Polyakov Institute of Geotechnical Mechanics, the Institute of Technical
Mechanics, the Institute of Hydromechanics, and the Institute of Transport Systems
and Technologies (Paton 2018). The principal areas of their research are mechanics
of deformable solid bodies, mechanics of fluid, gas, and plasma, general mechanics,
mechanics of solids and rocks, mechanics of spacecraft and aircraft, and mechanics
of ground transport systems.

Some research in the field of mathematical problems of mechanics, mechanics of
materials, dynamics, and structural strength is also carried out at the institutes of other
departments of the Academy, such as the Institute of Mathematics (Kyiv), the Ya. S.
Pidstrigach Institute of Applied Problems ofMechanics andMathematics (Lviv), the
Institute of Applied Mathematics and Mechanics (Cherkasy), the V. M. Glushkov
Institute of Cybernetics (Kyiv), the E. O. Paton Institute of Electric Welding (Kyiv),
the G. V. Karpenko Physico-Mechanical Institute (Lviv), and the A.M. Pidgorny
Institute of Mechanical Engineering Problems (Kharkiv). Investigations in various
fields ofmechanics are also carriedout at leadinguniversities ofUkraine, in particular,
the T. Shevchenko National University of Kyiv, the National Technical University
of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” the O. Honchar National
University of Dnipro, and the I. Franko National University of Lviv.

This bookpresents articles by scientists of S. P. Timoshenko Institute ofMechanics
and other institutes of the NAS of Ukraine, which address numerous sections
of modern mechanics, in particular, mechanics of composite materials, fracture
mechanics, the strength of materials and structures, thermoviscoelasticity and plas-
ticity, mechanics of shell structures, contact mechanics, theory of wave propagation,
dynamics of mechanical and hydromechanical systems.

Kyiv, Ukraine
Magdeburg, Germany
Kyiv, Ukraine
Kyiv, Ukraine

Aleksander N. Guz
Holm Altenbach

Viacheslav Bogdanov
Vladimir M. Nazarenko
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Chapter 1
A Brief Review of the Development
of Mechanics in the National Academy
of Sciences of Ukraine

Holm Altenbach, Viacheslav Bogdanov, Anatolii Bulat, Aleksander Guz,
and Vladimir Nazarenko

1.1 Introduction

The origin of scientific research in the field of mechanics at the National Academy
of Sciences of Ukraine (NAS of Ukraine, Academy) is rightfully associated with
the name of an outstanding scientist, organizer of science, and teacher, one of the
founders of the Academy Stepan Prokofievich Timoshenko (later known as Stephen
Timoshenko, 1878–1972). He was the first academician in mechanics in the National
Academy of Sciences of Ukraine (at the time of its creation in 1918, it was called
the Ukrainian Academy of Sciences) and the founder of the Academy’s first institute
of a technical profile—the Institute of Technical Mechanics (later this institute was
renamed into the Institute of Structural Mechanics, and then the Institute of Mechan-
ics). Although Timoshenko worked at the Academy for less than two years (from
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the time of its founding in November 1918 until March 1920, when he went abroad
before the capture of Kyiv by the Bolsheviks), his contribution to the formation of the
Academy and its institutions was very significant. This is discussed in more detail in
the preface to this book, as well as in Bogdanov and Dubrovina (2018), Guz (2008),
Paton (2018). Timoshenko himself briefly but very vividly describes this period of
his creative life in his well-known book of memoirs Timoshenko (1968).

The results of research conducted at theAcademy in the 1930s byN.M.Krylov and
N.N. Bogolyubov on asymptotic theory of nonlinear oscillations received worldwide
recognition (Krylov and Bogolyubov 1947). These studies laid the foundations for a
new scientific direction—nonlinear mechanics, which is still actively developing in
many scientific centers of mechanics and mathematics (Martynyuk et al. 2009). In
the same years, at the Academy, A.N. Dynnik, N.V. Kornoukhov, M.A. Lavrent’yev,
G.N. Savin, S.V. Serensen and their students carried out important research in the field
of strength of engineering structures and structural materials, dynamics and strength
of machine parts and mechanisms, primarily aircraft engines and mine mechanisms,
mining mechanical engineering.

In the first years after World War II, the Academy researchers developed struc-
tural analysis methods in rocket engineering, analytical methods for studying stress
concentration near holes and cavities, and methods for structural analysis of plates
and shells of variable thickness under thermomechanical loading. They also stud-
ied vibrations of mechanical systems taking into account energy dissipation, created
and applied fundamentals of the theory of cumulative fatigue damage, and built the
general theory of inertial navigation systems.

In the 60s and 70s of the last century, research in the field of mechanics expanded
significantly at the Academy, which was due both to the formation and development
of new directions in mechanics (computational mechanics, mechanics of polymers
and composite materials, fracture mechanics, mechanics of coupled fields, etc.),
and the country’s needs in the scientific and technical support of important industries
(aerospace engineering, naval architecture, heavy engineering,mining). In addition to
the Institute of StructuralMechanics (since 1959—the Institute ofMechanics) and the
Institute of Hydrology (since 1964—the Institute of Hydromechanics), which have
been previously formed in Kyiv, the Institute for Problems of Strength (Kyiv, 1966),
the Institute of Geotechnical Mechanics (Dnipropetrovsk, 1967) and the Institute
of Technical Mechanics (Dnipropetrovsk, 1980) were established. On the basis of
these institutes, the Department of Mechanics of the National Academy of Sciences
of Ukraine (Department ofMechanics) was formed in 1983.More details about these
institutes’ research directions will be discussed below.

The chapter presents information about the scientific institutes of the National
Academy of Sciences of Ukraine doing research in the field of mechanics, their main
areas of research, and scientific and technical cooperation with industrial enterprises
of Ukraine.
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1.2 Department of Mechanics of the NAS of Ukraine

In February 1983, within the structure of the Academy, the Department ofMechanics
was established, uniting five research institutes, five special design and technology
bureaus, and pilot manufacturing. TheDepartment ofMechanics organized and coor-
dinated the research in the field of mechanical system analysis (statics, dynamics,
and stability of mechanical systems with lumped and distributed parameters), mate-
rial and structural strength, hydrodynamics, hydromechanics, hydraulic engineering,
mining engineering (mechanical design engineering for mining in complex geolog-
ical conditions). Academicians A.N. Guz (1983–1988), V.T. Troshchenko (1988–
1993), V.V. Pilipenko (1993–2004), andA.F. Bulat (from 2004 to the present) worked
as Academicians-secretaries of the Department of Mechanics. Some research in the
field of mathematical problems of mechanics, mechanics of materials, dynamics,
and structural strength is also carried out at the institutes of other departments of
the Academy, such as the Institute of Mathematics (Kyiv), the Ya.S. Pidstrigach
Institute of Applied Problems of Mechanics and Mathematics (Lviv), the Institute
of Applied Mathematics and Mechanics (Cherkasy), the V.M. Glushkov Institute
of Cybernetics (Kyiv), the E.O. Paton Electric Welding Institute (Kyiv), the G.V.
Karpenko Physico-Mechanical Institute (Lviv), and the A.M. Pidgorny Institute of
Mechanical Engineering Problems (Kharkiv).

The institutes of the Department of Mechanics of the National Academy of Sci-
ences of Ukraine carry out research in the following scientific areas (Bulat 2013):

• Mechanics of composite and inhomogeneous media;
• Mechanics of fatigue and fracture mechanics;
• Dynamics and stability of mechanical systems;
• Dynamics and aerothermodynamics of mechanical and hydromechanical systems,
power plants, aircraft, space vehicles, and their subsystems;

• Assessment of the limit state and formulation of criteria for the strength ofmaterials
and structures;

• Reliability and optimization of mechanical systems, survivability of structures;
• Development of the scientific foundations of mining and technical processes,
equipment, and technologies for the extraction and processing of minerals.

Institutes of the Department of Mechanics of the National Academy of Sci-
ences of Ukraine develop scientific cooperation with the universities of Ukraine,
which conduct research and train personnel in mechanics. These are the Taras
Shevchenko National University of Kyiv, the Ivan Franko National University of
Lviv, the Oles’ Honchar Dnipro National University, the National Technical Uni-
versity of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” the National Tech-
nical University “Kharkiv Polytechnic Institute,” the National Technical University
“Dnipro Polytechnic,” the Lviv Polytechnic National University and many others.
The graduates of these universities usually join the scientific staff of the institutes of
the Academy’s Department of Mechanics.
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The results of basic and applied scientific research in the institutes of the Depart-
ment of Mechanics have found application in many sectors of the national economy,
such as mechanical engineering (energy, chemical, transport, agricultural), metallur-
gical and mining industries, nuclear power, oil refining, production of space hard-
ware, manufacturing of marine and aviation equipment. Institutes belonging to the
Department of Mechanics have constant scientific and technical contacts with large
industrial and design enterprises ofUkraine, such as theAntonovStateEnterprise (air-
craft industry), the O.G. Ivchenko Zaporizhzhia Machine-Building Design Bureau
Progress (manufacturing of gas turbine engines for aviation and industrial applica-
tions), theM.K. Yangel Design Bureau Pivdenne (rocket engineering), the Ukrainian
EnergyMachines Joint-Stock Company Turboatom (creation of steam and hydraulic
turbines), the National Nuclear Energy Generating Company Energoatom (nuclear
power reactors). The institutes also sustained contact with enterprises in the mining
and processing industry.

Prominent mechanical scientists worked at the Academy. Among them are
O.K. Antonov, N.G. Bondar, V.S. Budnik, Ya.M. Grigorenko, A.N. Dynnik, O.G.
Ivchenko, A.Yu. Ishlinsky, N.A. Kilchevsky, A.D. Kovalenko, V.O. Kononenko,
S.M. Konyukhov, N.V. Kornoukhov, A.S. Kosmodamiansky, M.A. Lavrent’yev,
V.A. Lazaryan, G.V. Logvinovich, V.O. Lotarev, V.I. Mossakovsky, V.V. Pilipenko,
G.S. Pisarenko, M.S. Polyakov, V.M. Poturaev, G.N. Savin, S.V. Serensen, V.T.
Troshchenko, V.F. Utkin, Yu.N. Shevchenko, M.K. Yangel. Currently, 12 academi-
cians work in the Department: V.L. Bogdanov, A.F. Bulat, V.T. Grinchenko, A.N.
Guz,D.S.Kiva,V.D.Kubenko,V.V.Matveev,A.A.Martinyuk,V.M.Nazarenko,O.V.
Pilipenko, V.V. Kharchenko, andV.P. Shevchenko. TheDepartment is represented by
18 corresponding members of the NAS of Ukraine: A.P. Alpatov, B.O. Bluss, M.I.
Bobyr, A.O. Borisyuk, M.D. Borisyuk, G.O. Voropaev, O.Ya. Grigorenko, Ya.O.
Zhuk, O.P. Korostilyov, I.F. Kravchenko, O.P. Krukovskyi, E.I. Nikiforovich, O.Ya.
Oliynik, J.J. Rushchitsky, Yu.M. Savchenko, V.I. Timoshenko, I.S. Chernyshenko,
and O.V. Shymanovs’kyj. The Academy’s Department of Mechanics also has 5 for-
eign members: Holm Altenbach (Germany), Satya N. Atluri (USA), Herbert Mang
(Austria), Stefan Markus (Slovakia), and Michael Yarymovych (USA). In total, 614
researchers work at the institutes of the Department of Mechanics of the National
Academy of Sciences of Ukraine, including 121 Doctors of Science (DSc) and 269
Candidates of Science (PhD). Below we present more detailed information on the
scientific institutions belonging to the Department of Mechanics.
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1.3 Institutes of the Department of Mechanics of NAS
of Ukraine

1.3.1 S.P. Timoshenko Institute of Mechanics of the NAS
of Ukraine

The S.P. Timoshenko Institute of Mechanics is the oldest institute of the Department
of Mechanics of the National Academy of Sciences of Ukraine and has more than
100 years of history. Its goal was to solve fundamental problems of mechanics, train
highly qualified scientists and researchers, and generalize scientific research results
with the following implementation in engineering practice. Detailed information
about the history and modern research of the Institute is presented in the works Guz
et al. (1989), Guz (1998, 2008, 2018a, b).

The Institute was established in 1918 as the Institute of Technical Mechanics,
being part of the Ukrainian Academy of Sciences and the country’s first technical
institute. In 1929 it was transformed into the Institute of Structural Mechanics. In
1959, the Institute of StructuralMechanicswas renamed to the Institute ofMechanics
of the Academy of Sciences of the Ukrainian SSR, and in 1993 it was named after
the founder and the first director of the Institute, Stepan Prokopovich Timoshenko.

The Institute was headed by well-known scientists in mechanics academicians
S.P. Timoshenko (1918–1920), D.A. Grave (1921), K.K. Siminsky (1921–1932),
S.V. Serensen (1932–1940), N.V. Kornoukhov (1940–1944), F.P. Beliankin (1944–
1958), G.N. Savin (1958–1959), A.D. Kovalenko (1959–1965), V.O. Kononenko
(1965-1975), and A.N. Guz (1976–2022). Since 2022, the institute has been headed
by Academician V.M. Nazarenko.

Well-known Institute’s scientists, who were members of the Academy in vari-
ous periods, are N.N. Bogolyubov, N.M. Krylov, A.N. Dynnik, E.O. Paton, Yu.A.
Mitropolsky, G.S. Pisarenko, G.V. Karpenko, N.N. Davidenkov, K.K. Khrenov,
G.Yo. Sukhomel, R.F. Ganiev, B.N. Gorbunov, B.D. Grozin, A.M. Pen’kov, O.G.
Ivakhnenko, S.N. Kozhevnikov, V.M. Maizel’, A.F. Ulitko, I.Ya. Shtajerman, Ya.M.
Grigorenko, L.P. Khoroshun, Yu.N. Shevchenko, Yu.N. Nemish, and N.A. Shul’ga
(Guz et al. 1989; Guz 1998, 2018a, b).

In the first decades after the establishment of the Institute, scientific research was
carried out in the following areas: development of standards for structural materials,
determination of the physical and mechanical properties of rocks, elaboration of
granite strength models, development of non-destructive methods for assessing the
mechanical properties of wood, assessment the strength of bridge elements.

In the 1930s, the study of the strength of structural steels and machine parts,
depending on mechanical factors and processing conditions, progressed. The laws
of similarity under fatigue were established, and the role of the three-dimensional
stress state was estimated; a statistical theory of fatigue failure was proposed, and a
three-axis testing machine was created. Based on the study of the ultimate bearing
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capacity of steel and wooden structures, a new limiting state method for structural
analysis was developed.

During the Second World War, the Institute was evacuated to Ufa (Bashkiria,
Russian Federation), where its research was concentrated on the dynamic strength
of military structure elements, aviation, and transport engineering.

After returning to Kyiv in 1944–1958, a study was made of the stability of engi-
neering structures within and beyond the limits of elasticity, and methods for deter-
mining the strength, stability, and deformability were developed. In the field of
strength of engineering structures, the theory and methods for structural analysis
of torsion plates and rotational shells were developed, the energy dissipation dur-
ing vibrations in the material of turbine blades was studied, a new phenomenon of
adsorption fatigue of metals was revealed, a method of mechanical testing of hard-
ened and brittle estimates of the wear resistance of steels was proposed according to
a complex of physical and mechanical characteristics of the surface layer.

Since the late 1950s, the Institute, alongwith scientific developments in traditional
areas in the theory of elasticity and thermoelasticity, shell theory, stress concentration,
and investigation of fatigue, strength, and plasticity of materials and structural ele-
ments, has received significant development in new scientific areas: deterministic and
stochastic mechanics of composite materials structures, three-dimensional theory of
stability and wave dynamics of deformed bodies, theory of coupled mechanical and
physical fields in structural elements, thermoplasticity, numerical methods of shell
theory, analytical mechanics of polyaggregate systems, nonlinear theory of spatial
vibrations of solids.

Among the major results of scientific research of the Institute during this period
are the establishment of a three-dimensional theory of the stability of deformed
bodies and the study on its basis of the stability of structural members made of
compositematerials andmineworkings, the development of the theoryof propagation
of elastic waves in bodies with initial (residual) stresses and the elaborating using
this method the methodology of determining biaxial and triaxial stresses in non-
destructive ultrasonic studies, the development of analytical and numerical methods
for non-stationary hydroelasticity of shells, the theory of diffraction of elastic waves
for the case of multiply connected bodies, methods for predicting the physical and
mechanical properties of composites of different structures and the theory ofmultiply
connected media, the method of matrix-valued Lyapunov functions in the theory of
stability of motion of mechanical systems (Guz et al. 1989; Guz 1998, 2008).

The Institute of Mechanics was the creator of new scientific institutions of the
Academy. So, in 1945, based on the Laboratory of Agricultural Mechanics of the
Institute of Structural Mechanics, the Laboratory of Mechanical Engineering and
Problems of Agricultural Mechanics of the Academy of Sciences of the Ukrainian
SSRwas founded as an independent research institution, transformed in 1950 into the
Institute of Mechanical Engineering and Problems of Agricultural Mechanics of the
Academy of Sciences of the Ukrainian SSR (since 1996—Physical-technological
Institute of Metals and Alloys of the National Academy of Sciences of Ukraine).
In 1964, based on the Laboratory of Hydraulic Machines, the Kharkiv Branch of
the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR was
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established, the main scientific directions of which were a comprehensive study of
processes in thermal and hydraulic machines. In 1970, the Kharkiv branch of the
Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR was trans-
formed into the Kharkiv branch of the Institute of Technical Thermophysics of the
Academyof Sciences of theUkrainian SSR, and then into theA.M. Pidgorny Institute
of Mechanical Engineering Problems NAS of Ukraine. Based on the Dnipropetrovsk
branch of the Institute established in 1968, the Institute of Technical Mechanics was
established in 1980.

During the years of Ukraine’s independence (since 1991), scientists of the S.P.
Timoshenko Institute of Mechanics of the NAS of Ukraine received recognized
results in the field of mechanics of composite materials, including the mechanics of
nanocomposites, non-classical problems of fracture mechanics (in particular, frac-
ture in composites under compression along reinforcing elements, brittle fracture
of materials with cracks, taking into account the action of initial (residual) stresses
along cracks, fracture under compression along parallel cracks, destruction of bod-
ies with cracks under dynamic loading, taking into account the interaction of crack
edges, destruction of thin-walled bodies with cracks in tension in the case of prelimi-
nary buckling, long-termdestruction of viscoelasticmaterials),mechanics of coupled
fields in materials and structural members, methods for analyzing the dynamics and
stability of the functioning of complex nonlinear systems (Guz et al. 1989; Guz 1998,
2008, 2018a, b; Paton 2018; Zagorondy 2021). Institute scientists have developed
a theory of anisotropic layered shells of revolution of arbitrary shape with layers
of variable stiffness and developed methods for numerically solving a wide class of
problems about their stress state under nonaxisymmetric loading, a theory of thermo-
viscoplasticity of materials in complex loading processes at elevated temperatures,
a theory of shock interaction of solid and deformable bodies with liquid and elas-
tic medium, the theory of deformation and damage of homogeneous and composite
materials of different structure. They developed new analytical and numerical meth-
ods for studying stationary and non-stationary problems of thermoelasticity, solving
contact problems for elastic bodies with initial stresses, and calculating shells with
holes under physically and geometrically nonlinear deformations. Also developed
are the dynamics of solids, liquid drops, and elastic bodies in a compressible vis-
cous liquid, the theory of waves in mixtures, and the model of short fibers in the
three-dimensional theory of the stability of composite materials.

To date, the main scientific areas of research of the S.P. Timoshenko Institute
of Mechanics of the NAS of Ukraine are mechanics of composite and inhomoge-
neous media; mechanics of shell systems; mechanics of coupled fields in materials
and structural members; fracture mechanics and fatigue; dynamics and stability of
mechanical systems. The structure of the Institute includes 11 scientific departments,
in which 91 researchers are working, including 35 Doctors of Science (DSc) and 41
Candidates of Science (PhD).

The Department of Dynamics and Stability of Continua studies the problems of
three-dimensional stability of deformable bodies, the theory of wave propagation
and diffraction in deformable bodies, mechanics of composite materials and struc-
tural members, aerohydroelasticity, mechanics of a compressible viscous fluid, rock
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mechanics; investigates non-classical failure and fracture problems, contact problems
for elastic bodies with initial stresses; analyzes the stress concentration around holes
in shells; develops analytical and numerical methods for solving nonlinear problems
in the theory of composite shells, and for calculating non-circular cylindrical shells.

The Department of Rheology performs theoretical and computer analysis of
nonlinear waves with different initial profiles that propagate in materials; develops
fundamentals of nanomechanics of materials and mechanical models of materials
of different structural levels (macro-, micro-, nano-levels); elaborates rheological
models of soil layers concerning the analysis of seismic waves; develops nonlinear
approaches to study the deformation of new auxetic materials.

The Department of Computational Mechanics and Techniques is engaged in the
development of methods for studying the stress state and non-classical fracture pro-
cesses of structural elements made of highly elastic and composite materials, edge
effects in composites; conducts research on stochastic composites of various struc-
tures with physically nonlinear components; studies the problems of stability, nonlin-
ear deformation and supercritical behavior of anisotropic shells, taking into account
the initial geometric and structural imperfections.

The main research areas of the Department of Computational Methods are the
development of the theory of thin and non-thin layered shells assembled from
anisotropic layers of variable thickness; the development of discrete-continuum
numerical methods for solving problems of the stress state of systems consisting
of shells of rotation of an arbitrary shape, under the action of distributed and local
loads, the dynamics of layered non-circular cylindrical shells; the study of station-
ary and non-stationary dynamic processes in piezoceramic inhomogeneous bodies
of spherical and cylindrical shape; the development of application packages for the
study of shells using the developed methods; the study of biomechanical processes
in the field of surgical, orthopedic and orthodontic dentistry.

The Department of Structural Mechanics of Thin-Walled Structures investigates
natural and forced vibrations of layered shells of revolution, taking into account
design features (the presence of added masses, discreteness and inhomogeneity of
the filler, asymmetry of layering); studies transient processes in trash-layered shells of
revolution under combined non-stationary loading; develops problems of the dynam-
ics of trash-layered asymmetric shells of revolution with a discrete-symmetric filler
under explosive loading.

The Department of Thermoplasticity investigates the problems of thermovis-
coplasticity of isotropic and anisotropic materials under deformation along arbitrary
trajectories and taking into account the type of stress state under variable loading
processes; carries out modeling of deformation processes in structural members in
the form of shells and spatial bodies under thermal force loading; develops meth-
ods for calculating the stress-strain state of shell structural members under variable
thermoradiation loading and methods for solving problems of the theory of ther-
moplasticity for three-dimensional bodies, plates, and shells made of materials with
shape memory; formulates multi-parameter equations of state that describe the pro-
cesses of elastic-plastic deformation of materials, taking into account the type of
stressed state of the material.
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The Department of Thermoelasticity conducts research on the problems of ther-
momechanics of inelastic materials and structural members, taking into account the
interaction of mechanical, thermal, and electromagnetic fields; develops numerical-
analyticalmethods for studying the durability and electrothermomechanical behavior
of inelastic spatial and thin-walled structural members with piezoelectric inclusions,
taking into account dissipative heating; elaborates models and methods for studying
active damping of forced harmonic oscillations of current-wall structural members
using piezoelectric inclusions; creates thermomechanical models of modern additive
technologies.

TheDepartment of CreepMechanics develops a nonlinear three-dimensional the-
ory of hereditary viscoelasticity, including the construction of a systemof constitutive
equations, the substantiation of the structure and the identification of heredity nuclei,
the solution of problems of creep and stress relaxation in structural members made of
polymer and composite materials; carries out construction of models and criteria for
the long-term destruction of metal, polymer, and composite materials due to creep
and high-cycle fatigue under conditions of a complex stress state; formulates the
main hypotheses of the nonlinear mechanics of continuum damage and models of
damage accumulation due to creep and high-cycle fatigue.

The Department of Fracture Mechanics of Materials deals with the modeling
of linear viscoelastic composite materials; develops models of the cohesive zone;
explores the problems of long-term fracture of anisotropic viscoelastic solids and
contact fracture mechanics; studies the processes of destruction of nonlinear elastic
materials.

TheProcesses Stability Department develops methods for analyzing the technical
(practical) stability of movement; integral methods for analyzing the stability of
the motion of systems with a small parameter; generalization of the direct method
for studying the stability of motion based on a new class of auxiliary functions,
matrix-valued Lyapunov functions; construction of the theory of stability of dynamic
equations on time scales; developing of new methods for analyzing the stability and
boundedness of the motion of polynomial systems and systems with a fractional-like
derivative of the state vector.

TheDepartment of the Theory of Vibrations dealswith the dynamics of the interac-
tionof structuralmemberswith the environment; optimalmotion control of spacecraft
with electric and combined propulsion systems; contact interaction of piezoelectric
bodies under force and temperature loading.

Theoretical and experimental results obtained at the S.P. Timoshenko Institute
of Mechanics of the NAS Ukraine for many years have found application in rocket
and space, aviation, shipbuilding, and other industries. The Institute’s developments
are used in the engineering practice of leading research and design organizations
and enterprises in Ukraine and other countries to assess the strength, reliability, and
durability of materials and standard structures.

The staff of the Institute published about 500 scientific monographs (see more
information in Guz and Rushchitsky (2018), Guz and Rushchitsky (1998), Guz
(2008)), including 8 generalizingmulti-volumemonographs (Guz 2011, 1983, 2003,
1989, 1982, 2018, 1993, 1986). The Institute publishes the international scientific
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journal Applied Mechanics (founded in 1955). Since 1965, this journal has been
translated into English in the USA (New York) as Soviet Applied Mechanics, first by
Faraday Press, and since 1968 by Plenum Publishing Corporation. Since 1992
Applied Mechanics has been translated into English and published as Interna-
tional Applied Mechanics (first by Kluwer Academic Publishers and since 2004
by Springer).

S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine develops sci-
entific cooperation with foreign scientific centers and universities. Thus, in recent
years, joint research has been carried out, and monographs and articles have been
published with scientists from the University of Bologna (Italy), the University
of Aberdeen (Scotland), Heriot-Watt University (Scotland), Otto-von-Guericke-
Universitat Magdeburg (Germany), Sofia University ‘St. Kliment Ohridski’ (Bul-
garia), Technische Universitat Berlin (Germany), Harbin Institute of Technology
(China), Institute of Fundamental Technological Research of Polish Academy of
Sciences (Poland).

1.3.2 Institute of Hydromechanics of the NAS of Ukraine

The history of the Institute of Hydromechanics of the National Academy of Sciences
of Ukraine began in 1926 (Bulat 2013; Grinchenko 2002; Paton 2018) when the
Research Institute of Water Management of Ukraine was organized based on the
Department of Hydrogeology of the Kyiv Polytechnic Institute. In 1936, this institute
was transferred to the Academy of Sciences of the Ukrainian SSR, and in 1938, it
was reorganized into the Institute of Hydrology of the Academy of Sciences of the
Ukrainian SSR.

During World War II, the Institute was evacuated to Ufa (Bashkiria, Russian
Federation) as a department of hydraulic structures of the Institute of Structural
Mechanics of the Academy of Sciences of the Ukrainian SSR. In 1944, the Institute
resumed its activities in Kyiv under the name of the Institute of Hydrology and
Hydraulic Engineering of the Academy of Sciences of the Ukrainian SSR, which
in 1964 was reorganized into the Institute of Hydromechanics of the Academy of
Sciences of the Ukrainian SSR.

At the time of its creation, the activities of the Institute were aimed at solv-
ing important applied problems of hydraulic engineering construction in Ukraine.
Employees of the Institute took part in substantiating water management issues of
such important projects as the construction of the Dnipro Hydroelectric Station and
the creation of a complex of industrial facilities and transport systems in the Don-
bas and the Dnipro region. The hydrological communication service established at
the Institute was the first scientific center in the Soviet Union, where methods of
long- and short-term hydrological forecasts were developed for the conditions of the
Dnipro River.

During the years of its existence, the Institute was headed by Academician
E.V. Oppokov (1926–1928), Professor A.V. Ogievsky (1928–1940), Academician
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G.I. Sukhomel (1940–1958), PhD M.M. Didkovsky (1958–1966), Academician
G.V. Logvinovich (1966–1972), Corresponding Member O.Ya. Oliynik (1972–
1981), Corresponding Member O.D. Fedorovsky (1981–1987), Academician V.T.
Grinchenko (1987–2021). Since 2021, the Institute has been headed by the Corre-
sponding Member of the NAS of Ukraine G.O. Voropaev.

At present, the research activity of the Institute of Hydromechanics of the NAS of
Ukraine is aimed at developing a wide range of scientific areas of modern hydraulic
engineering and hydromechanics. The Institute is a leading center in the field of fluid
mechanics in Ukraine. His research is focused on the development of new meth-
ods of analysis and control of hydrodynamic processes to create new technologies
in ecology, medicine, and mining; improvement and creation of new theories and
methods for calculating hydromechanical processes and developing recommenda-
tions based on them to improve the efficiency of using newmodels of water transport;
development of scientific foundations for the prevention of environmental disasters
associated with the displacement of slopes and erosion of the shores of water basins
and the effective use of the shelf zone.

The Institute of Hydromechanics of the NAS of Ukraine employs 103 researchers,
including 22 Doctors of Science (DSc) and 51 Candidates of Science (PhD). Scien-
tific schools have been created here in the following areas: wave and vortex hydro-
dynamics, covering research in the field of acoustics of liquid and gas flows, medical
acoustics, hydrodynamics of moving objects, the interaction of waves and flow with
engineering structures; high-speed hydromechanics, covering research in the field of
high-speed hydromechanics, supercavitation, reduction of resistance tomovement of
bodies in the water, hydrodynamic technologies; hydrothermodynamics and heat and
mass transfer in gas-liquid and cellular media and systems “liquid-solid particles”,
covering research in the field of physicochemical hydrodynamics, energy efficiency,
hydro- and pneumatic transport, hydraulic engineering, and land reclamation.

A characteristic feature of the Institute’s activities is the combination of theoret-
ical and experimental research using the existing experimental base, which allows
for solving fundamental problems of hydromechanics and hydraulic engineering.
The experimental complex for hydrodynamic studies includes a multi-purpose high-
speed hydrodynamic tube, an experimental pool, and a high-speed hydrodynamic
basin. The high-speed multi-purpose hydrodynamic tube is designed to study the
hydrodynamic characteristics of bodies by the reverse flow method. The experi-
mental capabilities of the hydrodynamic tube cover the range of velocity values
from close to zero (creeping modes of motion) to the speed of sound propagation
in water—1450 m/s. The experimental pool was created as a specialized laboratory
for the experimental study of the hydrodynamic characteristics of ships and their
propulsion and stern systems. The high-speed hydrodynamic basin was designed as
a specialized laboratory for experimental research in the field of aero- and hydrody-
namics of high-speed vessels with dynamic support principles (gliders, hydrofoils,
ground-effect vehicles, etc.).

The traditional topics of the Institute of Hydromechanics research include the
study of a wide sill spillway, unidentified currents and channel processes in rivers
and behind hydraulic structures, turbulent flow characteristics in the near-bottom
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area and near the free boundary, water resistance in earthen channels, as well as flow
dynamics at the turn of an open channel.

In a new scientific area—the hydraulics of stratified flows, a newmethod has been
developed for calculating heat transfer to the atmosphere from the surface of cooling
reservoirs, which makes it possible to assess both the cooling properties of the water
area and the pollution of the atmosphere by thermal emissions.

The study of the patterns of flow around moving objects is one of the main sci-
entific areas of research of the Institute. The results of studying the static stability of
ships, the hydrodynamic theory of shipmotion in canals and rivers under supercritical
conditions, and the hydrofoil theory are obtained. Under the leadership of Academi-
cian G.V. Logvinovich, a new scientific direction was formed—hydro-jet propulsion,
boundary layer control, and hydrobionics, the theory of supercavitation, high-speed
movement of objects near the boundaries. The systematic study of cavitation flows
laid the foundation for the theory of the spatial movement of free boundaries under
the influence of perturbation factors, the development of new methods for modeling
and optimizing cavitation flows, methods for organizing cavitation movements of
objects in water at high speed and achieving the speed of sound by objects in motion.

One of the topical scientific areas of modern mechanics is the study of the laws
governing the interaction of a fluid with elastic structures. The processes of energy
exchange between flows and waves in liquids and deforming bodies are very diffi-
cult for mathematical modeling, and assessments of quantitative characteristics and
understanding of interaction processes are determining factors in the course of creat-
ing efficient structures. Seismic waves are one of such characteristic types of impact
on structures. The methods developed at the Institute for assessing the consequences
of seismic disturbances on hydraulic structures were widely used in the construction
of hydroelectric power stations.

The Institute of Hydromechanics of the NAS of Ukraine researches the patterns of
blood flow in the vessels and researches breathing noises. Physical and mathematical
models of processes, methods, and means of experimental measurement of breath-
ing noise characteristics have been developed. Based on research on the generation
and propagation of sound in complex inhomogeneous media, an environmentally
friendly medical complex has been developed, created, and certified for the diagno-
sis and monitoring of human broncho-pulmonary diseases, which is used in medical
institutions.

1.3.3 Institute of Technical Mechanics of the NAS of Ukraine
and State Space Agency of Ukraine

The Institute ofTechnicalMechanics of theNationalAcademyofSciences ofUkraine
studies scientific and technical problems associated with the creation of launch vehi-
cles and spacecraft (Bulat 2013; Paton 2018). Its history began with a small scientific
subdivision—the sector of problems of technical mechanics, organized in 1966 on
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the initiative ofAcademicianM.K.Yangel, theChiefDesigner of the SeparateDesign
Office #586 (now the M.K. Yangel State Enterprise Design Bureau Pivdenne), one
of the founders of rocket technology. In 1968, this sector was transformed into the
Dnipropetrovsk branch of the Institute of Mechanics of the Academy of Sciences
of the Ukrainian SSR, headed by Academician V.A. Lazaryan. In 1980, based on
the Department, the Institute of Technical Mechanics of the Academy of Sciences
of the Ukrainian SSR was established, headed by Academician V.V. Pilipenko. In
1995, the functions of the main institute of the rocket and space industry of Ukraine
were entrusted to the Institute. Since 2003, the Institute of Technical Mechanics of
the NAS of Ukraine has been headed by Academician O.V. Pilipenko.

The main scientific directions of the Institute are the dynamics of mechanical and
hydromechanical systems, systems of launch vehicles, railway, and road transport;
aerothermodynamics of power plants, aircraft, and spacecraft and their subsystems;
strength, reliability, and optimization of mechanical systems, launch vehicles, and
spacecraft; mechanics of the interaction of a solid body with an ionized medium
and electromagnetic radiation; systematic analysis of trends and prospects for the
development of rocket and space technology.

During its activity, the Institute has become a leading research institution in
the field of scientific and methodological support for the creation and operation
of promising objects of rocket and space technology in Ukraine and has achieved
certain success in the field of fundamental and applied research in the development
of efficient technologies in energy, industry, railway, and automobile transport.

The scientists of the Institute carried out large-scale research in the field of cav-
itation self-oscillations in hydraulic systems, developed the scientific and technical
foundations of a new original scientific direction in the field of dynamics of liquid
rocket propulsion systems and liquid launch vehicles and the theory of low-frequency
cavitation self-oscillations in pump power systems of liquid rocket propulsion sys-
tems; a linear theory of longitudinal stability of liquid-propellant launch vehicles
has been developed, taking into account the phenomena of cavitation in pumps of
liquid-propellant rocket engines; a nonlinear theory of longitudinal oscillations of
liquid-propellant launch vehicleswas created. These resultswere used to calculate the
longitudinal stability of the launch rockets Zenith, Dnepr, Cyclone-4, and Cyclone-
4M, and the development and experimental testing of a thermohydrodynamic damper
on a cryogenic liquid to ensure the longitudinal stability of the Energia rocket.

A significant place in the subject of the Institute belongs to the work on the
aerogasdynamics of launch vehicles, engines, and spacecraft. Methods for numerical
simulation of problems of aerogasdynamics of aircraft at the stage of their entry into
the atmosphere and during flight at high supersonic speed were developed.

A complex of scientific equipment for the space experiment Potential for the
diagnostics and monitoring of the parameters of the polar ionospheric plasma has
been developed and manufactured. The effectiveness and information content of
the devices created at the Institute was confirmed during operation on board the
Ukrainian spacecraft Sich-2.

The employees of the Institute have developed mathematical models and effec-
tive methods for calculating the main parameters of promising space systems.
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New spacecraft control tools, models, and algorithms for controlling space-based
solar power plants are proposed; models and methods for choosing the design
parameters of space manipulators and hexopods, models of spacecraft that are
designed in Ukraine; a theory of mobile control of space vehicles has been cre-
ated, which makes it possible to increase their reliability and use vehicles in some
emergencies.

Currently, 101 researcherswork at the Institute ofTechnicalMechanics of theNAS
of Ukraine, including 12 Doctors of Science (DSc) and 40 Candidates of Science
(PhD).

The Institute carries out basic and applied research in the field of mechanical
engineering, thermal power engineering, railway transport, rolling production, and
mining. Thus, the Institute created a fundamentally new air suspension of a car with
quasi-zero stiffness and separate damping of low-frequency vibrations of the sprung
and high-frequency vibrations of the unsprung mass of the car; a series of works
on the use of the cavitation phenomenon to obtain high-frequency high-amplitude
oscillations of the liquid, caused by periodic separation, has been completed, a new
cavitation-pulse technology for obtaining finely dispersed water-coal has been pro-
posed; scientific and methodological support has been created for performing all
the necessary stages of aerodynamic design of compressor lattices and calculating
spatial turbulent gas flows in multistage compressors of aircraft gas turbine engines,
which is used in the design of gas turbine engines for aircraft and power plants; a
comprehensive modernization of freight car bogies is proposed, which allows sev-
eral times to increase the resource of the elements of the friction damping system
of bogies, significantly reduce the wear of the contact surfaces of wheels and rails,
reduce energy consumption for traction due to a decrease in the forces of interaction
of wheels with rails; designs have been developed and a number of new devices for
reducing the sound level of a shot for small arms manufactured by NATO member
countries have been developed.

The Institute of Technical Mechanics of the NAS of Ukraine publishes the scien-
tific journal Technical Mechanics. The journal publishes scientific articles highlight-
ing new results of theoretical and experimental research in the field of kinematics,
dynamics, motion control, motion stability of elastic-viscous systems and systems
with liquidmasses, hydro- and gas-dynamics, heat andmass destruction, strength and
reliability of structures, spacecraft mechanics, mechanical aspects of space research.

1.3.4 G.S. Pisarenko Institute for Problems of Strength
of the NAS of Ukraine

The G.S. Pisarenko Institute for Problems of Strength of the National Academy of
Sciences of Ukraine was established in 1966 based on the Sector of Strength Studies
at the Institute for Problems in Materials Science of the Academy of Sciences of
the Ukrainian SSR (Bulat 2013; Paton 2018; Troshchenko et al. 2016). Since 2002,
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the Institute has been named after its founder and first director, Academician G.S.
Pisarenko.

Academician G.S. Pisarenko (1966–1988), Academician V.T. Troshchenko
(1988–2011),AcademicianV.V.Kharchenko (2011–2021), andCorrespondingMem-
ber A.P. Zinkovsky (2021–2022) were the directors of the Institute. Since 2022, the
Institute has been headed by Doctor of Technical Sciences O.Yu. Chirkov.

The name of the founder of the Institute G.S. Pisarenko is associated with out-
standing results in the development of the theory of oscillations of dissipative systems
in a nonlinear formulation, with the study of the damping properties of mechanical
systems and the development of methods for improving the vibration reliability of
highly stressed structural members; with the study of various aspects of the strength
ofmaterials and structuralmembers, in particular, at high and low temperatures under
a complex stress state of impulse loads, under the influence of an aggressive gas envi-
ronment and neutron irradiation; on the development of criteria for the limiting state
and on the justification of the possibility of using new classes of structural materials
in technology.

At the time of establishment, the Institute for Problems of Strength of theAcademy
of Sciences of the Ukrainian SSR was tasked with theoretical and experimental stud-
ies aimed at formulating criteria for the strength and bearing capacity ofmaterials and
structural members, as well as increasing their strength following the requirements
of the latest branches of technology, taking into account structural and technological
factors, the type of stress state and real modes of power and thermal overload in a
wide range of temperatures.

Today, the activities of the Institute for Problems of Strength of the NAS of
Ukraine are aimed at the development of basic and applied research in the field
of experimental mechanics of deformable solids and the strength of materials and
structural members. The main scientific research directions are the limit state and
criteria of strength of materials and structures, calculation and experimental methods
for studying the stress-strain state, fracture mechanics and survivability of structures,
and oscillations of non-conservative mechanical systems.

Since 1969, the Institute has been publishing the international scientific journal
Problems of Strength, which, starting from the first issue, is translated into English
and published by the Springer publishing house as journal Strength of Materials. The
journal publishes the results of experimental and theoretical research in the field of
strength of materials and structural members and mechanics of deformable solids.

The Institute has designed and produced more than 150 original test facilities and
benches to study the basic mechanical characteristics of a wide range of metallic
structural materials and alloys, non-metallic composite materials in a wide tem-
perature range, and types of mechanical stress, taking into account the impact of
aggressive media, and radiation.

The Institute traditionally performs research aimed at solving the problems of
ensuring the strength and durability of structural members for various purposes:
nuclear and thermal power plants,mainoil andgas pipelines, oil refining andchemical
industries, gas turbines, aircraft structures, and railway transport. Thus, fundamental
and applied results were obtained at the Institute, these which were introduced into
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the practice of calculations to justify the over-design life of power units of nuclear
power plants in Ukraine.

A methodology and a computer expert system have been created for the current
monitoring of the technical condition and ensuring the integrity of the main pipelines
to increase their service life and optimize the frequency and volume of diagnostic
and repair work. The system was implemented at the Ukrainian State Enterprise
Ukrhimtransammiak and the State Enterprise Ukrtransnafta. A method for rapid
assessment of the dynamic stability of rotor blades of axial compressors for aircraft
gas turbine engines is proposed, the effectiveness of which is confirmed by the
results of predicting the dynamic stability of compressor blades of impellers for
engines produced by the O.G. Ivchenko Zaporizhzhia Machine-Building Design
Bureau Progress.

For now, the staff of the G.S. Pisarenko Institute for Problems of Strength of the
NAS of Ukraine is 97 researchers, including 19 Doctors of Science (DSc) and 54
Candidates of Science (PhD).

1.3.5 M.S. Polyakov Institute of Geotechnical Mechanics
of the NAS of Ukraine

The M.S. Polyakov Institute of Geotechnical Mechanics of the National Academy
of Sciences of Ukraine was established in 1967 based on the Dnipropetrovsk branch
of the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR
(this branch, in turn, was formed in 1964 by transforming the Department of Mining
Problems of the Institute of Electrical Engineering of the Academy of Sciences of the
UkrainianSSR,which dealtwith the extraction ofmineral rawmaterials, organization
of underground transport and lifting raw materials from a considerable depth) (Bulat
2013, 2017; Paton 2018).

When establishing the Institute, the following main goals of its activity were
defined: study the problems of physics and mechanics of rocks; development of
new effective methods of destruction of rocks; elaboration of control methods for
aerogasdynamics processes; investigation of the physical foundations and scientific
substantiation of progressive methods for the mineral resources mining.

The founder and first director of the Institute in 1967–1975wasAcademicianM.S.
Polyakov. During this period, the scientists of the Institute carried out fundamental
research in thefield of petrophysics andmechanics of rocks andmassifs, newmethods
of their destruction, the theory of mining machines and working processes, mine
aerogasdynamics, dynamic manifestations of rock and gas pressure.

From 1975 to 1992, the Institute worked under the guidance of Academician V.M.
Poturaev. During this period, the studies started earlier were continued, and new sci-
entific directions were formed to study the destruction of rocks, the normalization of
thermal conditions during underground coal mining, and the development and imple-
mentation of vibrotransport machines and units for the mining industry. Research
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on the mechanics of deformation and destruction of rubber elements of machines
under cyclic loads in the atmosphere at various temperatures, as well as in aggressive
environments, has been widely developed. Scientific foundations and methods for
controlling the geomechanical and gas-dynamic processes of a rock mass, which is
shifting as a result of underground mining of coal seams, have been developed. The
geomechanical foundations of rock pressure dynamics and non-traditional hydrody-
namic methods for preventing coal and gas outbursts have been developed.

For themining industry, the scientific foundations of open pit miningmethods and
technologies have been developed using controlled caving, displacement of soft rocks
in technological processes, as well as the mechanics of explosive and gravitational
destruction and movement of hard rocks. The fundamentals of the mechanics of
vibration transportation and pipeline vibration-pneumatic transport of bulk materials
have been developed, and several vibration-pneumatic machines have been designed
on their basis. Research has been carried out on the creation of technical means and
technologies for the extraction of solid minerals from the bottom of theWorld Ocean
based on the use of vibration effects.

Since 1992, the Institute has been headed by Academician A.F. Bulat. During this
period, the Institute developed the scientific foundations for the technology of active
control of the state of the rock mass, in which an analytical description of the stress-
strain state of the rock mass near the stope was given, taking into account free gas
in the reservoir, geological disturbances, and boundary deformation of rocks. With
the use of these results, technologies have been developed for clearing operations
and for carrying out horizontal mine workings in mines with steep and sloping coal
seams. The mechanisms of unloading and degassing of the reservoir were studied,
the parameters of the effective impact of downhole vibration sources on the reservoir
were determined, and downhole pneumatic vibrators were created.

The Institute has developed the concept of complex degassing and utilization
of mine gas methane, which is based on the organizational division in time and
underground space of the processes of extraction of two energy carriers—coal and
methane. The program of work, compiled based on this concept, for the first time in
Ukraine, was fully implemented at the O.F. Zasyad’ko coal mine.

Today, the Institute’s scientists study the properties of rocks and massifs, the pro-
cesses of their destruction and the control of the stress-strain state; investigate scien-
tific foundations of mining processes, equipment, and technology for the extraction
and processing of minerals; analyze physical, technical and geological foundations
of coal minemethane production technologies; examine energy saving and reliability
of mining operations.

The M.S. Polyakov Institute of Geotechnical Mechanics of the NAS of Ukraine
employs 169 researchers, including 29 Doctors of Science (DSc) and 66 Candidates
of Science (PhD).
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1.3.6 Institute of Transport Systems and Technologies
of the NAS of Ukraine

The Institute of Transport Systems and Technologies of the National Academy of
Sciences of Ukraine “Transmag” was established in 1995 (Bulat 2013; Paton 2018).
Its director is a Doctor of Technical Sciences, Professor V.O. Dzenzersky.

To date, research at the Institute is developing under the main scientific areas
of work: physical and technical problems of creating magnetic levitation transport
systems and devices, their controls and power supply; problems of mechanics and
aerodynamics of vehicles, including those that levitate over profiled supporting sur-
faces; problems of creation and operation of high-energy on-board power sources
for vehicles.

The Institute of Transport Systems and Technologies of the NAS of Ukraine
employs 53 researchers, including 4 Doctors of Science (DSc) and 17 Candidates of
Science (PhD).
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Chapter 2
Thermoviscoplasticity Equations of
Isotropic Material with Stress Mode
Dependence

Maya Babeshko, Alexander Galishin, Vitalii Savchenko,
and Mykola Tormakhov

2.1 Introduction

In modern technology and industry, many elements of structures work under the
action of fields of various nature (mechanical, thermal, radiation) and materials are
deformed both within and beyond elasticity limit.

To establish the optimal conditions for the operation and manufacturing of struc-
tural members, it is necessary to determine the elastoplastic stress–strain state of the
body taking into account the loading history of some of its elements and the fac-
tors accompanying the nonisothermal loading. To this aim is intensively developed
fracture mechanics investigation, which deals with the final stage of fracture, i.e.,
crack development in brittle materials. The initial stage of fracture, i.e., damage of
materials during deformation, is much less investigated. However, a crack nucleates
and grows in a material prepared for fracture during a period when a variety of irre-
versible physical and mechanical processes occur in it at micro- or macroscales. In
this process, the initial structure of the material changes, pores nucleate, grow, and
coalesce, and microdefects are formed. Defects weaken the cross section, reduce the
effective area over which stresses are distributed, thus contribute to further fracture.
Therefore, fracture under combined loading can be considered to occur in several
stages. At the first stage, damages that are much smaller than some typical size
of the structure are accumulated. This process dominates until microcracks form,
which lead to the formation of a main crack, followed by the fracture of the mate-
rial. Therefore, the development of adequate theory and methods for determining the
elastoplastic stress–strain state and damage of solids under nonisothermal loading is
an important task of solid mechanics.
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Various isolated studies on elastoplastic stress–strain state of solids under non-
isothermal loading began to be published in the late 1950–60s. These studies used
the model of perfectly plastic body, the theory of small elastoplastic deformations
regardless of the loading history, the theory of flow with isotropic hardening, and,
later, the theory of flow with anisotropic hardening. However, the validity of the
constitutive equations used in these studies was not analyzed.

The thermoviscoplastic state of solids began to be regularly studied in the
1970–80s using experimentally validated constitutive equations, taking into account
the loading history, and analyzing the applicability of these equations to specific
processes of nonisothermal loading (Grigorenko et al. 2002; Shevchenko 1970;
Savchenko 1986a; Shevchenko et al. 1980, 1992; Shevchenko and Savchenko 1987).
In fact, these monographs provided the basis for the new thermoviscoplasticity as
division of solid mechanics, which studies the occurrence and development of dis-
placements, strains, and stresses nonisothermally loaded beyond on the elastic limit
in some regions of the material solids.

The main task of thermoviscoplasticity is the construction of constitutive equa-
tions that describe the laws of material behavior beyond the elastic limit, and the
development of methods for determining displacements, strains, and stresses that
occur in solids subjected to the combined action of external nonuniform heating,
surface and volume forces that causes irreversible deformation of some elements of
the body.

Generally, the solutions of boundary-value problems of thermoviscoplasticity are
strongly dependent on the validity of constitutive equations based on one thermovis-
coplasticity theory or another. It is well to bear in mind that modern solid mechanics
uses many models of the behavior of solids at various stages of deformation. Hence,
there are many constitutive equations describing various deformation processes in
solids.

Despite the great variety of constitutive equations, the deformation processes
they describe are, in fact, classed as simple or nearly simple deformation or com-
bined deformation along paths of small curvature. The applicability of constitutive
equations to the description of the deformation processes in a structural member is
not even questioned. The S.P. Timoshenko Institute of Mechanics of the National
Academy of Sciences of Ukraine was the first to formulate and resolve this issue
using the shape of deformation paths.

Note that all the above thermoviscoplastic equations are based on the assumption
that the relationship between the stress and strain intensities is independent of the
stress mode, i.e., these equations are the same for tension, compression, and tor-
sion. Actually, the majority of structural steels are moderately sensitive to the stress
mode (Ohashi et al. 1975; Shevchenko et al. 2007b). The tensile (compressive) or
torsional stress–strain curves at small strains of these materials differ by less than
10%. However, the difference of the tensile (compressive) and torsional stress–strain
curves for D16T aluminum alloy reaches 40% (Bondar’ 2004), i.e., its mechanical
characteristics depend on the third deviatoric stress invariant (stressmode). Themate-
rials sensitive to the stress mode include various grades of cast iron whose tensile,
torsional, and compressive stress–strain curves differ substantially.
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Stress mode is characterized by angle that indicates orientation of shear stress
in the octahedral plane related to the principal stresses projection onto this plane
(Kachanov 2004; Shevchenko and Tormakhov 2010). This angle has simple rela-
tionship with the Lode parameter (Lode 1926) and expressed in terms of the second
and third deviatoric stress invariants. Rather Lode parameter is expressed in terms
of the principal stresses. Commonly the stress state of structural elements is ana-
lyzed using constitutive equations that disregard the stress mode. For the first time,
the stress mode was considered for the plasticity problems in Shevchenko et al.
(2006, 2007a, b), Shevchenko and Tormakhov (2012a) where constitutive equations
for simple deformation (Shevchenko and Tormakhov 2012a) and deformation along
paths of small curvature (Shevchenko et al. 2006) were derived. These equations
relate the components of the engineering stress and strain tensors, assuming that the
strains have elastic and inelastic components. The constitutive equations describ-
ing deformation along paths of small curvature are based on the assumption that
the directional tensors of stresses and inelastic-strain increments coincide, while
the constitutive equations describing deformation along straight paths are based on
the assumption that the directional stress and strain tensors coincide. The equations
include two nonlinear experimentally found functions. One of these functions relates
the first invariants of the stress and strain tensors, while the other function relates
the second invariants of the respective deviators. These functions are individualized
in two series of reference tests on tubular specimens under proportional loading at
several constant values of the stress mode angle and several temperatures.

The constitutive equations from Shevchenko et al. (2006), Shevchenko and Tor-
makhov (2012a), which allow for the stress mode, were experimentally validated in
Shevchenko et al. (2006, 2007a, b), Shevchenko and Tormakhov (2010, 2012b) and
are widely used to solve boundary-value problems.

With a linear connection between the first invariants of the stress and strain ten-
sors and independence from the stress mode of the connection between the second
invariants of the corresponding deviators, the constitutive equations in Shevchenko
et al. (2006) and Shevchenko andTormakhov (2012a) are transformed into traditional
relations (Shevchenko et al. 1992; Shevchenko and Savchenko 1987; Shevchenko
and Terekhov 1982) of the theory of deformation processes along the trajectories of
small curvatures and the theory of simple processes, which are based on the relation-
ship between the Prandtl–Reuss theory (Prandtl 1923; Reuss 1930) and the Hencky
theory (Hencky 1924), respectively.

Let us formulate general constitutive equations that can be used to study various
processes of nonisothermal loading of various isotropic structural elements with and
without regard to the damage to material structure, stress mode, and loading history.

2.2 Thermoviscoplastic Problem Formulation

We will present a general statement of problems of thermoviscoplasticity, which in
each individual case, when solving specific problems, is adapted to the geometry of
the object under investigation, its material and condition of thermo-force loading.
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Consider a compound body made of isotropic inelastic materials. To describe it,
we will use an orthogonal coordinate system qi (i = 1, 2, 3). The body is subject
to volume and surface forces and nonuniform heating that cause small strains in its
elements. Assume that the material characteristics depend on temperature and stress
mode. The body is loaded and heated so that its elements undergo simple (or nearly
simple) deformation or deformation along paths of small curvature, accompanied by
inelastic deformation and unloading. The components of the body are made of dis-
similar materials and were joined without tension at initial temperature so that they
are in perfect mechanical and thermal contact. The stress–strain state of such solids is
analyzed by determining the temperature (non-stationary heat conduction problem)
and the displacement, strains, and stresses at fixed time points (thermoviscoplastic
problems).

Methods for solving the problem of non-stationary thermal conductivity have
been developed both for spatially axisymmetric bodies and for shells of revolution.
They are described in detail in the works (Galishyn et al. 2012; Grigorenko et al.
2002; Shevchenko and Savchenko 1987).

In order to solve the problem of thermoviscoplasticity, static equations, the rela-
tionship between deformation components and displacements, and constitutive equa-
tions are used in the previous case.

2.3 Constitutive Equations

The strain tensor is represented as the sums of elastic, plastic and creep strains tensors.
Inelastic changes of first invariant deformation tensor are also assumed. The variation
in the elastic strains with stresses follows the generalized Hooke’s law.

The impact of damage as a result of material creep on body deformation processes
will be modeled using the damage parameter, which characterizes the reduction of
the effective volume where the corresponding stress components act.

To account for the deformation history, the whole process of loading and heating
is divided into rather small time intervals (steps) so that their endpoints are as close
as possible to the onsets of unloading of elements of the body. The history is traced
by solving the problem at each step.

The relations between the components of the stress tensor σi j and the components
of the strain tensor εi j (constitutive equations) have the same form, irrespective of the
stage of deformation. Let us represent these relations in the form of the generalized
Hooke’s law with additional terms:

σi j = 2G ′εi j + (
K ′ − 2G ′) ε0δi j − σ ∗

i j . (2.1)

The coefficients of these equations G ′, K ′ and additional terms σ ∗
i j depend on the

theories of plasticity and the method of linearization.
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If we use the equations of thermoviscoplastic deformation theory along paths of
small curvature, linearized by the method of additional stresses, G ′ = G, K ′ = K =
2G (1 + ν) /(1 − 2ν), where G is the shear modulus and ν is Poisson’s ratio.

The additional stresses are

σ ∗
i j = 2G

[
e(n)
i j + 1 + ν

1 − 2ν

(
εT + ε

(p)
0 + ε

(c)
0

)
δi j

]
, (2.2)

where εT = αT (T − T0), αT is the coefficient of linear thermal expansion; G, ν and
αT depend on temperature T ; T0 is the initial temperature; ei j (n) are the components
of the unelastic strain deviator;

ε
(p)
0 = 1

3
ε

(p)
i i , ε

(c)
0 = 1

3
ε

(c)
i i

are the first invariants of the plasticity strain tensor and creep strain tensor, respec-
tively.

As it was noted above, when performing calculations using (2.1), the loading
process must be divided into stages. At the end of the N th stage, the components of
the deviator of inelastic deformation are determined as the sum of their increments

e(n)
i j =

N∑

k=1

�ke
(n)
i j . (2.3)

We will use the dependence between the first invariants of the stress σ0 = σi i/3
and strain ε0 = εi i/3 tensors to determine ε

(p)
0 and ε

(c)
0 :

σ0 = F1
(
ε∗
0, T, ωσ

)
, (2.4)

ε∗
0 = ε0 − εT − ε

(c)
0 , (2.5)

ε
(c)
0 =

N∑

k=1

�kε
(c)
0 , (2.6)

ωσ = 1

3
arccos

[

−3
√
3

2

I3 (Dσ )

S3

]

(0 � ωσ � π/3) ; (2.7)

ωσ is the angle of the stressmode (Babeshko and Shevchenko 2010;Kachanov 2004),
I3 (Dσ ) = |si j | is third invariant of the stress deviator Dσ , si j = σi j − σ0δi j are the
stress deviator components, and S is the intensity of the tangential stresses

S = (
si j si j/2

)1/2
. (2.8)

In some works (Bondar’ 2004; Savchenko 2008), instead of ωσ , the angle
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ϑ = 1

3
arccos

(
3
√
3I3 (Dσ )

2S3

)

is used.
The increment �ke

(n)
i j , an arbitrary stage of loading, is determined by the

expression

�ke
(n)
i j =

〈 si j
S

〉

k
�k�

(n), (2.9)

where �k�
(n) is the increment of the intensity of inelastic shear deformations,

�k�
(n) = �k�

(p) + �k�
(c), (2.10)

�k�
(p) and �k�

(c) are the increments of intensities of instantaneous accumulated
shear deformations and creep deformations, respectively. The angle brackets in (2.9)
mean the average value for the stage. To determine�k�

(p), we will assume existence
of dependence

S = F2
(
�∗, T, ωσ

)
, (2.11)

where �∗ is the intensity of instantaneous shear deformations,

�∗ = S

2G
+ �(p), �(p) =

N∑

k=1

�k�
(p). (2.12)

The functions F1 in (2.4) and F2 in (2.11) are calculated on the results of the
first series of above-mentioned basic experiments on the proportional load of tubu-
lar samples, as described in Shevchenko et al. (2006, 2007a, b), Shevchenko and
Tormakhov (2010, 2012b). To determine �kε0

(c) and �k�
(c), we use the results of

above-mentioned second series of basic creep experiments. The curves obtained in
these experiments can be used directly.

Authors of Shevchenko and Tormakhov (2012b) use the following approximating
expressions:

�̇(c) (S, T, ωσ ) = exp
(
c2 ln (c1S) + c3 + c4T + c5ωσ + c6ω

2
σ

)
, (2.13)

ε̇
(c)
0 (σ0, T, ωσ ) = exp

(
d2 ln (d1σ0) + d3 + d4T + d5ωσ + d6ω

2
σ

)
, (2.14)

where ci and di (i = 1, . . . , 6) are coefficients calculated from condition of best
approximation by expressions (2.13) and (2.14) of experimental data. Then, we have

�kε
(c)
0 = ε̇

(c)
0 �k t, �k�

(c) = �̇(c)�k t (2.15)

(�k t = tk − tk−1 is the stage duration).
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Note that the given constitutive equations can be used in a simplified version
(Babeshko et al. 2010), when instead of (2.4), a linear dependence between the first
invariants of the stress and strain tensors is assumed.

If we use the equations of the theory of small elastoplastic deformations allowing
for the loading history and linearized by the method of elastic solutions, the coeffi-
cients in the constitutive equations (2.1),G ′ = G0 and K ′ = K0, the additional terms
are as follows:

σ ∗
i j = 2G0ωei j + 2G∗e1ni j + [

K0ω1ε0 + K ∗ (
ε1n0 + εT

)]
δi j , (2.16)

where G0 and K0 are the shear and bulk modules of the material at temperature T0,

ω = 1 − G∗

G0
, ω1 = 1 − K ∗

K0
, 2G∗ = S

�
, K ∗ = σ0

ε0 − εT
, (2.17)

e1ni j and ε1n0 are the irreversible deviatoric strains and the mean strain at the time of
unloading of a body element, respectively. If the process is loading, they are equal
to zero. If the process is unloading, then

e1ni j = e∗
i j − si j

2G1
, ε1n0 = ε10 − ε1T − σ 1

0

K ∗ , (2.18)

where the superscript “1” refers to the moment of unloading.
When the equations of the theory of small elastoplastic deformations are linearized

by the method of variable parameters, coefficients in the constitutive equations (2.1),
G ′ = G∗, K ′ = K ∗ and σ ∗

i j are expressed as

σ ∗
i j = 2G∗e1ni j + K ∗ (

ε1n0 + εT
)
δi j . (2.19)

The nonlinear constitutive equations are linearized by the method of successive
approximations using the instantaneous stress–strain surfaces (2.4) and (2.11) and
the creep curves (or expresses (2.13) and (2.14)) corresponding to the temperature at
the current step and the stress mode angle calculated in the previous approximation:

σ0 = F1
(
ε∗
0, Tm, ωσk−1

)
, S = F2

(
�∗, Tm, ωσk−1

)
, (2.20)

where m is the step number, k is the approximation number. We determine σ ∗
i j in

(2.1) using (2.20).
With the use of the constitutive equations (2.1), a decoupling system is formu-

lated for determining the thermoviscoplastic state of spatial bodies and shells. For
spatial bodies of revolution, the variational Lagrange equation and the finite ele-
ment method are used. The problem is reduced to solving in each approximation
at each load stage the system algebraic equations, the coefficients, and right-hand
parts of which are calculated based on the results of the previous approximation.
For shells of revolution when using the hypotheses of Kirchhoff–Love or rectilin-
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ear element, the problem is reduced to solving in each approximation at each load
stage the systems of ordinary differential equations, the coefficients and free terms of
which are calculated based on the results of the previous approximation. With non-
axisymmetric loading, the given loads and decoupling functions are presented in the
form of trigonometric series along the circular coordinate. Methods of constructing
the process of successive approximations are described in Babeshko and Savchenko
(1998, 2018); Babeshko and Shevchenko (2010, 2014), Savchenko (2004a, 2006,
2008), Savchenko and Shevchenko (2004b); Shevchenko and Savchenko (2016),
Savchenko and Babeshko (2018).

Note that the writing of the constitutive equations in the general form (2.1) facil-
itates the development of algorithms and appropriate software tools for solving
boundary-value problems of thermoviscoplasticity.

The methods developed using (2.1) have found their application in the study of
the thermally stressed and deformed state of structural elements in the form of 3-
D bodies (Savchenko 2008, 2012) and shells of revolution (Babeshko et al. 2015;
Babeshko and Shevchenko 2010, 2014; Babeshko and Savchenko 2018; Galishin
and Shevchenko 2010) made of materials whose properties depend on the stress
mode.

Elaborating upon the studies (Altenbach 2003; Il’yushin 1967; Kachanov 1974;
Khazhinskii 1971; Khoroshun and Shikula 2002a, b; Namestnikov and Shesterikov
1985), amethod for analyzing the stress–strain state of compound solids of revolution
subject to damage was developed.

At each step of loading, the effect of creep damage of amaterial on the deformation
of the body is modeled using a damage parameter ωp to characterize the decrease in
the effective volume in which the corresponding stresses act, and true stresses rather
than engineering stresses are used (Rabotnov and Mileiko 1970):

σ̃i j = σi j

1 − ωp
, (2.21)

where σi j are engineering stresses, i.e., loads per undamaged area elements of the
body. This damage parameter characterizes the change in the initial structure of the
material, the nucleation, growth, and coalesce of microdefects during deformation,
which decrease the effective areas over which the stresses are distributed. If we
use the equations of theory of small curvature linearized by the method of additional
stresses, the relationship between stresses σi j and strains εi j (2.1) remains in the form

σi j = 2Gεi j + (K − 2G) ε0δi j − σ ∗
i j ,

where

σ ∗
i j = ωp

[
2Gεi j + (K − 2G) ε0δi j

]

+2G
(
1 − ωp

)
[
e(n)
i j + 1 + ν

1 − 2ν

(
εT + ε

(p)
0 + ε

(c)
0

)
δi j

]
.
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At the end of the m th step of loading, the nonlinear strains εni j (sum of plastic
εi j

p and creep εi j
p strains) are defined by (2.9) and (2.10) for εn0 = 0 and are cal-

culated from the instantaneous thermomechanical surface (2.11), and creep curves
εc = εc(σ, T, t) until the fracture of the specimen. The scalar damage parameter
ωp determined from a kinematic equation where the rate of variation in damage
is related to some equivalent stress, using stress rupture curves, also obtained in
uniaxial-tension tests. The equivalent stress is determined from a failure criterion.
It is assumed that the damage parameter is a functional of the loading process. A
method for determining it is detailed in Savchenko (2004a), Shevchenko and Mazur
(1986). Another, simpler approach is to use the ratio of current creep strain to max-
imum creep strain as a damage parameter. The onset of fracture of a body at a
given point of its element can be estimated by either using a damage parameter or
comparing the equivalent stresses to the ultimate strength.

There are other forms of representation of the damage parameter. For example,
in Galishin (2008), Galishin and Sklepus (2019), Shevchenko and Galishin (2003);
Savchenko (2008), the parameter of damage was introduced to describe the third
unstable sections of the creep curves.

The process of successive approximations in solving boundary-value problems
of thermoviscoplasticity is detailed in Grigorenko et al. (2002), Savchenko and
Shevchenko (2004b), Savchenko et al. (2006), Shevchenko and Savchenko (1987).

The study of the thermally stressed state of the bodies of revolution, that takes into
account damage to the material during loading, is presented in Galishin and Sklepus
(2019), Savchenko (2003, 2008), Savchenko and Babeshko (2018), Shevchenko and
Mazur (1986), and the shells of revolution are studied in Galishin (2008), Galishin
and Sklepus (2019), Shevchenko and Galishin (2003).

2.4 Numerical Results

Usingmethods based onEq. (2.1), a number of boundary-value problemswere solved
and the impact of taking into account the dependence of material properties on the
stress mode and damage was analyzed. We will present some results of solving
specific problems.

Using the method of taking into account material damage, the stress–strain state
and strength of the turbine disk of a fighter’s jet engine were analyzed considering
the system of forces (Savchenko 2014) that act on the disk during the period from
takeoff to landing (see Fig. 2.1 for a design model). The disk, which is initially at
a temperature of 20 ◦C, is subjected to the body forces caused by the rotation of
the disk and to surface forces uniformly distributed over the disk rim and generated
by the repelled blades. The surface forces depend on the speed as follows: tnr =
174(n/nmax)

2 MPa, where n and nmax are, respectively, the current speed and the
maximum speed (13 and 300 rpm). How the speed varies during one cycle from
takeoff to landing is shown in Fig. 2.2. The temperature field for the same time
interval and for several values of the radius was measured with thermocouples. The
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Fig. 2.1 Calculation scheme of the disk

temperature for the other values of the radius was found by linear interpolation. It
was assumed that the temperature is constant throughout the thickness of the disk.

The boundary conditions specified on the surface AB (Fig. 2.1) prohibited dis-
placements of the disk along the axis of rotation (the axial displacements and the
shear stresses were set at zero). The period from takeoff to landing is divided into
48 stages, according to the disk speed change program. At the last stage, the speed
dropped to zero, the temperature of the disk being quite high. The residual stresses and
displacements were determined after cooling of the engine at n = 0 and T = 20 ◦C.
The stages are numbered in Fig. 2.2.

The calculations show that plastic strains in the disk occur at the instant denoted
by “a” in Fig. 2.2 in Section 1–1 (Fig. 2.1), near the right lateral surface of the disk.
The plastic zone grows into the disk with time. In Fig. 2.1, the portion of the disk’s
cross section that undergoes plastic deformation throughout the entire cycle, i.e., to
the 48th stage, is hatched. The shape of the plastic area suggests that the rotation and
surface load cause bending of the disk. The temperature of the disk and the time of
operation of the engine during one cycle are such that creep strains hardly develop.
As indicated in Rabotnov and Mileiko (1970), the creep strains should be taken into
account when they exceed the instantaneous strains by more than 10%.

Some of the calculated results are presented in Fig. 2.3. Figure 2.3 shows the
radial and hoop stresses in Sections 1–1 (a) and 2–2 (b) at the instants denoted by b,
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Fig. 2.2 Program of changes in time of the number of revolutions of the disk during the cycle

Fig. 2.3 Radial and circular stresses in Sections 1-1 (a) and 2-2 (b)

d, and e in Fig. 2.2. The dashed lines represent the residual stresses after full cooling
of the disk in the first cycle.

The calculated results have shown that the cyclic nature of loading is manifested
only in the second and third cycles. In the fourth cycle, the accumulated plastic strains
have no effect.

The calculated results suggest that the stress–strain state near the rim and hub of
the disk displays strongly pronounced spatial behavior. Therefore, using plate theory
or shell theory to analyze the state of the disk would lead to significant errors. Failure
to account for the changes in the disk speed during flight would result in an even
larger error. However, if the disk is subject to repeated loading, i.e., if the engine
operates following the same program, the stress–strain state will stabilize after the
third cycle. The strength of the disk subject to such a loading program was assessed
as the ratio of the maximum to allowed value of the shear-stress intensity that does
not exceed 0.6–0.7. This is indicative of an adequate safety factor for the disk. All
calculations are described in detail in Savchenko (2014).

Using the given constitutive equations, a mathematical model was proposed
(Shevchenko et al. 2015) for studying the thermoplastic stress–strain state and
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Fig. 2.4 Finite element mesh of the plate

strength of elements of the launch table of the rocket, which allows estimating the
resource of the structure.

A general statement of the problemwas formulated and amethodologywas devel-
oped for assessing the strength and determining the resource of the structure, which
includes many elements of different geometries, in the process of repeated force and
thermal loading. The assessment of the strength of the structure and its service life
is based on the results of a numerical study of the temperature and stress–strain state
of the most stressed structural elements.

As an example of the application of the developed methodology for assessing the
strength and resource of the researched structure, the results of the investigation of
the plate element of the starting table are given.

Let us determine stress–strain state and estimate the residual service life of plate
element having a constant thickness used for the protection of electronic equipment
during the rocket launch. During the rocket launch, the plate undergoes an intense
thermal mechanical load. The analysis of input data has showed that the mechanical
load on the plate can be neglected as compared with the thermal one. Therefore, here-
after, the research deals with thermoplastic deformation of the plate under cyclical
thermal load. The geometry of a plate quarter with a grid consisting of finite number
of elements is given in Fig. 2.4. At the crossing x = 0 and y = 0 the symmetry con-
ditions are set. Beyond the contour, the plate is deemed thermally insulated. On the
inner surface z = 0, the conditions of convective heat exchangewith environment are
established. Initial temperature of the plate is T0 = 308 K. The load cycle consists
of heating and cooling processes. At the first stage, the outer surface z = 0.03 m
is heating during 13.2 s. Temperature of external environment, heat exchange coef-
ficient, and specific radiant heat flux vary with time reaching their maximums at
2.8s � t � 3.2s. Having been heated the plate is cooling down to the initial temper-
ature T0 during 6000 s. The plate is made of 10XCHD steel. This material is deemed
to harden linearly with ideal Bauschinger effect.
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Fig. 2.5 Temperature distribution over time T for a point P0

The calculations have showed that while heating and cooling the plate, the tem-
perature T and stress σi j distributions vary insignificantly at the crossings parallel
to Oxy plane. The shear stresses can be neglected as compared with the normal
ones, while stresses σxx and σyy differ slightly from each other and exceed stress
σzz by an order of magnitude. It has been established that at t = 2.8 s significant
temperature gradients appear and cause compressive stresses near the plate surface.
As the heating rate decreases, temperature is distributed uniformly across the plate
thickness, with the stresses reversing their sign due to a plastic deformation in the
area of maximum temperature gradients, near the plate surface.

In Fig. 2.5a, b, one can see temperature T dependence with time at the point P0
with coordinates x = y = 0, z = 0.03m. Figure 2.5a shows temperature dependence
for 5 cycles of heating and cooling; Fig. 2.5b illustrates change in temperature during
heating for the first and second cycles. One can see that after the cooling, temperature
reaches its initial valueT0,with the heating for different cycles varying insignificantly.
In Fig. 2.5c, σxx stress distribution is given at the point P0 during the heating for
the first, second, and fifth cycles. Figures 2.5b, c show that stresses σxx reach their
maximums at the moment of maximum warm-up of the plate. Having compared
stresses at the end of heating of the first cycle and at the beginning of the second and
fifth cycles, one can see that during the cooling the stresses do not vary significantly.
Figure 2.5d features dependence sign (I3(Dσ ))S ∼ � at the point P0 for 5 cycles
of load (intensity of shear stresses S multiplied by sign of the third stress deviator
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Fig. 2.6 Meridian of the shell simulating the rocket engine housing

I3(Dσ ) for determining the sign of load). As one can see fromFig. 2.5d, the hysteresis
loop is stabilized at the 5th load cycle, with the amplitude of total strain being
�ε = 2/

√
3�� ∼ 0.34%. The residual life of this structure under repeated thermal

load is estimated using the Coffin–Manson-type fatigue criterion (Birger et al. 1975).
The number of cycles before failure of the structure under consideration has been

established to be N � 3000. To estimate the residual service life of this structure
more accurately is impossible unless reliable data on cyclical plastic deformation and
thermal fatigue strength of the material used are available. The detailed calculations
are given in Shevchenko et al. (2015).

Let us determine the critical load for a shell of revolution modeling a motor
housing subject to increasing internal pressure. The inside surface of the shell is
chosen to be the coordinate one. The meridian (Fig. 2.6) consists of the following
concatenated segments: one spherical (1), one toroidal (2), four cylindrical (3–6), one
toroidal (7), and one spherical (8). The following dimensions are indicated in Fig. 2.6:
R1 = 6.63 c, R2 = 8.5 c, R3 = 2.5 c. The values of themeridional coordinate s0 = 0,
s8 = 57.16 c. The thickness of the shell is constant and equal to 0.3 cwithin segments
1 and 2, varies linearly from 0.3 c to 0.15 c along segment 3, and is constant and
equal to 0.15 c within segments 4–8.

The boundary conditions for solving the boundary-value problem were given in
the following form: under conditions for s0 = 0 a spherical pole (Grigorenko and
Vasilenko 1981); with s = s8—hard pinching.

The shell is made of the Kh18N10T alloy, for which the dependences of the
material properties at different values of the angle ωσ (2.7) are given in Babeshko
and Shevchenko (2014), Babeshko et al. (2010). The limiting values of the intensity
of tangential stresses for values ωσ = 0, π/6, π/3 equal to 324 MPa, 272 MPa, and
326 MPa, respectively.

The shell is subject to uniform internal pressure qς increasing from qς = 4 MPa.
The loading period is divided into steps so that the step size decreases with increase in
the load. The computations demonstrate that plastic deformation occurs first within
segment 7 of the shell under qς = 7 MPa and then, as the load is increased, within
all the other segments, except for the vicinity of the pole of segment 1. The loading
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Fig. 2.7 Changes in the intensity of shear deformations along the shell meridian

process is active, i.e., no unloading occurs. Initially, while the deformation is elas-
tic, the meridional stresses that arise in the toroidal segment near the end s = s8 are
maximum, yet not critical. With further increase in the load and development of plas-
tic deformation, the circumferential stresses in the cylindrical segment of the shell
becomemaximum. This means that the shell will fail longitudinally. The chosen fail-
ure criterion indicates that failure will occur in the cylindrical segment of the housing
on the outside surface of the shell in the neighborhood of the point s = 51.7 cm,when
ωσ = 0.42. The corresponding breaking stress σn = Sn

√
3 = 485 MPa is reached at

qς = 11.5 MPa.
When the stress mode is disregarded, failure occurs in the same place, but the

breaking stress σn = 565 MPa when the critical pressure qς = 13.5 MPa, which
exceeds the value obtained with allowance for the stress mode by 17%.

The breaking stresses calculated with and without regard to the stress mode differ
a little, whereas the strains differ substantially. The maximum values of the shear-
strain intensitywithin the cylindrical segment of the shell calculatedwith andwithout
regard to the stress mode differ by more than 60%. Figure 2.7 demonstrates how the
shear-strain intensity calculated with (heavy lines) and without (thin lines) regard to
the stress mode vary along the meridian s (in centimeters) of the outside surface of
the shell. The detailed calculations are given in Babeshko et al. (2015).
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2.5 Conclusions

Theproblemof thermoviscoplasticity is stated and the general formof the constitutive
equations describing the processes of inelastic deformation of an isotropic material
is given, taking into account the dependence of its properties on temperature, stress
mode, load history, and damage to the structure during deformation. The general
form of the equations is preserved when using different theories of thermoplasticity
and linearization methods. Using the given form of the constitutive equations, the
authors have developedmethods for solving the corresponding boundary-value prob-
lems for spatial bodies and shells of revolution. The stress–strain state of bodies and
shells is determined step by step in the process of successive approximations. With
non-axisymmetric loading, the specified loads and solving functions are represented
by trigonometric series in the circular coordinate. The finite element method was
used to solve the spatial problem, and the Runge–Kutta method with discrete orthog-
onalization of partial solutions was used to solve the problem of the theory of shells.
It is worth noting that writing the constitutive equations in a general form facilitates
the development of algorithms and corresponding software tools. A numerical study
of the stress–strain state was performed with an assessment of the strength of a num-
ber of bodies and shells simulating the responsible elements of structures of various
purposes. Some results of calculations obtained using methods and software tools
developed on the basis of the given equations are given in graphic form.
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Chapter 3
Influence of Finite Initial Deformations
on Velocities of Generalized Lamb Waves
in an Incompressible Elastic Layer
Interacting with a Layer of an Ideal Fluid

Olexandr Bagno

3.1 Introduction

At present, Lamb waves are increasingly widely used in fundamental theoretical
research and practical applications. Papers (Akbarov et al. 2005; Akbarov and Oza-
ydin 2001; Akbarov and Ozisik 2003; Ottenio et al. 2007; Guz 2004, 2016a, b; Guz
et al. 1976; Guz and Bagno 2018a; Guz 2002; Guz and Bagno 2018b; Guz 2014; Guz
et al. 2016;Zhuk1980a;Guz1980b) are focused on studying the propagation ofLamb
waves in prestressed bodies. The mentioned publications obtained qualitative and
quantitative results mainly for rigid (metals, organic glass) compressible bodies that
allow small initial deformations. However, unlike compressible, incompressible bod-
ies (rubber-like, caoutchouc-like materials) are highly elastic—their initial deforma-
tion canbe significant. In this regard, it is of particular theoretical andpractical interest
to study the influence of large (finite) initial deformations of an incompressible layer
on Lamb waves’ speed when interacting with a layer of an ideal compressible fluid.

The propagation of acoustic waves along the interface between a prestrained
incompressible elastic half-space and a half-space of viscous fluid was analyzed in
Ottenio et al. (2007). At the same time, it is of particular theoretical and practical
interest to study the influence of large (finite) initial strains of an incompressible
layer on the velocity of generalized Lamb waves during its interaction with a layer
of an ideal compressible fluid.

3.2 Problem Statement. Basic Equations

In this chapter, to study the propagation of waves in a hydroelastic waveguide con-
sisting of an incompressible elastic layer and a liquid layer, we use a prestressed
body model, a compressible ideal fluid model, and the three-dimensional linearized
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Euler equations for the fluid and the three-dimensional linearized equations of finite
deformations for the elastic body. The fluid is assumed to be at rest. We will use a
problem formulation and a method based on the general solutions of the equations of
motion of a compressible ideal fluid and a prestressed incompressible elastic body
proposed in Guz (1980b, 2002, 2004, 2009, 2016a, b).

We will consider such dynamic processes in the hydroelastic system that the
additional strains induced, i.e., strain perturbations, are much lower than the pre-
strains. The wave processes are assumed to be harmonic and low-amplitude. The
elastic body is assumed to be in the initial stress-strain state. Note that unlike elastic
bodies described in Lagrangian coordinates, fluids are described in Eulerian coor-
dinates in their natural state. In the hydroelastic problem, the initial stress-strain
state of the elastic body is a natural state relative to the fluid and the system as
a whole. Since we will consider the propagation of small perturbations, the Eule-
rian and Lagrangian approaches to the description of the behavior of the media
coincide. Therefore, the differences between the Lagrangian and Eulerian coordi-
nates are ignored, eliminating the difficulties associated with formulating boundary
conditions typical for nonlinear problems. Within the framework of the accepted
models, the main relations for the system prestressed incompressible elastic body–
ideal compressible fluid take the following form Guz (1980b, 2002, 2004, 2009,
2016a, b):

1. incompressible elastic body

(
κ̃i jαβ

∂2

∂zi∂zβ

− δ jαρ
∂2

∂t2

)
uα + q̃i j

∂p

∂zi
= 0, zk ∈ V1, (3.1)

κ̃i jαβ = λiλβκi jαβ, q̃i j = λi qi j , λ1λ2λ3 = 1,

q̃i j
∂u j

∂zi
= 0, zk ∈ V1,

(3.2)

Q̃ j ≡
(

κ̃1 jαβ

∂uα

∂zβ

+ q̃1 j f

)
cosχ +

(
κ̃2 jαβ

∂uα

∂zβ

+ q̃2 j f

)
cos η

+
(

κ̃3 jαβ

∂uα

∂zβ

+ q̃3 j f

)
cos γ, zk ∈ S;

(3.3)

2. ideal compressible fluid

∂v1

∂t
+ 1

ρ0

∂p

∂z1
= 0,

∂v2

∂t
+ 1

ρ0

∂p

∂z2
= 0,

∂v3

∂t
+ 1

ρ0

∂p

∂z3
= 0,

1

ρ0

∂ρ∗

∂t
+ ∂v1

∂z1
+ ∂v2

∂z2
+ ∂v3

∂z3
= 0,

∂p

∂ρ∗ = a20, a0 = const, zk = V2, (3.4)

pi j = −δi j p, P̃1 = − p cosχ,

P̃2 = −p cos η, P̃3 = −p cos γ, zk ∈ V2,
(3.5)

where δi j is the Kronecker symbol.
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At the same time, the specifics of the interaction of elastic and liquid media are
reflected by dynamic Q̃ j = P̃j , zk ∈ S and kinematic ∂u/∂t = v, zk ∈ S boundary
conditions specified on the contact surface of solids and liquids S. Introduced tensors
κ̃i jαβ and q̃i j depend on the type of the initial state and the type of elastic potential
of the solid material. Expressions for calculating the components of these tensors
are given in Guz (2016b). Simplifications for various variants of the theory of small
initial strains are also proposed.

Here we have introduced the following notation: ui are the components of the
displacement vector u of the elastic layer; ρ is the density of the elastic body; λi are
the elongations of the elastic body along the coordinate axes; νi are the components
of the velocity perturbation vector v of the fluid; ρ∗ and p are the density and pressure
perturbations in a fluid; ρ0 and a0 are the density of and the speed of sound in the fluid
at rest; P̃j and Q̃ j are the components of stress vector in a fluid and an elastic body,
respectively; N0 = (cosχ; cos η; cos γ ) is the normal vector to the outer surface of
the body; V1 and V2 are the volumes occupied by an elastic body and a fluid; S are
the contact surface of elastic and liquid media.

Equations (3.1)–(3.3) describe the behavior of an elastic body. Small fluctuations
of an ideal compressible fluid at rest describe relations (3.4) and (3.5).

Let us now consider an isotropic nonlinear elastic body whose elastic potential
is an arbitrary twice continuously differentiable function of the components of the
Green strain tensor. The body occupies a volume (−∞ < z1 < ∞, −h2 � z2 � 0,
−∞ < z3 < ∞) and contacts with a layer of compressible ideal fluid occupying a
volume (−∞ < z1 < ∞, 0 � z2 � h1, −∞ < z3 < ∞). The external forces acting
on these media are uniformly distributed along the Oz3-axis. Therefore, the problem
is plane, and we may restrict the study of wave propagation to the plane Oz1z2.
Consequently, this problem is reduced to solving the system of equations of motion
of an elastic body and a fluid under the following dynamic and kinematic boundary
conditions:

Q̃1

∣∣∣
z2=0

= 0, Q̃2

∣∣∣
z2=0

= P̃2
∣∣∣
z2=0

, Q̃1

∣∣∣
z2=−h2

= 0, Q̃2

∣∣∣
z2=−h2

= 0, (3.6)

P̃2
∣∣∣
z2=h1

= 0; v2

∣∣∣
z2=0

= ∂u2
∂t

∣∣∣
z2=0

. (3.7)

The following notations are introduced here: h1 is the thickness of the liquid layer,
h2 is the thickness of the elastic layer.

3.3 Problem-Solving Method

We will use the statements of hydroelasticity problems for prestressed bodies and
ideal fluid and the general solutions proposed in Guz (1980b, 2002, 2004, 2009,
2016a, b). Wave processes in incompressible prestrained elastic bodies interacting
with a compressible ideal fluidwhose initial state is homogeneous are further studied.
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The general solutions for the homogeneous stress-strain state in the plane case are
as follows:

1. for an incompressible elastic layer

u1 = − ∂2χ1

∂z1∂z2
, u2 = λ1q1λ

−1
2 q−1

2
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∂z21
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2. for a compressible ideal liquid layer
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where the functions χi are solutions of the equations:
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χ1 = 0, qi = λ−1

i , λ1λ2 = 1;

2. for a layer of an ideal compressible fluid

[(
∂2

∂z21
+ ∂2

∂z22

)
− 1

a20

∂2

∂t2

]
χ2 = 0.

The following notations are used above: ai j and μi j are quantities determined
from the equations of state and depending on the type of elastic potential (Guz 2004,
2016a), s0i i are the initial stresses.

Note that the equations for perturbations in elastic bodies are linear, but the initial
stress-strain state is determined from the general nonlinear equations. In this con-
nection, even though the general statement of hydroelastic problems for prestressed
bodies in coordinates z1 is similar to the statement of linear problems of classical
hydroelasticity, there are substantial differences in the equations and the boundary
conditions in these problem statements.
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To analyze the propagation of harmonic perturbations, candidate solutions of the
system of equations are in the class of traveling waves

χ j = X j (z2) exp [i (kz1 − ωt)] ( j = 1, 2) ,

where k is the wave number, ω is the circular frequency, i is imaginary unit
(i = √−1).

Note that the class of harmonicwaves chosen in this paper, being themost straight-
forward and most convenient in theoretical studies, does not limit the generality of
the results obtained since, as is known, a linear wave of an arbitrary shape can be
represented by a set of harmonic components.

Next, applying the Fourier method, we arrive at two eigenvalue problems for the
equations of motion of the elastic body and the fluid. Solving them, we find the
eigenfunctions. Substituting the general solutions into the boundary conditions (3.6)
and (3.7), we obtain a homogeneous system of linear algebraic equations for the
arbitrary constants. From the condition for the existence of a nontrivial solution, we
derive the dispersion equation. For a hydroelastic system consisting of an elastic
layer and a liquid layer, the dispersion equation has the form

det

∥∥∥∥elm
(
c, ρ, μ, λi , ai j , μi j , s

0
i i , ρ0, a0,

ωh1
cs

,
ωh2
cs

)∥∥∥∥ = 0

(l,m = 1, 2, . . . , 6) ,

(3.8)

where A is the phase velocity of normal waves in a prestressed layer, cs is the velocity
of a shear wave in the nonstressed elastic body (c2s = μ/ρ), μ is the shear modulus
of the elastic body.

Note that the dispersion equations (3.8) do not depend on the type of elastic
potential and represent arbitrary incompressible elastic bodieswith high (finite) initial
strains. It has the most general form from which it is possible to derive equations
for many special cases examined in Guz et al. (1976, 2016), Zhuk (1980a). If we
put λi = 1 (s0i i = 0), then we obtain equations for Raleigh and Scholte–Stoneley and
Lambwaves studied in detail using the classical theory of elasticity Guz et al. (2016).

3.4 Numerical Results and Their Analysis

The dispersion equation (3.8) is solved numerically in what follows. In this case, the
calculations are carried out for a hydroelastic system consisting of a real elastic body
and a fluid. It consists of an incompressible elastic layer and a layer of water. As a
material for the elastic layer, we choose highly elastic rubber, which elastic properties
of which are described by the Treloar elastic potential. In this case, we choose
the following mechanical parameters of the hydroelastic system (Koshkin 1988):
elastic layer—ρ = 1200 kg/m3, μ = 1.2 · 106 Pa, liquid layer—ρ0 = 1000 kg/m3,



44 O. Bagno

a0 = 1459.5m/s, ā0 = a0/cs = 46.153442. In this waveguide, the material of the
elastic body (rubber) is pliable and soft. In addition, when solving, the initial stress
state is assumed to satisfy the relations s011 �= 0 and s022 = 0. As shown in Guz (2004),
with such a load, there is no analogy between problems in the linearized and linear
formulations. Therefore, we cannot obtain the results for bodies with initial stresses
from the solutions of the corresponding linear problem.

Note that we derived (3.8) without any additional requirements for the form of
elastic potential—it takes place for elastic potential of arbitrary shape.

Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 present the obtained results. Graphs in
Fig. 3.1 illustrate the effect of fluid on the wave characteristics of a hydroelastic

Fig. 3.1 Dependences of the dimensionless values of the phase velocities of the Lamb modes c̄ on
the dimensionless value of the thickness of the elastic layer h̄2 (solid lines correspond to ρ0 �= 0
and for the dashed lines ρ0 = 0)

Fig. 3.2 Dependences of the dimensionless values of the phase velocities of the Lamb modes c̄ on
the dimensionless value of the thickness of the elastic layer h̄2 when ρ0 = 0 (solid lines correspond
to λ1 = 0.8 and dashed lines correspond to λ1 = 1)
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Fig. 3.3 Dependences of the dimensionless values of the phase velocities odd of the generalized
Lamb modes c̄ on the dimensionless value of the thickness of the elastic layer h̄2 when ρ0 �= 0
(solid lines correspond to λ1 = 0.8, and dashed lines are obtained for λ1 = 1)

Fig. 3.4 Dependences of the dimensionless values of the phase velocities even of the generalized
Lamb modes c̄ on the dimensionless value of the thickness of the elastic layer h̄2 when ρ0 �= 0
(solid lines correspond to λ1 = 0.8 and dashed lines correspond to λ1 = 1)

system. At the same time, Fig. 3.1 shows the dispersion curves reflecting the depen-
dences of the dimensionless values of the phase velocities of the Lamb modes c̄
(c̄ = c/cs) on the dimensionless value of the thickness of the elastic layer (frequency)
h̄2 (h̄2 = ωh2/cs). Solid curves are obtained for an elastic layer interacting with a
thick liquid layer, the layer thickness of which is h̄1 (h̄1 = ωh1/cs) is equal to 20.
The dashed lines correspond to the case of an elastic layer that does not interact with
the liquid. The graphs in this figure are obtained for elastic layers without initial
deformations (λ1 = 1).
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Fig. 3.5 Dependences of the dimensionless values of the longitudinal displacement amplitudes V̄z1
on the dimensionless transverse coordinate z̄2

Fig. 3.6 Dependences of the dimensionless values of the transverse displacement amplitudes V̄z2
on the dimensionless transverse coordinate z̄2

Presented in Fig. 3.1 graphs illustrate the effect of liquid on the dispersion proper-
ties of the wave process. It follows from them that in a hydroelastic waveguide (solid
lines)with an increase in the thickness of the elastic layer (frequency) h̄2 the velocities
of the first modes tend to the speed of the Stoneleywave c̄st (c̄st = cst/cs = 0.859257
at λ1 = 1 and c̄st = 0.650184 at λ1 = 0.8) from below, and the velocities of the
second modes—to the speed of the Rayleigh-wave c̄R (c̄R = cR/cs = 0.955318
at λ1 = 1 and c̄R = 0.709558 at λ1 = 0.8) above. For a purely elastic waveguide
(dashed lines), the velocities of these Lamb modes tend to the speed of the Rayleigh-
wave c̄R . In this case, the first modes tend to the velocity of the surface wave c̄R
(c̄R = 0.9553303 at λ1 = 1 and c̄R = 0.709558 at λ1 = 0.8) from below, and the
velocities of the second modes, respectively, to c̄R (c̄R = 0.9553303 at λ1 = 1 and
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c̄R = 0.709558 at λ1 = 0.8) above. The speeds of all high-order modes tend to the
speed of the shear wave in the material of the elastic body c̄s . At the same time, as the
frequency (thickness) increases, they are dominated by transverse displacements, the
amplitude of which on the layer surfaces tends to zero compared to their amplitudes
in the thickness of the layer, that is, motions in high-order modes are displaced from
the surface into the layer and are localized in its thickness.

Figure 3.2 shows the dispersion curves c̄ = f
(
h̄2

)
, reflecting the effect of initial

strains on the phase velocities of the Lamb modes. The solid lines correspond to
the precompressed elastic layer (λ1 = 0.8). The dashed lines indicate the dispersion
curves obtained in the absence of initial deformations (λ1 = 1).

From the graphs shown in Fig. 3.2, preliminary deformations cause a change
in the frequencies of the generation of Lamb modes and a shift in their dispersion
curves. It is easy to see that the initial compression (λ1 = 0.8) (solid lines) leads to a
shift of critical frequencies and dispersion curves to the long-wavelength part of the
spectrum.

The nature of the influence of initial deformations on the velocities of normal
waves in an elastic-fluid system is illustrated by the graphs in Figs. 3.3 and 3.4.
Here, the dependences of the dimensionless values of the phase velocities of the
generalized Lamb modes are presented c̄ on the dimensionless value of the thickness
of the elastic layer h̄2. Solid curves are obtained for a system whose elastic layer is
subjected to initial compression (λ1 = 0.8). The dashed lines indicate the dispersion
curves corresponding to the hydroelastic waveguide without initial deformations
(λ1 = 1). At the same time, Fig. 3.3 shows graphs for odd and Fig. 3.4 for even
generalized Lamb modes. These figures show curves for hydroelastic waveguides
whose fluid layer thickness h̄1 = 20.

From the graphs shown inFigs. 3.3 and 3.4, preliminary deformations in an elastic-
liquid waveguide also cause a change in the frequencies of generation of generalized
Lamb modes and a shift in their dispersion curves. It is easy to see that the initial
compression (λ1 = 0.8, solid lines), in contrast to a purely elastic layer, leads to a
shift of the critical frequencies and dispersion curves to the short-wavelength part of
the spectrum.

The graphs presented in Figs. 3.5 and 3.6 reflect the distribution of displacement
amplitudes (velocities ∂ui/∂t and vi ) in the near-contact region of the hydroelastic
waveguide in the interval of coordinate change z̄2 equal to−1 � z̄2 � 0 in the elastic
layer and 0 � z̄2 � 1 in a layer of an ideal fluid. They show the dimensionless
longitudinal, V̄z1 (Fig. 3.5) and transverse V̄z2 (Fig. 3.6), respectively, versus the
dimensionless transverse coordinate z̄2 for lowest mode 1 (Figs. 3.1 and 3.3). The
graphs shown in these figures are obtained for a hydroelastic waveguide with an
elastic layer thickness of 20 and a liquid layer thickness of 20. In these figures, the
dashed lines show the dependencies V̄z1 = f (z2) and V̄z2 = f (z2) for a hydroelastic
waveguide in the absence of initial stresses (λ1 = 1). Similar dependencies for an
elastic-liquidwaveguide, in which the elastic layer is under initial compression (λ1 =
0.8), are represented by solid lines in the figures.

The phase velocity and profile of a Stoneley wave in the interface between solid
and liquid half-spaces are known to depend on the mechanical parameters of the
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hydroelastic system and are determined by the ratio between the acoustic-wave
velocity in the fluid and the Rayleigh-wave velocity in the solid half-space. The
mechanical parameters of the “rubber-water” hydroelastic system are such that the
speed of sound ā0 (ā0 = 46.153442) in the fluid is higher than the Rayleigh-wave
velocity c̄R (c̄R = 0.955318 for λ1 = 1 and c̄R = 0.709558 for λ1 = 0.8). According
to Figs. 3.5 and 3.6, with such a ratio of themechanical parameters of the components
of the system, mode 1 of propagating along the interface of the media is localized
near the surface of both the liquid and the elastic layer. In the short-wave portion
of the spectrum, this quasi-surface (Stoneley-type) wave penetrates deeper into the
elastic body than into the liquid. As follows from the graphs shown in Figs. 3.5 and
3.6, initial compression reduces the depth of penetration of the lowest mode into the
fluid. As follows from the graphs shown in Figs. 3.5 and 3.6, initial compression
(λ1 = 0.8) reduces the depth of penetration of the lowest mode into the fluid.

3.5 Influence of the Liquid Layer on the Wave Process

The graphic material presented in Figs. 3.1 and 3.2 makes it possible to obtain
information about the influence of the liquid layer on such wave characteristics of
hydroelastic waveguides as phase velocities and dispersion of generalized Lamb
modes. It follows that the liquid layer, interacting with the elastic layer, causes a
change in the mode nucleation frequencies and their dispersion curves. In this case,
the critical frequencies decrease, and the dispersion curves (solid lines) shift to the
long-wavelength part of the spectrum. Thus, we can conclude that in a hydroelastic
waveguide, the generalized Lamb modes’ phase velocities become smaller than the
corresponding Lamb modes’ phase velocities in a purely elastic waveguide.

3.6 Influence of Finite Initial Strains on the Wave
Characteristics of Generalized Lamb Modes

In Guz et al. (1976), for an elastic layer of a compressible material, it was shown for
the first time that, in an elastic waveguide, the initial stresses cause a change in the
frequencies of the generation of Lamb modes and a shift in their dispersion curves.
Thus, we can conclude that, in the vicinity of critical frequencies, the phase velocities
of the modes in the preliminarily deformed layer can be either less or greater than
the phase velocities of the corresponding modes in the body without initial stresses.
It causes the appearance in the spectrum of an elastic waveguide of frequencies
(thicknesses) at which the initial stresses do not affect the phase velocities of a series
of normal Lambwaves. From the graphs presented in Figs. 3.3 and 3.4, it follows that
this regularity also takes place for an elastic layer of an incompressible material, both
for non-interacting and interacting with the liquid layer. It is easy to see that for all
generalized Lamb modes, except for the first one, there are elastic layers of specific
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thicknesses (certain frequencies) h̄2, at which the phase velocities do not depend on
the initial compression λ1. This pattern first revealed for compressible bodies and
described in Guz et al. (1976) is general and is inherent in the frequency spectra of
elastic waveguides not only from different materials (compressible, incompressible)
but also elastic-liquid waveguides.

In addition, as follows from the graphs shown in Figs. 3.5 and 3.6, initial com-
pression (λ1 = 0.8) reduces the depth of penetration of the lowest mode into the
liquid.

3.7 Conclusions

Thus, the analysis shows that in the elastic-liquid system “rubber (pliable material)–
water” at ā0 > c̄R , in the high-frequency part of the spectrum, the lowest mode
penetrates the solid body and, like high-order modes, propagates in the elastic layer.
In this case, the elastic layer is decisive in forming the wave field. It is the main
waveguide through which wave disturbances propagate and most of the wave energy
is transferred.

The proposed approach and the results obtained make it possible to establish the
limits of the application of models of wave processes based on various versions of
the theory of small initial deformations and the classical theory of elasticity.
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Chapter 4
Fracture of Materials Loaded Along
Cracks: Approach and Results

Viacheslav Bogdanov, Aleksander Guz, and Vladimir Nazarenko

4.1 Introduction

Technological processes of manufacturing structural materials and assembling
structure elements made of them often generate fields of initial (residual) stresses
and strains in such materials. Those initial stresses must be taken into account in
the calculations of product strength and durability, especially if crack-like defects
emerge in such products in the processes of their manufacturing and operation. In
the situation when initial stresses act along crack surfaces (and this situation is typi-
cal, e.g., in laminar or unidirectional fibrous composites (Dvorak 2000; Malmeister
et al. 1980; Shul’ga and Tomashevskii 1997), materials with thermal insulation or
anticorrosion coatings) (Ainsworth et al. 2000), the approaches of classical fracture
mechanics (Cherepanov 1979; Kassir and Sih 1975) prove to be inapplicable. This
results from the fact that such initial stresses are not involved in the expressions
for stress intensity factors, J-integral and the values of crack opening, hence, they
do not influence material’s fracture parameters in the framework of Griffiths–Irwin,
Cherepanov–Reiss fracture criteria, critical crack openings or their generalizations
(Guz 1991, 2021; Guz et al. 2020).

In the situations when initial stresses are significantly larger as compared to
additional (operational) stresses, for investigating problems of such kind, in Guz
(1980, 1991) the applicability of the approach within the linearized mechanics of
deformable solid bodies (Guz 1999) was justified, while in Guz (1982, 1991) energy-
and force-based criteria of brittle fracture of materials with initial (residual) stresses

V. Bogdanov (B) · A. Guz · V. Nazarenko
S.P. Timoshenko Institute of Mechanics, National Academy of Science of Ukraine, Kyiv, Ukraine
e-mail: bogdanov@nas.gov.ua

A. Guz
e-mail: guz@nas.gov.ua

V. Nazarenko
e-mail: vmnazarenko@nas.gov.ua

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. N. Guz et al. (eds.), Advances in Mechanics, Advanced Structured Materials 191,
https://doi.org/10.1007/978-3-031-37313-8_4

51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37313-8_4&domain=pdf
mailto:bogdanov@nas.gov.ua
mailto:guz@nas.gov.ua
mailto:vmnazarenko@nas.gov.ua
https://doi.org/10.1007/978-3-031-37313-8_4


52 V. Bogdanov et al.

were formulated. The results of studying some problems of the fracture mechanics
of materials with initial (residual) stresses, which were obtained with reliance on this
approach, were presented in Bogdanov (2007, 2010, 2012), Bogdanov et al. (2015),
Guz (1991, 2021).

Another group of non-classical problems of fracture mechanics is the fracture
of bodies compressed along the parallel cracks they contain, when fracturing pro-
cess is initiated by the local loss of stability in the part of material adjacent to the
crack (Bolotin 1994, 2001; Guz et al. 1992, 2020; Kachanov 1988; Kienzler and
Herrmann 2000; Wu 1979). Under such loading mode, singular parts in correspond-
ing exact solutions of the problems of linear theory of elasticity are absent and,
hence, all stress intensity factors are equal to zero, due to which classical fracture
criteria are not applicable (Guz 2021; Guz et al. 2020). Many engineering problems
related to the calculations of products with predetermined defects are reduced to the
force-based scheme of compression along crack-like defects. Problems of this kind
are rather typical in modeling the action of tectonic forces in mountainous terrain
(model of fissured-layered massif), in calculating various supports, and in evaluat-
ing the strength and durability of concrete structure members. Various approaches
to determining critical compression parameters, which correspond to the above-
mentioned local loss of stability, were analyzed in detail in Guz (2021), Guz et al.
(2020). The results of investigating some problems on body compression along both
isolated and interacting cracks with the use of the approach in the framework of the
three-dimensional linearized theory of stability of deformable bodies are presented
in Bogdanov and Nazarenko (1994), Guz (2014, 2021), and Guz et al. (1992, 2020).

It should be noted that although in terms of research subject the problems on the
fracture of pre-stressed bodies under the action of initial stresses along cracks and the
problemon the compression ofmaterials along cracks are different, in the formulation
of those problems there is an essential common point, viz., the presence of load
components directed in parallel to cracks, whose influence, in fact, cannot be taken
into account with the methods of classical fracture mechanics. This permits the two
abovementioned groups of non-classical problems of fracture mechanics to be united
and considered as problems of materials fracture under the action of forces directed
along cracks. As it will be shown below, they can be investigated jointly, using the
methodology based on relations of linearized mechanics of deformable solid bodies.

4.2 Approach to Studying the Problems

Below, brief information about the procedure used to investigate problems on the
fracture of cracked bodies under the action of loads directed along cracks, and about
the general formulation of corresponding boundary value problems is given.

As noted above, startingwith theworks (Guz 1980, 1991), to investigate problems
of fracture mechanics for pre-stressed materials, when initial stresses act along the
cracks the material contains and these initial stresses are significantly larger than
operational stresses, an approachwithin the linearizedmechanics of deformable solid
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bodies started to be applied consistently. The key factor in substantiating this method
is that the application of linearized relations for investigating the abovementioned
class of fracture mechanics problems, on the one hand, permits broad use of the
advantages of the linear model of the deformable body and, on the other, qualitative
and quantitative description (as opposed to the classical procedures) of the main
phenomenon related to the influence of the stress components acting along crack
surfaces on fracture parameters.

In Guz (1981), Guz et al. (1992), Wu (1979), it was shown that under compres-
sion of bodies along parallel cracks they contain, the beginning (start) of the fracture
process is caused by the loss of material’s stability in local areas near the cracks,
when compressive forces achieve the values critical for the given material and the
geometry of cracks location. Here, to determine the critical values of the compres-
sive forces mentioned, the relations of the three-dimensional linearized theory of
deformable bodies stability (Guz 1999) can be used, since with the involvement of
the abovementioned criterion of the fracture process beginning (start), the possibility
of the transition of a part of the material in the vicinity of cracks into adjacent forms
of equilibrium under small (as compared to the main values of the initial states)
perturbations of stresses and displacements is analyzed.

It should be noted that until recently the abovementioned two classes of frac-
ture mechanics problems, viz., the problems on the fracture of materials with initial
stresses acting along cracks and the problems on the fracture of bodies under com-
pression along cracks were considered separately, but at the same time, taking into
account that there are common features in the formulations of and approaches to
these two classes of problems, namely, the presence of the load component acting
along the cracks and the use of linearized relations for problems solving, in Bogdanov
et al. (2017), Guz et al. (2013), the applicability of the unified approach within the
linearized mechanics of deformable solid bodies was substantiated for investigating
fracture mechanics problems on pre-stressed cracked materials and the problems on
the fracture of bodies compressed along cracks (the information about this method
can also be found in Guz et al. (2020)).

This approach is simpler andmore effective for determining critical (limit) loading
parameters in the problems on bodies compression along the cracks they contain,
since there is no need of individual investigations of eigenvalue problems within the
3D linearized theory of stability. The parameters mentioned are calculated in solving
corresponding boundary value problems of the mechanics of fracture of pre-stressed
materials, when under the continuous change of loading parameters, we determine
the initial compressive stresses which, when achieved, lead to a resonance change
in the amplitude values (of stresses and displacements) near crack tips. The initial
loading parameters determined in this way will correspond to the eigenvalues of
corresponding eigenvalue problems on bodies compression along cracks.

Besides, an important positive feature of this approach is the possibility to conduct
investigations in a single general form for compressible and incompressible isotropic
or transverse isotropic elastic bodies with arbitrary structures of elastic potential as
applied to the theory of finite (large) initial strains, as well as various variants of the
theory of small initial strains. There, the specification of material’s model (e.g., the
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use of elastic potential of one typeor another) is only carried out at thefinal stage of the
investigation—in the numerical analysis of the characteristic equations, the resolving
integral equations, etc., obtained in the general form. It should also be noted that
when considering composite materials in this work, it is assumed that crack sizes are
significantly larger than the sizes of composite’s structural elements, while the cases
of cracks location in the interfaces of composite’s components are not considered.
With such assumptions, following, e.g., Broutman andKrock (1974), Dvorak (2000),
Malmeister et al. (1980), we will use the continuummodel of the composite with the
reduced (averaged) characteristics of the transverse isotropic body.

Now, we present the principal relations of the linearized mechanics of deformable
solid bodies, which will be used for solving particular problems. Figure 4.1 shows
schematically an unbounded body with tensile or compressive initial (residual)
stresses S011 acting along cracks located in parallel planes y3 = const. It should be
noted that to carry out the investigation of the stress-strain state of pre-stressed bodies
is more convenient in the Lagrangian coordinates y j ( j = 1, 2, 3), which are related
to the initial state caused by initial stresses S011. These coordinates can be presented
via the Cartesian coordinates of the non-deformed (natural) state of the body x j

( j = 1, 2, 3) by the following relations

y j = λ j x j , j = 1, 2, 3, (4.1)

where λ j = const are coefficients of elongation (contraction) along coordinate axes
Oyj , which are caused by initial stresses S011. Besides, operational stresses (additional
to the initial ones) also act on the body (normal stresses Q′

33 are shown as an example).
Under the action of initial (residual) stresses S011 only, a homogeneous stress-

strain state emerges in the material (both isotropic and transverse isotropic). (It is
assumed for transverse isotropic material that cracks are located in the planes of
material’s properties symmetry and, thus, initial stresses are directed along the sym-

Fig. 4.1 Cracked body with
initial stresses
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metry axes of material’s properties.) This stress-strain state is characterized by such
expressions for components of the tensor of initial stresses S̃0 and the vector of initial
displacements u0:

S011 = const, S022 = const, S033 = 0, S0i j = 0, i �= j; u0j = λ−1
j

(
λ j − 1

)
y j .
(4.2)

For compressible bodies, linearized equilibrium equations in displacements are
of the form Bogdanov et al. (2017), Guz (1999), Guz et al. (2020)

ω′
i jαβ

∂2uα

∂yi∂yβ

= 0, (4.3)

where uα are displacements caused by the action of initial and operational stresses.
Boundary conditions in stresses on a part of S1 surface are presented as

N 0
i Q

′
i j = P ′

j , (4.4)

where N 0
i are components of the ort of the normal to the surface of the body in the

initial state (the body state caused by initial stresses S011), while boundary conditions
in displacements on a part of S2 surface are of the form

u j = f ′
j . (4.5)

The components of the fourth rank elasticity tensor ω̃′, which are involved in (4.3)
and in the linearized elasticity relations

Q′
i j = ω′

i jαβ

∂uα

∂yβ

, (4.6)

are given by expressions

ω′
i jαβ = λiλ jλαλβ

λ1λ2λ3

[
δi jδαβ Aiβ + (

1 − δi j
) (

δiαδ jβ + δiβδ jα
)
Gi j

]

+ λiλβ

λ1λ2λ3
δiβδ jαS

0
ββ, (4.7)

where δi j is Kronecker symbol, Ai j are elasticity constants, Gi j are shear moduli,
S0ββ are initial stresses, and λm are coefficients of elongation (contraction) along
coordinate axes Oym , that is caused by these initial stresses.

The dependence between components of Piola–Kirchhoff non-symmetric stress
tensor Q̃′ and Lagrange symmetric stress tensor S̃ is given by relations (Bogdanov
et al. 2017; Guz 1999; Guz et al. 2020)

Q′
i j = λiλ j

λ1λ2λ3
Si j + λi

λ1λ2λ3
S0in

∂u j

∂yn
.
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Representations of the general solutions of linearized equilibrium equations (4.3)
via harmonic potentials were constructed in Bogdanov et al. (2017), Guz (1999),
Guz et al. (2020). By assuming that the axis of material’s isotropy coincides with
axis Oy3 of the coordinate system, and conditions λ1 = λ2 �= λ3, S011 = S022, S

0
33 = 0

are satisfied, we have such representations of the general solutions for the circular
cylindrical coordinate system (r , θ , y3) obtained from the Cartesian one (Bogdanov
et al. 2017; Guz 1999; Guz et al. 2020):

in the case of non-equal roots of the characteristic equation (n1 �= n2)

ur = ∂ (ϕ1 + ϕ2)

∂r
− 1

r

∂ϕ3

∂θ
,

uθ = 1

r

∂ (ϕ1 + ϕ2)

∂θ
+ ∂ϕ3

∂r
,

u3 = m1n
−1/2
1

∂ϕ1

∂z1
+ m2n

−1/2
2

∂ϕ2

∂z2
,

Q′
33 = C44

(
d1l1

∂2ϕ1

∂z21
+ d2l2

∂2ϕ2

∂z22

)
,

Q′
3r = C44

(
d1n

−1/2
1

∂2ϕ1

∂r∂z1
+ d2n

−1/2
2

∂2ϕ2

∂r∂z2
− n−1/2

3

1

r

∂2ϕ3

∂θ∂z3

)
,

Q′
3θ = C44

(
d1n

−1/2
1

1

r

∂2ϕ1

∂θ∂z1
+ d2n

−1/2
2

1

r

∂2ϕ2

∂θ∂z2
+ n−1/2

3

∂2ϕ3

∂r∂z3

)
,

z j = n−1/2
j y3, j = 1, 2, 3;

(4.8)

in the case of equal roots of the characteristic equation (n1 = n2)

ur = −∂ϕ

∂r
− z1

∂F

∂r
− 1

r

∂ϕ3

∂θ
,

uθ = −1

r

∂ϕ

∂θ
− z1

1

r

∂F

∂θ
+ ∂ϕ3

∂r
,

u3 = (m1 − m2 + 1) n−1/2
1 F − m1n

−1/2
1 
 − m1n

−1/2
1 z1

∂F

∂z1
,

Q′
33 = C44

[
(d1l1 − d2l2)

∂F

∂z1
− d1l1

∂


∂z1
− d1l1z1

∂2F

∂z21

]
, 
 ≡ ∂ϕ

∂z1
,

Q′
3r = C44

{
n−1/2
1

∂

∂r
[(d1 − d2) F − d1
]

− n−1/2
1 d1z1

∂2F

∂r∂z1
− n−1/2

3

1

r

∂2ϕ3

∂θ∂z3

}
,

Q′
3θ = C44

{
n−1/2
1

1

r

∂

∂θ
[(d1 − d2) F − d1
]

− n−1/2
1 d1z1

1

r

∂2F

∂θ∂z1
+ n−1/2

3

∂2ϕ3

∂r∂z3

}
,

(4.9)

where the roots of the characteristic equations take the form

n1,2 = c′ ±
√

c′2 − ω′
3333ω

′
3113

ω′
1111ω

′
1331

, n3 = ω′
3113

ω′
1221

,

c′ = ω′
1111ω

′
3333 + ω′

3113ω
′
1331 − (

ω′
1133 + ω′

1313

)2

2ω′
1111ω

′
1331

.

(4.10)
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In (4.8) and (4.9), the potentials ϕ j
(
r, θ, z j

)
, ϕ

(
r, θ, z j

)
, and F

(
r, θ, z j

)
( j =

1, 2, 3) satisfy Laplace’s equations; the values C44,mi , di , and li (i = 1, 2) are deter-
mined by the choice of material’s model and are linked with components of elasticity
tensor ω̃′ (4.7) (Bogdanov et al. 2017; Guz 1999; Guz et al. 2020).
in the case of non-equal roots of the characteristic equation (n1 �= n2)

C44 = ω′
1313, mi = ω′

1111ni − ω′
3113

ω′
1133 + ω′

1313

, di = 1 + mi ,

li = ω′
3333mi − ω′

1133ni
nidiω′

1313

, i = 1, 2;
(4.11)

in the case of equal roots of the characteristic equation (n1 = n2) parameters C44,
m1, d1, d2, l1 are determined from (4.11), and parameters m2, l2 take the from

m2 = ω′
1133 − ω′

1313

ω′
1133 + ω′

1313

, l2 = ω′
3333(m1 + m2 − 1) − ω′

1133n1
n1d2ω′

1313

. (4.12)

In the case of axisymmetric linearized problems, the potential function f3 in (4.8)
and (4.9) should be set equal to zero, while the potential functions ϕ1, ϕ2 , ϕ, F are
to be considered independent of coordinate θ .

Taking into account representations (4.8) and (4.9), the general statement of lin-
earized problems (4.3)–(4.5) can be re-formulated in terms of harmonic potential
functions ϕ j

(
r, θ, z j

)
, j = 1, 2, 3 (in the case of non-equal roots) and ϕ (r, θ, z1),

F (r, θ, z1), ϕ3 (r, θ, z3) (in the case of equal roots). For the spatial boundary value
problems on pre-stressed bodies containing circular cracks (which are also referred
to as penny-shaped cracks), considered in this work, we will present the potential
functions mentioned as Henkel integral transform in radial coordinate, reduce the
problems to paired (dual) integral equations and then to Fredholm integral equations
of the second kind, which will be investigated numerically.

4.3 Formulation of the Problems

Consider spatial problems on pre-stressed half-bounded body with a near-surface
circular crack and those on an unbounded body with initial (residual) stresses, con-
taining two parallel coaxial circular cracks. It should be noted that the former geo-
metric scheme permits the analysis of the influence of initial stresses as well as the
effect of the interaction of cracks and the free surface of the body on stress intensity
factors in the vicinity of crack contours and on the critical compression parameters,
which, when achieved, lead to the local loss of material’s stability near cracks. The
latter geometric scheme permits the evaluation of the influence of parallel cracks
interaction on those parameters.
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4.3.1 Initially Stressed Half-Space with a Near-Surface
Circular Crack

Consider an elastic body occupying half-space y3 � −h. There are initial stresses
S011 = S022 acting along a near-surface crack of radius r = a, located in y3 = 0 plane
centered on axis Oy3: {0 � r � a, 0 � θ < 2π , y3 = 0} (Fig. 4.2). We assume that
additional (with respect to initial stresses) fields of normal and shear forces Q′

33 and
Q′

3r act on crack faces, while the half-space boundary is free of loads. Boundary
conditions of such non-axisymmetric problem are of the form

Q′
33 = −σ(r, θ), Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

Q′
33 = 0, Q′

3r = 0, Q′
3θ = 0 (y3 = −h, 0 � r < ∞).

(4.13)

(Here and further 0 � θ < 2π , and subscripts “+” and “–” denote the upper and
lower crack faces respectively).

Besides, the conditions of the attenuation of displacement vector and stress tensor
components at infinity must be satisfied as

u j → 0, Q′
i j → 0 (r → +∞, y3 → +∞). (4.14)

Further, in constructing the solution of the problem examined, it is convenient
to divide the half-space y3 � −h into two domains: domain “1” is the half-space
y3 � 0 and domain “2” is the layer −h � y3 � 0. All the values relating to each of
these domains will be marked with superscripts “(1)” and “(2)”. For such subdivision
into two domains, on the domain boundary (when y3 = 0) outside the crack, it is
necessary that the conditions of continuity for displacement and stress vectors be
satisfied. Then the boundary conditions (4.13) can be written as

Q
′(2)
33 = −σ(r, θ), Q′(2)

3r = −τr (r, θ), Q′(2)
3θ = 0 (y3 = 0, 0 � r � a),

Q′(2)
33 = 0, Q′(2)

3r = 0, Q′(2)
3θ = 0 (y3 = −h, 0 � r < ∞),

u(1)
3 = u(2)

3 , u(1)
r = u(2)

r , u(1)
θ = u(2)

θ (y3 = 0, a < r < ∞),

Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r , Q′(1)
3θ = Q′(2)

3θ (y3 = 0, 0 � r < ∞).

(4.15)

Fig. 4.2 Pre-stressed
semi-infinite body with a
circular near-surface crack
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By using the representations of general solutions in terms of potential harmonic
functions of form (4.8) for non-equal roots and form (4.9) for equal roots, from
(4.15) we obtain the problem formulation in terms of harmonic potential func-
tions ϕi

(k)(r, θ, z j ), k = 1, 2, i, j = 1, 2, 3 (in the case of non-equal roots) and
ϕ(k)(r, θ, z1), F (k)(r, θ, z1) and ϕ3

(k)(r, θ, z3), k = 1, 2 (in the case of equal roots).
The formulations of axisymmetric problems for the pre-stressed half-space with

mode I, mode II, or mode III cracks are carried out in the similar way, if in the
corresponding boundary conditions, it is set that uθ

(k) = 0, Q′
3θ

(k) = 0, k = 1, 2,
while other components of displacement vector and stress tensor are considered to
be independent of angular component θ .

4.3.2 Pre-stressed Body with Two Parallel Circular Cracks

Consider an unbounded elastic body with initial stresses S011 = S022 that contains two
circular cracks of the same radius r = a, which are located in parallel planes y3 = 0
and y3 = −2h with centers on the Oy3 axis (Fig. 4.3). Additional stresses Q′

33 and
Q′

3r (with respect to the initial ones S
0
11 = S022) acting on crack faces and the boundary

condition are

Q′
33 = −σ(r, θ), Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

Q′
33 = −σ(r, θ), Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (−2h)±, 0 � r � a),

(4.16)
where 0 � θ < 2π , and subscripts “+” and “–” denote the upper and lower cracks
faces respectively.

For the case considered, the symmetry of the geometric and force-based schemes
of the problem in respect of plane y3 = −h exists. Due to that, given (4.16), it can
be re-formulated as a mathematically equivalent problem on the half-space y3 � −h

Fig. 4.3 Pre-stressed body
with two parallel coaxial
circular cracks



60 V. Bogdanov et al.

with a single mode I or mode II crack located in the plane y3 = 0, with the following
boundary conditions on its faces and on the half-space boundary:

for mode I crack

Q′
33 = −σ(r, θ), Q′

3r = 0, Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

u3 = 0, Q′
3r = 0, Q′

3θ = 0 (y3 = −h, 0 � r � a); (4.17)

for mode II crack

Q′
33 = 0, Q′

3r = −τr (r, θ), Q′
3θ = 0 (y3 = (0)±, 0 � r � a),

ur = 0, uθ = 0, Q′
33 = 0 (y3 = −h, 0 � r � a).

(4.18)

Besides, the conditions of the attenuation of the displacement vector and stress tensor
components at infinity (4.14) must be satisfied.

As can be seen from (4.17) and (4.18), the formulation of the problem on a space
with two parallel coaxial cracks (4.16) is mathematically equivalent to the problems
on the half-space y3 � −h with a mode I crack or a mode II crack that is parallel to
its surface when the half-space boundary rests on a smooth rigid foundation.

We will confine ourselves to the axisymmetric problem and will consider individ-
ually the cases when normal stresses Q′

33 (mode I cracks), radial shear stresses Q′
3r

(mode II cracks) or tangential torsional stresses Q′
3θ (mode III cracks) act on crack

faces.
Mode I cracks. Taking into account the symmetry of the geometric and force-

based schemes of the problem in respect of plane y3 = −h, we have the following
boundary conditions specified on the cracks faces and on the half-space boundary
and crack faces

Q′
33 = −σ (r) , Q′

3r = 0 (y3 = (0)±, 0 � r � a),

u3 = 0, Q′
3r = 0 (y3 = −h, 0 � r � ∞).

(4.19)

The half-space y3 � −h is conditionally divided into two domains: “1”—the half-
space y3 � 0 and “2”—the layer −h � y3 � 0. All the values relating to each of the
domains mentioned are marked by superscripts “(1)” and “(2)”. Taking into account
the conditions of the continuity of stresses and displacements on the boundaries of
the domains, new boundary conditions of the problem are obtained from (4.17)

Q′(2)
33 = −σ(r), Q′(2)

3r = 0 (y3 = 0, 0 � r � a),

u(2)
3 = 0, Q′(2)

3r = 0 (y3 = −h, 0 � r � ∞),

u(1)
3 = u(2)

3 , u(1)
r = u(2)

r (y3 = 0, a < r < ∞),

Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r (y3 = 0, 0 � r < ∞).

(4.20)

Mode II cracks. The tangential radial stresses of the intensity tr (r) are applied to
crack faces antisymmetrically in respect of the planes of cracks location. Taking into
account the symmetry of the geometric and force-based schemes of the problemwith
respect to the plane y3 = −h, equidistant from the cracks and dividing the half-space
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y3 � −h into two parts, namely, the half-space y3 � 0 (domain “1”) and the layer
−h � y3 � 0 (domain “2”), we have such boundary conditions of the problem on
mode II cracks:

Q′(2)
33 = 0, Q′(2)

3r = −τr (r) (y3 = 0, 0 � r � a),

u(2)
r = 0, Q′(2)

33 = 0 (y3 = −h, 0 � r � ∞),

u(1)
3 = u(2)

3 , u(1)
r = u(2)

r (y3 = 0, a < r < ∞),

Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r (y3 = 0, 0 � r < ∞).

(4.21)

By using the representations of general solutions for displacements and stresses
via potential functions (4.8) (for non-equal real roots) and (4.9) (for equal roots),
from boundary conditions (4.20) and (4.21) the formulations of problems for mode
I crack and mode II crack are obtained in terms of potential functions ϕi

(k)
(
r, z j

)
,

i, j, k = 1, 2 (in the case of non-equal roots) and ϕ(k) (r, z1), F (k) (r, z1), k = 1, 2
(in the case of equal roots).

Mode III cracks. The tangential torsional stresses of the intensity τθ (r) are applied
to crack faces antisymmetrically in respect of cracks location planes. With this load-
ing scheme, only the components of displacement vector uθ and stress tensor Q′

3θ
will be non-zero, and owing to the axisymmetric nature of the problem they do not
depend on the angular coordinate θ . The boundary conditions of the problem on
mode III cracks can be written as follows

Q′(2)
3θ = −τθ (r) (y3 = 0, 0 � r � a),

u(2)
θ = 0 (y3 = −h, 0 � r � ∞),

u(1)
θ = u(2)

θ (y3 = 0, a < r < ∞),

Q′(1)
3θ = Q′(2)

3θ (y3 = 0, 0 � r < ∞).

(4.22)

The representations of general solutions in this case, given (4.8) and (4.9), are of
the same form for the cases of both equal and non-equal roots, specifically

uθ = ∂

∂r
ϕ3 (r, z3) , Q′

3θ = C44n
−1/2
3

∂2

∂r∂z3
ϕ3 (r, z3) . (4.23)

By using representations (4.23) we obtain the formulation of the problem for
elastic bodywithmode III cracks in terms of the potential harmonic functionϕ3 (r, z3)

C44n
−1/2
3

∂2ϕ
(2)
3

∂r∂z3
= −τθ (r) (y3 = 0, 0 � r � a) ,

∂ϕ
(2)
3

∂r
= 0 (y3 = −h, 0 � r < ∞) ,

∂ϕ
(1)
3

∂r
= ∂ϕ

(2)
3

∂r
(y3 = 0, a < r < ∞) ,

∂2ϕ
(1)
3

∂r∂z3
= ∂2ϕ

(2)
3

∂r∂z3
(y3 = 0, 0 � r < ∞) .

(4.24)
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4.4 Fredholm Integral Equations

The mixed boundary value problems on harmonic potential functions, which were
formulated in the previous section will be solved by first reducing them to paired
(dual) integral equations and then—to systems of Fredholm integral equations of
the second kind. For that, harmonic potentials will be represented via Fourier series
(for non-axisymmetric problems) and Hankel integral expansions in radial coordi-
nates. The process of solving non-axisymmetric problems will be exemplified by the
problem on a half-space with a near-surface crack, and the solution of axisymmetric
problems—by that on a body containing two parallel mode I cracks.

4.4.1 Half-Space with a Near-Surface Circular Crack

We will show calculation procedures for the case of equal roots of the characteristic
equation (n1 = n2); the procedures for non-equal roots (n1 �= n2) are carried out in
the similar way.

The external loads on the crack faces (the right-hand parts of the first two expres-
sions in (4.15)) are presented as Fourier series in coordinate θ , assuming that they
are even functions in this coordinate

σ (r, θ) =
∞∑

n=0

σ (n)(r)cos nθ , τr (r, θ) =
∞∑

n=0

τr
(n)(r)cos nθ , (4.25)

where coefficients in the expansions are of the form:

σ (0) (r) = 1

π

∫ π

0
σ (r, θ) dθ,

τ (0)
r (r) = 1

π

∫ π

0
τr (r, θ) dθ,

σ (n) (r) = 2

π

∫ π

0
σ (r, θ) cos nθ dθ,

τ (n)
r (r) = 2

π

∫ π

0
τr (r, θ) cos nθ dθ, n = 1, 2, . . . .

(4.26)

In the case when σ (r, θ) and τr (r, θ) are odd functions in θ , their transforms into
Fourier series will be similar if cosines are changed to sines in (4.25); in the general
case, when loads are arbitrary functions, the superposition of solutions should be
used.

We present potential functions ϕ(k) (r, θ, z1), F (k) (r, θ, z1) and ϕ
(k)
3 (r, θ, z3) (k =

1, 2) as Fourier series in coordinate θ with coefficients in the form of Hankel integral
equations in radial coordinate r of the order corresponding to the harmonic in θ



4 Fracture of Materials Loaded Along Cracks: Approach and Results 63

ϕ(1) (r, θ, z1) = −
∞∑

n=0

cos nθ

∫ ∞

0
Bn(λ)e−λz1 Jn(λr)

dλ

λ
,

F (1)(r, θ, z1) =
∞∑

n=0

cos nθ

∫ ∞

0
An(λ)e−λz1 Jn(λr)dλ,

ϕ
(1)
3 (r, θ, z3) =

∞∑

n=1

sin nθ

∫ ∞

0
Cn(λ)e−λz3 Jn(λr)

dλ

λ
,

ϕ(2)(r, θ, z1) =
∞∑

n=0

cosnθ

∫ ∞

0

[
B(1)
n (λ) sinh λ(h1 + z1)

+ B(2)
n (λ) cosh λ(h1 + z1)

]
Jn(λr)

dλ

λ sinh λh1
,

F (2)(r, θ, z1) =
∞∑

n=0

cos nθ

∫ ∞

0

[
A(1)
n (λ) cosh λ(h1 + z1)

+ B(2)
n (λ) sinh λ(h1 + z1)

]
Jn(λr)

dλ

sinh λh1
,

ϕ
(2)
3 (r, θ, z3) =

∞∑

n=1

sin nθ

∫ ∞

0

[
C (1)
n (λ) cosh λ(h3 + z3)

+ C (2)
n (λ) sinh λ(h3 + z3)

]
Jn(λr)

dλ

λ sinh λh3
,

h j = n−1/2
j h, j = 1, 3.

(4.27)

In expressions (4.27), An , Bn , Cn , A(k)
n , B(k)

n , and C (k)
n (k = 1, 2) are unknown func-

tions that are to be determined. It should be noted that the presentation of potential
functions as (4.27) ensures that conditions (4.14) are satisfied.

Substitute expressions (4.26) and (4.27) into boundary conditions (4.15). Then,
from the conditions presented in the second and fourth lines of (4.15), which are set
on all planes y3 = −h, y3 = 0, we obtain six relations linking nine functions An , Bn ,
Cn , An

(i), B(i)
n , and C (i)

n (i = 1, 2)
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B(1)
n (λ) = μ1A(2)

n (λ) +
(
1 − d2

d1

)
A(1)
n (λ),

B(2)
n (λ) = μ1A(1)

n (λ) +
(
1 − d2l2

d1l1

)
A(2)
n (λ), C (2)

n (λ) = 0,

An (λ) =
[μ1

k
(1 + cothμ1 ) − 1

]
A(1)
n (λ)

+
[μ1

k
(1 + cothμ1 ) + 1

]
A(2)
n (λ) ,

Bn (λ) =

[ (
1 − d2l2

d1l1

)
μ1

k
(1 + cothμ1 )

−
(
1 − d2

d1

)
− μ1cothμ1

]
A(1)
n (λ)

+
[ (

1 − d2l2
d1l1

)
μ1

k
(1 + cothμ1 )

+
(
1 − d2l2

d1l1

)
− μ1

]
A(2)
n (λ) ,

Cn(λ) = −C (1)
n (λ), μ1 = λh1, k = d2 (l1 − l2)

d1l1
.

(4.28)

From the remaining boundary conditions (the first and the third lines in (4.15)),
taking into account the following relations (Watson 1995)

2n

λr
Jn (λr) = Jn−1 (λr) + Jn+1 (λr) ,

2
∂ Jn (λr)

∂ (λr)
= Jn−1 (λr) − Jn+1 (λr) ,

and equating to zero the relations at cos nθ , sin nθ , we obtain (individually for each
nth harmonic in coordinate θ ) the system of paired integral equations

∫ ∞

0

{
n−1/2
1 d1

[
μ1A

(1)
n + (k + μ1cothμ1 ) A(2)

n

] − n−1/2
3 C (1)

n

}

× Jn+1 (λr) λdλ = − 1

C44

[
τ (n)
r (r) + τ

(n)
θ (r)

]
, r �a,

∫ ∞

0

{
n−1/2
1 d1

[
μ1A

(1)
n + (k + μ1cothμ1 ) A(2)

n

] + n−1/2
3 C (1)

n

}

× Jn−1 (λr) λdλ = 1

C44

[
τ (n)
r (r) − τ

(n)
θ (r)

]
, r �a,

∫ ∞

0

[
(k − μ1coth 1 ) A(1)

n − μ1A
(2)
n

]
Jn (λr) λdλ

= − σ (n) (r)

C44d1l1
, r � a,

∫ ∞

0
X1 Jn+1 (λr) dλ = 0, r > a,

∫ ∞

0
X2 Jn−1 (λr) dλ = 0, r > a,

∫ ∞

0
X3 Jn (λr) dλ = 0, r > a,

(4.29)
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where the following notations are used

X1 =
(
1 − d2l2

d1l1

)
(1 + cothμ1 )

[μ1

k
A(1)
n +

(
1 + μ1

k

)
A(2)
n

]

− C (1)
n (1 + cothμ3 ) ,

X2 =
(
1 − d2l2

d1l1

)
(1 + cothμ1 )

[μ1

k
A(1)
n +

(
1 + μ1

k

)
A(2)
n

]

+ C (1)
n (1 + cothμ3 ) ,

X3 = 2

(
1 − d2l2

d1l1

)[(
1 − μ1

k

)
A(1)
n − μ1

k
A(2)
n

]
(1 + cothμ1 ) .

(4.30)

To solve the system of paired equations (4.29), in accordance with the substitution
method (Uflyand 1977), we present X1, X2, and X3, given by (4.30) in the form that
provides the identical satisfaction of those parts of the system of paired equations
which are specified in the range r > a. Now, we introduce new unknown functions
ϕ(t), ψ(t), and ω(t), which are continuous along with their first derivatives in the
segment [0, a], and represent via these functions the expressions X j ( j = 1, 2, 3) as

X1 =
√

π

2
λ3/2

∫ a

0

√
tϕ (t) Jn+1/2 (λt) dt

=
√

πλ

2

∫ a

0
ϕ̃(t)

[
a−n+1/2 Jn−1/2 (λa) − t−n+1/2 Jn−1/2 (λt)

]
dt,

X2 =
√

πλ

2

∫ a

0

√
tψ(t)Jn−1/2 (λt)dt,

X3 =
√

πλ

2

∫ a

0

√
tω(t)Jn+1/2 (λt)dt

=
√

π

2λ

∫ a

0
ω̃(t)

[
a−n+1/2 Jn−1/2 (λa) − t−n+1/2 Jn−1/2 (λt)

]
dt,

ϕ̃(t) ≡ d

dt
[tnϕ(t)] , ω̃(t) ≡ d

dt
[tnω(t)] .

(4.31)

ByusingWeber–Schafheitling discontinuous integral (Bateman andErdelyi 1953)

∫ ∞

0

√
λJn+1/2 (λa) Jn (λt) =

⎧
⎨

⎩

0, 0 � a < t√
2

π

t

an+1/2
√
a2 − t2

, 0 < t < a
(4.32)

and differentiation formulas for Bessel functions (Watson 1995)

t−n d

dt

[
tn Jn(λt)

] = λJn−1(λt), tn
d

dt

[
t−n Jn(λt)

] = −λJn+1(λt), (4.33)

it can be shown that the three last equations in system (4.29) (for the range r > a) are
satisfied identically. Then, from the remaining three equations in (4.29) (for the range
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r � a) we obtain Fredholm integral equations of the second kind (the procedure is
shown in more detail in Bogdanov et al. (2017)):

(sk + q) f1 (ξ) + (sk − q) f2 (ξ) + 4

π

∫ 1

0
f1 (η) K11 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K12 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K13 (ξ, η) dη

= 8ξ

π

∫ π/2

0
ν′
1(ξsin θ)dθ, 0 � ξ, η � 1,

(sk − q) f1 (ξ) + (sk + q) f2 (ξ) + 4

π

∫ 1

0
f1 (η) K21 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K12 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K23 (ξ, η) dη

= 8ξ

π

∫ π/2

0
ν′
2(ξsin θ) dθ, 0 � ξ, η � 1,

sk f3 (ξ) + 4

π

∫ 1

0
f1 (η) K31 (ξ, η) dη + 4

π

∫ 1

0
f2 (η) K32 (ξ, η) dη

4

π

∫ 1

0
f3 (η) K33 (ξ, η) dη = −8ξ

π

∫ π/2

0
u′(ξsin θ)dθ,

0 � ξ, η � 1, s = n−1/2
1 d21 l1

d1l1 − d2l2
, q = n−1/2

3 .

(4.34)

The following dimensionless variables and functions are introduced in (4.34):

ξ = x

a
, η = t

a
, β = h

a
,

f1(ξ) = a−n−1ϕ̃(x)

= a−n−1 d

dx
[xnϕ (x)] ,

f2 (ξ) = a−n−1xnψ (x) ,

f3 (ξ) = a−nω̃(x)

= a−n d

dx
[xnω (x)] ,

u (ξ) = ξ n

C44l1
√
n1

σ (n)(aξ),

ν1 (ξ) = ξ 2n

C44

∫ ξ

0
ρ−nτ (n)

r (aρ) dρ,

ν2 (ξ) = 1

C44

∫ ξ

0
ρnτ (n)

r (aρ) dρ.

(4.35)
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The kernels in (4.34) are of the form Bogdanov et al. (2017):

K22 (ξ, η) = 2sknβ1ξ
n−1η−n−1Sn (z11) + 4s

k
nβ3

1ξ
n−2 η−n−2

z211 − 1

×
{[(

8

z211 − 1
+ n (n − 1) + 6

)
4β2

1

ξη
− 6z11

]
Sn (z11)

+ (n − 1)

[
3
(
z211 − 1

) + 16β2
1 z11

ξη

]
Pn (z11)

}

−2snβ1ξ
n−2η−n−2

[(
ξη − 8β2

1 z11
z211 − 1

)
Sn (z11) + 4β2

1 (n − 1) Pn (z11)

]

+2qnβ3ξ
n−1η−n−1Sn (z13) , (4.36)

etc., where

β j = βn−1/2
j = h

a
n−1/2
j = h j

a
, z1 j = 4β2

j + ξ 2 + η2

2ξη
, j = 1, 3,

Sn (z) = Qn (z) − zQn−1(z)

4
(
z2 − 1

) , Pn (z) = Qn−1(z)

4
(
z2 − 1

) ,

Qn(z) is Lagrange function of the second kind. The geometric parameter β = ha−1

is the dimensionless distance from the crack to the boundary surface of the body.
In the similar way, axisymmetric problems on a semi-infinite body containing

near-surface mode I, mode II, and mode III cracks can be reduced to Fredholm
integral equations of the second kind (Bogdanov et al. 2017; Nazarenko et al. 2000).

So, for the axisymmetric problem on mode I crack in a semi-infinite pre-stressed
body, when normal stresses of σ(r) intensity act on crack faces, in the case of equal
roots we obtain such system of Fredholm integral equations of the second kind

f (ξ) + 4

πk

∫ 1

0
f (η) K11 (ξ, η) dη − 4

πk

∫ 1

0
g (η) K12 (ξ, η) dη

= − 4

πk

∫ π/2

0
s(ξsin θ) dθ,

g (ξ) + 4

πk

∫ 1

0
f (η) K21 (ξ, η) dη − 4

πk

∫ 1

0
g (η) K22 (ξ, η) dη = 0,

s (ξ) = ξ

C44d1l1
σ(aξ),

(4.37)

with the kernels
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K11 (ξ, η) = −
[
k

2
I1 (2β1, η) + β1 I2 (2β1, η) + β2

1

k
I3 (2β1, η)

]
,

K12 (ξ, η) = β2
1

k

[
η−1 I2 (2β1, η) − I2 (2β1, 1)

]
,

K21 (ξ, η) = −β2
1

k
ξ I4 (2β1, η) ,

K22 (ξ, η) =
ξ

{
k

2

[
η−1 I1 (2β1, η) − I1 (2β1, 1)

]

− β1
[
η−1 I2 (2β1, η) I2 (2β1, 1)

]

+ β2
1

k

[
η−1 I3 (2β1, η) − I3 (2β1, 1)

]}
.

(4.38)

The following notations are introduced in the expressions for the kernels (4.38):

I1 (β, η) = β

2ξη
[
ζ 2(η) − 1

] ,

I2 (β, η) = I1 (β, η)

[
4ζ(η)I1 (β, η) − 1

β

]
,

I3 (β, η) = 4I 21 (β, η)

{
2

[
3ζ 2(η) + 1

]
I1 (β, η) − 3ζ(η)

β

}
,

I4 (β, η) =
12I 21 (β, η)

{
16ζ(η)

[
ζ 2(η) + 1

]
I 21 (β, η)

− 4

β

[
3ζ 2(η) + 1

]
I1 (β, η) + ζ(η)

β2

}
,

ζ(η) = β2 + ξ 2 + η2

2ξη
.

(4.39)

For the axisymmetric problem on mode II crack in a semi-infinite pre-stressed
body, when radial shear stresses of τr (r) intensity act on crack faces, in the case
of equal roots we obtain such system of Fredholm integral equations of the second
kind:

f (ξ) + 4

πk

∫ 1

0
f (η) K11 (ξ, η) dη − 4

πk

∫ 1

0
g (η) K12 (ξ, η) dη = 0,

g (ξ) + 4

πk

∫ 1

0
f (η) K21 (ξ, η) dη− 4

πk

∫ 1

0
g (η) K22 (ξ, η) dη

= − 4ξ

πk

∫ π/2

0
q ′(ξsin θ) dθ,

q (ξ) =
√
n1ξ

C44d1
τr (aξ),

(4.40)
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where the kernels are of the form (4.38).
For the axisymmetric problem on mode III crack in a semi-infinite pre-stressed

body, when tangent torsional loads of τθ (r) intensity are applied to the crack faces
antisymmetrically in respect of the plane of crack location, we obtain Fredholm
integral equation of the second kind:

f (ξ) − 1

π

∫ 1

0
f (η) K (ξ, η) dη = 4ξ

π

∫ π/2

0
t ′(ξsin θ) dθ,

t (ξ) =
√
n3ξ

C44
τθ (aξ),

(4.41)

where

K (ξ, η) = 8β3ξ
2

[
1

(
4β2

3 + ξ 2 + η2
)2 − 4ξ 2η2

− 1
(
4β2

3 + ξ 2 + 1
)2 − 4ξ 2

]

.

(4.42)

4.4.2 Body with Two Parallel Circular Cracks

Now, we will show the results for the case of non-equal roots of the characteristic
equation (n1 �= n2); the procedures for non-equal roots (n1 = n2) are carried out
similarly.

By performing procedures similar to those presented in the previous subsection,
for the non-axisymmetric problem on a pre-stressed body containing two parallel
coaxial circular mode I cracks, we obtain such system of Fredholm integral equations
of the second kind

(
s
k

k1
+ q

)
f1 (ξ) +

(
s
k

k1
− q

)
f2 (ξ) + 4

π

∫ 1

0
f1 (η) K11 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K12 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K13 (ξ, η) dη = 0,

(
s
k

k1
− q

)
f1 (ξ) +

(
s
k

k1
+ q

)
f2 (ξ) + 4

π

∫ 1

0
f1 (η) K21 (ξ, η) dη

+ 4

π

∫ 1

0
f2 (η) K22 (ξ, η) dη + 4

π

∫ 1

0
f3 (η) K23 (ξ, η) dη = 0,

s
k

k2
f3 (ξ) + 4

π

∫ 1

0
f1 (η) K31 (ξ, η) dη + 4

π

∫ 1

0
f2 (η) K32 (ξ, η) dη

+ 4

π

∫ 1

0
f3 (η) K33 (ξ, η) dη = 8ξ

π

∫ π/2

0
u′(ξsin θ) dθ,

(4.43)

where
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u (ξ) = k1ξ
n

C44k2
σ (n)(aξ), s = n−1/2

2 d1d2l1
d1l1 − d2l2

,

q = n−1/2
3 , k1 = l1

√
n2, k2 = l2

√
n1, k = k1 − k2

(4.44)

The kernels in (4.43) are of the form Bogdanov et al. (2017)

K12 (ξ, η) = 2nξ n−1η−n−1

[
− sk2

k1
β1Sn (z11) + sβ2Sn (z12) − qβ3Sn (z13)

]

+ √
π

�(n + 1)

�(n + 1
2 )

ξ 2n

[
− sk2

k1
Rn (2β1, η) + sRn (2β2, η) − qRn (2β3, η)

]
,

(4.45)

etc., where

β j = βn−1/2
j = h

a
n−1/2
j = h j

a
, z1 j = 4β2

j + ξ 2 + η2

2ξη
, j = 1, 2, 3,

Sn (z) = Qn (z) − zQn−1(z)

4
(
z2 − 1

) , Rn (b, η) = b

4
(
b2 + η2

)n+1 ,

Qn(z) is Legendre function of the second kind, and �(n) is gamma function. Here
the geometric parameter β = ha−1 is the dimensionless half-distance between the
cracks.

The procedure of solving axisymmetric problems will be exemplified by the prob-
lem on a body containing two mode I cracks, for which boundary conditions are of
the form (4.20). The harmonic potential functions involved in (4.8) will be presented
as Hankel integral expansions

ϕ
(1)
1 (r, z1) =

∫ ∞

0
A (λ) e−λz1 J0 (λr)

dλ

λ
,

ϕ
(1)
2 (r, z2) =

∫ ∞

0
B (λ) e−λz2 J0 (λr)

dλ

λ
,

ϕ
(2)
1 (r, z1) =

∫ ∞

0
[C1 (λ) cosh λ (z1 + h1)

+C2 (λ) sinh λ (z1 + h1)] J0 (λr)
∂λ

λsinhμ1
,

ϕ
(2)
2 (r, z2) =

∫ ∞

0
[D1 (λ) cosh λ (z2 + h2)

+ D2 (λ) sinh λ (z2 + h2)]J0 (λr)
∂λ

λsinhμ2
,

(4.46)

where A, B, Ck , and Dk (k = 1, 2) are unknown functions that are to be determined;
μk = λhk = λhnk−1/2.

Substitute expressions (4.46) into boundary conditions (4.20). Then, from the
conditions presented in the second and fourth lines of (4.20), which are set on all
planes y3 = −h, y3 = 0, we obtain four relations linking six functions A, B, Ck , and
Dk (k = 1, 2)
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A (λ) = 1

k

[
(k2 + k1cothμ1 )C1 (λ) + d2l2

d1l1
k1 (1 + cothμ2 ) D1 (λ)

]
,

B (λ) = −1

k

[
d1l1
d2l2

k2 (1 + cothμ1 )C1 (λ) + (k1 + k2cothμ2 ) D1 (λ)

]
,

C2 (λ) = 0, D2 (λ) = 0.

(4.47)

From the remaining boundary conditions (4.20), the following system of paired
(dual) integral equations is obtained

∫ ∞

0
[d1l1cothμ1 C1 (λ) + d2l2cothμ2 D1 (λ)] J0 (λr) λdλ = −σ (r)

C44
,

r � a,∫ ∞

0

[
n−1/2
1 d1C1 (λ) + n−1/2

2 d2D1 (λ)
]
J1 (λr) λdλ = 0, r � a,

∫ ∞

0
X1 J0 (λr) dλ = 0, r > a,

∫ ∞

0
X2 J1 (λr) dλ = 0, r > a,

(4.48)

where

X1 = d1l1
d2l2

(1 + cothμ1 )C1 (λ) + (1 + cothμ2 ) D1 (λ) ,

X2 = d1
d2

√
n2
n1

(1 + cothμ1 )C1 (λ) + (1 + cothμ2 ) D1 (λ) .

Functions X1 and X2 are presented in the form permitting two last equations in
(4.48) (for the range r > a) to be satisfied identically, viz.,

X1 =
√

πλ

2

∫ a

0

√
tϕ (t) J1/2 (λt) dt

=
∫ a

0
ϕ(t) sin λt dt,

X2 =
√

πλ

2

∫ a

0

√
tψ (t) J3/2 (λt) dt,

(4.49)

where ϕ(t) and ψ(t) are unknown functions continuous along with their first deriva-
tives in the segment [0, a]. In that case, from the first two equations in (4.48) we
obtain the system of Fredholm integral equations of the second kind

f (ξ) + 2

πk

∫ 1

0
f (η) K11 (ξ, η) dη + 2

πk

∫ 1

0
g (η) K12 (ξ, η) dη

= − 4

π

∫ π/2

0
s (ξsin θ) dθ,

g (ξ) + 2

πk

∫ 1

0
f (η) K21 (ξ, η) dη + 2

pk

∫ 1

0
g (η) K22 (ξ, η) dη = 0,

(4.50)
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where

f (ξ) ≡ a−1ϕ (aξ) , g (ξ) ≡ a−1 d

dξ
[ξψ (aξ)] ,

s (ξ) = ξ

C44d2l2
σ (aξ) .

(4.51)

The kernels are of the form:

K11 (ξ, η) = k1 I1 (2β1, η) − k2 I1 (2β2, η) ,

K12 (ξ, η) = k1
{
[I0 (2β1, 1) − I0 (2β2, 1)]

− η−1 [I0 (2β1, η) − I0 (2β2, η)]
}
,

K21 (ξ, η) = −k2ξ [I2 (2β1, η) − I2 (2β2, η)] ,

K22 (ξ, η) = −ξ
{
[k2 I 1 (2β1, 1) − k1 I1 (2β2, 1)]

− η−1 [k2 I 1 (2β1, η) − k1 I1 (2β2, η)]
}
,

(4.52)

where

I0 (β, η) = 1

4
ln

ζ (η) + 1

ζ (η) − 1
,

I1 (β, η), I2 (β, η), and ζ (η) are determined from (4.39), and k1, k2, and k—from
(4.44).

Byperforming similar procedures for the axisymmetric problemonmode II cracks
in an unbounded body the following system of Fredholm integral equations of the
second kind is obtained

f (ξ) − 2

πk

∫ 1

0
f (η) K11 (ξ, η) dη − 2

πk

∫ 1

0
g (η) K12 (ξ, η) dη = 0,

g (ξ) − 2

πk

∫ 1

0
f (η) K21 (ξ, η) dη − 2

πk

∫ 1

0
g (η) K22 (ξ, η) dη

= 4

π
ξ

∫ π/2

0
q ′ (ξsin θ ) dθ,

(4.53)

where

q (ξ) =
√
n2ξ

C44d2
τr (aξ) , (4.54)

and the kernels are determined from (4.52).
For the axisymmetric problem on mode III cracks in an unbounded body, such

Fredholm integral equation of the second kind is obtained

f (ξ) + 1

π

∫ 1

0
f (η) K (ξ, η) dη = 4ξ

π

∫ π/2

0
t ′(ξsin θ) dθ,

t (ξ) =
√
n3ξ

C44
τθ (aξ),

(4.55)

where the kernel is of the form (4.42).
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4.5 Stress Intensity Factors

Now we analyze the asymptotic distribution of stresses in the vicinities of crack
edges in the investigated pre-stressed bodies containing cracks and determine stress
intensity factors (SIFs), which like those in classical fracturemechanics (Cherepanov
1979; Kassir and Sih 1975) are coefficients at singularities in the stress distributions
mentioned when approaching crack edges.

4.5.1 Half-Space with a Near-Surface Circular Crack

The procedure of determining stress intensity factors for the non-axisymmetric prob-
lem on a body with a near-surface circular crack will be considered in more detail.

From the representations of stresses via harmonic potential functions (4.9), given
(4.27), (4.28), and (4.30), we obtain expressions for stress tensor components Q′

33,
Q′

3r , and Q′
3θ in the domain y3 = 0, r > a (i.e., in the plane of crack location, outside

its contour, in subdomain “2”). For Q′
33 we have

Q′(2)
33 (r, θ, 0) = 1

4C44skl1
√
n1

∞∑

n=0

cos nθ

{∫ ∞

0
X3 Jn(λr)λdλ

− 2

k2

∫ ∞

0

[
μ2
1 (X1 + X2) +

(
k2

2
+ μ2

1 + μ1k

)
X3

]
e−2μ1 Jn(λr)λdλ

}
.

(4.56)

The analysis of expression (4.56) implies that the singularity when r → a only
involves the first integral in the braces since in the second integral in the braces,
as follows from the corresponding formulas of Bessel function integrals (Prudnikov
et al. 1986b), this singularity is absent. In this connection, the first integral in braces in
(4.56) will be analyzed in more detail. Given expressions (4.31) and formulas (4.33),
performing integration by parts and taking into account the value of discontinuous
integral (4.32), we obtain

∫ ∞

0
X3 Jn(λr)λdλ

=
√

π

2

∫ ∞

0

[∫ a

0

√
tω (t) λJn+1/2 (λt) dt

]
Jn(λr)

√
λdλ

= − anω (a)

rn
√
r2 − a2

+
∫ a

0

ω̃ (t) dt

rn
√
r2 − t2

. (4.57)

The integral
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∫ a

0

ω̃ (t) dt

rn
√
r2 − t2

does not have singularities when r → a (Prudnikov et al. 1986a). Then from (4.56)
and (4.57), taking into account the expression

ω (t) = t−n
∫ t

0
ω̃ (t) dt,

we obtain

Q′(2)
33 (r, θ, 0) = − 1

4C44skl1
√
n1

∞∑

n=0

cos nθ

×
[∫ a

0
ω̃ (t) dt

]
r−n

√
(r − a) (r + a)

+ O(1), (4.58)

where symbol O(1) denotes regular components that do not have singularities when
r → a.

Performing a similar analysis for other stress tensor components in the plane of
crack location, we obtain

Q′(2)
3r (r, θ, 0) = 1

4C44sk
∞∑

n=0

cos nθ
r−n+1

√
(r − a) (r + a)

×
[
ϕ̃(a)

a
+ an−1ψ(a)

]
+ O(1), (4.59)

Q
′(2)
3θ (r, θ, 0) = 1

4C44q
∞∑

n=1

sin nθ
r−n+1

√
(r − a) (r + a)

×
[
ϕ̃(a)

a
− an−1ψ(a)

]
+ O(1). (4.60)

Expressions (4.58)–(4.60) can be written as

Q′(2)
33 (r, θ, 0) = KI√

2π(r − a)
+ O(1),

Q′(2)
3r (r, θ, 0) = KI I√

2π(r − a)
+ O(1),

Q′(2)
3θ (r, θ, 0) = KI I I√

2π(r − a)
+ O(1).

(4.61)

In (4.61), stress intensity factors (SIFs) are expressed by the following relations
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KI = − 1
4C44skl1

√
n1

√
π

a

∞∑

n=0

cos nθ

[
a−n

∫ a

0
ω̃ (t) dt

]

= − 1
4C44skl1

√
n1

√
πa

∞∑

n=0

cos nθ

∫ 1

0
f3 (η) dη,

KI I = 1
4C44sk

√
π

a

∞∑

n=0

cos nθ

{
a−n+1

[
ω̃ (a)

a
+ an−1ψ (a)

]}

= 1
4C44sk

√
πa

∞∑

n=0

cos nθ [ f1 (1) + f2 (1)] ,

KI I I = 1
4C44q

√
πa

∞∑

n=1

sin nθ

{
a−n+1

[
ω̃ (a)

a
− an−1ψ (a)

]}

= 1
4C44q

√
πa

∞∑

n=1

sin nθ [ f1 (1) − f2 (1)] ,

(4.62)

where functions f1 (ξ), f2 (ξ), and f3 (ξ) are determined by solving the system of
Fredholm integral equations (4.34).

Expressions (4.61) and (4.62) imply that the order of singularity in stresses distri-
bution in the vicinity of a near-surface crack edge in a semi-infinite pre-stressed body
is −1/2, i.e., it coincides with the order of singularity in stresses distribution near
the crack edge in a body free of initial stresses (Kassir and Sih 1975). In addition,
it follows from (4.62) that the mutual influence of a near-surface crack and mate-
rial’s free surface causes qualitative changes in the asymptotic distribution of stresses
near the crack edge, viz., non-zero values of KI I and KI I I in the case of loading
crack faces only by normal forces (when σ (r, θ) �= 0, τr (r, θ) = τθ (r, θ) = 0) (in
the problem on a body containing an isolated mode I crack KI �= 0, KI I = 0, and
KI I I = 0 (Bogdanov et al. 2017)) and non-zero values of KI in the case when only
tangent shear forces τr (r, θ) act on crack faces (for such scheme of loading the faces
of an isolated crack in an unbounded body, it was KI = 0, KI I �= 0, and KI I I = 0
(Bogdanov et al. 2017)). Besides, it can be seen from expressions (4.62) that all three
SIFs depend on initial stresses, since parametersC44, s, k, q, l1, and n1 depend on the
elongation (contraction) coefficient λ1, which, in turn, is determined by the action
of initial stresses S011 = S022.

Analyze the limit case of mode I crack location, when the distance between
the crack and half-space boundary tends to infinity. It follows from the analysis of
expressions (4.36) for the kernels of integral equations (4.34) that when β → ∞, all
the kernels in the limit become zero. Then (4.34) implies

f ∞
1 = f ∞

2 = 0,

f ∞
3 = − 8

πsk
ξ

∫ π/2

0
u′ (ξsin θ ) dθ,

f ∞
j ≡ lim

β→∞ f j , j = 1, 2, 3.

(4.63)
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From (4.63), taking into account (4.35) and performing the change of variables
η = ξsin θ , we obtain

f ∞
3 = − 8

πC44skl1
√
n1

d

dξ

∫ ξ

0

ηn+1σ (n)(aη)
√

ξ 2 − η2
dη.

Then, we have from (4.62)

K∞
I ≡ lim

β→∞ KI

= 2

√
a

π

∞∑

n=0

cos nθ

∫ 1

0

ηn+1σ (n) (aη)
√
1 − η2

dη

= 2√
πa

∞∑

n=0

cos nθ

an

∫ a

0

tn+1σ (n) (t)√
a2 − t2

dt,

K∞
I I = 0,

K∞
I I I = 0,

(4.64)

where Fourier coefficients σ (n)(x) (n = 0, 1, 2, . . . ) are determined from relations
(4.26) via the normal load acting on the crack faces.

As can be seen, in this case SIFs do not depend on initial stresses and entirely
coincide with the values obtained in the non-axisymmetric problem on a mode I
crack in an infinite pre-stressed body (Bogdanov et al. 2017). In particular, when
normal loads of the form

σ (r, θ) = σ1cos θ (4.65)

are applied to crack faces, we obtain

K∞
I = 1

2

√
πaσ1cos θ , K∞

I I = 0, K∞
I I I = 0. (4.66)

It should be noted that the values of SIFs obtained by solving the problem on a
pre-stressed body containing a near-surface mode I crack in the limit case of crack
location, when the distance between it and the half-space boundary tends to infinity
(those SIF values are given by expressions (4.64) and (4.66)) also entirely coincide
with the values of SIFs which were obtained in the non-axisymmetric problem on
an infinite body with a penny-shaped mode I crack within fracture mechanics of
materials free of initial stresses (Kassir and Sih 1975).

By performing similar procedures in the case of axisymmetric problem on a half-
space containing a near-surface mode I crack (Bogdanov et al. 2017), we obtain such
expressions for stress tensor components near the crack edge:
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Q′(2)
33 (r, 0) = KI√

2π(r − a)
+ O(1),

Q′(2)
3r (r, 0) = KI I√

2π(r − a)
+ O(1),

Q′(2)
3θ (r, 0) = 0.

(4.67)

In (4.67), SIFs are determined from the expressions

KI = − 1
2C44kd1l1

√
πa f (1),

KI I = − 1
2C44kd1n

−1/2
1

√
πa

∫ 1

0
g (η) dη,

KI I I = 0,

(4.68)

where functions f and g are determined by solving the system of Fredholm integral
equations (4.37). It can also be shown that in the limit case of crack location, when
the distance between the crack and the half-space boundary tends to infinity, we have

K∞
I = 2

√
a

π

∫ 1

0

ηs(η)
√
1 − η2

dη = 2√
πa

∫ a

0

tσ(t)√
a2 − t2

dt,

K∞
I I = 0,

K∞
I I I = 0.

(4.69)

In particular, when uniform normal pressure of the form

σ (r) = σ = const, (4.70)

acts on crack faces, we have from (4.69)

K∞
I = 2σ

√
a

π
. (4.71)

In the case of the axisymmetric problem on a half-space containing a near-surface
mode II crack, SIFs are of the form (4.68), where functions f and g are determined
by solving the system of Fredholm integral equations (4.40). In the limit case of
crack location, when the distance between the crack and the half-space boundary
tends to infinity, we have

K∞
I = 0,

K∞
I I = 2

√
a

π

∫ 1

0

η2q(η)
√
1 − η2

dη = 2

a
√

πa

∫ a

0

t2τr (t)√
a2 − t2

dt,

K∞
I I I = 0.

(4.72)

In particular, when a uniform shear load of the form
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τr (r) = τ = const, (4.73)

acts on the crack faces, we have from (4.72)

K∞
I I = τ

2

√
πa. (4.74)

In the case of the axisymmetric problem on a half-space containing a near-surface
mode III crack, SIFs are of the form Bogdanov et al. (2017):

KI = 0, KI I = 0, KI I I = 1
2C44n

−1/2
3

√
πa

∫ 1

0
f (η) dη, (4.75)

where function f is determined by solving Fredholm integral equation (4.41). In the
limit case of crack location, when the distance between the crack and the half-space
boundary tends to infinity, we have

K∞
I = 0,

K∞
I I = 0,

K∞
I I I = 2

√
a

π

∫ 1

0

η2t (η)
√
1 − η2

dη = 2

a
√

πa

∫ a

0

t2τθ (t)√
a2 − t2

dt .
(4.76)

In particular, when a uniform torsional load of the form

τθ (r) = τ = const (4.77)

acts on the crack faces, we have from (4.76)

K∞
I I I = τ

2

√
πa. (4.78)

It should be noted that from the analysis of the asymptotic distribution of stresses
in the vicinity of the near-surface crack edge we can make conclusions concern-
ing the order of singularities near the crack edges, the influence of initial stresses on
stress intensity factors, as well as the effect of crack interaction with the body bound-
ary, which are similar to those made in the consideration of the non-axisymmetric
problem.

4.5.2 Body with Two Parallel Circular Cracks

For the non-axisymmetric problem on a pre-stressed body containing two paral-
lel coaxial mode I cracks, in the case of non-equal roots (n1 �= n2) we obtain the
asymptotic distribution of stress tensor components as (4.61) with SIFs of the forms
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KI = C44
sk

4k1

√
πa

∞∑

n=0

cos nθ

∫ 1

0
f3 (η) dη,

KI I = C44
sk

4k1

√
πa

∞∑

n=0

cos nθ [ f1 (1) + f2 (1)] ,

KI I I = 1
4C44q

√
πa

∞∑

n=1

sin nθ [ f1 (1) − f2 (1)] ,

(4.79)

where functions f1 (ξ), f2 (ξ), and f3 (ξ) are determined by solving the system of
Fredholm integral equations (4.43). It is seen from (4.79) that the effect of mutual
influence of two parallel coaxial cracks in a pre-stressed body is evident in the
appearance of non-zero values of KI I

∞ and KI I I
∞ only under the action of a normal

load on crack faces. It can also be shown that when the distance between cracks tends
to infinity, in the limit we obtain the values of SIFs KI

∞, KI I
∞, and KI I I

∞ as (4.64)
(while for the special case of a non-axisymmetric normal load acting on crack faces
(4.65) the values of SIFs are of the form (4.66)), which corresponds to physical
considerations.

For the axisymmetric problem on two parallel coaxial mode I cracks located in a
pre-stressed body,we obtain expressions for stress tensor components in the vicinities
of cracks as (4.67), where SIFs are presented by the expressions

KI = − 1
2C44d2l2 f (1),

KI I = 1
2C44d2n

−1/2
2

∫ 1

0
g (η) dη,

KI I I = 0,

(4.80)

while functions f and g are determined by solving the system of Fredholm integral
equations (4.50). In the limit case of cracks location, when the distance between
them tends to infinity, we arrive at the values of SIFs of the form (4.69) (and in the
special case of the load acting on cracks faces as (4.70), KI

∞ is of the form (4.71)).
By solving the axisymmetric problem on two parallel coaxial mode II cracks

located in a pre-stressed body we obtain expressions for SIFs in the form of (4.79),
where functions f and g are determined from the solution of the system of Fredholm
integral equations (4.53). In the limit case of cracks location, when the distance
between them tends to zero, we arrive at the values of SIFs as (4.72) (while in the
special case of the load on cracks faces (4.73), KI I

∞ is of the form of (4.74)).
Finally, when considering the axisymmetric problem on a pre-stressed body con-

taining two parallel mode III cracks, we arrive at the values of SIFs as (4.75), where
functions f and g are determined from the solution of Fredholm integral equation
(4.55). In the limit case of cracks location, when the distance between them tends
to infinity, we obtain the values of SIFs as (4.76) (while in the special case of the
torsional load of the form (4.77) acting on cracks faces, the value of KI I I

∞ is of the
form (4.78)).
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Fig. 4.4 Dependence of
SIFs ratios KI /K∞

I on the
dimensionless distance
between the crack and the
boundary surface of the body
β = ha−1 for the
harmonic-type potential

4.6 Numerical Results

Below we present the results of numerical investigation for some highly elastic
materials and composites. The parameters of those materials, which are involved in
the resolving Fredholm integral equations of the second kind, and expressions for
stress intensity factors are given, e.g., in Bogdanov et al. (2017), Guz et al. (2020).

Highly elastic material with the elastic potential of harmonic type (a compressible
body, equal roots) (John 1960). Consider the results of numerical calculation for the
non-axisymmetric problem on a body containing a near-surface mode I crack, when
crack faces are under a normal tensile load of (4.65) form.

Figure 4.4 shows the dependence of the stress intensity factors (SIFs) ratios
KI /K∞

I on the dimensionless distance between the crack and the half-space bound-
ary β = ha−1 for the value of Poisson coefficient ν = 0.3. Here, K∞

I is determined
from (4.66) and corresponds to the SIF value in the problem on an isolated mode I
crack in an infinite pre-stressed body (this value, as shown in Sect. 4.5.1, coincides
with the SIF value in the problem on a mode I crack in a body free of initial stresses).
The dependences are given for the values of λ1 = 0.9 (initial compression), λ1 = 1.2
(initial tension) and λ1 = 1.0 (no initial stresses). It can be seen that the interaction
of the crack and the free body boundary increases substantially when the distance
between them decreases. E.g., for λ1 = 0.9 the value of KI/KI

∞ when β = 0.5 is
higher than the corresponding value of KI/KI

∞ when β = 2.0 by a factor of 1.7. On
the other hand, with the increase in the distance between the crack and the half-space
boundary this mutual influence weakens rapidly, and the respective values of SIFs
tend to the values obtained for an isolated crack in an infinite body. The precision
acceptable for practical calculations, the mutual influence between the crack and the
free surface can be neglected when the distance between them exceeds 2 crack radii.

Figure 4.5 illustrates the dependence of KI /KI
∞ on the parameter of initial

stresses λ1 for different values of Poisson coefficient ν when β = 0.5. As can be
seen from the figure, the compressibility of the material with harmonic-type poten-
tial, which is characterized by Poisson coefficient, noticeably influences the values
of SIFs. E.g., when λ1 = 0.95, β = 0.5, the value of KI /KI

∞ for ν = 0.5 exceeds
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Fig. 4.5 Dependence of
SIFs ratios KI /K∞

I on
elongation (or contraction)
ratio λ1 for different values
of Poisson’s ratio (the
harmonic-type elastic
potential)

Fig. 4.6 Dependence of
SIFs ratios KI /K∞

I on
elongation (or contraction)
ratio λ1 for the
harmonic-type potential

Fig. 4.7 Dependence of
SIFs ratios KI I /K∞

I on
elongation (or contraction)
ratio λ1 for the
harmonic-type potential

the value of KI /KI
∞ for ν = 0.1 by 12%, while for λ1 = 0.9, β = 0.5 these values

differ by a factor of 2.2.
Figures 4.6, 4.7, and 4.8 show, respectively, the dependences of KI /KI

∞,
KI I/KI

∞, and KI I I/KI
∞ on the parameter of initial elongation (contraction) λ1

at different values of geometric parameter β = ha−1 for the value of Poisson coeffi-
cient ν = 0.3. As the figures imply, SIFs considerably depend on initial stresses, with
the influence of contractive initial stresses being higher than that of tensile stresses.
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Fig. 4.8 Dependence of
SIFs ratios KI I I /K∞

I on
elongation (or contraction)
ratio λ1 for the
harmonic-type potential

Fig. 4.9 Dependence of the
critical values of relative
contraction ε1 on the
geometric parameter β for
the harmonic-type potential
(non-axisymmetric form of
stability loss)

The curves in Figs. 4.6, 4.7, and 4.8 have vertical asymptotes corresponding to
a sharp (resonance) increase of the stress intensity factors at certain values of the
initial contraction parameter λ1 < 1. According to the unified approach within the
linearized mechanics of deformable solid bodies, described in Sect. 4.1, this effect
permits determining the critical (limit) values of contraction parameters,which,when
achieved, cause local loss of material’s stability in the vicinity of the crack.

Figure 4.9 shows for different values of Poisson coefficient the dependences of the
values of relative critical contraction ε1 = 1 − λ1 corresponding to the local loss of
material’s stability in the vicinity of near-surface crack in the non-axisymmetric form
(the first harmonic in coordinate θ ) of the geometric parameter β = ha−1. The figure
implies that the mutual influence of the crack and the half-space boundary leads to
a substantial decrease in the values of ε1 and, respectively, in the critical contraction
stresses as compared to the case of a single isolated crack in an unbounded body
(in this case for the harmonic-type potential, critical contractions corresponding
to the non-axisymmetric form of stability loss are calculated by the formula ε1 =
(1 − ν)/2 (Guz et al. 1992, 2020)). At the same time, with an increase in the distance
between the crack and the half-space boundary this influence becomes weaker, and
corresponding critical parameters tend to the values obtained for the case of a single
crack in a body.
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Fig. 4.10 Comparing the
critical values ε1 in the cases
of the axisymmetric and
non-axisymmetric forms of
stability loss for the
harmonic-type potential

Figure 4.10 compares for the same material the dependences of ε1 on β that were
obtained from the solution of the axisymmetric problem (the axisymmetric form of
stability loss, solid line) and from the solution of the non-axisymmetric problem (the
non-axisymmetric form of stability loss, dashed line). It should be noted here that
the critical contractions corresponding to the axisymmetric form of stability loss are
calculated for the harmonic-type potential with the formula ε1 = 1/(2 + ν) (Guz
et al. 1992, 2020).

Highly elastic material with Bartenev–Khazanovich elastic potential (an incom-
pressible body, equal roots) (Bartenev and Khazanovich 1960). The results of inves-
tigating the axisymmetric problems on a pre-stressed body containing two parallel
coaxial cracks for this material are given here.

Figures 4.11 and 4.12 illustrate for mode I cracks, when forces of the form (4.70)
act on crack faces, the dependences of the ratios of stress intensity factors KI /KI

∞
and KI I /KI

∞, respectively, (here KI
∞ is determined from (4.71)) on the parameter

of initial stresses λ1 for different values of the dimensionless half-distance between
the cracks β = ha−1. It can be seen from the figures that SIFs KI , KI I significantly
depend on initial stresses. The curves shown in Figs. 4.11 and 4.12 have vertical
asymptotes that correspond to the effect of resonance nature, when the initial con-
traction stresses (and, correspondingly, the parameter of initial contraction λ1 < 1)
achieve the values at which the local loss of material’s stability occurs (in the form
symmetric with respect to the plane y3 = −h) in the vicinity of cracks under con-
traction along the cracks.

Figures 4.13 and 4.14 for mode II cracks, when forces of (4.73) form act on
crack faces, show, respectively, the dependences of the ratios of the SIFs KI I/KI I

∞
and KI /KI I

∞ (where KI I
∞ is determined from (4.74)) on the parameter of initial

stresses λ1 for different values of the dimensionless half-distance between the cracks)
β = ha−1. The figures demonstrate the significant influence of initial stresses on SIFs
KI and KI I .

In the domain of compressive initial stresses (λ1 < 1), the curves have vertical
asymptotes corresponding to the resonance SIF change occurring when the values
of initial compressive stresses tend to the values at which the local loss of material’s
stability in the vicinity of cracks occurs (in the antisymmetric in respect of plane
y3 = −h, or bending, form) under compression by forces directed along the cracks.
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Fig. 4.11 Dependence of
SIFs ratios KI /KI

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Fig. 4.12 Dependence of
SIFs ratios KI I /KI

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Fig. 4.13 Dependence of
SIFs ratios KI I /K∞

I I on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Here, it should be noted that the critical (limit) values of contraction parameters
λ1 < 1 for the antisymmetric (bending) form of stability loss are larger (and the crit-
ical (limit) compressive stresses, correspondingly, smaller) than the critical values
for the symmetric form of stability loss which were obtained above (see Figs. 4.11
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Fig. 4.14 Dependence of
SIFs ratios KI /KI I

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Table 4.1 Critical values of relative contraction ε1 = 1 − λ1 for Bartenev–Khazanovich potential

β 1/8 1/4 1/2 1 10

ε
(1)
1 0.304 0.307 0.307 0.307 0.307

ε
(2)
1 0.035 0.089 0.168 0.242 0.306

ε
(3)
1 0.010 0.039 0.117 0.224 0.306

and 4.12). This is clearly demonstrated in Table 4.1, which gives the values of rel-
ative critical (limit) contraction parameters ε1

(1) = 1 − λ1
(1) and ε1

(2) = 1 − λ1
(2)

at which the local loss of material’s stability occurs under compression along two
parallel coaxial cracks (values ε1

(1) correspond to the symmetric form of stability
loss, and ε1

(2)—to the antisymmetric (bending) form of stability loss). As can be
seen, in the entire range of β change, the values ε1

(2) < ε1
(1), i.e., stability loss for

this material takes place according to the bending form. It is also seen that at small
distances between cracks their mutual influence results in a significant decrease
of critical compression parameters. Yet, with increasing distance between cracks,
the relative critical contraction parameters tend to the value of ε1 = 0.307, which
for Bartenev–Khazanovich potential corresponds to the critical (limit) contraction
parameter in the case of a single isolated crack in an infinite body (Guz et al. 1992,
2020). Besides, this table shows the values of ε1

(3), which are relative critical con-
traction parameters obtained from the solution of the axisymmetric problem on com-
pression of a semi-bounded body containing a near-surface crack.

For mode III cracks, when the crack faces are under load (4.77), Fig. 4.15 shows
the dependences of the ratios of stress intensity factors KI I I/KI I I

∞ (where KI I I
∞

is determined from (4.78)) on initial stress parameters λ1 for different values of
geometric parameter β, which proves a significant influence of initial stresses on the
SIF KI I I . In this case, however, there are no effects of the resonance change of the
stress intensity factor, as opposed to the problems on mode I and mode II cracks,
since, evidently, under compression of the material containing two parallel cracks
there is no stability loss corresponding to the torsion problem.
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Fig. 4.15 Dependence of
SIFs ratios KI I I /KI I I

∞ on
elongation (or contraction)
ratio λ1 for
Bartenev–Khazanovich
potential

Fig. 4.16 Dependence of
SIFs ratios KI /KI

∞ on the
ratio of elastic moduli
E (1)/E (2) for a laminated
composite

Laminated two-component composite with isotropic layers (in macrovolumes,
that is a transversely isotropic medium (Khoroshun et al. 1993), a compressible
body, non-equal roots). For this material, the results of studying the axisymmetric
problem of a pre-stressed body containing two parallel coaxial mode I cracks are
presented.

Figure 4.16 shows that the ratios of stress intensity factors KI /KI
∞ increase

monotonously with the increase in the ratios of elastic moduli of the materials con-
taining composite layers E (1)/E (2) (the materials of the layers have identical Pois-
son’s ratios = 0.3). Besides, it can be seen that for the values of dimensionless
half-distance between the cracks β = 0.25 the corresponding values of KI /KI

∞
(solid lines) are smaller than for β = 0.5 (dashed lines).

Figure 4.17 illustrates the dependence of the ratio KI I/KI
∞ on E (1)/E (2). In

Figs. 4.16 and 4.17, lines 1 and 1’ correspond to λ1 = 0.99 (compressive initial
stresses), lines2 and2’—toλ1 = 1.0 (no initial stresses), lines3 and3’—toλ1 = 1.05
(tensile initial stresses).

Figure 4.18 shows the dependence of the KI /KI
∞ ratios on the glass concentra-

tion factor c1 for different values of initial stress parameters λ1, demonstrating the
influence of initial stresses and mechanical characteristics of the composite on the
values of stress intensity factors in the composition of aluminum/boron/silicate glass
layers with those of epoxy/maleic resin.
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Fig. 4.17 Dependence of
SIFs ratios KI I /KI

∞ on the
ratio of elastic moduli
E (1)/E (2) for a laminated
composite

Fig. 4.18 Dependence of
SIFs ratios KI /KI

∞ on the
glass concentration factor c1
for aluminum/boron/silicate
glass in epoxy/maleic resin

4.7 Conclusions

The results obtained in the research of the stress-strain state of pre-stressed materials
containing near-surface cracks and two parallel coaxial cracks suggest the following
conclusions:

• the order of singularity in the distribution of stresses in the vicinity of near-surface
crack edge in a pre-stressed semi-bounded body and near the edges of parallel
coaxial cracks in a pre-stressed unbounded body is equal to−1/2, i.e., it coincides
with the order of singularity in the distribution of stresses near crack edges in the
bodies free of initial stresses (Kassir and Sih 1975);

• in all the problems considered (with the exception of problems on torsion) a dra-
matic resonance change of stress intensity factors occurs when initial compressive
forces approach the values corresponding to the local loss of material’s stability in
the vicinities of cracks, which permits the critical (limit) compression parameters
to be determined directly from the solutions of corresponding non-homogeneous
problems of the fracture mechanics of pre-stressed materials;

• themutual influence between the crack and the half-space boundary (a near-surface
crack) or between the cracks (two parallel cracks) causes a quantitative change
(especially significant for small distances between cracks or between the crack
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and the half-space boundary) in the values of stress intensity factors as compared
to those obtained for an isolated crack in an infinite body. On the other hand,
with an increase of the distance between the cracks (or the crack and the half-
space boundary) the abovementioned influence gradually becomes weaker, and
the values of stress intensity factors tend to the corresponding values obtained in
the case of an isolated crack in an infinite material;

• the mechanical characteristics of materials produce a significant influence on the
values of stress intensity factors;

• the critical (limit) compression parameters corresponding to the local loss of
material’s stability in the vicinities of cracks significantly depend on the geo-
metric parameters of the problems (crack radii, distances between cracks, or those
between the crack and material’s boundary) and on the mechanical characteristics
of materials.
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Chapter 5
Evolution of Electron Structure of the
Methane-Coal Sorption System
Components and Properties

Anatolii Bulat, Oleksandr Burchak, Volodymyr Trachevskyi,
and Andrey Tokar

5.1 Introduction

Carbonized fossil organicmatter and, in particular, hard coal, is a complexmulticom-
ponent, heterogeneous, metastable composition of substances, whosemechanisms of
sorption capacity formation are the subject of numerous studies. According to mod-
ern concepts, sorption interaction is caused by dispersion forces or by occurrence
of instantaneous non-zero moments (electrical potentials) in molecules and atoms.
The effectiveness of such interaction depends on the correlation of the frequencies
of fluctuations of the electron density in molecules, i.e., in the first approximation,
on the resonance of vibration frequencies of the sorbent molecules and individual
fragments of the sorbate matrix.

Certain difficulties in studying sorption mechanisms are caused by the absence of
a matrix architecture hierarchy (Alexeev 2012; Bulat et al. 2010) due to the metasta-
bility (Bulat et al. 2010) of coal and the variability of structures. Therefore, it is

A. Bulat · O. Burchak (B)
N.S. Polyakov Institute of Geotechnical Mechanics of the National Academy of Sciences of
Ukraine, Dnipro, Ukraine
e-mail: gvrvg@meta.ua

A. Bulat
e-mail: igtmnanu@ukr.net

V. Trachevskyi
Laboratory for Synthesis and Diagnostics of Nanosystems and Nanomaterials of the Analytical
Research Department of the Technical Center of the National Academy of Sciences of Ukraine,
Kyiv, Ukraine
e-mail: trachev@imp.kiev.ua

A. Tokar
Dnipro State Agrarian and Economic University of the Ministry of Education and Science of
Ukraine, Dnipro, Ukraine
e-mail: atokar_2004@ukr.net

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. N. Guz et al. (eds.), Advances in Mechanics, Advanced Structured Materials 191,
https://doi.org/10.1007/978-3-031-37313-8_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37313-8_5&domain=pdf
mailto:gvrvg@meta.ua
mailto:igtmnanu@ukr.net
mailto:trachev@imp.kiev.ua
mailto:atokar_2004@ukr.net
https://doi.org/10.1007/978-3-031-37313-8_5


92 A. Bulat et al.

difficult to specify the very concept of the sorption center. Under these conditions, a
statistically averaged behavior of themacrosystem is determined by themanifestation
of the properties of collectivized functional groups in the composition.

In works (Blumenfeld et al. 1962; Burchak et al. 2016), by using the EPR spec-
troscopy method in combination with chemical studies, a physical nature of the
adsorption interaction was proven and the relationship between the sorption capac-
ity of the carbonized organic matter relative to oxygen molecules and the content of
fragments with conjugated bonds in the structure of carbon matrices (aromatic and
aliphatic components) was established. Further studies (Alexeev 2012; Bulat et al.
2010) showed that concepts about the course of physical sorption interaction of coal
extend to the systems with other gases, with methane in particular.

Themain problem in describing the specifics of the process of interaction between
the aromatic component of carbonized organic matter and methane molecules under
the influence of dispersion forces is high symmetry of the CH4 molecule (centered
tetrahedron), whose vector sum of dipole moments of the bonds (m = 0.4D) is zero
(mzv = 0). However, according to the classical theory this means that such a molecule
should not interact with the sorption center of coal. But practical experience obtained
from experiments with a change in pressure unquestionably proves the reality of
sorption of methane molecules by coal (Alexeev 2012; Bulat et al. 2010, 2021).
Under these circumstances, there is a need to go beyond the generally accepted ideas
about configuration of methane molecule and about evolution of electron state in
the carbon atoms under the conditions of sorption interaction. At the same time, the
assumption about the resonance of the vibration frequencies of bonds with different
degrees of hybridization requires additional research.

The relevance of studying the evolution of electron state in the carbon atoms
under the conditions of sorption interaction is determined by the high importance
of obtaining reliable information about the mechanisms of interphase interaction
for creating adequate models of the processes in the organic matter-gas system and
developing an algorithm for sophisticated control of the transformations.

The idea of theworkwas to study the relationship between external conditions and
the electron state on the carbon atoms in the composition of methane molecules and
in fragments of solid hydrocarbon matrices under conditions of sorption interaction.

The purpose of the work was to determine the range of changes in the operating
conditions of interphase interaction mechanisms, to visualize the evolution of elec-
tron state in the methane carbon atoms during sorption, and to determine the driving
forces of structural transformations in hydrocarbons.

5.2 Research Methods and Objects

The NMR 13C method (NMR spectrometer AVANCE 400, Bruker), which allows
studying the evolution of architecture of macromolecular compositions with the
identification of interacting objects. The identification of interacting objects made
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it possible to study structural and functional transformations of carbonized organic
matter and methane molecules by changing pressure in the coal matrix-gas system.

Based on the data of the IRS method (IR-Fourier spectrometer Nicolet iS10,
Thermo Scientific), which allowed to identify functional groups and fragments with
double and triple carbon-carbon bonds, changes in the intensity of vibrations in
the corresponding absorption bands of the solid carbonized organics were assessed
before and after mechanical compression.

Models of complexes describing the most likely contributions to interactions
between non-polar molecules were built by the quantum-chemical methods. Cal-
culations at the ab initio level of theory were performed by using the Gaussian 03,
RevisionE.01 software packagewith further visualization of the results inGaussView
3.0.

5.3 Experimental Studies

Theoccurrence of dipolemoment in themethanemolecules is possible due to changes
in the geometry of the compound under the influence of external forces, for example,
at the transition from tetrahedral structure to pyramidal (disphenoidal) structure.
As regard to the coal-gas system, it can be assumed that on the trajectory to the
combined system of the aromatic cluster, carbon atom of the methane molecule
changes its electron structure (from the sp3 state to the sp2 state), according to L.
Pauling’s assumption for the entropic nature of hybridization. That is, hybridization
of electron orbitals of carbon atoms in the methane molecule is determined by the
conditions characterizing the state of the heterogeneous systemand requires objective
experimental confirmation.

One can be convinced of the realism of this hypothesis by recording the NMR 13C
spectrum of a methane-coal mixture with constant stoichiometry at different pres-
sures (Bulat et al. 2021). During the research, the authors studied energy absorp-
tion regions characteristic for the methane molecules (δ ≈ 0.0 ppm) and aromatic
(δ ≈ 188 ppm) fragments of the structure of solid hydrocarbons (Fig. 5.1).

The presence of changes in the spectral characteristics of methane and aromatic
fragments also indicates a change in the hybridization of carbon atoms during the
interaction of CH4 with the solid coal matrix. In particular, increasing the pressure
in the measured NMR-cell by ≈ 0.8 bar changed the ratio of the integral intensities
of lines with the chemical shift of δ ≈ 27.1 ppm and δ ≈ 188 ppm. The presence of
this difference proves the participation of the growing number of methane molecules
under pressure in the interactionwith the structural fragments of the solidmatrix. The
observed change in the shape of the line and the increase in absorption intensitywithin
the region characteristic for sp2-hybridized carbon atoms in the solid matrix can be
related to the transformation of methane molecules with a decrease of symmetry
under the conditions of condensation interaction with the coal aromatic structures
(Bulat et al. 2021).
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Fig. 5.1 Influence of pressure on the NMR spectrum of the coal-13CH4 system (1—initial state of
the system, 2—increased pressure, 3—the difference between the spectra)

The information obtained by the NMR 13C method allows to visualize the evolu-
tion of electron state in methane carbon atoms and to propose a possible mechanism
of sorption interaction in the solid hydrocarbon matrix-methane system. In addition,
with taking into account the obtained experimental results based on a qualitative
assessment of the redistribution pattern of carbon atoms between the sp3 and sp2

states in specific thermodynamic conditions, it is possible to specify a change in the
internal energy and reactivity of adsorbed methane molecules. Given that the over-
lapping of orbitals, which initiates spin exchange, occurs when the distance optimal
for the organization of physical contact of partners is reached, the redistribution of
integral intensities of NMR signals should be considered as a source of information
and a way to understand the overall mechanism of the sorption (Bulat et al. 2021).

In order to verify the thesis regarding the possibility of the linear change of the
bond vibration frequency (length) due to the change of thermodynamic conditions
in the system, the influence of mechanical pressure on the state of the molecular
structure of the coal matter was simulated by the IR-Fourier spectrometry method
(Fig. 5.2).

In the course of the experiment, the IR spectrum of the coal was recorded in its
three states: natural, compressed, and broken (crushed) after compressing; the ratio
of the intensities of the vibration bands of methyl and methylene functional groups
was evaluated.

The IR spectra (Fig. 5.2) show a change in the ratio of intensities of the bands of
the characteristic valence vibrations of the CH3/CH2 groups, which is an indicator of
the intramolecular redistribution of hydrogen atoms between the types of bonds in
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Fig. 5.2 Influence of mechanical factor on the IR spectra of coal (1—carbon matter in natural state
(CH3/CH2 = 0.697), 2—carbon matter in compressed state (CH3/CH2 = 1.129), 3—carbon matter
in broken state after compressing (CH3/CH2 = 0.768))

the coal structure. The effect of disproportionation (-CH2- → -CH3+-CH=) of frag-
ments of the aliphatic component was also recorded—it was initiated by mechanical
pressure, reorganization of distribution according to the energy state and reactivity
of conformers of hydrocarbon chains (Burchak and Balalaev 2010).

An increase of the energy potential of the matter was also detected—shifts of
the absorption bands in the direction of an increase in the frequency of vibrations of
interatomic bondswere recorded; so the shift of theD1600 absorption band by� ≈ 14
cm−1 corresponds to the accumulation of energy in the atomic-molecular architecture
of the carbon matter of ≈ 1.68 J/mol. Besides, mechanical activation of the matter
takes place under the influence of loads, that is, transformation of mechanical energy
into chemical energy. As a result of reorientation, some fragments of the structure
of the organic coal matter transfer into energetically more favorable conformational
states, which are fixed by the character of the intra- and intermolecular interaction,
and the energy barriers during the relaxation of the ascending situation can be so
great that the caused changes become irreversible.

The obtained information on the directed evolution of the solid hydrocarbon
matrix with increased mechanical load makes it possible to assume that the inter-
nal energy accumulated during the structural and functional reorganization caused
by an external factor (mechanochemical activation) largely determines physical and
chemical properties of the coal matter, in particular, sorption capacity of coal.

The picture compiled as a result of the analysis of the data set can serve as an argu-
mentative proof of the reverse participation of alkanes in “aromatization” under the
mechanical load. Accordingly, it can be assumed that during the interaction of alkyl
groups (radicals) with aromatic structures in extreme conditions, the frequency of
their characteristic vibrations converges, as the course of coarctate reactions predicts.
That is, after the initial physical interaction (sorption) with the electron-deficient
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fragments of the coal matrix, methane molecules are transformed and participate in
the formation of aromatic structures (Magdesieva 2013).

Thus, the cumulative effect of the mechanical load on the coal matrix consists
in the expenditure of energy to disrupt the hierarchical heterogeneous architecture,
structural and functional structure due to the macro- and micro-scale changes of:

• nature of interparticle and interphase interaction;
• interfragment contacts and conformational rearrangements;
• generation of highly reactive particles, the totality of which determines the evolu-
tion of the space-time organization of the matter under the action of external force
loads.

Accordingly, the conducted research can give, in future, the algorithms for under-
standing the ways of forming the properties of carbon matrices and effective master-
ing of mechanochemical transformations caused by plastic deformation and devel-
oped against the background of absorption and transformation of elastic energy by
a solid matter.

5.4 Theoretical Background of the Concept

One of the tasks of the research was to form a theoretical basis for the multi-stage
mechanism of interaction of methane molecules and aromatic structures in the coal
matter. To solve it, the nature and features of intermolecular interaction were investi-
gated at the level ofmodels with functional groups and individual molecules andwith
involvement ofmodern computationalmethods of quantumchemistry andvibrational
spectroscopy.

At the initial stage of the research, of fundamental importance becomes the prob-
lem of choosing the model compounds, which would provide the possibility of ade-
quate reproducing the features of the structure of the aromatic fragments of car-
bonized organic matter and the interphase interaction in the coal-methane system,
and, at the same time, would be sufficiently simple from the point of view of con-
ducting quantum-chemical calculations. The results of molecular modeling of the
interaction between the benzene ring and methane molecule under standard con-
ditions (without increasing the pressure) are shown in Fig. 5.3. Here, one of the
possible vibratory states of such a system with the corresponding displacement vec-
tor is shown.

It is clearly seen in Fig. 5.3 that the elongated C-H bond is directed to the double
bond of the ring, and not to the center of the benzene molecule. Accordingly, it
should be assumed that the sorption interaction is evolutionarily accompanied by a
change in the vibration frequencies (length) of the C-H bond in themethanemolecule
(dispersion forces), and is not related to the action of the magnetic field induced in
the middle of the aromatic ring. Therefore, the development of conjugation systems
is a structural characteristic of coal associated with interphase interaction.



5 Evolution of Electron Structure of the Methane-Coal . . . 97

Fig. 5.3 Visualization of the
results of molecular
modeling of the interaction
of the benzene ring with the
methane molecule

Further, the quantum-chemical calculations were used for studying a sorption
capacity of the cyclic structures with a system of conjugated bonds. By using the
non-empirical generalized gradient approximation PBE1PBE/6-311++G(d,p), the
features of the intermolecular interactions that appeared in the model system com-
posed of two completely non-polar molecules (benzene and methane) were investi-
gated. It should be noted that interactions of this type are of great interest, first of all,
from the point of view of theoretical explanation of their nature, and they can serve
as a starting point for the preliminary assessment of some energetic and spectral
characteristics of these systems. As for the related interactions between the purely
aromatic fragments ofmolecules andmanifestations of the so-called stacking effects,
the situation is sufficiently good understood (Hill et al. 2006;Munshi and Guru 2005;
Zhikol et al. 2005). It is well known that such interactions play a decisive role in
ensuring the stability of many macromolecules, including biopolymers containing
regions with heterocyclic structure, in particular proteins and nucleic acids.

In Fig. 5.4, critical points (3,−1) correspond to the areas with the highest electron
density between the C6H6 and CH4 molecules, which are converging, while the
point in the center of the benzene ring has the lowest density. At the same time, the
molecular graph indicates an interaction not with the bond of the benzene ring, but
specifically with one of the equivalent carbon atoms contained in it.

When determining the energy parameters of intermolecular interactions of the
C6H6· CH4 type, in addition to electron energies, special corrections for zero-point
vibrations and basis set superposition errors ofwere also taken into account according
to the Boys-Bernardi calculation procedure (Sordo 2001). The obtained results indi-
cate the energetic effects of interactions, which do not exceed 1.9 kJ/mol and occur
at distances of 3.159–3.174 Å and can be identified as weak dispersion forces. Cal-
culation within the Bader’s AIM-theory (Kolandaivel and Nirmala 2004) of values
of the electron density ρ(r) = 0.0035 e/Å3 and the Laplacian of the electron den-
sity ∇2ρ(r) = 0.0024 e/Å5 at the single (3,−1) critical point between molecules
(Fig. 5.4) also confirms this assumption, since such interactions are at least one
order of magnitude lower than the energy of typical intramolecular bonds (Tokar and
Chigvintseva 2021; Tokar et al. 2021; Tsirelson 2017).
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Fig. 5.4 Molecular graph of
the C6H6 · CH4 system

The determination of some thermodynamic parameters related to the processes
of formation and destruction of the studied complex of molecules deserves special
attention. For interactions with stoichiometry of the type A + B = C , special correc-
tions to the quantities �H 0, �S0 and �G0, as it is known, are equal to the products
R · T , R · T × (1 + ln R′ × T ) and−R · T × ln R′ · T (where R′ corresponds to the
value of the universal gas constant expressed in l·atm/mol·K), which under standard
conditions are +2.5 kJ/mol, +34.9 J/mol·K and –7.9 kJ/mol, respectively (Benson
1976). The calculated values of the enthalpy, entropy, and Gibbs free energy of the
formation of the C6H6·CH4 complex are +2.7 kJ/mol,—43.3 J/mol·K and +15.6
kJ/mol. At the same time, an insignificant contribution of the enthalpy factor is well
consistent with the low energy intensity of the studied interactions, while the more
significant contribution of the entropy component is easily explained by significant
limitations in translational, rotational, and vibrational degrees of freedom of indi-
vidual molecules under binding conditions. The latter becomes especially noticeable
when analyzing the basic spectral characteristics of the studied system.

As it is known, harmonic vibrational frequencies calculated by the methods of
quantum chemistry are usually higher than the similar parameters obtained experi-
mentally. At the same time, the main source of errors, according to the authors (Mer-
rick et al. 2007), is neglecting of effects of anharmonicity, as well as not complete
description of electron correlations due to the use of limited sets of basic functions.
To improve the accuracy of the calculated data in reproduction of the main spectral
characteristics of the studied systems, one should use the auxiliary values of the
scaling factors, which, in the case of the hybrid PBE functional, were 0.9944 and
0.9948 for the basis sets 6-311+G(d,p) and 6-311 ++G(d,p) (Butyirskaya 2011).



5 Evolution of Electron Structure of the Methane-Coal . . . 99

The results obtained in parallel by the IRS method indicate that the most intense
vibration bands are located in the 3207 cm−1 and 689 cm−1 spectrum area and
correspond to valence and deformation vibrations of the benzene ring. Of particular
interest are the absorption bands in the area 3163 cm−1 and 1324 cm−1, which
characterize similar fluctuations in the “bound” methane molecule. At the same
time, the most likely resonance frequency of vibrations, which corresponds to the
direct interaction of molecules in theC6H6·CH4 complex under standard conditions,
is ∼3170 cm−1.

The partial displacement of one of the hydrogen atoms of the methane molecule
toward the aromatic system leads to barely noticeable changes in the symmetry of
the absolute tetrahedron, which, in turn, is accompanied by insignificant changes
in the initial hybridization states of some carbon atoms both in the aryl fragment
and in the CH4 molecule itself. In particular, the calculated data obtained within the
framework of the Weinhold’s NBO theory (Weinhold 2012; Weinhold and Landis
2012) convincingly testify in favor of the s0,95p1,79/ s1,10p2,52 hybrid state of the
carbon atoms of the benzene ring against the s1,16p3,24-hybridization of the carbon
atom of the methyl group, which is fully consistent with generally accepted concepts
about the peculiarities of the structure of these systems in the basic energy state.
But under the conditions of the transition to an excited or activated state (increased
pressure in the system), it is probably worth expecting more significant changes in
geometric parameters and energy characteristics of the studied molecules, which
will certainly require further theoretical substantiation of the mechanism of such
transformations.

Thus, the given results of quantum-chemical calculation studies convincingly tes-
tify to the substantial possibility of applying the methods and techniques of quantum
chemistry to study the conditions and mechanisms of interphase interaction at the
level of the aromatic component of a solid body—methane molecules. The results
of the calculations are in good agreement with the data of spectroscopy (NMR, IRS)
and can be of fundamental importance for determining the mechanisms of sorption
interaction in the coal-methane system.

5.5 Conclusions

It is shown that the spread of values of the parameters of the NMR 13C spectra of the
carbon atoms in the sorption system and the shift of the absorption band of the IR
spectrum under mechanical loading allow us to state that the frequency of electron
density fluctuations due to dispersion interaction in the system of bonds of electron-
deficient fragments of the composition does not have a discrete value, the metastable
state of the carbon matter is a consequence of the adaptive ability of carbon atoms to
change the degree of hybridization depending on external thermodynamic conditions.

Based on the data of spectroscopic measurements and quantum-chemical model-
ing of the evolution of the distribution of carbon atoms of the reacting components
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between the states with different degrees of hybridization, the mechanisms and driv-
ing forces of self-organization of the heterophase coal-gas system were determined.

The visualized evolution of electron state in the carbon atoms of the sorption
system under mechanical loading makes it possible to assess the contribution of the
obtained results to the laws and mechanisms of transformations of organic com-
pounds as fundamental, which will serve as a basis for the development of new-
generation technologies of nanosynthesis processes.

On the basis of the revealed regularities a possibility is considered for formulating
in the future the relationship between the forces of interatomic interaction with such
mechanical and rheological properties of a solid matter as strength, plasticity, and
elasticity, which describe the reverse reaction of the solid body to mechanical loads.

Directional control of the coal matter state will allow to initiate the processes of
intensive artificial generation of methane in coal seams and organize effective, safe
extraction of gaseous hydrocarbon energy carriers directly from the rock stratum. The
structural and functional destructive transformation of natural solid hydrocarbons
is exhausted down to the molecular level and is associated with significant (up to
industrial indicators) beneficiation of the remains with nanoparticles of compounds
of iron, sulfur, phosphorus, and acutely deficient non-ferrous metals and rare earth
elements.
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Chapter 6
Stress-Strain State of a Two-Layered
Half-Space With Initial Stresses Under
the Influence of a Moving Load

Yuriy Glukhov, Stepan Babich, and Victoria Kornienko

6.1 Introduction

One of the problems of considerable scientific and practical interest is the problem
of the propagation of waves in bodies under the action of moving loads applied to
their boundaries. Problems of this kind arise in the calculation of airfield and road
pavements, in the calculation of plates and shells in a moving medium or under the
action of moving stamps, and in many other cases.

It should be noted that from both a mathematical and a physical point of view, a
moving load is a very general concept. Therefore, the main regularities of the action
of a moving load can be studied regardless of the physical process resulting in these
problems.

At present, a number of scientific directions are being developed in the dynamics
of elastic bodies with initial (residual) stresses, one of which is the study of the
dynamics of materials under moving loads (the review of publications on this topic
is partially presented in Guz et al. (2015)).

In this chapter, within the framework of the formulations of Guz et al. (2015),
using the integral Fourier transform, the solution to the problem of the dynamic
response of an elastic two-layer half-space with initial stresses under the action of
a moving surface load is obtained in a general form for compressible and incom-
pressible materials and various conjugation conditions for the elements of a layered
medium.
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6.2 Problem Statement

Consider a layer of thickness of 2h, lying on a half-space, the initial stress-strain state
of which is determined by the following components of the displacement vector and
the generalized stress tensor:

u0j = δi j (λi + 1) xi , σ ∗0
i i �= 0 (i, j = 1, 2, 3) , (6.1)

where λi are extensions (λi = const) along the axes of the Lagrangian coordinate
system xi , which coincides in the natural state with the Cartesian coordinate system.
Along with the Lagrangian coordinates, we introduce the Cartesian coordinates ξi
of the initial deformed state, related to the coordinates xi by relation ξi = λi xi .

To a free boundary layer moving with a constant speed v load, independent of the
coordinates ξ3, is attached. Such a load causes a plain deformed state in this layered
medium.

To solve the problem, we use the relations of the linearized elasticity theory for
bodies with initial stresses (Guz 2004).

Assuming that the pattern of deformations is invariant with respect to time in the
coordinate system (y1, y2) moving together with the load, where y1 = ξ1 − vt and
y2 = ξ2, the equation of the steady motion of the half-space in terms of the function
χ(y1, y2) can be written in the form

(
η2
1

∂2

∂y21
+ ∂2

∂y22

) (
η2
2

∂2

∂y21
+ ∂2

∂y22

)
χ( j) = 0, j = 1, 2. (6.2)

Roots η1 and η2 of the equation are determined by the following equation

η4 + 2Aη2 + A1 = 0, (6.3)

where coefficients A and A1 in case of compressible material are formed from the
correlations

2Aω̃2222ω̃2112 = ω̃2222
(
ω̃1111 − ρ̃v2

)
+ ω̃2112

(
ω̃1221 − ρ̃v2

) − (ω̃1122 + ω̃1212)
2
, (6.4)

2A1ω̃2222ω̃2112 = (
ω̃1111 − ρ̃v2

) (
ω̃1221 − ρ̃v2

)
, ρ̃λ1λ2λ3 = ρ,

and in case of incompressible material are formed from the correlations

2Aq̃2
22κ̃2112 = q̃2

11κ̃2222 + q̃2
22

(
κ̃1111 − ρ̃v2

) − 2q̃11q̃22 (κ̃1122 + κ̃1212) , (6.5)

2A1q̃
2
22κ̃2112 = q̃2

11

(
κ̃1221 − ρ̃v2

)
, q̃i j = δi jλi qi , ρ̃ = ρ.
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In (6.4) and (6.5), ρ is the density of the material of the half-space in the natural
state, qt {s}, κ̃

{s} and ω̃{s} are the parameters which characterize the material of the
elements of the layered medium (Guz 2004).

Let us assume that themotionof the layer canbedescribedby a systemof equations
from the theory of plates, taking into account the influence of rotational inertia and
transverse shear. For a plate under the influence of transverse and tangential surface
forces, the corresponding equations are given in Achenbach et al. (1967). In the
coordinate system (y1, y2), the equations of plate theory can be written as

2h

(
2G1

1 − ν1
− ρ1v2

)
∂2u

∂y21
− τ = P1,

2h
(
κG1 − ρ1v2

) ∂2w

∂y21
− 2κG1h

∂φ

∂y1
− q = P2,

2h2

3

(
2G1

1 − ν1
− ρ1v2δ0

)
∂2φ

∂y21
+ 2κG1

(
∂w

∂y1
− φ

)
− τ = 0.

(6.6)

In (6.6),G1, ν1, and ρ1 are shear modulus, Poisson’s ratio and the density of the plate
material respectively; u and w are the displacements of the middle surface of plate
(y2 = 0), δ0 is a constant, which takes a value of 1 or 0, depending on whether the
plate rotation inertia is taken into account or neglected when deriving (6.6); φ is the
angle of rotation of the plate cross-section; κ is the Timoshenko shift coefficient; q
and τ are normal and tangential stresses forcing to the surface of the partition plate
and the half-space; P1 and P2 are tangential and normal components of the load on
the free surface of the plate. The bending moment in the plate is determined by the
formula

M = 4

3

G1h3

1 − ν1

dφ

dy1
. (6.7)

Let us consider two cases of contact between the plate and a half-space at y2 = −h:

• rigid contact

Q̃21 = τ, Q̃22 = q, u2 = w, u1 = u + hφ; (6.8)

• non-rigid contact

Q̃21 = 0, τ = 0, Q̃22 = q, u2 = w. (6.9)

Thus, the problem is reduced to solving the equations of motion (6.2) and (6.6)
under the boundary conditions (6.8) or (6.9).

Using the equations of motion of the plate (6.6) and conditions (6.8) and (6.9),
the boundary conditions can be written in the general form
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δ1θ1

(
d2u1
dy21

− h
d2ϕ

dy21

)
− Q̃21 = δ1P1,

θ3
d2u2
dy21

− 2κhG1
dφ

dy1
− Q̃22 = P2,

θ2
d2φ

dy21
+ 2κG1

(
du2
dy1

− φ

)
− δ1 Q̃21 = 0.

(6.10)

Here the following notations are introduced

θ1 = 2h

(
2G1

1 − ν1
− ρ1v2

)
, θ2 = 2h2

3

(
2G1

1 − ν1
− δ0ρ1v2

)
,

θ3 = 2h
(
κG1 − ρ1v2

)
.

Parameter δ1 equals 1 for rigid contact and 0 – for non-rigid contact.
The values of the functions η2

1 (v) and η2
2 (v) determine the form of equations

of motion (6.2) and, accordingly, the choice of the form for solving the considered
equations. The influence of the load movement speed on the value of the roots of Eq.
(6.3) for a compressible and incompressible half-space is studied in detail in Guz
et al. (2015). Let us write the solution of the problem in general form for equal and
unequal roots of Eq. (6.3).

The stresses, displacements, and velocities of displacements in a half-space are
determined by formulas presented in Guz (2004) using the functions χ( j):

Q̃i j =
(

α
(12)
i j

∂2

∂y21
+ α

(22)
i j

∂2

∂y22

)
∂χ(2)

∂y2−δi j

+
(

α
(11)
i j

∂2

∂y21
+ α

(21)
i j

∂2

∂y22

)
∂χ(1)

∂y1+δi j

, i, j = 1, 2, (6.11)

ui = −β
(i)
i1

∂2χ(i)

∂y1∂y2
+

(
β

( j)
i1

∂2

∂y21
+ β

( j)
i2

∂2

∂y22

)
χ( j); i, j = 1, 2; i �= j; (6.12)

u̇i = v

[
β

(i)
i1

∂3χ(i)

∂y21∂y2
−

(
β

( j)
i1

∂2

∂y21
+ β

( j)
i2

∂2

∂y22

)
∂χ( j)

∂y1

]
;

i, j = 1, 2; i �= j; (6.13)

where, in the case of compressible material,
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α
(11)
i i = ω̃i i22

(
ω̃1111 − ρ̃v2

) − ω̃i i11 (ω̃1212 + ω̃2211) , α
(12)
i i = ω̃i i11

(
ω̃1221 − ρ̃v2

)
,

α
(21)
i i = ω̃i i22ω̃2112, α

(22)
i i = ω̃i i11ω̃2222 − ω̃i i22 (ω̃1122 + ω̃2121) ,

α
(11)
i j = ω̃i j21

(
ω̃1111 − ρ̃v2

)
, α

(22)
i j = ω̃i j12ω̃2222,

α
(12)
i j = ω̃i j12

(
ω̃1221 − ρ̃v2

) − ω̃i j21 (ω̃1122 + ω̃2121) ,

α
(21)
12 = ω̃i j21ω̃2112 − ω̃i j12 (ω̃1212 + ω̃2211) ,

β
(1)
11 = β

(2)
21 = β = ω̃1212 + ω̃2211,

β
( j)
i2 = ω̃2 j j2, β

( j)
i1 = ω̃1 j j1 − ρ̃v2, i, j = 1, 2, i �= j,

and in the case of incompressible material,

α
(i i)
i i = (−1)i q̃−1

j j κ̃1212 − δ j2ρ̃v2q̃
−1
11 , α

(12)
i j = −q̃−1

22 κ̃i j21, α
(22)
i j = q̃−1

11 κ̃i j12,

α
(i i)
j j = q̃ j j q̃

−2
i i

(
κ̃i i i i − δ j2ρ̃v2

) + κ̃ j j j j q̃
−1
j j − q̃−1

i i (2κ̃1122 + κ̃1212) ,

α
(11)
i j = q̃−1

22 κ̃i j21, α
(21)
i j = −q̃−1

11 κ̃i j12, i, j = 1, 2, i �= j,

α
(12)
22 = q̃−1

22

(
κ̃1221 − ρ̃v2

)
, α

(12)
11 = q̃11q̃

−1
22 α

(12)
22 , α

(21)
11 = q̃−1

11 κ̃2112,

α
(21)
22 = q̃22q̃

−1
11 α

(21)
11 ,

β
(1)
11 = β

(2)
12 = β = q̃−1

11 , β
(2)
21 = β

(1)
21 = q̃−1

22 , β
(2)
11 = β

(1)
22 = 0.

Taking into account (6.11) and (6.12), the boundary conditions (6.10) can be
written as

[
δ1θ1

∂2

∂y21

(
β

(2)
11

∂2

∂y21
+ β

(2)
12

∂2

∂y22

)
− ∂

∂y2

(
α

(12)
21

∂2

∂y21
+ α

(22)
21

∂2

∂y22

)]
χ(2)

−
[
δ1θ1β

(1)
11

∂3

∂y21∂y2
+

(
α

(11)
21

∂2

∂y21
+ α

(21)
21

∂2

∂y22

)]
∂χ(1)

∂y1
− δ1θ1h

∂2ϕ

∂y21
= δ1P1,

− 2κhG1
∂φ

∂y1
−

[
θ3β

(2)
21

∂3

∂y21∂y2
+

(
α

(12)
22

∂2

∂y21
+ α

(22)
22

∂2

∂y22

)]
∂χ(2)

∂y1

+
[
θ3

∂2

∂y21

(
β

(1)
21

∂2

∂y21
+ β

(1)
22

∂2

∂y22

)
− ∂

∂y2

(
α

(11)
22

∂2

∂y21
+ α

(21)
22

∂2

∂y22

)]
χ(1) = P2,

θ2
∂2φ

∂y21
− 2κG1φ −

[(
2κG1β

(2)
21 + δ1α

(12)
21

) ∂2

∂y21
+ δ1α

(22)
21

∂2

∂y22

]
∂χ(2)

∂y2

+
[(

2κG1β
(1)
21 − δ1α

(11)
21

) ∂2

∂y21
+

(
2κG1β

(1)
22 − δ1α

(21)
21

) ∂2

∂y22

]
∂χ(1)

∂y1
= 0.

(6.14)

Thus, the problem of the steady motion of a two-layer half-space under the influ-
ence of amoving load is reduced tofinding the functionsχ( j) andφ from the boundary
conditions (6.14).
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6.3 Solution of the Problem in the Image Area

The problem’s solutionwill be found using the integral Fourier transformwith respect
to y1 and the corresponding inversion formula. Applying the Fourier transform to
Eq. (6.2), we obtain

(
d2

dy22
− k2η2

1

) (
d2

dy22
− k2η2

2

)
χ( j)F = 0, j = 1, 2. (6.15)

Let us define the problem’s solution in a general form for the cases of unequal
and equal roots, for various conditions of conjugation of the layer and half-space,
and for any load speed (subsonic, transonic, and supersonic).

Boundary conditions (6.14) in the space of Fourier images have the form

(
−α

(22)
21

d3

dy32
− k2δ1θ1β

(2)
12

d2

dy22
+ k2α(12)

21

d

dy2
+ k4δ1θ1β

(2)
11

)
χ(2)F

− ik

(
α

(21)
21

d2

dy22
− k2δ1θ1β

(1)
11

d

dy2
− k2α(11)

21

)
χ(1)F + k2δ1θ1hϕF = δ1P

F
1 ,

− 2ikκhG1φ
F + ik

(
−α

(22)
22

d2

dy22
+ k2θ3β

(2)
21

d

dy2
+ k2α(12)

22

)
χ(2)F

−
(

α
(21)
22

d3

dy32
+ k2θ3β

(1)
22

d2

dy22
− k2α(11)

22

d

dy2
− k4θ3β

(1)
21

)
χ(1)F = PF

2 , (6.16)

(
k2θ2 + 2κG1

)
φF −

[
k2

(
2κG1β

(2)
21 + δ1α

(12)
21

)
− δ1α

(22)
21

d2

dy22

]
dχ(2)F

dy2

+ ik

[
k2

(
2κG1β

(1)
21 − δ1α

(11)
21

)
−

(
2κG1β

(1)
22 − δ1α

(21)
21

) d2

dy22

]
χ(1)F = 0.

The solution of the transformedEq. (6.15), taking into account damping at infinity,
is sought in the form

χ F( j) = [
1 − δ j2(1 − δη1η2)

]
×

{
C ( j)
1 ek1kη1(y2+h) + [

δη1η2 (y2 + h) + 1 − δη1η2

]
C ( j)
2 ek2kη2(y2+h)

}
,

(6.17)

where C ( j)
m ( j,m = 1, 2) are integration constants,

γ j = k jη j , j = 1, 2, δη1η2 =
{
0, η1 �= η2

1, η1 = η2
, δ j2 =

{
0, j = 1

1, j = 2
.
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Let us introduce the integration constants:

C (1)
1 = iC1, C (1)

2 = iC2, C (2)
1 = C1, C (2)

2 = C2. (6.18)

Substituting (6.17) and (6.18) into (6.16), we obtain the following system of
algebraic equations for the unknowns C1, C2 and φF :

k
(
a(1)
11 + ka(2)

11

)
C1 +

(
a(1)
12 + ka(2)

12 + k2a(3)
12

)
C2 + a13ϕF = k−2δ1PF

1

k2
(
a(1)
21 + ka(2)

21

)
C1 + k

(
a(1)
22 + ka(2)

22 + k2a(3)
22

)
C2 + a23φF = −ik−1PF

2

k3a31C1 + k2
(
a(1)
32 + ka(2)

32

)
C2 +

(
a(1)
33 + k2a(2)

33

)
φF = 0,

(6.19)
where

a(1)
11 = −γ

(11)
21 + δη1η2γ1γ

(21)
21 , a(2)

11 = δ1θ1

(
δη1η2θ

(21)
1 − β

(1)
11 γ1

)
, a13 = δ1θ1h,

a(1)
12 = δη1η2

[
γ

(22)
21 + 2γ2

(
α

(21)
21 − α

(22)
21 γ2

)]
, a(3)

12 = −δ1θ1β
(1)
11 γ2

(
1 − δη1η2

)
,

a(2)
12 = −

[
δ1δη1η2θ1

(
β

(1)
11 + 2β(2)

12 γ2

)
+ (

1 − δη1η2

)
γ

(12)
21

]
, a(1)

33 = −2κG1,

a(1)
21 = γ1γ

(11)
22 + δη1η2γ

(21)
22 , a(2)

21 = θ3

(
θ

(11)
2 + δη1η2β

(2)
21 γ1

)
, a23 = −2κhG1,

a(1)
22 = δη1η2

[
γ

(12)
22 − 2γ2

(
α

(22)
22 + α

(21)
22 γ2

)]
, a(3)

22 = θ3θ
(12)
2

(
1 − δη1η2

)
,

a(2)
22 = δη1η2θ3

(
β

(2)
21 − 2β(1)

22 γ2

)
+ (

1 − δη1η2

)
γ2γ

(12)
22 , a(2)

33 = −θ2,

a31 = 2κG1

(
θ

(11)
2 + δη1η2γ1β

(2)
21

)
+ δ1

(
δη1η2γ1γ

(21)
21 − γ

(11)
21

)
,

a(1)
32 = δη1η2

{
2κG1

(
β

(2)
21 − 2γ2β

(1)
22

)
+ δ1

[
γ

(22)
21 + 2γ2

(
α

(21)
21 − α

(22)
21 γ2

)]}
,

a(2)
32 = (

1 − δη1η2

) (
2κG1θ

(12)
2 − δ1γ

(12)
21

)
,

θ
(k j)
m = β

(k)
m1 − β

(k)
m2γ

2
j , γ

(nj)
mk = α

(1n)
mk − α

(2n)
mk γ 2

j , j, k,m = 1, 2.

The solution of the system (6.19) can be written in the form

C j = δ1PF
1 U ( j)

1 + i PF
2 U ( j)

2

�(k)
, j = 1, 2, φF = δ1PF

1 U1 + i PF
2 U2

�(k)
, (6.20)

where
�(k) = k2

(
b0 + kb1 + k2b2 + k3b3 + k4b4 + k5b5

)
,

U (1)
j = k−1

(
b( j)
10 + kb( j)

11 + k2b( j)
12 + k3b( j)

13 + k4b( j)
14

)
,

U (2)
j = −

(
b( j)
20 + kb( j)

21 + k2b( j)
22 + k3b( j)

23

)
,

Uj = k2
(
b( j)
30 + kb( j)

31 + k2b( j)
32

)
, j = 1, 2,
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b0 = a(1)
33

(
a(1)
11 a

(1)
22 − a(1)

12 a
(1)
21

)
, b5 = a(2)

33

(
a(3)
22 a

(2)
11 − a(3)

12 a
(2)
21

)
,

b1 = a(1)
33

(
a(2)
11 a

(1)
22 + a(2)

22 a
(1)
11 − a(1)

12 a
(2)
21 − a(2)

12 a
(1)
21

)
+ a23

(
a31a

(1)
12 − a(1)

11 a
(1)
32

)
,

b2 = a(1)
33

(
a(2)
22 a

(2)
11 + a(3)

22 a
(1)
11 − a(2)

12 a
(2)
21 − a(3)

12 a
(1)
21

)
+ a(2)

33

(
a(1)
11 a

(1)
22 − a(1)

12 a
(1)
21

)
+ a23

(
a31a

(2)
12 − a(1)

11 a
(2)
32 − a(2)

11 a
(1)
32

)
+ a13

(
a(1)
21 a

(1)
32 − a31a

(1)
22

)
,

b3 = a(2)
33

(
a(2)
11 a

(1)
22 + a(2)

22 a
(1)
11 − a(1)

12 a
(2)
21 − a(2)

12 a
(1)
21

)
+ a(1)

33

(
a(3)
22 a

(2)
11 − a(3)

12 a
(2)
21

)
+ a13

(
a(1)
21 a

(2)
32 + a(2)

21 a
(1)
32 − a31a

(2)
22

)
+ a23

(
a31a

(3)
12 − a(2)

11 a
(2)
32

)
,

b4 = a(2)
33

(
a(2)
11 a

(2)
22 + a(1)

11 a
(3)
22 − a(2)

12 a
(2)
21 − a(3)

12 a
(1)
21

)
+ a13

(
a(2)
21 a

(2)
32 − a(3)

22 a31
)

,

b(1)
10 = a(1)

22 a
(1)
33 , b(1)

11 = a(2)
22 a

(1)
33 − a23a

(1)
32 , b(1)

12 = a(3)
22 a

(1)
33 + a(2)

33 a
(1)
22 − a23a

(2)
32 ,

b(1)
13 = a(2)

33 a
(2)
22 , b(1)

14 = a(2)
33 a

(3)
22 , b(2)

10 = a(1)
12 a

(1)
33 , b(2)

11 = a(2)
12 a

(1)
33 ,

b(2)
12 = a(3)

12 a
(1)
33 + a(2)

33 a
(1)
12 − a13a

(1)
32 , b(2)

13 = a(2)
33 a

(2)
12 − a13a

(2)
32 , b(2)

14 = a(2)
33 a

(3)
12 ,

b(1)
20 = a(1)

21 a
(1)
33 , b(1)

21 = a(2)
21 a

(1)
33 − a23a31, b(1)

22 = a(1)
21 a

(2)
33 , b(1)

23 = a(2)
21 a

(2)
33 ,

b(2)
20 = a(1)

11 a
(1)
33 , b(2)

21 = a(2)
11 a

(1)
33 , b(2)

22 = a(1)
11 a

(2)
33 − a13a31, b(2)

23 = a(2)
11 a

(2)
33 ,

b(1)
30 = a(1)

21 a
(1)
32 − a(1)

22 a31, b(1)
31 = a(1)

21 a
(2)
32 + a(2)

21 a
(1)
32 − a(2)

22 a31,
b(2)
30 = a(1)

11 a
(1)
32 − a(1)

12 a31, b(2)
31 = a(1)

11 a
(2)
32 + a(2)

11 a
(1)
32 − a(2)

12 a31,
b(1)
32 = a(2)

21 a
(2)
32 − a(3)

22 a31, b(2)
32 = a(2)

11 a
(2)
32 − a(3)

12 a31.

Let us apply the Fourier conversion to (6.7), (6.11) and (6.13):

Q̃F
jm =

(
−k2α

(12−δ jm )

jm + α
(22−δ jm )

jm

d2

dy22

)
dχ(2−δ jm )F

dy2

+ ik

(
−k2α

(11+δ jm )

jm + α
(21+δ jm )

jm

d2

dy22

)
χ(1+δ jm )F , j,m = 1, 2,

u̇F
j = −ikv

(
−k2β(m)

j1 + β
(m)
j2

d2

dy22

)
χ(m)F − k2vβ( j)

j1

dχ( j)F

dy2
,

j,m = 1, 2, i �= m,

MF = 4

3

ikG1h3

1 − ν1
φF .

(6.21)

Taking into account (6.17), (6.18) and (6.20), Eq. (6.21) can be represented in the
form

Q̃F
mj = (−i)δmj k2�−1(k)

(
δ1PF

1 �
(1)
mj + i PF

2 �
(2)
mj

)
,

u̇F
j = i2− jvk2�−1(k)

(
δ1PF

1 �
(1)
2 + i PF

2 �
(2)
2

)
, m, j = 1, 2,

MF = k�−1(k)
(
iδ1PF

1 �
(1)
φ − PF

2 �
(2)
φ

)
,

(6.22)

where
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�( j)
mm =k

(
γ1γ

(11)
mm +δη1η2γ

(21)
mm

)
U (1)

j ekγ1(y2+h)

−
{
δη1η2

[
2γ2

(
γ2α

(21)
mm + α(22)

mm

) − γ (12)
mm

]

− k
{
δη1η2 (y2 + h)

(
γ2γ

(12)
mm + γ (22)

mm

)

+ (
1 − δη1η2

)
γ2γ

(12)
mm

}}
U (2)

j ekγ2(y2+h),

�( j)
mn =k

(
γ (11)
mn − δη1η2γ1γ

(21)
mn

)
U (1)

j ekγ1(y2+h)

+
{
δη1η2

[
2γ2

(
γ2α

(22)
mn − α

(21)
21

)
− γ (22)

mn

]

+ k
[
δη1η2 (y2 + h)

(
γ (12)
mn − γ2γ

(22)
mn

)

+ (
1 − δη1η2

)
γ (12)
mn

]}
U (2)

j ekγ2(y2+h),

�( j)
ϕ =4

3

G1h3Uj

1 − ν1
.

Thus, the solution to the problem of the steady motion of a two-layer elastic half-
space with initial stresses under the influence of a moving load in the region of
Fourier images has the form (6.22).

The results of determining �(k) for compressible and incompressible half-space
and various cases of conjugation of the plate and half-space are presented in Guz
et al. (2015).

From (6.22), it follows that the value of the quantities characterizing the stress-
strain state of a two-layer elastic half-space increases without limit at �(k) → 0.
Under the condition that real positive multiple roots of the equation �(k) = 0 exist,
resonance is possible (Achenbach et al. 1967).

It follows from the results obtained in Guz et al. (2015) that the number of critical
velocities of the load movement significantly depends on the initial stresses in the
half-space, the mechanical characteristics of the plate and the half-space, and the
conditions of their contact. The effect of initial stresses on critical velocities is more
significant for relatively soft plates and non-rigid contacts. The value of the lowest
critical speed for a non-rigid contact is always less than for a rigid one.

6.4 Numerical Study

In order to return to the original domain in (6.22), we use the inverse Fourier trans-
form. It follows from the results obtained in Guz et al. (2015) that the calculation
of the inversion integrals significantly depends on the speed of the load. Depending
on the velocity v, the denominator �(k) in the inversion integrals may or may not
have real positive roots. If no root exists on the real axis, then the inversion integrals
have no singularities and can be calculated directly. In the presence of unequal real
positive roots of the denominator �(k), the integrals along the integration contour
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from −∞ + iγ to +∞ + iγ can be replaced by the sum of the principal value of
the integral and the sum of all residues multiplied by (−iπ) (Wright et al. 1970).
In the case of a double positive root, the inversion integrals do not exist even in the
Cauchy sense, i.e., resonance appears. Since it was assumed in the formulation of
the problem that the perturbations caused by the moving load are very small, the
resonant region was excluded from consideration.

In Guz et al. (2015), a study was made on the dependences of the bending moment
in the plate on the initial stresses, the speed of the load, and the conditions of contact
between the plate and the half-space.

Figures 6.1, 6.2, 6.3 and 6.4 show how the initial stresses in the base affect the
characteristics of the stress-strain state in a two-layer half-space at different speeds of
the load (subsonic, transonic, and supersonic) and the conditions of contact between
the plate and the half-space.

Introduced notationsmean the following: c11 and c12 are the spread in the direction
of the y1-axis properly to longitudinal and transverse polarized waves in unlimited
compressible body with initial stress, c1 and c2 are the spread of transverse waves in
the direction of axes Oy1 and Oy2 in the unlimited incompressible body with initial
stress, cs is the velocity of shear waves in a layer, v∗ is the critical speed of moving
load (Guz et al. 2015).

As examples, a compressible half-space with an elastic potential of harmonic
type and an incompressible half-space with the Bartenev–Khazanovich potential are
considered (Guz 2004). It was assumed that the initial stress state is plane, and there
is no surface load.

The calculation results are given for a concentrated linear load, the normal and
tangential components of which are determined by the following formulas

P1 = Pδ(y1) cosα, P2 = Pδ(y1) sin α, P = G1,

where α is the tilt angle to the axis load Oy1.

6.5 Results

An analysis of the results shows that the presence of initial stresses has a significant
effect on the distribution of stresses and displacement velocities in the half-space and
the bending moment in the plate. This effect is different depending on the position
of the considered point of the layered body relative to the point of application of the
load.

The values of the parameters of the stress-strain state at a particular point of the
layered body depend on the initial stresses, its coordinates, and contact conditions.

For subcritical speeds of movement of the load with rigid contact of stress, the
speed of movement in the half-space is less than with non-rigid contact. At the same
time, in the studied range of values λ1, the growth rate of the amplitude of the studied
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Fig. 6.1 The distribution of stresses and speeds in half-space at the depth y2 = −2h/λ2 (curve 1
corresponds to λ1 = 0.8; curve 2—λ1 = 1; curve 3—λ1 = 1.2). Harmonic potential (ρ/ρ1 = 0.5,
μ/G1 = 0.5, κ = 0.845, ν = 0.3, ν1 = 0.25, α = π/2, δ0 = 1). Rigid contact (a, c, e), non-rigid
contact (b,d, f), v < v∗ < c12, v2 = 0.1c2s (a, b), c12 < v < c11, v2 = 2c2s (c,d), v > c11, v2 = 6c2s
(e, f)

quantities during compression is greater than during tension. The attenuation with
distance from the load application point in compression is slower than in tension.
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Fig. 6.2 The distribution of stresses and speeds in half-space at the depth y2 = −2h/λ2 (curve
1 corresponds to λ1 = 0.8; curve 2—λ1 = 1; curve 3—λ1 = 1.2). Elastic potential of Bartenev–
Khazanovich type (ρ/ρ1 = 0.5,μ/G1 = 0.5,κ = 0.845, ν1 = 0.25, α = π/2, δ0 = 1). Rigid con-
tact (a, b), non-rigid contact (c, d), v < v∗ < c1, v2 = 0.1c2s (a, c), v > c1, v2 > 2c2s (b, d)

The influence of the initial stresses increases significantly with the increase in the
speed of the load. This is especially true during pre-compression. The influence of
velocity and initial stresses is less significant with rigid contact than with non-rigid
contact.

Accounting for the inertia of rotation within the considered speeds of movement
of the surface load and values λ1 in the case of rigid contact introduces a minor
correction (less than 2.6 %). However, in the case of non-rigid contact, the difference
in the results will be huge (up to 30 %). Therefore, it is essential to take into account
the inertia of rotation at λ1 < 1 and the high speeds of the load.

It can be seen that as the velocity increases, the symmetry is more and more
violated, and the direct wave decays much faster and is practically absent in the
supersonic case. However, it does not entirely disappear. The layering of the medium
explains this.
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Fig. 6.3 Dependence of values that characterize the stress-strain state of underlying half-space,
from the initial stresses at different subcritical speeds of loads at the point y1 = −λ1h, y2 = −2h/λ2
(curve 1 corresponds to v2 = 0.1c2s curve 2—v2 = 0.2c2s , curve 3—v2 = 0.3c2s , curve 4—v2 =
0.4c2s ). Rigid contact (a, c), non-rigid contact (b, d), harmonic potential (a, b), elastic potential of
Bartenev–Khazanovich type (c, d)

In the case of a rigid contact, the direct wave decaysmuch faster than in a non-rigid
contact.

6.6 Conclusions

Within the framework of the linearized theory of elasticity for bodies with initial
stresses, the statement is considered, and the solution of the plane steady-state prob-
lem of the perturbation of a two-layer prestressed base, moving at a constant speed,
consisting of a plate and an underlying half-space, is obtained. The equations of
motion of the plate take into account shear and rotational inertia. Formulas are given
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Fig. 6.4 The impact of the accounting rotational inertia at various speeds of loads and primary
strains on the value of stress Q̃22 at the point y1 = −λ1h, y2 = −2h/λ2 (curve 1 corresponds to
v2 = 0.1c2s curve 2—v2 = 0.2c2s , curve 3—v2 = 0.3c2s , curve 4—v2 = 0.4c2s ). Rigid contact (a,
c), non-rigid contact (b, d), harmonic potential (a, b), elastic potential of Bartenev–Khazanovich
type (c, d)

for the transformants of the characteristics of the stress-strain state of elements of a
two-layered medium.

A study was made of the dependences of the parameters of the stress-strain state
of the base on the initial stresses, the speed of the load, and the contact conditions for
the elements of a two-layered medium. Initial (residual) stresses have a significant
impact on the parameters of the stress-strain state of the base. This effect depends
on the velocity of the surface load, the mechanical parameters of the elements of the
layered medium, and the conditions of their conjugation.
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Chapter 7
Numerical Modeling of Fatigue Cracks
Growth in Thin Isotropic Plates
Considering the Damage Accumulation
History

Vladislav Golub and Alla Plashchynska

7.1 Introduction

Modeling and solving problems on the propagation of fatigue cracks in solids under
cyclic elastic loading or so-called multi-cycle loading is supposed to be one of the
most urgent tasks of brittle fracture mechanics (Bolotin 1990; Nott 1978). Fatigue
failure occurs at stresses lower than the yield strength of the material and is not
accompanied by the accumulation of macroscopic plastic deformations.

In this field of fracture mechanics, many experimental studies were performed,
and several empirical and semiempirical relationships were formulated, establishing
the dependence of fatigue crack growth rate on the parameters of cyclic loading. In
particular, it is shown that at the stage of subcritical growth of fatigue cracks, the
most reasonable is the Paris concept, according to which the rate of fatigue crack
growth is considered a characteristic function of the amplitude of the stress intensity
factor (Paris and Erdogan 1963; Paris et al. 1961). The results of most studies in
this area are reduced to the refinement of the characteristic function by introducing
supplementary parameters enabling consideration of peculiarities of cyclic loading,
for example, the effect of asymmetry of a stress cycle and the maximum stress in a
cycle.

According to the authors, the problem of constructing a theoretical model of
fatigue crack growth was stated and solved for the first time in Cherepanov (1968).
The analytical dependence for the growth rate was constructed based on dimensional
analysis and validated experimentally for specimens made of aluminum alloys. It
was used to estimate the effect of loading frequency and the external environment.
The dimensional theory was also used in Andreikiv (1982) to construct a mathe-
matical model of nucleation and propagation of fatigue cracks in three-dimensional
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elastic-plastic bodies.According to themodel, the tensile strain in the fracture process
zone is used as an invariant characteristic of fatigue fracture.

An approach combining the energy concept of crack mechanics and the concept
of continuous damage mechanics (Bolotin 1983, 1985, 1987, 1990) appears more
promising for constructing theoreticalmodels describing the growth of fatigue cracks
in elastic bodies. Considering the accumulation of damages along the crack front as
the main factor of fatigue crack growth was further continued in Golub et al. (1993);
Golub and Panteleyev (2000); Golub and Plashchiskaya (1994, 2018); Nott (1978),
where a two-stage model of fatigue crack growth was constructed for infinite thin
isotropic plates under uniaxial tension-compression loading. In this case, the concept
of continuous damage mechanics is combined with the force approach of crack
mechanics. The model is validated experimentally by determining the kinetics of
fatigue crack growth in thin plates made of aluminum alloys under uniaxial reversed
tension-compression loading.

We use the approach combining the force concept of crack mechanics and the
concept of damage mechanics to construct a two-stage model of propagation of
fatigue cracks in thin isotropic plates of finite size, which makes it possible to take
into account the amount of damage that precedes crack propagation.

7.2 Problem Statement. Initial Equations

Let us consider the two-stage process of growth of fatigue mode I crack in thin
rectangular plates of finite dimensions made of isotropic linearly elastic materials,
including the incubation stage and the stage of crack propagation.

The plate is under loading σ̃ varying in an asymmetric cycle, so that

σ̃ = σm + σa sin(2πn), σmax = (σm + σa) < σY, (7.1)

where σm is the mean stress of the cycle, σa is the amplitude of cyclic stress, σY is
the yield strength of the material, n is the number of loading cycles or discrete time
(n = f t), t is physical time, and f is the loading frequency. The cyclic loading σ̃

is uniformly distributed along the edges of the plate perpendicular to the crack. The
crack faces are free from loads.

It is also assumed that σa in (7.1) is independent of discrete time n (stationary
mode), the frequency of loading f � 10 Hz, and the maximum cycle stress σmax

does not exceed the yield strength σY (high-cycle fatigue). In this case, the plate
deformation is mainly linearly elastic, and the fatigue fracture is quasi-brittle.

It is accepted further that repeated cyclic loading (7.1) can be reduced to an equiva-
lent (in the number of cycles to fracture nR) fully reversed cycle so that the amplitude
of the equivalent stress, (σa)eqv is given by the relation (Golub and Plashchiskaya
1994)

(σa)eqv =
[
cos

(
π

2

σm

σB

)]−η

σa, (7.2)
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Fig. 7.1 Fatigue crack-tip
model

where σB is the short-term strength limit of the plate material; η is the coefficient of
sensitivity of the plate material to the asymmetry of the stress cycle.

Wemodel the fatigue crack by a narrow sharp-pointed cut (Fig. 7.1) located along
the x-axis with y-axis perpendicular to the crack. We denote the initial half-length
of the fatigue crack by �0 and the current half-length of the crack, depending on the
number of loading cycles n, by �(n).

Two plastic zones (monotonic and cyclic) are formed in the vicinity of the fatigue
crack tip (Rice 1967). The stresses along the monotonic plastic zone are bounded by
the material’s yield strength σY. The initial λ(�0) and current λ(�(n)) lengths of the
cyclic plastic zone are determined by the stress range �(σyy)eqv in the cycle, and the
stress along the zone varies from −σY to +σY (Newman 1992; Rice 1967).

We consider the accumulation of fatigue damages along the front of a growing
crack as the main mechanism controlling its propagation. Assuming that fatigue
damage accumulates at each arbitrary point xi of the crack front at time n, the
kinetics of this process is described by the evolution equation

dω(x, n)

dn
= D

[
�

(
σyy

)
eqv (x, n)

1 − ω(x, n)

]q

(7.3)

with initial and boundary conditions

ω(x, n) =

⎧⎪⎪⎨
⎪⎪⎩

0, ∀x, n = 0 (a)

1, x = �0 + λ (�0) , n = n∗ (b)
ω(x j , ni ), x = �(ni ) + λ (�(ni )) , n = ni (c)
1, x = �(ni ) + λ (�(ni )) , n = nRi (d)

(7.4)

where i = 1, . . . , N , j = i, . . . , N , ω(·) = 1 is the scalar damage parameter, D and
q are material constants.

Conditions (a, b, c, and d) in (7.4) specify the initial conditions, duration of the
incubation stage, the level of damage at the point x j in time ni , condition of local
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failure at the point x j of the crack front, respectively. Condition (c) takes into account
the history of damage accumulation along the growing crack front.

The stress distribution�
(
σyy

)
eqv (x, n) along the x-axis near the fatigue crack tip

during the incubation period (0 � n � n∗) is given by the relation (Newman 1971)

�
(
σyy

)
eqv (x, n) = (σa)eqv√

2

√
�0

x − �0
f0

(
h

w
,

�0

w

)
, (7.5)

where h is the plate height, w is the plate width, and λ(�0) is given by the relation
(Newman 1992; Rice 1967)

λ(�0) = 1
8

[
π

2

(σa)eqv

σY
f0 (h/w, �0/w)

]2

�0.

The stress distribution �σeqv(x, n) along the x-axis near the fatigue crack tip
at the stage of crack propagation (n∗ � n � nR) is given by the relation (Newman
1971)

�
(
σyy

)
eqv (x, n) = (σa)eqv√

2

√
�(n)

x − �(n)
f

(
h

w
,
�(n)

w

)
, (7.6)

where

λ (�(n)) = 1
8

[
π

2

(σa)eqv

σY
f (h/w, �(n)/w)

]2

�(n).

The corrective function f (·) in (7.5) and (7.6) takes into account the influence of
boundary conditions and represents an approximation of k numerical solutions for
cracks of several lengths � (n).

Further, we model the growth of mode I fatigue crack in thin isotropic finite plates
under uniaxial asymmetric tension-compression loading by taking into account the
history of damage accumulation along the front of the growing crack.

7.3 Simulation of the Fatigue Crack Growth Process

The two-stage model of fatigue crack growth is based on the joint solution of two
problems: the problem of determining the local stress field in the vicinity of the
tip of the growing crack and formulating the fatigue crack growth criterion based
on the concepts of continuous damage mechanics. First, we divide the crack line
(Fig. 7.1) into N segments with nodal points x j = �(ni ) + λ (�(ni )) (i = 0, . . . , N
and j = i, . . . , N ) to simulate the fatigue crack growth, taking into account the
history of damage accumulation.

Then the integral equation of damage distribution along the fracture front based
on (7.3)–(7.6) is defined in the form:



7 Numerical Modeling of Fatigue Cracks Growth in Thin Isotropic Plates . . . 123

N∑
i=0

∫ 1

ω(ni ,x j)

[
1 − ω

(
n, x j

)]q
dω

= D
N∑
i=0

∫ ni+1

ni

(
(σa)eqv

√
�(ni )

2
(
x j − �(ni )

) · f (h/w, �(ni )/w)

)q

dn, (7.7)

(i = 0, . . . , N and j = i, . . . , N ), which represents a superposition for N discrete
time intervals ni � n � ni+1 including the incubation stage and the crack growth
stage.

7.3.1 Incubation Stage

The incubation stage corresponds to the loading period when the plate material is
damaged but not destroyed. The duration of the incubation period is determined
by Eq. (7.7) under the conditions 0 � ω (n, x0) � 1 and n0 � n � n1 (n0 = 0 and
n1 = n∗):

∫ 1

0
[1 − ω (n, x0)]

qdω

= D
∫ n∗

0

[
(σa)eqv

√
�0

2(x0 − �0)
f (h/w, �0/w)

]q

dn. (7.8)

Integrating in (7.8), we get

n∗ =
⎛
⎝(1 + q)D

[
(σa)eqv

√
�0

2(x0 − �0)
· f (h/w, �0/w)

]q⎞
⎠

−1

, (7.9)

where n∗ is the duration of the incubation stage.

7.3.2 Fatigue Crack Growth Stage

At the stage of fatigue crack growth, the stress state is determined by the front of
each new crack length �(ni ).

The moment of each subsequent crack jump at a point x j is determined by solving
Eq. (7.7) using the recursive formula
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ni+1 = ni +
[
1 − ω(ni , x j )

]q+1

(1 + q)D

[
(σa)eqv

√
�(ni )

2(x j − �(ni )
· f (h/w, �(ni )/w)

]q , (7.10)

under the conditions ω
(
ni , x j

)
� ω(n, x j ) � 1, ni � n � ni+1, i = 1, . . . , N , and

j = i, . . . , N .
The level of accumulated fatigue damage at an arbitrary point x j along the fracture

front over time ni � n � ni+1 is determined by the equation

∫ ω(ni+1,x j)

ω(ni ,x j)

[
1 − ω

(
n, x j

)]q
dω

= D
∫ ni+1

ni

(
(σa)eqv

√
�(ni )

2(x j − �(ni )
· f (h/w, �(ni )/w)

)q

dn, (7.11)

integrating that, we get the relation

ω(ni+1, x j ) = 1 −
( [

1 − ω(ni , x j )
]q+1 − (1 + q)D

×
[
(σa)eqv

√
�(ni )

2(x j − �(ni )
· f (h/w, �(ni )/w)

]q

(ni+1 − ni )

) 1
1+q

,

(7.12)

which allows taking the history of damage accumulation along the front of growing
fatigue crack into account.

7.3.3 Technique of Determining the Functions and Constants
of the Model

The two-stage model of fatigue crack propagation in thin isotropic plates of finite
size, presented in Sect. 7.2, contains two groups of material constants, subject to
determination from the experiment, as well as the corrective function f (·), which
allows for the finiteness of the plate size.

The first group of material constants includes yield strength σY and ultimate
strength σB. The values of σY and σB are determined from the tensile stress-strain
diagram σ − ε plotted from test data for smooth cylindrical specimens made of a
material for short-term ultimate strength.

The second group of material constants includes the coefficients D, q, and the
exponent η. The coefficients D and q characterize the material resistance to fatigue
failure and are determined from the fatigue tests on smooth cylindrical specimens
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under fully reversed cyclic loading. Experiments data are fitted by the equation

nR = (
(1 + q)D(σa)

q)
)−1

, (7.13)

derived by integrating the evolutionary damage Eq. (7.4) d, where (�σyy)eqv = σa

and n∗ = nR . Finally, the coefficients D andq in (7.13) are determined byminimizing
the functional


(D, q) =
s∑

i=1

{
nRi (σai ) − [

(1 + q)D(σai )
q
]−1

}2 → min, (7.14)

where σai and nRi are discrete values of amplitudes of cyclic stresses and associated
numbers of cycles to failure.

The exponent η characterizes the sensitivity of the material to the asymmetry of
the stress cycle and is determined by processing the data of fatigue tests on smooth
cylindrical specimens for different values of the mean stress σm. The value η is
determined by minimizing the following functional


 [ψ [σm/σB] , η] =
k∑

i=1

{ψ [σmi/σB] − [σai/σn]}2 → min, (7.15)

which represents the best fit of experimental data to the linearized limit diagram.
Here the function ψ(·) is selected in the form stated in (7.4).

To determine the exponent η, a single reference fatigue test on smooth cylindrical
specimens can also be used in a zero-to-tension stress cycle (σm = σa). In this case,
we determine η from the following relationship

η = lg

(
σ 0
a

σ 0
n

) /
lg

(
cos

(
π

2

σ 0
m

σB

))
, (7.16)

where σ 0
a and σ 0

m are the amplitude of the cyclic stress and the mean stress of a
zero-to-compression stress cycle; σ 0

n is the fatigue limit for a reversed stress cycle
corresponding to fatigue life n0R under stresses σ 0

m and σ 0
a .

The corrective functions f0(·) and f (·), which allow for the effect of the finiteness
of plate size on the growth kinetics of fatigue cracks, are specified by polynomials
of the fourth order. In this case, we write the corrective function for the incubation
stage as

f0 (h/w, �0/w) = A0 + A1�0/w + A2 (�0/w)2 + A3 (�0/w)3 + A4 (�0/w)4 ,

(7.17)
and for the stage of propagation of the fatigue crack as
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f (h/w, �(n)/w) = A0 + A1�(n)/w + A2 (�(n)/w)2

+ A3 (�(n)/w)3 + A4 (�(n)/w)4 . (7.18)

Here A0, A1, A2, A3, and A4 are polynomial coefficients dependent on the ratio
between the height h and the width w of the plate, as well as on the ratio between
the crack length � and the plate width.

The values of the polynomial coefficients in (7.17) and (7.18) are determined by
polynomial approximation of the numerical solutions of the problem on the stress
state of a plate of finite size with a mode I crack under uniaxial tension. Numerical
solutions are constructed by the method of boundary collocation (Tada 1971).

7.4 Calculation of the Kinetics of Fatigue Cracks Growth
in Finite Plates

The problem of calculating the growth kinetics of mode I fatigue crack in thin
plates of finite size under uniaxial asymmetric tension-compression σ̃ (7.1) is solved.
Figure 7.2a shows the geometry and loading conditions of the plate with a crack. The
geometric parameters of the plate are h = 0.891 m, w = 0.305 m, 2�0 = 0.005 m,
h/w = 2.92.

The numerical solutions are approximated by polynomials of the fourth order
(7.17) and (7.18). In this case, the corrective function f (·) is as follows

f (h/w, �/w) = 1.0106 − 0.1996(2�/w) + 1.829 (2�/w)2

− 3.068 (2�/w)3 + 3.2197 (2�/w)4 . (7.19)

Fig. 7.2 Loading scheme of
the finite plate with a crack
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The computation results obtained using the numerical algorithm described in
Sect. 7.3 are compared with the experimental data and with the computation results
obtained using the analytical relations (Golub and Plashchiskaya 2018)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n = n∗ +
(π

4

)q−2

[
cos

(
π

2

σm

σB

)]2η

(
1 + q−1

)
D(σY)q−2

×
∫ �(n)

�0

[σa f (h/w, �(n)/w)]−2 �(n)−1d�,

n∗ = [
(1 + q)D [4σY/π ] q

]−1
,

(7.20)
where all notations coincide with those adopted in (7.1)–(7.6).

The plate material is 7075-T6 aluminum alloy used in aviation and space tech-
nology. Table 7.1 shows the values of the material constants, which are determined
from experimental data (Grover et al. 1953) by the method described in Sect. 7.3.3.

Figure 7.3 shows the results of calculating the kinetics of damage accumulation
along the front of a fatigue crack growth in a plate made of 7075-T6 alloy at σm =
138 MPa and σa = 69 MPa, performed according to (7.9)–(7.12). Lines 1, 2, 3, and
4 indicate the level of accumulated damage ω(ni , x j ) along the crack front during
the time ni (i = 1, 2, 3, 4), respectively. Line 5 corresponds to the damage ω(ni , xi )
accumulated at the point xi to each moment of time ni . Fracture at a point x j occurs
when ω(ni+1, x j ) = 1 and j = i .

Table 7.1 The material constants of the model

AlloyσY, MPa σB, MPa D, (MPaq · cycle)−1 q η

7075-T6523 571 3.33 · 10−29 9.23 3.57

Fig. 7.3 The damage accumulation along the fatigue crack growth front in 7075 alloy plate
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The kinetics of fatigue crack growth under uniaxial symmetric and asymmet-
ric tension-compression is computed, including an asymmetric zero-to-compression
cycle, an asymmetric sign-variable stress cycle, and an asymmetric constant-sign
cycle. The results of numerical computations performed using (7.9) and (7.10) are
compared with experimental data and with the results of analytical solutions per-
formed using (7.20). Experimental data are taken from Hudson and Scardina (1967).

7.4.1 Fully Reversed Uniaxial Tension-Compression

The loading condition (7.1) is specified in the form

σ̃ = σa sin(2πn), σm = 0, (7.21)

where it is assumed that σmin = σm − σa = −σa.
The results of computations performed by (7.9), (7.10), and (7.20) with (7.21)

taken into account are compared in Fig. 7.4 (σm = 0, σa = 207MPa, stress ratio R =
−1) with experimental data. Here and below, the results of computations according
to (7.9) and (7.10) are plotted by dash-dotted lines (lines 1), according to (7.20), by
dashed lines (lines 2), and dots plot experimental data.

7.4.2 Asymmetric Sign-Variable Stress Cycle

The loading condition (7.1) is specified in the form

σ̃ = σm + σa sin(2πn), σa > σm, (7.22)

where it is assumed that σmin = σm − σa < 0.

Fig. 7.4 Computed (1, 2)
and experimental (◦)
dependences of the fatigue
crack length � versus the
number of stress cycles n in
aluminum alloy 7075-T6 thin
plate under fully reversed
uniaxial tension-compression
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Fig. 7.5 Computed (1, 2) and experimental (◦) dependences of the fatigue crack length � versus
the number of stress cycles n in aluminum alloy 7075-T6 thin plate under asymmetric sigh-variable
cycle

The results of computations performed by (7.9), (7.10) and (7.20) taking into
account (7.22) are compared in Fig. 7.5a (σm = 34MPa, σa = 172MPa, R = −0.7)
and Fig. 7.5b (σm = 69 MPa, σa = 138 MPa, R = −0.33) with experimental data.

7.4.3 Repeated Zero-to-Compression Stress Cycle

The loading condition (7.1) is specified in this case in the form

σ̃ = σm + σa sin(2πn), σm = σa, (7.23)

where it is assumed that σmin = σm − σa = 0.
The results of computations performed according to (7.9), (7.10), and (7.20)

taking into account (7.23) are compared in Fig. 7.6 (σm = σa = 69 MPa and R = 0)
with experimental data.

7.4.4 Asymmetric Constant-Sign Stress Cycle

The loading condition (7.1) is specified in this case in the form

σ̃ = σm + σa sin(2πn), σm > σa, (7.24)

where it is assumed that σmin = σm − σa > 0.
The results of computations performed according to (7.9), (7.10), and (7.20),

taking into account the loading conditions (7.24), are compared in Fig. 7.7a
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Fig. 7.6 Computed (1, 2) and experimental (◦) dependences of the fatigue crack length � versus the
number of stress cycles n in aluminum alloy 7075-T6 thin plate under zero-to-compression stress
cycle

Fig. 7.7 Computed (1, 2) and experimental (◦) dependences of the fatigue crack length � versus
the number of stress cycles n in aluminum alloy 7075-T6 thin plate under asymmetric constant-sign
stress cycle

(σm = 103 MPa, σa = 69 MPa, and R = 0.2) and Fig. 7.7b (σm = 138 MPa,
σa = 69 MPa, and R = 0.33 MPa) with experimental data.

7.5 Analysis of the Obtained Results

In this work, the approach to modeling the process of fatigue crack growth, based on
the use of the concepts of continuous damage mechanics, was further developed. A
numerical algorithmof themodel is constructed,whichmakes it possible to discretize
the process of fatigue crack growth by the moments when the damage parameter at
the growing crack tip reaches a value equal to 1. At each discretization moment, the
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amount of damage accumulated up to this point in time is taken into account, which
made it possible to take into account the history of damage accumulation.

The numerical algorithm of the fatigue crack growth model has been experimen-
tally tested on the problems of the kinetics of fatigue cracks growth in thin plates of
aluminum alloy 7075-T6 under uniaxial symmetric, sign-variable, and sign-constant
tension-compression. The results of comparing the computed and experimental data
are shown in Figs. 7.4, 7.5, 7.6 and 7.7. For comparison, the results of analytical
solutions are also given.

In general, as it follows from Figs. 7.4, 7.5, 7.6 and 7.7, the results of numerical
computations (visualized by dashed-dotted lines), given that the process of fatigue
failure is characterized by a significant (by 1–2 orders of magnitude) dispersion
of fatigue properties, are in satisfactory agreement with the experimental results
(visualized by points). The maximum error in the number of cycles for reaching the
same length by a fatigue crack does not exceed 30%, and themaximum error between
the lengths of fatigue cracks reached in the same number of loading cycles does not
exceed 20%. The results of analytical solutions (visualized by dashed lines), which
do not take into account the history of damage accumulation along the front of a
growing fatigue crack, may differ from the experimental data by order of magnitude.
The results of computations specify, in this case, slower growth of fatigue cracks.

7.6 Conclusion

The approach to modeling the process of fatigue crack growth in elastic bodies,
based on the concepts of damage mechanics, seems to be the most effective way to
solve this complex and very important problem of technical mechanics. The results
of computations of the kinetics of growth of fatigue cracks in thin isotropic plates
under symmetric and asymmetric tension-compression are in satisfactory agreement
with the experimental data. The best agreement with the experiment is obtained
when the solution is constructed using a numerical algorithm that allows one to take
into account the history of damage accumulation along the growing crack front. An
analytical solution that does not take into account the history of damage accumulation
specifies a significantly slower process of fatigue crack growth.
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Chapter 8
Solving Plates and Shells of Complex
Shape Static Problems Using
Coordinates Transformations

Alexander Grigorenko, Mykola Kryukov, Wolfgang H. Müller,
and Serhii Yaremchenko

8.1 Introduction

The boundary value problems of the theory of plates and shells of canonical form,
the geometry of which can be specified in orthogonal curvilinear coordinates (Carte-
sian, cylindrical, spherical), are sufficiently well studied, and there aremany effective
ways of solving them. However, with the need to consider non-orthogonal coordi-
nates, more complications arise since it is often challenging to transform the general
formulas of tensor analysis to a specific non-orthogonal system. It can be argued
that at this stage of the development of the theory of plates and shells using the
finite element method (FEM) or the finite difference method (FDM), it is possible
to set any shape of the surface and choose any element. But we should consider that
these methods should be used with caution since the careless application of FEM or
FDM to any class of problems can lead to significant errors in calculations or even
to physically unrealistic results (Blaauwendraad 2010).

Some studies that use numerical methods for structural analysis of complex shape
plates in non-orthogonal coordinates are presented in Buragohain and Patodi (1978);
Civalek and Gurses (2009); Malekzadeh and Fiouz (2007); Mohajerani (2015);
Paimushin andAndreev (1983); Shahidi et al. (2007); Shufrin et al. (2010); Srinivasan
and Ramachandran (1976). One of the methods of solving boundary value problems
of the theory of plates and shells in non-orthogonal coordinates is described in this
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chapter. First, the original equations of the theory of plates and shells are written in
orthogonal coordinates. After that, a specific substitution of variables is introduced,
which makes it possible to transform the canonical orthogonal coordinate system to
a non-orthogonal one. As a result, we get a two-dimensional boundary value prob-
lem on a rectangular domain that allows us to apply all available methods developed
for solving boundary value problems for the mentioned domain. The basics of such
transformations are outlined in Kornishin et al. (1989).

In this chapter, the spline-collocation method is used to reduce two-dimensional
problems of the theory of plates and shells to one-dimensional ones, followed by
their solution by the method of discrete orthogonalization (Bellman and Kalaba
1965; Godunov 1961).

8.2 Constitutive Equations

8.2.1 Bending of Oblique and Trapezoidal Plates

The bending of thin laminated orthotropic plates under a lateral load qz = q0(x, y)
is described in rectangular Cartesian coordinate system xOy by the following dif-
ferential equation (Birman 2011; Kryukov 1997):

D11
∂4w

∂x4
+ D22

∂4w

∂y4
+ 2(D12 + 2D66)

∂4w

∂x2∂y2
+ 2

∂D11

∂x

∂3w

∂x3

+ 2
∂D22

∂y

∂w

∂y3
+ 2

∂

∂y
(D12 + 2D66)

∂3w

∂x2∂y

+ 2
∂

∂x
(D12 + 2D66)

∂3w

∂x∂y2
+

(
∂2D11

∂x2
+ ∂2D12

∂y2

)
∂2w

∂x2

+
(

∂2D12

∂x2
+ ∂2D22

∂y2

)
∂2w

∂x2
+ 4

∂2D66

∂x∂y

∂2w

∂x∂y
− qz = 0, (8.1)

where x and y are the Cartesian coordinates of the median surface of the plate, and
w is the deflection.

The rigidity characteristics of the plate Di j are defined as

Di j =
n∑

m=1

∫ zm

zm−1

Bm
i j z

2dz (i, j = 1, 2, 6), (8.2)

where Bm
i j are expressed in terms of the mechanical characteristics of the mth

orthotropic layer:
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1 − νm
1 νm

2
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12 = νm

2 Em
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2
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2
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2

, Bm
66 = Gm

12,
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Fig. 8.1 Oblique plate

where Em
1 , E

m
2 , G

m
12, ν

m
1 and νm

2 are the elastic and shear moduli and Poisson’s ratios
of the mth layer; z = zm are the interfaces between layers in a stack; z = 0 is the
median surface of the plate; n is the number of layers in a stack, which is symmetric
about the median surface.

We examine an oblique plate (Fig. 8.1) with the sides a and b. Let us parametrize
it to transform the problem domain to canonical. We go to the distribution of bending
of the plate in the oblique coordinate system ξOη,

ξ = x − y tan α, η = y

cosα
. (8.3)

After the transformationof (8.1), taking into account (8.3), the equationof bending
of thin orthotropic plates in a new coordinate system can be obtained

a0
∂4w

∂ξ 4
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∂4w

∂η4
+ a2

∂4w

∂ξ 3∂η
+ a3

∂4w

∂ξ 2∂η2
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∂ξ∂η3

+ a5
∂3w

∂ξ 3
+ a6
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∂3w
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∂η3
+

+ a9
∂2w

∂ξ 2
+ a10

∂2w

∂ξ∂η
+ a11

∂2w

∂η2
+ a12

∂3w

∂η3
− qz = 0.

(8.4)

Coefficients ai are defined by the geometry andmaterial of the plate (Kryukov, 1997).
The edge of the plate is clamped:

w = 0,
∂w

∂ξ
= 0 (ξ = 0, ξ = a) ; w = 0,

∂w

∂η
= 0 (η = 0, η = b) .
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Fig. 8.2 Trapezoidal plate

Consider a trapezoidal plate with base c + d and height a − b (Fig. 8.2). We
describe the bending of the plate in a triangular (polar-oblique) coordinate system
ξOη in which the plate boundaries coincide with the coordinate lines ξ = const and
η = const.

In this case, we have

ξ = x

a
, η = k

y

x

(
k = a

c

)
. (8.5)

In the triangular coordinate system (ξ, η), (8.1) takes the form
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Variable coefficients ai j are defined by the geometry and material of the plate
(Kryukov 1997). The edge of the plate is clamped:

w = 0,
∂w

∂ξ
= 0

(
ξ = b

a
, ξ = 1

)
; w = 0,

∂w

∂η
= 0

(
η = −d

c
, η = 1

)
.
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8.2.2 Quadrilateral Plates in Refined Formulation

Resolving equations in refined formulation (for total rotation angles ψx , ψy and
deflection of the plate w, under normal uniform load q) take the form (Grigorenko
et al. 2018):

∂ψx
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+ ∂ψy
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+ ∂2w

∂y2
= − 6q

5Gh
,

D

(
∂2ψx

∂x2
+ ν

∂2ψy

∂x∂y

)
+ Gh

6

(
h2

2

[
∂2ψx

∂y2
+ ∂ψy

∂x∂y

]
− 5

[
ψx + ∂w

∂x

])
= 0,

D

(
∂2ψy

∂y2
+ ν

∂2ψx

∂x∂y

)
+ Gh

6

(
h2

2

[
∂2ψy

∂x2
+ ∂ψx

∂x∂y

]
− 5

[
ψy + ∂w

∂y

])
= 0,

(8.7)
where D = Eh3/[12(1 − ν2)], G = E/[2(1 + ν)], ν is the Poisson’s ratio, E is the
elastic modulus, h is the plate thickness.

The potential strain energy of the plate reads
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− 2qw

}
dxdy. (8.8)

To transformaquadrilateral domain into a rectangular one,weuse newcoordinates
ξ, η connected with x, y by the following relations:

x = a1 + a2ξ + a3η + a4ξη,

y = b1 + b2ξ + b3η + b4ξη.
(8.9)

The coefficients ai and bi can be determined from a system of eight linear equa-
tions by substituting into (8.8) of four points (xi , yi ) in the previous system and four
points (ξi , ηi ) in the new one.

If, for example, (ξi , ηi ) = (±1,±1), transformation (8.9) becomes

x =
4∑

i=1

xi Ni , y =
4∑

i=1

yi Ni , (8.10)

where Ni = (1 + ξξi )(1 + ηηi )/4 are the shape functions of the quadrangular finite
element of the first order.

In what follows, we will express all the derivatives with respect to x and y in
terms of the derivatives with respect to ξ and η. The transformation formulas for the
first derivatives of an arbitrary function f reads
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)
,

(8.11)

where J is the Jacobian of transformation (8.9). Using (8.11), we can get explicit
expressions for the second derivatives.

Let us map the original quadrangle onto the square [0; 1] × [0; 1] and substitute
into (8.7) the expressions for the derivatives with respect to x, y in terms of the
derivatives with respect to ξ, η. As a result, we get the following equation:

Lū = 0, (8.12)

where L is a linear differential operator of the second order within the domain ξ, η,
ū = {w,ψx , ψy} is an unknown vector. The clamped boundary condition is ū = 0̄.

8.2.3 Oblique Cylindrical Shells in Classical Formulation

Equations describing the bending of shells under uniform normal load q in a cylin-
drical system of coordinates take the form
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R3
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∂θ4

)
= − R(1 − ν2)

Eh
q,

(0 � z � L , 0 � θ � 2π), u, v and w are the axial, circumferential, and normal
displacements, respectively, h is the shell thickness, R is the mid-surface radius, E
is the elastic modulus, and ν is Poisson’s ratio.

Themid-surface of the shell with oblique ends is given in the rectangular Cartesian
coordinate system xyz using parameters ξ, η as follows

x = R cos η, y = R sin η,

z = ξ + R [tan β1 − ξ(tan β1 + tan β2)/L] (1 − cos η),
(8.14)

where L is the cylinder generatrix in the section η = 0; β1 and β2 are the angles
of the lower and upper cuts, respectively; 0 � ξ � L; if the cylinder is closed, then
0 � η � 2π . If the angles β1 and β2 are positive, then the projection of the cylinder
onto the plane xOz has the form shown in Fig. 8.3.When one of the angles is negative
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Fig. 8.3 Cylinder projection
at both positive angles β1
and β2

(β1 < 0 ), the shell projection is shown in Fig. 8.4. It is obvious that if both angles
are negative, they can be made positive by the appropriate selection of the length L .

The relationship between the coordinate systems ξη and zθ can be found from
(8.14):

ξ = az + b(cos θ − 1)

d cos θ + e
, η = θ, (8.15)

where a = L , b = LR tan β1, d = R(tan β1 + tan β2), e = a − d.
To transform in (8.19) from zθ to ξη, we can use the following formulas for

arbitrary function f :
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Using of (8.15) and (8.16) yields
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,
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Fig. 8.4 Cylinder projection
if β1 is negative

etc., where

λ1 = a/(d cos η + e), λ2 = λ1 (dξ − b) sin η/a,

λ3 = dλ1[2dλ2 sin η + (dξ − b) cos η]/a, λ4 = dλ2
1 sin η/a.

With (8.17) for the functions u, v, w, ψz and ψθ , we transform expressions (8.13)
to the form
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Coefficients Ci , Di and Fi depend on variables ξ and η. We have rigidly clamped
oblique ends at η = const and symmetry conditions at ξ = 0 and ξ = π (Grigorenko
et al. 2009).

8.2.4 Circular Oblique Cylinders in Refined Formulation

Consider a cylindrical shell in an orthogonal coordinate system z, θ , where z is a
longitudinal coordinate directed along the axis of revolution, θ is the central angle
in cross section. Then, using the equations of the refined shell theory based on the
straight-line hypothesis, we can describe the stress-strain state of the shell acted upon
by a surface normal load q by the following system of partial differential equations
(Grigorenko et al. 2020):

∂2u

∂θ2
= a11

∂2u

∂z2
+ a12

∂2v

∂z∂θ
+ a13

∂w

∂z
,

∂2v

∂θ2
= a21

∂2u

∂z∂θ
+ a22v + a23

∂2v

∂z2
+ a24

∂w

∂θ

+ a25
∂2ψ1

∂z∂θ
+ a26ψ2 + a27

∂2ψ2

∂z2
,

∂2w

∂θ2
= a31

∂u

∂z
+ a32

∂v

∂θ
+ a33w + a34

∂2w

∂z2
+ a35

∂ψ1

∂z
+ a36

∂ψ2

∂θ
+ a37q,

∂2ψ1

∂θ2
= a41

∂2u

∂z2
+ a42

∂2v

∂z∂θ
+ a43

∂w

∂z
+ a44ψ1 + a45

∂2ψ1

∂z2
+ a46

∂2ψ2

∂z∂θ
,

∂2ψ2

∂θ2
= a51

∂2u

∂z∂θ
+ a52v + a53

∂2v

∂z2
+ a54

∂w

∂θ

+ a55
∂2ψ1

∂z∂θ
+ a56ψ2 + a57

∂2ψ2

∂z2
, (8.19)

where ai j are variable coefficients that depend on the geometrical and mechanical
parameters of the shell.
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Using (8.17) for u, v, w, ψ1, ψ2, from (8.19) we obtain for oblique shell:

∂2u

∂η2
= −λ3

∂u

∂ξ
+ (

a11λ
2
1 − λ2

2

) ∂2u

∂ξ 2
− 2λ2

∂2u

∂ξ∂η
+ a12λ4

∂v

∂ξ

+ a12λ1λ2
∂2v

∂ξ 2
+ a12λ1

∂2v

∂ξ∂η
+ a13λ1

∂w

∂ξ
,

∂2v

∂η2
= a21λ4

∂u

∂ξ
+ a21λ1λ2

∂2u

∂ξ 2
+ a21λ1

∂2u

∂ξ∂η
+ a22v − λ3

∂v

∂ξ

+ (
a23λ

2
1 − λ2

2

) ∂2v

∂ξ 2
− 2λ2

∂2v

∂ξ∂η
+ a24λ2

∂w

∂ξ
+ a24

∂w

∂η

+ a25λ4
∂ψ1

∂ξ
+ a25λ1λ2

∂2ψ1

∂ξ 2
+ a25λ1

∂2ψ1

∂η∂ξ
+ a26ψ2 + a27λ

2
1
∂2ψ2

∂ξ 2

∂2w

∂η2
= a31λ1

∂u

∂ξ
+ a32λ2

∂v

∂ξ
+ a32

∂v

∂η
+ a33w − λ3

∂w

∂ξ

+ (
a34λ

2
1 − λ2

2

) ∂2w

∂ξ 2
− 2λ2

∂2w

∂ξ∂η
+ a35λ1

∂ψ1

∂ξ

+ a36λ2
∂ψ2

∂ξ
+ a36

∂ψ2

∂η
+ a37q,

∂2ψ1

∂η2
= a41λ

2
1
∂2u

∂ξ 2
+ a42λ4

∂v

∂ξ
+ a42λ1λ2

∂2v

∂ξ 2
+ a42λ1

∂2v

∂η∂ξ

+ a43λ1
∂w

∂ξ
+ a44ψ1 − λ3

∂ψ1

∂ξ
+ (

a45λ
2
1 − λ2

2

) ∂2ψ1

∂ξ 2
− 2λ2

∂2ψ1

∂ξ∂η

+ a46λ4
∂ψ2

∂ξ
+ a46λ1λ2

∂2ψ2

∂ξ 2
+ a46λ1

∂2ψ2

∂ξ∂η
,

∂2ψ2

∂η2
= a51λ4

∂u

∂ξ
+ a51λ1λ2

∂2u

∂ξ 2
+ a51λ1

∂2u

∂ξ∂η
+ a52v + a53λ

2
1
∂2v

∂ξ 2

+ a54λ2
∂w

∂ξ
+ a54

∂w

∂η
+ a55λ4

∂ψ1

∂ξ
+ a55λ1λ2

∂2ψ1

∂ξ 2
+ a55λ1

∂2ψ1

∂ξ∂η

+ a56ψ2 − λ3
∂ψ2

∂ξ
+ (

a57λ
2
1 − λ2

2

) ∂2ψ2

∂ξ 2
− 2λ2

∂2ψ2

∂ξ∂η
. (8.20)

The information on the boundary form is taken into account in expressions for λi .
Oblique cuts are rigidly clamped. Symmetry conditions are used on straight contours.
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Fig. 8.5 Midsurface
projections of elliptical
cross-sectional shell with
oblique cuts

8.2.5 Cylindrical Shells with Elliptic Cross Section
with Oblique Cuts

By analogy with the approach used in previous sections, it is possible to obtain a
resolving equation for the elliptical cross-sectional cylindrical shell with oblique cuts
(Grigorenko et al. 2020). The projections of this shell are presented in Fig. 8.5.

The equations for non-circular cylindrical shells under uniform normal load q in
the orthogonal curvilinear coordinate system Oα1α2 take the form:

a11
∂2u

∂α2
1

+ a12
∂u

∂α2
+ a13

∂2u

∂α2
2

+ a14
∂2v

∂α1∂α2
+ a15

∂w

∂α1
= 0,

a21
∂2u

∂α2∂α1
+ a22v + a23

∂2v

∂α2
1

+ a24
∂v

∂α2
+ a25

∂2v

∂α2
2

+ a26w

+ a27
∂w

∂α2
+ a28

∂2ψ1

∂α2∂α1
+ a29ψ2 + a2,10

∂2ψ2

∂α2
1

= 0,

a31
∂u

∂α1
+ a32v + a33

∂v

∂α2
+ a34w + a35

∂2w

∂α2
1

+ a36
∂w

∂α2

+ a37
∂2w

∂α2
2

+ a38
∂ψ1

∂α1
+ a39

∂ψ2

∂α2
+ a3,10q = 0,

a41
∂2u

∂α2
1

+ a42
∂u

∂α2
+ a43

∂2v

∂α2∂α1
+ a44

∂w

∂α1
+ a45ψ1

+ a46
∂2ψ1

∂α2
1

+ a47
∂ψ1

∂α2
+ a48

∂2ψ1

∂α2
2

+ a49
∂2ψ2

∂α2∂α1
= 0,

a51
∂2u

∂α2∂α1
+ a52v + a53

∂2v

∂α2
1

+ a54
∂v

∂α2
+ a55w + a56

∂w

∂α2
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+ a57
∂2ψ1

∂α1∂α2
+ a58ψ2 + a59

∂2ψ2

∂α2
1

+ a5,10
∂ψ2

∂α2
+ a5,11

∂2ψ2

∂α2
2

= 0, (8.21)

where variable coefficients ai j depend on shape and material of shell.
The mid-surface of the shell with oblique cuts in Cartesian coordinates x, y, z is

defined as follows

x = f1(η), y = f2(η),

z = ξ

L

(
L + [ f1(η) − f1(0)][tan β1 + tan β2]

) + [ f1(0) − f1(η)] tan β1,
(8.22)

0 � ξ � L , 0 � η � 2π ; β1 and β2 are angles of oblique cuts.
Let us change variables in (8.21). The relationship between ξ, η and α1, α2 reads

α1 = ξ

L

(
L + [ f1(η) − f1(0)][tan β1 + tan β2]

) + ( f1(0) − f1(η))tanβ1,

α2 = η. (8.23)

We can use the following formulas for an arbitrary function f :

∂ f

∂α1
= λ1

∂ f

∂ξ
,

∂2 f

∂α2
1

= λ2
1

∂2 f

∂ξ 2
,

∂ f

∂α2
= λ2

∂ f

∂ξ
+ ∂ f

∂η
,

∂2 f

∂α2
2

= λ3
∂ f

∂ξ
+ λ2

2

∂2 f

∂ξ 2
+ ∂2 f

∂η2
+ 2λ2

∂2 f

∂ξ∂η
,

∂2 f

∂α1∂α2
= λ4

∂ f

∂ξ
+ λ1λ2

∂2 f

∂ξ 2
+ λ1

∂2 f

∂ξ∂η
,

(8.24)

where

λ1 = L

1
, λ3 = 2

2
1

[
f ′′
1 1 − 2( f ′

1)
2(tan β1 + tan β2)

]
,

λ2 = 2

1
f ′
1, λ4 = − L

2
1

f ′
1(tan β1 + tan β2),

1 = [ f1 − f1(0)](tan β1 + tan β2) + L ,

2 = L tan β1 − ξ(tan β1 + ξ tan β2).

(8.25)

Resolving equations in a new non-orthogonal coordinate system Oξη are the
following

∂2u

∂η2
= −a12 λ2 + a13 λ3

a13

∂u

∂ξ
− a11λ2

1 + a13λ2
2

a13

∂2u

∂ξ 2
− a12

a13

∂u

∂η
− 2 λ2

∂2u

∂η∂ξ

− a14 λ4

a13

∂v

∂ξ
− a14 λ1 λ2

a13

∂2v

∂ξ 2
− a14 λ1

a13

∂2v

∂η∂ξ
− a15 λ1

a13

∂w

∂ξ
,

∂2v

∂η2
= −a21 λ4

a25

∂u

∂ξ
− a21 λ1 λ2

a25

∂2u

∂ξ 2
− a21 λ1

a25

∂2u

∂η∂ξ
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− a22 v

a25
− a24 λ2 + a25 λ3

a25

∂v

∂ξ
− a23 λ2

1 + a25 λ2
2

a25

∂2v

∂ξ 2
− a24

a25

∂v

∂η

− 2 λ2
∂2v

∂η∂ξ
− a26 w

a25
− a27 λ2

a25

∂w

∂ξ
− a27

a25

∂w

∂η
− a28 λ4

a25

∂ψ1

∂ξ

− a28 λ1 λ2

a25

∂2ψ1

∂ξ 2
− a28 λ1

a25

∂2ψ1

∂η∂ξ
− a29 ψ2

a25
− a2,10 λ2

1

a25

∂2ψ2

∂ξ 2
,

∂2w

∂η2
= −a31 λ1

a37

∂u

∂ξ
− a32 v

a37
− a33 λ2

a37

∂v

∂ξ
− a33

a37

∂v

∂η
− a34 w

a37

− a36 λ2 + a37 λ3

a37

∂w

∂ξ
− a35 λ2

1 + a37 λ2
2

a37

∂2w

∂ξ 2
− a36

a37

∂w

∂η

− 2 λ2
∂2w

∂η∂ξ
− a38 λ1

a37

∂ψ1

∂ξ
− a39 λ2

a37

∂ψ2

∂ξ
− a39

a37

∂ψ2

∂η
− a3,10 q

a37
,

∂2ψ1

∂η2
= −a42 λ2

a48

∂u

∂ξ
− a41 λ1

2

a48

∂2u

∂ξ 2
− a42

a48

∂u

∂η
− a43 λ4

a48

∂v

∂ξ

− a43 λ1 λ2

a48

∂2v

∂ξ 2
− a43 λ1

a48

∂2v

∂η∂ξ
− a44 λ1

a48

∂w

∂ξ
− a45 ψ1

a48

− a47 λ2 + a48 λ3

a48

∂ψ1

∂ξ
− a46 λ1

2 + a48 λ2
2

a48

∂2ψ1

∂ξ 2
− a47

a48

∂ψ1

∂η

− 2 λ2
∂2ψ1

∂ξ∂η
− a49 λ4

a48

∂ψ2

∂ξ
− a49 λ1 λ2

a48

∂2ψ2

∂ξ 2
− a49 λ1

a48

∂2ψ2

∂ξ∂η
,

∂2ψ2

∂η2
= −a51 λ4

a5,11

∂u

∂ξ
− a51 λ1 λ2

a5,11

∂2u

∂ξ 2
− a51 λ1

a5,11

∂2u

∂η∂ξ
− a52 v

a5,11

− a54 λ2

a5,11

∂v

∂ξ
− a53 λ1

2

a5,11

∂2v

∂ξ 2
− a54

a5,11

∂v

∂η
− a55 w

a5,11
− a56 λ2

a5,11

∂w

∂ξ

− a56
a5,11

∂w

∂η
− a57 λ4

a5,11

∂ψ1

∂ξ
− a57 λ1 λ2

a5,11

∂2ψ1

∂ξ 2
− a57 λ1

a5,11

∂2ψ1

∂η∂ξ

− a58 ψ2

a5,11
− a5,10 λ2 + a5,11 λ3

a5,11

∂ψ2

∂ξ

− a5,11 λ2
2 + a59 λ1

2

a5,11

∂2ψ2

∂ξ 2
− a5,10

a5,11

∂ψ2

∂η
− 2 λ2

∂2ψ2

∂η∂ξ
. (8.26)

Boundary conditions for elliptical shells are the same as boundary conditions for
circular shells with oblique cuts.
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8.3 Technique for Solving the Boundary Value Problem

Most problems in this chapter were solved by reducing two-dimensional problems
of plates and shell theory to one-dimensional ones by the spline-collocation method
(Bellman and Kalaba 1965; Godunov 1961).

For instance, for the problem of bending the trapezoidal plate, the solution to the
boundary value problem is sought in the form:

w =
N∑
i=0

wi (ξ)ϕi (η), (8.27)

wherewi are unknown functions, and ϕi are linear combinations of quintic B-splines
that satisfy the boundary conditions on contours η = const.

Substituting (8.27) into resolving equations and boundary conditions at contours
ξ = const and demanding to satisfy them in N + 1 collocation points, we obtain
one-dimensional boundary value problem in Cauchy form:

dȲ

dξ
= A(ξ)Ȳ + f̄ , (8.28)

B1Ȳ = b̄1, B2Ȳ = b̄2, (8.29)

where, in this case,

Ȳ = {w0, w1, . . . , wN , w′
0, w

′
1, . . . , w

′
N , w′′

0 , . . . , w
′′
N , w′′′

0 , . . . , w′′′
N }T .

For shells, in classical formulation, solution takes the form

Ȳ = {u0, u, . . . , uN , u′
0, . . . , u

′
N , w0, v1, . . . , vN , v′

0, v
′
1, . . . , v

′
N , w0, . . . , wN ,

w′
0, . . . , w

′
N , w′′

0 , . . . , w
′′
N , w′′′

0 , . . . , w′′′
N }T .

For quadrilateral plates and shells, in refined formulation, we obtain similar
expressions:

• for plates

Ȳ = {w0, w1, . . . , wN , w′
0, w

′
1, . . . , w

′
N , ψx0, . . . , ψxN ,

ψ ′
x0, . . . , ψ

′
xN , ψy0, . . . , ψyN , ψ ′

y0, . . . , ψ
′
yN , }T ,
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• for shells

Ȳ = {u0, u, . . . , uN , u′
0, . . . , u

′
N , w0, v1, . . . , vN , v′

0, v
′
1, . . . , v

′
N ,

w0, . . . , wN , w′
0, . . . , w

′
N ,

ψ10, . . . , ψ1N , ψ ′
10, . . . , ψ

′
1N , ψ20, . . . , ψ2N , ψ ′

20, . . . , ψ
′
2N }T .

Since, for problems that were solved using the refined formulation, spline-
approximation was carried out along generatrix, (8.28) take the form

dȲ

dη
= A(η)Ȳ + f̄ , (8.30)

Resolving equations for oblique plates have the same form.
One of the specified dimensional boundary value problems was solved by the

discrete-orthogonalization method (Bellman and Kalaba 1965; Godunov 1961).

8.4 Numerical Results

8.4.1 Oblique Plate

Let us consider the bending of the oblique plate (of thickness h) with rigidly clamped
contours under the normal uniform load qz = q0. The input data are the following:
a = b = 10, h = 0.1, Ey = E0, Ex = EμE0, Gxy = λE0 and νy = ν0. Five cases
of elastic constants of the plate material are analyzed (Table 8.1). The third case
corresponds to isotropic material.

Table 8.2 summarizes the peak values of the deflection for five cases of orthotropy
and six values of angle α = {0◦, 15◦, 30◦, 45◦, 60◦, 75◦}. Thirty-two collocation
points along axis were used for solving the system of 128 ordinary differential equa-
tions. For example, for α = 15◦ with Ex decreasing, the deflection in plate center
(ξ = 6, η = 5) increases by factors of 1.44, 1.55, 2.52, and 3.7 compared with the
first case of orthotropy. As the angle α increases, the deflection decreases. For exam-
ple, for the second case of orthotropy, the deflection decreases by factors 1.12, 1.62,
3.34, 12.18, and 157.9 compared with the rectangular plate.

Table 8.1 Five cases of
elastic constants of the plate
material

μ λ ν0

i 2 0.3 0.075

ii 1.35 0.215 0.122

iii 1 0.385 0.3

iv 0.741 0.159 0.165

v 0.5 0.125 0.15
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Table 8.2 The peak values of the deflection for five cases of orthotropy and six values of angle α

α i ii iii iv v

0◦ 0.8818 · 105 0.1272 · 105 0.1381 · 106 0.2224 · 106 0.3276 · 105
15◦ 0.7878 · 105 0.1136 · 105 0.1225 · 106 0.1982 · 106 0.2917 · 106
30◦ 0.5448 · 105 0.7845 · 105 0.8378 · 105 0.1366 · 106 0.2008 · 106
45◦ 0.2639 · 105 0.3805 · 105 0.4095 · 105 0.6639 · 105 0.9796 · 105
60◦ 0.7204 · 104 0.1044 · 105 0.1168 · 105 0.1842 · 105 0.2722 · 105
75◦ 0.5519 · 103 0.8055 · 103 0.9599 · 103 0.1447 · 104 0.2153 · 104

Table 8.3 The peak values of the deflection in the section y = 0

β i ii iii iv v

5◦ 1527 1766 1755 2079 2259

10◦ 1121 1319 1330 1591 1750

15◦ 729.1 927.7 937.5 1118 1231

20◦ 536.3 627.1 631.3 755.1 832.0

25◦ 376.1 427.0 421.1 469.2 537.6

8.4.2 Trapezoidal Plate

We have solved the bending problem for a three-layer trapezoidal plate with constant
thickness h0 and all sides rigidly restrained under a uniform lateral load q0. The
input data are the following: a − b = 10, c = d = 5, β1 = β2 = β, Ex = E0, Ey =
EμE0, Gxy = λE0 and νx = ν0. The thickness of the middle orthotropic layer hm =
0.8h0, and the thickness of the face layers h f = 0.1h0. Five values of the angle
β = {5◦, 10◦, 15◦, 20◦, 25◦} and five cases (i)–(v) of elastic constants of the middle
layer have been analyzed (see Sect. 8.4.1).

Table 8.3 summarizes the peak values of the deflection in the section y = 0. We
deduce that the deflection increases with decreasing Ey . For example, for β = 15◦,
the deflection increases by factors of 1.17, 1.18, and 1.55 compared with the first
case of orthotropy. As the angle β increases, the deflection decreases. For example,
for the fourth case of orthotropy, the deflection decreases by factors of 1.31, 1.86,
2.75, and 4.43 compared with β = 5◦.

8.4.3 Quadrilateral Plate in Refined Formulation

Using the above approaches, we have analyzed the stress-strain state of plates whose
outline and deflection distributions wE/q are shown in Figs. 8.6, 8.7, 8.8 and 8.9.
One plate is square with a side length equal to 2, and the other two plates are isosce-
les trapeziums with such apexes that the quadrangle area remains constant. The
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Fig. 8.6 Square plate
(case 1)

Fig. 8.7 Trapezoidal plate
(case 2)

trapezium bases are equal to 1 and 3 in Fig. 8.7 and 0.2 and 3.8 in Fig. 8.8. The
coordinates of the apexes can be found in Table 8.2.

The following parameter values were used: h = 0.1 and ν = 0.3. The trapezium
bases are free, and the sides are clamped. The figures show the results obtained with
the spline-collocation and discrete-orthogonalization methods using 60 collocation
points and 1500 integration points.

When using FEM, the square [0; 1] × [0; 1] is divided into elements with sizes
[0; 1/200] × [0; 1/200]. Then, (8.9) is used to determine the coordinates of the nodes
of the finite elements in the coordinates xy. The resulting matrix 3 × 201 × 201,
while the band width is 3 × 203. Such an approach made it possible to obtain results
(Table 8.4) in agreement with those obtained with the above two methods. We use
the Gaussian method to solve the systems of linear algebraic equations. Table 8.4
compares the maximum deflections wE/q achieved at the point x = 1, y = 0. We
failed to calculate the deflection of the trapezium close to a triangle (with bases 0.02
and 3.98). FEM solved this problemwith themaximum deflection (wE/q = 1617.7)
differing from that for the trapezium (case 3) insignificantly.

The stress-strain state of the triangle (case 4) was determined using both
approaches. To this end, three points of the four were placed on the same line for the
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Fig. 8.8 Trapezoidal plate (case 3)

Fig. 8.9 Triangular plate (case 4)

Table 8.4 Results obtained by two methods

Figure 8.6 Figure 8.7 Figure 8.8 Figure 8.9

SCM 529.34 1235.6 1576.7 1628.5

FEM 527.75 1231.6 1570.8 1622.2

quadrangle to degenerate it into a triangle. If the first apex had coordinates (–1; 0),
the other apexes of the “quadrangle” (anticlockwise) were (1; –2), (1; 2), and, for
example, (0; 1). The reliability and accuracy of this calculation can be evaluated by
comparing the maximums obtained for case 3 and the trapezium with bases 0.02 and
3.98.
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Table 8.5 Deflections wE/q in section ξ = L/2

η β = 6◦ β = 18◦ β = 30◦

I II(20) II(30) I II(20) II(30) I II(20) II(30)

0 383.4 383.8 383.1 411.2 413.4 410.7 437.1 440.5 436.3

π/10 382.7 383.0 382.4 409.3 410.9 408.7 433.2 435.5 432.4

2π/10 380.6 380.7 380.3 403.6 403.7 402.8 422.2 422.0 421.2

3π/10 377.3 377.1 377.0 394.4 393.0 393.4 406.8 404.1 405.3

4π/10 373.1 372.5 372.8 382.6 380.2 381.6 391.3 387.7 389.3

5π/10 368.3 367.4 368.0 369.2 366.8 368.5 379.4 376.6 377.7

6π/10 363.2 362.2 363.0 355.5 354.1 355.5 369.7 368.4 368.9

7π/10 358.6 357.5 358.4 343.0 342.8 343.5 352.2 352.7 352.8

8π/10 354.7 353.7 354.7 332.8 333.5 333.6 317.6 319.8 319.8

9π/10 352.2 351.2 352.2 326.0 327.3 326.9 275.3 279.5 279.5

π 351.3 350.4 351.3 323.5 325.1 324.5 255.5 260.6 260.6

8.4.4 Beveled Cylindrical Shells in Classical and Refined
Formulations

Results obtained using classical theory equations (Grigorenko et al. 2009) have been
compared with results obtained using refined theory equations. The input data are
the following: L = 60, R = 20, h = 1, β1 = β2 = β and ν = 0.3. The projection of
shell is shown in Fig. 8.3. Table 8.5 contains data for deflections wE/q in section
ξ = L/2 at β = 6◦; 18◦; 30◦. Column I contains data from Grigorenko et al. (2009),
columns II (20) and II (30) contain the data obtained by the approach presented
in Grigorenko et al. (2020) with the number of collocation points N + 1 = 20 and
N + 1 = 30, respectively. The interval of integration is divided into 400 subintervals.
As can be seen, the data obtained using both approaches are in good agreement, the
difference being no more than 0.5%.

8.4.5 Noncircular Beveled Shells

Next, we find the stress-strain state of the elliptic cylindrical cross section x1 =
a cos η, x2 = b sin η shell with semiaxises a = 25, b = 16 and a = 16, b = 25; L =
60, h = 1, ν = 0.3. Angles β1 and β2 are equal.

Figure 8.10 shows distribution of the displacements for b = 16 and a = 25 at
β1 = β2 = 0◦; 15◦; 25◦. Graphics show that elliptical cross-sectional peak displace-
ments are much greater than for the circular cylinder. In cross section η = 0, dis-
placements are almost unchanged depending on cutting angles, but their absolute
values decrease when approaching η = π . There are almost not deformation at
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Fig. 8.10 Displacements
distribution in elliptical
cross-sectional shell with
semiaxes a = 25, b = 16
and ξ = L/2

Fig. 8.11 Displacements
distribution in elliptical
cross-sectional shell with
semiaxes a = 16, b = 25
and ξ = L/2

β1 = β2 = 25◦ near η = π . For a = 16 and b = 25 (Fig. 8.11), peak displacements
wE/q are at η = 0 and, as in the previous case, are almost independent of cut-
ting angles. However, displacements decrease by factor 3 in cross section η = π at
β1 = β2 = 30◦ compared with the shell without cuts.

8.5 Conclusions

Using the classical and refined theory of shells of the Timoshenko type, the equations
of the stress-strain state of quadrilateral plates and cylindrical shells of circular and
non-circular cross sections with beveled sections at the ends in a new non-orthogonal
coordinate system were obtained.
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The two-dimensional boundary values problems obtained are reduced to one-
dimensional ones using the spline-collocation method when approximating one of
the coordinate directions. The latter are solved by the discrete-orthogonalization
method.

The solution of the bending problems of trapezoidal plates in the classical for-
mulation and arbitrary quadrilateral plates in the refined formulation of circular and
elliptical shells with oblique sections are given.

A comparison of the results obtained using the spline-collocation method and
the finite element method was carried out for quadrilateral plates in the refined
formulation.

In the case of cylindrical shells of circular cross sections with beveled cuts, the
solutions to the problems are obtained using the refined theory compared to the
results obtained using the classical theory.
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Chapter 9
Wave Scattering on Finite Wedge-Shaped
Objects

Viktor Grinchenko, Ihor Vovk, Vitalii Husak, and Volodymyr Matsypura

9.1 Introduction

Problems about wave scattering on bodies of different configurations have important
theoretical and applied significance since the results of their solutions can serve as a
basis for the construction of location systems of object detection and classification.

The most important problem in the design of aircraft and surface vehicles is to
reduce their radar visibility. When an object (e.g., an aircraft) has a complex shape,
and its dimensions are several wavelengths or more, its one-position (backscattering)
or two-position scattering cross section is characterized by significant fluctuations in
values with a small change in the angles of incidence of the electromagnetic wave.
Such a complex situation arises due to the diffraction and interference phenomena
of the electromagnetic wave reflected from different parts of the aircraft.

The problem of stealth technology is to reduce the positional scattering cross
section of various objects as much as possible. Many stealth technology techniques
and methods are classified information, but the basic principles of reducing radar
visibility are studied and described in the literature (see, for example, Lagarkov
and Pogosyan (2003); Lvova (2003); Alekseev et al. (2007); Knott et al. (2004);
Suharevskiy et al. (2009);Vozhdaev andTeperin (2018)). Stealth technology includes
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the followingmain directions: the theory of diffraction on complex bodies, the devel-
opment and research of radio-absorbing materials, coating technology, and, finally,
the radiophysical experiment used for control in each listed direction (Lagarkov and
Pogosyan 2003).

Currently, stealth technology begins with mathematical modeling of electromag-
netic wave scattering on the object, radar visibility of which is to be reduced. This
step is fundamental for preliminary estimating the achievable result and allows for
optimizing the shape and electrophysical characteristics of the object. Mathematical
and computational models are based on the solution of boundary problems of elec-
tromagnetic wave diffraction on bodies of complex shape, having special materials
and coatings in their composition. The capabilities of modern computing technology
make it possible to create software for modeling electromagnetic wave scattering
even on such complex objects as aircraft and ships.

Several software packages suitable for such modeling are available on the world
market. They all use “facet” models of objects and the method of physical diffraction
theory (Ufimtsev 2007; Chatzigeorgiadis 2004) in their development. The applica-
tion of asymptotic and hybrid algorithms (Shenderov 1989) presupposes a clear
idea of the physical phenomena that lead to the formation of the scattered field in
each particular case: specular reflections, diffraction on edges, and others. When
calculating the positional scattering cross section of large (in wavelengths) complex
bodies, it is essential that at relatively high frequencies, it is possible to distinguish
the individual fragments of the object structure, which at a given angle make the
main contribution to the formation of the scattered field. This makes it possible to
carry out calculations for such scattering centers independently of each other if nec-
essary, taking into account their mutual influence at later stages. Therefore, much
attention is paid to the development and improvement of appropriate electrodynamic
models.

A wedge is considered to be a classical model of this kind. In this model, infinite
boundaries are taken into account using the results of physical diffraction theory, and
the fields in a finite domain of space near the edge are determined by numerically
solving the electromagnetic field equations.

The study of wave scattering on finite wedge-shaped bodies is of interest since
the shape of such bodies is close to the shapes of some parts of aircraft, surface, and
space objects. In this chapter, based on the method of partial domains (Grinchenko
et al. 2018), a rigorous solution to the problem of wave scattering on models of
finite wedge-shaped objects in the presence of surfaces of large wave dimensions is
constructed.

9.2 Formulation and Construction of the Analytical
Solution to a Scattering Problem of a Plane Wave on a
Finite Wedge-Shaped Object

Let us distinguish two models of a finite wedge for analysis: a sharp and a rounded.
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9.2.1 Sharp Wedge

Consider the plane problem of plane wave scattering on a wedge-shaped object
(Fig. 9.1); let us assume that the object has an infinite extent along the axis perpen-
dicular to the plane of the figure. To describe the object’s geometry and construct
the solution to the problem, let us introduce a polar coordinate system rOθ centered
at the corner point of the wedge. The object is a finite wedge with an outer angle of
2φ, the sides of which are closed by an arc of a circle of radius R. The surfaces of
the object are considered acoustically rigid. The wedge-shaped object is in an ideal
medium with density ρ and sound velocity c. The angle θ0 gives the direction of the
incident plane wave.

According to the idea of the partial domain method (Grinchenko et al. 2018), the
entire sound field existence space is divided into two domains: 1 is the outer circle
of radius R, i.e., r � R, −π � θ � π ; 2 is the sector of a circle of radius R, i.e.,
0 � r � R, −φ � θ � φ.

Let us divide the incident wave field p0 = exp(−ikr cos(θ − θ0)) into even and
odd components:

p0 = p+
0 + p−

0 , (9.1)

p+
0 = 1

2

[
exp(−ikr cos(θ − θ0)) + exp(−ikr cos(θ + θ0))

]
,

p−
0 = 1

2

[
exp(−ikr cos(θ − θ0)) − exp(−ikr cos(θ + θ0))

]
.

Then the solution to the problem is found as a sum of solutions to even and odd
problems. Dividing the problem into even and odd problemswill allow us to consider
the range of angle change 0 � θ � π . This makes it possible to halve the size of the
matrix of the system of equations.

Let us write the pressure field in partial domain 1 in the form:

Fig. 9.1 The geometry of
the finite sharp wedge model



158 V. Grinchenko et al.

p1 = p+
1 + p−

1 , (9.2)

p+
1 = ∑∞

n=0An cos(nθ)
H (1)

n (kr)

H (1)′
n (kR)

+ p+
0 ,

p−
1 = ∑∞

n=1Bn sin(nθ)
H (1)

n (kr)

H (1)′
n (kR)

+ p−
0 .

The pressure field in partial domain 2:

p2 = p+
2 + p−

2 , (9.3)

p+
2 = ∑∞

n=0Cn cos(αnθ)
Jαn (kr)

J ′
αn

(kR)
,

p−
2 = ∑∞

n=1Dn sin(βnθ)
Jβn (kr)

J ′
βn

(kR)
,

where αn = nπ/φ and βn = (2n − 1)π/2φ.
The conjugation conditions of the fields on the boundary of the partial domains

look like this:

∂p±
1

∂r
=

⎧
⎨

⎩

∂p±
2

∂r
, r = R, θ = [0, φ]

0, r = R, θ = [φ, π ],
(9.4)

p±
1 = p±

2 , r = R, θ = [0, φ]. (9.5)

When solving the even problem, sets of coefficients An and Cn are defined, and
during the solution of the odd problem, sets of coefficients Bn and Dn are defined.

9.2.2 Rounded Wedge

Let us construct a flat model of a wedge-shaped object in which the sharp edge of the
wedge (Fig. 9.2) is rounded by a cylindrical surface. Figure 9.2 shows the geometry
of such a wedge and all the necessary notations needed when solving the diffraction
problem.

To construct the solution to the problem, let us introduce two polar coordinate
systems: rOθ and r1O1θ1. The radius of the rounded wedge a = O1A = O1B is
given. The angle of the roundedwedge 2φ is defined as the angle of the corresponding
wedge without rounding. From the rectangular triangle O1AO , we determine the
following geometric parameters of the model:

γ = π − φ, γ1 = π/2 − γ, b = sin γ1

sin γ
a, d = OO1 =

√
a2 + b2. (9.6)
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Fig. 9.2 The geometry of
the finite rounded wedge
model

According to the partial domain method, the entire sound field existence space is
divided into three domains:

1− r � R, −π � θ � π;
2− b � r � R, −φ � θ � φ;

3—the interior of the circle of radius b minus the intersection zone with the circle of
radius a centered at point O1.

The surface of the object, minus the rounded part (r1 = a, − γ1 � θ1 � γ1),
is assumed to be acoustically rigid. The rounding surface is characterized by the
normal conductivity Y = (1/ρc)(1 − V )/(1 + V ), which is defined through a given
reflection coefficient at pressure V . The relative normal conductivity Y = ρcY =
(1 − V )/(1 + V ).

Let us divide the incident wave field p0 = exp(−ikr cos(θ − θ0)) into even and
odd components, as written in (9.1). The pressure field in partial domain 1 is defined
by (9.2).

The pressure field in partial domain 2:

p2 = p+
2 + p−

2 , (9.7)

p+
2 =

∞∑

n=0

Cn cos(αnθ)
Jαn (kr)

J ′
αn

(kR)
+

∞∑

n=0

Dn cos(αnθ)
Nαn (kr)

N ′
αn

(kb)
,

p−
2 =

∞∑

n=1

Cs
n sin(βnθ)

Jβn (kr)

J ′
βn

(kR)
+

∞∑

n=1

Ds
n sin(βnθ)

Nβn (kr)

N ′
βn

(kb)
,

where αn = nπ/φ and βn = (2n − 1)π/2φ.



160 V. Grinchenko et al.

The pressure field in partial domain 3:

p3 = p+
3 + p−

3 , p±
3 = p(1)±

3 + p(2)±
3 , (9.8)

p(1)+
3 =

∞∑

n=0

En cos(nθ)
Jn(kr)

J ′
n(kb)

, p(2)+
3 =

∞∑

n=0

Fn cos(ηnθ1)
H (1)

ηn
(kr1)

H (1)′
ηn (ka)

,

p(1)−
3 =

∞∑

n=1

Es
n sin(nθ)

Jn(kr)

J ′
n(kb)

, p(2)−
3 =

∞∑

n=1

Fs
n sin(μnθ1)

H (1)
μn

(kr1)

H (1)′
μn (ka)

,

where ηn = nπ/γ1 and μn = (2n − 1)π/2γ1.
The main results are achieved based on the partial domain method for the cases

when partial domains do not overlap (Grinchenko et al. 2018). In Grinchenko (1996),
an approach is described that can serve as a basis for considering a special class of
problems admitting the construction of a general solution within the partial domain
method in the absence of physically determined boundary conditions over the whole
coordinate surface to which the complete system of functions is bound. According
to this approach, physical boundaries are complemented by “non-physical” sections.
Here it should be emphasized that on the “non-physical” sections of the boundary, the
boundary conditions can be continued by arbitrary functions. In this case, quantitative
characteristics of the wave field should not depend on the type of these functions.
However, since in practical use of the approach, it is a question of solving infinite
systems to which the reduction procedure is applied, a rational choice of conditions
on “non-physical” boundaries can significantly improve the quality of the execution
of the energy conservation law. Taking this into account, let us write the boundary
conditions in the form:

∂p±
1

∂r
=

⎧
⎨

⎩

∂p±
2

∂r
, r = R, θ = [0, φ],

0, r = R, θ = [φ, π ].
(9.9)

p±
1 = p±

2 , r = R, θ = [0, φ] (9.10)

p±
2 = p±

3 , r = b, θ = [0, φ]. (9.11)

⎧
⎪⎨

⎪⎩

∂p±
3

∂r
= ∂p±

2

∂r
, r = b, θ = [0, φ],

∂p(1)±
3

∂r
= g(θ), r = b, θ = [φ, π ].

. (9.12)

1

iωρ

∂p±
3

∂r1
= −Y p±

3 , r1 = a, θ1 = [0, γ1]. (9.13)

Since the function sets cos(nθ) and sin(nθ) have the property of orthogonality
on the interval [0, π ], the boundary condition for the field p3(1)± in (9.12) continues
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on the non-physical region r = b, θ = [φ, π ] as function g(θ). Let us assume that
g(θ) = 0 in the calculations.

The minus sign in (9.12) is due to the fact that the direction of the external normal
(it coincides with the direction of the radial coordinate r1) is opposite to the direction
of wave propagation.

During the solution of the even problem, the sets of coefficients An,Cn, Dn, En ,
and Fn are defined, and during the solution of the odd problem, the sets of coefficients
Bn,Cs

n, D
s
n, E

s
n , and Fs

n are defined. Passing from infinite series in (9.2), (9.7) and
(9.8) to finite series, leave the number of coefficients An, Bn equal to N1, coefficients
Cn,Cs

n, Dn, Ds
n—N2, En, Es

n—N3, Fn, Fs
n—N4.

9.3 Scattering Cross Section

In the problems of wave scattering by objects, the most important characteristics
are the scattering cross sections. These are the energy characteristics, which are
determined in the far-field of scattering of the object. Let us recall the definitions of
these characteristics, taking into account the fact that plane problems are considered:

• the total scattering cross sectionσs(θ0) is equal to the ratio of the power Ps scattered
by the object to the intensity of the plane harmonic wave I0, incident on the object.
The total scattering cross section σs(θ0) is a function of the angle of incidence of
the plane wave θ0.

σs(θ0) = Ps
I0

= 1

I0

∫ π

−π

Is(θ)rdθ, (9.14)

where Is is the intensity of the scattered wave;
• the positional scattering cross section σ(θ, θ0) is equal to the ratio of the power
of a non-directional source with an intensity equal to the intensity of the scattered
wave in a given direction θ to the intensity of a plane harmonic wave impinging
on the object at an angle θ0.

σ(θ, θ0) = 4πr2 Is(θ)

I0
. (9.15)

• if in (9.15) θ = θ0, we obtain the backscattering cross section:

σL(θ0) = σ(θ = θ0, θ0). (9.16)

From (9.2), the expression for the scattering field follows:

ps =
∞∑

n=0

An cos(nθ)
H (1)

n (kr)

H (1)′
n (kR)

+
∞∑

n=1

Bn sin(nθ)
H (1)

n (kr)

H (1)′
n (kR)

. (9.17)
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In the far-field (kr � 1), the asymptotic of the Hankel function is as follows:

H (1)
n (kr) =

√
2

πkr
exp

(
ikr − in

π

2
− i

π

4

)
.

Given this asymptotic, (9.17) can be written in the form:

ps =
√

2

πkr
exp

(
ikr − i

π

4

)
L(θ), (9.18)

where

L(θ) =
∞∑

n=0

An

H (1)′
n (kR)

cos(nθ) exp
(
−in

π

2

)

+
∞∑

n=1

Bn

H (1)′
n (kR)

sin(nθ) exp
(
−in

π

2

)
. (9.19)

Then the formula for the intensity of the scattering field in the far zone:

Is = |ps |2
2ρc

= 2I0
πkr

L(θ)L∗(θ), (9.20)

where the intensity of the incoming plane wave I0 =| p0 |2 /(2ρc) = 1/(2ρc).
Substituting (9.20) into (9.14)–(9.16), we obtain the following expressions for the

scattering cross sections:

σs(θ0) = 2

πk

∫ π

−π

L(θ)L∗(θ)dθ, (9.21)

σ(θ, θ0) = 4

k
L(θ)L∗(θ), (9.22)

σL(θ0) = 4

k
L(θ0)L

∗(θ0). (9.23)

The unit of measure for all three scattering cross sections is a meter.
To make formulas (9.21)–(9.23) dimensionless, these expressions are divided by

the midsection of the object. The midsection M(θ0) is the cross-sectional area of
the geometric shadow zone of the object. The midsection depends on the angle of
incidence of the wave θ0 on the object under study. The total scattering cross section
cannot exceed the doubled value of the midsection (Shenderov 1989; Grinchenko
et al. 2018), i.e., σs(θ0) � 2M(θ0).
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9.4 Construction of the Numerical Algorithm and
Verification of the Fulfillment of Boundary Conditions

9.4.1 Sharp Wedge

Let us first consider a sharp wedge (Fig. 9.1). Substituting the expressions for the
fields in the partial domains (9.1)–(9.3) into the conjugation conditions for the fields
(9.4) and (9.5), we arrive at the following equations (we describe only the even
problem):

k
∞∑

n=0

An cos(nθ) + ∂p+
0 (r, θ)

∂r

∣∣
∣∣
r=R

=

⎧
⎪⎨

⎪⎩

k
∞∑

n=0

Cn cos(αnθ), θ = [0, φ],

0, θ = [φ, π ].
(9.24)

∞∑

n=0

An
H (1)

n (kR)

H (1)′
n (kR)

cos(nθ)+p+
0 (r = R, θ)

=
∞∑

n=0

Cn
Jαn (kR)

J ′
αn

(kR)
cos(αnθ), θ = [0, φ]. (9.25)

The functions included in (9.24) and (9.25) depend on the spatial coordinate θ with
the specified limits of its variation.

Then the transition from (9.24) and (9.25) to the infinite system of linear algebraic
equations of the second kind follows (Grinchenko et al. 2018). It should be noted
that the analytical representations of the sound field constructed within the partial
domain method always exactly satisfy the wave equation for any number of terms
held in the series. Therefore, the estimation of the accuracy of meeting conjugation
conditions on the boundaries of partial domains should be taken as the basis of
estimations of the accuracy of the problem’s solution. It is evident that in order to
increase the accuracy of sound field estimation, it is necessary to increase the number
of unknown complex coefficients when solving the algebraic system of equations by
the reduction method. This is especially important for the high-frequency domain of
the noise spectrum.

Note that the efficiency of algorithms for solving infinite systems of algebraic
equations can be ensured by taking into account the known singularities in the vicinity
of corner points (in our case, it is the wedge edge). This makes it possible to obtain
quantitative estimates of the characteristics of sound fields in domains as close as
possible to the corner points. If, on the other hand, thefield characteristics in the points
distant from the corner points are of primary interest, then sufficient accuracy of the
results can be ensured by using the method of simple reduction, keeping a certain
number of equations in the system. A numerical experiment allows us to estimate the
degree of fulfillment of the sound field conjugation conditions for the selected model
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parameters. Such a procedure is standard when using the partial domain method and
was tested by the authors more than once (Grinchenko et al. 2018).

The transition from (9.24) and (9.25) to an infinite system of linear algebraic
equations can be performed using the conjugation by points of the fields at the
interface of partial domains (let us call these points nodal points) (Grinchenko et al.
2021).

So, let us restrict the infinite series in (9.24) and (9.25) by setting the number of
coefficients An and Cn to N1 and N2, respectively. The starting point in calculations
at conjugation by points of fields is normalized to the wavelength λ = c/ f distance
between the nodal points � along the interface between partial domains 1 and 2,
that is, the value �/λ. Based on the value �/λ, the number of nodal points N1 =
[(πR)/�] and N2 = [(φ/π)N1] is determined.

Let us denote the coordinates of nodal points at the interface between partial
domains 1 and 2 by (rm = R, θm), m = 0, 1, 2, . . . , N1. We choose angular coordi-
nates of nodal points 0 < θm < π, m = 0, 1, 2, . . . , N1 and write (9.24) and (9.25)
as a finite system of linear algebraic equations of order N1 + N2:

k
N1∑

n=0

An cos(nθm) + ∂p+
0 (r, θm)

∂r

∣
∣∣∣
r=R

=

⎧
⎪⎨

⎪⎩

k
N2∑

n=0

Cn cos(αnθm), θm = [0, φ],

0, θm = [φ, π ], m = 0, 1, . . . , N1.

(9.26)

N1∑

n=0

An
H (1)

n (kR)

H (1)′
n (kR)

cos(nθm) + p+
0 (r = R, θm)

=
N2∑

n=0

Cn
Jαn (kR)

J ′
αn

(kR)
cos(αnθm), θm = [0, φ], m = 0, 1, . . . , N2.

(9.27)

To control the possibility of using the conjugation by points of the fields in the
scattering problems under consideration, let us algebraize (9.24) and (9.25) using
the classical approach of the root mean square approximation of the fields on the
boundary of partial domains (Grinchenko et al. 2018, 2021). Wherein we will not
distinguish between even and odd problems.

In order to correlate the calculations performed using the conjugation by points
of the fields and the root mean square approximation, it is necessary, when using the
root mean square approximation, to put the number of modes in domain 1 equal to
2N1, and the number of modes in domain 2 is 2N2 (doubling the number of modes
is due to the absence of dividing the problem into even and odd ones). In this case,
the order of the system of linear algebraic equations is 2(N1 + N2). In this approach,
we multiply (9.24) and (9.25) by cos(mθ) (m = 0, 1, . . . , 2N1) and cos(αnθ) (m =
0, 1, 2, . . . , 2N2), respectively. Let us use the property of orthogonality of the given
sets of trigonometric functions on the intervals stated in the conjugation conditions
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for fields (9.24) and (9.25). As a result, we have a system of linear algebraic equations
of the second kind (Grinchenko et al. 2018), the order of which is determined by
the number of coefficients An and Cn taken into account, namely, 2(N1 + N2). The
explicit form of the system of linear algebraic equations, because of its obvious
structure, will not be written out.

Since we are interested in the sharp wedge model with the presence of surfaces of
largewave sizes, we choose the followingmodel parameters: R/λ = 10.2,φ = 165◦.

Figure 9.3 illustrates the quality of fulfillment of the conjugation conditions on
the boundary of partial domains 1 and 2 (r = R, − φ � θ � φ) and the boundary
condition on the rigid surface of the wedge-shaped object (r = R, − π � θ �
−φ

⋃
φ � θ � π ). As can be seen, the boundary conditions are well fulfilled, and

the solutions obtained by the conjugation by points of the fields and using the root
mean square approximation of the fields are well matched.

Fig. 9.3 Sharp wedge: illustration of conjugation conditions for the fields of pressure p and normal
velocity υ in module and phase at the boundary of partial domains 1 and 2 (r = R, − φ � θ � φ)

and the boundary condition on the rigid surface r = R, − π � θ � −φ
⋃

φ � θ � π, R/λ =
10.2, φ = 165◦, θ0 = 90◦: “points”—the conjugation bypoints,�/λ = 0.2, N1 = 160, N2 = 147,
“rms”—the root mean square approximation, N1 = 320, N2 = 294; lines and points correspond to
the fields in domain 1 and 2, respectively
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9.4.2 Rounded Wedge

Now let us see how the boundary conditions are fulfilled in the problem for the
rounded wedge (Figs. 9.4, 9.5, and 9.6). All subsequent calculations were carried
out using the conjugation by points of the fields with separation of the even and
odd problems. Let us leave the parameters of the model R/λ = 10.2, φ = 165◦ for
the sharp wedge. The rounding surface of the wedge (Fig. 9.2) is determined by the
coordinates of r1 = a, −γ1 � θ1 � γ1; at angle φ = 165◦ the value of γ1 = 75◦. Let
us choose the radius of thewedgea/λ = 0.8.Let the rounding surface is characterized
by the reflection coefficient V = 0.1, then its normalized conductivity Ȳ = 0.818.

Fig. 9.4 Roundedwedge: illustration of conjugation conditions for the pressure p andnormal veloc-
ityυ inmodule and phase at the boundary of partial domains 1 and 2 (r = R, − φ � θ � φ) and the
boundary condition on the rigid surface r = R, − π � θ � −φ

⋃
φ � θ � π, R/λ = 10.2, φ =

165◦, γ1 = 75◦, a/λ = 0.8, V = 0.1, θ0 = 90◦, �/λ = 0.2, N1 = 160, N2 = 147, N3 =
94, N4 = 22: lines and points correspond to the fields in domain 1 and 2 respectively

Fig. 9.5 Rounded wedge: illustration of conjugation conditions for the pressure p and normal
velocity υ in module and phase at the boundary of partial domains 2 and 3 (r = b, −φ � θ � φ),
φ = 165◦: lines and points correspond to the fields in domain 2 and 3, respectively
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Fig. 9.6 Rounded wedge: real Re Ȳ and imaginary Im Ȳ parts of the normalized conductance
Ȳ = ρcY of the rounded wedge surface (r1 = b, −γ1 � θ1 � γ1), γ1 = 75◦, V = 0.1, Ȳ = 0.818

All graphs in Figs. 9.4, 9.5 and 9.6 illustrate the good quality of fulfillment of
the boundary conditions on the boundaries of the partial domains (1 and 2, 2 and
3), the boundary condition on the rigid surface of the wedge-shaped object (r = R,
−π � θ � −φ

⋃
φ � θ � π) and the boundary condition on the rounded surface

of the wedge.

9.5 Calculation of the Scattering Cross Section

Figure 9.7 shows plots of the total scattering cross section σs(θ0) (curve 1) and inverse
scattering cross section σL(θ0) (curve 2) for three variants of thewedge-shaped object
model. The scattering cross sections are normalized to the value of R. As can be seen,
the value of σs (curve 1) over a wide range of angle changes θ0 is practically equal
to two for a sharp wedge and close to two for a rounded wedge. This is due to the
large value of R/λ = 10.2.

For the backscattering cross section σL (curve 2), there are two highlights due to
the normal incidence of the wave on the flat surface of an object of significant wave
size (R/λ = 10.2). First, comparing Fig. 9.7a, b, it can be noted that the rounding of
the wedge by a rigid surface significantly increases the backscattering cross section
in the range of angles−60◦ � θ0 � 60◦. At the same time, covering the rounded part
of the wedge with absorbing material with an absorption coefficient V = 0.1 returns
the situation close to a sharp wedge Fig. 9.7c.

Figure 9.8 shows plots, normalized to the value of R, of the two-position cross
section of the scattering σ(θ, θ0) of the object from the angle θ , determining the
direction of the scattered wave. The angle of incidence of the plane wave θ0 = 0.
Two angle zones can be distinguished on the graphs: an illuminated zone in the
range of angles approximately −100◦ < θ < 100◦ and a shadow zone −180◦ <

θ < −100◦, 100◦ < θ < 180◦. As can be seen, the illuminated zones for the sharp
wedge (Fig. 9.8a) and the rounded with the absorbing surface rounded (Fig. 9.8c)
are close in terms of scattering cross-sectional levels. This result is consistent with
the backscattering cross-sectional plots in Fig. 9.7a, c. The rigid rounding of the
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Fig. 9.7 Normalized to the value R of the total scattering cross section σs (curve 1) and backscat-
tering cross section σL (curve 2) of the object as a function of the incident angle of the plane wave
θ0, R/λ = 10.2, φ = 165◦: sharp wedge a, rounded wedge, a/λ = 0.8, V = 1 b, rounded wedge,
a/λ = 0.8, V = 0.1 c

wedge surface (Fig. 9.8b) noticeably increases the scattering cross section in the
angle range −100◦ < θ < 100◦. As for the shadow zone, all three variants have
significant shadow lobes due to the large wave size R/λ = 10.2 of the wedge-shaped
object.
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Fig. 9.8 Normalized to the value of R the two-position cross section of the scattering σ(θ, θ0) of
the object from the angle θ , determining the direction of the scattered wave; the angle of incidence
of the wave θ0 = 0, R/λ = 10.2, φ = 165◦: sharp wedge a, rounded wedge, a/λ = 0.8, V = 1 b,
rounded wedge, a/λ = 0.8, V = 0.1 c

9.6 Conclusions

Based on the method of partial domains, the rigorous solution to the problem of
plane wave scattering on finite wedge-shaped objects (a sharp and a rounded wedge)
in the presence of surfaces of large wave size is constructed. The obtained rigorous
solutions to the problems of wave scattering on finite wedge-shaped bodies are of



170 V. Grinchenko et al.

interest because the shape of such bodies is close to the shape of individual parts of
aircraft, surface, and space objects.

The reliability of the solution is conditioned by the quality control of conjugation
conditions on the boundaries of partial domains and the boundary conditions on
the corresponding surfaces of the model. Two variants of field conjugation were
calculated for a sharpwedge: the rootmean square approximation and the conjugation
by points of the fields. A high degree of coincidence of the calculation results in the
two variants is shown.

Calculations of the total, backscattering, and two-position scattering cross sections
have been carried out. It is shown that the value of the total scattering cross section
in a wide range of changes in the angle of incidence of a plane wave is practically
equal to two for a sharp wedge and close to two for a rounded wedge. This is due to
the presence of large wave size surfaces in wedge-shaped objects.

It is shown that the backscattering cross section depends significantly on the radius
of the rounded edge and the normal conductivity of the rounded surface. At the same
time, covering the rounded part of the wedge with an absorbingmaterial significantly
reduces the reflectivity of the object at the corresponding angles of incidence of the
wave.

The use of the proposed method for solving scattering problems makes it possible
to evaluate the potential possibilities of the method for monitoring the radar cross
section by changing the geometry of the scatterer (Zohuri 2020).
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Chapter 10
Heat and Stress State of Coated Bodies
Under Dry Friction Taking into Account
Radiation Heat Exchange

Oleksandr Hachkevych, Rostyslav Terlets’kyi, and Orest Gumenchuk

10.1 Introduction

The constantly increasing level of load-speed modes of operation of machinery and
the need to increase its resource requires an increase in the physical-mechanical,
tribotechnical, and other properties of materials of machine parts. Since the strength-
ening or modification of the surface layer allows to prevent the origin of deformation
defects in them and subsequent destruction (wear), the formation of protective coat-
ings on the surface is a promisingway to create high-strength andwear-resistantmate-
rials with increased physical and mechanical properties and resistance to destruction
in the process of frictional interaction and working in difficult operating conditions.

For the creation of such materials, it is important to develop theoretical studies
aimed at studying the thermomechanical behavior of layered structural elements (in
particular, with coatings) under conditions of intense thermal load at friction, the
action of electromagnetic radiation of the light range (in particular, thermal) and
heat transfer at high temperatures. For such studies, it is necessary to develop model
representations of the process of deformation of layered bodies, taking into account
the physical processes of radiation and heat propagation, as well as the development
of specific models of thermomechanics.
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10.2 Statement of the Problem on the Study of Thermal
and Stress States

Due to the roughness of the surfaces of real solids, rubbing bodies contact each
other through individual actual spots of contact, that is, the frictional contact is
generally not continuous, but discrete. Dry friction heat generation occurs in very
thin surface layers of individual roughnesses in contact. From the actual contact
spots, heat propagates deep into both contacting bodies. The actual contact spots have
different shapes and sizes. If all this is taken into account, then even the statement of
the thermal problem of heating bodies under the action of friction heat will be very
difficult. Therefore, in the heat dynamics of dry friction, simplified computational
models are used to study the thermal regime of friction (Amosov 2011).

One of them is a one-dimensionalmodel of continuous frictional contact. Here, the
friction heat dissipation is considered to be uniformly distributed over the entire area
of the nominal contact. The surface temperature of rubbing bodies calculated under
this assumption is called the average surface temperature. This model is realized at
large pressing forces of rubbing bodies, when the area of actual contact becomes a
significant part of the nominal friction contact area, or at significant friction times,
when the temperature of all friction areas becomes close to the temperature of the
actual contact spots. In simplified models, the contacting bodies are considered to be
half-spaces. Their use is permissible only in the case of short-term processes, when
the friction time is less than the warm-up time of each of the friction bodies. In this
case, heat exchange with the environment can also be ignored.

10.2.1 Problem Statements on the Study of Thermal State

We consider a friction pair (tribological system) formed by two bodies. Body 1 is
homogeneous. Body 2 is layered, consisting of the main body (substrate) and the
coating applied to it to increase wear resistance and thermal stability. The system of
bodies is subjected to a load that ensures their pressing (contact) and causes a certain
load on the interface (contact). One of the bodies moves (slides) on the surface of the
other. The system is in conditions of heat exchange with the external environment,
in particular thermal radiation heat transfer with surrounding bodies.

In order to study the thermal state in coated bodies during operation (at dry friction)
or at high-temperature process heating, consider the layered system shown in Fig.
10.1. It consists of layer 1 of thickness h1 and layer 2 of thickness h2 on which a
coating (layer 0) of thickness h0 is applied. When modeling friction processes and
thermal processes, wewill proceed from the calculationmodel described above (one-
dimensionalmodel of continuous friction contact, inwhich friction heat is considered
to be uniformly distributed over the entire surface of the nominal contact, which is
limited by the contour of the friction surface).
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Fig. 10.1 Tribological
system in conditions of
thermal radiation heat
transfer. Layer 2 (substrate)
with a coating of 0 and layer
1 slides with velocity V
under the action of a
distributed pressing load p.
Iλs is the intensity of thermal
radiation from a parallel to
the layers of the heated
isothermal surface whose
temperature Ts

A pressing distributed load p is applied to the surface z = 0, which causes a
distributed load p1 on the surface of the nominal contact. Layer 1 slides on the
surface z = h1 of the nominal contact with a speed of V . Then on this surface,
there is heat generation with specific power q f r = τ f r V , where the friction force
will be τ f r V = f p1 (Amosov 2011). The temperature dependence of the friction
coefficient f can be assumed linear, that is f = f0 [1 − A (T − T0)], where T0 is
the initial temperature in the system. If we do not take into account the temperature
dependence, then A = 0. Here f0 is the friction coefficient at the initial temperature
T0.

Layer 1 can be exposed to thermal radiation of intensity Iλs (ν) from parallel to
the layers of the heated isothermal surface, the temperature of which Ts is assumed to
be given Hachkevych et al. (2017, 2022). Here ν = cos ξ , and ξ are acute angles that
form the directions of incidence of rays from the surface with a positive direction
of the axis z directed in the direction of the outer normal to layer 2, and λ is the
wavelength of the radiation. For diffuse radiation (Modest 2003; Siegel and Howell
1972), such intensity can be given in the form Hachkevych et al. (2022); Terlets’kyi
and Brukhal’ (2017)

Iλs = k
2πc1

λ5 exp(c2/λTs − 1)
,

where k = const is the coefficient by which the characteristics of the real radiation
source and its location relative to the body can be taken into account, c1 and c2 are
known constants. The system as a whole is in conditions of convective heat exchange
with the external environment (Hachkevych et al. 2022). From the point of view of
absorption properties, all layers are considered to be opaque to thermal radiation
(different variants of layer transparency can be considered (Hachkevych et al. 2017;
Modest 2003; Siegel and Howell 1972)).
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According to the used friction model, we assume the conditions of ideal thermal
contact (Terlets’kyi and Turii 2013) on the surface z = h1 of the coating 0 and layer
1. We also assume perfect thermal contact at the interface z = h1 + h0 between the
coating and the substrate (layer 2).

Then the thermal state in the system is described by the equations of thermal con-
ductivity for the composite layers, which at constant densities ρ j and thermophysical
characteristics of the materials of the layers (coefficients of thermal conductivity κ j ,
heat capacity cε j , j = 0, 1, 2) to determine the deviations θ j = Tj − T0 of the tem-
perature in the plate from the initial one have the form Terlets’kyi and Brukhal’
(2017):

∂2θ j (z, t)

∂z2
− 1

� j

∂θ j (z, t)

∂t
= 0, j = 1, 0, 2, (10.1)

where � j = κ j/ρ j cε j are coefficients of temperature conductivity.
The system of Eq. (10.1) is supplemented with boundary conditions that define

the convective heat exchange of the system with the external environment on the
surfaces z = 0, h = h1 + h0 + h2 (taking into account the absorption and emission
of heat energy) and contact conditions that express the thermal equilibrium at the
interface z = h1, z = h1 + h0 between the layer 1 and coating and coating and layer
2, as well as heat generation due to friction.

The boundary and contact conditions for the system are as follows:

κ1
∂θ1(0, t)

∂z
−αs1 [ θ1(0, t) + T0 − T ext

1 (t)]
= −k

(
1 − R(1)

)
σT 4

s + ε(1)σ [θ1(0, t) + T0]
4 ,

(10.2)

κ1
∂θ1(h1, t)

∂ z
+ q f r = κ0

∂θ0(h1, t)

∂z
, θ1(h1, t) = θ0(h1, t), (10.3)

κ0
∂θ0(h1 + h0, t)

∂z
= κ2

∂θ2(h1 + h0, t)

∂z
,

θ0(h1 + h0, t) = θ2(h1 + h0, t), (10.4)

κ2
∂θ2(h, t)

∂z
+ αs2 [θ2(h, t) + T (0) − T ext

2 (t)]
+ ε(2)σ [θ2(h, t) + T0]

4 = 0,
(10.5)

where αs1 and αs2 are heat transfer coefficients from the surfaces of layers 1 and
2 to the external environment (air), T ext

1 (t) and T ext
2 (t) are air temperatures in the

regions z < 0 and z > h the external environment (can be assumed equal to the
initial temperature T0). Besides, ε(1) and ε(2) are hemispherical total emissivity of
the surfaces of layer 1 and layer 2, R(1) is the reflection coefficient of the surface
of layer 2 (1 − R(2) = ε(2)), and σ is the Stefan Boltzmann constant (Modest 2003;
Siegel and Howell 1972).
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Note that if external irradiation is absent in relation (10.2) it is necessary to put
Ts = 0.

On the basis of the obtained relations (10.1)–(10.5), we can write down the depen-
dences describing the thermal state of layer 2 with coating 0 for the problem of tech-
nological heat treatment using thermal radiation. In this case, layer 1 is omitted, and
the origin of coordinates is transferred to the surface of the coating. They include
Eq. (10.1), where j = 0, 2 and the following boundary and contact conditions

κ0
∂θ0(0, t)

∂ z
− αs0 θ0(0, t) = −k

(
1 − R(0)

)
σT 4

s + ε(0)σ [θ0(0, t) + T0]
4 ,

κ0
∂θ0(h0, t)

∂ z
= κ2

∂θ2(h0, t)

∂ z
, θ0(h0, t) = θ2(h0, t),

κ2
∂θ2(h, t)

∂ z
+ αs2

[
θ2(h, t) + T (0) − T ext

2 (t)
] + ε(2)σ [θ2(h, t) + T0]

4 = 0,

(10.6)
where h = h0 + h2, ε(0) is the hemispherical total emissivity of the coating surface,
and R(0) is the reflection coefficient.

10.2.2 Generalized Conditions of Heat Transfer Through a
Thin Layer

Applying the approach described in Shevchuk (1996) (using certain assumptions
about the distribution of temperature or heat fluxes through the thickness of a thin
intermediate layer or the formal operator method (Podstrigach and Shvets 1978;
Terlets’kyi and Turii 2013)), the study of the thermal behavior of a three-layer system
can be reduced to the study of a two-layer system.

We present the generalized conditions of heat transfer through a thin interlayer,
which we use to model the coating. In the considered case when all layers are opaque
generalized contact thermal conditions will have the form:

2

(
κ2

∂θ2

∂z
− κ1

∂θ1

∂z
− q f r

)
= C

∂ (θ1 + θ2)

∂t
, (10.7)

6

(
κ2

∂θ2

∂z
+ κ1

∂θ1

∂z
+ q f r

)
− 12D (θ2 − θ1) = C

∂ (θ1 − θ2)

∂t
. (10.8)

Here C = h0ρ0cεis the reduced heat capacity of the intermediate layer, D = κ0
/
h0

(1/D is thermal resistance).
Thus, the thermal state in the considered system can be described approximately

by the systemof twoequations of thermal conductivity (10.1) ( j = 1, 2) under bound-
ary ((10.2) and (10.5)) and generalized ((10.7) and (10.8)) contact conditions.
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It is also possible to obtain generalized boundary conditions (conditions of heat
transfer through the coating) in the case of layer 2 with coating 0 for the problem of
technological heat treatment. Then the thermal state in the layer is described by Eq.
(10.1) ( j = 2) with the following generalized boundary condition (Podstrigach and
Shvets 1978)

λ̄
∂θ2(0, t)

∂t
−

[
κ

∂θ2(0, t)

∂z
− k

(
1 − R(0)

)
σT 4

s

]

−αs0θ2(0, t) + σε(0) [θ2(0, t) + T0]
4 = 0

and condition (10.6). Here λ̄ = κ0h0 is the reduced thermal conductivity, and R(0) is
the radiation characteristics of the coating surface.

10.2.3 Formulation of Problems on the Study of the Stress
State

In the study of the stress state in the considered three-layer system to evaluate the
effect of frictional heating (q f r ) and distributed pressing load p on the stress state,
the components σik

( j) ( j = 1, 0, 2; i, k = x, y, z) of the stress tensor in the layers
are presented as the sum of two components σik

( j)q and σik
( j)pdue to heating and

power load, respectively.
The stress state corresponding to the temperature distributions in three-layer infi-

nite plates is described by the relations of the temperature problem of the elasticity
theory formulated with respect to the components of the stress tensor (Hachkevych
et al. 2017, 2022; Terlets’kyi and Brukhal’ 2017). It is obtained (under conditions
of ideal mechanical contact of layers and absence of force loads on their surfaces
z = 0, h)

σ
( j)q
xx = − E j

1 − ν j
ϕ j + C ( j)

1 z + C ( j)
2 ,

σ
( j)q
yy = − E j

1 − ν j
ϕ j + C ( j)

3 z + C ( j)
4 ,

σ
( j)
zz = 0,

where ϕ j= α
( j)
t θ j ; E j , ν j , α

( j)
t ( j = 0, 1, 2) are Young’s modulus, Poisson’s ratio

and linear coefficient of thermal expansion, respectively. In this case, if the edges are
equally fixed C1

( j) = C3
( j), C2

( j) = C4
( j) and

σ ( j)q
xx = σ ( j)q

yy = − E j

1 − ν j
ϕ j + C ( j)

1 z + C ( j)
2 , σ ( j)q

zz = 0. (10.9)
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The integration constantsCk
( j) (k = 1, 2, 3, 4) are determined from the conditions

of fixing the edges x, y → ±∞ of the plate (Hachkevych et al. 2022; Terlets’kyi and
Brukhal’ 2017) and the conditions ofmechanical contact at the interface. If both edges
are free from external forces and moments, then we have a system of equations to
find Ck

( j)(k = 1, 2):

C (1)
1

(
−h1

2
(h1 + h0) + h2 (h2 + h0)

K12

)
+ C (1)

2

(
h1 − h0

K10
+ h2

K12

)
= S,

C (1)
1

(
h31
3

+ h1h0
2

(
h1 + h0

2

)
+ h30

12K10
+ 1

K12

(
h1h0
2

(
h1 + h0

2

)
+ h32

3

))

+C (1)
2

(
−h1

2
(h1 + h0) + h2 (h2 + h0)

2K12

) = P,

C (0)
1 = C (1)

1

K10
, C (0)

2 = C (1)
2

K10
, C (2)

1 = C (1)
1

K12
, C (2)

2 = C (1)
2

K12
.

Here

K10 = E1

(1 − ν1)

(1 − ν0)

E0
, K02 = E0

(1 − ν0)

(1 − ν2)

E2
, K12 = E1

(1 − ν1)

(1 − ν2)

E2
,

S = E1

1 − ν1

∫ h1

0
ϕ1dz + E0

1 − ν0

∫ h1+h0

h1

ϕ0dz + E2

1 − ν2

∫ h

h1+h0

ϕ2dz,

P = E1

1 − ν1

∫ h1
0

(
z − h1 − h0

2

)
ϕ1dz

+ E0

1 − ν0

∫ h1+h0
h1

(
z − h1 − h0

2

)
ϕ0dz

+ E2
1−ν2

∫ h
h1+h0

(
z − h1 − h0

2

)
ϕ2dz.

If the edges are rigidly pinched

C (0)
2 = S

K10h1 + K02h2 + h0
, C (1)

2 = K10C
(0)
2 , C (2)

2 = K02C
(0)
2 . (10.10)

With rigid fixing of edges, C ( j)
k = 0 (k = 1, 2 , 3, 4) and

σ ( j)q
xx = σ ( j)q

yy = − E j

1 − ν j
ϕ j .

The stresses due to the force load are found from the equation

∂2σ
( j)p
zz

∂z2
= 0. (10.11)
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Under the following boundary conditions

σ (1)p
zz (0, t) = −p, σ (2)p

zz (h, t) = 0. (10.12)

Contact conditions that ensure equality of displacement are as follows:

σ
(1)p
zz (h1, t) = σ

(0)p
zz (h1, t),

∂σ
(1)p
zz (h1, t)

∂z
= ∂σ

(0)p
zz (h1, t)

∂z
,

σ
(1)p
zz (h1 + h0, t) = σ (0)

zz (h1 + h0, t),
∂σ

(1)p
zz (h1 + h0, t)

∂z
= ∂σ

(0)p
zz (h1 + h0, t)

∂z
.

(10.13)

The solution of Eq. (10.11) under boundary and contact conditions (10.12),
(10.13) has the form

σ ( j)p
zz = p

h
z − p, σ ( j)p

xx = σ ( j)p
yy = ν j

1 − ν j
σ ( j)p
zz , j = 0, 1, 2. (10.14)

From expression (10.14) we find the distributed load p1on the surface z = h1 of
the nominal contact p1 = p(1 − h1/h).

Similarly, we obtain expressions for the thermal stresses for the considered case
of irradiated layer 2 with a coating 0. In this case, the stresses are determined by the
relations (10.9) at j = 0, 2, where the expressions for the integration constants are:

• both edges are free from external forces and moments:

C (0)
1 = 6K02

[(−K02h20 + h22
)
S − (

K02h0 + h2
)
P

]
/L ,

C (0)
2 = 2K02

[ (
3K02h20+h2 (2h0+h2)

)
P − (−K02h30 + h22 (3h0 + 2h2)

)
S
]
/L ,

C (2)
1 = C (0)

1 /K02, C (2)
2 = C (0)

2 /K02.

L = 3
[
K02h20 + h2 (2h0 + h2)

] (−K02h20 + h22
)

−2
[−K02h30 + h22 (3h0 + 2h2)

]
(K02h0 + h2) ,

P = E0

1 − ν0

∫ h0

0
(z − h0)θ0dz + E2

1 − ν2

∫ h

h0

(z − h0)θ2dz,

S = E0

1 − ν0

∫ h0

0
ϕ0dz + E2

1 − ν2

∫ h

h0

ϕ2dz, h = h0 + h2.

• both edges are rigidly pinched:
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C ( j)
1 = 0, C (0)

2 = S

h0 + h2/K02
,

C (2)
2 = C (0)

2 /K02, K02 = E0

(1 − ν0)

(1 − ν2)

E2
.

10.2.4 Approximate Expressions for Thermal Stresses

As for a two-layer plate (Hachkevych et al. 2017; Terlets’kyi and Turii 2013), for the
considered three-layer plate (tribological system), it is also possible to obtain approx-
imate expressions for thermal stresses in layers 1 and 2 under different conditions of
fixing the edges at infinity. To do this, let us pass in the found corresponding stress
expressions to the boundary while h0/2 → 0 maintaining the reduced stiffness char-
acteristics for bending g∗

0 = K02h30/2 and tension g0 = 2 K02h 0 of the intermediate
layer (coating). Then in the case of a plate with edges free from forces and moments,
the constants C1

( j) and C2
( j) ( j = 1, 2) included in the expressions for stresses will

be:

C (1)
1 = 6K12

[(
h22 − K12h

2
1

)
S − (2K12h1 − g0 + h2) P

]
/M,

C (1)
2 = 2K12

[
3
(
h22 − K12h

2
1

)
P − (

2K12h
3
1 + g∗

0 + 2h32
)
S
]
/M,

C (2)
1 = C (1)

1 /K12, C (2)
2 = C (1)

2 /K12,

M = 3
(
h22 − K12h

2
1

)2 − (
2K12h

3
1 + g∗

0 + 2h32
)
(2K12h1 − g0 + h2) .

In case of fixed support, constants C1
( j) and C2

( j) ( j = 1, 2) have the form:

C (1)
2 = K10C, C (2)

2 = K02C, C = S

K10h1 + K02h2
.

We also give approximate expressions for thermal stresses for the case of a coated
plate. If the edges are free from forces and moments, then

C (1)
2 = K10C, C (2)

2 = K02C, C = S

K10h0 + K02h2
.

In case of fixed support,

C (2)
1 = 0, C (2)

2 = S

g0/2 + h
, S = E2

1 − ν2

∫ h

0
ϕ2dz, h = h0 + h2.

The obtained relations for stresses are complementary to the relations for temper-
ature given in Section 1.3. Together they make it possible to use the model of a two-
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or single-layer plate under complicated thermal contact or boundary conditions to
describe the heat transfer and thermal stress state in a system containing a coating.

10.3 Investigation of Temperature and Stress State at Dry
Friction

Numerical studies were carried out for the case when external thermal irradiation is
absent Ts = 0. In this case, the thermal state of the system was determined on the
basis of relations (10.1)–(10.5), (10.9) numerically by the finite difference method
using an implicit difference scheme and iterative methods. The convergence of the
iterative process is provided by the “high” (≈ 0.01 ) compression factor of the con-
structed corresponding operator. The running technique (for a system of equations
with a three-diagonal matrix when finding the temperature at each time step) and the
Gaussian method with the choice of the main element (when finding the heat fluxes
at the bases of the layers) were used.

The thermal stresses in the system caused by friction heating, at the numerically
found temperature distribution, were determined for the case of rigid fixing of the
edges of the layers, that is, according to the relations (10.10) using numerical inte-
gration (Simpson’s method).

For the materials of layers 1 and 2, Steel Ca8 was chosen, and the coating was
Steel 12Ch18Ni10Ti (as in the experiments on the wear of coated bodies (Kukareko
et al. 2013), the thermophysical and mechanical characteristics of which (average
integral over the heating interval) are as follows (Livshits et al. 1980):

Steel Ca8:

κ = 43W/(K · m), ρ = 7920 kg/m3, Cε = 528 J/(kg · K),

� = 1.038 · 10−5 m2/s, αs = 50W/m2 · K, ε = 0.5,

E = 18GPa, ν = 0.28, αt = 1.35 · 10−5 K−1.

Steel 12Ch18Ni10Ti:

κ = 20W/(K · m), ρ = 7839 kg/m3, Cε = 500 J/(kg · K),

� = 0.505 · 10−5 m2/s, E = 174GPa, ν = 0.28, αt = 1.75 · 10−5 K−1.

The compressive distributed load is chosen equal to 1MPa, according to the
experiments inKukareko et al. (2013). The results of numerical studies of temperature
T and thermal stresses σ q are shown in Figs. 10.2, 10.3, 10.4, 10.5 and 10.6. They
are carried out for the thicknesses of the moving layer 1 and substrate 2 equal to
h1 = h2 = 0.01. The dashed curves are calculated without taking into account the
heat transfer by radiation from the surfaces of layers 1 and 2.
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Fig. 10.2 Variation with time of temperature a and thermal stresses b on the friction surface at
coating thickness h0 = 0.001 m and friction speed V = 0.1 m/s

Fig. 10.3 Coordinate distribution of temperature a and thermal stresses b at different time points
t = 1000, 3000, 6000 s (curves 1–3, respectively) at coating thickness h0 = 0.001 m and friction
velocity V = 0.1m/s

Fig. 10.4 Variation with time of temperature a and thermal stresses b on the friction surface
with coating thickness h0 = 0.0002 m at different friction speeds V = 0.1; 0.5; 1m/s (curves 1–3,
respectively)

The figures show that the consideration of thermal radiation heat transfer by is
essential in the thermal and stress states assessment, and neglecting its influence leads
to overestimation of temperature and thermal stress levels. The zone of compressive
stresses is located in the substrate and coating, and tensile stresses are in the moving
layer 1. On the contact surfaces there are stress jumps. At the considered layer
thicknesses and fixing conditions, the temperature and stress levels increase with
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Fig. 10.5 Coordinate distributions of temperature a and thermal stresses b (at coating thick-
ness h0 = 0.0002m and friction velocity V = 1.0m/s) at different moments of time t =
400, 800, 1200 s (curves 1–3)

Fig. 10.6 Coordinate distribution of temperature a and thermal stress b at different friction veloc-
ities V = 0.1, 0, 5, 1 m/s (curves 1–3) at coating thickness h0 = 0.0002m. Curve 1 corresponds to
t = 6000 s, and curves 2 and 3 – t = 1200 s

increasing friction speed. From the data shown in the figures and the calculation of
the force stresses (10.14), it follows that the determining factors in the assessment
of the stressed state are thermal stresses.

The obtained graphical results can be used to evaluate the thermal and stress states
in the surface layers of materials under dry friction depending on the test conditions
(pressure and friction speed).

10.4 Conclusions

The proposed new mathematical models of the thermomechanics of coated plates
allow us to study thermal and stress states during high-temperature technological
heating in heat treatment by thermal radiation or operation under dry friction, taking
into account radiation heat exchange. The obtained approximate relations for deter-
mining the temperature and stresses make it possible to use a model of a two- or
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single-layer plate under complicated thermal contact or boundary conditions to
describe heat transfer and thermal stress state in a three- or two-layer plate con-
taining a coating. Taking into account the radiation heat exchange during dry friction
is essential in assessing thermal and stress states, and neglecting its influence leads
to an overestimation of temperature and thermal stresses. Thermal stresses are the
primary parameters in the assessment of the stress state.
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Chapter 11
Problems of Thermomechanics of
Multilayered Electroconductive Bodies
Under the Action of the Pulsed
Electromagnetic Fields with Modulation
of Amplitude

Oleksandr Hachkevych, Roman Musii, and Nataliya Melnyk

11.1 Introduction

The structural elements of many modern machines and mechanisms are layered con-
ductive bodies (LCB), which, during the operation of these devices, are affected by
various physical and mechanical fields, e.g., pulsed electromagnetic fields (PEMFs)
(Herlah 1999; Knoepfel 1970; Mikhailov 1979; Shneerson et al. 2014).

Mathematicalmodels of homogeneous and lump-homogeneous bodies under non-
stationary power and thermal loads are considered in the literature (Gribanov and
Panichkin 1984; Ionov and Ogibalov 1975; Lurie 2005; Moon 1984; Podstrigach
and Kolyano 1976; Timoshenko and Goodier 1970). Mathematical models of the
thermomechanics of homogeneous electrically conductive bodies under the action of
electromagnetic fields (EMFs) of various types are known (Burak et al. 2006;Hachke-
vich 1992; Hachkevych and Musii 2019; Hachkevych et al. 2011, 2019; Ionov and
Ogibalov 1975). These models consider the adiabaticity of the processes of heating
and deformation of the electroconductive body of the PEMF (Herlah 1999; Knoepfel
1970; Mikhailov 1979; Moon 1984; Mozhen 1991; Shneerson et al. 2014), which is
experimentally observed under the action of different types of PEMFs, in particular
with amplitude modulation in the mode with a pulse modulated signal (MPMS), in
the mode with a decaying sine wave (MDSW) and a single electromagnetic pulse
(SEMP). Such PEMFs are widely used in the technologies of pulsed electromagnetic
processing of materials (Asai 2012; Batygin et al. 2003). Based on these models,
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the thermomechanical behavior and performance of uniform electrically conductive
bodies of canonical form under the action of the considered characteristic types of
PEMFs were investigated (Hachkevych et al. 2011; Musii et al. 2021; Musii 2010).
In addition to the temperature caused by Joule’s heat (Hachkevich 1992; Podstrigach
et al. 1977), an additional component of temperature created by the heating of an
electroconductive body because of its volumetric deformation due to the action of
volumetric ponderomotive force was investigated (Burak et al. 2006; Hachkevych
et al. 2011; Musii 2010). It was found that this temperature component is negligible
for the effects of PEMF and the effects in the MPMS and MDSW when using fre-
quencies of carrier electromagnetic oscillations outside the resonant frequencies of
the electromagnetic field and is 10–20% of the value of the temperature component
caused by heat at the first resonant frequency Joule (Hachkevych et al. 2011).

The analysis of the obtained qualitative and quantitative results of the defor-
mation of homogeneous electroconductive bodies of PEMF of characteristic types
based on the considered model confirms the rationality of its use to determine the
thermostressed state of homogeneous electroconductive bodies under the action of
PEMF with modulation of the amplitude of the radio frequency range.

When considering LCB, the question arises of considering the electromagnetic,
thermal, and mechanical contact between the constituent layers and the influence of
this contact on the distribution of physical and mechanical fields in each constituent
layer. Therefore, it is necessary:

1. Build an appropriate physical-mathematical model of LCB under the action of
PEMF.

2. Based on this model, formulate a new class of problems of thermomechanics of
electrically conductive bodies.

3. Develop a methodology for solving these problems to determine the electromag-
netic, temperature, and mechanical fields in each component layer of LCB.

4. Formulate the conditions under which the performance of the LCB as a structural
element as a whole and the mechanical properties of the contact connection of
the constituent layers of the LCB are preserved.

11.2 The Calculated Physicomathematical Model

Considering the above-mentioned problems, let us formulate a physicomathematical
model for determining the thermostressed state of LCB under the action of PEMF.
This model includes four stages (Musii et al. 2018).

At the first stage, in each nth (n = 1, . . . , N ) component layer of the LCB, the
non-stationary EMF is determined from Maxwell’s relations, which is described by
the magnetic field intensity vector H(n), and the Joule heat Q(n) and ponderomotive
forces F(n) caused by it taking into account the given boundary conditions on the
outer surfaces of the first and last layers and the conditions of ideal electromagnetic
contact on all surfaces of the connection of the component layers.
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At the second stage, from the thermal conductivity equation, in which Joule’s heat
Q(n) is a volume source of heat, the non-stationary temperature field T (n) in each
nth component layer of LCB is determined under the conditions of convective heat
exchange with the environment on the outer surfaces of the first and last layers and
ideal thermal contact on all surfaces with the connection of constituent layers.

At the third stage, the displacement vector u(n) and the dynamic stress tensor σ̂ (n)

in each nth component layer of LCB from the equations of dynamic thermoelasticity
based on the found temperature T (n) and ponderomotive force F(n) were determined.

At the fourth stage, to evaluate the efficiency of the LCB, we determine the
intensities σi

(n) of the total stresses σ̂ (n) = σ̂ (n)Q + σ̂ (n)F (due to both Joule heat and
ponderomotive forces) (Hachkevych et al. 2011; Musii 2010) in each nth constituent
layer, which are calculated according to the formula (Gribanov and Panichkin 1984;
Ionov and Ogibalov 1975; Lurie 2005)

σ
(n)
i =

√[
3I2(σ̂ (n)) − I 21 (σ̂ (n))

]
/2 (11.1)

and compare their value with the elastic limit deformation of the material σd
(n) of

the nth layer. Here I j
(
σ̂ (n)

)
is the j th invariant of the stress tensor.

The LCB loses its performance as a whole, as a structural element, if at least one of
the nth component layers loses it, i.e., in the component layer, the condition

max σ
(n)
i � σd

(n) (11.2)

is fulfilled (Musii et al. 2018).
This condition corresponds to the well-known Huber–Mises condition (Lurie

2005; Timoshenko and Goodier 1970) for an isotropic layer, according to which
plastic deformations occur when the stress intensity σi reaches the yield point of the
material σd during its stretching.

In technical devices, the structural elements of which are LCB, there is an impor-
tant problem of preserving the properties of the contact connection of their compo-
nent layers. To assess the limit of preservation of these properties, the values of the
stress intensities σi

(n)∗ in the component layers on the contact surface of the nth and
(n + 1)th component layers are compared with the strength limit σM

(n) of the nth
contact joint. If the condition (Musii et al. 2018)

σ
(n)∗
i � σ

(n)
M (11.3)

is fulfilled, then the properties of the nth contact connection are preserved. Note
that the values of σd

(n) and σM
(n) for the materials used in the engineering of the

component layers of LCB are known from experiments.
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11.3 Initial Relations of the Thermomechanics of LCB
Under the Action of PEMF

Let us formulate the initial physical and mathematical conditions and write down
the initial relations for the quantitative description of the parameters characterizing
electromagnetic, thermal, and mechanical processes in LCB under the action of
PEMF with amplitude modulation. Such PEMFs are given by the values of the
magnetic field intensity vector H(n) (r, t) on the outer surfaces of the first and last
component layers of the LCB in the form (Hachkevych et al. 2011)

H
(
r(n)
s , t

) = H0
(
r(n)
s , t

) ≡ H0
(
r(n)
s , t

)
sin (ωt + φn) . (11.4)

HereH0
(
rs (n), t

) = H∗(t)H∗
0

(
rs (n)

)
ismodulated amplitude;H∗

0

(
rs (n)

)
is the ampli-

tude of the carrier signal; H∗(t) is a dimensionless function of the pulse character
of the change in time t of the signal, which modulates the amplitude of electromag-
netic oscillations (the amplitude of the carrier signal), and satisfies the conditions
H∗(t) � 1 at t ∈ [0, ti ], H∗(0) = 0, H∗(ti ) = 0; ω is the frequency of the carrier
signal; ti is the duration of the electromagnetic action; φn is the initial phase, r and
rs (n) are radius vectors of volume points V and outer surfaces Sn of the first and last
component layers of LCB.

Assume that the parameters ω, ti , H∗
0

(
rs (n)

)
and H∗(t) are such that the active

PEMF belongs to the class of pulsed “non-destructive” PEMFs, the action of which
does not yet lead to the occurrence of shock waves (with a pulse length of less than
a fraction of a second (ti < 0.01 s) and with the highest value of the magnetic field
strength on the outer surfaces the first and last constituent layers Hmax � 107 A/m.

The materials of each nth component layer of LCB are considered homogeneous,
isotropic, non-dielectric, and non-ferromagnetic, for which electromechanical and
thermoelectric effects are insignificant, induction vectors D(n) and B(n) are parallel
to vectors of electric E(n)and magnetic H(n) field strengths, and conduction currents
j(n) are parallel to E(n). Assume that the material equations of electrodynamics in
each nth layer have the form (Mozhen 1991; Podstrigach et al. 1977)

D(n) = εnE(n), B(n) = μnH(n), j(n) = σnE(n), (11.5)

where εn = ε0ε∗n ,μn = μ0μ∗n , ε∗n andμ∗n are relative electric andmagnetic perme-
ability, σn is coefficient of electroconductivity of the material of the nth constituent
layer, ε0 and μ0 are electric and magnetic steel, respectively.

Under such assumptions, the effect of PEMF on the processes of thermal conduc-
tivity and deformation in the conductive layer, as in the models for quasi-steady EMF
known in the literature (Hachkevich 1992), is taken into account due to the physical
factors caused by this field, i.e., Joule heat and ponderomotive forces (Hachkevych
et al. 2011; Podstrigach et al. 1977)

Q(n) = σnE(n)E(n), F(n) = σnμnE(n) × H(n). (11.6)
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These factors lead to the emergence of non-stationary temperature andmechanical
fields. Ponderomotive moments

M∗(n) = M∗(n)
E + M∗(n)

M ,

due to the parallelism of the induction vectors, the electric and magnetic field
strengths are equal to zero. The following notations are introduced:

M∗(n)
E = P(n) × E(n)

are electrical moments,
M∗(n)

M = M(n) × B(n)

are magnetic moments,

P(n) = D(n) − εE(n), M(n) = B(n)/μ0n − H(n)

are the polarization and magnetization vectors, respectively. In this approximation
and for constant characteristics of the material (in particular, equal to the average
value in the considered interval of temperature changes), the initial relations for
the quantitative description of the parameters characterizing the electromagnetic,
thermal, and mechanical processes in each nth constituent layer of the LCB under
pulsed electromagnetic action are formulated for the first three stages, according to
the selected physical and mathematical model.

At the first stage, we determine the EMF parameters in the nth constituent layer of
the LCB.We choose themagnetic field intensity vectorH(n)(r, t) as the key function.
Disregarding the bias currents for durations of the fronts of pulsed electromagnetic
action greater than 10−6 s and frequencies of electromagnetic oscillations less than
108 Hz, based on Maxwell’s relations and Ohm’s law under accepted assumptions
(Hachkevich 1992; Podstrigach et al. 1977)

rotH(n) = j(n), rotE(n) = −μn
∂H
∂t

, j(n) = σn E
(n) (11.7)

we get the equation for determining H(n)(r, t) in the nth constituent layer

�H(n) − σnμn
∂H(n)

∂t
= 0, divH(n) = 0 (11.8)

under boundary conditions

H(n) (rs, t) = H(n)
∗ (t) H∗

0

(
r(n)
s

)
(11.9)

under the boundary conditions on the outer surfaces of the first and last layers of
the LCB and the conditions of ideal electromagnetic contact, which on the surface
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r = rn of the junction of the nth and (n + 1)th component layers of the LCB are
written in the form (Musii et al. 2018; Podstrigach et al. 1977)

H(n) = H(n+1), rotH(n) = knσ rotH
(n+1) (11.10)

and zero initial conditions
H(n) (r, 0) = 0. (11.11)

We use the notations: � is the Laplace operator, knσ = σn
/
σn+1.

The specific densities of Joule heat Q(n) (r, t) and ponderomotive forcesF(n) (r, t)
in the nth component layer are as follows

Q(n) (r, t) = 1

σn

(
rot H (n) (r, t)

)2
, (11.12)

F (n) (r, t) =μn · rot H (n) (r, t) × H (n) (r, t) . (11.13)

At the second stage, the temperature T (n) (r, t) in nth layer of the LCB is deter-
mined based on the found Joule heat distribution Q(n) (r, t) from the thermal con-
ductivity equation

�T (n) − 1

κn

∂T (n)

∂t
= −Q(n)

λn
, (11.14)

considering the conditions of convective heat exchange with the environment

∂T (n)

∂n
+ H

(
T (n) − T (n)

s

) = 0 (11.15)

on the outer surfaces of the first and last layers of LCB and conditions

T (n) = T (n+1), grad T (n) = knλ grad T
(n+1) (11.16)

of ideal thermal contact on the surface of the connection of the n th and (n + 1)th
constituent layers of LCB and initial conditions

T (n) (r, 0) = 0. (11.17)

Here T (n) is temperature deviation from the initial temperature T0(n); ∂T (n)/∂n =
n grad T (n); n is the normal vector to the outer surfaces of the first and last layers
of LCB; Ts (n) is given constant temperature of the environment outside the first and
last layers of LCB; Hn = H∗n/λn is the relative heat transfer coefficient; H∗n is the
coefficient of heat transfer from the surfaces of the first and last layers of LCB;
kλ

n = λn+1/λn; κn and λn are coefficients of temperature and thermoconductivity of
materials of the nth layer.

At the third stage, using the known expressions of temperature T (n) (r, t) and
ponderomotive force F(n) (r, t), the thermostressed state of LCB is determined from
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the equations of the uncoupled dynamic problem of thermoelasticity written for the
nth layer (Musii et al. 2018; Podstrigach et al. 1977)

div σ̂ (n) + F(n) = ρn
∂u(n)

∂t
,

σ̂ (n) = 2Gn

{
ê(n) + νn

1 − 2νn

[
e(n)
j j − αn

1 + νn

1 − 2νn
T (n)

]
Î

}
,

ê(n) = Def u(n) ≡ 1
2

(∇u(n) + u(n)∇)
.

(11.18)

Here ê(n) = {
ei j (n)

}
is the deformation tensor; Def is the deformer; ∇ is the Hamil-

ton operator; Î = {
δi j

}
is unit tensor; δi j is Kronecker’s symbol; ∇u(n) and u(n)∇ is

the dyadic product of vectors ∇ and u(n); αn and νn are coefficients of linear ther-
mal expansion and Poisson; Gn = En/[2(1 + νn)] is shear modulus; En is Young’s
modulus; ρn is the material density of the n th layer. All thermophysical and physi-
comechanical characteristics of the materials of the constituent layers of LCB are
considered to be constant.

We solve (11.18) under the appropriate boundary (thermal and mechanical) and
initial conditions. Under the initial conditions, the values of the displacement vector
u(n), velocity ∂u(n)/∂t , and temperature T (n) in the entire region of each n th com-
ponent layer at the initial moment t = 0 of time are preferably set. If these functions
are equal to zero, then the initial conditions have the form

u(n)
i (r, 0) = 0,

∂u(n)
i (r, 0)

∂t
= 0, T (n) (r, 0) = 0, i = 1, 2, 3. (11.19)

Depending on the type of boundary conditions, the system of Eq. (11.18) is solved
in displacements or stresses. If the defining functions of the thermoelasticity problem
are the temperature T (n) (r, t) and the stress tensor σ̂ (n) (r, t), then we get a system
of equations

Def
(
div σ̂ (n) + F(n)

) = ρn
∂2

∂t2

[
1 + νn

En
σ̂ (n) +

(
αnT

(n) − νn

En
σ (n)

∗

)
Î

]
, (11.20)

and, in the case of determining functions T (n) (r, t) and u(n) (r, t), we get a system
of equations

(
� + 1

1 − 2νn
grad div

)
u(n)−2 (1 + νn) ρn

En

∂2u(n)

∂t2

= αn En

1 − 2νn
grad T (n) − 2 (1 + νn)

En
F(n). (11.21)
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Here σ
(n)∗ ≡ I1

(
σ̂ (n)

)
. We solve the system of Eq. (11.20) under the boundary con-

ditions
σ̂ (n)n = 0, (11.22)

which correspond to the absence of a force load on the outer surfaces of the first and
last component layers of LCB, as well as the conditions of ideal mechanical contact

σ̂ (n) = σ̂ (n+1), div σ̂ (n) + F(n) = knρ
(
div σ̂ (n+1) + F(n+1)

)
(11.23)

on the surface r = rn of the junction of the nth and (n + 1) th constituent layers of
LCB, as well as under the initial t = 0 conditions

σ̂ (n) (r, 0) = 0,

1

2Gn

∂σ̂ (n) (r, 0)
∂t

+
(

αn
∂T (n) (r, 0)

∂r
− νn

En

∂σ̂
(n)∗ (r, 0)
∂t

)
Î = 0.

(11.24)

Here knρ = ρn
/
ρn+1.

Equation (11.21) written in displacements is solved under boundary conditions

{
Def u(n) + νn

1 − 2νn

[
div u(n) − αn (1 + νn)

1 − 2νn
T (n)

]
Î

}
n = 0, (11.25)

corresponding to conditions (11.22), written in terms of the displacement u(n) on the
external surfaces of the first and last constituent layers of LCB, free from force load,
and under conditions of ideal mechanical contact (Musii et al. 2018; Podstrigach
et al. 1977)

u(n) = u(n+1),

Def u(n) + νn

1 − 2νn

[
div u(n) − αn (1 + νn)

1 − 2νn
T (n)

]
Î

= knE

{
Def u(n+1) + νn+1

1 − 2νn+1

[
div u(n+1) − αn+1 (1 + νn+1)

1 − 2νn+1
T (n+1)

]
Î

}

(11.26)
on the surface r = rn of the junction of the n th and (n + 1) th constituent layers of
LCB, as well as initial at t = 0 conditions

u(n) (r, 0) = 0,
∂u(n) (r, 0)

∂t
= 0. (11.27)

Here knE = En+1 (1 + νn)
/
En (1 + νn+1).

Based on the found displacement vector u(n), we determine the stress tensor σ̂ (n)

in the n th component layer of the LCB from the relation (Podstrigach et al. 1977)
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σ̂ (n) = 2Gn

{
Def u(n) + νn

1 − 2νn

[
div u(n) − αn (1 + νn)

1 − 2νn
T (n)

]
Î

}
. (11.28)

To estimate the contribution of Joule’s heat Q(n) (r, t) and ponderomotive forces
F(n) (r, t) to the thermally stressed state of the LCB, the stress tensor σ̂ (n) and vector
of displacements u(n) in the n th component layer of the LCB are presented as the
sum of two components

σ̂ (n) = σ̂ Q(n) + σ̂ F(n), u(n) = uQ(n) + uF(n), (11.29)

caused by Joule’s heat and ponderomotive force F(n), respectively. The components
σ̂ Q(n) and uQ (n) were determined from Eqs. (11.20)–(11.21) at F(n) = 0, and the
components σ̂ F (n) and uF (n) were determined from these equations at T (n) = 0.

Based on the found total displacement vectors u(n) and stress tensors σ̂ (n), taking
into account formula (11.28) for the found displacements u(n), we determine the
stress intensities in the n th component layer of LCB using (11.1). After that, based
on the fulfillment of inequalities (11.2) and (11.3), we investigate the operability and
preservation of the properties of the contact connection of the constituent layers of
LCB.

11.4 Formulation of Initial-Boundary Problems
of Thermomechanics of Multilayer Electroconductive
Bodies of Canonical Form

Let us formulate the initial-boundary problems of thermomechanics for the LCB of
the canonical form—one-dimensional for the LCB with plane-parallel boundaries,
plane axisymmetric for a hollow cylinder, and centrally symmetric for a hollow
sphere under the action of a homogeneous non-stationary EMF, which is given by
the values of the corresponding tangent component Hj

(n)(γ, t) of the vectorH(n) on
the outer surfaces of the first and last layers of the considered LCB

H (1)
j

(
r (1)
s , t

) = H−
j (t), H (n)

j

(
r (n)
s , t

) = H+
j (t), (11.30)

where H±
j (t) are given function of time for the LCB with plane-parallel boundaries;

j = z, γ = r for a cylinder; j = ϕ, γ = r for a sphere. The function Hj
(n)(γ, t) in

nth layer is described by the equation

∂2H (n)
j

∂γ 2
+ k

γ

∂H (n)
j

∂γ
− σnμn

∂H (n)
j

∂t
= 0 (11.31)

under the appropriate boundary conditions (11.30) and conditions of ideal electro-
magnetic contact on the surface γ = γ1 of the connection of the constituent layers,
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as well as zero initial conditions at t = 0. Here k = 0, γ1 = 0 and γn = hn for LCB
with plane-parallel boundaries, where hk (k = 1, . . . , N ) are the thicknesses of its
component layers, γ1 = r0, γp = rp (p = 1, . . . , N − 1), γN = rN for a cylinder and
a sphere, k = 1 for a cylinder, k = 2 for a sphere.

The temperature field T (n)(γ, t) in the LCB layer is determined from the thermal
conductivity equation

∂2T (n)

∂γ 2
+ k

γ

∂T (n)

∂γ
− 1

κn

∂T (n)

∂t
= −Q(n)

λn
(11.32)

under the boundary conditions of convective heat exchange on the outer surfaces of
the first and last component layers of the LCB and the conditions of ideal thermal
contact on the surfaces γp = rp (p = 1, . . . , N − 1) of the connection of the com-
ponent layers, as well as zero initial conditions at t = 0. Here, κn and λn are the
coefficients of temperature and thermoconductivity of materials of the n th layer.

The components σ j j
(n) ( j = x, y, z) of the dynamic stress tensor in LCB with

plane-parallel boundaries are found from the equations

∂2σ (n)
zz

∂z2
− 1

c21n

∂2σ (n)
zz

∂t2
= αnρn

1 + νn

1 − νn

∂2T (n)

∂t2
− ∂F (n)

z

∂z
,

σ (n)
xx = σ (n)

yy = νn

1 − νn
σ (n)
zz − αEnT (n)

1 − 2νn
,

(11.33)

where A1n = (
En (1 − νn)

/
(ρn (1 + νn) (1 − 2νn))

)−1/2 is velocity of elastic expan-
sion waves in the nth component layer of LCB. The radial component ur (n) of the
vector of displacements u(n) for a hollow cylinder and sphere is determined from the
equation

∂2u(n)
r

∂r2
+ m

r

∂u(n)
r

∂r
− m

r2
u(n)
r − 1

c21n

∂2u(n)
r

∂t2

= αn
1 + νn

1 − νn

∂T (n)

∂r
− (1 + νn) (1 − 2νn)

En (1 − νn)
F (n)
r (11.34)

under specified boundary conditions on the outer surfaces of the first and last lay-
ers, conditions of ideal mechanical contact on the surfaces of the connection of all
constituent layers, and corresponding initial conditions. Herem = 1 for the cylinder,
andm = 2 for the sphere. We calculate the components σ j j (n) ( j = r, ϕ, z, θ ) of the
stress tensor from the ratios

σ (n)
rr = En

(1 + νn) (1 − 2νn)

×
[
(1 − νn)

∂u(n)
r

∂r
+ νn

m

r
u(n)
r − αn (1 + νn) T

(n)

]
(11.35)



11 Problems of Thermomechanics of Multilayered Electroconductive Bodies . . . 195

for both LCB (the cylinder and the sphere) from ratios

σ (n)
ϕϕ = En

(1 + νn) (1 − 2νn)

×
[
(1 − νn)

u(n)
r

r
+ νn

∂u(n)
r

∂r
− αn (1 + νn) T (n)

]
,

σ (n)
zz = νn

(
σ (n)
rr + σ (n)

ϕϕ

) − αn EnT (n)

(11.36)

for the cylinder, as well as from ratios

σ (n)
ϕϕ = σ

(n)
θθ = En

(1 + νn) (1 − 2νn)

[
u(n)
r

r
+ νn

∂u(n)
r

∂r
− αn (1 + νn) T

(n)

]
(11.37)

for the sphere.

11.5 Methodology for Constructing Solutions
of Formulated Initial-Boundary Problems

Let us develop a methodology for constructing solutions to the above-formulated
initial-boundary problems of thermomechanics, which describe the EMF, tempera-
ture, and stress state of the canonical LCB.

The technique is based on the approximation with respect to the corresponding
spatial variable γ of the key functions

�(n)(γ, t) =
{
H (n)

j (γ, t), T (n)(γ, t), σ (n)
zz (γ, t), u(n)

j (γ, t)
}

in the nth component layer of the considered LCB by polynomials of the correspond-
ing p degree (Hachkevych et al. 2011; Musii et al. 2021; Musii 2010)

�(n)(γ, t) =
p∑

i=0

a�(n)
i (t) γ i . (11.38)

The degree p of the approximation polynomials (11.38) in each nth component
layer is chosen in such a way as to satisfy the boundary conditions on the external
surfaces and the surfaces of the connection of these layers in this LCB. The coef-
ficients ai�(n)(t) of the approximation polynomials (11.38) are determined through
the integral (total over the n = 1, . . . , N layer package) characteristics �s(t) of the
key functions �(n)(γ, t)

�s(t) =
N∑

n=1

∫ γn

γn−1

�(n)(γ, t)γ s+ldγ, s = 1, 2
(
γ0 = r (1)

s , γn = r (N )
s

)
(11.39)
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and given boundary conditions on the outer surfaces of the first and last component
layers of the considered LCB and on the surfaces of the connection of each nth and
(n + 1)th component layers. Here l = −1 for the LCB with plane-parallel bound-
aries; l = 0 for a cylinder and a sphere when integrating Eqs. (11.31) and (11.32);
l = 1 for a cylinder and a sphere—for Eq. (11.34).

To find the integral characteristics �s(t) of the sought functions �(n)(γ, t), the
original Eqs. (11.31)–(11.34) are integrated according to (11.39) considering expres-
sions (11.38). As a result, we reduce the original initial-boundary value problems for
the key functions to the corresponding Cauchy problems for the integral character-
istics of these functions described by systems of equations

⎧
⎪⎨
⎪⎩

dH1(t)

dt
− d1H1(t) − d2H2(t) = d3H

−
j (t) + d4H

+
j (t)

dH2(t)

dt
− d5H1(t) − d6H2(t) = d7H

−
j (t) + d8H

+
j (t),

(11.40)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dT1
dt

+ dT
1 T1 + dT

2 T2 =
N∑

n=1

κn

λn

∫ γn

γn−1

Q(n)(γ, t)γ l+1dγ

dT2
dt

+ dT
3 T1 + dT

4 T2 =
N∑

n=1

κn

λn

∫ γn

γn−1

Q(n)(γ, t)γ l+2dγ,

(11.41)

⎧
⎪⎪⎨
⎪⎪⎩

d2σzz1

dt2
− d∗

1σzz1 − d∗
2σzz2 = W ∗

1 (t)

d2σ
Q
zz2

dt2
− d∗

3σzz1 − d∗
4σ

Q
zz2 = W ∗

2 (t),

⎧
⎪⎪⎨
⎪⎪⎩

d2ur1
dt2

− d∗∗
1 ur1 − d∗∗

2 ur2 = W ∗∗
1 (t)

d2ur2
dt2

− d∗∗
6 ur1 − d∗∗

7 ur2 = W ∗∗
2 (t)

(11.42)

and solve under appropriate initial conditions using theLaplace transform.The coeffi-
cients d1÷8, d1÷4

T , d∗
1÷4, and d

∗∗
1÷4 are determined through the geometric parameters

and physical and mechanical characteristics of the constituent layers of the LCB
under consideration, Ws

∗(t), Ws
∗∗(t) (s = 1, 2) are the integrated right-hand sides

of (11.33) and (11.34) in accordance with (11.39) using T (n), F (n)
z , and F (n)

r on the
surfaces γ = γn−1 (n = 1, . . . , N ) of layers connection.

Wewrite the solutions ofCauchyproblems (11.40)–(11.42) in the formof convolu-
tions of functions describing given boundary conditions and homogeneous solutions.
Expressions of the corresponding tangent component Hj

(n)(γ, t) of the vector H(n)

are obtained
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H (n)
j (γ, t) =

p∑
i=0

{ 2∑
s=1

a(n)
is

2∑
k=1

∫ t

0

[
As1(k)H

−
j (τ )

+ As2(k)H
+
j (τ )

]
epk (t−τ)dτ + a(n)

i3 H−
j (t) + a(n)

i4 H+
j (t)

}
γ i , (11.43)

the temperatures

T (n)(γ, t) =
p∑

k=0

2∑
s=1

(
b(n)
ks

2∑
m=1

∫ t

0

[
Bs1 (m)WQ

1 (τ )

+ Bs2 (m)WQ
2 (τ )

]
epm (t−τ)dτ

)
γ k . (11.44)

The components σ (n)
zz (z, t) of stress tensor in LCB with plane-parallel boundaries

σ (n)
zz (z, t) =

p∑
i=0

( 2∑
s=1

c(n)
is

4∑
α=1

∫ t

0

[
R∗
s1(α)W ∗

1 (τ )

+ R∗
s2 (α)W ∗

2 (τ )
]
epα(t−τ)dτ

)
zi , (11.45)

radial component u(n)
r (r, t) of displacement vector u(n) for a cylinder and a sphere

u(n)
r (r, t) =

p∑
i=0

{ 2∑
s=1

c(n)
s

4∑
β=1

∫ t

0

[
R∗∗
s1 (β)W ∗∗

1 (τ )

+ R∗∗
s2 (β) W ∗∗

2 (τ )
]
epβ (t−τ)dτ

}
r i . (11.46)

Here Asj (k), Bsj (m), Rsj
∗(α), and Rsj

∗∗(β) (s, j = 1, 2) are expressions depending
on roots pk , pm , pα , and pβ of the corresponding characteristic equations of prob-
lems for determining functions Hj

(n), T (n), σzz
(n), and ur (n). Based on the known

expressions (11.46) of the functions ur (n)(r, t) from relations (11.35)–(11.37), we
determine the components σrr

(n) and σϕϕ
(n) of the stress tensor and the corresponding

axial stresses σzz
(n) in the cylinder and meridian stresses σθθ

(n) in the sphere.
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11.6 Solutions of Problems for Bimetallic Bodies
of Canonical Form Under Electromagnetic Action
in MPMS

Let us present a mathematical description of uniform EMFs, which are given by the
values H±

j (t) of the corresponding tangent component Hj
(n)(γ, t) of the vectorH(n)

on the outer surfaces of the first and last constituent layers of the LCB in the form
(Hachkevych et al. 2011)

H±
j (t) = H0H∗(t) cosωt. (11.47)

For action in MPMS, the function H∗(t) has the form H∗(t) = k
(
e−β1t − e−β2t

)
.

Here k is the normalization factor, H0 is the maximum value of the magnetic field
strength on the external surfaces of the LCB, β1 and β2 are the parameters character-
izing, respectively, the times of the rising tincr and falling tdecr fronts of themodulating
pulse.

For the convenience of transformations, expression (11.47) is given in complex
form (Ionov and Ogibalov 1975)

H±
j (t) = kH0

2

4∑
k=1

(
e−β1−iω + e−β1+iω − e−β2−iω − e−β2+iω

)
, (11.48)

where i = √−1.
Based on the obtained general solutions (11.43)–(11.46) of the problem of ther-

momechanics for the considered LCB under uniform non-stationary electromagnetic
action,wewrite the solutions of this problemunder electromagnetic action inMPMS.
By substituting expression (11.47) into (11.43)–(11.46) and considering the expres-
sions of the corresponding approximation polynomials (11.38), the expressions of
the corresponding tangent component Hj

(n)(γ, t) of the vector H(n) are obtained in
the following form

H (n)
j (γ, t) = k0H0

2

2∑
i=0

(
e−(β1−iω)t B(n)

i1 + e−(β2−iω)t B(n)
i2

+e−(β1+iω)t B(n)
i3 + e−(β2+iω)t B(n)

i4 + ep1t B(n)

i5 + ep2t B(n)
i6

)
γ i ,

specific densities of Joule heat and ponderomotive forces

Q(n)(γ, t) = 1

σn

k20H
2
0

4

2∑
i=1

2∑
j=1

i j
20∑
l=1

C (n)
i jl e

αl tγ i+ j−2,

F (n)
r (γ, t) = −μn

k20H
2
0

4

2∑
i=1

2∑
j=1

i
20∑
l=1

C (n)
i jl e

αl tγ i+ j−1,
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temperatures

T (n)(γ, t) = k20H
2
0

4

2∑
p=0

2∑
m=1

2∑
i=1

2∑
j=1

i j
20∑
l=1

M (n)
i jlm

epmt − eαl t

pm − αl
γ p.

Here

M (n)
i jlm =

2∑
s=1

b(n)
ps

(
N1i jl Bs1m + N2i jl Bs2m

)
,

Nsi jl =
2∑

n=1

κn

σnλn

γ
i+ j+s−1
n − γ

i+ j+s−1
n−1

i + j + s − 1
C (n)
i jl , s = 1, 2.

The expressions for Bi j
(n), Ci jl

(n), Mi jlm
(n), Nsi jl and Bsjm are of the same type for

the considered LCBs and differ only in the values of the corresponding coefficients
and roots of the characteristic equations depending on the geometric parameters of
the layers.

The components σzz
(n)Q and σzz

(n)F are the components of stress tensor
σzz

(n)Q(z, t) for LCB with plane-parallel boundaries have the form

σ (n)Q
zz (z, t) = k20H

2
0

4

2∑
f =1

(
c(n)
0 f + c(n)

1 f z + c(n)
2 f z

2
) 4∑

α=1

2∑
q=1

R f αq
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〉
.

Accordingly, the components u(n)Q
r and u(n)F

r of the radial displacements u(n)
r for

the cylinder and sphere can be written in the form
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Here F0(t) is the combination of values Fj
(n) ( j = z, r ) on the surface of the con-

nection of layers; expressions Psαq , Rsβk
Q , Rsβk

F , gps , fsi j , KαE , c0 f (n), bi j (n), and
cms

(n)F are given in terms of the geometric, physical and mechanical parameters of
LCB.
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11.7 Study of Thermomechanical Behavior and Properties
of the Contact Joint of a Bimetallic Cylinder Under
Electromagnetic Action in MPMS

Numerical studies were carried out for a bimetallic cylinder, the constituent layers of
which have a thickness of 1 mm and are made of stainless steel and copper (Livshits
et al. 1980). The durations ti of the modulation pulse of the electromagnetic action
in the MPMS were assumed to be equal to ti = 10−4 s, 10−3 s and 10−2 s.

Figures 11.1, 11.2, 11.3, 11.4, 11.5 and 11.6 show the results of studies of the
thermal stress state and performance of a hollow bimetallic cylinder with inner r0 =
8 mm and outer r2 = 10 mm radii and the surface of the connection r1 = 9 mm
under action in MPMS of duration ti = 10−3 s. Figures 11.1 and 11.2 show the
change in time of the components σrr

(n) j , σϕϕ
(n) j ( j = Q, F) of radial σrr

(n) and
circular σ (n)

ϕϕ components of the stress tensor at frequencies ω = 6.28 · 104 1/s of
carrier electromagnetic oscillations (outside the range of resonance frequencies ωrs

(s = 1, 2) of the electromagnetic field (Hachkevich 1992; Hachkevych et al. 2011;
Podstrigach et al. 1977)).

The change in time of the component σϕϕ
(n)F and σϕϕ

(n)Q of circular stresses
σϕϕ

(n) with frequency ω = ωr1 = 2.32 · 105 1/s is shown in Figs. 11.3, 11.4, 11.5
and 11.6. All values in Figs. 11.1, 11.2, 11.3, 11.4, 11.5 and 11.6 are calculated on
the surface r = r1 of the connection of the constituent layers of the cylinder.

Figure 11.7 shows the dependence of the maximum values of stress intensity
σ

(n)
i max on the magnitude H0 of the action in the MPMS (H0max = 105 A/m ) and the

Fig. 11.1 The change in time of the components σ
(n)Q
rr and σ

(n)F
rr of radial components σ

(n)
rr of the

stress tensor at frequencies ω = 6.28 · 104 1/s on the connection surface r = r1 of the cylinder’s
constituent layers
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Fig. 11.2 The change in time of the components σ
(n)Q
ϕϕ and σ

(n)F
ϕϕ of circular components σ

(n)
ϕϕ of

the stress tensor at frequenciesω = 6.28 · 104 1/s on the connection surface r = r1 of the cylinder’s
constituent layers

Fig. 11.3 The change in time of the component σ
(1)F
ϕϕ of circular stresses σ

(1)
ϕϕ in the first layer at

the resonant frequency ω = ωr1 = 2.32 · 105 1/s on the connection surface r = r1 of the cylinder’s
constituent layers
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Fig. 11.4 The change in time of the component σ (2)F
ϕϕ of circular stresses σ

(2)
ϕϕ in the second layer at

the resonant frequency ω = ωr1 = 2.32 · 105 1/s on the connection surface r = r1 of the cylinder’s
constituent layers

Fig. 11.5 The change in time of the component σ
(1)Q
ϕϕ of circular stresses σ

(1)
ϕϕ in the first layer at

the resonant frequency ω = ωr1 = 2.32 · 105 1/s on the connection surface r = r1 of the cylinder’s
constituent layers



204 O. Hachkevych et al.

Fig. 11.6 The change in time of the component σ (2)Q
ϕϕ of circular stresses σ

(2)
ϕϕ in the second layer at

the resonant frequency ω = ωr1 = 2.32 · 105 1/s on the connection surface r = r1 of the cylinder’s
constituent layers

Fig. 11.7 The dependence of the maximum values of stress intensity σ
(n)
i max on the magnitude H0 at

the resonant frequency ω = ωr1 = 2.32 · 105 1/s in the cylinder’s constituent layers on the surface
of their connection for durations ti = 10−3 s, 10−2 s, (1 and 2 are layer’s numbers)
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frequency ω = ωr1 in the constituent layers of the cylinder on the surface of their
connection for durations ti = 10−3 s and 10−2 s. Lines 1 and 2 correspond to the steel
and copper layers. It was found that the performance and properties of the contact
connection are preserved at ti = 10−3 s and are lost at ti = 10−2 s.

11.8 Conclusions

Physicomathematical models are proposed for researching the thermal stress state,
performance, and properties of the contact connection of multilayer electrically con-
ductive bodies of canonical form under the action of PEMF with amplitude modula-
tion. New classes of problems of thermomechanics of multilayer electrically conduc-
tive bodies of canonical form under the action of considered PEMFs are formulated.
Amethodology for constructing solutions of formulated initial-boundary value prob-
lems for determining the magnetic field strength, temperature, and components of
the dynamic stress tensor using a polynomial approximation of the determining func-
tions for the thickness of each constituent layer of LCB has been developed. This
techniquemakes it possible to accurately satisfy all given boundary conditions on the
outer surfaces of the first and last layers and on the surfaces of the contact connection
of all constituent layers. This made it possible to reduce the original initial-boundary
value problems to the defining functions to the corresponding Cauchy problems to
the integral characteristics of these functions, summed over the package of all layers.
Using the integral Laplace transform for the given initial conditions on the defining
functions, general solutions of the Cauchy problems on the integral characteristics
of these functions are written. They are obtained in the form of convolutions of
functions that describe the given expressions of the determining functions on the
outer surfaces of the first and last component layers of the LCB and homogeneous
solutions of the corresponding Cauchy problems.

The thermomechanical behavior, performance, and preservation of the properties
of the contact joint of a bimetallic hollow cylinder under electromagnetic action in
MPMS, depending on its time and amplitude-frequency characteristics, were studied.

The revealed regularities of the thermomechanical behavior of LCB under elec-
tromagnetic action in MPMS can be a theoretical basis for choosing the optimal
modes of technologies for pulsed electromagnetic processing of layered conductive
elements of structures.
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Chapter 12
Substantiation of Reliability of
Calculation of Strength of Rocket and
Space Technology Structures Without
Destructive Tests

Anatoly Dzyuba and Volodymyr Sirenko

12.1 Introduction

The process of designing and creating load-bearing structures of new equipment is
inevitably associated with the need to develop adequate design schemes, reliable
mathematical models, and effective numerical algorithms for their implementation
and further conducting appropriate computer modeling and numerical analysis using
effective computing tools, the use of experimental researchmethods, non-destructive
testing, andmodernmanufacturing technologies (Dashchenko et al. 2011; Degtyarev
2014; Drobenko et al. 2020; Gudramovich et al. 2017; Hudramovich and Dzyuba
2009; Mossakovsky et al. 1990; Usyukin 1988).

Such a process has a multi-stage interactive nature, at the final stage of which,
despite the stringent requirements for the quality of work and means of their control,
often forced, due to existing doubts about the reliability of the obtained design, cal-
culation, and technological results, experimental field tests of the created fragments
and (or) the entire structure are carried out (Degtyarev 2014; Drobenko et al. 2020;
Marchuk et al. 2020; Tkachuk et al. 2017; Veretelnik et al. 2017).

Conducting such (usually destructive and often repeated) tests significantly
increases the cost of developing new complex engineering structures. At the same
time, the costs of destructive tests are especially significant for the development and
creation of non-serial (one-time) products.

With the growing competition in the market of services, in particular, rocket and
space technology (launch vehicles), destructive tests of individual components, and
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in many cases the structure as a whole, significantly increase the cost of creating
such products.

The solution to the problem of increasing the safety guarantees of such structures
by overestimating the safety factor obviously worsens the weight performance of
products, which in turn also leads to a decrease in their competitiveness. Solving this
problematic conflict is one of the priority tasks of this industry (Degtyarev 2014).

12.2 Statement of the Problem

The present work is aimed at developing a concept and methodology for more reli-
able prediction of the bearing capacity and determination of the limiting (destructive)
parameters of the stress–strain state of heterogeneous shell elements of modern engi-
neering structures, in particular, rocket and space technology, tanks, dry compart-
ments of launch vehicles, etc., without conducting (or with a significant reduction in
the volume) of their full-scale destructive tests.

Structural elements of rocket and space technology are quite costly, highly
stressed, heterogeneous, often interconnected, composite, wafer-type, or metal shells
of rotation, supported, as a rule, by longitudinal and transverse structural frames. Dry
compartments, in addition, usually have several irregularly spaced technological-
edged hatch holes of different sizes (Fig. 12.1). The stress–strain state of such ele-
ments is quite heterogeneous.

Despite the fact that the calculations of such structures are carried out using mod-
ern certified, sophisticated, and sufficiently accurate computing tools (Dashchenko
et al. 2011; Degtyarev 2014; Hudramovich and Dzyuba 2009; Marchuk et al. 2020),
the results of the calculated parameters of the strength reliability of such power struc-
tures, in particular, the destructive loads, have deviations from their physically real

Fig. 12.1 Fragment of the
compartment
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values, which requires their additional verification, usually by means of rather costly
experimental tests.

In the study, it is assumed that the input data of such calculations: geometric
dimensions, physical andmechanical characteristics, boundary conditions (fixation),
parameters of external loads, etc., for reasons of different nature are approximate
values, which leads to the accumulation of calculation errors in the process of imple-
menting the corresponding computational algorithms. The causes and consequences
of such possible deviations in solving complex engineering problems are analyzed.

One of the main tasks for solving this problem is to develop a methodology for
estimating the error of the calculation result due to possible deviations of such input
calculation data, as well as to establish their values that would correspond to the
results of the finite element calculation of such a structure within a given error,
which would allow making appropriate adjustments to the design and calculation
schemes.

12.3 Analysis of Errors in Strength Calculation

12.3.1 Errors of Numerical Operations

Numerical modeling of the behavior of complex structures consists of a basic finite
element program for calculating their main design parameters, engineering analysis
tools, and a set of computational operations related, in particular, to the preparation
of input parameters.

The main causes of errors in the numerical implementation of algorithms for
solving applied problems can be classified as follows (Berezin and Zhidkov 1966):

1. Errors of the mathematical model.
Such errors are associated with the accepted physical assumptions and certain
idealizations in the construction of the mathematical model, the peculiarities
of taking into account the inhomogeneities of the geometry of the object, the
physical and mechanical characteristics of the material, external loads, etc., and
can be reduced only bymore accurate implementation of the fundamental laws of
mechanics and description of the physical (mechanical) aspects of the problem.

2. Errors of the numerical method of implementation.
Inmodern conditions, one of themainmeans of numerical research inmechanics
is the use of finite element analysis methods. Errors in the use of this approach
are directly related to the way of taking into account the inhomogeneities of
geometry andmaterial, the choice of the type and number of elements, nodes, and
methods of their thickening in places of rapidly changing parameters, etc. Such
errors also arise in the case of replacing infinite series with a limited number of
terms, functions with an approximate polynomial, stopping the iteration process
with a finite number of steps, etc.
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3. Technical computational errors.
To date, the problem of such errors associated with the limited capabilities of
computers for processing and storing the appropriate number of numerical digits
has ceased to be relevant due to the wide possibilities of using modern powerful
computers for the calculation of critical engineering structures.

In the future, it is believed that the correct use of modern FEM software packages
makes it possible to achieve a sufficiently high accuracy of the results (at the level
of estimates of the error in solving systems of linear algebraic equations of high
dimensionality) (Berezin and Zhidkov 1966; Dashchenko et al. 2011). Errors of
operations in modern computers are also close to zero. Therefore, it is assumed that
the accuracy of the calculation results, which is associatedwith overcoming the errors
in 1–3, is ensured by the professional use of modern certified finite element analysis
tools.

Possible errors here can only be explained by the incompetence (or human factor)
of the performers of the relevant calculations. The causes of such errors are not
investigated separately in this work. At the same time, they can be identified in the
general scheme of the developed concept.

12.3.2 Errors Caused by Deviations of Input Data

When solving applied problems of mechanics, it is necessary to take into account
that the values of many input calculation parameters included in the mathematical
description or algorithm for solving the problem are determined experimentally with
some error. This applies, in particular, to the physical and mechanical characteristics
of the material, as well as the reliability of determining the parameters of external
loads (aero-, hydrodynamic, thermal, etc.), forces of interaction with other substruc-
tures in the form of boundary conditions, etc.

In the process of manufacturing the structure, geometric dimensions such as sec-
tions of power elements, wall thicknesses of shells, etc., may receive technological
inaccuracies. Deviations of some of the input data are random and, therefore, poorly
controlled. This applies in particular to structural elements made of composite and
powder materials since, in this case, the material is manufactured together with the
structure itself and, therefore, its physical and mechanical characteristics are predic-
tive (approximate) values (Dzyuba and Sirenko 2022; Gomeniuk et al. 2009; Guz
1993, 2003; Marchuk et al. 2018).

Obviously, the error of the results of calculations with approximate numbers is a
consequence of the errors of the components. Thus, in particular, it is known that the
largest absolute error of an algebraic sum is equal to the sum of the absolute errors
of the terms. Similar conclusions can be drawn for other operations (Berezin and
Zhidkov 1966).

The possibility of accumulating the error of the result of calculating the deviations
of input data is obvious from the simplest case of calculating the stresses in the rod
under axial load or bending.
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Let the longitudinal force Nmax, moment Mmax, area F , and moment of resistance
W of the cross section of the rod are predefined (or specified) within the technical
theories with an accuracy of 5 %. Then, under adverse circumstances, the deviation
of these components in the same direction (increase or decrease), the calculation
result σmax = Nmax/F , σ = Mmax/W can actually double the error. Obviously, as a
result of the recursion of such operations, the calculation error can hypothetically
be significantly larger. On the other hand, in the presence of errors of individual
input data in different directions, the error of the calculation result can be reduced
or completely leveled.

The task of assessing the accuracy of the result of the computational process
includes a number of other problematic aspects. Thus, if the solution of a certain
problem continuously depends on the input data, and a small change in the input data
corresponds to a small change in the solution, the problem is called input-stable.

The simplest example of instability to errors in input parameters can be a system
of linear algebraic equations:

10.1x + 9.9y = 20.0

9.9x + 10.1y = 20.0,

which has an obvious solution (1; 1). If we consider a system

10.1x + 9.9y = 20.1

9.9x + 10.1y = 19.9,

whose right-hand sides are changed only by 0.5%, then its solution will be (1.5; 0.5),
which differs from the solution of the original system by 50%.

Thus, the determination of the accuracy of the result of even the simplest computa-
tional process in the conditions of the approximate nature of the input data is a rather
difficult task, the analysis of which cannot be ignored in the process of performing
a sequence of a large number of computational operations, which are algorithms for
solving problems of mechanics.

12.3.3 Influence of Strength Criteria on the Result of Critical
Loads Calculation

The source of deviations in the results of prediction of the critical (destructive) load
on the structure (loss of its bearing capacity) is also the choice of the material failure
criterion (Lou et al. 2012; Matvienko 2006; Obraztsov et al. 1977; Wierzbicki et al.
2005).

Thus, in particular, even the results of formal application of well-known classical
strength criteria:
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σ1 � [σ+], |σ3| � [σ−], (12.1a)

σequiv = σ1 − μ(σ2 + σ3), (12.1b)

σequiv = σ1 − σ3, (12.1c)

σequiv =
√
2

2

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2, (12.1d)

which are sufficiently reliable for certain materials, types of deformation, and appli-
cations, have discrepancies (for example, at σ1 �= 0, σ2 = 0, σ3 �= 0, and μ �= 0).

For a power structure, which consists of a certain number of components of dif-
ferent shapes, materials, connecting elements, purpose, etc., which is under extreme
spatial loading, the complexity of this problem increases significantly.

As an example, the destruction of the composite material of the shell of rotation
is determined by many factors: the rupture of fibers in the tensile zones, the loss
of their stability in compression, delamination between the binder and reinforcing
material, as well as between individual layers, cracking of the binder, the formation
and development of cracks, as well as the appearance of other damages of different
nature and in different sequences (Guz 1993, 2003; Obraztsov et al. 1977).

Therefore, when assessing the strength of heterogeneous composite structures,
their material is often forced to be endowed with some mechanical characteristics of
the orthotropic environment averaged in certain directions. Different variants of the
approach to averaging the mechanical characteristics of such an anisotropic material
are based, as a rule, on computational and experimentalmethods (Dzyuba andSirenko
2022; Gomeniuk et al. 2009; Marchuk et al. 2018).

One of such criterion is, in particular, Hill’s energy criterion (Obraztsov et al.
1977):

(
σ1

σ ∗
1

)2

− σ1σ2

σ ∗2
1

+
(

σ2

σ ∗
2

)2

+
(

τ12

τ ∗
12

)2

� 1, (12.2)

Here, σ1, σ2, and τ12 are the calculated values of stresses, σ ∗
1 , σ ∗

2 , and τ ∗
12 are

the boundary values of the strength of the material in tension–compression along
and across the reinforcing elements and in shear tests, respectively. In this case, the
strength of the material in tension and compression is considered to be the same.

Obviously, with such “averaging”, an error in the assessment of the destructive
stresses is also inevitable.

In some cases, to assess the strength of compositematerial can be used and simpler
first theory of strength |σ1| � [σ ], |σ2| � [σ ], which determines the strength of the
reinforcing material along the paths of maximum principal stresses.

In general, today there is a significant number of fracture criteria based on the
principles of achieving the values of stresses, deformations, absorbed energy, their
combinations, and other mechanical factors of certain critical values. At the same
time, the assessment of critical (destructive) load with their help often gives signifi-
cant (up to 30% or more) discrepancies.
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In addition, a number of criteria are unacceptable for determining critical loads in
the field of aerospace engineering. These are (for obvious reasons) the criteria based
on cracking models, including Griffith’s energy criterion, the Irwin force criterion,
the Rice–Cherepanov integral (Matvienko 2006), and criteria that use statistical data.

Among the strength criteria that are used for aluminum alloys in numerical FEM
analysis, it should be noted the criterion (Dashchenko et al. 2011; Lou et al. 2012),
which is based on calculation:

• equivalent strains:

εequiv =
√
2

3

(
ε21 + ε22 + ε23

)
, (12.3)

where εi (i = 1, 2, 3) are the principal deformations;
• maximal shear stresses:

τmax = max

(
σ1 − σ2

2
,

σ2 − σ3

2
,

σ3 − σ1

2

)
, (12.4)

where σi (i = 1, 2, 3) are the principal stresses;
• the maximal equivalent stress criterion by Mises:

σequiv = 1√
2

×
√

(σ11 − σ22)2 + (σ22 − σ33)2 + (σ33 − σ11)2 + 6
(
σ 2
12 + σ 2

23 + σ 2
13

)
,

(12.5)

which is one of the main packages of FEM analysis applications.

In these criteria, the yield strength of the material σT is considered to be the
ultimate stress value.

Amongmore general criteria that take into account deformation beyond the elastic
limit, the following should be noted:

• Johnson–Cook criterion, which defines the strain values at which failure occurs,
in the form of

εequiv = C1 + C2 exp(C3η), (12.6)

where

η = σm

σequiv
= (σ1 + σ2 + σ3)/3√

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2/
√
2
.

Here, σm is average (hydrostatic) stress; σequiv is equivalent Mises stress; constants
C1, C2 and C3 are determined experimentally.

• The Xue–Wierzbicki criterion (Wierzbicki et al. 2005) in known publications is
considered themost used in finite element analysis for elastic–plastic deformation.
According to this criterion, the limit values of deformations are set in the form:
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σequiv = C1 exp(−C2η) − [
C1 exp(−C2η) − C3 exp(−C4η)

] (
1 − ζ 1/n

)n
,

(12.7)
where

η = σm

σequiv
, ζ = 27σ1σ2σ3

2σ 3
equiv

.

Here, n is the hardening index, which can take values on the interval [0, 1]: 0
and 1 correspond to perfectly plastic and elastic materials, respectively. For most
metals, n ∈ (0.1, 0.5). In particular, for aluminum alloys n � 0.16. Constants Ci ,
(i = 1, . . . , 4) are determined experimentally.

The disadvantage of using criteria (12.6) and (12.7) is the use of special physical
and mathematical characteristics of the material, which are determined (usually with
a certain error) experimentally.

Thus, the choice of the failure criterion is also a source of uncertainty in deter-
mining the value of the critical load on the structure.

12.3.4 Numerical Studies

Modern application packages of finite element analysis programs provide ample
opportunities for using the full range of tools of this effective approach (Dashchenko
et al. 2011). This includes, in particular, the use of different numbers and types of finite
elements, their shape, size, ways to take into account the conditions of interaction
with other substructures, external influences, etc.

Further, the results of numerical calculations of structural elements with specially
selected geometric, physical, mechanical, and computational parameters are pre-
sented in order to more clearly demonstrate certain aspects of the problem under
discussion.

The calculation schemes (Fig. 12.2) of a rectangular flat panel (plate) clamped
along one of the edges, which has a rectangular hole symmetrically and asymmet-
rically located relative to the axes of symmetry, for cases of its deformation under
the action of a uniformly distributed load q (Fig. 12.2a) and displacement � = const
(Fig. 12.2b) are considered.

Such a problem may arise as a result of the fragmentation of a complex structure
into simpler components. As an example, a flat panel or cylindrical shell, the indi-
vidual belts of which have one or more rectangular holes. Under compression, these
can be compartments or elements of the rocket body (Fig. 12.1) or the shaft, loaded
with the mass of the above fragments, etc.

The peculiarity of the problem lies in the choice of boundary conditions as con-
ditions for the interaction of individual substructures. In this case, a decision can be
made about the uniformity ofq distribution or constancy� (Fig. 12.2), although in the
presence of heterogeneity (of different nature) of the substructure, these parameters
may deviate from uniform values.
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Fig. 12.2 Calculation schemes of plates

The numerical experiment was carried out for the cases of asymmetric arrange-
ment of a rectangular hole at c = 0, 0.06, 0.12, 0.18, and0.24 m of the plate with the
following parameters: a = 0.9m; b = 0.6m; plate thickness d = 0.003; a1 = 0.3m;
b1 = 0.05 m; c1 = 0.225 m; c2 = 0.375 m; modulus of elasticity of the material
E = 200 GPa; Poisson’s ratio μ = 0.3; the grid is square; and the number of nodes
is 8440. For the convenience of comparisons, q and � are taken from the condition
of equality of the equal acting force P = 8 · 104 N at the clamping of both design
schemes.

The stress distribution is shown in Fig. 12.3 for the design schemes of Fig. 12.2
(at c = 0 in Fig. 12.2a, b at c = 0.24 m in Fig. 12.3c, d).

From the calculation results, it follows that for the case of asymmetrically located
cutout (Fig. 12.3b) the maximum stresses σmax = 177.65 MPa, and for the scheme
(Fig. 12.3a) σmax = 146.86 MPa. The difference is about 21 %.

This is due to the fact that for the design scheme with asymmetrically arranged
holes, an eccentric tensile scheme is implementedwith the emergence of an additional
moment, as well as the presence of a bend of the plate fragment over the hole under
the action of a longitudinal load.

During the numerical experiment, the expectedly high sensitivity of the calculation
result in places with a high gradient of change (concentration) of stresses from
the number of finite elements was also found. In addition, the coordinates of the
maximum stress point location and the general picture of stress distribution in the
plate and displacements of its loaded contour have changed.

For the plate loaded by displacement, the limitation of the degrees of freedom
� = const along the CD contour (Fig. 12.2b) reduces the stress level compared to the
schemes (Fig. 12.3a, c), and the influence of the asymmetric location of the cutout on
the stress value is significantly less (about 1%) and changes fromσmax = 101.49MPa
(Fig. 12.3b) to σmax = 106.8 MPa (Fig. 12.3d). The qualitative picture of stress
distribution also practically does not change.

The case of weak sensitivity of the calculation results to changes in the input data
is demonstrated by the example of numerical studies of the effect of changes in the
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Fig. 12.3 Results of calculation of the plate with a hole

Fig. 12.4 Calculation
scheme of the composite
shell

values of physical and mechanical characteristics of the material Eα and Eβ on the
maximum stresses in a clamped fragment of a two-layer fiberglass shell of rotation
under the action of internal pressure qn (Fig. 12.4). The parameters of the shell are
as follows: s0 = 0 m; sL = 1.08 m; r0 = 0.788 m; rL = 0.57 m; h = 0.4 · 10−2 m;
qn = 0.1 MPa; Poisson’s ratios, μα = 0.1 and μβ = 0.1; shear modulus, Gαβ =
Eα(β)/(2[1 + μα(β)]); h is the shell wall thickness.

From the results of the calculations shown in Fig. 12.5, it follows that when chang-
ing the value of the longitudinal modulus of elasticity from Eα = 5 GPa (Fig. 12.5a)
to Eα = 10 GPa (Fig. 12.5b) at Eβ = 15 GPa the maximum stress by Mises did
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Fig. 12.5 Results of composite shell calculation

not actually change (from σmax = 21.1 MPa to σmax = 21.5 MPa). There was only
a slight change in the picture of the stress–strain state in the composite shell as a
whole. Thus, for the parameters adopted in the calculation, the calculation scheme
turned out to be weakly sensitive to the input data parameter Eα .

At the same time, the coordinates of the location point σmax have changed (from
s = 1.085 m to s = 0.04 m), which is important for determining the points of possi-
ble structural failure and installing appropriate measuring devices for experimental
destructive tests.

From the above results of the numerical experiment, it follows that the choice of
input data and boundary conditions can have a significant impact on the calculation
results, which indicates the need for additional computer analysis to substantiate the
reliability of the calculation results.

12.4 Methods of Forecasting the Destructive Load

12.4.1 Estimation of the Error of the Strength Calculation
Result From Deviations of Input Data

It is proposed to solve the problem of increasing the reliability of predicting the value
of the critical (destructive) load of the structure without conducting costly destruc-
tive field tests by replacing them with the process of systematic, although rather
laborious, computer modeling of the relationship between the results of calculations
and the input parameters of the problem using elements of the theory of sensitivity
(Diskovskiy et al. 2012; Nazarenko et al. 2019).

Provided that a perfect (accurate) finite element analysis tool is used, the results
of its calculation will be a function Ps(q̄) of the vector of input parameters q̄ =
(q1, q2, . . . , qn).
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Taking Ps
exp as known the data of measurements of stresses, deformations, or other

parameters of the strength criterion in the s-th (arbitrary or the most dangerous)
point of the structure with coordinates X̄ s = (xs, ys, zs) obtained from the results
of non-destructive (in the elastic region) testing of a real structure, the problem is
to determine the components of the input parameter vector q̄ = (q1, q2, . . . , qn) at
which the discrepancy

�P =
∣∣∣Ps (q̄) − Ps

exp

∣∣∣ (12.8)

between these values in the most dangerous for destruction s th point of the structure
will be minimal.

If it is necessary to determine the discrepancy between the calculated and experi-
mental data simultaneously for smeasurement points, the criterion (12.8) is adopted
by the least squares scheme (Berezin and Zhidkov 1966)

�P =
√

∑

s

(
Ps (q̄) − Ps

exp

)2

To study the influence of possible deviation of input data from their nominal values
on the deviation of certain parameters of the final result of calculations, that is, the
sensitivity of the n-dimensional function Ps(q̄), the method of coordinate descent
(the method of alternate change of varied Gauss–Seidel parameters qi (i = 1, . . . , n)
is used (Boyarinov and Kafarov 1969). To construct the response function, the basic
calculation of the structure Ps

0i = Ps
(
q1, q2, . . . , q0

i , . . . , qn
)
and the sequence of

calculations Ps
±i = Ps (q1, q2, . . . , qi ± �qi , . . . , qn) for each of the arguments qi

(i = 1, . . . , n) is performed.
By performing such a computational process for different node points �qi by, in

particular, the scanning method (Boyarinov and Kafarov 1969; Reklaitis et al. 1983),
it is possible to find the value of each of the input parameters qmin

i (i = 1, . . . , n)
corresponding to the smallest deviation of the calculation results and experimental
data.

To reduce the number of such direct calculations in the construction of the response
function of the calculated values Ps

±i for each of the parameters qi (i = 1, . . . , n),
the method of quadratic approximation (Powell’s method) is used (Reklaitis et al.
1983).

After introducing the notation q−
i = q0

i − �qi , q
+
i = q0

i + �qi (i = 1, . . . , n)
and calculating the values Ps

−i , P
s
0i , and Ps

+i for a certain point s, the quadratic
polynomial of the response function on a uniform grid (±�qi ) is given as

fi (q̄) = ai0 + ai1
(
qi − q−

i

) + ai2
(
qi − q−

i

) (
qi − q0

i

)
. (12.9)

Assuming the equality of the function fi (q̄) and Ps
−i , Ps

0i , Ps
+i at the interpolation

nodes q−
i , q0

i , q+
i , we can obtain:
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ai0 = Ps
−i , ai1 = Ps

0i − Ps
−i

q0
i − q−

i

, ai2 = 1

q+
i − q0

i

(
Ps

+i − Ps
−i

q+
i − q−

i

− Ps
0i − Ps

−i

q0
i − q−

i

)
.

(12.10)
Thus, according to the three calculations at qi = q−

i , qi = q0
i , qi = q+

i and the
corresponding values of the result function Ps

−i , P
s
0i P

s
+i , we can calculate the values

of the coefficients ai0 , a
i
1, and ai2 of the approximating quadratic polynomial for all

qi (i = 1, . . . , n).
It should be noted that to improve the accuracy of approximation of the result

function Ps(q̄), if necessary, an approximating polynomial of a higher order can be
used, in particular, Newton’s polynomial on an uneven grid. At the same time, the
construction of the approximating polynomial fi (q∗

1 , q
∗
2 , . . . , qi , . . . , q

∗
n ) of the n th

order requires more design calculations.
Having approximating polynomials in the form of one-dimensional functions

fi (q∗
1 , q

∗
2 , . . . , qi , . . . , q

∗
n ), we find the values qmin

i that correspond to the smallest
deviation of the function fi (which approximates the calculation results Ps(q̄)) and
the data Ps

exp of non-destructive (in the elastic region) test in the form

min
qi

∣∣∣Ps
exp − fi (qi )

∣∣∣ .

Given the simplicity of calculating the approximating quadratic polynomial, this
problem is easily solved by the scanning method with a uniform or (to reduce the
number of calculations) nonuniform step (Boyarinov and Kafarov 1969).

The obtained calculation results δi = qmin
i − q0

i allowus to determine the direction
and value of the change in the input parameters qi (i = 1, . . . , n) necessary to achieve
compliance of the calculation results Ps

(
q̄min

)
with the non-destructive test data Ps

exp.
The value of this deviation is calculated as

�Ps
i = Ps

(
q∗
1 , q∗

2 , . . . , q
min
i , . . . , q∗

n

) − Ps
exp.

The obtained results make it possible to identify the causes of such deviations, in
particular, by additionalmeasurements of the relevant parameters of the real structure,
to make appropriate adjustments and to build a process of its more correct calculation
and creation.

If it is necessary to further reduce this discrepancy, taking into account the mutual
influence of changes in input data on the calculation result, an algorithm for the
method of successive approximations can be built by calculating the values of the
input parameters of the next k + 1 search step in the form:

qk+1
i = qk

i + γ
(
qmin
i − qk

i

)
, (12.11)

where 0 < γ � 1 is the relaxation coefficient.
In this case, the components of the input data qi (i = 1, . . . , n), the influence of

whichon the result of the calculation is insignificant |δi | � ε, aswell as the parameters
determined by the results of expert assessments, are excluded from consideration.
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Algorithms for accelerating the convergence of iterative processes (12.11) are
presented in Dzyuba et al. (2020).

12.4.2 Application of the Approach

The control of errors in the calculation of the stress–strain state of the structure is
carried out by conducting a comparative analysis of the obtained numerical results
with the data of parallel non-destructive (under elastic deformation) testing of a real
object using strain and stressmeasuring instruments (Tkachuk et al. 2017;Wierzbicki
et al. 2005) or holographic interferometry methods (Dzyuba and Selivanov 2021;
Gudramovich et al. 2017).

This approach allows us to establish the reliability of the calculated characteristics
by identifying their possible deviations andmaking appropriate adjustments to reduce
the errors of numerical analysis caused by a combination of the above factors: the
introduction of initial simplifying hypotheses and assumptions related, in particular,
to the choice of the calculation scheme, mathematical model, as well as the error of
software for FEM analysis and the influence of input data errors. The result of this
stage will be the algorithm of structural analysis in the elastic domain.

Experimental tests of the real structure are carried out under the conditions

σ5q � λσkr , (12.12)

where 0 < λ � 1 is the coefficient of “confidence” in the preliminary calculation
results; σ5q and σkr are determined at the points of installation of measuring devices
(the most dangerous for destruction) simultaneously according to several selected
strength criteria (Sect. 12.3.3), according to the results of which the criterion with
the closest calculated values of critical stresses to the data of experimental tests in
the elastic region is selected.

When the limit values (12.12) in the process of such a parallel numerical–
experimental study are reached, the increase in the load on the real structure stops.
In the presence of unacceptable deviations in the calculation results and experimen-
tal data, computer simulation of the influence of deviations in the values of input
parameters on the results of strength calculation is carried out (Sect. 12.4.1).

After identifying the causes of inaccuracy in the calculation andmaking appropri-
ate adjustments, the numerical study of the stress–strain state of structures continues
beyond the limits of elasticity using the failure criterion determined at the first stage
and further reaching the critical state and virtual failure.

The results of this stage allow us to establish more reliably the value of the critical
(destructive) load and the general picture of the loss of bearing capacity beyond the
elastic limit.

Additional substantiation (if necessary) of the results of control of design errors
and, most importantly, the choice of the failure criterion can be carried out by com-
parative analysis of the results of numerical calculations and destructive test data of
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analogues of the structure in the form of simplified small-sized models, fragments,
or samples made of the material of the structure.

12.5 Conclusions

The analysis of the causes of errors in calculations of the strength of complex struc-
tures of new technology and ways to identify and correct them is presented.

A methodology for studying the influence of deviations of input data on the
calculation result has been developed, the essence of which is to systematically
evaluate and control the error accumulated in the process of creating a structure in
order to replace rather costly destructive tests of full-scale structures with less costly,
although rather laborious, additional comparative computer modeling using data
from non-destructive (in the elastic region of deformation) testing of the structure.

The approach allows:

• to obtain data for controlling the magnitude of the accumulated error and to build
and justify the methodology for more reliable prediction of the limiting (destruc-
tive) values of the parameters of the stress–strain state of complex structures;

• to establish the quantitative influence of the scatter of themain input parameters on
the result of calculations and to determine the maximum tolerances for input data
errors, including those that are introduced into the structure during itsmanufacture,
and, as a result, are not taken into account in the calculations;

• to justify the choice of a rational value of the coefficient k of safety margin, which
in this case will be really consistent with the results of numerical calculations,
errors of calculated mathematical models, the influence of deviations of input
data, manufacturing technology, and the results of non-destructive tests.

The results of the research can be used to make adjustments to the design and
calculation data in order to increase the reliability of the bearing capacity calculation
results and reduce the volume or complete rejection of destructive tests.
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Chapter 13
Strength Assessment of Critical Elements
of Nuclear Power Plant Equipment:
State-of-the-Art Calculation Approaches

Valery Kharchenko and Alexander Chirkov

13.1 Introduction

Extension of operation of nuclear power plants (NPPs) is a global trend, the strategy
of which is to gradually extend their service life. In general, a significant part of NPP
power units in the world is already operated beyond the design life. Highly qualified
scientific and technical support is required to ensure their safe service conditions,
in particular, the current task is to calculate the structural strength and predict the
residual service life of NPP equipment components.

In the G.S. Pisarenko Institute of Problems of Strength of the National Academy
of Sciences of Ukraine (IPS NASU), theoretical and applied results on the develop-
ment and application of refined models and methods for solving actual problems of
mechanics related to the justification of the strength and service life of the equipment
of the first circuit of the reactor plant with WWER water-water power reactor were
obtained (Chirkov 2020; Kharchenko et al. 2018).

Scientific and applied developments of the IPS NASU take into account modern
trends in world practice in the calculation justification of the strength of NPP equip-
ment elements, as well as contain new conceptual approaches to solving nonlinear
boundary value problems of mechanics of deformed structures. The results of fun-
damental and applied research are the methodological basis of the refined design
analysis for solving urgent problems of modern nuclear power engineering-ensuring
the conditions for safe operation of NPP power units and justification of their service
life extension.

It should be noted that the development of models and methods of strength calcu-
lation and their application to the analysis of structural mechanics problems is one of
the priority directions in the activities of IPS NASU for the last 40 years. Scientific
and applied research aimed at improving the methodology for the refined calculation
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of the stress-strain state and fracture resistance of NPP equipment and the develop-
ment of the relevant regulatory framework have been implemented in practice within
the justification of the extended service life of many Ukrainian NPP power units.

The authors did not seek to fully cover all issues related to the methodological
aspects of the strength calculation justification, consideration, and analysis of all
factors affecting the calculated assessment of NPP structures and fracture resistance.
Below, some important results of scientific and applied research are presented,which,
in our opinion, complement the known data of other authors and may be of interest
to specialists in the field of calculation methods for strength analysis of NPP equip-
ment. Practical results demonstrate the capabilities and advantages of the developed
methods of the refined calculation of stress-strain state for assessing the strength of
critical elements of the equipment of the first circuit of theWWER-1000 reactor unit.

13.2 Mathematical Models of Material Deformation
Processes

The refined analysis of the NPP primary circuit equipment stress-strain state is based
on the solution of boundary value problems of thermo-visco-plasticity taking into
account the combined influence of the following factors: spatial nature of the stress-
strain state of structures; mutual influence of the elements of the connected reactor
equipment; inhomogeneity and non-stationarity of heating and cooling; inelastic
deformation and loading history; residual technological stresses and deformations;
subcritical metal damage; radiation effects, swelling and creep; contact interaction;
dependence of metal properties on temperature and irradiation dosage.

Thus, the modeling of the kinetics of stress-strain state and the analysis of fracture
resistance of NPP equipment elements belong to the most complex problems of
mechanics of materials and structures, mathematical and computational methods of
analysis.

The equations of state are formulated taking into account the specifics of physical
and mechanical processes that occur in the material during the loading of the studied
structural element, using modern and developed mathematical models. In particular,
models that allow describing the processes of radiation swelling and radiation creep
of irradiated metal, taking into account the accumulated damaging dose, irradiation
temperature, and the effect of stresses and accumulated irreversible deformation on
the swelling and creep of the material, were used to assess the progressive shape
change of the reactor core lining (Chirkov 2020; Kharchenko et al. 2018).

The nucleation and growth of the volume concentration of ductile fracture pores in
the material are taken into account by the Rice–Tracey–Huang models (Huang 1991;
Rice and Tracey 1969), and for the conditions of prolonged neutron irradiation—
by the proposed equation from the Kachanov solution for a spherical cavity in an
elastic-plasticmedium (Kachanov 1969). Irreversible deformations take into account
instantaneous plastic deformations, radiation swelling, radiation creep, and structural
volumetric deformations describing the growth of pore concentration in the material.
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Thus, the analysis of deformation processes in the general case is based on the
definition of the total strain e in the form

e = ee + eT + R/3 + ep + eR + K/3, (13.1)

where ee, eT are the elastic and thermal strain components, respectively, R is radi-
ation swelling of irradiated metal taking into account the influence of stresses, ep
is instantaneous plastic strain, eR is radiation creep in case of prolonged irradia-
tion; K is volumetric concentration of ductile fracture micro-pores (Chirkov 2020;
Kharchenko et al. 2018).

Dependence of the free swelling value R0 on the damaging dose Z and irradiation
temperature T is taken on the basis of experimental studies of radiation porosity of
irradiated austenitic steels (Chirkov 2022):

R0 = c0Z
βexp

(−r(T − Tmax )
2
)
, (13.2)

where Tmax is the temperature of maximum swelling; c0, β and r are the material
constants.

The equation describing the effect of stresses and accumulated irreversible defor-
mation on swelling R was proposed in Chirkov (2022) based on the analysis of
experimental data on the determination of radiation swelling of austenitic steels for
different stress states. The dependence of the swelling value R is taken in the form

R = R0R1e
−λQ, R1 = 1 + CR (ωσm + (1 − ω) σ̄ ) , (13.3)

where σm is the average normal stress; σ̄ is stress intensity; CR is material constant,
which generally depends on the damaging dose and irradiation temperature; ω is
a weighting factor that determines the degree of stress influence of σm and σ̄ on
swelling R; λ is the material constant, which is determined by experimental data;
Q is a parameter that takes into account the accumulated irreversible deformation
(Chirkov 2020).

The coefficient ω depends on the level of damaging dose and irradiation tem-
perature, i.e., in general, on the swelling value, and the choice of ω is carried out
taking into account the condition that the swelling R is positive. If R < 1%, the main
influence on swelling is the stress intensity s̄ for R > 1%, the average normal stress
dominates σm . Hence, in the case of R < 1% the coefficient ω is close to zero, and
for R > 1% it increases significantly and approaches the value ω0 = 0.85 (Chirkov
2022). Using the coefficient 0 < ω ≤ ω0, which depends on swelling, it is possible
to describe the material behavior in more detail compared to the choice of ω = ω0,
especially at the beginning of irradiation. However, it is necessary to ensure that the
conditions of the correctness of the equations of state of the material are not violated
due to small values of the coefficient ω.

According to Eq. (13.3), the swelling R is affected by both the value of σm and
σ̄ which makes it possible to take into account the asymmetry of the influence of
stresses σm on the process of material swelling for a more accurate approximation
of experimental data (MT-D.0.03.391-06 2009). In addition, the swelling R depends
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on the value of the accumulated irreversible deformation Q, which includes instan-
taneous plastic strain and radiation creep strain.

On the basis of Eq. (13.3), we obtain the relationship for the increments

dR

R
= dR0

R0
+ CR

R1
(ωdσm + (1 − ω) dσ̄ ) − λdQ, (13.4)

which suggests that the average tensile stressσm speeds up or slows down the swelling
R depending on the sign of the stress σm , whereas the stress intensity σ̄ accelerates
the swelling process, in contrast to the accumulated irreversible deformation Q,

which slows down the swelling of the material.
Since swelling R characterizes the volume change, the structural deformations

of swelling are the components of the ball tensor, which according to (13.3) depend
on both the ball component and the deviatoric components of the stress tensor. This
concept of volume change is not generally accepted in the mechanics of materials,
but it is consistent with experimental results on radiation swelling.

In general, equation (MT-D.0.03.391-06 2009) is used to describe the constant
rate of radiation creep:

dεc

dt
=

(

B0
dZ

dt
+ C0

d R̃

dt

)

σ̄ , (13.5)

where dεc is the intensity of creep strain growth; t is time or any other parameter
that characterizes the load change; B0 and C0 are material constants that are weakly
dependent on temperature; dZ/dt is the rate of the damaging dose; d R̃/dt is swelling
rate; R̃ is swelling, which is determined by the formula of full or free swelling.

Substituting parameter R̃ in Eq. (13.5) by the compressed swelling R allows one
to describe radiation creep more adequately than using free swelling R0 (Chirkov
2022). In this case, the creep rate depends not only on the stress intensity σ̄ but also
on the average normal stress σm because the swelling R also depends on σm . Thus,
according to the adopted swelling model, the deviatoric components of radiation
creep depend on both deviatoric stress components and the ball component of the
stress tensor. Such a creep model is not generally accepted in classical theories
of plasticity and creep, but it is consistent with experimental data in case of their
approximation by Eq. (13.5).

To take into account the porosity of the irradiated material, the equation obtained
on the basis of Kachanov’s solution for the problem of comprehensive stretching of
a spherical cavity in unlimited space is used (Kachanov 1969). It is assumed that the
increase in the volume concentration of pores K in the material is due to inelastic
deformation, which includes deformations of instantaneous plasticity and radiation
creep. Then the increase in pore concentration dK can be described as follows:

dK = 3h1φ (g) exp (h2g) dεn, (13.6)

where g = σm/σ̄ is the stiffness of the stressed state; dεn is the intensity of increments
of accumulated irreversible deformations; coefficients h1, h2, and the continuous
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function φ (g) are defined as follows: under the condition of elastic deformation we
have h1 = 0.75, h12 = 0, φ(g) = g; in the presence of plastic deformation: h1 =
0.184, h2 = 1.5, φ(g) = 1. The increment of pore concentration dK is a continuous
function with respect to the parameter g and its first derivative also satisfies this
condition. These properties of the function dK follow from the Kachanov solution
of the deformation of a spherical cavity, because this solution ensures the continuity
of radial displacements, deformations, and stresses at the interface between the elastic
and plastic parts of the body.

The application of the Kachanov solution tomodeling the process of growth of the
volume concentration of pores allows to take into account the radiation creep in the
elastic region of the deformation diagram of the irradiated material, in contrast to the
classical Rice–Tracey–Huang equations, inwhich the elastic region is not considered.
Taking into account this factor affects the results of the analysis of porous material
behavior, since radiation hardening occurs with an increase in the dose, which leads
to a decrease in the plasticity of the material, and therefore, in the case of prolonged
neutron irradiation, the role of radiation creep in the elastic region of the deformation
diagram increases.Under such conditions, themain component in the deviatoric com-
ponents of irreversible deformations is the radiation creep of the irradiated material,
and a significant contribution of plastic deformations is local in the zones of stress
concentrators. In particular, this peculiarity of material behavior concerns the analy-
sis of irreversible shape change of the WWER reactor core lining during operation,
as well as elements of internals subjected to prolonged neutron irradiation.

13.3 Validity of Governing Equations via Drucker’s
Postulate

Mathematical models that allow describing the processes of inelastic deformation
taking into account the influence of radiation effects and accumulated damage lead to
non-classical equations of state of the material, and therefore it is necessary to deter-
mine the conditions that ensure their correctness. It is worth noting that the analysis
of the conditions for the correctness of the equations of state, which take into account
the porosity of the irradiated material, is quite relevant, since it allows to prove an
unambiguous solution of the nonlinear boundary value problem corresponding to
the adopted model of inelastic deformation, as well as to justify the convergence and
accuracy of approximate methods for its solution.

On the basis of developed energy approaches based on general principles of
nonlinear mechanics of continuous media, the following condition was established
(Chirkov 2020). If in the process of loading the elements of elastic-plasticmediumare
exposed to radiation swelling and radiation creep and there is a growth of ductile frac-
ture pores, the dissipation power of additional stresses dσ on the irreversible defor-
mations caused by them dεn will be non-negative only in the case of the inequality:

(
dσ , dεn

)
� 0. (13.7)
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This condition ensures the correctness of the equations of state and generalizes
Drucker’s postulate for irradiated porous material, because the inequality in incre-
ments is formulated for the total stress and strain components in contrast to the
classical theories of plasticity and creep, in which this constraint is defined only for
deviatoric components.

13.4 Boundary Problem Statement

The generalized boundary value problem, which allows to describe non-isothermal
processes of inelastic deformation taking into account radiation effects and metal
damage, is formulated in a quasi-static formulation in the form of integral identities
for displacements, strains, and stresses (Chirkov 2020; Kharchenko et al. 2018):

(ε(t), δσ )L = (Bu(t), δσ )L ;

(σ (t), δε)L = (D (ε(t), ξ(t)) (ε(t) − ξ(t)) , δε)L ; (13.8)

(σ (t), Bδu)L = 〈 f (t), δu〉 ,

where δσ , δε, and δu are arbitrary continuous functions that can be interpreted as
variations of stresses, strains and displacements, respectively; t is time or any other
parameter that characterizes the loading process; B is linear differential operator for
calculating small deformations ε by the given displacements u; D is nonlinear opera-
tor that establishes the relationship between stresses and strains; ξ is the initial strain,
including thermal and irreversible components accumulated before the beginning of
loading; 〈 f , δu〉 is linear form, which is identical to the work of surface loads on
possible displacements δu; (·, ·)L is scalar product in space L tensor-functions of
stresses and strains integrated with the square on 	, where 	 is the area occupied by
the body. These notations are described in more detail in Kharchenko et al. (2018),
Chirkov (2020).

To substantiate the correctness of the boundary value problem, represented by
the system of Eq. (13.8), it is transformed into a nonlinear operator equation in the
Hilbert space with respect to displacements. On the basis of the formulated princi-
ple of non-negativity of dissipation under the condition of loading of the irradiated
porous material, as well as with the involvement of the functional analysis apparatus,
the properties of strong monotonicity and Lipschitz continuity of the operator cor-
responding to Eq. (13.8) are established. Therefore, in accordance with the general
results of the theory of nonlinear operators, there is a single solution of Eq. (13.8)
and its continuous dependence on perturbations of the initial data (Chirkov 2020;
Kharchenko et al. 2018).

Generalized and modified iterative methods of elastic solutions and variable elas-
ticity parameters were developed for solving nonlinear boundary value problems
describing inelastic deformation processeswith account of radiation effects and accu-
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mulated metal damage, and their convergence was proved taking into account the
deformation history of loading (Chirkov 2020; Kharchenko et al. 2018).

13.5 Main Provisions of the Calculation Technique

It is noteworthy that the solution of most practical problems of structural mechanics
by analytical methods is impossible. Therefore, approximate calculationmethods are
used. In particular, the most universal of them is the finite element method (FEM).

At the same time, it is necessary to take into account the disadvantages of the
classical FEM schemes, which consist in discontinuous distribution and lower order
of convergence of the stress-displacement approximation. However, stresses are usu-
ally the main desired functions in the problems of deformable body mechanics, and
therefore must be determined with a high degree of accuracy.

Traditional approaches to improve the accuracy by increasing the density of the
finite element partitioning or transition to more complex finite elements are not
always effective even in the case of linear problems. For evolutionary and nonlinear
three-dimensional problems, they are practically unacceptable, because the large
dimensionality of the discrete model, significant nonlinearity of metal properties in
the vicinity of the crack front, and modeling of conditions with increased dose and
temperature of irradiation can lead to loss of stability or violation of the convergence
of computational processes.

Thus, it is promising in the numerical analysis of problems of mechanics to apply
the concept of the so-called mixed formulations of the FEM, in which stresses are
included in the solving equations along with displacements as equal unknowns, and
not determined by the solution of the problem in displacements. This allows stresses
and displacements to be approximated by a different set of basis functions, which
improves the accuracy of stress and strain determination.

The main advantages of the developed mixed schemes are in the continuous
approximation of stresses and strains, as well as in solving the boundary value prob-
lem taking into account the exact fulfillment of static conditions on the body surface
(Chirkov 2020; Kharchenko et al. 2018).

At the same time, it should be taken into account that the approaches used to
analyze classical schemes in displacements are not suitable for studying the condi-
tions of correctness and convergence of solutions based on the mixed method. The
condition, which is key in substantiating the stability and convergence of the mixed
method, is determined due to the developed alternative approaches to the analysis of
projection-grid schemes with the involvement of constructed projection operators.
It is on the basis of the formulated stability condition that the convergence of the
mixed approximation for stresses and displacements is proved. The obtained a priori
estimates establish not only the convergence of the mixed method in the problems
of nonlinear deformation mechanics, but also indicate a more accurate distribution
of stresses and strains compared to the conventional finite element approximation
(Chirkov 2020; Kharchenko et al. 2018).
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One of the main provisions of the revised stress-strain state calculation of NPP
equipment is a universal approach, which consists in fragmentation of the structure
model. According to this approach, the calculation of its individual node is performed
in two stages. At the first stage, the global stress-strain state is calculated for the com-
plete structuralmodel, and at the second stage, the refined calculation of the local state
of the studied node is performed using the fragmentation procedure and finer finite
element partitioning. The fracture resistance is estimated on the basis of additional
calculation of the local statewith the inclusion of the postulated defect in themodel of
a fragment of the structure,which is fully consistentwith the IAEArecommendations.

The developed methods are implemented in a specialized software complex cre-
ated in IPS NASU and approved for use in the nuclear industry of Ukraine (Soft-
ware 2004). Methodological recommendations and methods for calculation of NPP
equipment are implemented in the developed standard of the Ukrainian organization
- the standard of IPS NASU (SOU 2020). To assess the strength and service life of
WWER reactor pressure vessels (RPVs), an industry normative document was devel-
oped (MT-D.0.03.391-06 2009), which was used to justify the service life extension
of many Ukrainian NPPs.

13.6 Calculations for Critical Elements of the WWER-1000
Nuclear Reactor Pressure Vessel

The following are practical results that demonstrate the capabilities and advantages
of the developed calculation methods for assessing the strength of critical elements
of the WWER-1000 reactor primary circuit equipment.

Figure 13.1 shows the equipment elements for which the results of the design
analysis were obtained:WWER-1000 nuclear RPV including the cylindrical part and

Fig. 13.1 The studied elements of the equipment of the first circuit of the WWER-1000 reactor
unit: nuclear reactor vessel a; coolant collector-steam generator vessel welding unit b; reactor core
containment c
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the area of nozzles as the most critical element of the reactor installation; the unit of
welding of the coolant collector to the nozzle of the PGV-1000M steam generator
vessel as the most problematic element of the steam generator design; WWER-1000
reactor core lining as the most irradiated element of the reactor internals.

13.6.1 Reactor Pressure Vessel

Under reactor operating modes caused by emergencies, in particular thermal shock,
the main criterion for the strength and integrity of the vessel is its ability to resist
destruction during thermal shock.

Three-dimensional finite element models of the WWER-1000 reactor pressure
vessel (RPV), including the elliptical bottom, spherical lid, nozzle area, and cylindri-
cal part with the support shoulder and welded butt welds of the shells with postulated
semi-elliptical cracks built into the computationalmodel, were created to simulate the
kinetics of the NDC. For the cylindrical part of the RPV, in particular, an underfloat
circumferential semi-elliptical crack with a depth of 15mm and a semi-axis ratio of
0.3, located in the metal of weld No. 4 on the axis of the cold water tongue, was mod-
eled. Calculated finite element models of WWER-1000 RPV are shown in Fig. 13.2.

It is shown that the computational modeling of nonlinear effects of the RPVmetal
behavior during thermal shock is one of the determining factors for substantiating
its safe operation and predicting the service life, as evidenced by the international

Fig. 13.2 Finite element
models of WWER-1000
reactor vessel: full model a;
fragment of the nozzle area
b; model of the cylindrical
part with welds c: 1 is seam
No. 3 and 2 is seam No. 4
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Fig. 13.3 Determination of
the maximum allowable
critical brittle temperature
Tka of reactor vessel metal
based on the proposed
approach using liquid and
dense finite element meshes;
db is descending branch

experience in solving practical problems of extending the service life of NPP power
units.

An important feature of modeling the nonlinear effects of the RPVmetal behavior
is to take into account the history of inelastic deformationof themetal in the vicinity of
the postulated crack front. The fracture resistance was evaluated taking into account
the data of kinetics calculation and the nature of metal loading in front of the crack
front to determine the change of stress intensity factor (SIF) with temperature. The
so-called “descending branch”, which is typical for many modes of thermal shock,
is caused by the formation of a local compressive stress zone during metal unloading
in front of the crack front during emergency cooling of the reactor core (Kharchenko
et al. 2018).

Figure 13.3 depicts the results on the updated elastic-plastic calculations for esti-
mation of fracture resistance of the cylindrical part of the WWER-1000 RPV using
modern concepts for prediction of ductile fracture of RPV steels are presented.

The proposed approach to assessing the fracture resistance of the RPV takes
into account the descending branch in the calculated dependence of the RPV on
temperature formodes with thermal shock. According to this approach, the processes
of active loading and local metal unloading in front of the crack front are analyzed,
and an additional condition is formulated, which allows to justify additional strength
reserves and service life of the RPV.

13.6.2 Welded Joint of the Coolant Collector and the Steam
Generator Vessel

The problematic element of the primary circuit of the WWER-1000 reactor unit
equipment is the welded joint of the coolant collector and the steam generator vessel,
which has damages detected within the design service life. Damage initiation is
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caused by the influence of corrosive environment and high level of tensile stresses
arising during operation of the steam generator.

To determine the residual stresses and the global state of the steam generator ves-
sel, three-dimensional finite element models of the equipment of the loop of the first
circuit of the reactor unit were created, consisting of the following structural elements
of the equipment: steamgenerator vessel, “hot” and “cold” coolant collectors, hot and
cold collector welding units, hot and cold branches of the main circulation pipeline,
main circulation pump, RPV with coolant inlet and outlet pipes. The constructed
models take into account the mutual influence of the steam generator and elements
of the connected equipment on the determination of the stress-strain state of the steam
generator as a whole. The calculated finite element models for determining the global
and local stress-strain state of thePGV-1000Msteamgenerator are shown inFig. 13.4.

It should be emphasized that the first results of calculating the stress-strain state of
the above weld assembly using three-dimensional models, which take into account
the influence of the attached equipment, were obtained in the IPS NASU, showing
a high level of tensile stresses under operating modes of loading exactly at the place
of detected damage on the inner surface of the nozzle (Kharchenko et al. 2018).

The calculated determination of residual stresses and strains includes modeling
of the operations of filling the processing of weld No. 111 and local heat treatment of
the nozzle area under the high tempering mode during the manufacture or repair of
the steam generator. The results of the assessment of residual technological stresses
and strains in the zone of weld No. 111 are given in Kharchenko et al. (2018).

Below are the results of determining the calculated values of the stress intensity
factor for a surface defect in the form of a groove extending along the circumferential
coordinate of the nozzle in combination with a semi-elliptical crack that has the
same semi-axes as the crack postulated in the regulatory documents. The length of

Fig. 13.4 Finite element models: reactor plant a; computational model of the welding unit b; finite
element meshes in the filet area with a surface defect in the form of a long groove combined with
a semi-elliptical crack c
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Fig. 13.5 Stress intensity factor distribution along the crack front for normal operating conditions.
Here solid line corresponds to the elastic-plastic calculation taking into account the extended groove;
dashed line is elastic-plastic calculation taking into account the postulated semi-elliptical crack;
dotted line is linear-elastic calculation with the postulated crack

the groove along the circumferential coordinate of the nozzle was determined to
be 500mm, the height of the groove (the distance between its banks) is 1.25mm,
the total depth of the groove and the crack was set to 18mm, which corresponds
to a quarter of the nozzle thickness. The geometric dimensions of the groove were
determined on the basis of test calculations to obtain the most conservative estimate
of the resistance to fracture of the welded joint.

The proposed model of the calculated defect is a more adequate schematization
of the surface damage of the welded joint compared to the traditional modeling of
the defect in the form of a semi-elliptical crack. The physical model of the corrosion
defect nucleation and propagation was not considered, since the expediency of using
the proposed calculated schematization of the surface defect to take into account the
corrosion damage of the inner surface of the nozzle of the welding assembly was
proved.

Figure 13.5 shows that the history of loading, residual technological inheritance,
and consideration of extensive damage of corrosion origin on the inner surface of the
nozzle significantly affect the resistance to fracture of the welded joint. For the mode
of hydraulic strength tests on the second circuit, the maximum value of the stress
intensity factor increases by almost 60%, and under normal operating conditions -
more than twice (Kharchenko et al. 2018). Consequently, the traditional linear-elastic
calculation of the weld assembly’s fracture resistance leads to an overestimation of
its strength.

13.6.3 Baffle of the Reactor’s Active Zone

At high damaging doses and irradiation temperatures, austenitic steels of
08Kh18N10T type undergo radiation swelling and radiation creep, which can lead
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Fig. 13.6 Fragments of the finite element model of the cross section of the partition and WWER-
1000 reactor internals: meshing in the cooling zone channels a; meshing in the channel area with
the largest diameter and the groove channel b

to irreversible shape change of such element of reactor internals as the lining. Pre-
diction of radiation swelling and radiation creep is necessary to justify the pos-
sibility of reloading fuel assemblies from the reactor core, as well as to con-
trol the gap between the containment and the internals during operation. Closure
of the lining with the shaft as a result of radiation swelling and radiation creep
of the metal can lead to contact stresses, as well as redistribution of primary
coolant flow rate in the reactor and, as a result, to changes in the reactor operat-
ing temperature.

Therefore, the calculated assessment of the progressive shape change of the con-
tainment during operation is one of themain conditions for justifying the normal oper-
ation of the reactor during the design and long-term operation of the NPP power unit.

Figure 13.6 shows fragments of a two-dimensional finite element model of the
cross section of the WWER-1000 reactor shell and internals, which were used to
perform stress-strain state calculations.

The calculated data were obtained on the basis of solving the coupled contact
problem of thermal conductivity and radiation creep. The stress-strain state calcu-
lations were performed in two-dimensional formulation for a cross section with the
maximum damaging dose and irradiation temperature at the maximum height of the
shielding under the condition of generalized plane deformation.

Figures 13.7 and 13.8 depict the data on gaps after 50 years of operation during the
reactor operation at full power, as well as after the planned reactor shutdown, calcu-
lated with and without radiation creep. These data were obtained taking into account
nominal gaps of 2.5 and 4mm, respectively, provided that the core dimensions after
reactor shutdown correspond to the initial values (Chirkov 2020). The distance on
the graphs is counted along the circumferential coordinate from the largest opening
of the cooling channel counterclockwise by an angle of 180◦.

According to the results obtained, which are shown in the graphs, the exhaustion
of the nominal gap between the lining and the shaft is not observed within the design
service life, although some values of the gap are quite close to zero. The minimum
values of the gap are local in the area of the longitudinal cooling channel opening
with the largest diameter and the groove channel for the coolant flow between the
partition and the shaft. According to the results of calculations, it should be expected
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Fig. 13.7 Comparison of the radial gap between the lining and the shaft for the conditions of the
reactor operation at full capacity after 50 years of operation. Here and in Fig. 13.8, the solid line
corresponds to the calculation with an account of radiation creep, the dashed line—with no account
of radiation creep

Fig. 13.8 Comparison of the residual gap between the edges of the shielding and spacer grids of
peripheral fuel assemblies after 50 years of operation

that during reactor operation beyond the design basis there may be local contact of
the containment with the shaft in the area of the channel with the largest hole and
the groove channel.

After 50 years of operation and shutdown of the reactor, the residual gap between
the edges of the baffle and the fuel assembly lattices is not exhausted, resulting in no
jamming after the fuel campaign termination.
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13.7 Conclusions

Summarizing the results of the updated calculations on strength assessment and
service life prediction of NPP equipment elements, the following conclusions are
obtained:

• the proposed approach to the analysis of fracture resistance of the RPV takes into
account the processes of active loading and local unloading of the metal in front of
the postulated crack front, which allows to justify additional strength and service
life reserves;

• the history of elastic-plastic deformation, residual technological inheritance, and
consideration of extensive damage of corrosion origin on the inner surface of the
nozzle significantly affect the fracture resistance of the welded joint, and there-
fore the traditional linear-elastic calculation does not have a sufficient degree of
conservatism, which leads to strength overestimation;

• failure to take into account the processes of radiation swelling and radiation creep
of irradiated metal leads to an incorrect assessment of the reactor core shell shape
change even within the design lifetime.

The developed complex of calculation studies has beenwidely implemented in the
practice of calculations for justification of the beyond-design service life ofUkrainian
NPP power units, in particular: for the state examination of works on justification of
strength and fracture resistance of WWER-1000 RPVs at Zaporizhzhya, Rivne, and
Pivdennoukrainsk NPPs; for justification of the strength of the base metal and welds
of steam generators of Rivne NPP power unit No. 3; for strength calculation of the
vessel (tank) and its components for the research nuclear power reactor WWER-M
of the Institute of Nuclear Research of the National Academy of Sciences of Ukraine.
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Chapter 14
Mathematical Modeling of the Stress
State for the Displacement and Rotation
of the Rigid Penny-Shaped Inclusion
Embedded in a Piezoelectric Space

Vitaly Kirilyuk and Olga Levchuk

14.1 Introduction

The widespread use of piezoelectric materials in manufacturing energy converters
and measuring elements for various industries causes interest in analyzing force and
electric fields in electroelastic (piezoelectric) bodies near stress concentrators. A
study of stress distribution based on solutions to spatial problems of electroelasticity
for anisotropic piezoelectric solids in a mathematically rigorous formulation takes
into account coupled force and electric fields. Thus, the study is significantly com-
plicated because there is a need to solve the boundary value problem for a complex
system of coupled differential equations.

Spatial problems of the theory of elasticity concerning the determination of the
stress state in isotropic and transversely isotropic materials with rigid inclusions of
a circular or elliptical shape were considered in Kassir and Sih (1968), Keer (1965),
Kotousov et al. (2014), Nategh et al. (2018), Rahman (2001), Selvadurai (1979, 1980,
1982). For electroelastic materials, such studies were carried out in Kirilyuk (2008),
Kyrylyuk and Levchuk (2021). The problems of the displacement and rotation of a
circular rigid disk located in the isotropy plane of elastic transversely isotropic space
were considered in Selvadurai (1979, 1980).

In this chapter, exact solutions to the problems of displacement and rotation of
a rigid disk-shaped inclusion in a piezoelectric space are found. Moreover, closed
expressions for stress under a circular disk are obtained. Finally, the influence of the
coupled elastic and electric fields on the stress state in a piezoelectric material is
investigated.

When stating the problem, it is assumed that the circular rigid disk is in the
plane of isotropy of an electroelastic transversely isotropic material, and the two-
sided surface of the disk is non-electrode coated. By representing the solution of the
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equations of statics of electroelasticity for a transversely isotropic solid in terms of
harmonic functions and reducing the problems to the consideration of dual integral
equations, exact solutions of the problems are obtained, expressions for stresses under
a circular disk are found in analytic form. In a particular case, the obtained results
yield expressions for determining the stress state corresponding to displacement and
rotation of a rigid circular disk in a purely elastic transversely isotropic material.

14.2 Formulation of the Problem

Problem 1. First, we consider a circular disk occupying an area � in the plane z = 0
(Fig. 14.1) perpendicular to the axis of symmetry of the electroelastic transversely
isotropic material (z-axis). We also assume that the double-sided surface of the disk
has no electrode coating. Under force P , the disc-shaped inclusion moves along the
z-axis by distance δ.

By taking into account the asymmetry of the normal components of the stress ten-
sor and electrical induction vector relative to the symmetry plane z = 0, the problem
can be reduced to the case of purely elastic transversely isotropic half-space z � 0
(Selvadurai 1979) (Fig. 14.1). Boundary conditions of the problem of electroelastic-
ity are the following

uz = δ, (x, y) ∈ �, z = 0+; σzz = 0, (x, y) /∈ �, z = 0+,

ux = uy = 0, z = 0+, (14.1)

Dz(x, y) = 0, z = 0+, (14.2)

where� = {(x, y) : x2/a2 + y2/a2 � 1}, Dz is the normal component of the vector
of electrical induction (electrical displacements). According to the electrical state,
condition (14.2) corresponds to the case when the disk has no electrode coating and
the absence of free charges in the plane z = 0. The conditions (14.1) are the usual
boundary conditions for a purely elastic problem.

Fig. 14.1 Displacement of
the rigid circular disk along
the axis of symmetry of the
piezoelectric material



14 Mathematical Modeling of the Stress State for the Displacement and Rotation … 241

14.3 Basic Equations and Relations

The equations of statics of electroelasticity for a piezoelectric transversely isotropic
body can be written in terms of the components of the displacement vector and the
electric potential � as follows (Podil’chuk 1998)

cE11ux,xx + 1
2

(
cE11 − cE12

)
ux,yy + cE44ux,zz

+ 1
2

(
cE11 + cE12

)
uy,xy + (

cE13 + cE44
)
uz,xz + (e31 + e15)�,xz = 0,

cE11uy,yy + 1
2

(
cE11 − cE12

)
uy,xx + cE44uy,zz

+ 1
2

(
cE11 + cE12

)
ux,xy + (

cE13 + cE44
)
uz,yz + (e31 + e15)�,yz = 0,

(
cE13 + cE44

)
(ux,xz + uy,yz) + cE44(uz,xx + uz,yy) (14.3)

+ cE33uz,zz + e15(�,xx + �,yy) + e33�,zz = 0,

(e31 + e15)(ux,xz + uy,yz) + e15(uz,xx + uz,yy)

+ e33uz,zz − εS11(�,xx + �,yy) − εS33�,zz = 0.

In (14.3), cE11, c
E
12, c

E
13, c

E
33, and cE44 are independent modulus of elasticity, e31, e15,

and e33 are piezomodules, εS11 and εS33 are dielectric constants.
The solution of (14.3), according to Podil’chuk (1998), can be obtained using

four potential functions � j ( j = 1, . . . , 4):

ux =
3∑

j=1

� j,x + �4,y, uy =
3∑

j=1

� j,y − �4,x , uz =
3∑

j=1

k j� j,z,

� =
3∑

j=1

l j� j,z,

(14.4)

where k j and l j are some constants, and functions � j satisfy the equation

� j,xx + � j,yy + ν j� j,zz = 0 ( j = 1, 2, 3), (14.5)

ν4 = 2cE44/
(
cE11 − cE12

)
and νi (i = 1, 2, 3) are the roots of third-order algebraic equa-

tion

ν3(A1B2 − C1D2) + ν2(A1B3 + A2B2 − C1D3 − C2D2)

+ν(A2B3 + A3B2 − C2D3 − C3D2) + A3B3 − C3D3 = 0. (14.6)

The constants k j and l j ( j = 1, 2, 3) in (14.4) are related to ν j introduced in (14.5)
and can be determined from algebraic equation (14.6) by the following relations
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a j + cE13k j + e31l j
cE11

= cE33k j + e33l j
cE13 + a j

= cE33k j − εS33l j
e31 + d j

= ν j ( j = 1, 2, 3), (14.7)

a j = cE44(1 + k j ) + e15l j , d j = e15(1 + k j ) − εS11l j ( j = 1, 2, 3, 4), (14.8)

where expressions (14.7) and (14.8) are used in subsequent calculations.
Note that, according to (14.5), the functions �1(x, y, z1), �2(x, y, z2),

�3(x, y, z3) and �4(x, y, z4) (z j = zν j
−1/2, j = 1, . . . , 4), are harmonic in the cor-

responding coordinate systems.

14.4 Solution Method

Since the problem is axisymmetric with respect to the z-axis, we use the cylindrical
coordinate system (r, θ, z), in which the components of displacement and the electric
potential have the following form

ur = ∂

∂r

⎛

⎝
3∑

j=1

� j (r, θ, z j )

⎞

⎠ + 1

r

∂

∂θ
�4(r, θ, z4),

uθ = 1

r

∂

∂θ

⎛

⎝
3∑

j=1

� j (r, θ, z j ) − ∂

∂r
�4(r, θ, z4)

⎞

⎠ ,

uz = ∂

∂z

⎛

⎝
3∑

j=1

k j� j (r, θ, z j )

⎞

⎠ ,

� = ∂

∂z

⎛

⎝
3∑

j=1

l j� j (r, θ, z j )

⎞

⎠ .

(14.9)

A solution to the boundary value problemof electroelasticity for a piezoelectricmate-
rial can be found based on (14.4)–(14.9). Let us represent the functions �i (r, θ, zi )
in the form

�i (r, θ, zi ) = αi f (r, θ, zi ) (i = 1, 2, 3), �4 ≡ 0, (14.10)

where αi are unknown constants, f (r, θ, z) is a harmonic function that satisfies the
Laplace equation in cylindrical coordinates.

The boundary conditions for the problem in cylindrical coordinates have the form

uz = δ, 0 � r � a, z = 0+,

σzz = 0, r > a, z = 0+,

ur = uθ = 0, z = 0+, (14.11)
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Dz = 0, z = 0+. (14.12)

Using (14.7)–(14.9), we find the displacement uz , stress σzz and electrical induction
Dz in the plane z = 0:

uz|z=0 =
3∑

j=1

α j
k j√
v j

f,z|z=0,

σzz|z=0 =
3∑

j=1

α j
[
cE44(1 + k j ) + e15l j

]
f,zz|z=0,

Dz|z=0 =
3∑

j=1

α j
[
e15(1 + k j ) − εS11l j

]
f,zz|z=0.

We use the following form for the function f (r, θ, zi )

f (r, θ, z) = F(r, z)

= 1

a2

∫ ∞

0
ξ A(ξ)e−(ξ/a)z J0(ξr/a)dξ,

where J0 is a zero-order Bessel function. Unknown values of constants αi in the
expressions of potential functions (14.10) are taken from the system of linear equa-
tions

3∑

j=1

α j = 0,

3∑

j=1

α j
[
e15(1 + k j ) − εS11l j

] = 0,

3∑

j=1

α j
k j√
v j

= 1.

(14.13)

Using the representations (14.4) and (14.9), the expressions of the components of
stress and electrical induction, and the system (14.13), it follows that the boundary
conditions for displacements ur , uθ and electrical induction Dz in (14.11) and (14.12)
are satisfied. The remaining boundary conditions lead to the system of dual integral
equations for determining the unknown function A(ξ)

3∑

j=1

α j
k j√
v j

1

a3

∫ ∞

0
ξ 2A(ξ)J0(ξr/a)dξ = δ, 0 � r � a,

∫ ∞

0
ξ 3A(ξ)J0(ξr/a)dξ = 0, r > a.

(14.14)

Introducing new variables
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w0 = δa3

3∑

j=1

α j
k j√
v j

, ρ = r

a
, C(ξ) = ξ 2A(ξ),

we reduce (14.14) to the following form

∫ ∞

0
C(ξ)J0(ξρ)dξ = w0, 0 < ρ � 1,

∫ ∞

0
ξC(ξ)J0(ξρ)dξ = 0, ρ ≥ 1.

According to the results of Selvadurai (1979), we find

C(ξ) = ξ 2A(ξ) = 2w0 sin ξ

πξ
.

Next, we have (Erdelyi et al. 1954; Sneddon 1966)

σzz|z=0± =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∓
2

3∑

j=1

α j [cE44(1 + k j ) + e15l j ]δ

π
√
a2 − r2

3∑

j=1

α j

k j√
v j

, r � a

0, r > a.

(14.15)

The force P acting on the disk-shaped inclusion to move it along the z-axis by the
value δ is calculated based on (14.15)

P = 2π
∫ a

0
r
[
(σzz)z=0− − (σzz)z=0+

]
dr

= 8δa

3∑

j=1

α j
[
cE44(1 + k j ) + e15l j

]

3∑

j=1

α j k j√
v j

.

(14.16)

Note that from the obtained expressions (14.15) and (14.16) for an electroelastic
material, the results for a purely elastic transversely isotropic material in Selvadurai
(1979) follow as a special case

Problem 2. Let us consider the problem of rotating a hard circular disk located
in a piezoelectric material (Fig. 14.2). As in the previous problem, we assume that
the inclusion is in the isotropy plane of the material z = 0 (perpendicular to the axis
of symmetry of the piezoelectric material)
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Fig. 14.2 Rotation of the
rigid circular disk in the
electroelastic material

In the case of rotation of the disk-shaped inclusion, we obtain the following
boundary conditions

uz = ωr cos θ, 0 � r � a, z = 0+,

σzz = 0, r > a, z = 0,
ur = uθ = 0, z = 0+,

Dz = 0, z = 0+.

(14.17)

Let us take the harmonic functions �i (r, θ, zi ) for this case in the form

�i (r, θ, zi ) = αi g(r, θ, zi ), (i = 1, 2, 3) ;�4 ≡ 0, (14.18)

where the function g(r, θ, zi ) is selected as follows

g(r, θ, z) = 1

a2

∫ ∞

0
ξ B(ξ)e−(ξ/a)z J1(ξr/a)dξ cos θ, (14.19)

where J1 is the Bessel function of the first order. Unknown values of constants αi in
the expressions of potential functions (14.18) and (14.19) are determined from the
same system of linear equations (14.13) as for the first problem. When determining
unknown values αi from this system, it follows that the boundary conditions in
displacements andwith respect to electrical induction in the plane z = 0 are satisfied,
and from the remaining boundary conditions, we obtain a system of dual integral
equations

3∑

j=1

α j
k j√
v j

1

a3

∫ ∞

0
ξ 2B(ξ)J1(ξr/a)dξ cos θ = ωr cos θ, 0 � r � a,

∫ ∞

0
ξ 3B(ξ)J1(ξr/a)dξ cos θ = 0, r > a.

(14.20)

The system (14.20) is like the system of pair integral equations for a purely elastic
problem (the systems differ only in the factors before the integral in the first equation).
Similarly to Selvadurai (1980), Sneddon (1966), reducing the system of dual integral
equations to the solution of the Abel integral equation, we find
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B(ξ) = 4ωa4
3∑

j=1

α j
k j√
v j

sin ξ − ξ cos ξ

πξ 4
.

Next, like it was proposed in Selvadurai (1980) using results of Erdelyi et al. (1954),
we obtain the analytical expression for stress distribution under a rigid circular disk
when it rotates in a piezoelectric material

σzz|z=0± =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∓
4ω

⎛

⎝
3∑

j=1

α j [cE44(1 + k j ) + e15l j ]
⎞

⎠ r cos θ

( 3∑

j=1

α j
k j√
v j

)
π

√
a2 − r2

, r � a

0, r > a.

(14.21)

The moment acting on the disk-shaped inclusion, using formula (14.21) is found as
follows

M0 =
∫ a

0

∫ π

−π

[
(σzz)z=0− − (σzz)z=0+

]
r2 cos θdrdθ

= 16

3
ωa3

( 3∑

j=1

α j

k j√
v j

)−1 3∑

j=1

α j [cE44(1 + k j ) + e15l j ].
(14.22)

Note that from (14.21) and (14.22), we obtain the results for elastic transversely
isotropic materials (Selvadurai 1980) as a particular case (see Appendix A).

Analysis of the results of numerical research. Using the obtained analytical
expressions, we study the stress distribution under a rigid penny-shaped disk, as well
as the effect of the connection of force and electric fields on the displacement of the
disk in the material. We use the data of Kirilyuk (2006), which shows the properties
of several piezoelectric materials (see the Table14.1 in Appendix A).

After calculations, we conclude that to move the circular rigid disk to the same
value δ (along the axis of symmetry of the material) for different piezoelectric mate-
rials, we need to apply different values of P. So, force P for materials PZT-7A,
BaTiO3, PZT-5H exceeds its corresponding value for the same displacement in the
material PZT-5 by 26.02, 46.37, 36.81%.

We will also study the effect of coupled force and electric fields on the displace-
ment of a circular disk in piezoelectric space. To do this,we compare the displacement
of the disk in the electroelastic material and pure elastic transversely isotropic mate-
rial, which has the same elastic properties as the electroelastic material. As a result of
the comparison, we find that a smaller value of the force must be applied to move the
circular disk in a purely elastic transverse-isotropic space. Thus, for materials PZT-5,
PZT-7A, BaTiO3 and PZT-5H, we obtained the ratios PElast/PPiezo = 61.39, 64.99,
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Fig. 14.3 Stress distribution
for the displacement of a
circular disk, the influence of
the connection of force and
electric fields

80.03, 69.21%. That is, for the given piezoelectric materials, the least influence of
the connection of force and electric fields was observed in the material BaTiO3.

Figure 14.3 shows the influence of the relationship between force and electric
fields on the distribution of stresses under a penny-shaped disk for its displacement
in an electroelastic space. The case of identical disk displacement in electroelastic
and purely elastic materials is considered. Curve 1 in Fig. 14.3 corresponds to the
displacement of the disk in the piezoelectric material PZT-5H, and line 2 corresponds
to displacement in a pure elastic transverse-isotropic material, the elastic properties
of which coincide with the properties of the electroelastic material PZT-5H.

In Fig. 14.3, the following notation is used

N1 = 2N ∗δ/(πa),

where

N ∗ =
( 3∑

j=1

α j
k j√
v j

)−1 3∑

j=1

α j
[
cE44(1 + k j ) + e15l j

]
.

Figure 14.4 shows the effect of the connection of force and electric fields on the
distribution of stresses under the circular disk when it rotates in the elastic space
(material PZT-5H) at θ = 0. The case of rotation of the disk through the same angle
in electroelastic and purely elastic materials is considered. Notation N2 = 4ωN ∗/π
is used in this figure. Curve 1 in Fig. 14.4 corresponds to the case of rotation of
the disk in the piezoelectric material PZT-5H, line 2 corresponds to rotation of the
circular disk in a purely elastic transversely isotropic material, the elastic properties
of which coincide with the properties of the electroelastic material PZT-5H. The
connection of force and electric fields significantly affects the distribution of stresses
under the rigid disk as it moves and rotates in the piezoelectric material.
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Fig. 14.4 Distribution of
stresses under the circular
disk during its rotation (cross
section θ = 0)

14.5 Conclusion

In this paper, using a rigorous mathematical model that considers the coupled force
and electric fields, the exact solutions of the problems of displacement and rotation
of a circular rigid disk in piezoelectric material were obtained, and the stress distri-
bution under a circular rigid disk was researched. Numerical calculations have been
performed, and the influence of the connection of force and electric fields on the
distribution of stresses during displacement and rotation of a circular rigid disk in an
electroelastic material has been studied.

Appendix A. The Transition from an Electroelastic Problem
to the Elasticity Problem for a Transversely Isotropic Elastic
Material (Particular Case)

We show that the results of Selvadurai (1979, 1980) for elastic transversely isotropic
material are the partial cases of both obtained solutions to the problems for the
electroelastic material. In the case of purely elastic transversely isotropic material,
according to Elliot (1948), for the values of the roots of the quadratic equation

c11c44ν
2 − [

c244 + c33c11 − (c13 + c44)
2
]
ν + c33c44 = 0

there are relations

ki (c13 + c44) + c44
c11

= ki c33
ki c44 + (c13 + c44)

= νi . (14.23)

By means of the relations (14.23), we have
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ki c33 = [ki c44 + (c13 + c44)] νi ,(
c33

ki
νi

− c13

)
νi = c44 (1 + ki ) νi .

(14.24)

Next, from (14.24), we obtain

c33

(
k1
v1

− k2
v2

)
= c44 (k1 − k2) . (14.25)

In the transition to a purely elastic transversely isotropic material, the sum of two
harmonic functions (�3 ≡ 0) must be calculated in representation (14.4) instead of
three (according to Elliot (1948)), assuming in the expressions for the electroelastic
material l1 = l2 = l3 = 0 and k3 = 0.

Then in (14.15), (14.16), (14.21) and (14.22) instead of the factor

( 3∑

j=1

α j
k j√
v j

)−1 3∑

j=1

α j
[
cE44(1 + k j ) + e15l j

]

for the case of pure elastic problems, we must use the expression

( 2∑

j=1

α j

k j√
v j

)−1 2∑

j=1

α j
[
c44(1 + k j )

]
.

If the boundary conditions (14.11) and (14.17) are satisfied in Problems 1 and 2 for
the pure elastic material, the condition on the electrical state must be rejected (the
second equation for system (13)), since the material is already purely elastic, and
from the first condition for both systems (absence of displacements ur = uθ = 0 in
the plane z = 0) it follows that α2 = −α1 for both problems. Considering α2 = −α1

and the relation (14.25), we have

( 2∑

j=1

α j

k j√
v j

)−1 2∑

j=1

α j
[
c44(1 + k j )

]

= A33

(
k1
v1

− k2
v2

)(
k1√
v1

− k2√
v2

)−1

= A33
(
k1v2 − k2v1

) [√
v1v2

(
k1

√
v2 − k2

√
v1

)]−1
.

(14.26)

Substituting (14.26) in (14.15), (14.16), (14.21), and (14.22), we obtain the results
of Selvadurai (1979, 1980) for the displacement and rotation of the rigid disk-shaped
inclusion in the elastic transversely isotropic material.
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Table 14.1 Properties of piezoelectric materials PZT-5, PZT-7A, BaTiO3, PZT-5H

Value Dimension PZT-5 PZT-7A BaTiO3 PZT-5H

cE11 GPa 121 148 150 126

cE12 GPa 75.4 76.2 66 55

cE13 GPa 75.2 74.2 66 53

cE33 GPa 111 131 146 117

cE44 GPa 21.1 25.4 44 35.3

εS11/ε0 ε0 = 8.85 × 10−12 F/m 916 460 1115 1706.2

εS33/ε0 ε0 = 8.85 × 10−12 F/m 830 235 1260 1468.9

e31 C/m2 −5.4 −2.1 −4.35 −6.5

e33 C/m2 15.8 9.5 17.5 23.3

e15 C/m2 12.3 9.7 11.4 17.0
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Chapter 15
State-of-the-Art Methods of Material’s
Current State Assessment and Life-Time
Prediction for NPP Primary Circuit
Equipment

Ievgen Kondryakov

15.1 Introduction

The global practice of justifying the structural integrity of critical nuclear power
plant (NPP) components shows that the regulatory framework in Ukraine requires
improvement for the correct justification of the strength and lifetimeof thefirst-circuit
NPP’s equipment components.

The most critical element of the first-circuit NPP’s equipment components is the
reactor pressure vessel (RPV), so special attention is paid to the development of
methods for assessing its strength and lifetime prediction. At the same time, world
experience shows that the RPV service life is limited by the results of brittle fracture
resistance calculations. When evaluating the RPV brittle strength, on the one hand,
numerical calculations of the stress intensity factor (SIF) of RPV elements with a
postulated crack under thermal shock conditions are required. On the other hand, it is
necessary to know the current state of the RPV metal to build a fracture toughness–
temperature dependence. Precisely, the use of modern improved calculation methods
and methods of predicting the degree of RPV metal degradation level during its
operation makes it possible to assess RPV durability and lifetime accurately.

Monitoring the condition of the RPV metal during the entire service life is one
of the main conditions for ensuring the reliable and safe operation of the RPV and
the entire power plant. The RPV is the main safety barrier of the reactor plant and
cannot be replaced due to technical and economic expediency, and in practice, its
condition determines the lifetime of the entire power unit.

A necessary condition for the safe operation of theVVER-1000 reactor plant is the
preservation of the fracture toughness temperaturemargin of theRPVmaterials. Over
time, as a result of radiation embrittlement, thismargin, that is, the difference between
the maximum allowable critical brittleness temperature (T a

k ) and the actual one (Tk),
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decreases, increasing the probability of brittle fracture of the reactor. According to
the PNAE G-7-002-86 (1989) standard, the critical brittleness temperature TK is
considered one of the key parameters characterizing the fracture toughness of RPV
materials. The critical brittleness temperature is used in determining safety limits
for thermohydraulic parameters during RPV routine hydraulic tests. Calculations
on the RPV brittle strength for normal operation conditions, violations of normal
operation conditions, and emergency situations are also carried out using the results
of mechanical tests of surveillance specimens (SS). In addition, comparing the TK
value with the maximum permissible brittleness temperature T a

k allows us to confirm
the RPV design lifetime and assess the possibility of extending its service life. Thus,
safe operation of the RPVVVER-1000 is ensured only in the case when the TK value
remains below T a

k at any operation regime.
The program for controlling the properties of the RPVmetal using SS, made from

the material of this vessel, is the basis for establishing changes in the RPV metal
mechanical characteristics under operating conditions. The SS test results are used
to predict the RPV lifetime from the point of view of resistance to brittle failure.

Cylindrical specimens for uniaxial tension tests, Charpy specimens for impact
bending tests, and compact CT specimens (or COD) for fracture toughness tests are
used as test specimens.

Many studies show that radiation embrittlement makes the most significant con-
tribution to the shift of the critical brittleness temperature of the metal (Kevorkyan
et al. 2004; Margolyn et al. 2010; Nikolaev 2007; Wallin 1991; Wallin et al. 1984).
When developing methods for predicting the RPV lifetime, great attention is paid to
the radiation effect on the change of mechanical characteristics, primarily the criti-
cal brittleness temperature. Unfortunately, the limited number of SSs does not allow
for developing a unified methodology for predicting metal radiation embrittlement.
Therefore, today several such methodologies are used in various regulatory docu-
ments (VVER-1000 2009; IAEA-TECDOC-1442 2005; PNAE G-7-002-86 1989;
MRKR CHR 2004; VERLIFE 2008). The issue of the use of certain methods is still
debatable, and now in Ukraine, there is still no unified state standard for assessing
the RPV strength and lifetime.

With the development of computer technology and calculation methods, the task
of evaluating the resistance to brittle fracture of the first-circuit NPP’s equipment
components can be solved with quite a high accuracy. However, the accuracy of the
obtained solution is affected by many factors that require their analysis. In modern
regulatory documents, the use of various approaches is allowed, which involve the
use of both engineeringmethods (Marie andChapuliot 2008;MR108.7-86 1980) and
finite element (FE) models (two and three dimensional) with a built-in crack to deter-
mine the SIF (Choi et al. 2019; González-Albuixech et al. 2016; Kharchenko et al.
2018; Kharchenko and Kondryakov 2007; Qian and Niffenegger 2013; VERLIFE
2008).

Recently, alongwith the classical FEmethod (FEM), other methods of calculation
have been actively developing. This is due to the shortcomings of FEM, which are
caused by the significant dependence of calculation results on the FEmesh density. In
particular, mixed FEM schemes are being developed (Kharchenko et al. 2018). Also,



15 State-of-the-Art Methods of Material’s Current State Assessment … 253

one of the promising methods is the extended finite element method (XFEM), which
makes it possible to obtain satisfactory results in calculating the resistance to brittle
fracture without modeling a built-in crack (Belytschko and Black 1999; González-
Albuixech et al. 2014; Mora et al. 2019). Using XFEM allows us to calculate the
resistance to brittle fracture for different shapes, sizes, and locations of cracks in
complex units, for example, the nozzle area, where generating a high-quality FE
mesh is difficult when modeling a pre-existing crack (Chapuliot 2016; Liu 2018). At
the same time, to obtain more accurate results, it is advisable to use the submodeling
technique (Kim 2005; Marenic et al. 2010), which has proven itself well in assessing
the strength of complex units of equipment elements.

This chapter considers several factors that can significantly influence the determi-
nation of RPV structural integrity and lifetime. A detailed analysis of the well-known
methods for estimatingRE and predicting the fracture toughness–temperature depen-
dences was carried out using the SS test results of weld metal of the representative
RPV with a high Ni content. Existing methods are compared, and their advantages
and disadvantages are shown. Also, the results of numerical modeling of the RPV
cylindrical part and the nozzle zone using classical and extended FE methods are
compared.

15.2 Methods of Radiation and Thermal Embrittlement
Assessment of NPP Reactor Pressure Vessel Materials

The use of different RE assessment methods can significantly affect the estima-
tion of the first-circuit NPP’s equipment components lifetime, particularly the RPV.
At the same time, there is currently no universal method. Their development and
improvement continue, especially to take into account new experimental data from
SS tests. Therefore, using the most conservative approach with enough justification
is advisable for such assessments.

The assessment of RPVmetal RE involves the construction of trend curves Tk(F)
based on the SS tests results. Next, the critical value T crit

k is determined based on the
known design fluence value. If the condition T crit

k = Tka is fulfilled, the RPV lifetime
can be extended. Different methods are used to construct trend curves, which differ
in processing SS tests experimental data (Charpy specimens).

Different methods of approximation are used to determine �TF according to the
SS test results. In this case, �TF is usually written in the following form:

�TF = AF ·
(
F

F0

)n

(15.1)

To define AF and n parameters, different methods of analysis are used:
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Fig. 15.1 Radiation embrittlement curves constructed by various methods of regression analysis

1. One-parameter regression method (regression parameter is only coefficient AF ,
n = 1/3). This method is used in the regulatory document PNAE G-7-002-86
(1989).

2. Two-parameter regression method (regression parameters are both AF and n
coefficients). This method is used in the regulatory document Verlife-2008
(VERLIFE 2008).

3. RD-2009 technique. The method for evaluating material properties in the radi-
ation and thermal embrittlement process, which is set out in the regulatory doc-
ument (VVER-1000 2009), allows estimating the shift of critical brittleness
temperature based both on the standard and side-grooved Charpy specimen test
results and constructing a theoretical curve based on empirical coefficients using
chemical composition data.

Figure 15.1 shows RE curves constructed by different methods for the weld metal
of one of the representative RPVs. As can be seen, the choice of the method of pro-
cessing experimental data and evaluating the metal RE affects the obtained results
significantly. Currently, there is no universal technique for a large scatter of experi-
mental data and their insufficient number, especially for high fluence values.
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15.3 Methods of Construction of Fracture
Toughness–Temperature Dependences and RPV
Lifetime Assessment

To estimate the residual RPV lifetime, a comparison is made between the calculated
SIF temperature curves, obtained from the results of calculations on the resistance
to brittle fracture of the RPV element with a crack, and the fracture toughness–
temperature dependences obtained from the results of the SS tests and constructed
for a given fluence level.

The limited amount of SSs and experimental data, especially at high fluence
values, does not make it possible to accurately predict the state of the metal for
overdesign service life. Therefore, today there are several methods of constructing
fracture toughness–temperature dependences.

Direct and indirect methods can be used to construct fracture toughness–
temperature dependences. With direct methods, fracture toughness tests are car-
ried out, and temperature dependences are determined by the single-temperature or
multi-temperature method. In this case, the fracture toughness characteristics can
be determined directly for the degraded material without data on its initial prop-
erties. Direct methods include the methods of Master Curve (MC) (Wallin 1999),
Basic Curve (BC) (MRKRCHR2004), andUnifiedCurve (UC) (VVER-1000 2009).
Indirect methods use the Charpy impact bending test data and a correlation formula
relating the critical brittleness temperature and the fracture toughness–temperature
dependences. In this case, it is necessary to know the initial critical brittleness tem-
perature Tk0, and SS tests are needed only to determine �T k0.

According to the MC method, the fracture toughness–temperature dependences
are described by (15.2) for CT-specimen with a thickness of B = 150 mm and a
probability of failure Pf = 5%, where T0 is the reference temperature, which is
determined according to ASTM E 1921-13a (2015)

K 5%
JC (T ) = 23.32 + 23.385 exp{[0.019 (T − T0)}. (15.2)

The BC method is a modification of the MC method and allows the use of test
results for both fracture toughness and impact strength to predict KJC(T ) curves
(MRKR CHR 2004). The dependence of KJC(T ) according to the BC method for
the reference thickness of the specimen B = 150 mm with the probability of failure
Pf = 5% is written as

KJc(0.05) = 23 + 48 exp{0.019 (T − Tk)}. (15.3)

The UC method was developed at the Prometheus Research and Development
Center based on the probabilistic “Prometheus model” for predicting fracture tough-
ness, using a new local brittle fracture criterion (VVER-1000 2009; Margolyn et al.
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Fig. 15.2 Fracture toughness–temperature dependences for the weld metal of one of the represen-
tative RPVs

2010). According to the UC method, the fracture toughness temperature of speci-
mens with a thickness of B = 25 mm at Pf = 50% of RPV steels at any degree of
embrittlement can be described by the dependence

K calc
JC (T ) = k

[
K shelf

JC − KminΩcalc

(
1 + tanh

(
T − δTtype − 130

105

))]
+ Kmin.

(15.4)
The parameter Ω can be determined based on the results of tests on fracture

toughness or impact strength (VVER-1000 2009).
Within the framework of the international project TAREG2.01/00 (2008), an anal-

ysis of all described methods was carried out. Figure 15.2 shows fracture toughness–
temperature dependences obtained by various methods for the weld metal of one of
the representative RPVs. As can be seen, the differences between fracture toughness–
temperature dependences are quite significant. It is primarily due to insufficient exper-
imental data, especially at highfluence values corresponding to the design ones. Since
there is currently no unified regulatory framework in Ukraine for assessing the RPV
strength and lifetime, it is necessary to analyze the SS test results using different
methods and justify their choice using the principle of conservatism of results.

Further, various methods of determining the SIF are considered, and the results
obtained with these methods are compared.
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15.4 Engineering Methods of the SIF Assessment

For any load conditions, the SIF for surface cracks can be calculated using engineer-
ing methods for determining the stress state of a solid without cracks (VERLIFE
2008). Two such methods are considered in this work.

According to the firstmethod (MR108.7-86 1980), the SIF is calculated according
to the formula

KI = σkYa
1/2, (15.5)

where Y is the shape factor, a is the crack length, and σk is the equivalent stresses.
The following equations are used for the surface crack (Fig. 15.3):

• at point A (deep point) Y = YA and σk = σk A, where YA is defined as follows:

YA = 2 − 0.82 a/c{
1 − [

0.89 − 0.57(a/c)1/2
]3

(a/s)1.5
}3.25 ; (15.6)

• at point B (point on the surface) Y = YB , σk = σkB and

YB = [
1.1 + 0.35(a/s)2

]
(a/c)1/2YA.

The equivalent stress σK required for calculating the SIF is determined by the
components of σA, σB and σC , which are normal to the crack plane at points A, B,
and C , respectively.

If the stresses do not change along the thickness of the RPV wall, then σk A =
σkB = σA = σB . If the stresses change linearly across the wall thickness, then

Fig. 15.3 Geometry of a surface crack (VERLIFE 2008)
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Fig. 15.4 Geometry of the surface (b) and undercladding (a) crack (VERLIFE 2008)

σK A = 0.61σA + 0.39σB +
{
0.11 a/c (15.7)

− 0.28 a/s
[
1 − (a/c)1/2

] }
(σA − σB),

σK B = 0.18 σA + 0.82 σB . (15.8)

If the stresses along the wall thickness change according to the parabolic law, then

σK A = 0.111 (3 σA + σB + 5 σC) + 0.4a/c
(
0.38σA − 0.17σB (15.9)

− 0.21 σC
) − 0.28a/s

[
1 − (a/c)1/2

]
(σA − σB) ,

σK B = 0.64 σB + 0.36 σC . (15.10)

The secondmethod (Marie andChapuliot 2008;VERLIFE2008)makes it possible
to estimate the SIF taking into account the cladding (Fig. 15.4). According to this
technique, the stress distribution along the thickness of the RPV wall is described by
a polynomial of the third or fourth degree (Fig. 15.5):

σ = σ0 + σ1
x

s + r
+ σ2

(
x

s + r

)2

+ σ3

(
x

s + r

)3

+ σ4

(
x

s + r

)4

. (15.11)

Fig. 15.5 Description of the stress distribution along the RPW wall thickness (VERLIFE 2008)
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Then the stresses in the cladding are added. They are approximated by the fol-
lowing linear law:

σ = σ0r + σr1
x

s + r
. (15.12)

Then the stress coefficients σ0, . . . , σ4, σ0r , and σ1r are calculated. After deter-
mining such coefficients, the SIF can be calculated using influence functions. The
values of such functions are given in tabular form (VERLIFE 2008) for different
values of crack sizes, cladding thickness, and the ratio of Young’s moduli of the
cladding and base metal. With the help of table values, the SIF values for the crack
deep point can be calculated:

KI =
(

σ0i0 + σ1i1
a + r

s + r
+ σ2i2

(
a + r

s + r

)2

+ σ3i3

(
a + r

s + r

)3

+ σ4i4

(
a + r

s + r

)4

+ σ0r i0r + σ1r i1r
a + r

s + r

)√
π (a + r), (15.13)

and for the point on the border of the base metal–cladding:

KI =
(

σ0i0 + σ1i1
a + r

s + r
+ σ2i2

(
a + r

s + r

)2

+ σ3i3

(
a + r

s + r

)3

+ σ4i4

(
a + r

s + r

)4)√
πa,

(15.14)

where a is the crack depth in the base metal and r is the cladding thickness.

15.5 Calculation of SIF of a Pre-Existing Crack

Most of the modern regulatory documents (IAEA-TECDOC-1442 2005; VERLIFE
2008) recommend calculating the SIF using FEM and a postulated defect of a given
size built into the model. This method requires using a mesh with sufficient density
around the crack tip, which leads to an increase in calculation time.However, itmakes
it possible to obtainmore accurate results and take into account elastic–plastic effects.

Regulatory documents recommend calculating semi-elliptical cracks with semi-
axis ratios a/c = 0.3 and 0.7 in the axial and circumferential directions. An example
of an FE mesh of RPV cylindrical part with built-in postulated semi-elliptical axial
crack, with a ratio of semi-axes a/c = 0.3 and a depth a = 17 mm, is shown in
Fig. 15.6a.

Numerical modeling of the RPV cylindrical part with cracks of different sizes
and orientations was carried out using the above-described SIF calculation methods.
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Fig. 15.6 Finite elementmodel (a) andmodel using theXFEMapproach (b) for theRPVcylindrical
part with pre-existing crack

Calculationswere performed for simplified 2Dmodels and three-dimensionalmodels
with a pre-existing crack in an elastic formulation with the material’s mechanical
properties according toPNAEG-7-002-86 (1989) for oneof the characteristic thermal
shock emergency regimes. Figure 15.7a shows the SIF–temperature dependences for
an axial semi-elliptical crack with a ratio of semi-axes a/c = 0.3. The curves are
obtained using two engineeringmethods and a numericalmethod for amodelwith the
crack in a two-dimensional formulation. It can be seen that the engineering methods
give similar results, while the numerical calculation for the pre-existing crack model
in 2D formulation gives overestimated results. Therefore, three-dimensional finite
element models are usually used to determine brittle fracture resistance. It can be
seen in Fig. 15.7b that using 3D models reduces the conservatism of the results.
Furthermore, the crack orientation affects the results. Figure 15.7c shows that an
axial crack, in this case, is more dangerous than a circumferential one with the same
ratio a/c = 0.3.

15.6 Application of the Extended Finite Element Method

The XFEM approach, developed based on FEM by T. Belychko and T. Black (1999),
is a numerical method for solving differential equations with discontinuous func-
tions. The XFEM approach was created to overcome difficulties in solving problems
with localized singularities. Solving these problems by the classical FEM is rela-
tively inefficient compared with XFEM. The main idea of XFEM is to use a special
approximation of the displacement field, which can model any irregular crack sur-
faces and the asymptotic stress field near the crack tip. At the same time, there is
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Fig. 15.7 SIF–temperature dependences: for an axial crack in a two-dimensional formulation,
calculated according to the first and second engineering methods and built-in crack method (a); for
built-in axial crack, using 2D and 3D models (b); for circumferential and axial cracks, calculated
according to the first engineering method in 3D formulation (c)

no need to change the finite element mesh and embed the crack in the calculation
model. It is desirable to have a sufficiently dense FE mesh around the crack tip to
obtain more accurate results.

The need to study brittle fracture resistance for different sizes, orientations, and
locations (undercladding, with penetration into the cladding) of cracks makes it
necessary to build separate FE meshes when using classical FEM (Choi et al. 2019)
or use approximate engineering and analytical methods (Li et al. 2020). Therefore,
theXFEMapproach is often used to study the brittle fracture resistance of first-circuit
NPP’s equipment components.

To verify the accuracy of XFEM, the RPV cylindrical part with an axial crack
with the ratio of semi-axes a/c = 0.3 was analyzed. The FE model for using XFEM
is shown in Fig. 15.6b. The obtained SIF–temperature dependences for the charac-
teristic thermal shock regime agree well for both methods (Fig. 15.8).

Many studies have been developed to evaluate the brittle fracture resistance of
cylindrical parts of the first-circuit NPP’s equipment components. Thesemethods are
implemented in some international regulatory documents. At the same time, evaluat-
ing brittle fracture resistance for complex units of the first-circuit NPP’s equipment
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Fig. 15.8 SIF–temperature dependences for an axial crack with a/c = 0.3 in the RPV cylindrical
part

components is a rather difficult task. First, it applies to the RPV nozzle zone, and
there is currently no universal approach for estimating the brittle fracture resistance
of such complex units. Developing FE models of the nozzle zone with pre-existing
cracks, especially considering the cladding, is highly complicated. Hence, the use of
XFEM helps solve such problems.

The “submodeling” technique can also be used to obtain more accurate results
and save calculation time. This technique consists in “cutting out” the necessary part
(constructive unit) from the global model with the addition to the cut planes of the
boundary conditions (displacements) obtained during the calculation of the global
model. In this case, the globalmodel can have a sufficiently sparsemesh, significantly
reducing the calculation time. At the same time, the cut part (submodel) can have
a denser mesh and be supplemented with other geometric elements and conditions.
The “submodeling” technique uses the Saint-Venant principle. If the valid boundary
conditions at the cut plane are replaced by equivalent boundary conditions for a
static formulation, then sufficiently accurate results can be obtained for complex
geometric units with stress concentrators. Recently, the “submodeling” technique
has been widely used in assessing the strength and durability of first-circuit NPP’s
equipment components (Kim 2005;Marenic et al. 2010), which significantly reduces
the calculation time and increases the accuracy of the obtained results.

In this chapter, calculations of the RPV nozzle zone were carried out using the
“submodeling” technique and XFEM. The calculations were performed for four
cracks with a depth of 29.4 mm (0.1 of the RPV wall thickness) with the ratio of
semi-axes a/c = 0.3 and 0.7 in the axial and circumferential directions. At the same
time, the axial cracks are located in the inlet nozzles in such away that the plane of the
crack is formed by the axis of the nozzle and the RPV axis, and the main axis of the
semi-ellipse forms an angle of 45◦ with the horizontal axis (the axis of the nozzle).
The circumferential cracks are turned 90◦ relative to the axial ones (Fig. 15.9).
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Fig. 15.9 The location of the circumferential (a) and axial (b) cracks in the RPV nozzle zone

Fig. 15.10 SIF–temperature dependences in the RPV nozzle zone for the characteristic regime of
thermal shock for an axial and circumferential crack with a/c = 0.3 (a) and a/c = 0.7 (b)

Figure 15.10 compares the SIF–temperature dependences for all cracks. The
dimensions being equal, axial cracks are more dangerous than circumferential ones.
At the same time, cracks with a ratio of semi-axes a/c = 0.3 (Fig. 15.10a) are more
sensitive to the location direction than cracks with a/c = 0.7 (Fig. 15.10b).

Thus, applying the extended finite element method makes it possible to carry out
an express analysis of the influence of the size, shape, and location direction of cracks
in the RPV nozzle zone and determine the most dangerous cracks in terms of brittle
fracture resistance.

Based on XFEM, an express technique of resistance to brittle fracture assessment
with the possibility of varying the shape, size, and location of the crack has been
developed. The effectiveness of this technique was illustrated by numerical modeling
of the RPV cylindrical and nozzle part for one of the dangerous regimes of thermal
shock.
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15.7 Conclusions

• Based on a detailed analysis of known methods of radiation embrittlement assess-
ment and prediction of fracture toughness–temperature dependences, as well as
their comparison, were carried out using the surveillance specimen’s test results
of the weld metal of a representative RPV with a high Ni content.

• According to various regression analysis methods, the RE trend curves for the
weld metal of one of the representative RPVs were constructed. In addition, it was
shown that the methods for experimental data procession and RPVmetal radiation
embrittlement evaluation significantly affect the results.

• A significant differencewas shown in fracture toughness temperature dependences
obtained using different methods for the weld metal of one of the characteristic
RPVs, primarily due to insufficient experimental data, especially at high fluence
values that correspond to the design values.

• With the use of various methods, the evaluation of brittle fracture resistance for
the RPV cylindrical part under the characteristic regime of thermal shock was
fulfilled.

• Based on the extended finite element method, an express technique of resistance to
brittle fracture assessment with the possibility of varying the shape, size, and loca-
tion of the crack has been developed, which will allow us to effectively determine
the crack’s critical size and themost dangerous place in the structural element. The
effectiveness of using this technique was illustrated by the example of numerical
modeling of the RPV cylindrical and nozzle part for one of the dangerous regimes
of thermal shock.

The research results presented in this chapter were used within the framework
of the international project TAREG 2.01/00, during the performance of the state
examination of works on justification of the strength and fracture resistance of the
RPVVVER-1000 reactors at the power units of the Zaporizhzhya, Rivne, and South-
Ukrainian NPPs, as well as in works on the lifetime extension and safe operation of
power units No. 1,2,3 of the VP “RAES”.
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Chapter 16
Research Methods on Strength and
Reliability of Composite Structural
Elements of Rocket and Space
Technology under Extreme
Thermomechanical Loading Conditions

Leonid Kravchuk, Kostiantyn Buiskykh, and Mykola Kucher

16.1 Introduction

The development ofmodern rocket and aerospace technology ismarked by the practi-
cal ability to implement operational processes with extreme thermodynamic parame-
ters with an appropriate level of thematerial base, capable of ensuring high reliability
and performance of the structure under challenging conditions of thermomechani-
cal loading and corrosion–erosion effects of high-speed gas flows. The effectiveness
of this technique is primarily associated with the development of new classes of
materials, taking into account their specifics in creating a structure concerning actual
operating conditions.

Taking into account the high requirements for safe operation with simultaneous
minimization of weight indicators of such objects, it is of fundamental importance
to have correct information on the physical and mechanical characteristics of such
materials in the operating temperature and load ranges, as well as the degree of
validity of the criteria for assessing the performance of structural elements, taking
into account the specifics of operational and technological factors, to quantitatively
determine the possibility of establishing the terms of guaranteed safe operation.
The availability of such information about the behavior of materials is crucial at
all stages of the design and production of rocket and space technology structures,
forecasting their functionality and reliability for the entire period of operation. To
solve these issues promptly, it is necessary to develop appropriate methods that allow
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us to obtain data on structural elements’ strength and bearing capacity, assess the
effect of technological and structural factors, and study the kinetics of damage under
simulated conditions.

The analysis of the specifics of the class of composite materials, technologies
for their production, and further manufacturing of structural elements indicate the
originality of approaches, methodology, and algorithms for solving these problems.
At the same time, it is fundamental to achieve the highest functional and economic
efficiency of the created products of new technology, which is possible only as a
result of comprehensive research and scientific support of design developments in
the process of bringing them to operational status. It was for the development of this
promising area of mechanics of materials and structural strength that the Institute of
Problems of Strength of the National Academy of Sciences of Ukraine (IPS NASU)
was established in 1966; in 1988, it was named after G.S. Pisarenko.

Regarding fundamental research and solving a wide range of applied problems
in various engineering fields, the IPS NASU has developed original methods and an
appropriate experimental base for research in the field of extreme temperatures and
loads. A specific feature of the empirical base of the IPSNASU is the availability of a
complex of unique test benches, which allows implementation of a complete closed
cycle of research, which provides consistent scientific support of all stages of creating
structures for operation in extreme conditions according to the criteria of strength
and reliability: development of new original material with the corresponding study
of its properties in a wide range of temperatures from cryogenic ones to 3000 ◦C
and stresses up to 200 MPa, optimal design of products with their testing. It should
be noted that the main ideas and their practical implementation primarily concerned
the fields of technology, where Ukraine did not occupy the last place in the world
community. Taking into account that real progress, in whatever field it may be,
is always based on new materials and the latest technologies that can ensure the
operation of the structure in increasingly harsh operating conditions, the relevant
methodological and experimental base of the institute was modified and adapted
to current requirements. Examples of such developments briefly described below
usually have no analogs.

16.2 Methods of Studying the Behavior and Properties
of Carbon–Carbon Composite Materials

The class of composite materials is distinguished by the peculiarity of having spe-
cific thermomechanical characteristics, which none of the elements of the structure
separately does not manifest, as well as the vast possibilities of forming specific
compositions with programmable effects at the structural level. Among them, a spe-
cial place is occupied by carbon–carbon composite materials (CCCMs), both in their
properties and their application. First is their ability to maintain high strength at
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Fig. 16.1 Scheme of measuring the deformation of the working part of the specimen in tensile (a)
and compression (b) tests

temperatures up to 3000 ◦C with a significant dependence on the heating rate. At the
same time, high strength is well combined with favorable thermophysical properties.

Among the developed original experimental test facilities and methods for study-
ing the strength of composite materials (Pisarenko 1980), the most original is a mul-
tifunctional complex for studying carbon–carbon composite materials (Dzyuba et al.
2018; Dzyuba and Oksiyuk 2005). Created based on the 1958U10-1 test bench, the
complex is equipped with original modern systems of mechanical loading, heating
of specimens, creation of a gas environment in the test chamber, and an information-
measuring system with the means of experimental control for testing in automatic
mode. Using the capabilities of these systems allows the tensile, compression, tor-
sion, bending, shear, short-term creep, relaxation, and low-cycle fatigue of metals
and structural polymers to be carried out over a wide range of loads and strain rates.
It is possible to work out almost any independent program for loading and heating,
which allows reproduction close to the operating conditions of the material.

For example, the following methodological details regarding high-temperature
tensile and compression tests illustrate the possibility of increasing the results’ relia-
bility, particularly the proposed original specimens and methods of measuring defor-
mations (Fig. 16.1), for which five patents have been obtained. During tension (Fig.
16.1a), the movement of the working part of the specimen (1) is determined by the
mutual movement of its protrusions (2), on which four pairs of levers (4) with pris-
matic tips (3) made of heat-resistant ceramics were installed. The other ends of the
levers, placed in the cooled compartment of the test chamber, are connected in pairs
by elastic brackets (5) with glued strain gauges.

At each moment, the computer program determines the shape of the protrusion
lines into which the prisms rest and calculates the displacement of the point on the
axis of symmetry of the specimen.

During compression (Fig. 16.1b), the movement of the working part of the speci-
men (1) is tracked by thin rods (2) made of the specimen material, installed in blind
conical holes drilled from the ends of the specimen along its axis to the boundaries of
the working part. The opposite ends of the rods rest against the bottom of the spring-
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Fig. 16.2 Scheme of implementing themethod of heating specimens in tensile (a) and compression
(b) tests by passing an electric current

loaded plungers (4), rigidly connected to the rockers (3). The mutual movement of
the latter through levers (5) is transformed into the deformation of strain gauges (6).
Such techniques made it possible to measure the displacement only within the work-
ing part of the specimen, which provides a highly accurate study of the deformation
characteristics, both thermal during heating and mechanical, from the action of the
load after temperature stabilization.

The installationuses heating the specimenbypassing an electric current (Fig. 16.2).
A uniform temperature field along the length of theworking part of the specimen is

provided by additional heating of its edges (V2) and longitudinal heating (V1). Con-
trol over the uniformity of heating is carried out using thermocouples installed along
the working part of the specimen or by scanning with a pyrometer “INFRATHERM
IGA-100”.

An information andmeasuring system provides the control of tests under mechan-
ical and/or thermal loading and determination of their respective strength parameters
and deformed state. TDF (Drozdov et al. 2016) was developed based on the PMX
measuring system of the well-known company HBM (Germany). Adapted to this
test complex (Drozdov et al. 2016), the 16-channel PMX system fulfills the condi-
tions for the implementation of multichannel measurement of deformations with the
connection of strain gauge, inductive and other transducers, as well as load values
(forces, pressures),

The information and measuring system is supplemented with a temperature mea-
surement unit created based on a programmable indicator of technological parame-
ters Mikra I3 (Ukraine), with the ability to connect various sensors, particularly the
pyrometer “INFRATHERM IGA-100”.

The test complex software provides for data visualization in real time, both in
digital and graphical form, accumulation, and storage of experimental data on a
personal computer.
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Fig. 16.3 Temperature effect on the type of stress–strain diagram of CCCM in tension (a) and
compression (b)

Since the creation of the complex and its further modification, a large volume
of tests of materials (and structures) has been performed on the tasks of rocket and
aerospace technology developers.

As an example, the results of studies of the thermomechanical characteristics of
one of the carbon-carbon compositematerials at temperatures of 20–3000 ◦C (heating
rate of 1000 ◦C/s) in tension and compression in an inert environment (argon) are
shown in Fig. 16.3, indicating specific properties of the studied compositions of the
CCCM.

The results of tensile tests (Fig. 16.3a) indicate that in the range of 20–1000 ◦C, the
strength characteristics of the CCCM change insignificantly. In the range of 1000–
2300 ◦C, material hardening is observed, and in comparison with room temperature,
the deformation at fracture increases by 6–8 times. When the test temperature is
increased to 2500–3000 ◦C, the value of the fracture stress decreaseswith a significant
rise in deformability.

Analysis of the results of compression tests (Fig. 16.3b) shows that the general
trend of the temperature effect on the type of stress-strain diagram has a character
similar to tensile. At temperatures above 2700 ◦C, there is a change in the form of
fracture of the specimen, which is associated with a loss of stability.

When solving the problems of the high-temperature strength of structural ele-
ments, it is necessary to consider the combined effect of different natural mechani-
cal, thermal, physical, and chemical factors. Each of them contributes to the overall
damage of the material. Indirectly, this is reflected in the change in the deformation
diagram.
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16.3 Analytical and Experimental Methods for Assessing
the Effect of Ablation Processes on the Characteristics
of Composite Materials

At high temperatures, physical and mechanical destructive processes occur in the
matrices andfibers of polymer compositematerials,which proceed at different speeds
and determine the internal mechanisms of ablation—a self-regulating process of heat
and mass transfer, which due to chemical reactions, leads to irreversible changes in
the material in combination with heat absorption and removal of part of the mass
from the surface of the solid, creating a heat-shielding layer—a barrier to the action
of the incoming flow during flights in the dense layers of the Earth’s atmosphere.
Ablative materials can absorb a significant amount of thermal energy. Therefore,
they have been used and improved for more than 50 years for the thermal protection
of structural elements of rocket technology, especially disposable components.

Depending on the conditions under which these processes occur, thermal and
thermo-oxidative degradations of polymers are distinguished. Oxidation of polymers
bymolecular oxygen is one of themost commonchemical reactions and is accelerated
by chemical reagents and various physical factors, such as thermal effects. To a large
extent, this applies to carbon fiber composites, for which there are steady trends
toward their use in various industries.

The main advantages of carbon plastics are high stiffness and specific strength
characteristics of elasticity, resistance to aggressive environments, etc. The reasons
that limit their application in practice include the lack of reliable experimental meth-
ods for determining the thermomechanical characteristics of reinforced structures,
the difficulties of mathematical modeling of deformation processes, and strength
assessment of layered composite structures, in particular, taking into account degra-
dation processes.

For example, the calculations of elasticity characteristics and strength estimation
of a unidirectional layered composite based on carbon tape are given in Kucher and
Samusenko (2018), Kucher and Samusenko (2017). Such composites belong to the
class of transversally isotropic materials. Symmetric laying patterns relative to their
median surface are reduced to orthotropic materials.

To predict the thermomechanical behavior of such materials, the relations of the
mechanics of multiphase media can be used (Dimitrienko 2016; Grinfeld 1990).

Model of ablative composite material. A unidirectional composite at room tem-
perature is believed to have two phases: the polymer phase of the matrix and the
reinforcing fibers. At high temperatures, ablation processes occur in the polymer
matrix according to the pyrolysis mechanism, and two new phases appear, namely
pyrolytic and gas. The first is solid pyrolysis products (coke), and the second is gas
products that fill the pores in the composite. Reinforcing fibers are also affected by
ablation. The initial phase of the fiber will be called the amorphous phase. At high
temperatures, another phase, called “crystalline”, appears in the reinforcement.

When heated, the initial and new phases of the matrix and fibers interact with each
other, resulting in the composite transitioning into a new phase state. The adopted
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structure formation scheme is based on the hypothesis that all phases exist simulta-
neously at any given time in each element of the composite volume. It is believed
that heating changes only the ratio of the volume phases of the composite.

The solving system of thermomechanics equations is derived based on the hypoth-
esis of the regularity of their internal structure and the idea of asymptotic expan-
sion for partial differential equations with rapidly oscillating coefficients. It consists
of equations that describe the change in the mass of fibers and polymer matrix
during deformation, equations of filtration of the gas phase in the pores, relations
that describe heat and mass transfer, equilibrium equations, and Cauchy’s relation
between the tensors of averaged deformation and averaged displacement. In addition,
it is necessary to add initial and boundary conditions.

Note that the problems of heat and mass transfer and thermal conductivity are
coupled and cannot be solved separately. At the same time, the problem of heat and
mass transfer can be solved independently from the problem of deformation since
mechanical stresses do not affect the parameters of internal heat and mass transfer.

The considered model and the calculated dependences are based on the follow-
ing hypotheses. Based on the continuum hypothesis, it is assumed that the layered
composite is a homogeneous orthotropic material. The unreinforced epoxy matrix
and carbon fiber bundle are supposed to be isotropic linearly elastic materials.

Under other conditions and assumptions given in Kucher and Samusenko (2018),
Kucher and Samusenko (2017), the calculation dependencies and examples of
computational–experimental studies were obtained: changes in the specific density
and elastic characteristics of the epoxy matrix and carbon fibers at high-temperature
heating.

Thus, the equation describing the change in the density of the ablative matrix
during heating is obtained:

∂ρm
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= − J 0
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The following expression describes the solution of Eq. (16.1):
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It follows from (16.2) that the density of the ablating matrix depends not only
on the temperature θ but also on the rate of its change. Three parameters determine
the change in the relative density of the matrix during heating: activation energy
Eam , gasification coefficient Γm , and the factor before the exponent J 0

mGm/ρb. The
values of these parameters depend on the environment in which the heating takes
place (inert or oxidizing). In an inert environment, the process of thermal destruction
occurs, and in the case of an oxidizing environment, the process of OD occurs. The
constants mentioned above for different polymeric matrices are given in Dimitrienko
(2016), Lebedev (1963).
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Fig. 16.4 Change in the relative density of the epoxy matrix (a) and carbon fiber bundle (b) in the
process of thermal oxidative degradation: 1—θ0 = 0.03 K/s, 2—θ0 = 0.1 K/s, 3—θ0 = 0.5 K/s,
4—θ0 = 1.0 K/s, 5—θ0 = 2.0. Solid lines are calculated using (16.2), and dots correspond to
experimental results

Figure 16.4a shows the calculated dependences that determine the change in the
density of the epoxy matrix at different heating rates in air (the process of thermal
oxidative degradation). Calculations were performed for the following values of
parameters: ϕ0

g = 0.06, ρb = 1200 kg/m−3, ρp = 2000 kg/m−3, Eam/R = 7500 K,
Γm = 0.97, J 0

m = 3.6 · 10−5 kg/(m3 s).
As shown in Fig. 16.4, there is a good agreement between the calculated and

experimental results for the unreinforced epoxy matrix and the carbon fiber bun-
dle. This correspondence also indicates the correct choice of the thermophysical
characteristics of the epoxy matrix.

Even though the ablation of carbon fibers occurs at higher temperatures than for
the epoxy matrix, it is necessary to consider both factors for polymer composites.

The change in elastic characteristics, in particular, the elastic modulus of an
isotropic matrix Em and a bundle of isotropic fibers E f under high-temperature
heating, is considered from the standpoint of the mechanics of multiphase media
depending on the temperature and heating rate (Kucher and Samusenko 2017).

As a result of averaging the cubic cell of periodicity, we obtain

Em = E0
b · ãm, E f = E0

f · ã f , (16.3)

where E0
m is the initial elastic modulus of the polymer phase, ãm is a function describ-

ing the change in the elastic characteristics of the ablative matrix, E0
f is the value of

the elastic modulus of the fibers at t = 0, ã f is a function relating the change in the
elastic characteristics of the fiber bundle during heating.

At the same time,
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Fig. 16.5 Distributions of
the functions describing the
change in Young’s moduli of
the epoxy matrix (16.1),
carbon fiber bundle (16.2),
and carbon fiber (16.3) at the
heating rate θ0 = 0.1 K/s
(points correspond to the
experimental results)

ãm =
[

Sp
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a0S2p + mp(1 − S2p)
+ 1 − Sp

m p

]−1

,

Sb = ϕ
1/3
g , Sp = (1 − ϕb)

1/3 , mp = Ep/E0
b , a0 = exp

{ − αm	θ̂
}
,

	θ̂ = 	θ − P
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(16.4)
The constants αm , P , and Q are determined based on the best fit between the

calculated and experimental data describing the change in the elastic characteristics
of the epoxy matrix at constant heating rates. As noted in Kucher and Samusenko
(2017), the parameters P and Q can be considered the same for all ablative materials.
In this case, we take P = 1.56 s−1 and Q = 2.5 · 10−4 s−1 (Kucher and Samusenko
2017). Our calculations show that we can take αm = 4.395 · 10−6 K for the epoxy
matrix.

Note that at low temperatures, when the ablation process of the epoxy matrix
has not yet begun, the change in the function am is determined by the value a0,
which describes the change in the elastic characteristics of the polymer phase. Then,
Sp = const and Sb = 1.

Note that the ablated epoxy matrix and its solid phases are isotropic materials,
which follows from the accepted hypothesis of the central symmetry of the pore
shape.

Figure 16.5 shows the dependences of ãm and â f on the temperature θ at a fixed
strain rate θ̇0 = 0.1 K/s. Note that the temperature is listed for convenience and
is given in ◦C. Calculations are performed at the following values of parameters
ϕ0

f = 0.5, α f = 2.93 · 10−8 K and mc = 1.3.
A good agreement between the calculated and experimental data for the composite

indirectly confirms the correctness of the choice of the function ã f in the calculation
of the effective characteristics of the ablating unidirectional composite at a constant
heating rate. The effective characteristics of elastic moduli E1, E2, Poisson’s ratios
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Fig. 16.6 The effective
modulus of elasticity E1 of a
unidirectional composite at a
fixed strain rate as a function
of temperature (solid line
corresponds to calculation,
dots—our experiment)

ν12, ν23 and inplane shear moduliG12 are determined in the first approximation based
on the characteristics of the ablating matrix and fiber:

E1 = E0
f ã2ϕ f , E2 = E0

b ã5, ν12 = νm, ν21 = νmã4, G12 = G0
bã3, (16.5)

the modulus in the plane of transverse isotropy, G23 = E2/(2(1 + ν12)).
The functions ã2, ã3, ã4, and ã5 depend on the structural parameters ϕ f , Φ, the

ratios of elastic characteristics of the phases E0
f /E

0
b , ν f /νm and the functions ã f ,

ãm that describe the change in elastic moduli of the unreinforced matrix and fiber
depending on temperature.

Figure 16.6 shows the results of calculating the elasticity characteristics of the
composite E1. It is observed that there is a reasonably good fit for the elastic modulus
E1 as a function of temperature for quasistatic heating conditions. When calculating
other elastic characteristics, we can only discuss a qualitative description in their
definition. When describing the dependence of the shear modulus on temperature, it
is necessary to consider that G12 is not equal to G21. For accuracy, it is necessary to
use their average value.

The possibility of estimating the ultimate stresses of a transversely isotropic com-
posite at elevated temperatures is based on themechanics ofmultiphasemedia, taking
into account the thermomechanical characteristics of the ablating polymermatrix and
carbon fiber bundle (Kucher and Samusenko 2018), provided that the mass transfer
problem can be solved separately from the coupled problem of thermomechanics
of ablating materials since mechanical stresses do not affect its parameters. It is
established that as a result of the calculation of the ultimate stresses based on the
hypothesis of complete tightness of surfaces between phases or under the assumption
of low pressure in the pores, the lower and upper limits of the change in the strength
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Fig. 16.7 Distribution of the
tensile strength of epoxy
carbon fiber reinforced
plastic in transverse tension
(solid lines correspond to
calculations,
dots—experimental results)

Fig. 16.8 Shear strength
distribution of epoxy carbon
fiber reinforced plastic along
the fibers (solid lines
correspond to calculations,
dots—experimental results)

of the composite under different types of stress states are determined. The results
shown in Figs. 16.7 and 16.8 are obtained for carbon plastics with varying angles of
fiber orientation (Φ) under heating in air at a speed of 0.1 K/s. They indicate that the
results of calculations of the strength of a unidirectional composite under tension in
the transverse direction and under shear along and across the fibers correlate well
with the experimental data obtained by the authors Danil’chuk et al. (2015).

In summary, the obtained results confirmed the effectiveness of the developed
methods for predicting the strength characteristics of ablating polymeric unidirec-
tional carbon plastics at elevated temperatures in thermal oxidative degradation under
different stress states.
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16.4 Bench Tests of Composite Structural Elements

The most unique and valuable components of the experimental bench complex are
gas-dynamic high-temperature benches, whichwere created in the period 1955–1960
as an adequate experimental base for the operative solution of questions concerning
new special heat-resistant alloys, refractory metal and polymer composite materials,
structural ceramics, etc., optimization of the composition and technologies of their
production and subsequent manufacture of structural elements from them at different
stages of development and implementation of new technical solutions in the field of
engineering. The effectiveness of this technique is determined, first, by the practical
ability to implement thermal processes with extreme thermodynamic parameters
and an appropriate level of scientific base, which allows for ensuring high reliability
and performance of the structure under challenging conditions of thermomechanical
loading, high temperatures, corrosion and erosion effects of high-speed gas flows.

Gas-dynamic stands are a complex of systems and units for creating and forming
the flow of gases—products of combustion of the air-fuel mixture, program regu-
lation of its parameters, and control of the state of the objects of study during the
tests. Several variants of installations based on standard power equipment were cre-
ated depending on the level of thermal and mechanical loads and peculiarities of the
solved scientific and applied problems. The equipment of gas-dynamic stands with
different variants of systems makes it possible to carry out modes of thermal loading
in the temperature range of 300–2500 ◦C of arbitrary duration with varying rates of
temperature change and gas flow rate, including trans- and supersonic ranges, simu-
lating the state of natural structural elements in almost any mode of their operation.
At certain stages of equipment development, the stands were modified and equipped
with additional systems, and the necessary methodological base was developed. In
recent years, a significant modernization of stand systems has been carried out. It
mainly concerns the systems of control, registration, and processing of received
information, for which the modern element base and computer capabilities are used.
Among the most significant stages of development of this experimental base and the
conducted studies, it is expedient to note the following.

From the early 1960s to the late 1980s, the fundamental problem solved on gas-
dynamic stands was the study of composite materials to create optimal designs for
the thermal protection of spacecraft and rocket engine elements. At different stages
of development, urgent problems concerning the thermal protection structures of
spacecraft and rocket engines were solved. Several other problems were also solved,
including choosing optimal classes and combinations of materials and methods of
designing heat shielding packages and determining the dimensions of heat shielding
structures for different heat-loaded elements of spacecraft surfaces. The conditions of
bench tests were modeled by the intensity, duration, and frequency of thermal effects
of actual spacecraft trajectories in the dense layers of the atmosphere (Tretyachenko
1979).

Analysis of loading conditions and patterns of damage to structural elements of
rocket and space technology allows us to identify three main groups of factors that
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determine the process of thermal damage to structures. Common to them is that all
of them are, to some extent, determined by the thermal state of the object of study
and the kinetics of this state in space–time coordinates.

The absolute values of the material temperatures determine the first group of fac-
tors. They define actual values of physical andmechanical characteristics ofmaterials
and also values of thermal stresses of the second kind in structurally heterogeneous
materials.

Non-stationary processes of temperature change in time determine the second
group of factors. It reflects the specifics of the effect of thermal load on an element
of complex geometric shape, determining its thermal stress state and the kinetics of
this state in the thermal cycle and from cycle to cycle. The main elements of this
group are amplitudes of change and absolute values of extreme thermal stresses in
the cycle, the law of change of stresses in time, and gradients of thermal stresses.

The third group of factors reflects the impact on the object of study of the external
environment. They are responsible for the deterioration of the mechanical properties
of the surface material, changes in the chemical composition of the material, and, as
a consequence, in its physical properties, the emergence of surface thermal stresses
associated with the anisotropy of the properties of the basic, and changes near the
surface of the material.

Themethodological basis of research on gas-dynamic stands is a set of specialized
methods for modeling the thermal stress states of the material and the intensity of the
external effect of the environment, which, when implemented, ensure the equivalence
of the processes of material damage and the boundary state of the structural element
under study in model and full-scale conditions (Tretyachenko 1979).

16.4.1 Experimental and Calculation Methods of Ablative
Thermal Protection Research

The model of the behavior of the thermal protective coating and the mechanisms of
its destruction in high-temperature and high-speed gas flow are determined by the
conditions of actual operation. The most effective method of thermal protection of
disposable structural elements of rocket technology is ablative sacrificial coatings
that are destroyed. Thermal protection of structures with the help of a sacrificial layer
is more reliable and efficient in terms of weight than othermethods. At the same time,
practically no restrictions are imposed on the maximum heat flux. All this leads to
the fact that destroyed ablative thermal protective coatings have no competition at
high thermal loads and limited service life. That is why the most significant progress
in the field of creation and functioning of rocket and space technology objects has
been achieved in the development of disposable (sacrificial) heat-protective coatings,
for which ablation is the primary and necessary mechanism of material destruction
under the thermal action of an external heating source (Polezhaev and Frolov 2005).
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Fig. 16.9 Scheme of the manipulator: 1—hydraulic cylinder, 2—water-cooled casing, 3—graphite
chamber, 4—the model under study, 5—oxygen supply, 6—fuel supply, 7—air supply, 8—
combustion chamber

When developing the methodology for modeling the conditions of thermal pro-
tection tests onmodels of rocket and space technology in a high-temperature gas flow
on a gas-dynamic stand, some approaches are used to provide modeling of external
effects on the structural element and the equivalence of material damage processes
in model and full-scale conditions. The fundamental basis of these approaches is
the classical theories of similarity and dimensionality, the main results of which
are transformed and adapted to studying the strengths of materials and damage to
structural elements under aerodynamic heating to extremely high temperatures.

As the essential equipment, the test complex of gas-dynamic stands was used, the
principal design features of which and methodological solutions for testing thermal
protection are presented in the scheme of Fig. 16.9. A specific feature of the bench
for such tests is a three-stage combustion chamber designed to create a gas flow
of a given temperature, speed, and chemical composition by varying the ratio of
components of the kerosene–air–oxygen mixture.

The heated gas flow generator consists of an air supply system (7), fuel storage,
supply, and flow control system (6), and an oxygen supply system (5). A specific
feature of the test bench for such tests is a three-stage combustion chamber designed
to create a gas flow of a given temperature, velocity, and chemical composition by
varying the ratio of components of the fuel–air mixture. The first stage is a standard
uncooled combustion chamber. The secondwater-cooled stage is designed to support
the combustion process and the formation of the mixture with an additional supply
of fuel (6) and oxygen (5). In the third stage—a variable test chamber—an uncooled
graphite subsonic nozzle is designed to form a gas flow of specified parameters.
The profiling of the graphite chamber can be carried out along the model’s contour,
providing programming of the flow velocity in different sections of the channel,
which allows us to simulate the effect of convective and radiation heat flows. The
radiation component is modeled by the temperature level of the preheated walls of
the graphite nozzle, which has a high emissivity (ε = 0.9 . . . 1).

Since the gas flow along the axis of the chamber has a different temperature, the
model of the heat shielding coating (Fig. 16.10) is moved to the position in which
the specified thermal test conditions are achieved. Simultaneous movement along
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Fig. 16.10 Models of heat protective coating during tests and before the start-up of the bench

Fig. 16.11 Mode of thermal loading of structural elements with a thermal protective coating

the axis of the chamber and adjustment of the fuel components during the test cycle
provides programmed heating of the surface.

For example, we consider the thermal load mode of the model with the TZP
presented in Fig. 16.11. For the correct reproduction of the specified heating mode,
computational and experimental studies were carried out, which consisted of ther-
mometry of the gas flow in the modes of both a gradual increase in temperature on
the simulator of the model with a heat-protective coating and the introduction of the
latter into the gas flow with the maximum peak temperature. These data served as
basic information in solving the problem of one-sided heating of the wall of the heat
shielding coating with the corresponding thermophysical characteristics by the gas
flow.

In Figs. 16.12 and 16.13, two variants of the modes of change in the temperature
of the gas flow and the coating in the first half-cycle of heating after the introduction
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Fig. 16.12 Calculated temperature distribution over the thickness of the thermal protective coating
after entering the model into the flow of extreme parameters

Fig. 16.13 Calculated temperature distribution over the coating thickness after entering the model
into the flow with the subsequent programmatic change of its parameters
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of the model imitator under the nozzle of the test chamber are shown. The analysis of
the results shows that the mode of thermal loading of the thermal protective coating
can be realized by adjusting the rate of change of the gas flow temperature directly
during the experiment according to the thermometric data.

16.4.2 Methods of Simulation of Aerodynamic Heating
Conditions of Reusable Spacecraft Structural
Elements

An essential problem in developing and operating reusable rocket and space technol-
ogy products is ensuring their integrity and safe return to Earth. For other types of
descending space objects, solving problems associated with the aerodynamic heating
of individual structural elements and aerospace vehicles remains fundamental. At the
same time, the two directions differ in the approaches to the design of reusable space
system elements.

The first direction solves the problem of ensuring the reliable functioning of
active and passive external flight control systems; first of all, the most thermally
stressed rotating elements of the airframe, which are structures with large angles
of attack, such as the toe and the leading edge of the fuselage, wing toe, elevator
rudder, and air intake edges (Gusarova 2017). At significant thermal force loads,
determined by the vehicle’s speed in the atmosphere, their surface temperature can
reach 1100–1200 ◦C.

The main task of the second direction is to maintain the permissible temperature
level of the spacecraft power shell at all parts of the flight trajectory, especially during
re-entry into the Earth’s atmosphere. For reusable spacecraft, the concept of ablative
heat protection is unacceptable, providing adequate heat protection for disposable
spacecraft parts. Therefore, one of the tasks in creating reusable space stations is to
develop a reliable, reusable heat shieldwith acceptable dimensions,mass parameters,
and cost.

Regarding the wide range of these tasks, the IPS NASU’s developments are con-
sidered on the example of bench test methods for solving a set of tasks related to
the assessment of the performance of the air intake edges of the direct-flow air-jet
engine of the airframe of the reusable transport space station and the multilayer
heat shielding structure with an external metal three-layer panel, implemented on
a complex of gas-dynamic stands. The methodological basis of bench studies is a
set of specialized methods for modeling the thermal stress states of the material and
the intensity of the external effect of the environment, which, when implemented,
ensure the equivalence of the processes of material damage and the limit state of the
structural element under study in model and full-scale conditions.
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Fig. 16.14 Model of the air intake edge

Fig. 16.15 Test objects on the stand: model (a) and test chamber of the gas-dynamic test bench (b)

16.4.2.1 Methods of Investigation of Air Intake Edges

The edges of the air intake have the shape of a wedge-shaped prism (Fig. 16.14),
which allows solving this problem quite effectively using the approaches described in
regulatory documents (DSTU 2367-94 1994). The correctness of the results obtained
during bench tests according to these standards is ensured by a reasonable choice
of the model’s geometry (shape, dimensions) and the mode of changing the param-
eters of the gas flow. The proposed methods specify the principles of choosing the
geometric dimensions of the model. Under the given conditions of external effect,
the mode of thermal loading (temperature, heating rate, and temperature gradient at
the specimen edge) is regulated by choice of the deflection angle ϕ and the radius of
curvature of the specimen edge R. The level of thermal stresses, ceteris paribus, is
determined by the size of the specimen chord L .

An experimental study of the models of air intake edges in a high-temperature gas
flow was carried out at one of the installations of the gas-dynamic stand using test
chambers (Fig. 16.15). Methodologically, the test program is assigned based on the
results of computational–experimental modeling on the stand of natural heat flows
(Troshchenko 2005).

The practical implementation of this condition is reduced to the experimental
determination of the law of change in the temperature of the gas flow, which ensures
the identity of the kinetics of the temperature state of the edges of the models in time
on the bench and the specified programs (Fig. 16.3), estimated by the flight conditions
by calculation. When choosing the geometry of the model for bench tests following
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Fig. 16.16 Mode of thermal loading of edge models

the previously developed methods for this task, it is advisable to keep the shape and
dimensions (R and ϕ) of the edge zone identical (Fig. 16.14). The procedure for the
rational choice of the size L , which determines the bearing capacity of the structure
according to the strength criteria, involves several calculation estimates (DSTU2367-
94 1994), taking into account the actual physical and mechanical properties of the
materials under study and the parameters of the gas flow.

To determine the mode of thermal loading of the air intake edge models, as well
as to determine the boundary conditions of the first kind, which are necessary for
calculating the thermal stress state of the models, thermometry of wedge-shaped
specimens was carried out. For thermometry, it is necessary to make thermocouple-
reinforced witness specimens (Fig. 16.15c) from an alloy similar in chemical com-
position and thermophysical characteristics to the material from which the air intake
edges were supposed to be made. The number of thermocouples is chosen in such
a way as to obtain sufficiently complete information about the surface temperature
without significantly distorting the temperature fields due to thinning of the speci-
men body during the milling of the grooves and without changing the aerodynamic
characteristics of the profile. Thermocouples were placed, taking into account the
inhomogeneity of the temperature distribution on the side face of the specimen. In
the area of maximum temperature gradients, thermocouples were installed with a
minimum distance, considering the adopted technology’s capabilities.

As a result of such experiments, the task of obtaining initial data for controlling
the parameters of the gas-dynamic bench, which ensure the implementation of the
mode of change in the temperature of the gas flow and the thermal state of the edge,
was solved (Fig. 16.16). The information obtained about the kinetics of the thermal
state of thewitness specimen (specimenwith thermocouples) in the cycle during tests
under the selected mode of thermal load is the basis for the justification and optimal
choice of the chord size L of the specimen, which has certain features, for example,
when solving material science problems regarding the selection of material and the
assessment of the bearing capacity of a structure made of a particular material. This
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information is also essential for quantitative analysis of bench test results in general.
The significance of such procedures is illustrated by the results obtained during the
cycle of bench tests of specimen models of air intake edges in the mode considered
in Fig. 16.16.

The problem of determining the thermal stress-strain state of the studied spec-
imens was solved in a spatial formulation using the SPACE application package
(Software 2002). Considering the spatial and temporal heterogeneity of thermal pro-
cesses, the thermal state of the material of the wedge-shaped specimen was deter-
mined by solving the nonlinear spatial problem of unsteady heat conduction under
mixed boundary conditions of heat transfer.

The need to calculatemodels of differentmaterials and different sizes to determine
the effect of coatings, material degradation, including ablation and its damage on the
tubular fluidized bed based on the results of tests of specimens of the same size
determines the practicality of applying boundary conditions of the third kind in the
calculations of unsteady thermal conductivity problems. The latter were determined
by solving the direct and inverse thermal conductivity problems using numerical
modeling methods (Kravchuk et al. 2018).

When solving the inverse problem, the initial conditions are the boundary con-
ditions of the first kind, which are determined by the corresponding thermometry.
To determine the boundary conditions of the third kind by solving the gas-dynamic
(direct) problem, the experiment records information about the change in time of
the gas flow temperature and pressure at the inlet to the test chamber of a specific
geometry, on which the thermophysical properties of the gas and its gas-dynamic
characteristics depend (Kravchuk et al. 2018). The conformity of the obtained results
is checked by comparing the calculated distribution of the specimen surface temper-
ature with the experimental data (thermometry). Figure 16.17 shows the results of
the thermometry of the witness specimen.

Comparing the results of determining the boundary conditions by the first and
second methods with experimental data indicates the chosen calculation model’s
validity and reliability. The analysis of the results of the calculation of the TNDS
suggests several methodological features of solving material science problems. In
particular, when selecting materials according to the criteria of their performance,
the size of the chord of the specimen can be limited to approximately 40–50 mm.
To solve the strength, the size of the models (specimens) must be selected follow-
ing the standard (DSTU 2367-94 1994). The above methodological solutions were
implemented during a series of tests, the results of which are partially considered
(Pisarenko 1980).

The developed methods have certain specific features due to the study of the per-
formance of modern thermal protection of reusable space systems under extreme
temperatures and power loads. The main methodological approaches and experi-
mental bench base for solving this class of problems were created and modernized
following the requirements of a particular stage of development of the rocket and
space industries.
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Fig. 16.17 Comparison of the calculated temperature values (1—at the edge; 2,3, and 4—at dis-
tances of 3, 10, and 20 mm from the edge, respectively; dashed line—flow temperature) with the
experimental values (×—at the edge, ◦, +—at distances of 3 and 20 mm from the edge) for
individual points in time

16.4.2.2 Research Methods of Multiple Thermal Protection

Themain principal approaches of testing were considered concerning the research of
thermal protection of disposable spacecraft, for the operationmodeofwhich critically
high levels of thermal loads and the use of destructive composites—sacrificial ther-
mal protective coatings are characteristic. The second direction—the development of
thermal protective coatings for reusable spacecraft—provided for the development
of technology for the production of composite materials and the creation of optimal
designs for the thermal protection of spacecraft, taking into account their design
features. A range of tasks was solved, including the choice of optimal classes and
combination of materials and methods of designing heat shielding packages, deter-
mining their sizes for different heat-loaded elements of spacecraft surfaces, choosing
the best ways to fasten blocks of heat shielding materials to each other and the entire
structure on the surface of the vehicle, including the protection of hatches, portholes,
etc. The created specialized methodological and experimental base ensured compre-
hensive studies of the behavior of heat-shielding materials and structures in almost
all parameters that determine their functional specificity, the maximum reflection of
the effect of operational loads—thermal and mechanical.

The intensity, duration, and frequency of thermal effects of actual spacecraft
trajectories in the dense layers of the atmosphere modeled the conditions of the
bench tests. Methodologically, the test program is assigned according to the results
of the computational–experimental modeling of natural heat flows on the stand. For
different tasks, such programs are created based on the results of tests with calibration
of specialmetrological (calorimetric)models, in the process ofwhich the dependence
of the flow parameters on the flow rate of the main components and their distribution
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Fig. 16.18 Construction of
multilayer heat-protective
coating

over the volume of the gas flow are established, followed by the implementation of
the bench control system elements (Kravchuk et al. 2018).

Currently, for the designed and partially functioning reusable space stations, the
most promising and reliable are heat-shielded tile structures that combine heat pro-
tection of the spacecraft hull and load-bearing function. Certain technologies for
manufacturing external panels from heat-resistant alloys can ensure their reliability
during repeated use (up to 100 flights) with re-entry into the Earth’s atmosphere.

Satisfactory characteristics at temperatures up to 1100 ◦C have been obtained for
alloys based on nichrome with a dispersed oxide strengthening phase (Solntsev et al.
2017; Tikhiy et al. 2015). To evaluate the use ofmaterials, development of design, and
technological solutions in the creation of panel heat-shielding coatings of this class,
the previously used methods (Danil’chuk et al. 2015; Pisarenko 1980; Troshchenko
2005) were modified, or original methods of modeling the loading conditions of
coatings were developed, as well as the modernization of individual systems of the
gas-dynamic test bench, the principal features of which are discussed below. The
methodological issues arising in assessing the performance of the structure of the
studied type are considered (Fig. 16.18) under the given conditions of single and
multiple (cyclic) temperature exposure.

For all cases, the thermal loading mode, as in the previous tasks, is represented
by a program for changing the temperature of the coating surface, which is identical
to full-scale and bench conditions, and contact temperature sensors and an infrared
radiation pyrometer monitor its progress. Their information is used as control signals
for working out the thermal load program. An example of such a program is shown
in Fig. 16.19 (Kravchuk et al. 2018).

In bench tests of ablative coatings, high-temperature loading conditions are real-
ized by fixing the model in the gas flow zone, usually using manipulators (Figs. 16.9
and 16.10). Panel-type structures (Fig. 16.18) can be investigated according to the
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Fig. 16.19 Mode of thermal loading of the heat-protective metal three-layer structure

Fig. 16.20 Scheme of panel arrangement in test chambers: 1—test chamber, 2—gas flow, 3—heat
protection panels, 4—window for video recording

Fig. 16.21 Scheme of
fastening the heat shield
panel at eight points: 1—heat
shielding panel; 2—thermal
insulation; 3—chamber wall;
4—rigid “cold” plate;
5—racks; 6—panel fastening
to the chamber; 7—frame;
8—fastening bolts

scheme shown in Fig. 16.20. In this variant, the tested panel is a fragment of a spe-
cially designed test chamber, which allows testing at different angles of flow attack.

The chambers of the gas-dynamic test bench for testing a metal three-layer struc-
ture are designed with a minimum live section at the inlet to maintain the same angle
of attack at all points of the blown models. The need to solve the above-mentioned
problems led to the implementation of two schemes of fastening the heat shielding
package to the test chamber. The first scheme allows relatively free thermal defor-
mation of the panel. Figure 16.21 shows the method of its fastening.

Themounting system of the heat shieldingmodel on the test chamber reflected the
mounting conditions in actual structures. The thermal protection panel was attached
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at eight points utilizing eight racks to a rigid plate that simulated the inner wall of
the protected (“cold”) structure in actual conditions. The mounting plate had neither
thermal nor mechanical connection with the walls of the test chamber. The rate of
heating of the thermal insulation determines its temperature deformations.

Using modern measuring and original information systems during the experi-
ments ensures the receipt of data sufficient in volume and accuracy for the calculated
estimates of the TNDS and the analysis of test results.

16.5 Conclusions

Based on the basic provisions of the classical theory of similarity and dimensional-
ity, which are transformed and adapted to the problems of studying the strength of
materials and damage to structural elements under thermocyclic loading in corrosive
environments, the methodology for modeling the conditions of aerodynamic heating
of structural elements of single and reusable spacecraft is presented.

A set of specialized methods for modeling the thermostress state of the material
and the intensity of the external effect of the environment has been developed, which,
being themethodological basis of bench studies, allowed us to ensure the equivalence
of the processes of material damage and the limit state of the studied structural
element in model and full-scale conditions.

It is shown that the developed methods and experimental means provided the pos-
sibility of assessing the functional characteristics, obtaining a set of properties, and
working out the technology of forming elements of aerospace structures of aircraft
operating under conditions of aerodynamic heating to extremely high temperatures.
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Chapter 17
Scattering of SH-Waves by an Elastic
Fiber of Non-canonical Shape with a
Thin Interphase Layer

Yaroslav Kunets, Roman Kushnir, and Valery Matus

17.1 Introduction

The development of technologies for obtaining composite materials, improvement of
nondestructive testing and defectoscopy, modern problems of medicine, geophysics,
and seismology have significantly expanded the scope of studying the contact interac-
tion of thin deformable bodies with the surrounding environment. Thin elastic inho-
mogeneities are not only stress concentrators but are also widely used as composite
fillers, resonators, waveguides, sound diffusers, and nodes of measuring equipment
systems. In these cases, in addition to solving the traditional problems of assessing
the strength and deformability of structures, the study of the spectral characteristics
of scattered fields, and the sensitivity of elastic systems to dynamic disturbances,
including non-stationary ones, becomes important. The modes of operation of struc-
tures with thin-walled elements are also diversified, and the contact conditions of the
phases of the heterogeneous elastic system are modified.

The effect of thin inhomogeneities on the physicomechanical fields in media has
been studied in many publications (see, for example, Pasternak et al. (2021), Emets
and Rogowski (2013), Benveniste and Miloh (2001) and their literature reviews).
In the vast majority of works, static problems were considered. Their solution was
based on some additional assumptions (hypotheses) of a physical or mathematical
nature, which leads to a decrease in the dimensionality of the original problem in the
vicinity of fine inhomogeneity.In this regard, there is a great variety of models of thin
elastic inclusions, which are proposed for inhomogeneities with different material
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properties. The inclusion of low or high stiffness was considered separately, and
models have been created that cover a wide range of properties.

The methods of singular perturbation theory were also applied to the problems
of modeling the interaction of thin inhomogeneities with the environment. Its basic
provisions are outlined in Friedrichs (1955), Fraenkel (1969). L. Prandtl formulated
the basic idea of these methods during the study of the phenomenon of the bound-
ary layer, which is mathematically determined by the presence of a small parameter
(inverse Reynolds number) in the higher derivatives of the Navier–Stokes equations,
which occurs in the case of flow bodies by hydrodynamic flows. It consists in intro-
ducing internal local coordinates (stretching of coordinates) near the object’s surface,
on which the boundary conditions are set and near which a rapid change of solution
in the direction of these coordinates is observed. Since a similar structure of the solu-
tion was found in other problems with a small parameter, an approach was formed
according to which these solutions are presented in the form of asymptotic (outer)
expansions with further additional study (construction of boundary layers, inner
asymptotic expansions) in the regions of rapid change of the considered processes
(Fraenkel 1969; Friedrichs 1955).Within the framework of the asymptotic approach,
a number of problems for regions containing thin inhomogeneities have been inves-
tigated. Note that the structure of the asymptotic expansions of the solutions of such
problems depends significantly on the ratio of parameters characterizing the mate-
rial properties of the components of the composite. Static problems for bodies with
inhomogeneities of large and small stiffness were studied in the case of inclusions
(Kanaun 1984) and in the case of interphase layers (Benveniste and Miloh 2001).
In Kunets (1987), the asymptotic approach is applied to problems of axisymmetric
torsion, and the case of inhomogeneity of arbitrary stiffness is considered.

Problems with thin inhomogeneities within the framework of the asymptotic
approach were studied in several ways. According to one of them, a system of inte-
gral equations equivalent to the initially posed problem is first written down, after
which, using the theory of asymptotic expansions of integrals for a small parameter,
the theory of generalized functions, etc., an integral equation given on the middle
surface (line) of inhomogeneity, which asymptotically approximately determines the
sought integrand functions (Kanaun 1984; Poddubnyak 1986). In another approach,
the asymptotic representations of the solution are substituted into the differential
equation and the boundary conditions of the problem, followed by decoupling of the
corresponding operators by a small parameter (Benveniste andMiloh 2001;Mishuris
et al. 2006; VanDyke 1964). Sometimes, instead of a strong formulation of the prob-
lem (differential equations, constitutive relations), a variational (weak) formulation
is used (Rizzoni et al. 2014).

In this chapter, an asymptotic analysis of the equation of motion of the thin
interphase separating the matrix from the fiber is carried out. The case of antiplane
deformation of an elastic system is considered. Before, similar elastic structures
under wave loading were studied for the case of circular fibers and interfacial layers
of constant thickness. At the same time, the interphase was considered an elastic
body in ideal contact with the matrix and the fiber (Cai 2004), or its interaction with
the external environment was modeled under the conditions of non-ideal spring-
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type contact between the fiber and the matrix (Butrak et al. 2012; Wang and Sudak
2007). Here, the case of interphase of variable thickness and fiber of non-canonical
cross section is investigated. As a result of the application of asymptotic analysis, a
simplified variant of the problem of SH-wave scattering in a matrix with fiber under
effective conditions of their contact is formulated.

The most popular research tool in the far wave zone of waves scattered by objects
of complex geometry is the null-field method. With its help, the interaction of elas-
tic waves with volume inclusions was considered mainly under conditions of ideal
contact between the heterogeneity and the surroundingmedium (Martin 2006;Water-
man 2009). Below, this method is transferred to the case of SH-wave scattering by
inclusion of a non-canonical form in the presence of a thin interphase of variable
thickness and low stiffness.

17.2 Formulation of the Problem

Consider the unbounded elastic matrix W1 containing fiber W2 in the presence of
thin-walled interphase inhomogeneity W0. The wave load and the geometry of the
scatterer satisfy the conditions of the anti-planet strain state. The cross section of the
fiber has a non-canonical shape bounded by a closed curve S. The area of location
of the inhomogeneity is formed by removing from the areas W1 and W2 some two-
sided neighborhood around the line S so that W0 = W+

0 ∪ W−
0 , W+

0 = W1 ∩ W0,
W−

0 = W2 ∩ W0 (see Fig. 17.1).
The matrix, fiber, and inhomogeneity are isotropic elastic bodies with densities

ρ1, ρ2, ρ0 and shear moduli μ1, μ2, μ0, respectively. The system’s motion varies
harmonically in time t with the circular frequency ω; therefore, the time factor
exp(−iωt) is common to all values and is omitted to simplify the notation.

Under antiplane deformation, the displacements in the composite satisfy the two-
dimensional Helmholtz equations (Emets and Rogowski 2013; Martin 2006)

Fig. 17.1 The geometry of
the composite body and
“microscopic” image of part
of the interphase
inhomogeneity
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(∇2 + k2S1
)
u1(x) = 0, u1(x) = usc(x) + uin(x), x ∈ W1\W+

0 , (17.1)
(∇2 + k2S2

)
u2(x) = 0, x ∈ W2\W−

0 , (17.2)
(
∇2 + k2S0

)
u0(x) = 0, x ∈ W0, (17.3)

conditions of ideal mechanical contact between the components of the composite

u1(x) = u0(x), μ1
∂u1(x)
∂n0

= μ0
∂u0(x)
∂n0

, x ∈ S+
0 ,

u2(x) = u0(x), μ2
∂u2(x)
∂n0

= μ0
∂u0(x)
∂n0

, x ∈ S−
0 ,

(17.4)

and radiation conditions at infinity

usc(x) = exp i (kS1r + π/4)√
8πkS1r

f (θ) + O
(
r−1), r → ∞, (17.5)

where x = (x1, x2) are Cartesian coordinates of points,

x1 = r cos θ, x2 = r sin θ, 0 � θ � 2π;

u j (x), kSj = ω/cSj , and cSj = (μ j/ρ j )
1/2 are displacements, wave numbers and

speeds of shear waves in the composite, respectively; n0 is the external unit normal
to S0 = S+

0 ∪ S−
0 ; f (θ) is the complex amplitude of SH-wave scattering; (r, θ) are

polar coordinates. The problem is to determine the unknown scattered field usc(x)
by a given value of the incident field uin(x) (u1(x) = uin(x) + usc(x)).

The solutions of equations (17.1), (17.2), and (17.3) can be given in integral form
(Emets and Rogowski 2013; Martin 2006)

∫

S+
0

[
u1

(
x′) ∂

∂n0
G1

(
x′, x

) − G1
(
x′, x

) ∂

∂n0
u1

(
x′)

]
dS′

0

=
{
usc(x), x ∈ W1\W+

0

−uin(x), x ∈ W2 ∪ W
+
0

, (17.6)

∫

S−
0

[
u2

(
x′) ∂

∂n0
G2

(
x′, x

) − G2
(
x′, x

) ∂

∂n0
u2

(
x′)

]
dS′

0

=
{
0, x ∈ W1 ∪ W

−
0

u2(x), x ∈ W2\W−
0

, (17.7)
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∫

S0

[
u0

(
x′) ∂

∂n0
G0

(
x′, x

) − G0
(
x′, x

) ∂

∂n0
u0

(
x′)

]
dS′

0

=

⎧
⎪⎨

⎪⎩

−u0(x), x ∈ W0

0, x ∈ W1\W+
0

0, x ∈ W2\W−
0

, (17.8)

where dS′
0 = dS0

(
x′) and G j

(
x′, x

)
are the fundamental solutions of the Helmholtz

equation

G j
(
x′, x

) = i

4
H (1)

0

(
kSj

∣∣x − x′∣∣) .

Integral representations (17.6)–(17.8) are valid for an arbitrary thickness of the
interfacial inhomogeneity W0 and can be used to solve the problem of scattering of
elastic waves under contact conditions (17.4). However, this approach is significantly
complicated by the need to satisfy boundary conditions on close surfaces S+

0 and S−
0 .

The problem can be simplified if the contact conditions (17.4), using the thinness of
the region W0, are transferred to the surface S of the bonding of the regions W1 and
W2.

17.3 Asymptotic Model of Thin Interphase Inhomogeneity

To construct a model of thin interphase inhomogeneity in an elastic medium, it is
convenient to use an orthogonal coordinate system connected to the contour of the
scatterer. If contour S is described by the parametric equation x = r(α1), then the
curvilinear coordinates (see Fig. 17.1) are defined as follows

x = r(α1) + α2n(α1),

where n(α1) is the external unit normal to S. The following relations give the Lame
metric coefficients of this coordinate system

H1(α) = H(α) = A(α1) [1 + α2/R(α1)] , H2(α) = 1,

where A(α1) = |dr(α1)/dα1|, R(α1) is the radius of curvature of the curve S.
The regionW0 = W+

0 ∪ W−
0 and its border S0 = S+

0 ∪ S−
0 in coordinates (α1, α2)

are set as follows (see Fig. 17.1):
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W±
0 = {(α1, α2) : α1 ∈ S, 0 � ±α2 < εg± (α1)} ,

S±
0 = {(α1, α2) : α1 ∈ S, α2 = ±εg± (α1) = ±h± (α1)} ,

ε =max
x∈S h(x)/a 
 1.

Here h(x) = h+(x) + h−(x) is a variable thickness of the interphase inhomogeneity,
g±(α1) are sufficiently smooth positive definite functions, a is the characteristic size
of the region W2, ε is a small dimensionless parameter that characterizes a small
(relative to a) thickness of the inhomogeneity.

We believe that the wavelengths propagating in the composite body are much
longer than the thickness of the interphase inhomogeneity, i.e.,

kSj max
x∈S

|h (x)| 
 1, j = 0, 1, 2. (17.9)

Under such conditions, we use asymptotic expansions on a small parameter ε for the
displacement fields in the matrix, fiber, and inhomogeneity

usc(x) =
∑

n

εnu(n) (x) , u2(x) =
∑

n

εnu(n)
2 (x) , ε → 0, (17.10)

u0(α) =
∑

n

εnu(n)
0 (α1, ᾱ2) , α2 = εᾱ2, ε → 0, n = 0, 1, . . . . (17.11)

The normal derivative and components (n01 and n02) of the normal n0 on S0 are given
as follows

∂

∂n0
= n01

H(α)

∂

∂α1
+ n02

∂

∂α2
, α ∈ S0,

n01 = −εA−1(α1)
dg±(α1)

dα1
+ O(ε2), n02 = ±1 + O(ε2), ε → 0.

The equation of motion of inhomogeneity is written in variables (α1, ᾱ2). As a
result, we obtain a singularly perturbed differential equation

∂

∂ᾱ2
H(α)

∂u0(α)

∂ᾱ2
+ ε2

[
∂

∂α1

∂u0(α)

H(α)∂α1
+ H(α)k20u0(α)

]
= 0, α ∈ W0.

Let us substitute (17.11) into this equation. Equating the coefficients of the same
powers of ε, we obtain a recurrent sequence of ordinary differential equations in the
variable ᾱ2 with regard to the sought terms of the expansions (17.11). Satisfying
the contact conditions (17.4), we take into account the solutions of these equations,
and the terms of the asymptotic series (17.10) are given by Taylor series in the
neighborhood ofα2 = 0,which are convergent under the conditions (17.9).Weobtain
the contact conditions of the matrix and the scatterer by equating the terms with the
same powers of the parameter ε. The type of these conditions is determined by the
order of smallness of the mechanical contrast parameters γ̄ j = μ0/μ j ( j = 1, 2) of
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thin-walled inhomogeneity in comparison with the value of ε. Two ranges of changes
in values γ̄ j are considered: (i) 0 � γ̄ j � ε, (ii) ε � γ̄ j � 1/ε.

Soft inhomogeneities. Range 1 corresponds to interphase thin-walled inhomo-
geneity, the stiffness of which is less than the stiffness of the surrounding medium
(γ̄ j/ε = const, ε → 0). Then, with accuracy up to the main terms of the asymp-
totic expansion (17.10), we obtain the conditions for the dynamic interaction of such
compliant inhomogeneity with the external environment

u1(x) − u2(x) = h(x)
γ̄1

∂u1(x)
∂α2

,

μ1
∂u1(x)
∂α2

= μ2
∂u2(x)
∂α2

, x ∈ S,

(17.12)

where u1 = uin + u(0) + O(ε), u2 = u(0)
2 + O(ε).

Non-contrast inhomogeneities. Range 2 describes non-contrast inhomogeneities.
It is assumed that γ̄ j = const �= 0 when ε → 0. In this case, the main term of the
asymptotic expansions (zero terms in (17.10)) corresponds to the problem of scat-
tering under conditions of ideal contact of the scatterer with the matrix, and the
presence of thin-walled inhomogeneity is described by the next term (the first term
of the expansions in (17.10)) of the expansion in the form

u1(α, ω) − u2(α, ω) =hμμ1
∂u(0)

1 (α, ω)

∂α2
,

μ1
∂u1(α, ω)

∂α2
− μ2

∂u2(α, ω)

∂α2
(17.13)

= ∂

A∂α1
μh

∂u(0)
1 (α, ω)

A∂α1
+ ω2ρhu

(0)
1 (α, ω), α ∈ S,

where

μ1
∂u(0)

1 (α, ω)

∂α2
= μ2

∂u(0)
2 (α, ω)

∂α2
,

u(0)
1 (α, ω) = u(0)

2 (α, ω), α ∈ S,

u(0)
1 = u(0) + uin, u1 = u(0)

1 + εu(1) + O(ε2), u2 = u(0)
2 + εu(1)

2 + O(ε2),

μh = h+μ1 + h−μ2 − hμ0, hμ = hμ−1
0 − h+μ−1

1 − h−μ−1
2 ,

ρh = h+ρ1 + h−ρ2 − hρ0.

Equations (17.12) and (17.13) are the effective contact conditions, which model
the interaction of the matrix, fiber, and the thin layer between them with an accuracy
of order ε and ε2 in expansions (17.10), respectively. Conditions with continuous
stresses and displacement jump proportional to them are known in the literature as
conditions of the spring contact type (Benveniste and Miloh 2001). Here they are
obtained under the assumption of the layer thickness variability, the effect ofwhich on
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the effective contact conditions depends on the type of inhomogeneity. The reaction
of compliant interfacial layers is determined by the total thickness and non-contrast
one by the thickness fraction in the matrix and the fiber. Conditions of type (17.13)
were previously obtained for thin inclusions in an infinite elastic matrix in the case
of the torsion problem (Kunets 1987) and the dynamic antiplane problem (Kit et al.
1999). Analogous conditions under static loading of two elastic bodies connected by
a thin layer were studied in Rizzoni et al. (2014).

17.4 Null-Field Method in Scattering Problems with
Effective Contact Conditions

The contact conditions (17.12) and (17.13) make it possible to simplify the integral
representations (17.6)–(17.8), which are used to solve the problem (17.1)–(17.4)
(Kushnir et al. 2019). Under effective contact conditions, the scattering problem is
formulated for the fiber W2 contained in the matrix W1. We assume that displace-
ments and stresses are discontinuous on the surface S of the fiber. Then the integral
representations are as follows

uin (x, ω)

+
∫

S

[
u2

(
x′, ω

) ∂

∂n
G1

(
x′, x

) − μ21G1
(
x′, x

) ∂

∂n
u2

(
x′, ω

)]
dS

+
∫

S

{
[u]S ∂

∂n
G1

(
x′, x

) − μ−1
1 [tn]SG1

(
x′, x

)
}
dS

=
{
u1(x, ω), x ∈ W1

0, x ∈ W2
, (17.14)

∫

S

[
u2

(
x′) ∂

∂n
G2

(
x′, x

) − G2
(
x′, x

) ∂

∂n
u2

(
x′)

]
dS

=
{
0, x ∈ W1

−u2(x), x ∈ W2
, (17.15)

where μ21 = μ2/μ1,

[u]S = u1(x, ω) − u2(x, ω), [tn]S = ∂u1(x, ω)

∂n
− μ21

∂u2(x, ω)

∂n
, x ∈ S.

We expand the incident and scattered field in terms of cylindrical wave functions
(Kushnir et al. 2019)
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uin(x) = u0
∑

σ,m

εmb
in
σmReψ1

σm(x), |x| < r0, (17.16)

usc(x) = u0
∑

σ,m

εm fσm ψ1
σm(x), |x | > r1, (17.17)

ψ
j
σm(x) = H (1)

m

(
kSjr

)
Cσm (θ) , Reψ

j
σm(x) = Jm

(
kSjr

)
Cσm (θ) ,

C1m(θ) = cosmθ, C2m(θ) = sinmθ,
(17.18)

where H (1)
m (x) are the Hankel functions of the first kind, Jm(x) are the Bessel func-

tions of the first kind, εm = 2 − δm0 (δm0 is the Kronecker symbol), r0 and r1 are the
radii of the circles inscribed in S and circumscribed around S . We also present the
fundamental solutions as expansions by the system of wave functions (17.18)

G j
(
x′, x

) = i

4

2∑

σ=1

∞∑

m=0

εmψ j
σm(x′)Reψ j

σm(x),
∣∣ x′ ∣∣ > |x|. (17.19)

By substituting (17.16), (17.17) and (17.19) into the integral representations
(17.14) and (17.15), taking into account the orthogonality of the functions (17.18)
on the circle, we obtain the equations of the moments of the null-field method

∫

S

(
u2

∂ψ1
Sσm

∂n
− μ21ψ

1
Sσm

∂u2
∂n

)
dS

+
∫

S

{
[u]S

∂ψ1
Sσm

∂n
− μ−1

1 [tn]S ψ1
Sσm

}
dS = 4iu0binσm, (17.20)

∫

S

[
u2

∂Reψ2
Sσm

∂n
− (

Reψ2
Sσm

) ∂u2
∂n

]
dS = 0, (17.21)

i

4

∫

S

{
[u]S

∂

∂n

(
Reψ1

Sσm

) − μ−1
1 [tn]S Reψ1

Sσm

}
dS

+ i

4

∫

S

[
u2

∂Reψ1
Sσm

∂n
− μ21

(
Reψ1

Sσm

) ∂u2
∂n

]
dS = u0 fσm, (17.22)

where σ = 1, 2, m = 0, 1, . . . .
In the case of a non-contrast layer, the numerical solution to the scattering problem

is found in two stages. At the first stage there are zero terms u(0)(x) and u2(0)(x) of
the asymptotic series (17.10). These terms satisfy the ideal contact condition on the
contour S, therefore [u]S = [tn]S = 0. The unknown quantities u2(0) and ∂u2(0)/∂n
on the contour of the scatterer are found in the form of trigonometric series. Substi-
tuting them into (17.20) and (17.21), we get a system of linear algebraic equations
of infinite order with respect to the coefficients of these series. We find the solution
of this system numerically and proceed to the second stage, at which, according to
the boundary conditions (17.13), jumps of displacements and stresses are known
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functions. Again, the unknown values u2(1)and ∂u2(1)/∂n on the scatterer contour
are found in the form of trigonometric series. From (17.20) and (17.21), we obtain
a system of linear algebraic equations, the left part of which is the same as in the
first stage. Having the solution of this system obtained from (17.22), we calculate the
coefficients of series in (17.17) and the scattering amplitude in the far field according
to (17.5).

In more detail, we examine the problem of wave scattering by fiber in the presence
of a soft layer and the peculiarities of using the null-field method for its solution.

17.5 The Effect of a Thin Compliant Interphase Layer on
SH-Wave Scattering Amplitudes

Let a plane SH-wave falls on the fiber in the elastic matrix in the presence of an
interphase layer (see Fig. 17.2)

uin (x) = u0 exp [−ikS1 (x1 cos θin + x2 sin θin)] . (17.23)

The elastic characteristics and thickness of the layer are such that its interaction
with the matrix and the fiber can be modeled by effective conditions (17.12). The
scattered field that satisfies the radiation condition (17.5) is determined using the
null-field method. In the integral expressions (17.20) and (17.21) of this method,
the unknown values on the fiber contour are specified in a series of trigonometric
functions:

u1(x) − u2(x) = u0
∑

σ,m

x1σmCσm (θ) ,

u2(x) = u0
∑

σ,m

x2σmCσm (θ) , x ∈ S.
(17.24)

Fig. 17.2 Two-dimensional
geometry of an elastic matrix
with a fiber and an interphase
layer (θn is the angle of
incidence of the plane wave)
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Taking into account conditions (17.12), from (17.20) and (17.21), we obtain a system
of linear algebraic equations of infinite order for determining unknown coefficients
x1σm and x2σm :

∑

τ ′,σ ′,m ′
a1σm,τ ′σ ′m ′ xτ ′σ ′m ′ = 4ibinHσm,

∑

τ ′,σ ′,m ′
a2σm,τ ′σ ′m ′ xτ ′σ ′m ′ = 0,

(17.25)

(m,m ′ = 0, 1, . . . , σ, σ ′, τ ′ = 1, 2),

aτσm,τ ′σ ′m ′ =
∫

S
āτσm,τ ′(r)Cσ ′m ′ (θ) dS(θ),

ā1σm,1 = ∂ψ1
σm

∂n
− μ01

h (θ)
ψ1

σm, ā1σm,2 = ∂Reψ1
σm

∂n
,

ā2σm,1 = γ̄1μ
−1
21

1

h (θ)
Re (ψ2

σm), ā2σm,2 = ∂Reψ2
σm

∂n
,

binHσm = i−mCσm (θin) .

From (17.17), (17.22), (17.5), and (17.24), we have

f (θ) = u_0
∑

σ,m

εmi
−m AσmCσm (θ) ,

Aσm =
∑

σ ′,m ′

(
x1σ ′m ′Re a1σm,1σ ′m ′ + x2σ ′m ′ Re a1σm,2σ ′m ′

)
.

(17.26)

Knowing the solution of (17.25), which is obtained numerically by the reduction
method, we calculate the SH-wave scattering amplitude f (θ) from (17.26). Another
quantity of practical interest is the scattering cross section

σ H = 1

kS1
u−1
0 Im f (π + θin).

For example, consider the scattering of plane SH-waves (17.23) byfibers, the cross
section of which has an area πa2 and a contour given by the parametric equation

r (β) = a

√
1 + ε20 + 2ε0 cos [(N + 1) β]

1 − ε20N
,

θ (β) = arctan
sin β + ε0 sin (Nβ)

cosβ − ε0 cos (Nβ)
, 0 � β � 2π,

(17.27)

where a is the characteristic size of the cross section of the fiber, which can be in
the form of ellipses (N = 1), equilateral triangles (N = 2, ε0 = 0.25) or squares
(N = 3, ε0 = 1/9) with rounded corners.

The variable thickness of the layer is taken as follows



304 Y. Kunets et al.

Fig. 17.3 Frequency dependences of normalized scattering amplitudes for different forms of fiber
during monostatic probing θin = θsc = 0◦: solid, thin, and dashed curves correspond to the values
of γ1 = 0.5 and γ1 = 2; solid, bold, and dotted curves correspond to the cases of ideal matrix-fiber
contact and a hole in the matrix

h(x) = εa [1 + L1 sin(L2θ + L3)] , 0 � θ � 2π, x ∈ S, (17.28)

where L1, L2, and L3 are the given parameters that characterize the shape of the
layer.

Figure 17.3 shows the spectral dependences of the normalized scattering ampli-
tudes

f0 = u−1
0 | f (θsc)|√

k1
, (17.29)

where k1 = kS1a and θsc is the angle of observation of SH-waves scattered in the
Fraunhofer zone. Glass fiber in an epoxy matrix (ρ1 = 1250 kg/m3,μ1 = 1.28 GPa,
ρ2 = 2550 kg/m3, μ2 = 29.9 GPa) was studied. It is assumed that the interphase
layer has a constant thickness h(x) = εa and contrast parameter γ1 = μ0/(εμ1) =
O(1), ε → 0. Elliptical fibers with the ratio of semi-axes b/a = 0.6 (in (17.27),
N = 1 and ε0 = 0.25) and triangular fibers are shown in Fig. 17.3a, b, respectively.
For not too small values of the parameter γ1 in the low-frequency range, the scat-
tering amplitude spectra increase monotonically and have an oscillatory character in
the medium-frequency range. Moreover, in this frequency range, an increase in the
stiffness of the interphase layer leads to an increase in the level of normalized scat-
tering amplitudes, which is usually between the corresponding levels for the cases
of ideal matrix-fiber contact and a free hole in the matrix. As the wavelength of the
scatterer k1 (dimensionless frequency) increases, the difference between these levels
is leveled off.

Figures 17.4, 17.5, 17.6 and 17.7 illustrate the characteristics of SH-wave scat-
tering by inclusions in the matrix for the presence of very soft interfacial layers.

Figures 17.4 and 17.5 show the normalized scattering cross sections σ̄ = σ H/(2a)

as a function of the wavelength k1 for different values of the interphase layer stiff-
ness γ1. In all cases, the wave’s incidence angle is θin = 0. Matrix/fiber combina-
tions were analyzed: (i) composite is epoxy resin/glass; (ii) composite is stainless
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Fig. 17.4 Spectra of normalized SH-wave scattering cross sections by glass circular (a) and trian-
gular (b) fibers in an epoxy matrix for different interlayer stiffnesses γ1

Fig. 17.5 Frequency dependences of the normalized SH-wave scattering cross sections by a trian-
gular fiber: 1 is a glass fiber in an epoxy matrix; 2 is magnesium fiber in stainless steel

steel/magnesium (ν1 = 0.3, ν2 = 0.3, μ2/μ1 = 0.22, ρ2/ρ1 = 0.21); (iii) compos-
ite is aluminum/stainless steel (μ1/μ2 = 0.478, cS1/cS2 = 1.171). Numerical cal-
culations were performed for fibers in the presence of a constant thickness layer
(L1 = L2 = L3 = 0 in (17.28)).

Dashed curves in Fig. 17.4 illustrate the cross sections of SH-wave scattering by
fibers under the conditions of their ideal contact with thematrix, and the dotted curves
are the cases of cavities of the corresponding shapes. Comparing the effect of the
stiffness of the interlayer on thewave properties of fibers, we see that it is qualitatively
the same for both circular and triangular shapes.The scattering cross-sectional spectra
have a resonant character at very small values of the interlayer stiffness. Fibers stiffer
than the matrix in the given frequency range have only low-frequency resonance.
In the case of fibers, the stiffness of which is less than the stiffness of the matrix
(dashed-dotted curve in Fig. 17.5), the low-frequency resonance shifts toward higher
frequencies, and resonances of other forms of oscillation of the cross section of the
fiber appear in the spectrum. Outside of resonant frequencies, the scattering cross
sections of the considered forms of fibers are almost identical to the scattering cross
sections of holes of the corresponding form. As the stiffness of the fibers increases,
the width of the low-frequency resonance increases and disappears at γ1 > 1.
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Fig. 17.6 Frequency dependences of the normalized SH-wave scattering amplitudes for low stiff-
nesses γ1 
 1 of interphase layers andmonostatic probing θin = θsc = 0◦: solid, dashed, and dotted
curves correspond to μ1/μ2 = k2/k1 = 0.5, 1, 2, respectively

Figure 17.6 shows the spectral dependences of the normalized scattering ampli-
tudes f0 at low stiffnesses of the interfacial layers γ1 
 1 and various mechanical
properties of the matrix and fiber (the cross section of the fiber is a circle of radius
a). At the same time, it was assumed that k2/k1 = μ1/μ2 = γ2 (k2 = kS2a). For
the thickness of the inclusion in (17.28) L1 = 0.7, L2 = 2, and L3 = 0 (corrugated
layer) was taken.

Curves in Fig. 17.6 have a clearly expressed resonant character in the entire
considered frequency range. Their background for γ1 
 1 is practically independent
of the mechanical parameters of the composite and coincides with the corresponding
curves for the case of a circular hole of radius a in the matrix. The location of
the resonances in Fig. 17.6, except for the first low-frequency one, approximately
coincides with the natural frequencies for the regions defining the cross section of
the fibers. In the considered case, the solutions of the equation J ′

n(γ2k1) = 0 (J ′
n(x)

is derivative by argument from the Bessel function Jn(x) of the nth order) exists.
Moreover, in the case of an increase in the contrast parameter γ1, there is an increase
in the width of the resonances and their shift to the region of higher frequencies.

The splitting of some resonance frequencies of the amplitude spectra shown in
Fig. 17.6 occurs. The reason for this effect is revealed by the analysis of the curves
in Fig. 17.7. Spectral dependences of normalized backscatter amplitudes f0 (θin =
θsc = 0◦ in (17.29)) are shown here. The stiffness parameter of the interphase layer
γ1 = 0.1. Figure 17.7a compares the amplitudes in the case of a circular fiber in
the presence of a constant thickness layer (dotted curve) and a corrugated layer
(solid curve, L1 = 0.3, L2 = 2 and L3 = 0 in (17.28)). The corrugation of the layer
causes the growth of the first low-frequency resonance (shift to the right from the
resonance line in the case of a layer of constant thickness) and the splitting of the next
resonance. Figure 17.7b examines the effect of fiber shape on scattering amplitudes.
A triangular fiber and two cases of backscattering θin = θsc = 0◦ (solid curve) and
θin = θsc = 60◦ (dashed curve) are considered. For comparison, the backscattering
amplitude in the case of a circular fiber is given by a dotted curve. In both cases,
it was assumed that the interfacial layer has a constant thickness. We see that the
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Fig. 17.7 Frequency dependences of the normalized SH-wave scattering amplitudes in an alu-
minum matrix with a steel fiber for different forms of interlayer (a) and fiber (b)

shape of the fiber determines the shift of the corresponding resonant frequencies.
The reliability of numerical calculations is confirmed by the fact that the values of
resonant frequencies do not depend on the direction of wave incidence.

17.6 Pulses of Echo Signals in a Matrix with Fiber and a
Thin Compliant Interphase Layer

The influence of resonant frequencies on the time dependence of waves scattered
by a steel fiber in an aluminum matrix in the presence of a soft interfacial layer is
illustrated in Fig. 17.8. The reduced displacement in the far field was calculated:

ū(θsc, τ1) = lim
r→∞

√
r/a u−1

0 usc(x, τ1)

= u−1
0

(2π)3/2

∫ km

0
Re

[
ϕ(k1) f (θsc) exp(−ik1τ1 + iπ/4)

] dk1√
k1

.

Here, τ1 = (cS1t − r)/a, ϕ(k1) is the frequency modulation of the incident plane
SH-wave

ϕ(k1) = 4
√

πk21
k30

exp

(
−k21
k20

)
,

which is the spectrum of Ricker wavelet (Murai 2007)
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Fig. 17.8 Time dependences of normalized movements in the far zone, caused by non-stationary
SH-waves with a carrier resonant (a) and non-resonant (b) frequencies

ϕ(τ1) = π−1
∫ ∞

0
ϕ(k1) cos(k1τ1)dk1

= [
1 − 2(k0τ1/2)

2
]
exp

[−(k0τ1/2)
2
]
,

k0 is the characteristic wave size (when k1 = k0, the function ϕ(k1) takes the maxi-
mum value). Dashed curves in Fig. 17.8 correspond to the incident pulse, the dotted
and solid curves are echo signals from circular and triangular fibers with layers of
constant thickness.

The curves in Fig. 17.8a are obtained for k0 equal to the low-frequency resonances
of the scattering amplitude: k0 = 0.247 for a circular fiber, and k0 = 0.262 for a
triangular fiber. Time is counted from the moment of arrival of the maximum value
of the incident signal at the beginning of the coordinate system. Figure 17.8b is
obtained at non-resonant values of the characteristic wave size k0 = 1. The duration
of echo signals excited by pulses, the spectrum of which is formed around resonant
frequencies, significantly exceeds the duration of the incident pulse and is equal to
this duration in the case of non-resonant frequencies. This property of echo pulses is
important for analyzing the nature of fiber-matrix connections under nondestructive
testing of composite materials. Since the resonant frequencies change with the shape
of the fibers and the stiffness of the layer, the information about their location on the
frequency scale simplifies the diagnosis of composite materials.

We determine the value of resonance frequencies using the resonance theory
(Uberal 1973) when the scatterer is a circular fiber. In this case, for displacements
(17.17) in a scattered field, the following expression is valid

usc(x) = 1

2

∞∑

m=0

εmi
−m (Sm − 1) H (1)

m (k1r̄) cosmθ,

where r̄ = r/a,
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Sm = S(s)
m

Fm − z(2)
m

Fm − z(1)
m

,

Fm = μ12k1
Jm(k2)

J ′
m(k2)

+ h

γ̄1
k1k2, z(i)

m = k2
H (i)

m (k1)

H (i)
m

′
(k1)

,

S(s)
m = −H (2)

m
′
(k1)

H (1)
m

′
(k1)

,

J ′
m(k2) = d Jm(k2)

dk2
, H (i)

m
′
(k1) = dH (i)

m (k1)

dk1
.

(17.30)

According to the resonance theory, the resonance of the system occurs when the
real part of the denominator in (17.30) is zero, i.e.,

Fm(k1) = Re z(1)
m (k1). (17.31)

Analysis of the scattering amplitude by modes showed that in the vicinity of the low-
frequency resonance, sharp changes are characteristic of the zero mode (m = 0).
Therefore, the equation for determining low-frequency resonance is the condition
(17.31) when m = 0. We take into account that in this frequency range k1 → 0,
k2 → 0, and the stiffness of the interlayerwas small: γ̄1/h → 0.Weapply asymptotic
expressions for Bessel functions for small values of the argument. As a result, we
obtain the value x0H of the resonance in the region of low frequencies (wavelengths)
in the case of SH-wave scattering by a circular fiber in the presence of a soft layer

x0H = cS2
cS1

√
2
μ0

h

a

μ2
. (17.32)

The paper Cai (2004) analyzes the spectral characteristics of SH-wave scattering
by a circular inclusion in the presence of an interlayer of a certain thickness. It is
assumed that in the case of soft layers, the cause of low-frequency resonances is
the oscillation of the inclusion as a rigid whole, and their value can be determined
from the condition that the forced oscillation frequency of the system is equal to the
natural frequency of the simplest oscillator “weightless mass on a spring”. Using this
hypothesis, we will determine the value xH of such resonances in cases where the
scatterer is a fiber of a non-canonical shape given by the parametric equation (17.27).

The square of the natural circular frequencyω0H of oscillations of the “weightless
mass on the spring” oscillator is proportional to the coefficient of elasticity of the
spring K and inversely proportional to the mass M . In this case, we have

K = μ0

h
L , M = πa2ρ2,

where L is the length of the inclusion circuit

L = 2aπ
(
1 + ε20N (4N − 1)/16

) + O
(
ε40

)
.
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Let us first consider a circular fiber. For the value of the resonant frequency (resonant
wave size) x0H , in this case, we have an expression

x0H = ω0H

cS1
a = a

cS1

√
2aπμ0

h

1

πa2ρ2
= cS2

cS1

√
2
μ0

h

a

μ2
. (17.33)

If the fiber has a non-canonical shape, then the resonance frequency xH is as follows

xH = x0H
(
1 + ε20N (4N − 1)/16

)
.

Comparing (17.33) and (17.32), we see that both the resonance theory and the
oscillator hypothesis give the same resonance frequency values. Therefore, the appli-
cation of this hypothesis to non-circular fibers is justified, which is also confirmed
by numerical calculations.

17.7 Conclusion

Anapproach for studyingwave phenomena in an elasticmediumcontaining an elastic
fiber of a non-canonical shape surrounded by a thin interfacial layer of variable
thickness is proposed. The composite is in the conditions of a longitudinal shear
fixed in time. The technique is based on an asymptotically accurate model of the
dynamic interaction of thin inhomogeneity with the surrounding elastic medium and
the null-field method. Mathematical models of the interlayer characterize jumps of
displacements and stresses on the fiber contour. Their appearance depends on the ratio
of the elastic parameters of the composite components. For themodel of non-contrast
thin-walled interfacial inhomogeneity, when the ratio of the shear modulus of the
layer to the shear modulus of the matrix and fiber is of the order of unity compared
to the thickness of the inhomogeneity, the corresponding displacement and stress
jumps are known quantities and are determined from the solution of the problem
for complete ideal contact of the matrix and the fiber. Unlike the static versions
of such conditions obtained earlier in Rizzoni et al. (2014), dynamic conditions
contain inertial components. The model of interphase thin-walled inhomogeneity of
low stiffness is described by the connection of dynamic stresses with displacement
jumps on the surface of the non-ideal contact of the matrix and the fiber and assumes
the ratio of the elastic parameters of the thin-walled element to the elastic parameters
of the adjacent components of the same order of magnitude as the relative thickness
of the inhomogeneity. At the same time, the stress on the fiber contour is a continuous
function. Such conditions are known in the literature as spring-type conditions. With
the application of the obtained contact conditions of the matrix and the fiber, a
simplified version of the problem of the scattering of plane SH-waves is formulated.

The numerical analysis of the wave field in the far scattering zone was carried out
on the basis of the ratios of the null-fieldmethod. It was found that at low stiffnesses of
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interphase inhomogeneity, the spectra of scatteredwaves have a pronounced resonant
character, and their background practically does not depend on the ratio of the shear
moduli of the matrix and the fiber. For a family of inclusions, the contour of which is
given by a parametric equation and layers of constant thickness, analytical values of
low-frequency resonances were obtained depending on the mechanical parameters
of the layer, its thickness, and parameters characterizing the shape of the inclusion.
For the values of the contrast parameter of the material of a thin interphase layer of
the order of its thickness in the low- and medium-frequency ranges, the scattering
amplitude spectra do not have a resonant character; with an increase in the wave size
of the scatterer, the difference between the levels of these amplitudes is equalized.
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Chapter 18
3D Time-Harmonic Elastic Waves
Scattering on Shell-Like Rigid Movable
Inclusions

Roman Kushnir, Iaroslav Pasternak, and Heorhiy Sulym

18.1 Introduction

Inclusion and inhomogeneity problems are widely studied since they have many
applications in modeling the behavior of composite materials (Kachanov and Sevos-
tianov 2018), as well as analysis of fracture of such inhomogeneous solids
(Murakami 2002). In modeling material inhomogeneities (including cracks and rigid
inclusions), two main approaches are used (Pasternak and Sulym 2021): (1) mod-
eling, which considers the real geometry of the inhomogeneity, or (2) those using
simplified geometry. The second approach is very important in the analysis of the
influence of thin inhomogeneities because it efficiently couples with the boundary
layer effect that significantly affect the accuracy of the first approach in this case.

However, due to the mathematical complexity, there are few studies of the elas-
todynamic problems for solids containing thin inhomogeneities. In the case of the
3D problems, penny-shaped cracks (Kit et al. 1996) or plane disk-shaped inclusions
(Mykhas’kiv and Khay 2009; Mykhas’kiv et al. 2008) are mainly considered. The
authors did not find the studies of the elastodynamics of solids containing thin shell-
like inhomogeneities of arbitrary shape, particularly perfectly rigid ones.

Therefore, this paper presents a general boundary element approach, which allows
analysis of time-harmonic elastodynamic problems for solids containing rigid mov-
able arbitrarily shaped shell-like inhomogeneities (or even fixed inclusions if their
mass tends to infinity). Boundary integral equations and the mathematical models
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of rigid shell-like inclusions are derived, and the issues on the problem’s numerical
solution are studied in detail.

18.2 Problem Statement. Boundary Integral Equations

Consider the elastodynamic problem for a linear elastic anisotropic solid. The equa-
tions of its motion in a fixed rectangular coordinate system Ox1x2x3 are well known
and can be written as (Achenbach 1973)

σi j, j − ρüi = − fi , (18.1)

where σi j (x, t), ui (x, t), and fi (x, t) are the components of stress tensor, displace-
ment vector, and body force vector, respectively; ρ is the mass density. Einstein
summation and differentiation (with respect to spatial coordinate) conventions are
assumed. Newton’s (dot) notation is used for differentiation with respect to time
variables.

The stress–strain relation (Hook’s law) for a linear elastic anisotropic solid can
be written as (Achenbach 1973)

σi j = Ci jkmuk,m, (18.2)

whereCi jkm is the fourth-order tensor of elastic moduli. This tensor possesses several
symmetry properties, one of which is

Ci jkm = Ckmi j . (18.3)

Consider the steady-state time-harmonic motion of the solid when the displace-
ment field can be presented as

ui (x, t) = ũi (x) exp (−iωt) . (18.4)

Then (18.1) can be written as

σ̃i j, j + ρω2ũi = − f̃i , (18.5)

which defines the steady-state time-harmonic motion of the solid.
In general, boundary integral dependencies for elastodynamic problems are

derived using theMaxwell–Betti reciprocal work theorem (Dominguez 1993). How-
ever, this approach has less extensibility, particularly in the case of quasicrystal
materials.

In contrast, this chapter uses the symmetry property (18.3) and the governing
Eqs. (18.2) and (18.5) to obtain the boundary integral formula and equations. For
this purpose, first consider two arbitraryC2-differentiable vector functions φi ,ψi and
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a symmetric fourth-order tensor Ai jkm = Akmi j resembling the symmetry property
(18.3).With the help of direct differentiation, it can be easily shown that the following
differential identity holds

∂

∂x j

(
φi Ai jkmψk,m − ψi Ai jkmφk,m

) = φi, j Ai jkmψk,m + φi Ai jkmψk, jm

− ψi, j Ai jkmφk,m − ψi Ai jkmφk, jm . (18.6)

Since Ai jkm = Akmi j , we can write that

φi, j Ai jkmψk,m = φi, j Akmi jψk,m = ψi, j Ai jkmφk,m,

and therefore (18.6) can be simplified:

∂

∂x j

(
φi Ai jkmψk,m − ψi Ai jkmφk,m

) = φi Ai jkmψk, jm − ψi Ai jkmφk, jm . (18.7)

Integrating of (18.7) over the 3D domain B and utilizing Gauss divergence the-
orem, the following integral identity is obtained:

∫∫

∂B

(
φi Ai jkmψk,m − ψi Ai jkmφk,m

)
n jdS

=
∫∫∫

B

(
φi Ai jkmψk, jm − ψi Ai jkmφk, jm

)
dV, (18.8)

where ∂B is the boundary of the domain B and n j are the components of a unit
outward normal vector to the surface ∂B.

Now, we can assume that B is the domain occupied by the solid, φi ≡ ũi ,
Ai jkm = Ci jkm and ψi ≡ Ũpi , where Ũpi is the fundamental solution of (18.5) for
fi = δi pδ (x − x0). Here, δi j is the Kronecker symbol, and δ (x) is the Dirac delta
function. Applying these substitutions to (18.8), we obtain

∫∫

∂B

(
ũiCi jkmŨpk,m − ŨpiCi jkmũk,m

)
n jdS

=
∫∫∫

B

(
ũiCi jkmŨpk, jm − ŨpiCi jkmũk, jm

)
dV . (18.9)

According to (18.2) and (18.5),

Ci jkmũk, jm + ρω2ũi = − f̃i ,

Ci jkmŨpk, jm + ρω2Ũpi = −δi pδ (x − x0) ; (18.10)

using the standard notation for the traction vector
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t̃i = σ̃i j n j = Ci jkmũk,mn j , T̃pi = Ci jkmŨpk,mn j , (18.11)

Equation (18.9) can be rewritten as

∫∫

∂B

(
T̃pi ũi − Ũpi t̃i

)
dS =

∫∫∫

B

ũi
(
−ρω2Ũpi − δi pδ (x − x0)

)
dV

−
∫∫∫

B

Ũpi

(
−ρω2ũi − f̃i

)
dV .

(18.12)

The terms with ρω2 cancel each other, and (18.12) can be rearranged as

ũ p (x0, ω) =
∫∫

∂B

Ũpi (x − x0, ω) t̃i (x, ω) dS (x)

−
∫∫

∂B

T̃pi (x − x0, ω) ũi (x, ω) dS (x)

+
∫∫∫

B

Ũpi (x − x0, ω) f̃i (x, ω) dV (x) .

(18.13)

Equation (18.13) presents Somigliana integral identity for time-harmonic elasto-
dynamics of linear elastic anisotropic solids. It should be emphasized that (18.13)
is obtained accounting only for the partial symmetry property (18.3) of the elas-
ticity tensor. Thus, the proposed approach for obtaining such integral formulae can
be naturally extended to the cases of other materials, which possess symmetry of
their material properties similar to (18.3). One of the possible extensions of these
results can be obtained for quasicrystal materials, in which material constants can be
arranged in the fourth-order array, which satisfies (18.3) (Fan et al. 2022).

Approaching internal point x0 ∈ B to some boundary point xB ∈ ∂B, (18.13)
results in theboundary integral equations of elastodynamics,whichnaturally accounts
for the Dirichlet

(
ũi (x, ω) = ũg

i (x, ω)
)
or the Neumann

(
t̃i (x, ω) = t̃ gi (x, ω)

)

boundary conditions at x ∈ ∂B. Besides, mixed boundary conditions can also be
easily considered. Due to the properties of the time-harmonic elastodymanic Green’s
function (Wang and Achenbach 1995) for a smooth boundary at the point xB ∈ ∂B,
we obtain

1

2
ũ p (xB, ω) =

∫∫

∂B

Ũpi (x − xB, ω) t̃i (x, ω) dS (x)

−
∫∫

∂B

T̃pi (x − xB, ω) ũi (x, ω) dS (x)

+
∫∫∫

B

Ũpi (x − xB, ω) f̃i (x, ω) dV (x) .

(18.14)
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If there is a smooth surface S of field discontinuity, (18.14) can be rewritten as
(Pasternak et al. 2017)

1

2
	ũ p (xB, ω) =

∫∫

S
Ũpi (x − xB, ω) 	 t̃i (x, ω) dS (x)

−
∫∫

S
T̃pi (x − xB, ω) 
ũi (x, ω) dS (x)

+
∫∫∫

B

Ũpi (x − xB, ω) f̃i (x, ω) dV (x) ,

(18.15)

where	 f = f + + f −,
 f = f + − f −, and superscripts “+” and “–” stand for field
values on the faces S+ and S− of the cut obtained with the discontinuity surface S.

Differentiating (18.15) with respect to spatial coordinates and applying Hook’s
law (18.2), the hypersingular integral equations can be obtained, which along with
(18.15) allows determination of field values on each of the faces S+ and S−,

1

2

t̃i (xB, ω) =

∫∫

S
D̃i jk (x − xB, ω) n j (x) 	 t̃k (x, ω) dS (x)

−
∫∫

S
S̃i jk (x − xB, ω) n j (x) 
ũk (x, ω) dS (x)

+
∫∫∫

B

D̃i jk (x − xB, ω) n j (x) f̃k (x, ω) dV (x) .

(18.16)

Here,
D̃i jk = −Ci jmpŨmk,p, S̃i jk = −Ci jmpCkqrsnqŨmr,ps . (18.17)

18.3 A Mathematical Model of a Rigid Shell-Like Inclusion

In this study, a rigid shell-like inclusion is proposed tomodelwith a surface of traction
discontinuity, simplifying its modeling and excluding the influence of the boundary
layer effect that is significant in the numerical analysis of problems involving thin
shapes.

Assume that a solid contains n rigid shell-like inhomogeneities with finite mass
density ρ i. Accounting for kinematics of a rigid body motion, the mathematical
model of the rigid shell-like inclusion can be written as

1

2
	ũi

(
xk

) = ũki + εi jmω̃k
j x

k
m, 
ũi = 0 ∀xk ∈ Sk (k = 1, ..., n) , (18.18)
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where ũki is the amplitude of the rigid translation of the kth inclusion and ω̃k
j is its

rotation; εi jm is a permutation tensor.
Accounting for its small thickness 2hk , the equations of steady-state time-

harmonic motion of the kth inclusion can be written as
∫∫

Sk

	 t̃i (x) dS (x) − hkρ
iω2

∫∫

Sk

	ũi (x) dS (x) − P̃k
i = 0, (18.19)

εi jm

(∫∫

Sk

x j	 t̃m (x) dS − hkρ
iω2

∫∫

Sk

x j	ũm (x) dS
)

− Mk
i = 0, (18.20)

where P̃k
i and Mk

i are the resultant amplitudes of the external forces and couples
applied to the kth inclusion, respectively.

Substituting (18.18) into (18.19) and (18.20), accounting for the triple product
expansion, we obtain

∫∫

Sk

	 t̃i (x) dS (x) − 2hk Skρ
iω2

[
ũki + εi jmω̃k

j x
Ck
m

] − P̃k
i = 0, (18.21)

εi jm

∫∫

Sk

x j	 t̃m (x) dS (x) − Mk
i

− 2hkρ
iω2

[
εi jm ũ

k
mx

Ck
j Sk + ω̃k

i J
(k)
pp − ω̃k

p J
(k)
i p

]
= 0, (18.22)

where

xCk
m = S−1

k

∫∫

Sk

xmdS (x)

is the center of mass of the kth inclusion, and

J (k)
i p =

∫∫

Sk

xi x pdS (x)

are its moments of inertia about the coordinate axes.
When ρ i → ∞, (18.18), (18.21), and (18.22) result in the model of a rigid fixed

(unmovable) shell-like inclusion, i.e., 	uki = 0.
Equations (18.15), (18.18), (18.21), and (18.22) allow us to solve the time-

harmonic elastodynamics problems for anisotropic solid with rigid shell-like inclu-
sions.
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18.4 Boundary Element Solution of the Problem

18.4.1 General Issues of the Boundary Element Solution

For the boundary element solution of derived boundary integral equations for a
particular problem, for the surface ∂B of the solid along with inclusion surfaces
Sk , mesh of quadrilateral quadratic discontinuous boundary elements is generated.
The local curvilinear coordinate system Oξη is associated with each boundary ele-
ment, moreover, −1 � ξ � 1, −1 � η � 1. The collocation points are placed at
nodes ξ = (−2/3; 0; 2/3); η = (−2/3; 0; 2/3). Therefore, nine collocation points
are associated with each boundary element (Pasternak et al. 2017).

Boundary conditions along with unknown boundary and discontinuity functions
are interpolated within the collocation points at each boundary element �N as

bN (ξ, η) =
3∑

i=1

3∑

j=1

bi, jN φi (ξ) φ j (η) , (18.23)

where b = (

ũi , 	 t̃i

)T
, and the discontinuous shape functions φi (ξ) are selected

the same as in Pasternak et al. (2019).
Substituting (18.23) into the boundary integral Eqs. (18.15), (18.18), (18.21), and

(18.22), we obtain the system of linear algebraic equations for unknown nodal values
of sought discontinuity functions and translations and rotations of inclusions.

Due to the 1/r singularity of the kernel Ũi j (x, ω) (Wang and Achenbach 1995),
(18.15) results in weakly and strongly singular integrals. Techniques for evaluating
arising regular, weakly, strongly, and hypersingular integrals are explicitly described
in Pasternak et al. (2017, 2019).Weakly singular integrals are evaluated in polar coor-
dinates; thus, the Jacobian cancels the 1/r singularity. Singular integrals are evaluated
in polar coordinates using special modified Kutt quadratures with Chebyshev nodes
(Pasternak et al. 2017),which allow accurate determination ofCauchy principal value
and Hadamard finite part of the arising integrals. These techniques allow accurate
analysis of solids containing discontinuity surfaces of arbitrary smooth shape.

18.4.2 Evaluation of Kernels for Anisotropic Materials

Wang and Achenbach (1995) used the Radon transform technique to obtain the
solution of (18.10) in the form

Ũi j (x − x0, ω) = Ũ S
i j (x − x0) + Ũ R

i j (x − x0, ω) , (18.24)

where Ũ S
i j is the static Green’s function for infinite space,
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Ũ S
i j (x, y) = 1

8π2 |x|
∮

|n|=1
n·x=0

�−1
i j (n) dl (n)

and

Ũ R
i j (x, ω) = i

4π2

∫

|ξ|=1
ξ·x>0

3∑

m=1

kmEim E jm

2ρc2m
eikm |ξ·x|dS (ξ) . (18.25)

Here, Ei j are eigenvectors corresponding to eigenvalues λ j of the symmetric and
positive defined matrix �ik (ξ) = Ci jkmξ jξm , and

cm =
√

λm
/
ρ, km = ω

/
cm . (18.26)

The static Green’s function Ũ S
i j for anisotropic solids and its derivatives are

reduced to the contour integrals, which are efficiently evaluated using the trape-
zoid rule (Pasternak et al. 2017) due to its exponential convergence for integrals over
a periodic interval.

However, the numerical evaluation of Ũ R
i j (x − x0, ω) is a challenging problem,

since the term exp{ikm |ξ · x|} is highly oscillating with increase in ω and ρ. There-
fore, special techniques should be used for its evaluation (e.g., see (Evans andWebster
1997; Iserles and Norsett 2005)).

To proceed with the derivatives of Green’s function, first, recall that

∂ exp (ikm |ξ · x|)
∂xp

= ikmξpsign (ξ · x) exp (ikm |ξ · x|) ,

and since dsign(x)/dx = 2δ(x), and exp (0) = 1,

∂2 exp (ikm |ξ · x|)
∂xq∂xp

= ikmξqξp
[
2δ (ξ · x) + ikm exp (ikm |ξ · x|)] .

Therefore,

Ũ R
i j,p = − 1

4π2

∫

|ξ|=1
ξ·x>0

3∑

m=1

k2mEim E jmξp

2ρc2m
eikm |ξ·x|dS (ξ) , (18.27)

Ũ R
i j,pq = − i

4π2

∫

|ξ|=1
ξ·x>0

3∑

m=1

k3mEim E jmξpξq

2ρc2m
eikm |ξ·x|dS (ξ)
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− ρω2

4π2

∫

|ξ|=1
ξ·x>0

3∑

m=1

EimE jmξpξq

λ2
m

δ (ξ · x) dS (ξ) . (18.28)

Since EimE jmλ−2
m = �−2

i j (ξ), (18.28) is reduced to

Ũ R
i j,pq = − i

4π2

∫

|ξ|=1
ξ·x>0

3∑

m=1

k3mEim E jmξpξq

2ρc2m
eikm |ξ·x|dS (ξ)

− ρω2

8π2 |x|
∫

|ξ|=1
ξ·x=0

�−2
i j (ξ) ξpξqdl (ξ) . (18.29)

Note that the second term in (18.29) is real-valued and weakly singular. Also,
the second integral in (18.29) is a contour integral over a unit circle evaluated in the
plane ξ · x = 0.

Thus, the techniques proposed in Pasternak et al. (2017) to find kernel function
integrals can also be applied in the case of time-harmonic elastodynamic problems.

18.4.3 Evaluation of the Generalized Stress Intensity Factors

Since the kernel functions possess the same singular behavior as in the static prob-
lems, dynamic stresses also possess square root singularity at the front line of the
shell-like inhomogeneity (Pasternak et al. 2019).According toPasternak et al. (2019),
the stress field in front of the inclusion in a local coordinate system Aτnm ∼ Ax1x2x3
(where τ is a unit vector normal to inclusion front line at the point A; n is a unit
vector normal to inclusion surface at the point A, and m = τ × n is a unit vector
tangential to inclusion front line) is defined as

σ̃1 = [
σ̃i1

] = 2√
2π

Im
{
B

〈
p∗Z

−1/2
∗

〉
ATk̃(2)

}
,

σ̃2 = [
σ̃i2

] = −2√
2π

Im
{
B

〈
Z−1/2

∗
〉
ATk̃(2)

}
,

(18.30)

where 〈
Z−1/2

∗
〉 = diag

[
(x1 + p1x2)

−1/2 , . . . , (x1 + p3x2)
−1/2

] ;

the matrices A, B and constants pα (α = 1, . . . , 3) are determined from the Stroh
eigenvalue problem, and the generalized stress intensity factor vector k̃(2) =
[K12, K22, K32]T is defined as
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k̃(2) = − lim
x→x(A)

√
πs (x)

2
	 t̃ (x) . (18.31)

Extended stress discontinuity 	t̃ in (18.31) is computed in a local coordinate
system Aτnm ∼ Ax1x2x3. Here, s (x) is an arc length evaluated from x to A along
the cross section of the inclusion with the plane (n, τ ).

Special shape functions (Pasternak et al. 2019) are used on the front boundary
elements to account for a square root singularity (18.31) of stress discontinuity.

18.5 Numerical Example

Without loss in generality, consider an isotropic elastic medium with Poisson’s ratio
ν = 0.3. Such a choice of material is made to show the effect of a shell-like inho-
mogeneity on time-harmonic wave scattering. Then we have a test solution, which
can be applied to the study of anisotropy influence on wave scattering.

Assume that a plane longitudinal wave is acting on the medium, which equation
writes as

uin3 (x) = −iaω−1ω∗ exp
(
iωx3

/ (
aω∗)) , uin1 (x) = 0, uin2 (x) = 0.

Here, ω∗ = c2/a, c22 = ρ−1μ, a is a linear distance and μ is the shear modulus
of the material. The corresponding stress components in the incident wave are as
follows:

σ in
i j (x) = Ci j33 exp

(
iωx3
aω∗

)
.

Assume that the consideredmedium contains a shell-like inclusion, which surface
is given by the following equation of elliptic paraboloid of revolution:

x3 = ε

a

(
x21 + x22

)
, x21 + x22 ≤ a2,

where ε is the dimensionless parameter. If ε = 0, we obtain a penny-shaped inclusion
of a radius a.

Assuming 2h = 0.02a (the thickness of the shell-like inclusion) and ρi = 103ρ
(the mass density of the inclusion), consider the influence of ω̃ = ω/ω∗ and ε on
inclusion vibration ũ0i = u0i /a and generalized stress intensity K̃i = Ki2/K0 on its
front line. Here K0 = C3333

√
πa.

The numerical solution is performed with the developed boundary element
approach. Only 12 quadrilateral boundary elements are used following (Pasternak
et al. 2019), where results were obtained for static problems.

Figures 18.1, 18.2, and 18.3 depict the magnitude of K̃i over the inclusion front
line for different values of ε, which changes from 0 to 0.8 with a step 0.2. Solid lines
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Fig. 18.1 Magnitude of K̃1
at the front line of paraboloid
rigid inclusion

correspond to ω/ω∗ = 1, and dotted ones to ω/ω∗ = 2. We observe the significant
influence of vibration frequency ω on the stress intensity at the inclusion front line.
Also, the obtained values demonstrate high consistency with the underlying physical
processes. Since the problem is geometrically symmetric, the symmetry in gener-
alized stress intensity factors is also observed. For rigid disk inclusions, obtained
values of generalized stress intensity factors agree with the analytic solution given
in Mykhas’kiv and Khay (2009), Achenbach (1973).

It is interesting that in contrast to static problems (Pasternak et al. 2019), gener-
alized stress intensity factor K̃3 also possesses nonzero value for ε > 0 due to wave
scattering and interference, which can also be referred to modeling of the geometry
of the paraboloid of revolution with a discrete number of quadratic quadrilateral
boundary elements. Nevertheless, this does not sufficiently influence the solution
since K̃3 is much smaller than other generalized stress intensity factors. Moreover,
if the number of boundary elements is doubled, the value of K̃3 decreases approxi-
mately ten times, which also proves that this effect is due to the boundary element
modeling of the shape of inhomogeneity.

Figure 18.4 depicts the dependence of displacement amplitude of rigid inclusion
ũ03 on ε. Solid lines correspond to ω/ω∗ = 1, and dotted ones to ω/ω∗ = 2. Other
components of u0i and their rotation amplitudes ω̃0

i are zeros due to the symmetry of
the problem.

According to Fig. 18.4, with the elongation of the paraboloid, its displacement
amplitude possesses a significant phase shift. With the increase in ω, displacement
amplitude decreases because the selected inclusion’s mass density is much greater
than the density of the medium. Nevertheless, there can be some resonance effects
that definitely should be studied further.
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Fig. 18.2 Magnitude of K̃2
at the front line of paraboloid
rigid inclusion

Fig. 18.3 Magnitude of K̃3
at the front line of paraboloid
rigid inclusion
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Fig. 18.4 Dependence of
inclusion rigid displacement
amplitude ũ03 on ε

Fig. 18.5 Dependence of

Re
(
K̃2

)
on ω

Let us consider the influence of vibration frequency ω and the mass density ρ i of
inhomogeneity on the stress intensity and rigid displacement of the inclusion. The
dependence of Re(K̃2) on ω, ρ i and ε is presented in Fig. 18.5, and corresponding
plots forRe

(
ũ03

)
are given inFig. 18.6. Solid lines correspond to ε = 0 anddotted ones

to ε = 0.4. Figures 18.5 and 18.6 show some resonance phenomena exist. For bigger
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Fig. 18.6 Dependence of
Re

(
ũ03

)
on ω

values of ρ i, the resonant frequency is lower, which also fits the physical background
of the problem since the frequency of mass vibrating on a spring is lower for bigger
mass

(
ω2 = k/m

)
. We can also observe that the maximum values of Re (K2) a

slightly lower for ε = 0.4 compared to ε = 0 since the paraboloid (ε = 0.4) has a
more streamlined shape than a rigid disk (ε = 0). The resonant frequencies for ũ03
are the same that those for K̃2.

18.6 Conclusions

The paper presents a thorough approach to the analysis of isotropic and anisotropic
solids containing rigid movable shell-like inclusions. Obtained boundary integral
equations and inclusionmodels, alongwith the resulting boundary element approach,
are presented so that they can be extended tomore general problems of time-harmonic
magnetoelectroelasticity of anisotropic solids.

Presented numerical examples show good agreement with the physical nature
of the considered wave processes, which verifies obtained results and approves the
efficiency of the proposed approach.
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Chapter 19
Dynamics of an Asymmetrical
Three-Layer Spherical Dome With an
Inhomogeneous Filler Under a
Concentrated Impact

Peter Lugovoi and Serhii Orlenko

19.1 Introduction

The effective load-bearing capacity of three-layer shell structures makes them very
useful in various engineering applications. The continuous development of new struc-
tures leads to the creation of materials for complex structures with predefined proper-
ties, which requires careful analysis. Many works in the literature study the dynam-
ics of layered shells with reinforcements and technical features by various methods
(Librescu and Hause 2000; Lugovoi et al. 2020; Lugovyy et al. 2019; Surianinov
et al. 2019). However, the creation of advanced technologies and special-purpose
objects often leads to the need to develop structural three-layer shell elements with an
aggregate of a complicated geometric structure. These elements are often subjected
to various dynamic loads, including non-stationary loads. The dynamic behavior
of such shells has not been sufficiently studied. This chapter considers asymmet-
ric three-layer spherical shells with a discrete-symmetric light filler reinforced with
ribs. The reinforcing ribs are located along the lines of the main curvatures and con-
nect the load-bearing layers. The distances between the reinforcing ribs are much
larger than the size of their cross sections. The load-bearing layers of such shells
have different thicknesses and can be made of different materials. In such structures,
there is a stress–strain state with significant displacement and stress gradients when
dynamic loads are applied. In this case, it is advisable to apply the theory of lay-
ered shells using independent hypotheses for each layer (Li et al. 2008; Piskunov
and Rasskazov 2002). It increases the general order of the system of equations but
allows for a more detailed study of the dynamic behavior of the three-layer structure
under dynamic loads. The problem’s solution is based on the theory of shells and rods,
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based on Timoshenko’s shearmodel using independent static and kinematic hypothe-
ses for each layer. The variational principle of Hamilton–Ostrogradsky stationarity
is used to derive the equations of oscillations of a three-layer non-homogeneous
structure. Many works (Hause and Librescu 1998, 2007; Hohe and Librescu 2003;
Malekzadeh et al. 2014; Senitsky et al. 1997; Timoshenko and Woinowsky-Krieger
1959) are devoted to studying the dynamics of layered spherical shells. The study of
the dynamics of three-layer spherical shells with a discrete heterogeneous aggregate
under non-stationary loads was initiated in Orlenko (2020), Lee and Lee (1997),
Lugovoi et al. (2020a), Lugovoi et al. (2020b), Meish and Shtantsel (2002), Shul’ga
et al. (2003), where the related problems were solved by the finite difference method.
However, the light aggregate between the load-bearing layers and the reinforcing
ribs significantly complicates the problem. Therefore, the finite element method was
used to study the dynamics of three-layer asymmetric spherical shells with a discrete-
symmetric light, reinforcing rib aggregate (Lugovoi et al. 2020; Lugovyi andOrlenko
2021; Lugovyi et al. 2021).

Some new numerical results of solving specific problems are given in this chapter,
and new mechanical effects are revealed.

19.2 Formulation of the Problem—Basic Equations

A three-layer asymmetric spherical shell with light aggregate reinforced with
discrete-symmetric ribs is an elastic structure consisting of internal (index 1), exter-
nal (index 2) load-bearing layers, light aggregate (index t), and a set of discrete
ribs (index j), rigidly connected to the specified load-bearing layers. The shell has
a constant total thickness h with a smooth median surface in the orthogonal coor-
dinate system α, z. The coordinate line Rα on the shell’s middle surface at z = 0
coincides with the generating line; the coordinate line z is a straight line orthogonal
to the median surface. We consider the value of z to be positive if the point is on the
side of the convexity of the middle surface. Discrete ribs and light aggregate rigidly
connect the shells. The type of deformed state of the inner and outer load-bearing
layers can be determined by components of the generalized displacement vector
Ū1 = (u1s , u

1
3, ϕ

1
1)

T and Ū2 = (u2s , u
2
3, ϕ

2
1)

T (Timoshenko and Woinowsky-Krieger
1959). The displacement fields for a light filler are determined by the generalized
displacement vector Ūt = (uts, u

t
3, ϕ

t
1)

T according to the model proposed in Frostig
and Thomsen (2004). The deformed state of the reinforcing rib directed along the cir-
cumferential coordinate will be determined by the generalized displacement vector
Ū j = (u j

s , u
j
3, ϕ

j
1 )

T (Meish and Shtantsel 2002).
The coefficients of the first quadratic form and the curvature of the coordinate

surface are written as follows: A1 = Ri , A2 = Ri , k1 = 1/Ri , and k2 = 1/Ri .
According to the theory of shear deformation in shells (Timoshenko and

Woinowsky-Krieger 1959), the displacements ui1 and ui3 in the load-bearing lay-
ers with small linear displacements in the direction α (longitudinal), z (thickness),
and t (time) are expressed as
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ui1(s, z, t) = ui0(s, t) + ziϕi
1(s, t),

ui3(s, z, t) = ui03(s, t) (i = 1, 2),
(19.1)

where ϕi
1 is the angle determining the middle surface normal to load-bearing layers,

s = Rα.
Based on the assumptions of a rigid connection of reinforcing ribs with spherical

load-bearing layers, the contact conditions of mass centers of the ribs with the load-
bearing layers are written as (Meish and Shtantsel 2002)

u j
1 = u jk

1 (s j ) ∓ Hj

2
ϕ

jk
1 (s j ), u j

3 = u j
3k(s j ), ϕ

jk
i (s j ) (k = 1, 2), (19.2)

where s j = Rα j is the coordinate of the line that contains projections of mass centers
of j th rib cross sections onto the corresponding median surface of a load-bearing
layer:

hij = 0.5hi + Hi

2
,

where hi (i = 1, 2) are the thicknesses of spherical load-bearing layers; Hj/2 is the
distance from the axis of j th edge to the surface of the smooth shells; and ht = Hj

is the thickness of light aggregate.
The deformation ratios for the load-bearing layers and the j th edge are taken as

follows:

εi11 = ∂Ui
0

∂Si
+ ui03

ri
, εi22 = ui0

ri
cot α + ui03

ri
,

εi13 = ϕi
1, κ i

11 = ∂ϕi
1

∂Si
, κ i

22 = ϕi
1

ri
cot α, ε22 j = u3 j

r j
.

(19.3)

Expressions for displacements of light filler are written according to the model
(Frostig and Thomsen 2004):

ut1(s, z, t) =
(
1 + zt

Rt

)
ut0(s, t) + ztu

t
1(s, t), ut3(s, z, t) = ut03(s, t). (19.4)

Kinematic dependences for the aggregate are taken based on small deformations:

εt11 = 1

1 + (zt/Rt )

(
∂ut0
∂s

+ ut03
Rt

)
, εt22 = ut3

Rt + zt
,

2εt13 = 1

1 + (zt/Rt )

(
∂ut03
∂s

− ut0
Rt

)
+ ut1.

(19.5)

The compatibility conditions, which provide for an ideal connection between the
aggregate and the load-bearing layers without detachment and slipping, can be pre-
sented in the following form (Kheirikhah et al. 2011):
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ut1(z = zit ) = ui0 + 1
2 (−1)khiϕi

1
ut03 = ui03,

(19.6)

where

k =
{
0, i = 1

1, i = 2
, zit = ht

2

{
−1, i = 1

1, i = 2
.

Using the expressions for the field of displacements for the load-bearing layers
(19.1) and the light aggregate (19.4) as well as the conditions of continuity of dis-
placements for interlayer (19.6), we derive the simplified compatibility conditions:

ut0 = u10 + u20
2

− 1
4

(
h2ϕ2

1 − h1ϕ1
1

)
,

ut1 = u10 − u20
ht

− 1

2ht

(
h2ϕ2

1 + h1ϕ1
1

)
,

ut03 = 1
2

(
u103 + u203

)
.

(19.7)

The equations of motion for load-bearing layers and light aggregate are derived
using the Hamilton–Ostrogradsky variational principle of stationarity, according to
which

δ

∫ t2

t1

(K − P + A)dt = 0, (19.8)

where P is the total potential energy of the elastic system, K is the total kinetic energy
of the elastic system, A is the work of external forces, and t1 and t2 are fixedmoments
of time. When deriving the equations of oscillations of three-layer shells with a light
aggregate, the components of the movements of the load-bearing layers, reinforcing
ribs, and aggregate made of light material are subject to independent variation.

Expressions for variations of the total potential and kinetic energy of the indicated
components are written in the form:

δP = δ

2∑
i=1

Pi + δ

J∑
j=1

P j + δ
∑
St

Pt ,

δK = δ

2∑
i=1

K i + δ

J∑
j=1

K j + δ
∑
St

K t ,

(19.9)

where

δPi =
∫
Si

[ ∫ hi/2

−hi/2
(T i

11δε
i
11 + T i

22δε
i
22 + T i

13δε
i
13 (19.10)

+ Mi
11δκ

i
11 + Mi

22δκ
i
22)dzi

]
dSi



19 Dynamics of an Asymmetrical Three-Layer Spherical Dome . . . 333

δPt =
∫
St

[ ∫ ht/2

−ht/2
(T t

11δε
t
11 + T t

22δε
t
22 + T t

13δε
t
13 (19.11)

+ Mt
11δκ

t
11 + Mt

22δκ
t
22)dzt

]
dSt

δP j =
∫
L j

(T11 jδε11 j + T22 jδε22 j + T13 jδε13 j + M11 jδκ11 j )dL j (19.12)

δK i =
∫
Si

{∫ hi/2

−hi/2

[
ρi hi

(
∂2ui1
∂t2

∂ui1 + ∂2ui03
∂t2

∂ui03

)
(19.13)

+ ρi
h3i
12

(
∂2ϕi

1

∂t2
∂ϕi

1

) ]
dzi

}
dSi

δK t =
∫
St

[∫ ht/2

−ht/2
ρt ht

(
∂2ut0
∂t2

∂ut0 + ∂2ut1
∂t2

∂ut1 + h2t
12

∂2ut03
∂t2

∂ut03

)
dzt

]
dSt

(19.14)

δK j =
∫
L j

[
ρ j F

j

(
∂2u j

1

∂t2
∂u j

1 + ∂2u j
3

∂t2
∂u j

3

)
+ ρ j

(
I j
kr

∂2ϕ
j
1

∂t2
∂ϕ

j
1

)]
dL j . (19.15)

In (19.10)–(19.15), quantities F j and I j
kr correspond to geometric characteris-

tics of the transverse reinforcing ribs, ρ j is the specific weight of reinforcing rib
material, and ρ j ( j = 1, 2) and ρt are the specific weights of the load-bearing layer
and light aggregate materials, respectively. An internal axisymmetrically distributed
non-stationary normal load P1(s, t) (s and t are spatial and temporal coordinates)
is applied to an asymmetric three-layer spherical structure. It should be noted that
when calculating potential and kinetic energy for light aggregate in the expressions
δPt and δK t , integrals are evaluated over a volume that is increased by the volume
of reinforcing ribs. However, it does not practically affect the general error of the
shells theory since the volume of reinforcing ribs in the volume of light aggregate
for three-layer shells of rotation is less than 5%.

For a three-layer asymmetric spherical shell with a light aggregate reinforced with
discrete ribs under an axisymmetric impulse load, after the standard transformations
in the variational Eq. (19.8), taking into account (19.10)–(19.15), we obtain a ninth-
order system of hyperbolic equations of motion and the corresponding boundary and
initial conditions:

1

sin α

∂

∂si

(
sin αT i

11

) − 1

Ri

(
cot αT i

22 − T i
13

) − 1

Rt
T i
13 =ρi hi

∂2ui1
∂t2

,

1

sin α

∂

∂si

(
sin αT i

13

) − 1

Ri

(
T i
11 + T i

22

)

− 1

Rtht

(
Mt

11 + Mt
22

) + P2 =ρi hi
∂2ui3
∂t2

,
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1

sin α

∂

∂si

(
sin αMi

11

) − cot α

Ri
Mi

22 − T i
13 =ρi h3i

12

∂2ϕi
1

∂t2
,

1

sin α

∂

∂st

(
sin αT t

11

) + 1

Rt

(
T t
11 − T t

13

) + 8

h2t
Mt

13 =ρt ht
∂2ut0
∂t2

, (19.16)

1

sin α

∂

∂st

(
sin αMt

11

) − T t
13 + 1

Rt
Mt

13 =ρt ht
∂2ut1
∂t2

,

1

sin α

∂

∂st

(
sin αT t

13

) − 1

Rt

(
T t
11 + T t

22

) =ρt ht
∂2ut03
∂t2

,

[
T i±
11

]
j
= ρ j Fj

∂2u1 j
∂t2

,
[
T i±
13

]
j
=ρ j Fj

∂2u3 j
∂t2

,

[
Mi±

11

]
j =ρ j Ikr j

∂2ϕ1 j

∂t2
,

(i = 1, 2). The oscillations of asymmetric three-layer elastic structures are described
by two ninth-order systems of hyperbolic equations, which take into account the dis-
continuity coefficients of the load-bearing layers-reinforcing elements and the differ-
ence of material of the load-bearing layers. On the lines of breaks in the oscillation
Eq. (19.16), [T i±

11 ] j , [T i±
13 ] j and [Mi±

11 ] j correspond to the forces–moments acting on
the j th discrete element from the load-bearing layers.

The relations between the magnitudes of forces–moments and the corresponding
magnitudes of deformations for load-bearing layers and reinforcing ribs have the
form:

T i
11 = Eihi

1 − ν2
i

(
εi11 + νiε

i
22

)
, T i

22 = Eihi
1 − ν2

i

(
εi22 + νiε

i
11

)
,

T i
13 = k2Gi

13ε
i
13,

Mi
11 = Eih3i

12(1 − ν2
i )

(
κ i
11 + νiκ

i
22

)
, Mi

22 = Eih3i
12(1 − ν2

i )

(
κ i
22 + νiκ

i
11

)
,

T22 j = E j Fjε22 j ,

(19.17)

(i = 1, 2); E j , Gi
13, and νi are mechanical parameters of the material of the load-

bearing layers; k2 is the integral transverse shear coefficient of the theory of plates
and shells; and Fj are the cross-sectional area of the j th rib.

Forces and moments for light aggregate can be determined as follows:

T t
11 =

∫ ht/2

−ht/2

(
1 + zt

Rt

)
σ t
11dzt , T t

13 =
∫ ht/2

−ht/2
σ t
13dzt ,

Mt
11 =

∫ ht/2

−ht/2
zt

(
1 + zt

Rt

)
σ t
11dzt .

(19.18)

The equations of oscillations (19.16) are supplemented by the corresponding bound-
ary and initial conditions.
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19.3 Numerical Results

The problem of dynamic deformation of an asymmetric three-layer spherical dome
is considered. We solve the problem on the spatial interval [−π/2, π/2]. Due to the
symmetry about the top of the sphere at α = 0, the interval [0, π/2] is considered. To
reveal some effects, wewrite down the boundary conditions at α = 0 in the following
form:

uk1 = ϕk
1 = 0, 2

∂T k
13

∂s
− P2(s0, t)δ2k = ρh

∂2uk3
∂t2

, (19.19)

and besides, at α = π/2, we have rigid clamping:

uk1 = uk3 = ϕk
1 = 0, k = 1, 2. (19.20)

In (19.19), δ2k is the Kronecker symbol. The external load is as follows:

P2(s, t) =
{
A(1 − t/T ), 0 � t � T

0, t > T,
(19.21)

A = 106 Pa, T = R1/c = 5 · 10−5 s, c2 = E1/[ρ(1 − μ2
1)]. The initial conditions

are zero for the load-bearing layers at t = 0:

ui1 = ui3 = ϕi
1 = 0,

∂ui1
∂t

= ∂ui3
∂t

= ∂ϕi
1

∂t
= 0 (i = 1, 2). (19.22)

The discretely symmetric reinforcing edges (parallels) are located at the points αk =
[41 + 40(k − 1)]�α1, k = 1, . . . , 5.

The corresponding initial boundary value problem (19.16), (19.19)–(19.22) is
solved using the finite element method.We use the dependence between the potential
energy of deformations in a solid and the potential energy of tractions:

P = E − W, (19.23)

where E is the potential energy of deformations and W is the potential energy of
applied forces. After dividing the entire region into elements, (19.23) takes the form

P =
E∑

e=1

(
E (e) − W (e)

) =
E∑

e=1

π(e). (19.24)

Global stiffness matrix and global residual vector in the matrix equation

[K ]{U } = {F} (19.25)

can be defined in the following way:
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[K ] =
E∑

e=1

[
k(e)

]
, F = −

E∑
e=1

{
f (e)

}
. (19.26)

For the numerical solutions, we use the following values for geometric, physical,
andmechanical parameters: E1

1 = E j = 7 · 1010 Pa, ν j = ν1
1 = 0.3, ρ1 = ρ j = 2.1 ·

103 kg/m3, h1 = h2 = 0.005 m, h j = 2h2, R1 = 0.3 m, R2 = 0.302 m, Fj = 4 ·
10−5 m2, E2

2 = 2 · 1011 Pa, ρ2 = 7.8 · 103 kg/m3, ν2
2 = 0.3, (E1

1 + E2
2)/2Et = 50,

ρt = 25 kg/m3, νt = 0.33, and h/R = 0.075. The outer and inner load-bearing layers
are steel and AMG6 alloy, respectively.

To study the dynamics of the asymmetric three-layer spherical shell with a
discrete-symmetric light aggregate reinforcedwith ribs, we created the finite-element
model (Fig. 19.1), which included 43 200 finite elements and 52 680 nodes (A hemi-
sphere with five edges).

In Fig. 19.1a, the X Z cross-sectional view of the finite elementmodel for the foam
is shown. Next, in Fig. 19.1b, c, d, the models of the internal load-bearing layer, the
five ribs, and the outer load-bearing layer, respectively, are presented. Finally, in
Fig. 19.1e, a finite-element model of the three-layer shell with five ribs and foam
is shown. All the figures present the X Z section. Following (Rychkov 2013), three-
dimensional finite elements are used to guarantee the accuracy and reliability of the
obtained results.

We can obtain the stress state of a three-layer elastic structure of a spherical type
at any moment of time (we found the solution for 0 � t � 40T ). In Fig. 19.2, the
dependences of normal deflections in the middle surfaces of the load-bearing layers
u3 on the angular coordinate α are given in the reduced coordinates. The curves
with indexes 1 and 2 correspond to the internal and external load-bearing layers,
respectively, and are obtained at the moment of time t = 5.85T (time of reaching
the maximum of (1) and (2)). There is no light aggregate. Based on the presented
results, it is possible to evaluate the influence of the sphericity of the structure on the
antisymmetry of (1) and (2) along the spatial coordinate. The first natural frequency
of the design is 1440 Hz.

In Fig. 19.3, the dependence of normal stresses in the middle surfaces of the load-
bearing layers σ 1

22 (1) and σ 2
22 (2) on the coordinate α are shown. The light aggregate

is absent. Curve 1 corresponds to the stress σ 1
22 in the inner load-bearing layer of the

spherical shell and 2—σ 2
22 in the outer load-bearing layer (both curves are obtained

for t = 5.85T ). The first natural frequency of the design is 1440 Hz.
In Fig. 19.4, the dependence of normal deflections u13 (1) and u

2
3 (2) in the middle

surfaces of the load-bearing layers on the angular coordinate α are given. Curve
1 corresponds to the deflection u13 in the internal load-bearing layer of the spheri-
cal shell, and 2—the deflection u23 of the external load-bearing layer (both curves
correspond to the moment of time t = 9.55T ). The ratio of the modulus of elas-
ticity of the load-bearing layers to the modulus of elasticity of the light aggregate
(E1

1 + E2
2)/2Et = 50. The results show the influence of the sphericity of the struc-

ture and the light aggregate on the antisymmetry of the distribution of u13 (1) and u
2
3

(2) along the angular coordinate. The first natural frequency of the design is 1576 Hz.
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Fig. 19.1 Components of the finite-element model of a three-layer spherical shell with five ribs
and foam

In Fig. 19.5, the dependence of the normal stresses in the middle surfaces of the
load-bearing layers σ 1

22 (1) and σ 2
22 (2) on the coordinate are shown. The ratio of the

modulus of elasticity of the load-bearing layers to the modulus of elasticity of the
light aggregate (E1

1 + E2
2)/2Et = 50. Curve 1 corresponds to the stress σ 1

22 in the
internal load-bearing layer of the spherical shell, and 2—the stress σ 2

22 in the external
load-bearing layer (both curves are obtained for the moment of time t = 9.55T ). The
first natural frequency of the design is 1576 Hz.

Comparing the graphs in Figs. 19.2 and 19.5, we can conclude that light aggre-
gate significantly affects the nature of vibrations of the internal load-bearing layer. Its
frontal point changes the value of the normal deflection to the opposite, and the first
natural frequency of the structure changes by 9.5%. In addition, both graphs demon-
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Fig. 19.2 Dependencies of the maximum deflections u3 on the angle coordinates α at t = 5.85T
without light aggregate

Fig. 19.3 Dependencies of the maximum stresses σ22 on the angle coordinates α at t = 5.85T
without light filler

strate the ability of such asymmetric three-layer structures to dampen disturbances
from local shock loads.

It should also be noted that the compatibility conditions (see (19.6) and (19.7)),
which provide an ideal connection between the aggregate and the load-bearing layers
without detachment and slippage, cause the phenomenon of structural damping. It
can be explained by the fact that inertial terms of the light aggregate are added to
(19.16) when deriving the equations of oscillationswith accounting for the continuity
of movements (19.16). We can also conclude that a decrease in the thickness of the
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Fig. 19.4 Dependencies of the maximum u3 deflections on the angle coordinates α at t = 9.55T
at (E1

1 + E2
2 )/2Et = 50

Fig. 19.5 Dependencies of the maximum stresses σ22 on the angle coordinates α at t = 9.55T and
(E1

1 + E2
2 )/2Et = 50
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load-bearing layers and an increase in the thickness of the light aggregate leads to a
significant increase in the spectrum of natural frequencies of the structure.
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Chapter 20
Analytical and Numerical Solution of
Static Problems of Non-Circular
Cylindrical Shells

Volodymyr Maksymyuk, Evgen Storozhuk, and Ivan Chernyshenko

20.1 Introduction

Cylindrical shells of non-circular cross-sections (elliptical, oval, supercircular, and
parabolic) are widely used in modern engineering. In some cases, they are stronger,
more stable, and lighter (Soldatos 1999). For example, elliptical hollow profiles
combine in construction the advantages of round and rectangular profiles (Chan
et al. 2010). In aviation technology, the fuselage (Boulle et al. 2015) and hermetic
cabin (Zheleznov et al. 2006) of modern aircraft often have a non-circular cross-
section for reasons of aerodynamics, the layout of technological connections, and
the efficiency of using the internal volume.

In short shells, the ends are fixed in a certain way, so their stress–strain state (SSS)
is two-dimensional. On the other hand, in long shells, the SSS in any cross-section
can be assumed to be the same, so the boundary value problem is one-dimensional.
At first glance, two-dimensional problems should be more complicated than one-
dimensional ones. However, this is true for analytical methods, and for numerical
methods, it depends on the characteristics of the deformation of the shells and the
effectiveness of the methods.

Analytical (exact) solutions of problems for long cylindrical shells of non-circular
cross-sections have a double significance: they are important both from an engineer-
ing point of view and are tests for numerical methods. Moreover, they are significant
for mechanics problems, in which locking phenomena are considered (Maksimyuk
et al. 2012). More precisely, it is a problem of the deformation of a long cylindrical

V. Maksymyuk (B) · E. Storozhuk · I. Chernyshenko
S.P. Timoshenko Institute of Mechanics, National Academy of Science of Ukraine, Kyiv, Ukraine
e-mail: desc@inmech.kiev.ua

E. Storozhuk
e-mail: stevan@ukr.net

I. Chernyshenko
e-mail: desc@inmech.kiev.ua

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. N. Guz et al. (eds.), Advances in Mechanics, Advanced Structured Materials 191,
https://doi.org/10.1007/978-3-031-37313-8_20

343

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37313-8_20&domain=pdf
mailto:desc@inmech.kiev.ua
mailto:stevan@ukr.net
mailto:desc@inmech.kiev.ua
https://doi.org/10.1007/978-3-031-37313-8_20


344 V. Maksymyuk et al.

shell with an elliptical cross-section under internal pressure due to large bends under
small tension.

This one-dimensional problem has a 150-year history (Bresse 1866, p. 326–338).
However, the first analytical solutions were oversimplified. For a shell (actually,
a ring) under internal pressure, the solution mentioned above (Bresse 1866) gave
moments and displacements in two sections of symmetry planes that have different
signs (which is correct for high ellipticity) but equal in absolute value (which is a
simplification).

Correct results, apparently for the first time (1930), were obtained by Timoshenko
and published in the first edition of the monograph (Timoshenko 1941) (second edi-
tion). Themoments were calculated using a table of some coefficients for several val-
ues of the ellipse aspect ratio. However, the procedure for obtaining these coefficients
was not specified and remained unknown. Further, in 1965, Roark (Young and Budy-
nas 2002) presented extended similar tables and gave formulas for calculating correc-
tions in the case of a non-uniformmoment of inertia of the ring (of variable thickness).
The subsequent history of the development of analytical and graphical methods is
briefly described in Holland (1976). In fact, this problem and Timoshenko’s table
(Timoshenko 1941) in particular became a reliable test for further research.

In the publications on this problem, which appeared after the works mentioned
above, SSS (Grigorenkoc et al. 1999; Kiseleva et al. 2015; Romano and Ramlet
1967), stability (Chen and Kempner 1976; Sheinman and Firer 1994; Tennyson
et al. 1971), and oscillations (Meish and Kepenach 2014; Tornabene et al. 2015;
Yamada et al. 1984) of oval and elliptical cylindrical shells under the action of various
types of loads were investigated with the help of numerical, analytical (approximate)
and experimental methods. However, only in Grigorenko and Kharitonova (2007),
using the Kirchhoff–Love hypotheses and relations of the theory of shallow shells
(in a simplified classical formulation), exact analytical solutions of boundary value
problems were obtained for an open long non-circular cylindrical shell, the curvature
of which varies according to the quadratic law.

Therefore, in viewof the above, numericalmethods are used in this chapter to study
theSSSof physically nonlinear thin non-circular cylindrical shellsmadeof composite
materials. The methods are aimed at overcoming possible membrane locking.

Below, the formulation of linear and physically nonlinear problems of statics for
infinitely long non-circular cylindrical shells is given, analytical (exact), numeri-
cal, and analytical–numerical methods for their solution are developed, and specific
numerical results are obtained for shells of oval, elliptical, and supercircular cross-
sections under the action of uniform normal pressure.

20.2 Boundary Value Problem Statement, Basic Linear
Relations, and General Solution for a Long
Non-Circular Cylindrical Shell

Let us consider an infinitely long cylindrical shell of arbitrary cross-section, made
of transversely isotropic material and loaded with surface and linear forces. Assume
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that the directrix of the shell cross-section changes smoothly. The thickness h of the
shell along the generatrix is constant and continuously changes along the directrix.
The load acting on the shell is distributed smoothly along the generatrix. It follows
from the above that the displacements, strains, and stresses in each cross-section of
the shell are the same, and all the searched valueswill change only along the directrix.

The geometry of the middle surface of the shell is set in the global Cartesian
coordinate system (X, Y, Z), the O X -axis of which is directed along the axis of the
cylinder (Fig. 20.1).

We refer the shell to the curvilinear orthogonal coordinate system (x, ϕ, ζ ) aligned
with the lines of principal curvatures of the shell. Here, x and ζ are the lengths of the
generatrix and the normal to the mid-surface, and ϕ is the angle between the normal
to the mid-surface and the vertical (O Z ) axis.

To study the SSS of this class of shells, we use the equations of the refined theory
of deep shells, which take into account transverse shear deformations (Grigorenko
et al. 2010). In this case, we have the following expressions for geometric relations:

ε = du

rdϕ
+ w

r
, γ = ϑ + dw

rdϕ
− u

r
, μ = dϑ

rdϕ
, (20.1)

where ε, γ , and μ are the strain components of the shell; u and w are the tangential
displacement and bending of the shell mid-surface, respectively; ϑ is the rotation
angle of the normal; r is the cross-sectional radius curvature.

Fig. 20.1 Long cylindrical shell of non-circular section



346 V. Maksymyuk et al.

The relationship between internal forces/moment and strain components iswritten
based on Hooke’s law:

N = DN ε, DN = Eh

1 − ν2
, Q = DQγ, DQ = kGϕζ h,

M = DMμ, DM = Eh3

12(1 − ν2)
.

(20.2)

In (20.2), N and Q are the tangential and shearing forces, respectively; M is the
bending moment; DN , DM , and DQ are the stiffness characteristics of the shell; E
and ν are the elastic modulus and Poisson’s ratio in the isotropy plane, respectively;
Gϕζ is the shear modulus in the cross-sectional plane; k is a coefficient depending
on how the shear is distributed across the thickness.

The equilibrium equations read

d N

rdϕ
+ 1

r
Q + qϕ = 0,

d Q

rdϕ
− 1

r
N + qζ = 0,

d M

rdϕ
− Q = 0, (20.3)

where qϕ and qζ are the components of the surface load.
In solving specific problems, the equilibrium equations (20.3), geometric and

physical relations (20.1) and (20.2) must be accompanied by appropriate boundary
conditions.

Performing successive integration, we obtain a general solution to the given
problem

Q = C1 cosϕ + C2 sin ϕ + cosϕ

∫ ϕ

0
q1dx

− sin ϕ

∫ ϕ

0
q2dx + (rqζ ) |0 sin ϕ,

N = C1 sin ϕ + C2 cosϕ − sin ϕ

∫ ϕ

0
q1dx

− cosϕ

∫ ϕ

0
q2dx + (rqζ ) |0 cosϕ, (20.4)

M =
∫ ϕ

0
r Qdx + C3 = M∗ + C3,

ϑ =
∫ ϕ

0
rμdx + C4 =

∫ ϕ

0

r M∗dx

DM
+ C3

∫ ϕ

0

rdx

DM
+ C4,

u = C5 cosϕ + C6 sin ϕ + cosϕ

∫ ϕ

0
f1dx + sin ϕ

∫ ϕ

0
f2dx − rε|0 sin ϕ,

w = C5 sin ϕ − C6 cosϕ + sin ϕ

∫ ϕ

0
f1dx − cosϕ

∫ ϕ

0
f2dx + rε|0 cosϕ.
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Here, we introduced

q1 = r(qϕ sin x − qζ cos x), q2 = r(qϕ cos x + qζ sin x),

ε = N

DN
, μ = M

DM
, γ = Q

DQ
, M∗ =

∫ ϕ

0
r Qdx,

f1 = r
[
ε cos x − (ϑ − γ ) sin x

]
, f2 = r

[
ε sin x + (ϑ − γ ) cos x

]
.

Solving particular problems, the integration constants C1, C2, . . . , C6 are deter-
mined from the boundary conditions.

20.3 Analytical (Exact) Solutions of Statics Problems for
Non-Circular Cylindrical Shells

For two types (closed andopen) of a longoval cylindrical shell of constant thicknessh,
we have managed to express the primitive integral functions in terms of elementary
functions in formulas (20.4) and obtain analytical (exact) expressions for internal
force factors and generalized displacements of the shell under the action of a static
load.

20.3.1 Exact Solutions of Boundary Value Problems for a
Closed Cylindrical Shell of Oval Cross-Section

A closed long cylindrical shell of the oval cross-section with a continuous radius
of curvature. Let us find the exact solution to the boundary value problem for an
infinitely long non-circular cylindrical shell (i.e., a pipe) closed along the directrix
(−π � ϕ � π) under uniform internal pressure of intensity q (Fig. 20.2).

Fig. 20.2 Cross-section of a
non-circular cylindrical shell
closed along the directrix
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Let the cross-section of the shell have the form of an oval with two mutually
perpendicular axes of symmetry. The radius of curvature of the cross-section is a
continuous function of the angle ϕ:

r = r0 (1 + ξ cos 2ϕ) . (20.5)

Here, a and b are the major and minor semi-axes of the cross-section;

r0 = a + b

2
, ξ = 3

a − b

a + b
, −π � ϕ � π.

Considering geometrical and mechanical symmetries, we solve the problem for
one-fourth of the shell (0 � ϕ � π/2) as a design model and specify symmetry
conditions (u = ϑ = Q = 0) at the points ϕ = 0 and ϕ = π/2.

The exact solution of the boundary value problem (20.1)–(20.3) for a closed
infinitely long oval cylindrical shell under the action of uniform internal pressure,
which satisfies the symmetry conditions at the points ϕ = 0 and ϕ = π/2, has the
following form:

Q = −2qr0ξ

3
sin 2ϕ, N = r0q − qr0ξ

3
cos 2ϕ,

M = qr20 ξ

3

(
−ξ

2
+ cos 2ϕ + ξ

4
cos 4ϕ

)
,

ϑ = qr30 ξ

6DM

[(
1 − 3ξ 2

8

)
sin 2ϕ + 3ξ

8
sin 4ϕ + ξ 2

24
sin 6ϕ

]
,

u = A2 sin 2ϕ + A4 sin 4ϕ + A6 sin 6ϕ + A8 sin 8ϕ, (20.6)

w = r20q

DN

(
1 − ξ 2

6
+ 2ξ

3
cos 2ϕ − ξ 2

6
cos 4ϕ

)

− 2A2 cos 2ϕ − 4A4 cos 4ϕ − 6A6 cos 6ϕ − 8A8 cos 8ϕ,

where

A2 = 4qr20 ξ

9DN
− qr40 ξ

18DM

(
1 − ξ 2

16

)
− 2qr20 ξ

9DQ
, A6 = − 11qr40 ξ

3

10080DM
,

A4 = −2qr20 ξ
2

45DN
− qr40 ξ

2

60DM

(
7

4
− ξ 2

3

)
− qr20 ξ

2

45DQ
, A8 = − qr40 ξ

4

18144DM
.

Closed oval cylindrical shell with a stepped radius of curvature. Consider an
infinitely long cylindrical shell whose cross-section is formed by two pairs of
smoothly joined circular arcs of radii r1 (arcs I) and r2 (arcs II) (Fig. 20.3), where α

is the angle that defines the point of junction of the circular arcs.
Let us determine the SSS of the shell subject to uniform normal pressure q.
The shell consists of four circular cylindrical plates, two ofwhich (plates I) deform

symmetrically about the plane X O Z (ϕ1 = 0), and the other two (plates II) about
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Fig. 20.3 Cross-section of
an oval cylindrical shell with
stepped radius of curvature

the plane X OY (ϕ2 = 0). Therefore, it is sufficient to analyze only halves of two
cylindrical plates (for example, plates I and II) owing to the symmetry conditions
u1 = ϑ1 = Q1 = 0 at the point ϕ1 = 0 and u2 = ϑ2 = Q2 = 0 at the point ϕ2 = 0
and the following interface conditions at the point ϕ1 = α (ϕ2 = π/2 − α):

u1(α) = −u2
(

π
2 − α

)
, w1(α) = w2

(
π
2 − α

)
, ϑ1(α) = −ϑ2

(
π
2 − α

)
,

N1(α) = N2
(

π
2 − α

)
, Q1(α) = −Q2

(
π
2 − α

)
, M1(α) = M2

(
π
2 − α

)
.

(20.7)
Here and below, indices 1 and 2 refer to plates I and II, respectively.

The general solution of the boundary value problem (20.1)–(20.3) for a closed
long cylindrical shell of oval cross-section with a stepped radius of curvature under
uniform internal pressure has the following form:

Q1 = C1 cosϕ1 + C2 sin ϕ1, Q2 = C3 cosϕ2 + C4 sin ϕ2,

N1 = −C1 sin ϕ1 + C2 cosϕ1 + r1q, N2 = −C3 sin ϕ2 + C4 cosϕ2 + r2q,

M1 = −r1C2 cosϕ1 + C5, M2 = −r2C4 cosϕ2 + C6,

ϑ1 = (r1C5ϕ1 − r21C2 sin ϕ1)/DM + C7,

ϑ2 = (r2C6ϕ2 − r22C4 sin ϕ2)/DM + C8,

u1 = C9 cosϕ1 + C10 sin ϕ1 + L1ϕ1 + B1ϕ1 cosϕ1,

u2 = C11 cosϕ2 + C12 sin ϕ2 + L2ϕ2 + B2ϕ2 cosϕ2,

w1 = r1N1/DN − C10 cosϕ1 − L1 − B1(cosϕ1 − ϕ1 sin ϕ1),

w2 = r2N2/DN − C12 cosϕ2 − L2 − B2(cosϕ2 − ϕ2 sin ϕ2).

(20.8)
Here,

L1 = r21C5/DM , B1 = r1C2/2DN + r1C2/2DQ + r31C2/2DM ,

L2 = r22C6/DM , B2 = r2C4/2DN + r2C4/2DQ + r32C4/2DM .

Constants of integration C1, C2, . . . , C12 are determined from the symmetry con-
ditions at the points ϕ1 = 0 and ϕ2 = 0, as well as the conjugation conditions at the
point ϕ1 = α.
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20.3.2 Exact Solutions of Statics Problems for an Open
Cylindrical Shell of Oval Cross-Section

Let us study the deformation of the circumferentially (−α � ϕ � α; 0 < α � π )
open infinitely long cylindrical shell with oval cross-section described by (20.5) and
clamped longitudinal edges (ϕ = ±α). The shell is loaded by a uniformly longitu-
dinally distributed transverse force P applied at the vertex (Fig. 20.4).

The cross-section and the load are symmetric about the vertical plane X O Z .
Therefore, we consider half of the shell (0 � ϕ � α). The edge ϕ = α is clamped
u = w = ϑ = 0, and u = ϑ = 0, Q = P/2 at ϕ = 0.

After integration in (20.4) and satisfying part of the boundary conditions (ϑ(0) =
0, Q(0) = P/2, and ϑ(α) = 0), we obtain the following expressions for internal
force factors and generalized displacements:

Q = P

2
cosϕ + C2 sin ϕ, N = − P

2
sin ϕ + C2 cosϕ,

M =r0P

2

[
δ1 +

(
1 + ξ

2

)
sin ϕ + ξ

6
sin 3ϕ

]

+ C2r0

[
δ2 +

(
ξ

2
− 1

)
cosϕ − ξ

6
cos 3ϕ

]
,

ϑ = r20 P

2DM

[
δ + δ1ϕ +

(
ξ 2

6
− 1

)
cosϕ + ξδ1

2
sin 2ϕ

−
(
2ξ

9
+ ξ 2

12

)
cos 3ϕ − ξ 2

60
cos 5ϕ

]
+ C2r20

DM

[
δ2ϕ +

(
ξ 2

6
− 1

)
sin ϕ

+ ξδ2

2
sin 2ϕ +

(
ξ 2

12
− 2ξ

9

)
sin 3ϕ − ξ 2

60
sin 5ϕ

]
,

Fig. 20.4 A long
circumferentially open
cylindrical shell of an oval
cross-section with clamped
longitudinal edges
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u =C5 cosϕ + C6 sin ϕ + A0 + B0ϕ + A11ϕ sin ϕ + B11ϕ cosϕ

+ A2 sin 2ϕ + A3 sin 3ϕ + (B2 + B21ϕ) cos 2ϕ + B3 cos 3ϕ

+ A4 sin 4ϕ + A5 sin 5ϕ + B5 cos 5ϕ + A7 sin 7ϕ + B7 cos 7ϕ,

w =C5 sin ϕ − C6 cosϕ + r N/DN − B0 − (A11 − B11ϕ) sin ϕ (20.9)

− (B11 + A11ϕ) cosϕ − (2A2 + B21) cos 2ϕ + 2 (B2 + B21ϕ) sin 2ϕ

− 3A3 cos 3ϕ + 3B3 sin 3ϕ − 4A4 cos 4ϕ − 5A5 cos 5ϕ

+ 5B5 sin 5ϕ − 7A7 cos 7ϕ + 7B7 sin 7ϕ,

where the coefficients δ, δ1, δ2, Ai , and B j depend on ξ, r0, α, DQ , DM , P , and C2.
Note that the expressions for the coefficients Ai and B j consist of two parts, one

of which contains the transverse force P , and the other terms contain the unknown
constant C2.

Therefore, we first express the integration constants C5 and C6 in terms of the
coefficients Ai and B j using the boundary conditions u(α) = 0 and w(α) = 0.

After that, using (20.9), we calculate the internal forces, moment, rotation angle
of the normal, tangential movement, and displacement of the shell.

20.3.3 Numerical Results and Their Analysis

Wepresent the results of studying the influence of the aspect ratio of cross-sectiona/b
and transverse shear deformations on the SSSof infinitely long closed oval cylindrical
shellswith a stepped radius of curvature under uniform internal pressureq (Storozhuk
andYatsura 2016).The shells have the following characteristics: r0/h = 10, k = 5/6,
E = 38.4 GPa, Gϕζ = 0.2 GPa, and ν = 0.1933.

Tables 20.1 and 20.2 summarize the dimensionless deflection w̃ = wE0/hq
(E0 = 10 MPa) and dimensionless stress σ̃ = σ/q (σ = N/h + Mζ/h3) on the
outside (ζ̃ = ζ/h = 0.5) and inside (ζ̃ = −0.5) surfaces of the shells at two points

Table 20.1 Values of deflections and stresses at the vertices of a closed oval cylindrical shell with
a continuous radius of curvature

K SSS Point ζ̃ a/b

1.0 1.1 1.2 1.3 1.4 1.5

1,2 σ̃ B 0.5 10 37.075 59.917 79.301 95.833 110

−0.5 10 −18.027 −41.736 −61.909 −79.167 −94

A 0.5 10 −19.116 −47.355 −74.613 −100.833 −126

−0.5 10 40.068 69.174 97.221 124.167 150

1 w̃ B 0.0 0.025 0.916 1.779 2.604 3.385 4.119

A 0.0 0.025 −0.797 −1.478 −2.043 −2.511 −2.900

2 w̃ B 0.0 0.025 0.524 1.012 1.479 1.918 2.327

A 0.0 0.025 −0.427 −0.791 −1.081 −1.311 −1.492
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Table 20.2 Values of deflections and stresses at the vertices of a closed oval cylindrical shell with
a stepped radius of curvature

K SSS Point ζ̃ a/b

1.0 1.1 1.2 1.3 1.4 1.5

1,2 σ̃ B 0.5 10 37.046 59.814 79.087 95.485 109.5

−0.5 10 −17.999 −41.632 −61.696 −78.818 −93.5

A 0.5 10 −19.144 −47.459 −74.826 −101.182 −126.5

−0.5 10 40.097 69.277 97.435 124.515 150.5

1 w̃ B 0.0 0.025 0.931 1.810 2.652 3.450 4.199

A 0.0 0.025 −0.807 −1.494 −2.061 −2.528 −2.914

2 w̃ B 0.0 0.025 0.536 1.035 1.513 1.962 2.378

A 0.0 0.025 −0.436 −0.807 −1.102 −1.335 −1.517

of the cross-section (vertex and covertex). These results are obtained for (a/b =1.0,
1.1, 1.2, 1.3, 1.4, 1.5) using the Timoshenko (K = 1) and Kirchhoff–Love (K = 2)
models.

The results analysis reveals that the deflection is maximum at the covertex (point
B). Allowing for the transverse-shear strains (K = 1) leads to an increase in the
maximum deflection compared with that predicted by the Kirchhoff–Love model
(K = 2). For a/b = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, the increase in the maximum deflec-
tion is 0, 75, 76, 76, 76, 77 (%), respectively, for the closed shell with a continuous
radius of curvature, and 0, 74, 75, 75, 76, 77 (%) for the closed shell with a stepped
radius of curvature.

The stresses aremaximum at the vertex A (the end of themajor axis corresponding
to the inside surface of the closed shells). The solution of the boundary value problems
shows that the stresses obtained with the involvement of both models (K = 1, 2) for
closed shells are equal.

The presented results show that the deflections and stresses in the closed shells
with a constant and stepped radius of curvature differ insignificantly. For example, for
both models (K = 1, 2), the difference between the maximum deflections does not
exceed 2.3%, and the difference between the maximum stresses is less than 0.33%.

The deflections at the vertex and covertex (points B and A) of the closed oval
induced by the internal pressure are of opposite signs. This conclusion agrees with
the results reported in Bresse (1866); Novozhilov (1964); Timoshenko (1941) for an
ellipse and an oval with a continuous radius of curvature and qualitatively contra-
dicts the statement made in Novozhilov (1964) on an oval with a stepped radius of
curvature.

When the cross-section shape deviates from circular (the ratio a/b increases), the
maximum values of all components of the SSS of closed shells increase significantly.
For example, taking into account the transverse shear strains in the closed shell with
a/b = 1.5 (Table 20.2) increases the maximum stress by a factor of 15 and the
maximum deflection by a factor of 164.
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20.4 Analytical–Numerical Approach to Solving
Boundary-Value Problems for Cylindrical Shells of
Non-Circular Cross-Section Under the Action of
Static Loads

Since the integrands in expressions for internal forces, bending moment, rotation
angle of the normal, tangential displacement, and shell deflection (20.4) are contin-
uous, the integrals in these formulas exist, but the primitive functions for most of
the cross-sections of the cylindrical shell cannot be expressed in terms of elementary
functions. For this reason, the authors developed a method (Storozhuk and Yatsura
2017) in which the marked integrals are calculated numerically using the trapezoidal
rule.

20.4.1 Closed Long Cylindrical Shell of Non-Circular
Cross-Section

Assume that the cross-section of a long cylindrical shell closed along the direc-
trix (−π � ϕ � π ) has two mutually perpendicular axes of symmetry (OY and
O Z ). The shell is loaded by two pairs of antipodal transverse forces Py = const and
Pz = const, which are uniformly distributed along the generatrices, and normal sur-
face forces qζ = qζ (ϕ), which are applied symmetrically with respect to the X OY -
and X O Z -planes (Fig. 20.5).

Since the cross-sectional geometry and force distribution is symmetrical, we con-
sider a quarter (0 � ϕ � π/2) of the shell cross-section as a designmodel and specify
the following boundary conditions at the points ϕ = 0 and ϕ = π/2:

Fig. 20.5 A closed
cylindrical shell of
non-circular cross-section
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u(0) = ϑ(0) = 0, Q(0) = Pz

2
, u

(π

2

)
= ϑ

(π

2

)
= 0, Q

(π

2

)
= − Py

2
.

(20.10)

The SSS of the shell is described by the system of Eqs. (20.1)–(20.3), whose
general solution is presented above. The integration constants are determined using
the boundary conditions (20.10). We obtain the following solution to the boundary
value problem for this shell:

Q = Pz

2
cosϕ − Py

2
sin ϕ − cosϕ

∫ ϕ

0
rqζ cos xdx

+ sin ϕ

∫ π/2

ϕ

rqζ sin x dx,

N = − Pz

2
sin ϕ − Py

2
cosϕ + sin ϕ

∫ ϕ

0
rqζ cos xdx

+ cosϕ

∫ π/2

ϕ

rqζ sin xdx, (20.11)

M = M∗ − 1

L

∫ π/2

0

r M∗

DM
dx, L =

∫ π/2

0

rdx

DM
, ϑ =

∫ ϕ

0

r M

DM
dx,

u = cosϕ

∫ ϕ

0
f1dx − sin ϕ

∫ π/2

ϕ

f2dx,

w = sin ϕ

∫ ϕ

0
f1dx + cosϕ

∫ π/2

ϕ

f2dx .

20.4.2 Open Long Cylindrical Shell With Non-Circular
Cross-Section and Hinged Longitudinal Edges

Let us study the strain state of an open (along a directrix (−α � ϕ � α)) long cylin-
drical shell with arbitrary cross-section and hinged longitudinal edges (ϕ = ±α).
The shell is loaded by normal qζ = qζ (ϕ) and tangential qϕ = qϕ(ϕ) surface forces
as well as a transverse force P = const (Fig. 20.6) uniformly distributed along the
generatrix containing the vertexes of the cross-sections.

The cross-section and load are symmetrical with respect to the vertical plane
X O Z . It makes it possible to consider only half (0 � ϕ � α) of the shell. Let u =
w = M = 0 at the edge ϕ = α and u = ϑ = 0 and Q = P/2 at the edge ϕ = 0.

The solution to this boundary value problem, which satisfies the above boundary
conditions, has the following form:
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Fig. 20.6 Open cylindrical
shell with non-circular
cross-section and hinged
longitudinal edges

Q = C2 sin ϕ + Q1, N = C2 cosϕ + N1,

M = C2l1 + M1, ϑ = C2l2 + ϑ1,

u = cosϕ

∫ ϕ

0
f1dx − sin ϕ

∫ α

ϕ

f2dx,

w = sin ϕ

∫ ϕ

0
f1dx + cosϕ

∫ α

ϕ

f2dx,

(20.12)

where the integration constant C2 is determined as follows:

C2 = −

∫ α

0
r

[
N1 cos x

DN
−

(
ϑ1 − Q1

DQ

)
sin x

]
dx

∫ α

0
r

[
cos2 x

DN
−

(
l2 − sin x

DQ

)
sin x

]
dx

. (20.13)

Here,

Q1 = P

2
cosϕ + cosϕ

∫ ϕ

0 q1dx − sin ϕ
∫ ϕ

0 q2dx + (rqζ ) |0 sin ϕ,

N1 = − P

2
sin ϕ − sin ϕ

∫ ϕ

0
q1dx − cosϕ

∫ ϕ

0
q2dx + (rqζ ) |0 cosϕ,

M1 = M0 − M0(α), M0 =
∫ ϕ

0
r Q1dx, ϑ1 =

∫ ϕ

0

r M1

DM
dx,

l1 = l0 − l0(α), l0 =
∫ ϕ

0
r sin x dx, l2 =

∫ ϕ

0

rl1
DM

dx .

Note that the proposed semi-analytical approach allows us to solve boundary-
value problems for cylindrical shells of a non-circular cross-section of continuously
variable or piecewise-continuous thickness, particularly for shells supported by lon-
gitudinal overlays or rods (Guz et al. 2009; Maximyuk et al. 2014).
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20.4.3 Effect of Changing the Thickness of an Elliptical
Cylindrical Shell on Its SSS

Consider the boundary value problem for a closed elliptical cylindrical shell of vari-
able thickness under uniform normal pressure q = const.

The shell thickness varies according to the following law:

h = h0(1 + β cos 2ϕ), (20.14)

so that the weight of the shell remains unchanged with variation in the parameter β.
Let us study the effect of changing the shell thickness on the distribution of

deflection and stresses along the directrix while its weight remains constant for the
shell with the following parameters:

r0/h0 = 15, r0 = (a + b)/2, a/b = 2,
E = 38.4 GPa, Gϕζ = 0.005E, ν = 0.3,
k = 5/6, β = 0, ±0.187, ±0.3, ±0.5,

where a ann b are the semi-axes of the ellipse.
Figures 20.7 and 20.8 demonstrate the distribution of the dimensionless deflec-

tions w̃ = wE/104h0q and stresses σ̃ = σ/q on the outside (σ̃+) and inside (σ̃−)
surfaces of the shell along the directrix (0 � ϕ̃ � 1, ϕ̃ = 2ϕ/π ) depending on the
thickness (β = 0, ±0.187, ±0.5).

Table 20.3 summarizes maximum relative stresses σ̃max and deflections w̃max for
specified values of the coefficient β.

The data presented in Fig. 20.7 and Table 20.3 show that the deflections are
maximum at the end of the major semi-axis (ϕ = 0) for all values of β.

Fig. 20.7 Distribution of
deflections along the
directrix
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a b

Fig. 20.8 Stress distribution on the outside a and inside b surfaces of the shell along the directrix

Table 20.3 Dependence of maximum stresses and deflections on β

SSS β

–0.5 –0.3 –0.187 0 0.187 0.3 0.5

σ̃max 721 513 450 542 648 713 807

w̃max 21.623 15.001 13.059 11.137 10.074 9.638 8.967

The maximum deflection increases with a decrease in the thickness (with a
decrease in β) in the vicinity of the apex of the minor axis of the ellipse and at
β = −0.5 exceeds the same value for the shell with a constant thickness (β = 0) by
a factor of 1.94. An increase in the thickness in this region (β = 0.187, 0.3, 0.5)
results in a negligible decrease in the maximum deflection.

The obtained results (Fig. 20.8 and Table 20.3) indicate that the stress reaches
its maximum on the inside surface of the shell in cross-section ϕ = π/2 at β =
0, 0.187, 0.3, 0.5, on the outside surface in cross-section ϕ = 0 at β = −0.3, −0.5,
and at β = −0.187 on both the inside surface in the section ϕ = π/2 and the out-
side surface in the section ϕ = 0, i.e., σ̃max = σ̃−(π/2) = σ̃+(0) = 450. Therefore,
at β = 0.187, ±0.3, ±0.5, the stresses are maximum in sections with minimum
thickness.

Applying theminimax criterion, whichminimizes themaximum stress, to the data
in Table 20.3, we can conclude that the thickness variation law (20.14) is optimal at
β = −0.187.

Considering the shell thickness at β = −0.187 as a reference point, we see that
the maximum stress increases with a decrease in the thickness in the vicinity of
the major axis (β = 0, 0.187, 0.3, 0.5) or in the vicinity of the minor semi-axis
(β = −0.3, −0.5) and exceeds the stress for the shell with optimal thickness by
60% at β = −0.5 and by 79% at β = 0.5.
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Thus, by varying the shell thickness, it is possible to control the distribution of
the SSS components along the directrix with the weight being unchanged.

20.5 Physically Nonlinear Problems of the Statics of Thin
Non-Circular Cylindrical Shells Made of Composite
Material

Below, we give the statement of nonlinear problems about the SSS of orthotropic
long non-circular cylindrical shells made of nonlinear elastic composite materials.
We present an effective numerical method for their solution based on the mixed
functional, the variational-difference method (VDM), the successive approximations
method (SAM), and the method of Lagrange multipliers. We show the features of
deformation of non-circular shells.

20.5.1 Statement of Physically Nonlinear Problems for
Orthotropic Shells and Numerical Methods for Their
Solution

Let us consider an infinitely long cylindrical shell of arbitrary cross-section, made
of nonlinear elastic orthotropic material and loaded with surface forces. The load on
the shell can vary along the directrix.

We will write the equation of the midsurface of a long cylindrical shell of an
arbitrary non-circular cross-section in the Cartesian coordinate system (X, Y, Z ).

For example, the equation of the midsurface of a closed long cylindrical shell of
an elliptical cross-section with semi-axes a and b and with a generatrix parallel to
O X -axis has (Fig. 20.1) the form (Abrosov et al. 2021):

F(Y, Z) =
(

Y

a

)2

+
(

Z

b

)2

− 1 = 0. (20.15)

We attach the curvilinear coordinate system (x, s, ζ ) to this surface. In this system,
the coordinates x and ζ are the length of the generatrix and the normal to the surface,
respectively, and s is the length of the ellipse arcmeasured frompoint (Y = 0, Z = b).
The orthotropy axes of the nonlinear elastic composite material (Guz et al. 1998)
coincide with the axes of principal curvatures of the shell. Obviously, the coefficients
of the first quadratic form in this system are equal to unity, and the curvature of the
generatrix is zero.

Let small displacements occur in the cross-section due to the application of inter-
nal pressure p(s) to an orthotropic homogeneous elastic thin shell of thickness h.
Furthermore, there is nomovement along the axis. Then the SSS components depend
only on the coordinate s. Apparently, the closed shell tends to a nearly circular shape,
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which causes large deflections and bends near the points of intersections of the ellipse
by the symmetry planes. To analyze the SSS under such conditions, we employ the
geometrically linear theory of thin shells and a mixed functional to simplify the
implementation of the Kirchhoff–Love hypotheses and avoid membrane locking
(Maksimyuk et al. 2012).

Nonlinear physical relations for a long shell (exx = 0) under a plane stress state
for simple loads are given according to the theory of plasticity of anisotropic media
(Guz et al. 1998):

(
1

Ess
+ �qss

)
σss +

(
− νsx

Exx
+ �qsx

)
σxx = ess,(

− νxs

Exx
+ �qxs

)
σss +

(
1

Exx
+ �qxx

)
σxx = 0,

(20.16)

where σss and σxx are components of circular and longitudinal stresses, respectively;
Ess , Exx and νsx , νxs are elastic moduli and coefficients of transverse deformation of
the orthotropic material, respectively; qss , qxx , and qsx are components of the tensor
that account for the anisotropy of the nonlinear properties. In (20.16), the function�

determines the nonlinear properties of the material (Guz et al. 1998), which appear
when the quadratic stress function

f = 1

2

(
qssσ

2
ss + qxxσ

2
xx + 2qsxσssσxx

)

exceeds the value of fs .
The system of Eq. (20.16) is strongly nonlinear. It can be solved with respect to

stresses using, for example, the Newton method. The numerical method is based on
variational principles using a mixed functional (Abrosov et al. 2021; Guz et al. 1998;
Maksimyuk et al. 2012).

Considering the principle of virtual work and assuming that according to the SAM
in the form of additional stresses, the values of the nonlinear components are known
from the previous approximation and are not varied, the variational equation can be
presented in the form:

δ� = δ
(
�L + �N

) = 0,

where

�L = 1

2

∫∫
�

(
T L

ss εss + M L
ssμss

)
d� −

∫∫
�

pwd�

+
∫∫

�

T f
sζ εsζ d� − 1

2

∫∫
�

Css(εss − ε f
ss)

2d�, (20.17)

�N =
∫∫

�

(
T N f

ss εss + M N
ss μss

)
d�. (20.18)



360 V. Maksymyuk et al.

The functional �(u, w, ϑ, T f
sζ , ε

f
ss) depends on four varied functions, including

two displacements, angle of rotation, force T f
sζ (similar to shearing force), and hoop

deformation-function ε
f

ss . The advantages of this functional are listed in Maksimyuk
et al. (2012). The first term in the linear part of functional (20.17) is the elastic strain
energy, the second term is work done by the surface force, the third term represents
the geometrical part of the Kirchhoff–Love hypotheses by the method of Lagrange
multipliers (T f

sζ ), and the fourth term reduces the membrane locking. In the nonlin-
ear part of the functional (22.18), the nonlinear components of forces depend on the
deformation-function ε

f
ss . It should be noted that the notation of forces and deforma-

tion with the superscript ( f ) in 22.17 and (22.18) emphasizes the distinction between
a “quantity-formula” and a “quantity-function” and has a certain methodological
meaning.

The problem linearized in this way is reduced to determining stationary values of
the following functional in each approximation:

�L N = �L + �N . (20.19)

The stationarity condition for the functional δ� = 0 leads to the natural static
boundary conditions. In the case of symmetry, the principal kinematic conditions are
the following (Guz et al. 1998; Maksimyuk et al. 2012):

u = 0, ϑ = 0, T f
sζ = 0.

To determine the stationary values of functional (20.9), we use the VDM (Guz et al.
1998; Maksimyuk et al. 2012).

20.5.2 Features of Deformation of Non-Circular Cylindrical
Shells. Linear Statement

The methodology outlined above was used to solve test problems. As a result, the
numerical phenomenon of membrane locking is demonstrated, and the way to over-
come it is shown. In addition, the features of the deformation of non-circular cylin-
drical shells were revealed.

Timoshenko’s test problem. The SSS of an isotropic linearly elastic infinitely
long closed cylindrical shell with an elliptical cross-section of constant thickness
under uniform internal pressure was studied in Timoshenko (1941). Compared to
(20.17), a linear functional was used, which does not contain the term that reduces
the membrane locking. Slow but stable convergence of the calculated VDM of the
SSS components to the analytical solution (Timoshenko 1941) and the solution in
Storozhuk and Yatsura (2017) was demonstrated by refining the mesh. Accuracy in
the maximum values of deflections, stresses, or moments up to the second significant
figure is already achieved at K = 2561 (K is the number of nodes), and formembrane
stresses σ 0 in the middle surface, it is achieved at K = 5121. At K < 321, the

http://dx.doi.org/10.1007/978-3-031-37313-8_22
http://dx.doi.org/10.1007/978-3-031-37313-8_22
http://dx.doi.org/10.1007/978-3-031-37313-8_22
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overestimated fictitious stiffness of the shell takes place to such an extent that the
sign in the moments calculated near the major semi-axis changes. Such adverse
computational effects, caused by large bends at small strains, are called membrane
locking or degeneration (Maksimyuk et al. 2012).

Influence of the ellipticity of the cross-section on the linear deformation of the
shell. Of particular interest is the occurrence of negative deflections near the major
semi-axis of the ellipse. It was found that the region of negative deflections changes
nonmonotonically with a decrease in ellipticity. It first slightly increases and then
decreases to disappear.

Improvement of convergence in the presence of membrane locking. In the example
of the test problem, according to Timoshenko, the improvement of convergence is
demonstrated by using the linear functional�L , which contains the term (20.17) and
reduces the membrane locking. Already at K = 641, the maximum deflections and
stresses coincide with the analytical solution (Timoshenko 1941) with an accuracy
up to the third significant figure, and at K = 11, the proposed approach provides
an accuracy up to 2% in the maximum stresses, which indicates the effectiveness of
improving the convergence by additionally varying the previously small deformation
components.

The effect of loading in a linearly elastic shell on the convergence of the numerical
method. An almost momentless SSS should appear in the shell if the surface forces
will be determined from the equilibrium equations in which the absence of tangential
displacement and constant deflection are assumed, i.e., u = 0 and w0 = const. Then
the tangential (q) and normal (p) components of the surface load are determined as
follows:

p = w0k2
s

Eh

1 − ν2
, q = −w0k ′

s

Eh

1 − ν2
. (20.20)

Since the curvature of the ellipse k(s) and its derivative k ′(s) depend on the
coordinate s, the load components (20.20) also vary along the arc.

Under such a load, the momentless SSS with strains of the middle surface εss =
ksw0 and stress

σss = w0ks
E

1 − ν2

should be realized in the shell.
Calculations showed fast convergence of stresses.Only sixmesh points are enough

to achieve accuracy up to the third significant figure. In this case, the deflections range
from 9.73 mm near the major semi-axis to 10.3 mm near the minor one. They differ
from the exact value w = h = 10 mm by 3%. Because of the symmetry at the indi-
cated points, the tangential displacements u are naturally equal to zero; in the inter-
mediate areas, they are almost two orders of magnitude smaller than the deflections,
comparable to the deflection error. The ratio of themaximumdifference in the stresses
on the outer and the inner surfaces of the shell to the stress in the middle surface does
not exceed 0.1%, which makes it possible to estimate the degree of SSSmomentless-
ness. At the same time, the convergence in deflections is slower. Thus, the accuracy
up to the third significant figure is achieved by dividing the arc into 161 grid points.
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Table 20.4 Displacement and stress at the characteristic points of the supercircle

s̃ w̃ σ+
s σ 0

s σ−
s

0 0.689 5792 100 –5592

0.5 0.289 592 102 –387

1 –0.173 –6614 118 6852

Therefore, a remarkable result is observed when the rate of convergence of the
numerical method depends on the nature of the load in the same cylindrical shell
of an elliptical cross-section. Moreover, with uniformly distributed pressure, the
convergence is slow, and with the selected variable load, the convergence becomes
fast. This example and several others (Maksimyuk 2020) confirm that a relation
between varied functions in algebraic or differential form unites locking phenomena.
Accordingly, a general method exists to overcome locking by additional variation of
previously small functions.

Deformation of supercircular cross-section shells. Membrane locking can espe-
cially occur in a shell, the section of which has the shape of a supercircle

|Y |n + |Z |n = Rn, n > 2. (20.21)

The SSS of the shell with the following geometric andmechanical parameters was
determined: h = 0.01 m, R = 1 m, n = 4, E = 210 GPa, ν = 0.3, and p = 10 kPa.
Furthermore, due to the symmetry of the problem with respect to the Y = 0 and
Z = Y planes, the one-eighth of the supercircle was considered, i.e., s ∈ [0, sk],
where sk = 0.8772 m is one-eighth of the supercircle perimeter, which is calculated
by the numerical curve discretization algorithm.

For the characteristic points of the supercircle s̃ = s/sk , the deflections (w̃ =
w/h), pressure-(p) related dimensionless stresses on the outside (σ+

s ), inside (σ−
s ),

and middle (σ 0
s ) surfaces of the shell are given in Table 20.4.

At the extreme characteristic points of the supercircle s̃ = s/sk = 0, 0.5, 1, the
moments are large and have opposite signs. At the “diameter” point of the supercircle
(s̃ = 0), the shell bends like a plate. Here, the dimensionless membrane stress in the
middle surface is σ 0

s (0) = 100 and coincides with the exact value of R/h = 100. At
the “diagonal” point (s̃ = 1), the shell expands, and the membrane stress σ 0

s (sk) =
118 becomes slightly larger, since the “diagonal” of the supercircle is greater than
the “diameter”. At the middle point (s̃ = 0.5), the moment is the smallest and an
order of magnitude smaller than the maximum.
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20.5.3 Physically Nonlinear Deformation of an Orthotropic
Cylindrical Shell of Elliptical Cross-Section

The orthotropic shell material, eight-layer organoplastic (Guz et al. 1998), has the
following characteristics: Ess = 26.8 GPa, Exx = 46.5 GPa, νsx = 0.166, qss =
4.32, qxx = 2, qsx = −0.64 (Ess < Exx ). The geometric parameters of the shell:
h = 0.01 m, a = 20h, b = 15h. Let us consider the domain s ∈ [0, sk], where
sk = 27.629h is one-fourth of the ellipse perimeter. Suppose the orientation of the
material orthotropy axes relative to the cylinder axis changes. In that case, the mate-
rial characteristics change as well: Ess = 46.5 GPa, Exx = 26.8 GPa, νsx = 0.288,
qss = 2, qxx = 4.32, qsx = −0.64 (Ess > Exx ).

Table 20.5 summarizes the results of the SSS analysis of a shell with the orthotropy
axes orientation Ess > Exx under loading p = 3 MPa. The SAM iteration process
was terminated when the relative change in maximum strains in two neighboring
approximations became less than 10−3.

As can be seen, the shell cross-section under internal pressure has a nearly circu-
lar shape. With the physical nonlinearity taken into account, the stresses decrease,
while the deflections and strains near the ellipse poles increase. The maximum stress
(σ−, s̃ = 1) decreases by almost 9%.

It should be noted that thin non-circular cylindrical shells demonstrate much
greater deflections than circular shells in the same stress state. There may be a
situation in which determining the SSS using the geometrically linear shell theory
leads to increased virtual deflections while the physical nonlinearity of the material
does not yet takes place. For this reason, we considered shells of medium thickness
above.

With the orthotropy axes orientation Ess > Exx , in contrast to the orientation
in Table 20.5, the nonlinear properties of the material appear even at load p =
2 MPa (Table 20.6). The effect of nonlinearity is similar here. Since Ess < Exx , the
deflections under a lower load are greater than those for the orientation Ess > Exx

under p = 3 MPa.
Let us compare the stress components for the two orientations of the orthotropy

axes Ess < Exx and Ess > Exx under p = 2 MPa (LP, Table 20.7). Table 20.5 sum-
marizes the hoop (σss) and longitudinal (σxx ) stresses on the outer (ζ̃ = ζ/h = 0.5)
and inner surfaces of the shell. As is seen, the hoop stresses in the LP are independent
of the material properties, while the longitudinal stresses increase for the orientation

Table 20.5 SSS of the orthotropic nonlinear elastic shell, Ess > Exx

Problem s̃ w̃ e+
ss · 102 e−

ss · 102 σ+, MPa σ−, MPa

LP 0 3.80 1.59 –1.40 776 –686

1 –2.74 –1.60 1.84 –783 903

NP 0 3.87 1.63 –1.43 732 –667

1 –2.80 –1.66 1.94 –741 822
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Ess < Exx and additionally contribute to the quadratic stress function (Guz et al.
1998). It explains appearing of the nonlinear properties of the material in the shell
with the orientation Ess < Exx under lower loads (Table 20.6) than in the shell with
the orientation Ess > Exx (Table 20.5).

20.6 Conclusions

In the chapter, based on the refined Timoshenko shell model, a general statement
of linear boundary value problems of statics is given, and the basic equations for
infinitely long cylindrical shells of the non-circular cross-section made of trans-
versely isotropic material are given. Analytical (exact) expressions for the internal
forces, themoment, the rotation angle of the normal, the tangential displacement, and
the deflection of long oval cylindrical shells with a continuous and stepped radius
of curvature were obtained. Specific numerical results for closed shells under the
action of uniformly distributed surface forces were presented. Note that the obtained
exact solutions can be used as a reference solution for approximate and numerical
methods.

An analytical-numerical approach is developed to solve linear boundary-value
problems for long cylindrical shells of arbitrary cross-sections and variable thickness
under the action of static surface and linear loads. This approach uses a general
solution of static problems for shells of this class, as well as analytical integration
and numerical integration with the trapezoidal rule. The proposed approach allows
obtaining results with high (almost analytical) accuracy and is free from the so-called
membrane and shear locking. Using the developed approach, the effects of the cross-
section aspect ratio, the accounting for the transverse shear deformations, and the

Table 20.6 SSS of the orthotropic nonlinear elastic shell, Ess < Exx

Problem s̃ w̃ e+
ss · 102 e−

ss · 102 σ+, MPa σ−, MPa

LP 0 4.40 1.81 –1.62 517 –457

1 –3.17 –1.85 2.13 –522 602

NP 0 4.49 1.89 –1.66 485 –444

1 –3.24 –1.93 2.26 –492 544

Table 20.7 The effect of orthotropy on the SSS in a linearly elastic shell

s̃ ζ̃ Ess = 46.5 GPa Ess = 26.8 GPa

σss , MPa σxx , MPa σss , MPa σxx , MPa

0 0.5 517 85 517 149

–0.5 –457 –75 –457 –131

1 0.5 –522 –86 –522 –150

–0,5 602 99 602 173
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thickness variation law on the SSS of closed elliptical cylindrical shells under the
action of uniform pressure were investigated.

Statement of physically nonlinear problems on determining the SSS of orthotropic
long non-circular cylindrical shells made of nonlinear elastic composite materials is
given within the framework of the classical Kirchhoff–Love model. An effective
numerical method of their solution based on mixed functionals, VDM, SAM, and
the method of Lagrange multipliers is developed. Mixed functionals, in which the
membrane strain is additionally varied, are used to improve convergence and prevent
membrane locking. The influence of loads on the numerical method’s convergence
in linear problems is demonstrated for the first time. Furthermore, the features of
nonlinear deformation of orthotropic shells are revealed.
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Chapter 21
Nonlinear Hereditary Creep
of Transversely Isotropic Composites
of Random Structure

Borys Maslov

21.1 Introduction

Composites with an aluminum matrix reinforced with axially oriented elastic
spheroidal inclusions are essential engineering materials. Such materials are widely
used, for instance, in aviation and space technology, the shipbuilding industry, and
oil refineries (Aboudi et al. 2013; Altenbach and Knape 2020; Christensen 2005;
Khoroshun et al. 1993; Lakes 2009). When modeling the long-term response of
composites with a metal matrix, it is necessary to consider the effects of creep,
which develops even at low enough temperatures. For this purpose, we use the fol-
lowing characteristics to describe the deformation and strength of composites: the
creep strain, the rate of creep strain, the relaxation time, the ratio of creep limits, and
durability.

One of the urgent problems of the mechanics of hereditary creep of compos-
ite materials is to predict the averaged creep properties of the composite based on
the properties of its components, their volume content, and reinforcement methods.
Many theoretical and experimental papers are devoted to studying various aspects
of the creep process of isotropic composite materials. An overview of the obtained
results is presented in Aboudi et al. (2013), Altenbach et al. (2018), Christensen
(1982), Hashin (1981). The vast majority of the performed studies refer to the lin-
ear region of long-term viscoelastic deformation. All solutions are built based on
the Boltzmann–Volterra linear theory of viscoelasticity (Christensen 1982, 2005;
Hashin 1981; Golub et al. 2016).

It is a well-known fact that for most metal composites, the linearity range is rela-
tively small, and satisfactory results can be obtained at low stress and only for short
loading duration (Asaro and Lubarda 2006). Nonlinear equations of viscoelastic-
ity are given in Christensen (2005). However, the representation by infinite series
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of multiple integrals makes it impossible to identify integral kernels and determine
their parameters in typical experiments. An approach based on the similarity of
isochronous creep diagrams is more promising for building nonlinear models of
hereditary creep (Rabotnov 1969). In Schapery (1990), this algorithm was further
developed due to the expansion of the initial condition of similarity, which includes
the diagram of instantaneous deformation as an isochrone for the zero moment. The
extension of the similarity condition made it possible to build a nonlinear creep
model with a time-invariant nature of the nonlinearity, which is determined by the
instantaneous deformation diagram. Within the framework of the model, the prob-
lem of determining nonlinear creep deformations of polymer with reinforcing fibers
was solved (Maslov and Bugai 1992). Nonlinear creep deformations of fibrous uni-
directional composites during stretching along the direction of reinforcement are
determined. In Aboudi et al. (2013), Maslov (2021), Volterra’s theory of hereditary
elasticity is used to solve the problems of creep mechanics. The theory describes
inversion processes and assumes a linear relationship between stresses and strains.
Therefore, it sometimes cannot be used to describe the creep of metals, even in the
first approximation. Different generalizations of the theory of hereditary elasticity
are possible.

21.2 Problem Statement

The nonlinear creep of isotropic multicomponent composites is considered. The
material is stretched for a long time by a uniaxial load along the isotropy axis of
the composite sample. A complete adhesion between the fibers and the matrix is
assumed.

The external load P does not change over time t , so the tensile stress σ(t) is given
by the condition σ(t) = σk H(t) (k = 1, . . . , n), where σk = const is the nominal
stress value, H(t) is the Heaviside unit function (Christensen 1982). The initial
stress state (t = 0) of the composite and its components is elastic (σk < σy). Here
σy is the yield point of the composite (Besson et al. 2010).

The response of the composite to the long-term (t � 0) influence of the exter-
nal load is characterized by the time-dependent value of the total deformation e(t)
which includes elastic, ee, and creep, ec(t) components: e (t) = ee + ec (t). Creep
deformation ec(t) is determined by the change �l(t) of the initial length l0 of the
composite sample (Maslov 2018).

To describe the creep process of the composite, we use the nonlinear creep
model of the hereditary type, built based on the hypothesis of the similarity of the
isochronous creep diagrams and the instantaneous deformation diagram (Hashin
1981; Golub et al. 2016)

de(t)

dt
= [E(t)]−1 d

dt

[∫ t

0
Kα(t − u)σ (u)du

]

= [E(t)]−1(σ ∗ ġ)(t).
(21.1)
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Here Kα(t − u) is the fractional-exponential kernel of hereditary elasticity (it char-
acterizes the influence of stresses at the moment u � t on creep deformation at the
moment of time t); the dot above the symbol means the time derivative. The value
E(t) = dσ e(t)/de(t), where σ e(e) determines the instantaneous deformation dia-
gram. Thus, E(t) represents the tangential creep modulus (Golub et al. 2016). The
study aims to predict the composite creep behavior when the properties and volume
content of its components, as well as the reinforcement method are known.

Deformation in hereditary materials is determined by the stress history σ (u)

(u ∈ [0, t]), as well as the initial conditions σ (0) = 0. For a linear medium, after
integration in (21.1), it is possible to write down (21.1) in the general tensor form
(Schapery 1990, 2021)

e(x, t) =
∫ t

0
J(t − u)

d

du
σ (x, u)du, (21.2)

where J(t) = Je(σ )g(t) is the nonlinear creep tensor function (retardation). In a short
symbolic form (Lakes 2009), we have

e (x, t) = d

dt
(J ∗ σ )(x, t) = (σ ∗ J̇)(x, t), (21.3)

where the asterisk denotes the integral convolution operation. Thus, the expression
(σ ∗ J̇)(t) = (σ ∗ dJ)(t) is a Stieltjes convolution (Christensen 1982).

The following rules for symbolic notation of operations with tensors of the sec-
ond and fourth ranks are adopted here and further. Dyadic and inner products are
introduced as follows

(ab)i j = aimbmj , (Ab)i j = Ai jklblk, (a ⊗ b)i jkl = ai j bkl, (21.4)

where summation by repeating indexes is assumed; tensor quantities aremarkedwith
bold symbols. Spherical Im and deviatoric Id operators are given as follows

Im = 1
31 ⊗ 1, Id = I − Im, (1)i j = δi j . (21.5)

Here I is a unit symmetric tensor of the fourth rank, 1 is a unit symmetric tensor of
the second rank (Maslov 2008). If f (t) is some continuous function on the interval
0 � t < ∞ and it behaves as an exponent when t → ∞, then the Laplace–Carson
(LC) transformation of the function reads (Christensen 1982):

LC{ f (t)} = s
∫ ∞

0
f (t)e−st dt . (21.6)

Applying the LC transformation to (21.1) and (21.2), we find
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σ e(s) = (Ce)(s)
= (gσ )(s).

(21.7)

Here it is assumed that the instantaneous elastic response of thematerial is physically
linear. That is, there is an LC transformationC(s) from the relaxation functionC(t).

We also apply the law of instantaneous deformation of the second order of defor-
mations (Asaro and Lubarda 2006)

σ (s) = C(s)e(s) − β(s), β(s) = −C(s)h(s)e(s), (21.8)

where β(e) is hardening stress (Altenbach et al. 2018; Rabotnov 1969) (it is the
nonlinear function of infinitesimal strain tensor e(t) or e(s) in LC domain), h(t) is
the reduced relaxation function (Schapery 2022).

In the linear theory of viscoelasticity, the problem’s solution can be obtained
using the correspondence principle (Christensen 1982; Schapery 1990). It is natural
to generalize this principle to problems of hereditary creep. Here we use quasi-linear
variant of the hereditary creep equations (Rabotnov 1969), where the concept of so-
called modified stresses σ e(t) = ∂W/∂e (t) and modified (restored elastic) strains
ee(t) = ∂U/∂σ (t) is used. The function W (e) is elastic energy, the function U (σ )

is complementary elastic energy.
To analyze the problems of deformation prediction within the framework of the

hereditary creep model (21.7) and (21.8), we use the generalized Schapery corre-
spondence principle (Schapery 1990) in notations adopted in Lakes (2009), Maslov
(2018). Let us denote x the position of a material point in space; e(x, t), σ (x, t), and
u(x, t) are the current deformation, stress, and displacement, respectively.

Following the accepted hypothesis, we assume that thematerial exhibits an instan-
taneous elastic reaction and denote by ee(x, t), σ e(x, t), and ue(x, t) instantaneous
elastic deformation, stress, and displacement, respectively. A material with elastic
properties is defined as a medium whose behavior corresponds to the first and the
second laws of thermodynamics (Christensen 1982, 2005). From this follows the
existence of the stored energy function W (e) and additional energy U (σ ), which
make it possible to find instantaneous deformation (during creep) or instantaneous
stress (relaxation process)

U = U (σ , x, t), ee(t) = ∂U

∂σ
(σ , x, t), (21.9)

W = W (e, x, t), σ e(t) = ∂W

∂e
(e, x, t). (21.10)

Here, stress and strain are determined in the orthogonal Cartesian coordinate system
x j . The presence of the coordinate x and time t in the list of arguments indicates the
possibility of applicability of (21.9) and (21.10) for the analysis of heterogeneous
media and composite materials when the time factor is essential. We write down the
constitutive equations in hereditary creep relative to modified (restored) stresses and
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modified (restored) displacements

ue(t) = (h ∗ u̇)(t), h(t) = R(t)/R(0). (21.11)

These variables are related to physical displacements ui = ui (x j , τ ), in the hered-
itary media and stresses σi j (x j , τ ) determined by hereditary integrals of the type
(21.3). Therefore, ui = ui (x j , τ ) are physical displacements determined at the time
of integration τ . The spatial coordinate x j is considered to be related to the initially
undeformed body (t = 0). The R(t) represents the relaxation modulus, a significant
characteristic of heredity that affects the material’s behavior over time. Thus h(t)
can be interpreted as a normalized, dimensionless modulus of hereditary relaxation.
We write down the inverse relation to

u(t) = (g ∗ u̇e)(t), g(t) = R(0)J (t). (21.12)

Here J (t) represents the creep function. At the same time, it is known that R(t) and
J (t) satisfy the equation (Christensen 1982; Lakes 2009)

∫ t

t0

J (t − τ)Ṙ(τ − t0)dτ = H(t − t0), (21.13)

where H(t) is the Heaviside step function.

21.3 Generalized Schapery Correspondence Principle for
Hereditary Creep Problems

The correspondence principle of the linear theory of viscoelasticity is used based
on elastic relations, which include Laplace-transformed stresses and displacements.
Here we apply the generalized correspondence principle for time-dependent quasi-
static solutions of nonlinear elastic and hereditary creep boundary value problems.
It makes it possible to analyze the inherited creep problem based on the known
nonlinear elastic solution. We write down the equilibrium equation in the form

div σ + b = 0. (21.14)

Correlation between Cauchy stresses σ (t) and modified (restored) strains

σ (t) =
[
h ∗ d

(
∂W

∂e

)]
(t), h(t) = g−1(t). (21.15)

Substitution of (21.15) in (21.14) leads to three integro-differential equations for
three displacements ui (x). The solution to the hereditary creep problem that satisfy
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(21.14)–(21.15) has the form

σ (t) = (h ∗ dσ e)(t), u(t) = (g ∗ due)(t), h = g−1, g = h−1, (21.16)

or

σ e(t) = (g ∗ dσ )(t), ue(t) = (h ∗ du)(t), ee(t) = (h ∗ de)(t), (21.17)

where σ e and ue satisfy the equation of the basic problem of nonlinear elasticity
(21.14) and (21.15) together with the boundary conditions for traction te = t and the
initial condition u(0) = ue(0) = 0.

Equation (21.16) determines the dependence of the current stresses σ (t) on the
restored elastic (modified) stress

σ (t) = (σ e ∗ dh)

=
(

∂W

∂e
∗ dh

)
(t), h = g−1.

(21.18)

And similarly from (21.17) the dependence of the current strain e (t) on the restored
elastic (modified) strain

e(t) = (ee ∗ dg)(t)

=
(

∂U

∂σ
∗ dg

)
(t), g = h−1.

(21.19)

If a hereditary body is initially undisturbed, mass forces b and tractions t are
given, then the solution of the nonlinear problem of hereditary creep (Eqs. (21.14),
(21.15), (21.16), and (21.2)) is as follows

σ (t) = σ e(t), e(t) = (g ∗ dee)(t), u(t) = (g ∗ due)(t), (21.20)

where the Stieltjes convolution is defined by (21.3). The field variables σ e(x), ee(x),
and ue(x) satisfy the equation of the corresponding problem of the nonlinear theory
of elasticity together with the same boundary conditions (Truesdell and Noll 2004).
Thus, ue(x) satisfies the equations of the corresponding nonlinear elastic problem
together with the same mass forces be(x) = b(x) in the body and the boundary
conditions te(x) = P(x).

It should be emphasized that to describe the instantaneous dependence σ (t) −
e(t), it is necessary first to define creep isochrones (Golub et al. 2016). On the one
hand, it is related to the approximation of a single integral constitutive equation. On
the other hand, in time-dependent stress-strain relations σ (t) − e(t), one of the quan-
tities is initially given, and its current value is equal to the instantaneous value (with
index e). The response of the material and its current state includes the hereditary
effect of creep.
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For example, if in the case of creep problems, the given stress tensor is σ , then
σ (t) = σ e(t). So, from (21.14) and (21.15), we see that in this case g(t) = H(t).
Since the response of the material to deformations due to creep is characterized by
inequalities e(t) �= ee(t), g(t) �= H(t), and h(t) �= H(t) in the equations

e(t) = (ee ∗ dg)(t)

=
(

∂U

∂σ
∗ dg

)
(t), g = 1/h.

(21.21)

21.4 A Local Problem of the Mechanics of Hereditary
Creep Under a Complex Stress State

Next,we consider compositematerialswith ametalmatrix reinforcedwith spheroidal
inclusions.Materials of this class significantly enhance the operational characteristics
of structural members and assemblies operating in extreme conditions (Aboudi et al.
2013; Besson et al. 2010; Lin et al. 2013). Aluminum alloys of several classes are
used to produce aluminum-boron and aluminum-silicon oxide composites. As an
object for modeling, we refer to the mechanical properties of an aluminum-based
alloy of the Al 2024 S type (Lin et al. 2013; Maximov et al. 2014).

Predicting the parameters of hereditary creep of composites with a metal matrix
is one of the important factors in the design of modern structural members. It con-
cerns products designed for long-term operation under difficult load conditions. The
elastic and viscoelastic properties of reinforcement and matrix can be assumed to be
physically linear only in the first approximation. This assumption is valid in most
cases for reinforcement. However, the material of the matrix becomes nonlinear,
even at sufficiently low stress compared to the corresponding strength. Physical non-
linearity, in combination with the hereditary properties of the matrix, is one of the
factors that provide some necessary mechanical properties of the composite, such as
low level of concentration of local stresses, high dynamic characteristics, and crack
resistance. The ability to determine the deformable properties of the composite in the
area of physical nonlinearity based on the specified properties of the reinforcement
and the matrix allows us to more accurately establish the actual stress-strain state
of structural members (Aboudi et al. 2013; Lakes 2009), as well as to fully use all
the resources of the composite in the analysis of problems of long-term strength and
optimization of structures with them.

The problem consists in determining the areas of linearity and nonlinearity of
the creep process and predicting the creep according to the properties and volume
content of components. We consider the material in a steady creep state. We write
down the general constitutive equations of hereditary creep in the form (Maslov
2022; Schapery 1990)
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σ e(t) = (g ∗ σ̇ )(t)

=
∫ t

−∞
g(t − s)σ̇ (s)ds, g(t) = J(t)/J(0),

(21.22)

where σ is the Cauchy stress tensor, e is the tensor of deformations, the superscript e
refers to instantaneous (elastic) values of stresses and strains, σ e(t), ee(t), and σ (t),
e(t) are physical stresses and strains (at the moment of observation). The form of
dependence is a consequence of the study of isochronous creep curves (Hashin 1981;
Golub et al. 2016). Instantaneous stresses σ e(t) are often called referenced stresses
(stresses that are restored from the known stress values σ (t)) (Schapery 1990).

Relations (21.21) and (21.22) are the constitutive equations of a nonlinear elastic
body. To further use the principle of viscoelastic correspondence, let us write down
the relationship between the current deformations and the current stresses in the form
of the constitutive equations of hereditary creep developed in Maslov (2017, 2019,
2022)

σ e(t) = ∂W

∂e
(e, x, t)

=
∫ t

−∞
g(t − u)σ̇ (u)du.

(21.23)

Hereditary integrals used here are linear functionals with reduced creep functions
g(x, t) depending on the spatial coordinate x. It allows us to consider differentiation
concerning coordinate and successive integration over time t as commutative opera-
tions. The instantaneous compliance J(0) = S and instantaneous relaxation modulus
R(0) = C are related by J(0) = R−1(0), while g(0) = h(0) = 1.

Thus, this determines the dependence of the current hereditary creep stresses σ (t)
on the corresponding restored elastic stresses σ e(t). Similarly, (21.23) is the ratio
between the current strain e(t) and the recovered elastic strain ee(t).

Tensor integral identity

∂W

∂e
(e, x, t) =

∫ t

0
g(t − u)

∂σ

∂u
(x, u)du (21.24)

is a generalization of a known one-dimensional (1D) relation of the correspondence
principle (Hashin 1981; Lakes 2009;Maslov 2018) and allows us to transfer the prob-
lem with fractional-exponential operators to the domain of symbolic calculations.
Here we express the stress in terms of an instantaneous derivative of the deformation
energy according to (21.19). Normalized creep function g(t) does not depend on
stress, and the normalized relaxation module h(t) does not depend on deformation.
Thus, the constitutive equations of hereditary creep (21.24) differ from the equa-
tions of linear viscoelasticity (Golub et al. 2016) in form, but their sense is similar
(Schapery 1990).

For example, in the case of linear viscoelasticity, if stress is known (σ (t) = σ e(t)),
then after substitution it into the equation ee(t) = g(t)σ e(t) = g(t)σ (t), we find
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e(t) = (J/J(0) ∗ d[J(0)σ ])(t) = (σ ∗ dJ)(t). (21.25)

Obviously, (21.25) is the usual constitutive equation of linear viscoelasticity (Hashin
1981; Lakes 2009) for the case of a complex stress state.

Based on the integral form of constitutive equations of hereditary creep, the cor-
respondence principle (Maslov 2008; Schapery 1984) allows us to transform the
problem with fractional-exponential operators into the field of symbolic calcula-
tions. In the case of three-dimensional problems of mechanics of random structure
composites under a constant load, the analysis can be transferred to the LC domain
(21.6).

Therefore, an anisotropic composite with an aluminum matrix, in a common
case, is modeled by a heterogeneous medium occupying a volume V composed of
homogeneous phases V (r) (r ∈ [0, N ]) with a characteristic volume function χ(r)(x).
In addition, inequality V (r) 	 V holds, and the interphase contact is assumed to be
ideal. The creep function of r th phase is denoted by J(r)(t). Then the creep function
of the composite can be represented as piecewise homogeneous:

J(x, t) =
N∑

r=1

J(r)(t)χ(r)(x). (21.26)

Here χ(r)(x) = 1 ∀x ∈ V (r) and χ(r)(x) = 0, x /∈ V (r) in another case. Volumetric
averaging over V andV (r) is denoted hereafter by 〈·〉 and 〈·〉(r), respectively.Volumet-
ric averaging of the characteristic function by r -phase gives the volume concentration
value cr = 〈χ〉(r). Volumetric averaging of any function f over the representative
volume V and over the r -phase,

f̄ = 〈 f 〉 = 1

V

∫
V
f dv,

is denoted by 〈·〉(r) and

f̄ (r) = 〈 f 〉(r) = 1

V (r)

∫
V (r)

f dv,

respectively.
Stochastic equilibrium equations and boundary conditions of the first linear

approximation written in the domain of the LC transformations (21.6) can be repre-
sented in the form (Khoroshun et al. 1993; Maslov 2017; Rabotnov 1969)

L(∇)v (x, s) = −∇τ (1) (x, s) ,

v(x, s) = u(1)(x, s) − ū(x, s),
τ (1) (x, s) = f (x, s) e(1) (x, s) ,

f (x, s) = C (x, s) − L.

(21.27)
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The dash bar above indicates the results of statistical averaging in a sample with
a random elasticity tensorC(x, s), L is the elastic modulus tensor of a homogeneous
body of comparison (Hill 1983). The Fourier transform L (k) of the differential
operator in (21.26) is determined by the relations (Hill 1983; Khoroshun et al. 1993)

[L (k)]im = Li jmnk j km,

L = μ0(α1 ⊗ 1 + 2I), α = (λ/μ)0.
(21.28)

That is,μ0 and λ0 are the parameters that are constant within the boundaries of the
representative volume V ; I is a unit symmetric tensor of the fourth rank; τ (x, s) is
the polarization stress tensor (Khoroshun et al. 1993). Green’s function of the system
of equations (21.28) can be found from the condition

L (∇)G(x) + Iδ (x) = 0. (21.29)

Here δ (x) is the Dirac delta function, then

Gim (k) = [L (k)]−1
im . (21.30)

Using the method described in Khoroshun et al. (1993), Maslov (2000, 2018), we
write down the solution of the system (21.27) in the form of a convolution type
integral over the domain V

e(1) (x1, s) = ē (x1, s) + � (x1, x2) ∗ τ (1) (x2, s) , (21.31)

where � (x1, x2) is an operator with a kernel expressed in terms of derivatives of
Green’s function G (x1, x2) from (21.30).

Let us first consider a two-component material with the matrix reinforced with
chaotically space oriented spheroidal inclusions. The elastic properties of the inclu-
sions are determined by the potential Wi (e), and the instantaneous properties of the
matrix are determined by the potentialWm (e), that is, we take i = 1 and m = 2. Let
us average equation (21.31) under the condition that the coordinate x1 (the argument
of its left part) is located in the volume va occupied by inclusions oriented in the
na-direction, a ∈ [1, n]. As a result, we have

ea (x1, s) = ē(s) + 
 (x1, x2) ∗
[
f(x2)

n+1∑
b=1

eba (x2, x1, s) pb|a(x2, x1)

]
. (21.32)

The following notations are used here for two-point conditional statisticalmoment
functions (Khoroshun et al. 1993; Maslov 2008):

pb|a(x1, x2) = p (x1 ∈ vb |x2 ∈ va) , (21.33)
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i.e., the angle brackets,which contain the condition of a point belonging to a particular
set, indicate the operation of conditional statistical averaging. Conditional densities
of the distribution of transitions from the states x1 ∈ va (from the inclusion in na-
direction) are chosen in the form

pb|a(x1, x2) = p (x1, x2) δba + cb pT (x1, x2) (1 − δba),

p (x1, x2) = ca + cTa ϕ(x1, x2), pT (x1, x2) = 1 − p (x1, x2) ,

pm|a(x1, x2) = cmϕT (x1, x2) , ϕT (x1, x2) = 1 − ϕ (x1, x2) ,

(21.34)

where ϕ (x1, x2) is the two-point correlation function of the field of elastic properties;
cTa = 1 − ca ; ca is the volumeconcentrationof inclusions oriented in thena-direction.

The integration of equations (21.32) is performed according to themethodoutlined
in Maslov (2000, 2008), while the algebraic matrix g of the operator, which is
obtained from the integral �, has six components (transverse isotropy) (Balbi et al.
2018):

g = (g1, g2, g3, g4, g5, g6). (21.35)

Common notations (Maslov 2022; Parnell 2016)

g1 = 1
2 (g11 + g12), g2 = g13, g3 = g31, g4 = g33, g5 = g66, g6 = g44,

are used here for combinations of algebraic matrix elements in the case of trans-
verse isotropy. Each element gk in (21.35) depends on w-parameter, the ratio of the
longitudinal and transverse dimensions of the spheroidal inclusion (Maslov 2008).

Statistical fluctuations of deformations of inclusions εa = ea − ē in the na-
direction are expressed in terms of average deformations of the matrix material em
in the representative volume of the composite V

εa = cmzahiem, (21.36)

where cm is the volume concentration of the matrix material,

hi (x) = Ci (x) − Cm . (21.37)

The transversely isotropic tensor za is given by the relations

za = (I − gafi )−1ga, fi = Ci − L. (21.38)

Let us average equation (21.38) over the set � of possible orientations of inclu-
sions. We express the statistical average deformations of inclusions ei and matrix
material em in terms of macroscopic deformations ē of the representative volume V
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em = Am ē, Am = (I + cizh)−1,

ei = Ai ē, Ai = Am(I + zh), (21.39)

z = 〈za〉�,

where angle brackets with an index � indicate the operation of statistical averaging
over the ensemble of possible orientations of inclusions.

Given the relation (21.39), in the region of the LC transformation, the expressions
for the Lame elasticity effective moduli λ(s) and μ(s) for two-component material
of random structure can be written in closed form (Maslov 2008).

21.5 Multicomponent Linear Hereditary Materials

In the case of multicomponent nonlinear materials, we use the methodology of con-
ditional statistical moment functions (Khoroshun et al. 1993; Maslov 2008) and the
Mori–Tanaka calculation scheme (Mori and Tanaka 1978). To do this, we write down
the operator relations that connect the deformation fields of the components and the
corresponding macroscopic quantities. We assume that the exact solution for ei is
known

ei = Giem, (21.40)

then tensorsAi andAm (where i is the number of inclusions with potentialWi (e), i ∈
[1, n]; m = n + 1 is the material index of the matrix with elastic potential Wm (e))
are determined by the expressions

Ai = GiAm, Am =
(
cmI +

n∑
i=1

ciGi

)−1

. (21.41)

An approximate solution can be obtained by replacing unknown (in the general
case) operator Gi with a known approximate strain localization operator Ti , which
relates the average deformations of the inclusions marked with the number i (i ∈
[1, n]) with the average deformations of the representative volume V , i.e.,

ei = Ti ē. (21.42)

Then, we get formulas for finding tensors Ai , Am :

Ai = TiAm, Am =
(
cmI +

n∑
i=1

ciTi

)−1

, i ∈ [1, n] . (21.43)
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In this work, we define the operator Gi from the solution obtained on the basis of
the one-point approximation for two-component media (21.39), i.e.,

Gi = 1 + zihi , zi = 〈za〉�, za = (
1 − gafi

)−1
ga, 1 = I. (21.44)

Here, the algebraic matrix gi is obtained in (21.36) as a result of the analysis of the
stress state in inclusions with the number i . Thus, the tensors Ai and Am are defined
as follows

A i = Am(1 + zh)i , i ∈ [1, n] ,

Am =
(
1 +

n∑
i=1

cizhi

)−1

= (
1 + 〈zh〉(i))−1

.

(21.45)

As in the case of incompressible materials (Maslov 2000), it is possible to verify
by direct comparison that, for a two-component material, representations (21.45) are
identical to (21.39). From this, it can be concluded, in particular, that the accuracy of
(21.45) corresponds to the accuracy of the method of conditional statistical moment
functions.

21.6 Nonlinear Solution of Second-Order Hereditary Creep

The equilibrium equations are written in terms of the statistical fluctuations of LC
displacements of the secondorder of smallnessw(x, s) = u(2) − ū. In the coordinates
of the reference and for elastic configuration of Maslov (2008), Truesdell and Noll
(2004), these equations have the form

L (∇)w (x, s) = −∇τ (2) (x, s) , ∀ x ∈ V,

w (x, s) = 0, ∀ x ∈ ∂V,

τ (2) (x, s) = f (x, s) e(2) (x, s) − β(1) (x, e, s) ,

β(1) (x, e, s) = −C(e(1))e(1)(x, s).

(21.46)

The differential operator of system (21.46) coincides in form with the correspond-
ing operator from (21.14). This makes it possible to use Green’s function of the
linear solution and obtain an integral equation for determining the strain transforms
e(2) (x1, s) of the second approximation

e(2) (x1, s) = ē(s) + 
 (x1, x2) ∗ τ (2) (x2, s) . (21.47)

Let us perform statistical averaging of (21.47) under the condition that the coordinate
(the argument of the left part) is in the volume occupied by spheroidal inclusions,
which are oriented in the na-direction and have the potential Wi . Then, to determine
the average deformations of the inclusions in this direction, we obtain the equation
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e(a)

(2) (x1, s) = ē(s) + 
 (x1, x2) ∗
[
n+1∑
b=1

τ ba (x2, x1, s) pb|a (x2, x1)

]

(1)

. (21.48)

Following the proposed algorithm,wefind the solution of this equation by performing
integration using conditional probability distribution densities of the type (21.34).
At the same time, the nonlinear terms in the right-hand part are expressed in terms
of macroscopic deformations of the representative volume of the composite material

e(r)
(1) = A(r)ē, r ∈ [1, n + 1], n + 1 = m. (21.49)

Here and further, superscripts in parentheses mean the result of the conditional statis-
tical averaging operation, subscripts—the order of approximation. The first approxi-
mation of deformations is e(1)

(r). By implementing the procedure defined by (21.48),
we obtain

e(r)
(2)(s) = A(r)(s)ē(s) + A(r)(s) (ē(s)) , r ∈ [i ∪ m], i ∈ [1, n],
Am(s) = (I + R(s))−1, R =

n∑
i=1

ciRi ,

Ai (s) = (I + Ri (s))Am(s), Ri = (zh)i ,

Am(s) = −Am(s)

(
n∑

i=1

cieiβ

)
, eiβ = (zhβ)i , hiβ = β i − βm,

Ai (s) = (I + Ri (s))Am(s) + eiβ(s).

(21.50)

At the same time, the conditions for the normalization of the operators Ar , Ar are
satisfied

n+1∑
r=1

crAr = I,
n+1∑
r=1

crAr = 0. (21.51)

Substituting (21.50) into the averaged physically nonlinear relations of the second
order from (21.46), we find the dependence of the tensor of macroscopic Cauchy
stresses σ̄ (t) on creep strains ē(t) for a multicomponent compressible composite
material reinforced with spatially oriented spheroidal inclusions.

21.7 The Function of Stored Strain Energy and Additional
Energy

For further analysis of creep processes, we should use the obtained constitutive equa-
tions concerning given parameters for the potential of deformations, i.e., additional
energy. The energy of the instantaneous elastic deformation per unit volume of the
material can be represented by expansion in the Taylor series in the vicinity of the
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natural unstressed state (Asaro and Lubarda 2006; Biot 2008; Truesdell and Noll
2004)

W (e) = 1

2!ei jCi jklekl + 1

3!ei j (Ci jklmnemn)ekl + · · · , (21.52)

where ei j are the components of the linear tensor of Cauchy deformations; Ci jkl are
the component of the tensor of linear elasticity constants. The elastic constants of
the third order are the components of the tensor of the sixth order.

The symmetric Cauchy stress tensor is the gradient σi j of elastic energy in relation
to elastic strains

σi j = ∂W

∂ei j
= Ci jklekl + 1

2Ci jklmnemnekl , Ci jkl = Ci jklmnemn.

(21.53)

If relations (21.53) are invertible, then we get

ei j = ∂U

∂σi j

= Si jklσkl + 1
2 Si jklmnσmnσkl .

(21.54)

Here
U (σ ) = σklekl − W (ei j )

= 1
2σi j Si jklσkl + 1

3!σi j (Si jklmnσmn)σkl,
(21.55)

is the additional strain energy determined by the Legendre transformation of the
function W (e). Since ∂σi j/∂σkl = Ii jkl (unity tensor of the fourth rank) and

∂2σi j/∂σkl∂σmn = 0,

we can obtain the relations connecting the elastic constants of the second Ci jkl and
third Ci jklmn orders with the compliances of the corresponding orders, namely,

Ci jkl = S−1
i jkl , Ci jklmn = −Ci jpq SpqrsuvCrsklCuvmn. (21.56)

As an example, let us further consider the elastic potential of the third order in
the form (Asaro and Lubarda 2006; Truesdell and Noll 2004)

W = 1
2 (λ + 2μ)I 21 + 2μI2 + l + 2m

3
3I 31 + 2mI1E2 + nI3, (21.57)

where Ik are the main invariants of the Cauchy strain tensor. Then the formula for
stresses takes the form

σ = [
λI1 + l I 21 + (2m − n)I2

]
1 + [2μ + (2m − n)I1] e + ne2. (21.58)
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Third-order constants l,m and nwere introduced byMurnaghan (Besson et al. 2010).
Since the elastic constants of the kth order are components of the tensor of rank 2k,
the symmetry property is obtained from the relations

Ci jkl = ∂2W

∂ei j∂ekl
, Ci jklmn = ∂3W

∂ei j∂ekl∂emn
. (21.59)

The tensor of elastic constants of the third order in a rectangular coordinate system
for isotropic materials has the form (Asaro and Lubarda 2006)

Ci jklmn = ν1δi jδklδmn + 6ν2δi j Iklmn + 8ν3 Ii jklmn. (21.60)

At the same time, theLameconstants of the third order νk are related to the coefficients
l, m and n from (21.57)

l = ν2 + 1
2ν1, m = ν2 + 2ν3, n = 4ν3.

Here, the following relations are used

Ji jklmn = 1
3

(
δi j Iklmn + δkl Imni j + δmn Ii jkl

)
, (21.61)

Ii jklmn = 1
4

(
δik I jlmn + δil I jkmn + δim Ikln j + δin Iklm j

)
. (21.62)

In the case of an isotropic material, the elastic compliances of the second order
si j can be expressed in terms of elastic constants

s11 = c11 + c12
(c11 − c12)(c11 + 2c12)

= − ν

E
, s12 = c12

(c11 − c12)(c11 + 2c12)
= 1

E
.

For isotropicmedia,we alsowrite down some useful linear combinations of elastic
moduli ci jk and third-order compliances si jk

9s123 + 18s144 + 8s456 = − (3s12 + 2s44)
3(9c123 + 18c144 + 8c456), (21.63)

3s144 + 4s456 = − 4s244(3s12 + 2s44)(3c144 + 4c456), (21.64)

with
ν1 = c123, ν2 = c144, ν3 = c456. (21.65)

Then the expression for the additional strain energy can be written in the form

Si jklmn = η1δi jδklδmn + 6η2δi j Iklmn + 8η3 Ii jklmn, (21.66)

η1 = s123, η2 = s144, η3 = s456. (21.67)

In the theory of nonlinear viscoelasticity, the coefficients of proportionality of
stress and strain deviators (Hashin 1981) of the second and third order are useful
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s144 = − 4s244(s11c144 + 2s12c244),
s11 + s12 = s144

= − 4s244[s12c144 + (s11 + s12)c244].
(21.68)

Thus, from (21.68), we obtain the inverse relations expressing compliance si jk in
turms of elasticity coefficients ci jk . Nonlinear creep and relaxation parameters of the
aluminum matrix may be connected by

9ν1 + 18ν2 + 8ν3 = −(3κ)3(9η1 + 18η2 + 8η3),
3ν2 + 4ν3 = −12μ2κ(3η2 + 4η3), ν3 = −8μ3η3.

(21.69)

In the nonlinear theory of viscoelasticity, data from basic tensile and torsional
creep experiments are used (Hashin 1981; Golub et al. 2016) to determine material
parameters with (21.68) or (21.69).

One of the functions that monotonically decreases with increasing argument and
has a weak singularity at t = 0 is the fractional-exponential function (Khoroshun
et al. 1993; Maslov 2022). This function is successfully used as the kernel of the
linear integral equation (21.69) and describes the behavior of polymers (Balbi et al.
2018) and composite materials within the linear theory of creep. Currently, there
is a well-developed mathematical apparatus (Rabotnov 1969) for solving boundary
value problems of the theory of linear creep using these kernels as initial ones.

Following (21.19), the constitutive equations of creep, which specify the depen-
dence between the components of the strain tensor, the stress tensor, and the time,
can be written in the form

ed(t) = (eed ∗ dgd)(t)

=
(

∂U

∂σ d
∗ dgd

)
(t),

em(t) = (eem ∗ dgm)(t)

=
(

∂U

∂σm
∗ dgm

)
(t).

(21.70)

Reduced creep functions gd(t) and gm(t) are obtained fromdeviator Jd(t) andvolume
Jm(t) creep functions of linear viscoelastic material (see Hashin (1981), Golub et al.
(2016))

gd(t) = 2μJd(t), gd(t) = 1 + (ξ/β)d(1 − Md(αd , βd , t)),
gm(t) = 3κ Jm(t), gm(t) = 1 + (ξ/β)m(1 − Mm(αm, βm, t)).

(21.71)

Here, Mq(α, β, t) is the Mittag-Leffler function

Mq(α, β, t) =
∞∑
n=0

(−βtq)n


(1 + qn)
, q = α + 1; (21.72)
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μ and κ are shear and volume deformation moduli, respectively; α, ξ and β are
rheological parameters.

The most practically important problem is the identification of creep and relax-
ation kernels

K (α, β, t) = − 1

β

d

dt
Mα+1(α, β, t).

The identification of creep and relaxation kernels in (21.68) and (21.71) is carried
out using two groups of basic experiments on creep under constant stresses (Golub
et al. 2016). The first group includes creep tests of solid cylindrical samples under
uniaxial tension for determining longitudinal and transverse deformations. In this
case, one-dimensional dependences between stresses, strains, and time are given
by equations similar to (21.2). The second group of basic experiments considered
in Hashin (1981) includes creep tests of solid cylindrical samples under uniaxial
tension for determining the longitudinal deformations and creep tests of thin-walled
tubular samples under pure torsion for determining the angular deformations.

The creep kernels K (t) in (21.1), (21.2) and relaxation R (t) in (21.11) are approx-
imated by fractional-exponential functions

K (t) = tα
∞∑
n=0

(−β)n(t)nq


 [(1 + n)q]
, R(t) = tα

∞∑
n=0

−(ξ + β)n(t)nq


 [(1 + n)q]
, (21.73)

where α and β are kernel parameters (−1 < α < 0, β > 0), 
[·] is Euler’s gamma
function (Rabotnov 1969).

The relaxation functions corresponding to other homogeneous stress states can
also be determined using μ(s) and κ(s). A comparison of the LC transformation of
constitutive relations for linear, isotropic elasticity theory shows that the relaxation
functions corresponding to other stress states are determined using the relations
of the elasticity theory by replacing the elastic moduli with the transformation of
the corresponding relaxation functions of the viscoelasticity theory (Christensen
1982; Lakes 2009). So, for example, it follows from the relations of the isotropic
elasticity theory that, in the transformation domain, the relaxation function E(s)
that characterizes the state of uniaxial tension is determined in terms of transformed
functions μ(s), κ(s) as follows

E(s) = 9μ(s)κ(s)

μ(s) + 3κ(s)
.

It is essential to establish the relationship between the creep and relaxation kernels
of nonlinear hereditary materials under a complex stress state and the creep kernels
under uniaxial tension and pure torsion. It is the stage of the general procedure
for determining the parameters of the kernels given by the fractional-exponential
functions (Khoroshun et al. 1993).

For example, consider the hereditary creep of a composite made of a three-
component mixture: an aluminum matrix of the Al 2024 S type (Lin et al. 2013;
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Maximov et al. 2014), reinforcedwith oriented along x3-axis spheroidal elastic inclu-
sions. The elastic characteristics of the components (Aboudi et al. 2013) are given
in Table 21.1.

We take into account the hereditary properties of the aluminum matrix. The rhe-
ological parameters of the fractional-exponential kernel we obtain by identification
of experimental data from Lin et al. (2013), and are given in Table 21.2.

Further, numerical algorithms in the Fortran 95 environment were used for com-
puter simulation (Abate and Valko 2004; Kuhlman 2013; Levesque et al. 2007).

Curves in Fig. 21.1 show the dependence of the normalized transverse creep
function gT (t) over time. The solid line corresponds to the predicted transverse
creep function for an aluminum matrix reinforced with axially oriented boron fibers
c1 = 0.15. The dashed line illustrates the behavior of the uniaxial creep function g(t)
for a pure matrix.

Figure 21.2 shows the dependence curves of the normalized transverse shear
creep function jT (t) over time. The solid line corresponds to the predicted transverse
creep function for aluminummatrix reinforcedwith axially oriented fibers c1 = 0.15.
The dashed line illustrates the behavior of the shear creep function j (t) for a pure
Al 2024 S matrix.

Further, Fig. 21.3 shows the varying of transverse relaxation function ET (c1)with
pure matrix relaxation E(c1) function under transverse load when volume boron
fibers concentration c1 increases. The dashed curve corresponds to an instantaneous
elastic solution, and the solid curve is determined as a result of long-term hereditary
creep analysis for t = Tb = 10τ , where τ is the relaxation time.

Figure 21.4 shows the dependence of longitudinal Poisson’s ratio νL(c1) predic-
tion from volume concentration of boron fibers c1. The dashed curve corresponds to
instantaneous elastic solution (Maslov and Bugai 1992; Maslov 1989), and the solid
curve is determined as a result of hereditary creep analysis for Tb = 10τ .

Figure 21.5 shows the dependence of transverse Poisson’s ratio νT (c1) from vol-
ume concentration of boron fibers c1. The dashed curve corresponds to the instanta-
neous elastic solution, and a solid one is determined by the hereditary creep analysis
for Tb = 10τ (Maslov 2018).

Table 21.1 Material constants of metal matrix (Al 2024 S) composite components

Material E , GPa ν ν1 ν2 ν3

Boron 467.3 0.361 −840.0 −420.0 −390.00

SiC 440.3 0.171 −227.2 31.5 −170.75

Al 2024 S 55.8 0.33 −115.0 −160.5 −108.80

Table 21.2 Viscoelastic parameters of aluminum matrix

Material α ξ, (hour)−q β, (hour)−q

Al 2024 S 0.5 0.33 115.0
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Fig. 21.1 Comparison of the results of normalized transverse creep function gT (t) prediction for
unidirectionally reinforced composite with pure matrix creep function under transverse uniaxial
load

Fig. 21.2 Comparison of the results of normalized transverse shear creep function jT (t) prediction
for unidirectionally reinforced composite with pure matrix creep function under transverse shear
load
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Fig. 21.3 Comparison of the results of transverse relaxation function ET (c1) with pure matrix
relaxation E(c1) function under transverse load

Next, Figs. 21.1, 21.2, 21.3, 21.4 and 21.5 let us compare obtained properties of
unidirectionally reinforced composite with pure matrix under uniaxial longitudinal
and transverse loading.

The calculations are carried out for nonlinear elastic parameters of constituents
presented in Table 21.1 and viscoelastic properties of the aluminummatrix presented
in Table 21.2.
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Fig. 21.4 Comparison of the results of longitudinal Poisson’s ratio νA(c1) prediction for unidirec-
tional reinforced composite with pure matrix ν(c1) under uniaxial load

Fig. 21.5 Comparison of the results of transverse Poisson’s ratio νT (c1) prediction for unidirec-
tional reinforced composite with pure matrix creep function ν(c1) under uniaxial load
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21.8 Conclusion

Composite materials are used in structural elements that are operated both under
conditions of long-term, one-time, and cyclic loads. The strength and durability of
composites depend on the average or maximum stresses per load cycle in the matrix,
inclusions, and their interfaces; there is also dependence on the number of cycles.
In this regard, for the design of new materials with given properties, it is of great
interest to model and study microstructural stresses and strains that change over
time. Therefore, predicting the macroscopic characteristics of nonlinear hereditary
creep and determining their dependence on the form of inclusions, the type of spatial
reinforcement, and the volume concentration of components are of great practical
importance. The article examines a compositematerial of a random structure and uses
an averaging method based on the Schapery-type correspondence principle, Fourier
and Laplace–Carson integral transforms. The Fortran 95 environment is used to
implement the numerical algorithms. The advantages of the research include obtain-
ing final results in the form of constitutive equations of hereditary creep, namely,
the time dependence of deformations on stresses and inverted relaxation relation of
stress–deformation.
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Chapter 22
Boundary Integral Equation Method for
3D Elastodynamic Problems with
Chain-Arranged Rigid Disk-Shaped
Inclusions

Viktor Mykhas’kiv and Igor Zhbadynskyi

22.1 Introduction

Currently, periodically structured elastic composites or artificial metamaterials are
widely applied in modern technical systems because they provide special deforma-
tion and strength properties as the consequence of the interaction between ordered
constituents. Under wave propagation conditions, their behavior is also distinguished
by the multiple scattering and interference phenomena, which can be constructive or
destructive in a total sense. In many practical cases, such composites of 3D configu-
ration may contain arranged fillers in the form of thin inclusions (Kadic et al. 2019).
The singular character of stresses takes place in the vicinities of inhomogeneities,
which should be investigated in the time-harmonic wave loading situation with the
consideration of both particle interaction and frequency effects.

Most of the known theoretical results onmany thin-walled scatterers in the 3Dfield
of incident elastic waves are related to the elastodynamic problems for solids with
systems of crack-like objects. For example, the interaction between the finite number
of penny-shaped or square cracks in homogeneous and bi-material elastic solids was
considered in Itou (2000), Mykhas’kiv et al. (2010). In addition, physically correct
statements of frequency-domain problems, which allow dynamic cracks’ closure, are
proposed in Guz (2022), Menshykova et al. (2012), Mykhailova et al. (2011). The
joint contribution of an infinite number of periodically located penny-shaped or rect-
angular cracks to a 3D elastic wave field was investigated in Golub and Doroshenko
(2019a, b), Mykhas’kiv et al. (2014, 2019), Remizov et al. (2017). Obtained results
show that the mutual dynamic influence of cracks can lead to pronounced shielding
and amplification in terms of fracture parameters as well as selective wave blocking
in terms of transmission coefficients depending on the frequency spectrum.
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Regarding 3D frequency-domain problems with thin-walled inhomogeneities,
investigations available in the literature are limited by the time-harmonic elastic
wave incidence on single disk-shaped inclusion (Kit et al. 2002). Based on this solu-
tion, the effective dynamic properties of a 3D elastic matrix containing a dilute array
of disk-shaped inclusions were estimated when the influence of inhomogeneities on
each other could be neglected (see Mykhas’kiv et al. (2010, 2018)). However, to
the best of the authors’ knowledge, the dynamic interaction in the large systems of
thin-walled inclusions was not considered. It should be mentioned that the periodic
distribution of inhomogeneities is most adapted for such investigation because of the
possibility of analysis in a unit cell of ordered structure.

For elastic solids with periodically arranged volumetric inclusions, it was demon-
strated that among many analytical and numerical methods such as the plane-wave
expansion method, the multiple scattering method, the finite element method (Mah-
mood et al. 2017; Maslov et al. 2000; Zhang et al. 2003; Zhao et al. 2015), and the
boundary integral equation method (BIEM) can be successfully applied for corre-
sponding wave propagation problems. Its efficiency is quite high due to the reduction
of the problem dimensionality and the automatic satisfaction of the radiation con-
ditions at infinity through the involvement of appropriate Green’s functions. There
are usually two ways to analyze the periodic structures by the BIEM. One way is
to formulate the boundary integral equations for a unit cell according to the gov-
erning wave equations and the conventional Green’s functions. Then the periodicity
conditions are stated on the boundaries of the unit cell. The other way is that the
periodicity conditions are directly substituted into the governing wave equations or
integral representations of their solutions. Then the boundary integral equations are
formulated on the surface of the representative scatterer with the periodic or quasi-
periodic Green’s functions in the kernels of corresponding equations. The global
effect of the multiple scatterers is taken into account in the periodic Green’s func-
tions by the lattice sums, whose effective calculations can be realized by their dual,
Ewald’s-type or integral representations depending on the problem periodicity (see
Bruno (2014), Linton (2010), Martin (2006)). The first way has been successfully
applied for periodic problems to simulate the wave fields in 2D elastic solids con-
taining periodic holes and fibers (Li et al. 2013; Wang et al. 2011). The second way
was implemented to investigate elastic wave propagation in 3D solids with periodic
spherical inclusions (Isakari et al. 2012). In the current chapter, this approach, which
does not require the discretization of the boundary of the unit cell, is used to ana-
lyze the normal incidence of plane longitudinal elastic wave on an infinite array of
one-periodic or chain-arranged coplanar rigid disk-shaped inclusions.
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22.2 Boundary Integral Equation in the Domain
of Reference Inclusion

Let us consider an infinite isotropic elastic matrix with the mass density ρ, the shear
modulus μ, and Poisson’s ratio ν containing a one-periodic array of absolutely rigid
disk-shaped inclusions, which occupy the domains Sn (n ∈ Z) as shown in Fig. 22.1,
and have the same mass M and radius a. The inclusions are perfectly contacted
with the matrix material and lie in the plane x3 = 0 with their centers located on the
x1-axis with the periodic distance d > 2a.

The system of inclusions is subjected to an incident longitudinal time-harmonic
wave with the amplitude factor u0 and the circular frequency k, which propagates in
the direction of the positive x3-axis and has the following displacement components:

uin1 (x) = uin2 (x) = 0, uin3 (x) = u0 exp(ik1x3). (22.1)

Here and hereafter, the common steady-state term exp(−ikt) is omitted, k j = k/c j
( j = 1, 2) are the wave numbers,

c2 = √
μ/ρ, c1 = γ c2

(
γ = √

2(1 − ν)/(1 − 2ν)
)

are the transverse and longitudinal wave velocities, respectively.
By using the superposition principle, the total displacement field u = (u1, u2, u3)

in a matrix with multiple wave scatterers can be written as

ul(x) = uinl (x) +
∞∑

n=−∞
uscln(x), l = 1, 2, 3, (22.2)

where uscln(x) are the unknown displacements connected with the presence in the
system of nth inclusion, which should satisfy the classical differential equation of
motion and radiation conditions at infinity (Martin 2006).

In order to obtain the integral representations for the displacement componentsuscln ,
the Betty–Rayleigh reciprocity theorem is applied in conjunction with the properties

Fig. 22.1 Geometry of the problem
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of the elastodynamic fundamental solutions. Then, these representations take a form
similar to those for the single inclusion problem (Kit et al. 2002), namely,

uscln(x) = 1

4πμ

∫∫

Sn

�σn(ξ)

{
δ3l

exp (ik2 |x − ξ|)
|x − ξ| − 1

k22

∂2

∂xl∂x3

×
[
exp (ik1 |x − ξ|)

|x − ξ| − exp (ik2 |x − ξ|)
|x − ξ|

]}
dSξ, l = 1, 2, 3. (22.3)

In (22.3), the displacement continuity conditions across the inclusions as absolutely
rigid units are accounted for implicitly. In this equation, δ jl is the Kronecker symbol,
|x − ξ| is the distance between the field point x = (x1, x2, x3) and integration point
ξ = (ξ1, ξ2), and �σn is the jump of the normal stresses σ33 in the domain Sn of nth
inclusion, which is defined by

�σn(x) = σ−
33(x) − σ+

33(x), x ∈ Sn, σ±
33(x) = lim

x3→± 0
σ33(x). (22.4)

It should be mentioned that the jumps of tangential stresses across the domains
Sn are zeros due to the antisymmetry of the scattered wave field with respect to the
plane x3 = 0.

The inclusions are considered as rigid units, and their motion under the specified
incident wave is described by the translations u∗

n in the direction of the x3-axis only.
Then the following displacement boundary conditions take place in the domains Sn

u3(x) = u∗
n, (x1, x2, 0) ∈ Sn. (22.5)

Equation (22.4) together with the equation of motion of each inclusion as a rigid
unit yields the following relation between the translation of the nth inclusion and the
stress jump �σn

u∗
n = 1

k2M

∫∫

Sn

�σn(ξ) dSξ . (22.6)

Due to the periodicity of the problem of the normal incidence of the elastic lon-
gitudinal wave on a one-periodic array of inclusions, the following equalities can be
postulated for the stress jumps and translation functions

�σn(x1 + nd, x2) = �σ(x1, x2), u∗
n = u∗, n ∈ Z. (22.7)

In (22.7),�σ = �σ0 and u∗ = u∗
0 are the stress jump across the faces of the reference

inclusion S = S0 and the translation of the reference inclusion, respectively.
Hence, the components of displacement in the matrix and the kinematical param-

eters of the inclusions are related to the stress jumps across the inclusions by the
relations (22.3) and (22.6). The definition of these functions is based on the sub-
stitution of (22.3) into (22.2) and satisfaction of boundary conditions (22.5) with
accounting for (22.6) and the periodicity conditions (22.7). In this way, the bound-
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ary integral equation for the stress jump�σ across the surfaces of reference inclusion
is deduced as

∫∫

S
�σ (ξ)

[
R (|x − ξ|) + G (x, ξ)

]
dSξ = −4πμk22 u

in
3 (x), x ∈ S, (22.8)

Here the kernel R is the same as for a single rigid disk-shaped inclusion in an infinite
elastic matrix (Kit et al. 2002), namely

R (r) = [1 − ik1r ]
exp (ik1r)

r3
− [

1 − ik2r − k22 r
2
] exp (ik2r)

r3
− 4πρ

M
, (22.9)

the kernel G(x, ξ) describes the interaction of the reference inclusion S with the infi-
nite number of inclusions in all replica cells and plays the role of one-periodicGreen’s
function for the considered problem. In addition, this function has the following form
of the infinite lattice sum

G(x, ξ) = G1(x, ξ) + G2(x, ξ),

G1(x, ξ) =
b−1∑

n=−b+1

(1 − δn0)R
[
rn(x, ξ)

]
,

G2(x, ξ) =
∞∑

n=b

2∑

j=1

Tx
j

[
exp

[
ik jrn(x, ξ)

]

rn(x, ξ)

]

+
−b∑

n=−∞

2∑

j=1

Tx
j

[
exp

[
ik jrn(x, ξ)

]

rn(x, ξ)

]

.

(22.10)

Here rn(x, ξ) = √
(x1 − ξ1 − nd)2 + (x2 − ξ2)2, (b � 2) is a fixed integer number,

Tx
j are the differential operators given by

Tx
1 = ∂2

∂x21
+ ∂2

∂x22
+ k21, Tx

2 = − ∂2

∂x21
− ∂2

∂x22
. (22.11)

From the geometrical point of view, the part of Green’s function G, the func-
tion G1 corresponds to the presence of “close” inclusions located in the domains Sn
(n ∈ [−b + 1, b − 1]) on both sides from the reference inclusion, while another part
of Green’s functionG, the functionG2, corresponds to the consideration of rest “far”
inclusions. The reason for such a division lies in the fact that the infinite lattice sum
G2 in its direct form (22.10) converges very slowly (conditionally) with increasing
frequency due to the presence of the oscillating terms. Therefore, its transformation
is needed to provide an exponential convergence. It can be achieved by the special
integral representation of the expression exp(ik jrn)/rn . In addition, separating the
function G1 (as the limited sum for the neighboring inclusions) from Green’s func-
tion G aims to accelerate the convergence of the remaining term. Since rn �= 0, the
function G1 does not contain singularities and can be evaluated numerically without
difficulties.
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Thus, to rewrite the function G2 in a more convenient form, the following integral
expression is used (Gradshteyn and Ryzhik 2000):

exp
[
ik jrn(x, ξ)

]

rn(x, ξ)

=
∫ ∞

0
t
exp

[
− |x1 − ξ1 − nd|

√
t2 − k2j

]

√
t2 − k2j

J0 [|x2 − ξ2| t] dt. (22.12)

Here and hereafter, Jn is the Bessel function of the nth order, and the square root is
defined according to the radiation conditions at infinity:

√
t2 − k2j =

⎧
⎨

⎩

√
t2 − k2j , |t | � k j

−i
√
k2j − t2, |t | < k j .

By using the integral representations (22.12), performing the corresponding summa-
tion of the geometrical series, and taking the derivatives present in the differential
operators (22.11), the function G2(x, ξ) takes the exponentially convergent form

G2(x, ξ) = 1

d3

2∑

j=1

∫ ∞

0
t

exp
(−Uj (t)

)

Uj (t)
[
1 − exp

(−Uj (t)
)]

× Y j

(
x1 − ξ1

d
, t

)
� j

(∣∣∣∣
x2 − ξ2

d

∣∣∣∣ , t
)
dt,

(22.13)

where

Uj (t) = √
t2 − (k jd)2, �1(r, t) = t

J1(r t)

r
, �2(r, t) = k22d

2 J0(r t) − t
J1(r t)

r
,

Y j (r, t) = exp
[− (b − 1 − r)Uj (t)

] + exp
[− (b − 1 + r)Uj (t)

]
.

By substituting (22.13) into (22.10) and then into (22.8), we arrive at the bound-
ary integral equation with the frequency-domain Green’s function of exponentially
convergent form for a one-periodic array of rigid disk-shaped inclusions.

22.3 Regularization and Discretization of Boundary
Integral Equation

An efficient numerical solution of boundary integral equation (22.8) requires proper
regularization procedures for its integral terms with the weak singularity |x − ξ|−1

of the kernel R at the source point ξ = x as well as the singularities in the integral
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representation (22.13) of the kernel G2 at the points coinciding with the roots of the
functions Uj (t) due to the following behavior:

[
Uj (t)

(
1 − exp

(−Uj (t)
))]−1 → [

t2 − (k jd)2
]−1

,

if Uj (t) tend to zero.
The singular integrals in the part G2 of periodic Green’s function (22.10) are

regularized by the singularity subtraction technique. According to this technique,
the exact values of the sums (Gradshteyn and Ryzhik 2000)

∞∑

n=1

exp (ik j dn)

n
=

∫ ∞

0
t

exp
(−Uj (t)

)

Uj (t)
[
1 − exp

(−Uj (t)
)]dt = A j + π iq j , (22.14)

which play the role of regularizing terms or integrals, are used.
In (22.14), the number q j = 0, 1, 2, . . . is determined from the condition 2πq j <

k jd < 2π(q j + 1) and

A j = 1

2

{− ln
[
2 − 2 cos(k jd)

] + i(π − k jd)
}
.

The closed form of the lattice sum (22.14) is valid for all k jd except the values
k jd = 2πn (n = 1, 2, . . . ). These wave numbers correspond to the cut-off wave
numbers associated with the n-mode of the emerging transversal and longitudinal
waves in the plane of chain-arranged inclusions.

The real part of the representation (22.14) is known as the Clausen function. It
is suitable for the computations near the cut-off wave numbers using the rapidly
converging series (Linton and McIver 2001)

1

2
ln

[
2 − 2 cos(k jd)

] = ln(k jd) +
∞∑

l=1

(−1)l B2l(k jd)2l

2l(2l)! ,

where B2l are the Bernoulli numbers.
On the base of relation (22.14), the regularized form of the lattice sum G2 can be

written as

G2(x, ξ) = 1

d3

2∑

j=1

∫ ∞

0
t

exp
(−Uj (t)

)

Uj (t)
[
1 − exp

(−Uj (t)
)]

×
[
Y j

(
x1 − ξ1

d
, t

)
� j

(∣∣∣∣
x2 − ξ2

d

∣∣∣∣ , t
)

− 2� j

(∣∣∣∣
x2 − ξ2

d

∣∣∣∣ , k jd

)]
dt

+ 1

d3

2∑

j=1

[
2A j� j

(∣∣∣∣
x2 − ξ2

d

∣∣∣∣ , k jd

)
+ Fj

(
x1 − ξ1

d
,

∣∣∣∣
x2 − ξ2

d

∣∣∣∣

)]
.

(22.15)
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Here Fj ( j = 1, 2) are the known functions, which depend on the considered range
of the wave number parameter k jd. For instance, in the range 0 < k jd < 4π , they
are given by

Fj (r, τ ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 < k jd < 2π

π iYl
(
r,

√
(k jd)2 − 4π2

)

× � j

(
τ,

√
(k jd)2 − 4π2

)
, 2π < k jd < 4π.

Due to the fast convergence of the integrand involved in the resulting regularized
form of the function (22.15), the corresponding infinite integral can be truncated in
the numerical scheme.

To isolate the weak singularity in the kernel R, we similarly rewrite the boundary
integral equation (22.8):

A
∫∫

S

�σ (ξ)

|x − ξ| dSξ +
∫∫

S
�σ (ξ)

[
1

k22
R (|x − ξ|) − A

|x − ξ|
]
dSξ

+ 1

k22

∫∫

S
�σ (ξ)G (x, ξ) dSξ = −4πμ uin3 (x), x ∈ S, (22.16)

where A = (1 + γ 2)/2.
In (22.16), the second integral on the left-hand side exists in the ordinary sense.

This fact follows from an analysis of the integrand in the limit ξ → x. Therefore,
in the numerical evaluation of this integral, performing the integration over S0x by
excluding a small region around the point x in S is correct.

For a circular rigid disk-shaped inclusion, the stress jumphas “square-root” behav-
ior in the vicinity of the inclusion front, which can be expressed as

�σ(x) = β(x)
√
a2 − x21 − x22

, x ∈ S, (22.17)

where β(x) is a sufficiently smooth function.
Substitutionof (22.17) into (22.16) results in the boundary integral equation for the

new unknown function β(x). It has the weak singularity 1/|x − ξ| at the source point
ξ = x and the “square-root” singularity at the front of the inclusion. To regularize
the boundary integral equation at the source point, the following interpretation of the
involved integral is utilized

∫∫

S

β(ξ)
√
a2 − ξ 2

1 − ξ 2
2 · |x − ξ|

dSξ

= π2β(x) +
∫∫

S0x

β(ξ) − β(x)
√
a2 − ξ 2

1 − ξ 2
2 · |x − ξ|

dSξ, (22.18)
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with consideration of the exact value
∫∫

S

dSξ√
a2 − ξ 2

1 − ξ 2
2 |x − ξ|

= π2.

Next, the change of variables x = f (y), ξ = f (η) is performed as

{
x1 = a sin y1 cos y2
x2 = a sin y1 sin y2

,

{
ξ1 = a sin η1 cos η2
ξ2 = a sin η1 sin η2

, (22.19)

where y = (y1, y2) and η = (η1, η2) are new variables in the rectangular domain S̃ =
{y,η : 0 � y1, η1 � π/2; 0 � y2, η2 � 2π}. The transformation (22.19)maps the
circular integration domain to a rectangular integration domain and eliminates the
“square-root” singularity at the front of the inclusion corresponding to η1 = π/2.

Application of relations (22.17)–(22.19) in the boundary integral equation (22.16)
yields its complete regularized version

Aβ̃ (y)

[

π2 −
∫∫

S̃0y

sin η1

L (y,η)
dSη

]

+ 1

ϑ2

∫∫

S̃0y

β̃ (η) R̃ (y,η) sin η1dSη

+ 1

ϑ2

∫∫

S̃
β̃ (η) G̃ (y,η) sin η1dSη = −4πμũin3 (y) , y ∈ S̃, (22.20)

where
β̃ (y) = β j ( f (y)) , R̃ (y,η) = a3R ( f (y), f (η)) ,

G̃ (y,η) = a3G ( f (y), f (η)) , ũin3 (y) = uin3 ( f (y)) .

In (22.20), ϑ = k2a is the normalized wave number, S̃0y is the mapping of the domain

S0x due to the transformation (22.19) (in the domain S̃0y , the points y and η do not
coincide), and

L (y,η) =
√
sin2 y1 + sin2 η1 − 2 sin y1 sin η1 cos (y2 − η2).

The discretization of the boundary integral equation (22.20) is performed using
a collocation scheme, where the boundary element mesh is formed by dividing the
domain S̃ into identical rectangular boundary elements. The centroids of each element
are chosen as collocation points. This analysis adopts the constant approximation for
the function β(y) using the standard Gaussian quadratures for the integration. The
appropriate choice of the mesh density and truncation limits of the infinite integrals
controls the accuracy of the numerical solution.
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22.4 Determination of Actual Dynamic Quantities

After the solution of boundary integral equation (22.20), the displacement u∗ or the
translation of reference inclusion as a rigid unit can be obtained by means of the
relations (22.17), (22.7), and (22.6).

For the definition of dynamic fracture parameters or dynamic stress intensity
factors in the vicinity of a reference inclusion, let us introduce the local coordinate
system Otqzwith the center in the inclusion contour point so that the value z = 0 cor-
responds to the inclusion plane, the axes Ot and Oq lie in the normal and tangential
directions relative to the inclusion front line, respectively. Then, the corresponding
displacement and stress components at the arbitrary point P near the inclusion in the
plane q = 0 can be approximated as

uz(r, ψ, ϕ) =
√
2r

2μ
sin

ψ

2

(
1 − sin2

ψ

2

)
KI(ϕ)

+
√
2r

2μ
cos

ψ

2

(
2 − 4ν + cos2

ψ

2

)
KII(ϕ) + O

(
r 3/2

)
,

ut (r, ψ, ϕ) = −
√
2r

2μ
cos

ψ

2

(
4 − 4ν − cos2

ψ

2

)
KI(ϕ)

−
√
2r

2μ
sin

ψ

2

(
1 − sin2

ψ

2

)
KII(ϕ) + O

(
r 3/2

)
,

uq (r, ψ, ϕ) =
√
2r

2μ
cos

ψ

2
KIII(ϕ) + O

(
r 3/2

)
,

σzz(r, ψ, ϕ) = − 1√
2r

cos
ψ

2

(
1 − 2ν − sin

ψ

2
sin

3ψ

2

)
KI(ϕ)

+ 1√
2r

sin
ψ

2

(
2 − 2ν − cos

ψ

2
cos

3ψ

2

)
KII(ϕ) + O(1),

σt t (r, ψ, ϕ) = 1√
2r

cos
ψ

2

(
3 − 2ν − sin

ψ

2
sin

3ψ

2

)
KI(ϕ)

+ 1√
2r

sin
ψ

2

(
2ν + cos

ψ

2
cos

3ψ

2

)
KII(ϕ) + O(1),

σqq (r, ψ, ϕ) = 2ν√
2r

cos
ψ

2
KI(ϕ) + 2ν√

2r
sin

ψ

2
KII(ϕ) + O(1),

σzq (r, ψ, ϕ) = 1√
2r

sin
ψ

2
KIII(ϕ) + O(1),

σtq (r, ψ, ϕ) = − 1√
2r

cos
ψ

2
KIII(ϕ) + O(1),

σzt (r, ψ, ϕ) = 1√
2r

sin
ψ

2

(
2 − 2ν + cos

ψ

2
cos

3ψ

2

)
KI(ϕ)
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+ 1√
2r

cos
ψ

2

(
1 − 2ν + sin

ψ

2
sin

3ψ

2

)
KII(ϕ) + O(1).

(22.21)

Here r and ψ are the polar coordinates of the point P; ϕ is the angular coordinate of
the inclusion front point; KI, KII, and KIII are the modes I, II, and III dynamic stress
intensity factors in the inclusion vicinity (Kassir and Sih 1968).

Using (22.21), the K -factors can be defined directly from the function β(x) or the
solution of boundary integral equation (22.20). For the considered wave scattering
problem KI = KIII = 0, and

KII(ϕ) = − β(x)
4(1 − ν)

√
a

∣∣∣∣x1=a cosϕ
x2=a sin ϕ

, (22.22)

where the angular coordinate ϕ is counted from the Ox1-axis (see Fig. 22.1).

22.5 Numerical Analysis

For the calculation, 176 rectangular boundary elements with the lengths π/22 and
π/12 are usedon the domain S̃ of the reference inclusion in the chain-arrangedmassif.
The displacement u0 of the incident wave and the value K0 = u0μ/

[
4(1 − ν)

√
a
]
are

chosen as the normalizing factors for the translation of inclusions as the rigid units
and the dynamic stress intensity factor in the inclusion vicinity, respectively, so that
ū = |u∗|/u0 and K̄ = |KII|/K0. Poisson’s ratio is taken as ν = 0.3; the normalized
inclusionmass is introduced as M̄ = M/(ρa3) and the periodicity length as d̄ = d/a.

Testing accuracy and stability of the proposed numerical algorithm is fulfilled for
the static analog of the problem, which is achieved in the limit ϑ → 0 and has trivial
solution u∗ = u0, KII = 0. A good agreement is observed in this case.

For comparison purposes, the marked curves also show the behavior of pertinent
parameters for a single inclusion subjected to the same time-harmonic excitation.

It follows from Figs. 22.2 and 22.3 that as the wave number increases the ampli-
tudes of translation of inclusions ū increase fromunity, whenϑ = 0 (the static value),
to the maximums and then decrease and approach their single inclusion counterparts
at high frequencies. Therefore, the effect of dynamic interaction in the periodic sys-
tem of inclusions is leveled in the range of large wave numbers. At low frequencies,
the displacements ū for interacting inclusions are less than for a single inclusion
situation what means the exhibition of vibration damping due to the inclusion neigh-
borhood. In the range of intermediate frequencies, the displacements ū can be both
bigger and smaller than the single inclusion counterparts depending on the wave
number. The frequencies with the peaks of the displacements ū are higher for the
periodic systems with inclusions of smaller mass (Fig. 22.2) and larger periodicity
length (Fig. 22.3).
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Fig. 22.2 Normalized
translation ū of reference
inclusion of different mass in
one-periodic array with
periodicity length d̄ = 3.0 as
a function of dimensionless
wave number ϑ : 1—M̄ = 1,
2—M̄ = 3, 3—M̄ = 10

Fig. 22.3 Normalized
translation ū of reference
inclusion of mass M̄ = 10 in
one-periodic arrays with
different periodicity length
as a function of
dimensionless wave number
ϑ : 1—d̄ = 2.1, 2—d̄ = 2.3,
3—d̄ = 2.5, 4—d̄ = 3.0

Since involved into analysis problem for the considered configuration and disturb-
ing wave is not axisymmetric relative Ox3-axis due to the influence of neighboring
inclusions on the reference one (unlike a single inclusion case), the dynamic stress
intensity factor K̄ changes from point to point around the inclusion front while
maintaining natural symmetry relative to the periodicity axis Ox1 and perpendic-
ular direction Ox2. This fact is demonstrated in Fig. 22.4, where the possibilities
of K̄ -factor maximums both at the nearest and most distant (relative to the neigh-
boring inclusions) front points of the inclusion with ϕ = 0, π and ϕ = π/2, 3π/2,
respectively, are detected. However, the closest points are most sensitive to interac-
tion effects since, at these points, the K̄ -values differ the most from the values of a
single inclusion.
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Fig. 22.4 Normalized
dynamic stress intensity
factor K̄ of reference
inclusion of mass M̄ = 10 in
one-periodic arrays with
different periodicity lengths
versus polar angle ϕ of the
inclusion front point:
1—d̄ = 2.1, 2—d̄ = 2.3,
3—d̄ = 2.5, 4—d̄ = 3.0

Fig. 22.5 Normalized
dynamic stress intensity
factor K̄ at the front point
ϕ = 0 of reference inclusion
of different mass in a
one-periodic array with
periodicity length d̄ = 3.0
versus dimensionless wave
number ϑ : 1—M̄ = 1,
2—M̄ = 3, 3—M̄ = 10

In Figs. 22.5 and 22.6, where the frequency dependencies are depicted, K̄ -factor
first increases from zero with the dominance for the periodic inclusions of large mass
and the chain arrays with bigger periodicity length. A further increase in ϑ in the case
of periodic inclusions with the periodicity length d̄ = 3.0 leads to a local maximum
of K̄ . At low frequencies, the interaction of inclusions causes the decrease in K̄ -factor
compared to a single inclusion situation. In other words, the periodic system provides
a shielding effect on the dynamic stresses in the vicinity of inclusion. However, with
increasing the frequency, an opposite tendency for K̄ -factor takes place, i.e., this
effect changes to the amplification one.
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Fig. 22.6 Normalized
dynamic stress intensity
factor K̄ at the front point
ϕ = 0 of reference inclusion
of mass M̄ = 10 in
one-periodic arrays with
different periodicity lengths
versus dimensionless wave
number ϑ : 1—d̄ = 2.1,
2—d̄ = 2.3, 3—d̄ = 2.5,
4—d̄ = 3.0

22.6 Conclusions

An efficient BIEM for numerical simulation of elastic wave propagation in a 3D
infinite elastic matrix with a one-periodic array of coplanar disk-shaped inclusions
is presented. The problem with the normal incidence of a plane longitudinal time-
harmonic wave on the absolute rigid massive inclusions is considered for conve-
nience. The boundary integral equation formulation for the reference inclusion in a
unit cell is improved by presenting the involved periodic Green’s function or the infi-
nite lattice sum as exponentially convergent Fourier integrals. In addition, the special
properties of the periodic Green’s function at the cut-off frequencies are implicitly
considered in its equivalent and regularized form. Numerically revealed phenomena
confirm that the improved deformability and strength dynamic properties of com-
posite materials can be achieved by using ordered rigid thin-walled inclusions as the
structural elements.

The proposed approach provides an efficient way of studying wave fields in 3D
elastic solids with periodic thin-walled inclusions for more general cases. They
include both longitudinal and transverse elastic waves incident with arbitrary wave
vectors or Bloch-type periodical conditions. The present method can be generalized
on doubly periodic disk-shaped inclusions. Also, the problems related to phononic
crystals and acoustic metamaterials can be analyzed by considering wave penetration
throughmultiple equidistant planes of doubly periodic disk-shaped inclusions or cas-
cade structures. Then, the so-called “wide-spacing approximation” model (Martin
2006) can be used for the determination of the transmission coefficients by cor-
respondingly multiplying the scattering matrix for a single plane of the periodic
inclusions.
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Chapter 23
Using the Wiener–Hopf Method in
Solving the Problem of Elastic
Equilibrium of a Bihomogeneous Body
with Interfacial Cracks at the Corner
Point of a V-Shaped Interface

Volodimir Nazarenko and Alexander Kipnis

23.1 Introduction

In themanufacture of structures from a layered compositematerial, a typical situation
is when the presence of a defect between the layers of the composite leads to the fact
that this surface ceases to be smooth but becomes such that it contains a corner point.
In the case when this point is a stress concentrator, discontinuity and the initiation of
interfacial cracks, including shear cracks with fully contacting edges, are possible in
its vicinity. Therefore, the study of the stress state of piecewise homogeneous bodies
weakened by interfacial cracks that originated at the corner point of the interface is
an actual problem of the mechanics of deformable solids.

In the major part of works devoted to the investigation of two-dimensional static
problems of the theory of elasticity for wedge-shaped bodies with cracks at the
vertices, the analyzed bodies are considered homogeneous (Bantsuri 1966; Keer
et al. 1977; Khrapkov 1971; Nekislykh and Ostrik 2010; Ouchterlony 1977; Stone
and Westmann 1981). In the case of piecewise homogeneous bodies, the researchers
studied the problems of the lines of discontinuity of displacements at the ends of
interfacial cracks and also at the end of a crack appearing on the interface of the
media (Kuliev et al. 1978; Loboda and Sheveleva 2003). At the same time, the
problems of fracture mechanics devoted to the analysis of the stress state at angular
points of piecewise homogeneous elastic bodies were not studied in the presence
of interfacial cracks at these points. Among the methods for studying problems of
fracture mechanics of materials for bodies with cracks (Bogdanov 2010; Bogdanov
et al. 2015; Guz 2014; Guz et al. 2013), one of the most effective is theWiener–Hopf
methods (Noble 1988).
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Below, using theWiener–Hopfmethod, an exact solution to the problemof fracture
mechanics of small-scale interfacial shear cracks that originate at the corner point
of the interface between isotropic elastic media was constructed. It is assumed that
there is no friction between the crack faces. The exponent of the stress singularity at
the corner point and the stress intensity factor at the end of the interfacial crack are
determined.

23.2 Statement of the Problem

Under the conditions of plane deformation, within the framework of a static symmet-
ric problem of the theory of elasticity, we consider a piecewise homogeneous body
with a V-shaped interface, formed by isotropic elastic parts with Young’s moduli E1

and E2 (E1 > E2), and Poisson’s ratios ν1 and ν2 (Fig. 23.1).
The corner point O on the interface of media plays the role of stress concentrator

with power singularity, and the stresses in the vicinity of this point have the following
representation:

τrθ (r, 0) = Cg1(α, e0, ν1, ν2)r
λ0 + o(rλ0),

σθ (r, 0) = Cg2(α, e0, ν1, ν2)r
λ0 + o(rλ0), r → 0,

e0 = E1/E2. (23.1)

Here g1 and g2 are known functions, and the exponent of the stress singularity λ0 is a
single root in the interval (−1, 0) of the characteristic equation of the corresponding
homogeneous problem (problem K):

Fig. 23.1 A piecewise
homogeneous body with a
V-shaped interface
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Fig. 23.2 A piecewise
homogeneous body in the
presence of interfacial cracks

�(−λ − 1) = 0,

�(z) = δ0(z) + δ1(z)e + δ2(z)e
2,

δ0(z) = (sin 2zα + z sin 2α)[κ1 sin 2z(π − α) + z sin 2α],
δ1(z) = (1 + κ1)(1 + κ2) sin

2 zπ

− (sin 2zα + z sin 2α)[κ1 sin 2z(π − α) + z sin 2α]
− [sin 2z(π − α) − z sin 2α](κ2 sin 2zα − z sin 2α),

δ2(z) = [sin 2z(π − α) − z sin 2α](κ2 sin 2zα − z sin 2α), (23.2)

where e = (1 + ν2)/(1 + ν1)e0 , κ1,2 = 3 − 4ν1,2.
The constantC appearing in representations (23.1) is determined from the solution

of the corresponding specific problem of the theory of elasticity for a body depicted
in Fig. 23.1. This constant depends on the external load and can be regarded as a
stress intensity factor at the angular corner on the interface of materials.

A necessary condition for the initiation of interfacial shear cracks with fully
contacting edges at a corner point (Fig. 23.2) is a high concentration of normal
compressive stresses in its vicinity (σθ (r, 0) → −∞ as r → 0). The calculation
results show that the specified condition is satisfied if C < 0 and α ∈ (α1;π/2) ∪
(α2;π), where α1 and α2 are zeros of a function g2(α, e0, ν1, ν2) (0 < α1 < π/2 <

α2 < π ).
Some values of the exponent of stress singularity are presented in Table 23.1 for

different ratios of Young’s moduli of materials depending on the angle, and values
α1 and α2—in Table 23.2.

We further determine the stress intensity factor KI I at the tip O1 of the crack and
the exponent of stress singularity at the corner point of the interface (Fig. 23.2).

In view of the small lengths of the cracks, we arrive at a plane static symmetric
problem of the theory of elasticity for a piecewise homogeneous isotropic plane with
a V-shaped interface containing cuts of finite length originating from the corner point
and located on this interface (Fig. 23.3).

At infinity, we specify the asymptotics of the stress field obtained as the solution
(23.1) of a similar problemwithout cuts (problemK), i.e., a homogeneous problem of
the theory of elasticity for a piecewise homogeneous plane with a V-shaped interface.
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Table 23.1 Exponents of stress singularity

α◦ e0
2 3 5 10

15 –0.036 –0.068 –0.122 –0.215

30 –0.075 –0.132 –0.232 –0.310

45 –0.112 –0.180 –0.258 –0.332

60 –0.112 –0.184 –0.248 –0.308

75 –0.086 –0.127 –0.167 –0.203

105 –0.025 –0.037 –0.049 –0.059

120 –0.054 –0.081 –0.104 –0.124

135 –0.089 –0.130 –0.168 –0.202

150 –0.117 –0.173 –0.228 –0.278

165 –0.104 –0.168 –0.241 –0.318

Table 23.2 Values of angles α1 and α2

e0 2 3 5 10

α◦
1 38.2 34.4 29.3 21.7

α◦
2 134.2 133.4 133.1 131.3

Fig. 23.3 A piecewise
homogeneous isotropic plane
with a V-shaped interface

The constant C is assumed to be known. It characterizes the intensity of the external
load and must be determined from the solution to the external problem.

Taking into account symmetry, the boundary conditions of the problem (Fig. 23.3)
are as follows:

θ = π − α, τrθ = 0, uθ = 0, θ = −α, τrθ = 0,
uθ = 0, θ = 0, 〈σθ 〉 = 〈τrθ 〉 = 0, 〈uθ 〉 = 0,

(23.3)

θ = 0, r < l, τrθ = 0, θ = 0, r > l, 〈ur 〉 = 0, (23.4)

θ = 0, r → ∞, τrθ = Cg1r
λ0 + o (1/r) (−α ≤ θ ≤ π − α), (23.5)

where 〈a〉 is the jump of a.



23 Using the Wiener–Hopf Method in Solving the Problem . . . 411

The solution of the formulated problem of the theory of elasticity (Fig. 23.3) is
the sum of the solutions of two problems. The first problem (Problem 1) differs from
the original problem by the fact that, instead of the first condition in (23.4), we have

θ = 0, r < l, τrθ = −Cg1r
λ0 (23.6)

and the stresses decay at infinity as o(1/r), which is described by condition (23.5)
without the first term. The second problem is Problem K. Since the solution to the
second problem is known, it is sufficient to solve Problem 1.

23.3 Wiener–Hopf Functional Equation

In order to construct the exact solution to Problem 1, we use the Wiener–Hopf
technique together with the method of Mellin integral transform (Ufljand 1967).
Consider the mixed boundary-value elasticity problem for a wedge 0 ≤ θ ≤ π − α

and wedge −α ≤ θ ≤ 0. Applying the Mellin transform

m∗ (p) =
∫ ∞

0
m (r) r pdr,

with a complex parameter p (−ε < Re p < 0, ε is a small enough positive number) to
the equilibrium equations, consistency conditions for strains, Hooke’s law, we intro-
duce into consideration the unknownMellin transformants of stresses and derivatives
of displacements σ ∗

θ (p, θ), τ ∗
rθ (p, θ), σ ∗

r (p, θ), (∂uθ /∂r)
∗, and (∂ur/∂r)

∗. Apply-
ing the Mellin transform to the through boundary conditions (23.3), after solving
for each of the wedges the corresponding system of linear equations, we obtain a
relation connecting the transformants τ ∗

rθ (p, 0) and 〈∂, ur/∂r〉∗θ=0 on the line θ = 0:

τrθ
∗ (p, 0) = (1 + κ 1)D(p)

2D0(p)

E1

4
(
1 − ν21

)
〈
∂ ur
∂ r

〉∗
θ=0

,

D (p) = (1 + κ 1) [cos 2p (π − α) − cos 2α] (sin 2pα + p sin 2α)

+ (1 + κ2) (cos 2pα − cos 2α)

× [sin 2p (π − α) − p sin 2α] e,

D0(p) = (sin 2pα + p sin 2α)[κ 1 sin 2p(π − α) + p sin 2α]
+

{
(1 + κ 1)(1 + κ 2) sin

2 pπ − (sin 2pα + p sin 2α)

× [κ 1 sin 2p(π − α) + p sin 2α] − [sin 2p(π − α) − p sin 2α]
× (κ 2 sin 2pα − p sin 2α)} e
+ [sin 2p(π − α) − p sin 2α](κ 2 sin 2pα − p sin 2α)e2.

(23.7)
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Taking into account the second condition in (23.4) and condition (23.6), we obtain

τ ∗
rθ (p, 0) = l p+1

[
+ (p) + τ

p + λ0 + 1

]
,

E1

4
(
1 − ν2

1

)
〈
∂ur
∂r

〉
θ=0∗

= l p+1− (p)

+ (p) =
∫ ∞

1
τrθ (ρl, 0) ρ pdρ,

− (p) = E1

4
(
1 − ν2

1

)∫ 1
0

〈
∂ur
∂r

〉 ∣∣∣∣ r = ρl
θ = 0

ρ pdρ , τ = −Cg1lλ0 .

(23.8)
Substituting the expressions (23.8) obtained for the transformants τ ∗

rθ (p, 0) and
〈∂ur/∂r〉∗θ=0 into (23.7), we arrive at the following Wiener–Hopf functional equa-
tion for unknown functions + (p) and − (p) in the strip of the complex plane
containing the imaginary axis:

+ (p) + τ

p + λ0 + 1
= G0

1 (p)− (p) ,

G0
1 (p) = (1 + κ1) [a0 (p) + a1 (p) e]

2
[
b0 (p) + b1 (p) e + b2 (p) e2

] ,

a0 (p) = (1 + κ1) [cos 2p (π − α) − cos 2α] (sin 2pα + p sin 2α) ,

a1 (p) = (1 + κ2) (cos 2pα − cos 2α) [sin 2p(π − α) − p sin 2α] ,

b0 (p) = (sin 2pα + p sin 2α) [κ1 sin 2p (π − α) + p sin 2α] ,

b1 (p) = (1 + κ1) (1 + κ2) sin
2 pπ − (sin 2pα + p sin 2α)

× [κ1 sin 2p (π − α) + p sin 2α]

− [sin 2p (π − α) − p sin 2α] (κ2 sin 2pα − p sin 2α) ,

b2 (p) = [sin 2p (π − α) − p sin 2α] (κ2 sin 2pα − p sin 2α) , (23.9)

−ε1 < Rep < ε2, ε1,2 are small enough positive numbers. The function + (p)
is analytic in the half-plane Rep < ε2, and the function − (p) is analytic in the
half-plane Rep > −ε1.

Factorization of the coefficient G0
1(p) of Eq. (23.9) on the imaginary axis is

carried out by splitting it into a function factorizable using gamma functions and a
function factorizable using the properties of the Cauchy-type integral. Using these
factorizations, the principle of analytic continuation, Liouville’s theorem, and some
other provisions of the theory of a function of a complex variable, an exact solution of
the Wiener–Hopf equation is constructed, which is expressed through Cauchy-type
integrals and the gamma function (Gakhov 1977; Lavrentev and Shabat 1987; Noble
1988):
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+ (p) = K+ (p)G+ (p)

p + λ0 + 1

[
τ

K+ (−λ0 − 1)G+ (−λ0 − 1)

− τ

K+ (p)G+ (p)

]
, (Re p < 0),

− (p) = τpG− (p)

AK+ (−λ0 − 1)G+ (−λ0 − 1) (p + λ0 + 1)K− (p)

(Rep > 0),

exp

[
1

2π i

∫ +i∞

−i∞
lnG0

1 (z)

z − p
dz

]
=

{
G+(p), Re p < 0
G− (p) , Re p > 0

K± (p) = � (1 ∓ p)

� (1/2 ∓ p)
, A = (1 + κ1) [1 + κ1 + (1 + κ2) e]

2
[
κ1 + (1 + κ1κ2) e + κ2e2

] (23.10)

(�(z) is gamma function).

23.4 Investigation of the Stress State in the Vicinity of the
Corner Point and in the Vicinity of the Tip of the
Interfacial Crack

Using the representation of the Mellin transforms of stresses in terms of two analytic
functions defined in (23.10) as a solution to the Wiener–Hopf equation and applying
the Mellin inversion formula to these representations, we found the stresses in the
problem of the theory of elasticity shown in Fig. 23.3. The principal terms of stresses
expansion in asymptotic series as r → 0 are determined by formulas of the form

σθ = rλ1S1(θ, α, e0, ν1, ν2)C1 + o(rλ1),

τrθ = rλ1S2(θ, α, e0, ν1, ν2)C1 + o(rλ1),

σr = rλ1S3(θ, α, e0, ν1, ν2)C1 + o(rλ1),

C1 = f1(α, e0, ν1, ν2)Clλ0 − λ1 (−α ≤ θ ≤ π − α).

(23.11)

In representation (23.11) λ1 is a single root in the interval (−1, 0) of the charac-
teristic equation

(1 + κ1) [cos 2(λ + 1)(π − α) − cos 2α] [sin 2(λ + 1)α + (λ + 1) sin 2α]

+ (1 + κ2) [cos 2(λ + 1)α − cos 2α]

× [sin 2(λ + 1)(π − α) − (λ + 1) sin 2α] e = 0. (23.12)

Some values of λ1 (the exponent of stress singularity at the corner point) are
presented in Table 23.3 for different ratios of Young’s moduli e0 = E1/E2 > 1 of
materials depending on the angle (ν1 = ν2 = 0.3).
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Table 23.3 Exponents of stress singularity

α◦ e0
2 3 5 10

15 –0.738 –0.702 –0.652 –0.602

30 –0.640 –0.611 –0.577 –0.541

45 –0.547 –0.527 –0.506 –0.484

60 –0.430 –0.419 –0.408 –0.398

75 –0.262 –0.258 –0.255 –0.252

105 –0.274 –0.277 –0.280 –0.283

120 –0.467 –0.476 –0.484 –0.492

135 –0.613 –0.628 –0.641 –0.653

150 –0.731 –0.749 –0.767 –0.782

165 –0.835 –0.855 –0.873 –0.889

Fig. 23.4 Exponents of
stress singularity in the case
of the absence (dashed curve)
and the presence (solid
curve) of interfacial cracks
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Figure 23.4 compares the values of the exponent of stress singularity at the corner
point O depending on the angle in the case of the absence (λ0, dashed curve) and
the presence (λ1, solid curve) of interfacial shear cracks that originated at the corner
point of the interface O (e0 = 3, ν1 = ν2 = 0.3 ).

Using the following well-known asymptotic behavior of stresses in the vicinity
of the tip of the interfacial crack

θ = 0, r → l + 0, τrθ ∼ κ1 + e + 1 + κ2e

2 ( 1 + κ2e)

KI I√
2π (r − l)

,

θ = 0, r → l − 0,

〈
∂ur
∂r

〉
∼ −4

(
1 − ν2

1

)
E1

κ 1 + e

1 + κ1

KI I√
2π (l − r)

,

θ = 0, r → l − 0, σθ ∼ −1 − κ1 − (1 − κ2)e

2(1 + κ2e)

KI I√
2πr(l − r)

,

based on the solution of the Wiener–Hopf Eq. (23.10), we obtain the following
formula for the shear stress intensity factor at the end O1 of an interfacial crack:
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Fig. 23.5 Dimensionless stress intensity factor for different values of the ratio of Young’s moduli
of the materials

KI I = g1(α, e0, ν1, ν2)k(α, e0, ν1, ν2)Clλ0+1/2,

k = 2
√
2(1 + κ2e)�(λ0 + 3/2)

[1 + κ1 + (1 + κ2)e]�(λ0 + 2)G+
1 (−λ0 − 1)

,

G+
1 (−λ0 − 1) = exp

[
λ0 + 1

π

∫ ∞

0

lnG1(i t)

t2 + (λ0 + 1)2
dt

]
.

(23.13)

The dependences of the dimensionless stress intensity factor K 0
I I = −KI I /

(Clλ0+1/2) on the angle α for different values of the ratio of Young’s moduli
e0 = E1/E2 > 1 of the materials are shown in Fig. 23.5 (ν1 = ν2 = 0.3).

23.5 Conclusions

A plane static symmetric problem of elasticity theory for a bihomogeneous body
weakened by interfacial shear cracks at a corner point of a non-smooth interface is
considered. The exact analytical solution to the problemwas obtained by theWiener–
Hopf method. It is established that the corner point of the interface is a singular point
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with a power-law singularity, and the exponent of stress singularity at this point is
determined. The stress intensity factor at the end of an interfacial crack is determined
and its dependence on the elastic constants of materials of the body is studied.
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Chapter 24
Solving Current Problems in the
Dynamics of Space-Rocket Systems

Oleg Pylypenko

24.1 Dynamics of Liquid-Propellant Rocket Propulsion
Systems

To get reliable theoretical results on the dynamics of liquid-propellant rocket propul-
sion systems (LPRPSs), the experiment-and-calculation hydrodynamic model of
liquid-propellant engine (LPRE) cavitating pumps (Dolgopolov 2020a) is under con-
tinuous refinement. A mathematical model of LPRE pump dynamics was developed
to complement the hydrodynamic model of LPRE cavitating pumps by allowing
a mathematical simulation of choking regimes (Dolgopolov 2020b, 2021). Theo-
retical parameters of cavitation self-oscillations in LPRE pump choking regimes
were determined using that model. They were shown to be in satisfactory agreement
with experimental data. It was found that the computed decrease in the cavitation
self-oscillation frequency from the eigenfrequency of the hydraulic system with the
cavitating pump under study is close to its experimental value in the case where the
choking characteristic intersects the line that connects the values of the pump inlet
flow rate and pressure computed at integration steps i − 1 and i . It was shown (Dol-
gopolov 2021) that the LPRE pump choking characteristic is a specific nonlinearity
associated with the critical cavity flow in the pump and may manifest itself at high
parameter oscillation amplitudes. It was found that the choking characteristic of an
LPRE pump affects the cavitation oscillation parameters to a greater extent than the
cavity volume vs. pump inlet pressure and flow rate relationship does and is the
governing nonlinearity in the pump system in choking.

Amathematicalmodel of hard excitation of cavitation oscillations in anLPRE feed
system was developed (Pylypenko et al. 2019). Theoretical parameters of cavitation
self-oscillations in an LPRE pump’s bench feed system in hard excitation regimes
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Fig. 24.1 Calculated pump inlet pressure versus time for a hard excitation of cavitation self-
oscillations: 1—without external disturbances, 2—an external disturbance at t = 0.5 s, 3—external
disturbances at t = 0.5 s and t = 2.27 s

were determined using that model. They were shown to be in satisfactory agreement
with experimental data. It was found that if a hydraulic system with a cavitating
pump exhibits small-amplitude self-oscillations close to harmonic ones, then, on an
external disturbance of sufficient intensity, developed (interrupted) cavitation self-
oscillations may be set up in the system. This agrees with known experimental data
and indicates a hard excitation regime in a hydraulic system with a cavitating pump
(Fig. 24.1). The mathematical model of hard excitation of cavitation self-oscillations
made it possible to simulate a case observed in an experiment where it had been
possible to stabilize a pump system using an external disturbance (Fig. 24.1).

A mathematical simulation of cavitation self-oscillations in a bench hydraulic
system with a cavitating pump was conducted to give cavitation self-oscillation
parameters, which made it possible to qualitatively and quantitatively represent com-
plex unsteady dynamic processes that take place in the case of developed cavitation
self-oscillations in LPRE pumps: pump choking regimes (flow rate limitation), a
significant decrease in the cavitation oscillation frequency in comparison with the
hydraulic system eigenfrequencies, and an insignificant effect of the feed line param-
eters on the parameter oscillation amplitudes and frequencies. The results obtained
are a significant development of the most complex area of the theory of cavitation
oscillations in pump systems, which is concerned with cavitation self-oscillations in
LPRE feed pump systems. In connection with the development of a new Ukrainian
launch vehicle (LV), the Cyclone-4M, these results may be used in solving LV lon-
gitudinal stability problems and in simulating startup and shutdown transients in the
LV propulsion system.
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Light was shed on the main current problems in LPRE low-frequency dynamics
arising in steady regimes and during an engine startup. A mathematical model of
LPRE gas path dynamics was refined as applied to the problem of theoretical pre-
diction of low-frequency process stability in today’s staged-combustion LPREs and
systems thereof. Methodological recommendations were developed for the numer-
ical study of low-frequency process stability in steady regimes of today’s LPREs
(in active flight) with account for delays in the equations of gas path low-frequency
dynamics.

One of the key problems in LPRE designing is to assure a trouble-free LPRE
startup. LPRE bench tryout is highly expensive, and emergency situations may have
grave consequences (including engine and bench equipment destruction). Because of
this, one of the main tools that allow one to predict the LPRE dynamic characteristics
and startup operation features at the design and tryout stages is mathematical sim-
ulation. Mathematical models of low-frequency dynamic processes in the hydraulic
and gas paths of a staged-combustion LPRE during its startup were refined (Dol-
gopolov 2017a). A modified mathematical model of cavitating pipe dynamics was
developed (Dolgopolov 2017b). The model keeps its structure and operability over
a wide cavitation number range and in mutual transitions between the cavitation
and the cavitation-free pump operation, which is required for the numerical study of
working processes in an LPRE during its startup. An approach to the construction
of a nonlinear mathematical model of LPRE hydraulic path filling was developed.
The approach allows one, if necessary, to automatically change the scheme of parti-
tioning the hydraulic path into finite hydraulic elements in the process of its filling
during engine startup calculations. A scheme of approximate substitution of the delay
equations in the mathematical model of LPRE gas path dynamics was proposed. The
scheme was constructed with account for the features of calculation of LPRE startup
transients, and it allows the simulation accuracy to be improved with the minimum
of model complication. The operability of the mathematical models developed was
demonstrated by the example of simulating a startup of a staged-combustion oxidizer-
rich sustainer LPRE.

An important problem in the mathematical simulation of low-frequency dynamic
processes in an LPRE flow controller is the construction of its linear model. The
model is a part of a mathematical model of an LPRE as a whole and is used in
analyzing LPRE low-frequency dynamics and liquid-propellant rocket longitudinal
stability. A methodological approach was developed to construct a linear mathemat-
ical model of an LPRE flow controller at different (sizeable) amplitudes of harmonic
oscillations of its inlet pressure (Pylypenko et al. 2020a). The approach includes: a
numerical determination of equivalent (constructed using the first-harmonic oscil-
lation amplitudes) frequency characteristics of the flow controller by its nonlinear
model at different amplitudes of the controller inlet pressure; the derivation of linear-
model equations with coefficients that depend on the hydraulic pressure loss in the
controller and the dry friction force as a function of the slide valve displacement;
and the determination of those coefficients by matching the frequency characteristics
found by the nonlinear and the linear model of the low-frequency dynamics of the
hydraulic system whose part is the flow controller. Using the proposed approach,
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the frequency characteristics (the pressure transmission coefficient and the input
impedance) of a typical direct-acting flow controller were determined. The results
obtained were used to analyze LPRE low-frequency dynamics and provide the lon-
gitudinal stability of liquid-propellant rockets.

The need for a lower cost and a shorter time of LPRE development and production
often leads to the decision to use clusters of multiple individually developed engines
in launch vehicles’ sustainer LPRPSs. This opens up prospects for providing a desired
thrust by including the necessary number of engines in the cluster. Using sustainer
LPRPSs with multiple engines entails additional problems involving nonsimultane-
ous startups of the engines. This may disrupt the operation of engines that start up
with a delay or produce an overturning moment when the rocket detaches from the
launcher. A study was conducted into dynamic processes during a startup of a mul-
tiengine LPRPS with four staged-combustion oxidizer-rich LPREs with account for
the possibility of the engines starting up nonsimultaneously (Pylypenko et al. 2020c).
A mathematical model of a startup of the multiengine LPRPS under consideration
was developed, and calculations by the model were conducted. It was shown that,
as distinct from all the engines starting up simultaneously, their nonsimultaneous
startups may result in deep prolonged undershoots in the propellant flow rate accom-
panied by deep prolonged pressure undershoots at the engine inlets. This may cause
a cavitation stall in one or more pumps, which may disrupt the operation of the entire
propulsion system and result in an emergency. The results of the mathematical sim-
ulation of a four-engine LPRPS startup showed that the character and degree of the
effect of possible engine startup delays on transients depend on a variety of factors
governed by the LPRPS composition and dynamic performance, startup conditions,
etc. Because of this, for multiengine LPRPS startup reliability to be improved in
each particular case, i.e., for each new or upgraded LPRPS or launch vehicle, startup
transients should be studied numerically with account for nonsimultaneous startups
of the LPRPS engines.

The first-stage sustainer LPRPSs of medium, heavy, and superheavy LVs usually
include longitudinal dampers, which is a widely used way to eliminate longitudinal
oscillations (pogo oscillations) of liquid-propellant LVs. However, until recently,
no theoretical studies or analyses of the effect of longitudinal dampers in the feed
lines of sustainer LPREs on LPRE startup transients were conducted because of
analysis complexity and the lack of reliable nonlinear models of pump cavitation
effects. Therefore, a mathematical model was developed to simulate a startup of the
multiengine LPRPS of the Cyclone-4M launch vehicle’s first stage, which includes
four RD 870 sustainer LPREs, with account for the installation of four longitudinal
dampers and nonsimultaneous LPRE startups.

A nonlinear mathematical model was developed to simulate low-frequency
dynamic processes in longitudinal dampers with bellows gas/liquid separation. It
was shown that cavitation in the engine pumps and longitudinal dampers drastically
affects the frequency characteristics of the LPRPS oxidizer feed system. The LPRPS
startup model made it possible to study dynamic processes during a startup of the
multiengine LPRPS of the Cyclone-4M first stage with account for nonsimultaneous
LPRE startups and the installation of longitudinal dampers both in the branch lines
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Fig. 24.2 RD 870 LPRE inlet pressure versus time: 1—without dampers, 2—with dampers near
the manifold, 3—with dampers at the engine inlets

to the RD 870 LPREs near the manifold (their standard position) and at the LPRE
inlets. The analysis of transients in the LPRPS oxidizer feed system and the time
dependence of the engine inlet flow rate and pressure showed the following. First,
with simultaneous engine startups, the installation of longitudinal dampers near the
manifold eliminates nearly all engine inlet pressure overshoots, which occur without
dampers. With the dampers at the engine inlets, engine inlet pressure overshoots
are virtually absent (Fig. 24.2). Second, nonsimultaneous startups of the RD 870
LPREs adversely affect the time dependence of the engine inlet flow rate and pres-
sure when the dampers are installed near the manifold. Thus, in a time interval from
0.95 s to 1.35 s, some combinations of engine startup delays result in an anomalously
high drop in the engine inlet oxidizer flow rate and engine inlet overpressures. With
the dampers at the engine inlets, nonsimultaneous RD 870 engine startups affect
the LPRPS startup transients only insignificantly in comparison with simultaneous
ones. Third, it was thus shown that the installation of longitudinal dampers both at
the engine inlets and in the branch lines to the RD 870 LPREs near the manifold
has a significant favorable effect on the quality of the transients during a startup of
the LPRPS of the Cyclone-4M first stage. Damper installation at the engine inlets
is not a standard practice, and it was considered without connection to the LPRPS
arrangement. Nevertheless, damper installation at the engine inlets is an efficient
way to eliminate under- and overshoots in the LPRPS parameters, particularly in the
case of nonsimultaneous startups of the multiengine propulsion system LPREs.

The development of the Cyclone-4M rocket complex at Pivdenne State Design
Office with the participation of Pivdennyi Machine-Building Plant, other plants of
the State Space Agency of Ukraine, and US and Canadian companies is an important
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line in the activities of the Ukrainian space industry. The proposed method of feeding
the liquid-propellant jet system (LPJS) of the upper stage from the feed lines of the
sustainer engine is a pioneering solution in the world’s practice. This eliminates the
need for a separate system of upper stage LPJS feeding and reduces the upper stage
mass, thus allowing one to increase the payload mass. However, this engineering
solution entails a number of problems involving the stability of operation of the
upper stage motion control system during a startup and a shutdown of the RD 861K
sustainer engine of the Cyclone-4M upper stage. Through the common feed system
of the sustainer engine and the LPJS, pressure surges and undershoots caused by
a sustainer engine startup/shutdown propagate throughout the system without any
marked damping and reach the LPJS combustion chambers. In such extreme con-
ditions, the reliability of the upper stage thrust vector control will depend on the
LPJS operability. Nonlinear models were developed to simulate the low-frequency
dynamics of the oxidizer and fuel feed systems of the Cyclone-4M’s upper stage
sustainer LPRPS. To test the models, a mathematical simulation of transients in the
oxidizer and fuel feed lines was conducted with simulating an engine shutdown using
a model liquid. The calculated pressure surge and undershoot magnitudes and dura-
tions and the calculated amplitudes and frequencies of decaying processes proved
to be in satisfactory agreement with the experimental ones (Fig. 24.3). A nonlinear
mathematical model was developed to simulate a startup/shutdown of the RD 861K
sustainer engine of the Cyclone-4M upper stage with account for cavitation effects
in the oxidizer and fuel pumps over a wide range of their operating conditions. Using
the model, a startup of the RD 861K engine was simulated at different combinations
of the oxidizer and fuel temperature and pressure at the engine inlet. This made it
possible to determine the maximum magnitudes of oxidizer and fuel pressure surges
and undershoots at the LPJCS inlet during an engine startup/shutdown, which were
used in determining the LPJS operability during a startup/shutdown of the RD 861K
sustainer engine.

To execute programmotions, the space stages of liquid-propellant launch vehicles
are equipped with restartable sustainer engines. After a shutdown of the sustainer
engine of a space stage, the liquid propellant in the tank in microgravity conditions
moves by inertia upwards as far as possible away from the intake. This results in
the potential possibility of the pressurizing gas penetrating into the engine inlet in
quantities that make an engine restart impossible. Because of this, motion parame-
ter determination for a liquid moving in propellant tanks in microgravity conditions
is a topical problem to be solved in the design of liquid-propellant rocket engines.
In Pilipenko and Dolgopolov (1998), Khoriak and Dolhopolov (2017), a methodol-
ogy was developed for the calculation of the motion parameters of the gas–liquid
interface in the propellant tanks of today’s liquid-propellant launch vehicles’ space
stages inmicrogravity conditions (between a shutdown and a startup of their sustainer
engines) taking into account the design features of the in-tank propellant manage-
ment devices. The methodology uses the finite-element method, the volume-of-fluid
method, and up-to-date finite-element CAE systems. It allows one to determine the
motion parameters and the shape of the free liquid surface in the tank, the parameters
of free gas inclusions formed in the liquid, and the efficiency of the in-tank propel-
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Fig. 24.3 Time dependence of the pressure at the LPJS oxidizer a and fuel b intake during a
shutdown of the RD 861K sustainer engine under bench conditions: 1—experiment, 2—calculation

lant management devices in the passive flight of the launch vehicle for the normal
operation of the propulsion system.

For the conditions of motion of a prototype propellant tank with a liquid in a
drop tower, which simulates microgravity, the motion of a liquid in a cylindrical
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tank was simulated numerically with account for the deformation of its free surface.
The computed motion parameters of the liquid and the gas–liquid interface are in
agreement with experimental data. The methodology developed will allow one to
reduce the extent of testing of newly developed and upgraded LV space stages.

24.2 Longitudinal Stability of Liquid-Propellant Launch
Vehicles

Low-frequency longitudinal oscillations in active flight are inherent to nearly all
liquid-propellant LVs. When LV longitudinal stability is lost, the amplitudes of
LV longitudinal oscillations build up and may exceed their acceptable level, thus
causing the risk of structural integrity and payload damaging, instrumentation and
control system malfunction, unprogrammed engine shutdowns, and other emergen-
cies. Despite the experience in the prevention of liquid-propellant LV longitudinal
oscillations gained in Ukraine and abroad, the longitudinal stability problem still
remains topical and is among the most important problems in rocket engineering to
be solved in developing new launch vehicles and upgrading existing ones (see, for
example, (Dolgopolov 2020a; Nikolayev et al. 2018, 2021)). The fact that longitu-
dinal oscillations can be revealed only in flight tests contributes to the complexity of
this problem. The elimination of LV longitudinal instability revealed from the results
of LV launches calls for too large financial and material expenditures. Because of
this, a theoretical analysis of LV longitudinal stability must be conducted at all stages
of liquid-propellant LV development.

Longitudinal instability (the pogo effect) is a specific instability form of a self-
oscillatory nature. Longitudinal stability is analyzed based on the numerical study of
the dynamics of the self-oscillatory system of LPRPS–LV structure, which describes
an interaction between the LV structure’s elastic longitudinal vibrations and low-
frequency processes in the LPRPS. The current requirements for the reliability of
theoretical predictions of LV longitudinal stability call for refining mathematical
models and methods used in longitudinal stability analysis.

A prediction was made of the longitudinal stability of the Cyclone-4M new two-
stage LV during the operation of the first-stage sustainer LPRPS (Nikolayev et al.
2021). The Cyclone-4M launch vehicle, which is under development at Pivdenne
State Design Office, has a tandem arrangement of the stages (Fig. 24.4), and the
sustainer LPRPSof its first stage comprises fourRD870 staged-combustion oxidizer-
rich LPREs. Figure 24.5 shows a simplified flow schematic of the RD 870 engine,
which is under development at Pivdenne State Design Office.

To predict longitudinal stability of Cyclone-4M, amathematical model was devel-
oped of the closed-loop dynamic system of first-stage sustainer LPRPS–LV structure.
The model describes an interaction between the LV structure’s elastic longitudinal
vibrations and low-frequency processes in the first-stage LPRPS with account for
cavitation effects in the low-pressure and main pumps of the oxidizer and the fuel
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Fig. 24.4 Cyclone-4M
launch vehicle

(Pylypenko 2020), the injection of gaseous oxygen into the liquid oxygen flow, and
delays in the equations of engine gas path dynamics (Dolgopolov 2017a; Kvasha
and Zinevych 2018). A theoretical analysis of Cyclone-4M longitudinal stability
was made using the Nyquist criterion.

The analysis showed that Cyclone-4M loses longitudinal stability during the oper-
ation of the first-stage sustainer LPRPS due to resonance interaction between the
LPRPS and the LV structure. The loss of stability occurs early in active flight when
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Fig. 24.5 Simplified flow schematic of the RD 870 engine (Nikolayev et al. 2021)

the first frequency of liquid oscillations in the oxidizer feed line approaches the first-
tone frequency of the LV structure’s longitudinal vibrations. To provide longitudinal
stability, it was proposed to install longitudinal dampers in the oxidizer feed lines
of the first-stage sustainer LPRPS in order to properly change the dynamic charac-
teristics of the oxidizer feed system and eliminate LPRPS–LV structure resonance
interaction.

Amathematical model was developed of the low-frequency dynamics of a damper
with bellows gas/liquid separation, and its advisable parameters were determined.
It was shown that the installation of dampers of this type in the oxidizer feed lines
significantly reduces the liquid oscillation frequencies in the first-stage oxidizer feed
system and the maximum modulus of the frequency characteristic of the open-loop
system of sustainer LPRE–oxidizer and fuel feed lines–LV structure (tone I), thus
providing longitudinal stability of Cyclone-4M throughout its flight at different com-
binations of the oxidizer and fuel pressures and temperatures at the engine inlets.
The calculated tone I and II frequencies of the Cyclone-4M structure’s longitudinal
vibrations versus the flight time are shown in Fig. 24.6.

The maximummodulus of the frequency characteristicWol( jω) of the open-loop
system of sustainer LPRE–oxidizer and fuel feed lines–LV structure (tone I) was
calculated as a function of the LV flight time (Fig. 24.7). It was shown that damper
installation at the low-pressure pump inlets is more preferable because in this case,
the maximum modulus of the frequency characteristic is smaller.

An approachwas proposed to themathematical simulation of liquid-propellant LV
longitudinal oscillations (Kvasha et al. 2019) using a 3D finite-element discretization
of the LV structure and the liquid propellant in the tanks, representing the LPRPS
systems and assemblies as one-dimensional finite elements, and using a nonlinear
hydrodynamic model of cavitation effects in the LPRPS pumps. The approach was
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Fig. 24.6 Calculated tone I and II frequencies of theCyclone-4M structure’s longitudinal vibrations
( fstr1, fstr2) and liquid oscillation frequencies in the first-stage LPRPS feed system for the oxidizer
( fox1—without a damper, fox1CD—with a damper) and the fuel ( ff1) versus the flight time t

Fig. 24.7 Calculated
maximum modulus of the
frequency characteristic of
the open-loop system of
sustainer LPRE–oxidizer and
fuel feed lines– Cyclone-4M
structure (tone I) versus the
LV flight time with the
dampers in the branch lines
to the engines (curve 1) and
at the low-pressure pump
inlets (curve 2)
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applied to a two-stage LV. A nonlinear mathematical model of the low-frequency
dynamics of the LPRPS–LV structure system was developed to simulate the inter-
action of 3D oscillations of the liquid propellant in the tanks, elastic vibrations of
the LV structure, and nonlinear processes in the LPRPS in active flight. The sim-
ulation showed that the dynamic system under consideration reaches a limit cycle
with a self-oscillation frequency of 15.8 Hz, close to the tone II frequency of the
LV structure’s longitudinal vibrations. The self-oscillation parameters of this system
were determined: the dynamic components of the tank pressures, the displacements
and the vibration accelerations of the LV’s structural components, and the mass flow
rate and the pressure in the LPRPS components.

The proposed approachmaybeused to study liquid-propellant rocket pogooscilla-
tions (particularly for rockets with an asymmetrical stage arrangement and complex-
shaped propellant tanks) and to determine limit cycle parameters in the case of
longitudinal instability.

This approach allows one to account for the interaction of 3D oscillations of the
liquid propellant in the tanks, elastic vibrations of the LV structure, and nonlinear
processes in the LPRPS and for nonlinear dissipative forces in the description of the
LV structure’s elastic deformations. The approach may also be used in assessing the
limit vibration amplitudes and dynamic loads of the structures of prospective liquid-
propellant LVs that, according to a preliminary linear analysis, lose longitudinal
stability in some portions of their active flight.

24.3 High-Frequency Processes in the LPRE Combustion
Chamber

In LPRE tryout, the parameters that govern working processes in the LPRE systems
(the pressure, the flow velocity, the gas and liquid temperature, the turbopump speed,
etc.) exhibit low- and high-frequency oscillations. High-frequency oscillations in
the combustion chamber, which are potentially dangerous to the LPR operational
reliability and integrity, are the least understood. The most important tool in the
study and development of measures aimed at their elimination in the flight of liquid-
propellant LVs is the mathematical simulation of high-frequency processes in the
combustion chamber.

The state of the art in the numerical study of high-frequency dynamic processes
in LPRE combustion chambers was analyzed with the aim to assess the possibility of
using the available numerical methods to simulate the above-mentioned processes in
the problem of theoretical prediction of LPRE high-frequency stability and the com-
bustion chamber pressure and flow rate oscillation amplitudes (Kvasha and Zinevych
2019, 2020). Consideration was given to the currently adopted mechanisms of high-
amplitude oscillations in the LPRE systems involving the dynamic interaction of
physical and chemical processes in the mixing and combustion zone in conditions
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of periodical heat removal under the action of acoustic oscillations and turbulence
in the flow and combustion of the propellant components and combustion products.

The analysis showed that the methods of mathematical simulation of high-
frequency acoustic oscillations in an LPRE can be divided into three basic groups:
methods for the calculation of the acoustic oscillation parameters in cylindrical
chambers based on analytical mathematical models of a relatively low order with
the use of the Bessel functions, methods for the study of thermoacoustic effects
using approaches of computational fluid dynamics, and hybrid methods in which
combustion dynamics is calculated separately from the combustion product acoustic
oscillation parameters. The main results obtained in the framework of the above-
mentioned groups were discussed. The advantages and drawbacks of the numerical
study of combustion product thermoacoustic oscillations in the LPRE combustion
chamber were analyzed.

A numerical approach was developed to determine the parameters of acoustic
oscillations of the combustion products in LPRE annular combustion chambers,
taking into account the features of the configuration of the combustion space and
the dependence of the physical properties of the gaseous medium on the axial length
of the chamber. The approach is based on a mathematical simulation of the natural
oscillations of the closed-loop dynamic system of annular shell structure–gas using
the finite-element method.

The approach was tested, and the results were analyzed for an engine with an
annular combustion chamber (with an outer-to-inner diameter ratio of 1.5) and the
liquid oxygen/methane propellant pair.

A finite-element model was developed to simulate the coupled spatial oscilla-
tions of the annular combustion chamber structure and the combustion products.
The model allows one to determine the oscillation parameters of the dynamic sys-
tem under consideration (frequencies, modes, and effective masses) for its dominant
acoustic modes together with the vibration amplitudes and vibration accelerations
of the combustion chamber walls. Using the model, the LPRE operating parameters
potentially dangerous for the development of thermoacoustic instability of the work-
ing process in an annular combustion chamber can be identified. To numerically
determine the dynamic pressure gains of the combustion chamber under study, a
source of harmonic pressure disturbance is introduced into the finite-element model
of the dynamic system of annular shell structure–gas (in the elements at the start of
the chamber fire space). The shapes and frequencies of the longitudinal, tangential,
and radial modes of acoustic oscillations were determined.

24.4 Dynamics of Vibration Protection Systems

The use of a pneumatic springing element can provide a sufficiently small (quasi-
zero) stiffness in the working portion of the static characteristic with a progressive
stiffness increase in a rebound and a bump stroke. Based on these principles, a new
high-efficiency vibration protection system was developed to protect rocket-space
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hardware and other heavy machinery products in railway, sea, and motor transporta-
tion (Kvasha 2020). It was shown that choosing the design and the design parameters
allows one to provide a required dynamic performance of the vibration protection
system, which is characterized by a superlow natural frequency of the protected
object (less than 0.5 Hz) and a required damping coefficient.

Aprototype of the proposed vibration protection systemwas developed,made, and
put through dynamic tests, which confirmed its high efficiency in damping impact and
harmonic disturbances. The simple design, manufacturability, and high efficiency of
the proposed vibration protection system make it possible to recommend it for use
both in the transportation of rocket-space hardware by different modes of transport
and in the vibration protection of other objects, including new spacecraft.

A new system was proposed to protect the Sich-2M spacecraft from longitudi-
nal vibration loads during an orbital injection. The low-frequency dynamics of the
vibration protection system with the spacecraft under the action of an external lon-
gitudinal disturbing force was simulated mathematically. It was shown that, when
installed between the launch vehicle’s upper stage and the spacecraft, the vibration
protection system reduces the longitudinal vibration loads on the Sich-2M by a factor
of more than two. Equipping launch vehicles with the proposed spacecraft vibration
protection system will significantly widen their capabilities of orbiting spacecraft of
different purposes.

24.5 Aerodynamic Improvement of Gas Turbine Engine
Components

At present, the requirements for the design quality of today’s gas turbine engines
(GTEs) are ever increasing. Of particular interest is the application of optimization
methods to the aerodynamic improvement of GTE components because the degree
of their aerodynamic perfection has a significant effect on the power performance of
the engine as a whole.

A computational methodology was developed for the aerodynamic improvement
of aircraft GTE centrifugal compressor stages using a numerical simulation of 3D
turbulent gas flows. An economical (in terms of computational cost) computational
procedure was developed using this methodology. The procedure allows one to vary
the spatial shape of the guide and diffuser vanes of centrifugal compressor stages in
the course of aerodynamic optimization using input sets of vane profile coordinates
without any preliminary vane shape approximation. A procedure was developed to
vary the spatial shape of centrifugal wheel blades in the course of aerodynamic opti-
mization using a small number of parameters (in comparison with data arrays that
specify the blade shape). The procedure also allows the spatial shape of wheel blades
to be varied without any preliminary approximation of their initial shape. An algo-
rithm was developed to construct a response surface with a limited number of calls
of the objective function calculation procedure in the course of aerodynamic opti-
mization. The algorithm is based on a sequential numerical solution of the Laplace



24 Solving Current Problems in the Dynamics of Space-Rocket Systems 431

equation and the diffusion equation on uniformmeshes (Kvasha and Zinevych 2018).
The operability of the proposed response surface construction algorithmwas demon-
strated for three essentially different test functions. An approach to the aerodynamic
optimization of centrifugal compressor stages was proposed. The key feature of
the approach is searching for advisable geometrical parameters of guide vanes and
centrifugal wheels using uniformly distributed point sequences in the independent-
variable region and formulating quality criteria as the mean integral values of the
centrifugal stage power characteristics over the operating range of the air flow rate
through the stage.

Multiparameter numerical studiesmade it possible to identifyways to aerodynam-
ically improve centrifugal compressor stage components. By the example of the inlet
guide vanes of a centrifugal compressor stage, it was shown by computation that the
computational methodology developed does improve the stage power characteristics
even in the case of a relatively small number of points uniformly distributed in the
variable region (Kvasha et al. 2019). As a result of the aerodynamic improvement
of a centrifugal compressor wheel, it was found that varying the shape of the middle
part of the centrifugal wheel blades alone, with their inlet and outlet parts remaining
unchanged, has rather a strong effect on the flow. This way to vary the blade shape
has a significant (in many cases, favorable) effect on the air compression ratio in
the wheel while leaving its efficiency almost unaffected. In this case, there is no
need for varying the shape of the inlet guide vanes or diffuser vanes, which makes it
possible to recommend that in the aerodynamic improvement of a centrifugal wheel,
the shape of its blades be varied as indicated above (Kvasha and Zinevych 2019). A
numerical simulation of 3D turbulent gas flows showed that in the absence of flow
separation in the blade channels of a centrifugal wheel with a given starting shape
of the meridional contour, varying that shape has a relatively insignificant effect on
the wheel power characteristics. Because of this, in similar cases, it seems to be
advisable to aerodynamically improve centrifugal wheels by varying the shape of
their blades in the circumferential direction (Kvasha and Zinevych 2020).

Based on a numerical simulation of a 3D turbulent flow in the air duct of one
of the air intake configurations for an aircraft turboprop engine, the efficiency of
that configuration was assessed. The calculated flow parameter nonuniformity at the
engine compressor inlet was compared with that of another air intake configuration
for the same engine. It was noted that the second air intake configuration provided
a much more uniform flow parameter distribution at the engine compressor inlet
(Kvasha 2020).

24.6 Conclusions

Further development has been given to the following research line: the dynamics of
liquid-propellant rocket propulsion systems and the longitudinal stability of liquid-
propellant launch vehicles with account for cavitation in their inducer-equipped cen-
trifugal pumps.
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A new high-efficiency vibration protection system has been developed to protect
rocket-space hardware and other heavymachinery products in railway, sea, andmotor
transportation.

Based on the computationalmethodology developed, some components of aircraft
gas turbine engines have been improved aerodynamically.
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Chapter 25
Comparison of Evolution of Five Types
of Elastic Waves (Harmonic, Gauss,
Whittaker, MacDonald, and Friedlander
Initial Profiles)

Jeremiah Rushchitsky and Vasyl Yurchuk

25.1 Introduction

The scientific activity of Stepan Timoshenko can be referred to the twentieth century.
Most mechanicians around the world know him as a brilliant scientist who worked
in the mechanics of materials. His book on mechanics of materials is seemingly
one of the most readable books on mechanics. The specificity of the mechanics of
materials lies in the fact that it is developing in different directions for many years,
both before and after S. Timoshenko. One of the modern directions is the theoretical
and numerical analysis of nonlinear waves in materials. This area is being actively
researched, which can be confirmed by the publication in recent decades of a series
of books (Altenbach et al. 2020; Andrianov et al. 2021; Bedford and Drumheller
1994; Engelbrecht 2015; Fujimoto 2021; Lempriere 2002; Rushchitsky 2011, 2014)
in leading publishing houses. The basic wave effect consists of an evolution of the
initial profile of waves. It is well-known that the model of linear elastic deformation
does not describe an evolution of the waves (waves do not interact) (Andrianov et al.
2021; Rushchitsky 2011). So, nonlinear models should be used.

25.2 Two Basic Nonlinear Equations Describing the Elastic
Wave Propagations in Materials

In this chapter, the propagation in the elastic material plane longitudinally polarized
and axisymmetric cylindrical waves are studied. The elastic material is assumed to
be deformed nonlinearly. The most frequently utilized nonlinear Murnaghan model
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(Lempriere 2002; Rushchitsky 2011), which describes both geometrically and phys-
ically nonlinear strains, is chosen. It also describes well the deformation of many
engineering materials in a wide range of strains.

25.2.1 The Nonlinear Equation Describing the Propagation
of Elastic Plane Longitudinal Waves

Without a doubt, plane waves are the most studied type of classical waves. Two
features of the sea waves explain this. First, they have the simplest wavefront—
the plane one. Second, many types of waves with curvilinear wavefronts can be
considered plane waves when studied at a sufficient distance from the source of wave
motion. Owing to the relative simplicity of analysis of plane waves, the nonlinear
plane waves in elastic materials are also well studied. Therefore, the choice of the
plane wave seems rational in the proposed study of the new kind of nonlinear elastic
plane waves—the solitary plane waves.

Note that solitary waves are defined as having a profile that is described by a
function given on the finite segment or the function of finiteweight.A typical example
of a solitary wave is a wave with a profile in the form of a Gauss function (the bell-
shaped or hump-shaped wave that is a function of a finite weight). The class of these
waves includes solitons, which also have profiles in the form of a hump, but are the
exact solutions of certain nonlinear equations. For example, the simplest solitarywave
can be described by the classical d’Alembert solution of the linear wave equation,
and the soliton is the exact solution of the Korteweg–De Vries equation (Rushchitsky
2011). The essential difference between solitary waves and solitons is that solitary
waves interact with each other, while solitons do not.

Note that the studied propagation of plane waves under the condition that they
move in the direction of the abscissa axis is described by the nonlinearwave equations
of the different order (from 2 to 5) of approximations (Rushchitsky 2011).

The case of the second-order linearity is characterized by the following quadratic
nonlinear wave equation (Rushchitsky 2011):

u1,t t − (λ + 2μ) u1,11 = N1u1,11u1,1 (25.1)

N1 = 3 [(λ + 2μ) + 2 (A + 3B + C)] , (25.2)

where u1 is the displacement in the direction of the abscissa axis Ox1, ρ is the density,
and λ,μ, A, B, andC are the elastic constants of the five-constantMurnaghanmodel.
The corresponding linear equation has the form

u1,t t − (λ + 2μ) u1,11 = 0. (25.3)
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25.2.2 The Nonlinear Equation Describing the Propagation
of Elastic Cylindrical Wave

The corresponding classical linear statement of the problem on the propagation of the
cylindrical radial wave is that it propagates along the radial coordinate in an infinite
space with the cylindrical circular cavity (Altenbach et al. 2020; Rushchitsky 2011).
The wave motion in the radial direction is excited by the pulse applied to the surface
of the cavity.

The cylindrical coordinate system is chosen so that the axis coincides with the
axis of the cavity. Then the problem is axisymmetric and depends on two variables—
radius and time. The radial displacement and three components of the stress tensor
are nonzero. The linear equation of motion has the following form:

(cL)
2

(
ur,rr + 1

r
ur,r − ur

r2

)
− ur,t t = 0. (25.4)

The corresponding simplest nonlinear equation within the framework of the Mur-
naghan model is as follows (Rushchitsky 2011):

(cL)
2
(
1 − α1ur,r

) (
ur,rr + 1

r
ur,r − ur

r2

)
− ur,t t = 0,

α1 = 3 + 2 (A + 3B + C)

λ + 2μ
. (25.5)

Therefore, the nonlinear equation (25.5), which describes a cylindrical radial
wave, has a structure similar to the corresponding Eq. (25.3) for a plane longitudinal
wave—a homogeneous linear wave equation with a wave speed that is nonlinearly
dependent on the solution. However, the situation here is new compared to the plane
wave—the operator of the wave equation is different, the displacement gradient is
different, and the wave itself and its phase are different.

25.3 Two Approximate Methods of Solving the Basic
Nonlinear Wave Equations

Thesemethods aremost frequently used in the study of solitary elastic waves inmate-
rials. Both admit the different levels of approximate representation. It was established
that the first three approximations (the first one is linear) quite adequately describe
the main wave effects.
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25.3.1 Method of Successive Approximations (Method 1)

This method (method of successive approximation, the perturbation method, and the
method of the small parameter) is based on introducing the small parameter ε.

Let us narrow the description of the method to Eq. (25.3) and consider the dis-
placement u1(x1, t), assuming it is sufficiently smooth. According to the method,
the function u1(x1, t, ε) is introduced and sought in the form of a convergent series:

u1(x1, t, ε) =
∞∑
n=1

εn−1u(n)(x1, t)

= u(1)
1 (x1, t) + εu(2)

1 (x1, t) + ε2u(3)
1 (x1, t) + · · · . (25.6)

The first term u(0) (x, t) is assumed to be the solution of the linear wave equa-
tion (25.1) corresponding to (25.3). Note that the presence of the linear part of the
nonlinear equation is a necessary condition of this method.

The solution of the nonlinear equation (25.3) is sought in the form of sequential
approximations:

u1(x, t) = u1(x1, t, ε = 1) =
∞∑
n=1

u(n)
1 (x1, t)

= u(1)
1 (x1, t) + u(2)

1 (x1, t) + u(3)
1 (x1, t) + · · · . (25.7)

A feature and characteristic advantage of method 1 is that the arbitrary approx-
imation u1(n)(x1, t) is found as the solution of the following inhomogeneous linear
equation:

u(n)
1,t t − (cL)

2 u(n)
1,11 = (

N1
/

ρ
)
u(n−1)
1,11 u(n−1)

1,1 . (25.8)

Thus, to find the nth approximation, it is necessary to know only the (n − 1)th
approximation and solve only the inhomogeneous linear wave equation. This method
works well in the theory of waves in materials when the initial amplitudes do not
increase essentially (in some cases, half as much again).

Equation (25.3) is further analyzed under the condition that the initial wave profile
is a function that can describe waves with a quite arbitrary initial profile

u (x1, t = 0) = F (ax1) , (25.9)

where a is the arbitrary parameter characterizing the wavelength for the harmonic
wave and the wave bottom for the solitary wave.

The wave is assumed to be propagated in the form which is admissible both for
the harmonic and solitary wave profiles

u (x1, t) = F(σ ). (25.10)

Note that σ = a (x1 − vt) is the standard wave phase variable.
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25.3.2 Method of Restrictions on the Gradient
of Displacement (Method 2)

An important feature and necessary condition of the method of restriction on the
gradient of displacement is that the studied nonlinear wave equation must have a
particular structure: the right-side part of this equation can be moved to the left-
hand-side one, and then formally, the nonlinear equation can be written as the linear
wave equation with the variable wave velocity (Rushchitsky 2011). This condition
is fulfilled in the case of Eqs. (25.3) and (25.5).

Case of Eq. (25.3). Let us start with the equation:

u1,t t − {
(cL)

2 + (N1/ρ)u1,1
}
u1,11 = 0 →

u1,t t − v2u1,11 = 0, v = cL
√
1 + αu1,1, α = [N1/(λ + 2μ)] . (25.11)

Return now to Eq. (25.11) and introduce the restriction on the gradient of dis-
placement ∣∣αu1,1∣∣ � 1. (25.12)

The condition (25.12) permits to represent approximately the velocity by only two
first approximations:

v = cL
√
1 + α u1,1 ≈ cL

[
1 + 1/2αu1,1

]
. (25.13)

Based on (25.13), the phase can also be approximately written in the form of two
summands:

σ ≈ [
a (x1 − cL t) − (

1
/
2
)
αacLu1,1t

]
. (25.14)

The representation (25.14) also makes it possible to approximately represent the
solution of the nonlinear wave equation (25.11) in the following form:

u1 (x1, t) ∼= F
[
a

(
x1 − cL t − 1/2αcLu1,1t

)]
= F

[
a (x1 − cL t) − 1/2αacLu1,1t

]
. (25.15)

Finally, we expand the solution (25.15) into a Taylor series with respect to the
new small parameter ∣∣ δ = −1/2αacLu1,1t

∣∣ � 1 (25.16)

in the vicinity of the classical constant value σ = a (x1 − cL t) of the wave phase and
by saving only two first terms

u1 (x1, t) ≈ F(σ ) + F/

,1(σ )aδ = F(σ ) − 1/2αa2cL t
[
F/

,1(σ )
]2

. (25.17)
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Thus, the representation (25.17) of the solution of the nonlinear wave equation
(25.11) takes into account the first two approximations and has a general character.

The case of Eq. 25.5. Let us start with a slightly transformed equation (25.5):

c2L
(
1 − α1ur,r

) (
ur,rr + 1

r
ur,r − ur

r2

)
− ur,t t = 0. (25.18)

Assume now that the following function describes the initial wave profile:

ur (r, t = 0) = F (r) . (25.19)

The corresponding wave has the form

ur (r, t) = uor F (a (r − vt)) . (25.20)

Here, the unknown phase velocity is defined as follows:

v = √
1 − α1ur,r cL (25.21)

and uor is the given constant amplitude coefficient.
Introduce the restriction ∣∣α1ur,r

∣∣ < 1 (25.22)

and represent the root approximately by the first three terms of the expansion

√
1 − α1 ur,r ≈ 1 − 1/2α1ur,r + 1/8(α1)

2
(
ur,r

)2
. (25.23)

This means that the first three approximations will be considered.
It follows from (25.23) that the wave (25.23) can be written approximately as

follows:

ur (r, t) ∼= uor F [a (r − cL t)

− 1/2 acLα1ur,r t + 1/8acL (α1)
2
(
ur,r

)2
t
]
. (25.24)

The next step consists of the representation of the formula (25.24) in the form

ur (r, t) = uor F [a (r − vt)] = uor F
[
a (r − cL t) + δ∗] = uor F

(
σ + δ∗) . (25.25)

Here, the new parameter δ∗ = −1/2 acLα1ur,r
[
1 − 1/4α1ur,r

]
t is introduced, which

should be restricted according to the method

∣∣δ∗ = −1/2α1ur,r
[
1 − 1/4α1ur,r

]
t
∣∣ < 1. (25.26)
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Thus, two restrictions (25.21) and (25.26) are used in this approach. They make
it possible to expand the solution (25.25) into the Taylor series with respect to the
parameter (25.26) in the vicinity of the classical phase value σ = a (r − cL t) with
constant wave velocity cL

ur (r, t) = uor aF
(
σ + δ∗)

= uor F(σ ) + uor F
/(σ )δ∗ + 1/2 uor F

//(σ )δ∗2 + · · · . (25.27)

We save only two first terms ur (r, t) = uor F (σ + δ∗) ≈ uor F(σ ) + uor F
/(σ )δ∗. The

substitution into the last formula of the expression for the small parameter yields

ur (r, t) ≈ uor F(σ ) − 1/2 uor F
/(σ )acLα1 ur,r

[
1 − 1/4α1ur,r

]
t. (25.28)

After some transformations, the final approximate representations can be obtained
as follows:

• the solution in the form of the first two approximations

ur (r, t) ≈ uor F(σ ) − 1/2 a2
(
uor

)2
cLα1t

[
F/(σ )

]2; (25.29)

• the solution in the form of the first three approximations

ur (r, t) ≈ uor F(σ ) − 1/2 a2
(
uor

)2
cLα1t

[
F/(σ )

]2
+ 1/8 a3

(
uor

)3
(α1)

2 cL t
[
F/(σ )

]3
. (25.30)

Solution (25.29) includes two summands. The first corresponds to the linear
approach, and the second introduces the quadratic nonlinear correction to the linear
approach. Solution (25.30) includes, compared to (25.29), the third summand, which
introduces the cubic correction. A difference between the first three approximations,
obtained by methods 1 and 2, is described as Comparison 3 in the final part of the
article.

25.4 Harmonic Wave as the Classic One (The Symmetric
Initial Profile)

The two main features of the harmonic waves are the initial profile in the form of the
cosine function and the wave phase in the form σ = a (kx1 − ωt) including the wave
frequency ω and wavenumber k. Thus, in the case of plane longitudinal harmonic
wave, we have

u1 (x1, t) = u1o cos (kL x1 − ωt) , (25.31)
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where u1o is the initial wave amplitude. Note that the harmonic wave is periodic. On
a single period, this wave has two humps, each of which is symmetrical with respect
to the vertical passing through the top of the hump. Only this type of symmetry is
considered in this paper.

25.4.1 Method 1. First Two Approximations

Note once again that when analyzing Eq. (25.3) by method 1, the first approximation
u(1)
1 (x1, t) is assumed to be the solution of the corresponding linear wave equation

(25.1) and coincides with (25.31).
The second approximation u(2)

1 (x1, t) is a solution of the inhomogeneous linear
wave equation

u(2)
1,t t − (vL)

2 u(2)
1,11 = (N1/ρ)u(1)

1,11u
(1)
1,1 (25.32)

and is characterized by the second harmonic (Engelbrecht 2015)

u(2)
1 (x1, t) = x1

[
N1

8 (λ + 2μ)
(u1o)

2 k2L

]
cos 2 (kL x1 − ωt) . (25.33)

Thus, the approximate solution corresponding to method 1 consists of the sum of
two harmonics (Engelbrecht 2015)

u(1+2)
1 (x1, t) = u(1)

1 (x1, t) + u(2)
1 (x1, t) = u1o cos (kL x1 − ωt)

+ x1

[
N1

8 (λ + 2μ)
(u1o)

2 k2L

]
cos 2 (kL x1 − ωt) . (25.34)

Solution (25.34) confirms a generation of the second harmonic. This classical
nonlinear wave effect is formed in a few stages (Engelbrecht 2015). As a result, the
effect of the second harmonic increases, and it becomes the dominant one. Thus,
the evolution of the wave consists of a gradual transition from the profile of the first
harmonic to the profile of the second harmonic.

All the results in this study are obtained for metallic materials, small strains,
and ultrasound frequencies. The 2D picture shows an evolution in coordinates “dis-
tance of propagation–displacement” and the 3D picture—in coordinates “time of
propagation–distance of propagation–displacement.”

Figure 25.1 (Rushchitsky 2011) presents the exact transition from the first har-
monic to the second one. Here, two different (initial and final) parts of the same plot
with ω = 100 KHz, u1o = 0.1 mm are superposed (see two rows of distance values
on the horizontal axis).

The process of transition can be divided into a few stages, one of which is shown
in Figs. 25.2 and 25.3. As seen from the figures, the initial symmetric (in the above
sense) profile is distorted symmetrically.
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Fig. 25.1 The transformation of the initially excited first harmonic into the second one

Fig. 25.2 Evolution of the initial harmonic profile (2D picture)

Fig. 25.3 Evolution of the initial harmonic profile (3D picture)
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25.4.2 Method 1. First Three Approximations

The third approximation is found as the solution of the following wave equation:

u(2)
1,t t − (AL)

2 u(2)
1,11 = (

N1
/
ρ
)
u(1)
1,11u

(1)
1,1. (25.35)

Then the approximate solution of the basic nonlinear wave equation (25.3) within
the framework of the first three approximations is formed of the sum of the first,
second, and fourth harmonics, having the form (Rushchitsky 2011):

u(1+2+3)
2 (x1, t) = u(1)

1 (x1, t) + u(2)
1 (x1, t) + u(3)

1 (x1, t) = (25.36)

= u1o cos σ + u1oMLx1 cos 2σ

+ u1oM
3
L x

3
1

[
− 8

3
+ 5

2kL x1
sin 4σ

+
(

−4

3
+ 11

8k2L x
2
1

)
cos 4σ

]
, (25.37)

M = N1

8 (λ + 2μ)
u1ok

2
L = 1

8ρ
N1u1o

k2L
v2
L

= 1

8ρ
N1u1o

ω2

v4
L

.

Based on (25.37), hundreds of plots were built (Engelbrecht 2015), showing the
evolution for different values of three basic parameters—the initial maximal ampli-
tude, wave frequency, and mechanical characteristics of the material.

The main conclusion from the obtained graphs is a general scheme of changing
the wave profile (evolution scenario). First, when propagating in a nonlinearly elastic
material, the harmonic wave interacts with itself and generates newwaves, creating a
picture of evolution. The dependence of the wave amplitude on the time and distance
of the wave propagation is shown in the following figures. Figure 25.4 corresponds
to the initial stage of the wave motion, taking into account the first+second+third
approximations. Figure 25.5 shows two stages of the longer wave motion (about
ten wavelengths) and the first approximation (upper line for positive amplitude val-
ues), first+second (lower line for positive amplitude values), and first+second+third
(middle line for positive amplitude values).

Figure 25.6 shows the 3D image of the evolution in the coordinates “amplitude–
distance–time.”

Note that the nonlinear wave equation of type (25.3) appears not only in mechan-
ics. For example, the corresponding optical waves were studied by Blombergen
(Bloembergen 1965; Rushchitsky 2011; Yariv 1967), and his results were awarded
the Nobel Prize in Physics in 1980 (for his contribution to the development of laser
spectroscopy). These results include a description of the transformation of the first
harmonic (red light from a ruby laser with a wavelength of 6940 Å) to the second
harmonic (blue light with a wavelength of 3470Å)when the light propagates through
a potassium dihydrogen phosphate crystal KH2PO4 [28].
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Fig. 25.4 Evolution of the initial harmonic profile (2D picture)

The phenomenon of the transformation of the first harmonic into the second one
can be seen in Fig. 25.5—the bottom line for positive amplitude values shows the
gradual transformation of one hump of the periodic profile into two in the period of
one hump.

Figure 25.6 also shows that taking into account the third approximation reveals
another wave effect—a wave with a periodic system of humps in each period turns
one hump into three in one period during its motion. At that, formula (25.22) shows
the existence of the third term with the fourth harmonic.

Thus, the evolution of harmonic waves is that with an increase in the time or
distance of wave propagation, its profile in one period forms several humps from
one. This nonlinear wave effect is accompanied by the constancy of the period—the
period (sole) of the wave does not change during its evolution.
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Fig. 25.5 Evolution of the initial harmonic profile (2D picture)

Fig. 25.6 Evolution of the initial harmonic profile (3D picture)
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25.4.3 Method 2. First Two Approximations

This method assumes that the initial profile has the form

F (x1) = e−ikL x1 . (25.38)

The formula for the solution that includes only the first and second approximations
is shown above as formula (25.17):

u1 (x1, t) ≈ F(σ ) + F/

,1(σ )aδ = F(σ ) − 1/2αa2cL t
[
F/

,1(σ )
]2

.

When expression (25.38) is substituted into (25.17), the following new formula
gives the theoretical solution for the problem indicated in the title of this subsection:

u1 (x1, t) = aoe−ikL (x1−cL t) − 1/2αk2L
(
ao

)2
e−2ikL (x1−cL t). (25.39)

Comparison of expression (25.39) with expression (25.34) for the corresponding
solution obtained bymethod 1 shows the identity of these two representations, which
does not change the qualitative picture of evolution. This identity is observed only
for the final stage of evolution. The comparison of all stages shows some distinctions,
highlighted at the end of this chapter as Comparison 1.

25.5 Wave with the Symmetric Initial Profile in the Form
of Gauss Function

25.5.1 Gauss Profile (Method 1, First Two Approximations)

The wave with this profile (bell-shaped, hump-shaped) has the form (Rushchitsky
2011; Weisstein 2013)

u1 (x1, t) = u1oe
−1/2 σ 2

. (25.40)

According to themethod, the first approximation is the solution of the correspond-
ing linear equation (25.5) and has the form (25.24). The second approximation can
be sought as a solution to the inhomogeneous equation

u(2)
1,t t − v2

Lu
(2)
1,11 = (N1/ρ) u(1)

1,11u
(1)
1,1

or
u(2)
1,t t − v2

L u(2)
1,11 = (

N1
/
ρ
)
(u1o)

2 a3σ
(
1 − σ 2

)
e−σ 2

. (25.41)
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If the solution of linear equation (25.41) is found in the form u(2)
1 = A(σ )e−σ 2

,
then this form is the solution of a corresponding homogeneous equation and can be
treated as d’Alembert’s wave. Therefore, the solution should be complicated to the
form u(2)

1 = t A(σ )e−σ 2
, and, being substituted into the left part of (25.27) with the

notation B(σ ) = t A(σ )e−σ 2
, the differential equation relative to function B(σ ) can

be obtained as

[
B ′′(σ ) + 3

(
σ 2 − 1

)
B(σ )

] = (u1o)
2 αaσ

(
1 − σ 2

)
e1/2 σ 2

. (25.42)

The homogeneous equation B ′′(σ ) + 3(σ 2 − 1)B(σ ) = 0 corresponds toEq. (11)
from Sect. 2.173 of Kamke (1977) with a = 0, b = 3, c = √

3 and can be reduced
to the so-called Whittaker equation (Gradstein and Ryzhik 2007; Press et al. 1992).
So, the solution looks pretty complicated owing to the factor σ

(
σ 2 − 1

)
.

Thus, the second approximation will have a complex mathematical form that has
yet to be found, and, accordingly, the analytical and numerical analysis of wave evo-
lution within the framework of the first two approximations looks very unpromising
for the profile in the form of the bell-shaped function. In this situation, method 2 has
some advantages.

25.5.2 Gauss Profile (Method 2, First Two Approximations)

We still consider the initial profile in the form of (25.26), and the basic formula for
the first two approximations is (25.17). Therefore, the starting formula for the case
of the first two approximations has the following form:

u1 (x1, t) = u1oe
−1/2 σ 2 − 1/2 tαcLa

2σ 2 (u1o)
2 e−σ 2

. (25.43)

First, expression (25.43) testifies that the Gauss wave evolves and the profile
is distorted symmetrically due to the appearance of a “second harmonic” whose
amplitude increases nonlinearly with the propagation time of the wave.

Note that the term “harmonic” should be conditionally used for this wave. If to
assume that the subsequent harmonics after the first one exp{−1/2 σ 2} are distin-
guished only by the coefficient (simple number) before the phase, and this number
gives the number for harmonic, then exp{−σ 2} can be called the second harmonic.
However, the notion “harmonic” is nevertheless used in the harmonic analysis based
on the completeness of the functions-harmonics. This completeness is not valid for
the Gauss function. Therefore, here the term “second harmonic” should, strictly
speaking, be written with quotation marks.

We also note that the simplicity of obtaining the second harmonic is due to utilizing
only the first derivative of the Gaussian function.

The evolution of the wave in time and distance of wave propagation is shown in
Figs. 25.7 and 25.8. In Fig. 25.7, the initial profile is superimposed on the distorted
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Fig. 25.7 Evolution of the
initial Gauss profile (2D
picture)

Fig. 25.8 Evolution of the
initial Gauss profile (3D
picture)

one and shows evolution with distance. Figure 25.8 is 3D and shows the evolution
in time and space.

A comparison with the change in the harmonic symmetric wave profile shows that
the symmetric Gauss wave changes its profile symmetrically in a slightly different
way. The secondharmonic always gives a negative term. So, the slopes of the distorted
“bell or hump” become steeper. The upper part of the “bell” falls and forms two
“bells.” Since the wave is elastic and there can be no energy loss, the profile change
is consistent with the law of conservation of wave energy during wave propagation.
This fact is described in the Results of comparisons as Comparison 3.

25.5.3 Gauss Profile (Method 2, First Three Approximations)

First of all, method 2 proposed above should be extended to the case when the first
three approximations are taken into account. In this case, three terms should be kept
in the approximate representation of the root instead of two:

√
1 + αu1,1 ≈ 1 + 1/2αu1,1 − 1/8α2

(
u1,1

)2
. (25.44)
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The wave velocity is now written in the more complicated form

v = cL
[
1 + 1/2αu1,1 − 1/8α2

(
u1,1

)2]
(25.45)

and the approximate solution can be represented in a form that generalizes the cor-
responding representation (25.43)

u1 (x1, t) ∼= F
{
a (x1 − cL t) − 1/2 tαcLu1,1

[
1 − 1/4αu1,1

]}
. (25.46)

The following procedure is similar to the previous one—the smallness of the param-
eter δ∗ should be assumed:

∣∣ δ∗ = −1/2 tαvLu1,1
[
1 − 1/4αu1,1

]∣∣ � 1, (25.47)

and then the solution is expanded into aTaylor serieswith respect to a small parameter
δ∗ in the neighborhood of a phase value σ = a (x1 − cL t)

u (x1, t) = F(σ + δ∗) = F(σ ) + F/(σ )δ∗ + 1/2 F//(σ )δ∗2 + · · · . (25.48)

The final representation is obtained by saving only the first two terms:

u1+2+3
1 (x1, t) ≈ F(σ ) − F/

,1(σ )a2
{
1/2 tαcL F

/

,1(σ )
[
1 − 1/4αaF/

,1(σ )
]}

= F(σ ) − 1/2αa2cL t
[
F/

,1(σ )
]2 [

1 − 1/4αaF/

,1(σ )
]
.

(25.49)

The corresponding to the Gauss profile solution is as follows:

u (x1, t) = u1oe
−1/2 σ 2 − 1/2αvLa

2t (u1o)
2σ 2e−σ 2

− 1/8α2vLa
3t (u1o)

3 σ 3e−3/2 σ 2
. (25.50)

Thus, taking into account the third approximation introduces new features in
the evolution. First, the representation (25.32) (first+second+third) introduces the
asymmetric changes in the form of an initial profile contrary to the case first+second,
which introduces the symmetric changes. Besides that, the representation (25.32)
contains the cubic nonlinearity in the third approximation, which in the case of a
harmonic profile means the presence of the third harmonic in contrast to the effect
of the classical case, where after the second harmonic the fourth one is generated.
This fact forms an essence of Comparison 4 from the Results of comparisons.

Note that the expression for the wave amplitude (25.50) includes the squared
phase in the second term and the cube in the third term. This fact is characteristic of
solitary waves and is not presented in the description of the evolution of a harmonic
wave.

Figures 25.9, 25.10, 25.11, and 25.12 show the 2D plots—the dependence of the
wave amplitude on the wave propagation distance. All graphs are obtained accord-
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Fig. 25.9 Evolution of the
initial Gauss profile (2D
picture, stage 1)

Fig. 25.10 Evolution of the
initial Gauss profile (2D
picture, stage 2)

ing to (25.32). Figure 25.9 corresponds to the initial stage of evolution. The lower
graph shows the initial profile, and the upper one shows the profile for the two first
approximations.

Figure 25.10 corresponds to the advanced stage of evolution and differs from the
previous one only in the upper graph, which is obtained taking into account the first
three approximations.

Figures 25.11 and 25.12 show two profiles (u(1+2)
1 and u(1+2+3)

1 ), each of which
have two humps, but the plots differ in the distance passed by the wave (the second
one corresponds to a fairly formed evolution).

Figure 25.13 shows the 3D picture of the Gauss wave evolution.
So, in the evolution of the Gauss wave, some features are observed:

A. The second harmonic always gives a negative addition. Therefore, the bell in its
upper part becomes thinner. That is, the slopes of the bell become steeper.

B. The upper part of the bell collapses, and two bells are formed.
C. The evolution of the right and left bells is different—it shows an increase in the

left and a decrease in the right bells. This effect is unexpected, like several other
third approximation nonlinear wave effects.
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Fig. 25.11 Evolution of the
initial Gauss profile (2D
picture, stage 3)

Fig. 25.12 Evolution of the
initial Gauss profile (2D
picture, stage 4)

Fig. 25.13 Evolution of the
initial Gauss profile (3D
picture)

25.6 Wave with the Asymmetric Initial Profile in the Form
of Whittaker Function

The set ofWhittaker functions (Gradstein and Ryzhik 2007; OldeDaalhuis 2010) has
the common characteristic property—their plots have the form of one hump, which
is asymmetric relative to the vertical straight line passing through the hump top and
corresponds to some experimentally observed profiles of excited waves (Rushchitsky
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2011). These functions depend on two parameters and satisfy some special ordinary
differential equation of the secondorder. Further, theWhittaker function is considered
to describe the initial profile of some solitary wave:

F (x1) = W1/4 ;1/4 (ax1) , (25.51)

where a is the arbitrary constant parameter defining the size of the wave bottom.
Then the approximate representation of the solitary wave with the initial profile

in the form (25.51), according to the basic formula (25.31), has the form:

• in the case of the first two approximations

u1+2
1 (x1, t) = u1oW1/4 ;3/4 (ασ) − 1/2 tαcLa

2 (u1o)
2 [
W /

1/4 ;1/4 (ασ)
]2; (25.52)

• in the case of the first three approximations

u1+2+3
1 (x1, t) = u1oW1/4 ;3/4(ασ)

− 1/2 tαcLa
2 (u1o)

2 [
W /

1/4 ;1/4 (ασ)
]2 +

+ 1/8 tα2cLa
3 (u1o)

3 [
W /

1/4 ;1/4 (ασ)
]3

. (25.53)

Now, the derivative of the function Wκ,μ (z) must be calculated by the general
formula (Chandra et al. 2012):

d

dz
Wλ,μ (z) =

(
λ

z
− 1

2

)
Wλ,μ (z) − 1

z

[
μ2 −

(
λ − 1

2

)2
]
Wλ−1,μ (z) ,

according to which the following formula is valid:

(
W3/4;1/4 (σ )

)/ =
(

3

4σ
− 1

2

)
W3/4,1/4 (σ ). (25.54)

Then, in the case of the first two approximations, the solutions (25.52) and (25.53)
have the form:

u1+2
1 (x1, t) = u1oW3/4;1/4 (aσ) −

− 1/2 tαcLa
2 (u1o)

2

((
3

4σ
− 1

2

)
W3/4,1/4 (aσ)

)2

; (25.55)

in the case of the first three approximations, we have
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Fig. 25.14 Evolution of the
initial Whittaker profile (2D
picture, 1 and 1+2
approximations, stage 1)

Fig. 25.15 Evolution of the
initial Whittaker profile (2D
picture, 1 and 1+2
approximations, stage 2)

u1+2+3
1 (x1, t) = u1oW3/4;1/4 (aσ) −

− 1/2 tαcLa
2 (u1o)

2

((
3

4σ
− 1

2

)
W3/4,1/4 (aσ)

)2

+

+ 1/8 tα2cLa
3 (u1o)

3

((
3

4σ
− 1

2

)
W3/4,1/4 (aσ)

)3

. (25.56)

Two features follow from the form of solutions (25.55) and (25.56): they describe
the distortion in the initial profile of the wave due to the direct dependence of the
nonlinear component on time and the “spreading” of the initial profile due to the
presence of nonlinear components.

Figures 25.14, 25.15, and 25.16 show three 2D plots with two profiles in each in
coordinates “displacement u1—passing by the wave distance x1” which are built by
formulas (25.55). Figure 25.14 presents the initial stagewith two practically identical
profiles. Figure 25.15 presents the next stage with two profiles, which correspond to
the first (linear) approximation (upper line) and the first two approximations (lower
line). Figure 25.16 presents stage 3, where the difference between profiles is signifi-
cant due to the top hump shift to the left. Figure 25.17 shows stage 3 in the 3D format
(displacement–distance–time).

The subsequent two figures (Figs. 25.18 and 25.19) show curves corresponding
to the 1+2 approximations and 1+2+3 approximations for different distances passed
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Fig. 25.16 Evolution of the
initial Whittaker profile (2D
picture, 1 and 1+2
approximations, stage 3)

Fig. 25.17 Evolution of the
initial Whittaker profile (3D
picture, 1 and 1+2
approximations, stage 3)

Fig. 25.18 Evolution of the
initial Whittaker profile (2D
picture, 1+2 and 1+2+3
approximations, stage 1)

by the wave. Figure 25.18 shows the initial stage 1 when the curves are practically
identical. Figure 25.19 corresponds to stage 2 when the curves are slightly different
(here and further, the upper curve corresponds to 1+2 approximations and lower—to
1+2+3 approximations).

Figures 25.20, 25.21, and 25.22 are similar to the previous ones but correspond to
the longer propagation distances. Figure 25.20 shows only a reduction in the hump
height, whereas Fig. 25.21 demonstrates the forming of two humps instead the initial
hump. Figure 25.23 shows stage 5 in the 3D format (displacement–distance–time).

The presented plots show a series of features of the evolution of the Whittaker
wave:
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Fig. 25.19 Evolution of the
initial Whittaker profile (2D
picture, 1+2 and 1+2+3
approximations, stage 2)

Fig. 25.20 Evolution of the
initial Whittaker profile (2D
picture, 1+2 and 1+2+3
approximations, stage 3)

Fig. 25.21 Evolution of the
initial Whittaker profile (2D
picture, 1+2 and 1+2+3
approximations, stage 4)

A. The evolution of nonsymmetric profile occurs nonsymmetrically.
B. The maximal value of amplitude increases.
C. The wave bottom is not changed.
D. Accounting for the third approximation introduces essential changes to the pro-

file distortion. First, the case 1+2+3 approximations demonstrate some tendency
to form two nonsymmetric humps.

Of course, the evolution of the Whittaker wave gives new possibilities for com-
paring the evolution of the Gauss (symmetric profile) and Whittaker (nonsymmetric
profile) waves. Such a comparison is given in Sect. 25.9 as Comparisons 9–11.



25 Comparison of Evolution of Five Types of Elastic Waves … 457

Fig. 25.22 Evolution of the
initial Whittaker profile (2D
picture, 1+2 and 1+2+3
approximations, stage 3)

Fig. 25.23 Evolution of the
initial Whittaker profile (3D
picture, first three
approximations, stage 4)

25.7 Wave with the Asymmetric Initial Profile in the Form
of the MacDonald Function

In the prior sections, three types of initial profiles are considered—the harmonic
profile with the symmetric periodic humps, the solitary Gauss profile with one sym-
metric hump, and the solitary Whittaker profile with one nonsymmetric hump. Now
we consider the fourth type—the solitary MacDonald profile (Olver and Maximon
2010; Press et al. 1992), which is nonsymmetric and has no hump. This profile is close
to the wave profiles experimentally observed in the case of blast loading. Besides
that, the wave is already not plane and is related to the elastic cylindrical radial waves
of displacement. It is described by the nonlinear wave equation (25.5).

Recall here the classical linear description of these waves (Altenbach et al. 2020;
Rushchitsky 2011). This wave propagates in an infinite space with a cylindrical
circular cavity. The wave motion is plane axisymmetric in the radial direction and
excited by a harmonic in-time pulse applied to the boundary surface.

The cylindrical system of coordinates Orϑz is used, and the z-axis coincides with
the axis of the cavity. Due to the axisymmetry, the motion depends only on the radius
r and time t . Only the radial displacements and σrr , σϑϑ , and σzz are nonzero. The
linear and nonlinear motion equations have the forms (25.4) and (25.5), respectively.
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Let us startwith the casewhen the solutionof (25.4) is sought as the harmonic in the
time wave of displacement. When the wave propagates from the cylindrical cavity of
the radius ro and is excited by the harmonic in time displacement ur (ro, t) = uroeiωt

or load σ rr (ro, t) = poeiωt , the nonlinear problem is solved in Engelbrecht (2015) by
method 1 taking into account the first two approximations. The linear approximation
has a form

u(1)
r (r, t) = uro H

(1)
1 (kLr) e

iωt , (25.57)

where the Hankel function of the first kind is used, and uro is the amplitude factor

uro = − pokL

kL (λ + 2μ) H (1)
0 (kLro) − 2μ

ro
H (1)

1 (kLro)
. (25.58)

The solution (25.57) shows that the wave is harmonic only asymptotically with
respect to the spatial coordinate. The wave intensity decreases over time due to the
properties of the Hankel function H (1)

1 .
Consider now the case when the function F[a (r − vt)] describes the solitary

wave and is not harmonic in the time wave. First, the linear wave equation should be
analyzed. The cylindrical function of a real argument—the Hankel function Hλ (r)—
is no longer the solution of this equation. This linear equation has a solution in the
form of the cylindrical function—the MacDonald function Kλ (r).

Let us use method 2 and (25.30). Choosing the initial profile in the form of the
function F(σ ) = K0(σ ) and substituting this expression into (25.30), we obtain the
representation of the solution in the form of the first three approximations

ur (r, t) ≈ uroaK0(σ ) − 1/2 a3 (uro)
2 cLα1t

[
K /

0(σ )
]2 +

+ 1/8 a5 (uro)
3 cL (α1)

2 t
[
K /

0(σ )
]3

. (25.59)

Further, the derivative in (25.59) should be rewritten using the known formula
K /

0(σ ) = −K1(σ ), transforming the approximate representation of the nonlinear
wave into the new form

ur (r, t) ≈ uroK0 (a (r − cL t))

− 1/2 a3 (uro)
2 α1acLt [K1 (a (r − cL t))]

2 + (25.60)

+ 1/8 a5 (uro)
3 (α1)

2 cL t [K1 (a (r − cL t))]
3 .

The form of solution (25.60) shows two evident features:

A. The MacDonald wave changes its initial profile since the nonlinear summands
are directly dependent on time.

B. Because the MacDonald wave profile has no humps and likes the hyperbola, it
does not evolve into the profile with the humps. The distorted profile will be
smooth and repeat the initial profile shape.
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Fig. 25.24 Evolution of
MacDonald wave (1+2,
stage 1)

Fig. 25.25 Evolution of
MacDonald wave (1+2,
stage 2)

The formula (25.60) is used for the numerical simulation of wave evolution. The
next group of the 2D plots is built in coordinates “displacement ur—distance r” for
the cases of 1+2 and 1+2+3 approximations.

Figure 25.24 corresponds to stage 1 and shows the small effect of nonlinearity
on the evolution. The left curve corresponds to the linear approximation, and the
right one—to the 1+2 approximation. Figure 25.25 corresponds to stage 2 and shows
the more developed evolution of the initial profile. It saves the displayed in stage 1
features. The distorted profile becomes steeper and shifts more to the right side from
the initial profile. The wave bottom is still shortened.

Figure 25.26 corresponds to stage 3 and shows the more developed evolution. It
also saves the displayed in stages 1 and 2 features. The distorted profile becomes
steeper and more shifted to the right side from the initial profile. The wave bottom
continued to shorten. Figure 25.27 proposes a new 3D picture. Thus, the distorted
profile becomes gently steeper and is shifted to the right side from the initial profile.
The bottom of the distorted profile is shortened.

So, the shown plots for theMacDonald wave demonstrate that this new wave with
a profile not similar to the previous three wave profiles is distorted in a new way.
This way is characterized by some features differing from the basic features:
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Fig. 25.26 Evolution of
MacDonald wave (1+2,
stage 3)

Fig. 25.27 Evolution of
MacDonald wave (1+2,
3D picture)

A. Its profile without the hump does not generate humps.
B. A non-symmetry of the profile is saved, and the distorted profile becomes steeper

and steeper.
C. The wave profile bottom becomes shorter and shorter. These facts allow com-

parisons of the harmonic, Gauss, Whittaker, and MacDonald waves. Such com-
parisons are given in Sect. 25.9, Comparisons 12–14.

25.8 Wave with the Asymmetric Initial Profile in the Form
of Friedlander Function

The Friedlander function (initial wave profile) is less known in the mechanics of
materials than the four profiles considered above. This initial profile, known in the
physical theory of an explosion (originally a nuclear explosion), has been studied
for almost a hundred years, and these studies continue to this day. These studies are
the experimental ones that deal with the modern problems of science, not related to
nuclear explosions, but, in particular, othermilitary andmedical problems (Kuriakose
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Fig. 25.28 The Friedlander function (basic scheme) generated by the explosion. The authors of
Press et al. (1992) consider the Friedlander profile acceptable for interpreting the experiment

et al. 2016; Press et al. 1992). These studies are experimental and deal with modern
scientific problems unrelated to nuclear explosions, particularly other military and
medical problems (Kuriakose et al. 2016; Press et al. 1992).

So, choose the Friedlander profile (Gradstein and Ryzhik 2007; Kuriakose et al.
2016; Press et al. 1992) and write it in the form

F (r) = uroe
−br/ratt (1 − r

/
ratt

)
, (25.61)

where uro is the amplitude factor, and the constant b defines the profile bottom.
Figures 25.27 and 25.28 show the shape of the Friedlander initial profile, which

is given in recent experimental works (Kuriakose et al. 2016; Press et al. 1992).
Note that profile (25.12) is considered one of the simplest and is often used in the

interpretation of experiments. Figure 25.28 shows the experimentally investigated
evolution of the initial impulse

When substituting (25.61) into (25.17), the following approximate formula is
obtained for the numerical modeling of the distortion of the Friedlander profile

u1 (r, t) = uroe
−ba(r−vL t)/ratt [1 − a (r − vL t)

/
ratt

] −
− 1/2αa4vL t (1/ratt )

2 (uro)
2 (25.62)

× {1 + b [1 − a(r − vL t)/ratt ]}2 e−2ba(r−vL t)/ratt .

Equation (25.62) describes the change in the initial wave profile due to the direct
dependence of the nonlinear term on time. Figures 25.29, 25.30, 25.31, and 25.32
show the evolution for the first two and the first three approximations. The left curve
corresponds to the first two approximations, and the right—to the first three.
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Fig. 25.29 The evolution of the Friedlander function (experiment)

Fig. 25.30 Evolution of Friedlander wave (stage 1)

Fig. 25.31 Evolution of Friedlander wave (stage 2)
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Fig. 25.32 Evolution of
Friedlander wave (stage 3)

Fig. 25.33 Evolution of
Friedlander wave (3D
picture)

Figures 25.30, 25.31, 25.32, and25.33 are very similar toFigs. 25.24, 25.25, 25.26,
and 25.27. Therefore, it seems worth concentrating on comparing the evolution of
the MacDonald and Friedlander waves.

Note that a feature common to the initial profiles of both waves (MacDonald
and Friedlander) is that their graphic representation is almost identical. However, the
mathematical expressions of these profiles are different—the usual function gives the
Friedlander profile, whereas the special function expresses the MacDonald profile.
Therefore, the question arises of how the difference in the mathematical representa-
tion of the profiles will affect the description of the evolution of the wave.

Further, the basic formulas (25.60) (MacDonald wave) and (25.62) (Friedlander
wave) are used in the computational modeling of evolution. The obtained plots show
the results of comparing the evolution of the two waves.

Figures 25.34, 25.35, and 25.36 represent the plots obtained within the framework
of the first three approximations (two curves correspond to the studied two waves).
All plots indicate that from the beginning of the wavemotion, an evolutionary change
occurs in the wave profile caused by the nonlinearity of the propagation medium:
the convexity of the wave becomes larger. The plots show the above nonlinear effect
of increasing the convexity. They also show that the distortion of both profiles at
the initial stage of wave propagation is significant, and the difference between the
compared plots is small. At the developed stages of evolution, the increase in the
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Fig. 25.34 Comparison of
the evolution of the
Friedlander wave

Fig. 25.35 Comparison of
the evolution of Friedlander
and MacDonald waves (stage
1) and MacDonald waves
(stage 2)

Fig. 25.36 Comparison of
the evolution of Friedlander
and MacDonald waves (stage
3)

convexity of both plots continues, but the difference between them is slight and
remains unchanged.

So, a theoretical study and numerical modeling showed that the evolution of
profiles is very similar. Both profiles are interchangeable in the framework of evolu-
tionary analysis, although mathematically, they are represented differently.
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A comparison of MacDonald and Friedlander profiles as solutions of the linear
wave equation showed that if theMacDonald function is considered as an exact solu-
tion to the equation, then the Friedlander function can be interpreted as an approxi-
mate solution of the same equation. Furthermore, the presented results show that it
is possible to represent the solution in the form of a single wave for the Friedländer
function as an approximation of the Macdonald function.

25.9 Results of Comparisons

Comparison 1 (comparison of methods 1 and 2 as applied to the evolution of har-
monic wave within the framework of the first two approximations).When comparing
the plots obtained by the two methods, it can be seen that the evolution of the initial
profile takes place according to the same scheme but at different speeds. In the case
of method 2, the speed of distortion of the profile is significantly higher than in the
case of method 1. Therefore, the distortion depends on the choice of the method.

Let us pay attention to the differences in the restrictions that are used for the two
methods. Method 1 includes only one restriction in its mathematical formulation—
the series composed of successive approximations

∑
n u

n must be convergent. Note
that, at that, the general term of the series must converge to zero lim un

n→∞
= 0. In engi-

neering calculations, with a few constraints, each approximationmust be smaller than
the previous one. Method 2 is based on the restriction on the displacement gradient∣∣αu1,1 ∣∣ � 1 and

∣∣δ∗ = −1/2 tαvLu1,1
[
1 − 1/4αu1,1

] ∣∣ � 1. Hence, the constraints
used in both methods are different. Therefore, the evolution of the harmonic wave
obtained above differs in specific parameters. However, at the same time, they are
qualitatively close since they take into account only the second approximation.

Note also that the evolution occurs asymmetrically. The positive part of the profile
would remain in the form of a profile of the first harmonic, while the negative part
shows a tendency to transform into a profile of the second harmonic.

Comparison 2 (comparison of methods 1 and 2 as applied to the evolution of
solitary wave within the framework of the first two approximations).

It is shown in Sect. 25.5.1 that the solution for the second approximation has a
complicated mathematical form, and analytical and numerical analysis of wave evo-
lution within the framework of the first two approximations looks very unpromising
for the profile in the form of the Gauss function. Clearly, the situation is the same
for any other solitary profile. In this case, some advantage has method 2.

Comparison 3 (comparison of methods 1 and 2 as applied to the new harmonics
within the framework of the first three approximations). The application of method
1 introduces the fourth-order correction as the third approximation, and method 2
introduces the third-order correction. Thus,method 1 doubles the orders of harmonics
(1+2+4+6+…), and method 2 takes into account all harmonics (1+2+3+4+…).

Comparison 4 (comparison of harmonic and Gauss wave evolutions within the
framework of the first two approximations).
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The comparison of the evolution of the harmonic symmetric wave profile with
the symmetric Gauss wave shows that the Gauss profile distorts symmetrically in a
slightly different way. The second harmonic always gives a negative addition. So, the
slopes of the distorted “bell or hump” become steeper. The upper part of the “bell”
falls and forms two “bells.” Since the wave is elastic and there can be no energy loss,
the profile change is consistent with the law of conservation of wave energy during
wave propagation.

Comparison 5 (comparison of harmonic andGausswave evolutions in the frame-
work of the first three approximations relative to the presented harmonics). The
representation of the Gauss wave evolution within the framework of the first three
approximations contains the term with the cubic nonlinearity in the third approxima-
tion, which can be commented on as the appearance of the third harmonic after the
second one. In the case of the harmonic profile, the corresponding solution includes
the fourth harmonic after the second one. This difference is significant.

Comparison 6 (comparison of harmonic andGausswave evolutions in the frame-
work of the first three approximations relative to the symmetry of profiles). Thus,
considering the third approximation introduces new features in the evolution. First,
the representation (25.31) (first+second+third) leads to asymmetric changes in the
form of an initial profile, unlike the first+second case, which leads to symmetric
changes.

Comparison 7 (similarity of harmonic and Gauss wave evolutions in the frame-
work of the first three approximations). Two effects in the evolution of harmonic and
Gauss waves are important. The first effect is that both waves with the same bottom
turn one hump into two and then into three. Another effect is that the bottom is stable
during evolution (it does not change).

Comparison 8 (comparison of harmonic, Gauss, and Whittaker waves relative
to the symmetry of profile distortion). Here, symmetry is considered relative to the
vertical line passing through the hump top. In this case, the symmetric profiles are
distorted symmetrically, and the nonsymmetric—nonsymmetrically.

Comparison 9 (comparison of changes of bottoms of harmonic, Gauss, andWhit-
taker waves). The obtained plots indicate that the wave bottom is unchanged in all
three wave types. So, these waves are similar relative to the bottom size changes.

Comparison 10 (comparison of hump heights of harmonic, Gauss, andWhittaker
waves). Harmonic and Gaussian waves are very different from Whittaker waves in
this respect. So the first two do not change the maximal value of amplitude, whereas
the third increases this value.

Comparison 11 (ability to transform the profile from one-humped to two-
humped). The considered three one-humped waves show the tendency to form the
two-humped profiles. This nonlinear wave effect is illustrated using the first three
approximations. At that, the symmetric profiles form the symmetric two humps,
whereas the nonsymmetric profile forms two nonsymmetric humps.

Comparison 12 (comparison by the presence of humps). Unlike the three previ-
ous profiles, the MacDonald profile has no hump and does not generate a hump.
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Comparison 13 (comparison by the ability to maintain non-symmetry). Like the
Whittaker profile, the MacDonald profile maintains non-symmetry, and the distorted
profile becomes steeper and steeper.

Comparison 14 (comparison by the profile bottom). Unlike the other discussed
profiles, the bottom of the MacDonald profile is getting shorter and shorter.

Comparison 15 (comparison ofMacDonald and Friedlander waves by similarity
attribute).A theoretical study andnumericalmodeling ofMacDonald andFriedlander
waves show that the evolution of profiles is very similar. It follows from this that
both profiles are interchangeable in the framework of evolutionary analysis, although,
mathematically, they are represented differently.

Comparison 16 (comparison of MacDonald and Friedlander profiles as solutions
of the nonlinearwave equation). It shows that if theMacDonald function is considered
an exact solution to the equation, then the Friedlander function can be interpreted
as an approximate solution of the same equation. It follows from the plots that the
representation of a solution as a solitary wave is possible for the Friedlander function
as an approximation of the MacDonald function.

25.10 Final Conclusions

Five kinds of nonlinear elastic waves of initial profiles (harmonic-cosinusoidal,
Gauss, Whittaker, MacDonald, and Friedlander), different in mathematical form,
are considered. A nonlinearity of elastic deformation is described by the Murnaghan
five-constant model. The study’s main goal was to compare the similarities and
differences between the studied waves. The evolution of these waves is studied the-
oretically and numerically. The approximate methods of solving are utilized, and for
comparison of the features of evolution, the first three approximations are used.

Themain similarity for all the profiles is that they distort the form (evolute) during
the wave’s motion due to the wave’s nonlinear interaction with itself. However,
distortion occurs for each profile in its way.

The comparison results are listed in 16 positions, where the observed similarities
and differences are specified.
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Chapter 26
Stress–Strain State of Sheet Elements at
One- and Two-Layer Build-Up with
Liquid Metal

Ihor Senchenkov, Ihor Ryabtsev, Olha Chervinko, and Nina Yakovenko

26.1 Introduction

Surfacing of metal members is a technological process that provides the working
surfaces of structural elements with special properties: wear resistance, heat resis-
tance, corrosion resistance, etc. (Senchenkov andOksenchuk 2013; Senchenkov et al.
2005).

The modeling of processes during the surfacing of thin-walled elements, such as
pipes or sheets, when the thickness of the surfaced metal is commensurate with the
thickness of the parts, is one of the build-up classes of tasks. The specificity of the
process modeling is to estimate the distortion as well as to determine the stress–strain
state.

It should be noted that when building up, especially multilayer, thin-walled ele-
ments, there is a significant variability of thermomechanical fields in thickness.
Therefore, models based on the hypotheses of plates and shells have questionable
reliability. The results obtained within the spatial formulation of the problem are
more reliable.

The objects ofmathematicalmodeling are the current and residual thermomechan-
ical state of parts during the build-up process. The results of investigations on this
problem are summarized in Motovilovets and Kozlov (1987), Popov and Popova
(1961), Ryabtsev and Senchenkov (2013), Senchenkov and Oksenchuk (2013),
Senchenkov et al. (2002, 2005). The literature review shows that these surfacing
problems need to be studied more.
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The chapter presents the results of modeling thermomechanical processes during
the growth sheet elements of rectangular cross sections. St0, St1, St2, and St3 denote
the used steel grades. The following chemical compositions of steel are used in the
current study:

• St0—0.3% C;
• St1—0.08% C;
• St2—0.25% C, Cr 5.0%, V 1.0%, Mo 1.0%, Si 1.0%;
• St3—0.10% C, Cr 18.0%, Ni 9%, Ti 1.0%.

A basic rectangular element made of St0 steel is built up with one or two layers of
liquidmetalmadeof St1, St2, andSt3 steels using a growingbodymodel (Arutyunyan
et al. 1987; Lindgren 2007; Senchenkov and Tabieva 1996; Senchenkov et al. 1998;
Shorshorov and Belov 1972).

The Bodner–Partom inelastic flow equations describe the thermomechanical
behavior of materials (Bodner 2000; Shevchenko et al. 2012). Microstructural trans-
formations are governed by means of thermokinetic diagrams of austenite decompo-
sition during cooling (Ryabtsev et al. 2015; Zubchenko 2003). The problem is solved
using the finite element technique (Radaj 2003).

26.2 Object of Study

A sheet (plate) element made of steel St0 with a rectangular (in the plane Oxy) cross
section is considered. The shape and size designation of the plate and deposited beads
are shown in Fig. 26.1a. In Fig. 26.1b, c, the scheme of smooth support and support
with a gap (free support) between the plate and the base and fixing along the side
edges at a length lc is shown.

The scheme of simultaneous (instantaneous) imposition of the bead in the direc-
tion of the z-axis is applied to reduce the three-dimensional problem to a two-
dimensional one. Thus, the problem is simplified to the plane strain (PDS) or plane
stress (PSS) problem in the plane Oxy depending on the conditions of fixing the
ends z = 0 and z = lz .

Fig. 26.1 Object of study
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Fig. 26.2 The schemes of layer build-up

In the case of two-layer surfacing, we consider the schemes of beads build-up
with (Fig. 26.2b) and without (Fig. 26.2a) shift, as well as a simplified scheme of the
sequential instantaneous build-up of the first and then the second layers (Fig. 26.2c).

26.3 Model of Microstructural Transformations

In the thermomechanical processes of build-up, allotropic transformations in a solid
body due to the decomposition of austenite (ξ = A) in steels into the phases of
ferrite (ξ = F), pearlite (ξ = P), bainite (ξ = B), and martensite (ξ = M) during
cooling are taken into account. The thermokinetic decomposition diagram (CCT)
describes the transformation of austenite. Figure 26.3 presents such diagrams for
steel St0 and steel St2 (Ryabtsev et al. 2015; Zubchenko 2003). Bold lines show the
boundaries of the transformation region, and thin lines correspond to the cooling
curves. Figures show the volume percentage of austenite decomposition at the outlet
of the transformation region.

The law of new phase ξ accumulation in the appropriate regions along the cool-
ing trajectory for martensitic transformations is given by the phenomenological

Fig. 26.3 CCT diagrams for steel St0 a and steel St2 b
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Coistinen–Marburger equation (Makhnenko 2006). Diffusive transformations such
as the decomposition of austenite into ferrite, pearlite, or bainite, which depend on
temperature and time, are described using the method (Klingbeil et al. 2002) based
on the JMAK (Johnson–Mehl–Avrami–Kolmogorov) equation.

Thermomechanical properties of each phase Yξ are calculated taking into account
the dependence on temperature Yξ = Yξ (θ). The linear rule of mixtures is used
to determine the macro-characteristics Ȳ for an arbitrary phase composition. The
general formula is written in the form

Ȳ (θ, t) = Cξ (θ, t) Yξ (θ) , 0 � Cξ � 1,
∑

ξ

Cξ = 1, (26.1)

where Cξ is the volume fraction of the phase.
The rule of mixtures can calculate the following physical quantities: heat capacity

(cv), thermal conductivity (k), Young’s modulus (E), coefficient of linear thermal
expansion (α), Poisson’s ratio (ν), and parameters of the flow model. In (26.1) and
below, repeated indices imply the summation is to be done. The rule of mixtures
is used in a wide temperature range, which is consistent with the experiments in
Lindgren (2007), Popov and Popova (1961), Ryabtsev and Senchenkov (2013).

Thermophase deformation εi j
θph is determined through the specific volumes of

phases Vξ by the formula

ε
θph
i j

(
θ, θr ,Cξ

) = Vξ (θ)Cξ (θ) − Vξ (θr )Cξ (θr )

3Vξ (θr )Cξ (θr )
δi j . (26.2)

Here θ is the current temperature and θr is some reference temperature.
Temperature dependences of specific volumes for the phase ξ in m3/kg, referred

to θr = 20◦C, are taken as follows (Yuryev 1950):

Vξ (θ) = Vξ0[1 + 3αξ (θ − θr )],

where αξ is the coefficient of linear thermal expansion of the phase ξ and Vξ0 are the
specific volumes of the phase ξ at the reference temperature.

26.4 Model of Growing Bodies

The peculiarity of themodel of growing bodies is that all components of the stress ten-
sor are designated on the surface of the growth (Arutyunyan et al. 1987; Senchenkov
et al. 2002; Shorshorov and Belov 1972). In the case under consideration, taking
into account the schemes of Figs. 26.1 and 26.2, the following conditions must be
satisfied in the built-up element:

σi j = 0, t = t∗, (26.3)
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where t∗ is the moment of building up the element (bead).
Let the empty mesh element 	V (t∗) have deformation ε∗

i j at the moment t∗ of
filling, and let it be filled with material of temperature θ∗. Thus, conditions (26.1),
in fact, mean that at t = t∗

σi j (ε
∗
i jθ

∗) = 0, in 	V (t∗). (26.4)

It is assumed that the inelastic deformation of the layer element that is built up at
t = t∗ is equal to zero

ε
p
i j (t

∗) = 0, in 	V (t∗). (26.5)

The process of filling the elements with reference to the technological parame-
ters of surfacing is clarified in more detail in Senchenkov and Oksenchuk (2013),
Senchenkov et al. (2005).

26.5 Flow Model

The thermomechanical behavior of the material is described by the equations of the
Bodner–Partom model (Bodner 2000)

• equations of the modified Hooke’s law

εi j = εei j + ε
p
i j + ε

θph
i j + ε∗

i j , ε
p
kk = 0, (26.6)

si j = 2G(ei j − ε
p
i j − eθph

i j − e∗
i j ), σkk = 3KV (εkk − ε

θph
kk − ε∗

kk), (26.7)

for the basic metal St0, we assume ε∗
i j (0) = 0;

• the flow equations

ε̇
p
i j = D0 exp

{
−1

2

[(
K̄0 + K

)2

3si

]n}
si j
si

= 0, ε
p
i j (0) = 0; (26.8)

• the evolution equation for the isotropic strengthening parameter

K̇ = m1
(
K̄1 − K

)
ẇp, K (0) = 0, (26.9)

where G, G f , KV , and KV f are the shear and bulk compression moduli; K̄0 and
K̄1 are determined by (26.1); m1, n, and D0 are model parameters; ẇp is the
plastic power, si is the second invariant of the stress tensor, ẇp = σi j ε̇i j

p and
si 2 = 1/2si j si j .

The averaged values K̄0 and K̄1 for the current phase state are calculated according
to Zubchenko (2003) using the technique described in Shevchenko et al. (2012).
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For materials with dissimilar diagrams (Bezukhov et al. 1965), modifications of
the standardmodel (26.6)–(26.9), which are proposed in Bodner (2000), Senchenkov
et al. (2013), Yuryev (1950), are used.

26.6 Problem Statement

In addition to the presented Eqs. (26.6)–(26.9), the problem statement includes equa-
tions of equilibrium and heat conduction

σi j, j = 0, c̄vθ̇ = (k̄ θ,i ),i +Q (26.10)

with the following boundary and initial conditions

− k̄ niθ,i = −q + γ (θ − θ0) + σ ε (θ4 − θ4
0 ), θ(0) = θ0, (26.11)

where Q is the heat source, k̄ and c̄v are averaged coefficients of thermal conductivity
and volumetric heat capacity of the mixture of phases, q is the heat flux, γ is the
heat transfer coefficient, σ is the Stefan–Boltzmann constant, and ε is the degree of
blackness.

The conditions of growth and fixation of the element specify the mechanical
boundary conditions.

26.7 Thermomechanical Characteristics of the Material

To calculate the parameters of the flow model, uniaxial tensile diagrams at constant
strain rate (ε̇ = 5 · 10−4s−1) and different temperatures are used. Such diagrams for
steels St0–St3, taken from (Bezukhov et al. 1965), are shown in Fig. 26.4. Dashed
lines correspond to experimental data and solid lines—to calculated data. Numbers
on the right side of the figures indicate the temperature.

Temperature dependences of the Bodner–Partom model parameters for these
materials are given in Senchenkov (2005). Temperature dependences of thermo-
physical characteristics of materials are taken from Bezukhov et al. (1965).

26.8 Method of Numerical Simulation

The problem is solved by the method developed in Radaj (2003), Senchenkov and
Oksenchuk (2013), Senchenkov et al. (2005). Equations with time derivatives are
integrated using an implicit scheme with a variable integration step. The nonlinear
boundary value problem of thermomechanics is solved at each step by a simple



26 Stress–Strain State of Sheet Elements at One- and Two-Layer Build-Up . . . 475

Fig. 26.4 Uniaxial tensile diagrams at constant strain rate for some temperatures: a—steel of base
layer St0; b, c, and d corresponds to steel of built-up layers St1, St2, and St3, respectively

iteration method with accelerated convergence according to the Stephensen–Eitken
procedure. The linearized problem at each iteration is solved by the finite element
method using quadrilateral isoparametric elements.

26.9 Results of Calculations of Deflections of Sheet
Elements at Surfacing

The superposition of beadswasmodeled according to the scheme shown in Figs. 26.1
and 26.2. We chose the following values of geometrical parameters: l = 100 mm,
h = 3 mm, 	h = 2.3 mm, l = 5 mm, lc = 25 mm, lz = 200 mm (the length of the
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element in the direction of the z-axis), vz = 8.7 mm/s (the deposition speed in the
direction of the z-axis). The heat transfer coefficient from the surface of the plate γ

is chosen to be 30 W/m2◦C and from the surface of the base—100 W/m2◦C.
The bead and the adjacent strips of material are preheated during the time tq = 9 s

by volumetric sources. Their power corresponds to the enthalpy of the melt that is put
into it, as well as heating by an electric arc, and provides heating up to θ ≈ 1550◦C.

When this temperature level is reached, the actual temperature θ∗ and deformation
ε∗
i j of the empty elements of the bead are fixed. Then they are filled with the build-up
material, the mechanical properties of which are described by Eqs. (26.6)–(26.9).

After cooling for the time tc = 23 s and tc = lz/vz , the surfacing cycles are
repeated until the end of the process of building up the sheet element. A total of
20 beads are applied. After cooling, the element is released from the fixtures shown
in Fig. 26.1b, c, and its residual deflection is determined.

The effect of the martensitic transformation on displacement kinetics is illustrated
at the point in the base material under the eleventh bead (x = 55 mm, y = 2.5 mm),
which is built up in the time interval according to the scheme in Fig. 26.1c under con-
ditions of free lower boundary. The deflection curvesmarkedwith 1 and 2 correspond
to the build-up of steels St1 and St2, respectively.

Steel St2 undergoes phase transformations during cooling. As a result, there is
a significant increase in deflection in the region of martensitic transformation. The
points on the time–temperature curve indicate the moments of entry into and exit
from the austenite–martensite transformation region. Vertical dashed lines delimit
this region on the θ and t-axes. The instantaneous change in deflection after cooling
corresponds to the release of the plate edges from fixation.

Figure 26.5b shows a comparison of residual deflections at the bead surfacing
of the layer (Fig. 26.1c) when surfacing with steels St1 and St2, respectively, and
the free lower boundary. When building up with St2 steel, as a result of martensitic
transformations, we have a higher level of deflection, especially under the conditions

Fig. 26.5 Comparison of deflections under the eleventh bead for steel without (1—St1) and with
(2—St2) martensite transformations and the free lower boundary; a—dependence of deflections on
time, b—residual forms of build-up plates
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Table 26.1 Comparison of calculated and experimental values of residual deflections

Conditions
support

PDS/PSS Material for building-up

St3 St2 St1

Deflections: calculated (1, 2) and experimental (3) data, mm

1 2 3 1 2 3 1 2 3

Smooth PDS 1.45 1.61 0.7 1.52 1.69 1.7 1.21 1.22 0.7

PSS 1.34 1.38 0.7 1.93 1.72 1.7 1.13 1.12 0.7

With gap PDS 2.77 2.18 2.0 2.81 4.96 2.5 2.84 2.27 1.2

PSS 2.66 1.68 2.0 2.55 4.22 2.5 2.35 1.69 1.2

of a free lower boundary. On the other hand, residual deflections for similar problems
with smooth support at the lower boundary are significantly smaller.

In the case of simultaneous surfacing, we have the following results. Although the
displacement kinetics is different in the case of phase transformation, the residual
deflection values do not differ significantly. The bead surfacingmodel predicts higher
deflection values for both the smooth support and free boundary cases than the
simultaneous surfacing model.

For the three grades of cladding steel (St1, St2, and St3), experimental and cal-
culated data for single-layer surfacing under the conditions of smooth support and
support with a gap are given in Table 26.1.

The characteristic deflections were determined as follows. After cooling and
releasing the fixed edges, the sample was placed on a smooth plate, and the nor-
mal displacement of the upper surface of the sample from the plate was measured
with an indicator. For the characteristic deflection given in the table, the maximum
local value above the defined deflection in the section z = lz/2 of the welded part of
the plate was taken. With this definition, the characteristic deflection is always pos-
itive. Columns 1 and 2 correspond to the calculated data for simultaneous and bead
surfacing. The PDS and PSS terms correspond to the calculation models. Column 3
shows the experimental data.

As can be seen from the above data, the PDS model predicts larger deflections
compared to the PSS model, except for the material with martensitic transformation
(St2) under smooth support conditions. For this material, larger deflections occur
under both bearing conditions due to the volume effects of transformation. It should
also be noted that more significant deflections are observed for surfacing with a gap
between the plate and the welding table than in the case of tight pressing of the plate
to the table.

Similar calculations and experiments were carried out for the case of two-layer
surfacing. For two-layer surfacingwith steel St1, under conditions of smooth support,
the schemes without overlapping beads (Fig. 26.2a) give deflections of 1.02 mm
(PDS) and 0.91 mm (PSS). The scheme of the sequential simultaneous surfacing of
layers gives a deflection of 1.00 mm (PDS) and 0.91 mm (PSS). The experimental
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Fig. 26.6 Scheme of a
single-layer surfacing

deflection value is 0.8 mm. The results of the calculation of deflections for the case
of surfacing beads with (Fig. 26.2b) and without (Fig. 26.2a) overlapping have a
difference of less than 10%.

The discrepancy between the above-calculated and experimental results is deter-
mined, on the one hand, by the inaccuracy of themathematical model, which does not
take into account the contact interaction of the plate with the support surface under
conditions of smooth support, and, on the other hand, by the technical difficulties in
providing all the conditions for fixing the edges of the plates and measuring deflec-
tions during experimental studies, as well as by the insufficient number of samples
used.

26.10 Results of Calculations of Stresses and Plastic
Deformations

Consider a single-layer surfacing according to the scheme shown in Fig. 26.6. Cross
sections A–A and B–B are shown here with the stress and plastic deformation dis-
tributions.

Let us study the influence of support conditions for the case of the plane strain
and St1 steel. For the support with a gap (Fig. 26.1b), Figs. 26.7a (section A–A) and
26.7b (section B–B) show the distributions of residual stresses σxx , σzz and stress
intensities si at the zone of surfacing. Figure 26.7c shows the distributions of plastic
deformation intensity epi and epi = (2epi j e

p
i j/3)

1/2 in both sections.
Similar results for smooth support conditions are shown in Fig. 26.8. Again, it can

be seen that the stress–strain state levels in both cases of support differ insignificantly,
except for the growth of plastic deformations in the last beads when building up with
a gap (Fig. 26.8c). The largest are tensile stresses σzz .

Stress distributions at section D–D (Fig. 26.9a) for the conditions of smooth
support are shown in Fig. 26.9b, c. The numbers in Fig. 26.9a indicate the numbers
of the built-up beads. The interval 0 � y � 3 mm corresponds to the base layer, and
3 mm < y � 5.3 mm to the built-up layer.

The most stressed is the base metal, and the most plastically deformed is the built-
up layer near the boundary with the base metal. However, distributions for build-up
with a gap differ insignificantly.

Let us consider the influence of the build-up material on the example of the PSS
model and smooth support conditions. Residual distributions of parameters si and



26 Stress–Strain State of Sheet Elements at One- and Two-Layer Build-Up . . . 479

epi at sections A–A and B–B for surfacing with steel grades St1 and St2 are shown
in Figs. 26.10a, b and 26.11a, b, respectively.

The stress level corresponding to surfacing with steel St1 (Fig. 26.10a) is signif-
icantly lower than that for St2 (Fig. 26.11a) due to strengthening of the latter after
martensitic transformations. Accordingly, the plastic deformations in the martensitic
phase of the deposited layer (Fig. 26.11b) are much smaller than in the layer of steel
St1. At the same time, the stresses in the St2 steel layer are more significant than the
stresses in the base metal (Fig. 26.10a), and the plastic deformations are comparable
(Fig. 26.11b).

The above results are confirmed by comparing the distributions of stresses at D–D
section, intensity si , and deformations epi shown in Figs. 26.12a, b and 26.12c, d for
steels St1 and St2, respectively.

Let us compare the results obtained within the framework of the hypotheses of
the PDS and the PSS on the example of building up by steel St2 under conditions of
smooth support. The corresponding distributions of the characteristics of the stress–

Fig. 26.7 Stress–strain state for the case of build-up with St1 steel, the free lower boundary, and
PDS

Fig. 26.8 Stress–strain state for the case of build-up with St1 steel, the smooth lower boundary,
and PDS
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Fig. 26.9 Stress–strain state for the case of build-up with St1 steel in cross section D–D, the smooth
lower boundary, and PDS

Fig. 26.10 Stress–strain state for the case of build-up with St1 steel, the smooth lower boundary,
and PSS

Fig. 26.11 Stress–strain state for the case of build-up with St2 steel, the smooth lower boundary,
and PSS
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Fig. 26.12 Stress–strain state in cross section D–D for the case of build-up with St1 steel a, b and
St2 steel c, d, smooth lower boundary, and PSS

Fig. 26.13 Stress–strain state in cross sections A–A and B–B for the case of build-up with St2,
smooth lower boundary, and PDS

strain state for the PDS and the PSS are shown in Figs. 26.13a, b and 26.11a, b,
respectively.

The PDS model predicts approximately the same level of stresses in the built-
up layer and the base metal (Fig. 26.13a) and a significantly higher level of plastic
deformation in the deposited layer (Fig. 26.13b).

The PSS model predicts significantly higher stresses in the deposited layer com-
pared to the base metal (Fig. 26.11a) and significantly lower plastic deformations
in the deposited layer (Fig. 26.11b) compared to the PDS. At the same time, both
models show similar levels of plastic deformation in the base metal.

These results show that the conditions of fixing the edges of the plate z = 0 and
z = lz significantly affect the residual stress–strain state of the built-up element.

Consider the case of a two-layer build-upwith steel St1 under conditions of smooth
support. The second layer is built up after cooling the first layer to θ ≈ 300◦C.

The results of calculations of residual stress–strain state under the PDS condi-
tions for two-layer surfacing with steel St1 (the scheme in Fig. 26.14) are shown in
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Fig. 26.14 Scheme of two-layer surfacing

Fig. 26.15. Figure 26.15a corresponds to section A–A at the zone of surfacing, and
Fig. 26.15b—section B–B.

The maximum tensile stresses σzz are achieved in the base metal (section A–A),
and the maximum compressive stresses σxx are formed in the first layer (section C–
C) near the boundary with the base metal. In this section, there are maximum values
of the intensity of residual plastic deformations, which have an oscillatory character
with a period 	l (Fig. 26.15c).

The distribution of stresses and plastic deformation intensities along the y-axis
in middle section D–D in the tenth bead (the scheme in Fig. 26.16a) is shown in
Fig. 26.16b, c.

There is a discontinuity of stresses and plastic deformations at the point of tran-
sition from the base metal to the build-up metal. The discontinuity is caused by
different properties of metal grades and conditions of layers deposition. In this case,
the gap at the boundary of layers is practically absent.

Calculations based on a simplified scheme of the sequential instantaneous build-
up of the first and second layers with St1 steel under the PDS conditions show that the
results are in good agreement in terms of stresses. However, the distribution and level
of plastic deformations differ significantly, both quantitatively and qualitatively. The
approximate scheme, with the exception of the edge zones, predicts much smaller
plastic deformations in the deposited metal.

The effect of fixing the plate on the edges perpendicular to the z-axis is illus-
trated by comparing the above results with similar results under the PSS conditions
(Figs. 26.17 and 26.18). Comparing with the data in Figs. 26.15 and 26.16, we can

Fig. 26.15 Stress–strain state for the case of two-layer build-up with St1 steel, smooth lower
boundary, and PDS
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Fig. 26.16 Stress–strain state in cross section D–D for the case of two-layer build-up with St1
steel, smooth lower boundary, and PDS

Fig. 26.17 Stress–strain state for the case of two-layer build-up with St1 steel, smooth lower
boundary, and PSS

Fig. 26.18 Stress–strain state in cross section D–D for the case of two-layer build-up with St1
steel, smooth lower boundary, and PSS



484 I. Senchenkov et al.

see that under the PSS conditions, we have a significantly lower level of stresses and
plastic deformations in the base metal and almost the same level of stresses in the
built-up metal.

The plastic deformations in the case of the PSS due to the absence of the compo-
nent σzz are much smaller than in the case of the PDS.

The results of calculations carried out for the cases of not overlapping and over-
lapping beads (Fig. 26.2a, b) differ insignificantly.

26.11 Conclusions

1. The calculations of the stress–strain state of sheet elements made of steel St0,
when built up with steels St1, St2, and St3 under conditions of free boundary
and smooth support on the lower surface of the element, were carried out. It is
established that there is a smaller residual deflection under smooth conditions
compared to the free boundary conditions.

2. When building up with materials with martensitic transformations, more consid-
erable deflections take place.

3. The conditions of smooth support and smooth fixing of edges provide minimal
deflections.

4. The conditions of element fixation at the boundaries z = 0 and z = lz significantly
affect the residual stress–strain state of the built-up element. Therefore, the results
obtained under the PDS/PNS conditions can be considered as limit estimates of
the characteristics of the stress–strain state.

5. In the case of two-layer build-up, the results for the cases with and without over-
lapping beads differ insignificantly.

6. A simplified scheme of the sequential instantaneous build-up of the first and
second layers shows that the stress results agree with the scheme of bead build-up
in the build-up area. However, the plastic strain distributions differ significantly
both quantitatively and qualitatively. The approximate scheme predicts much
smaller strains in the built-up layer.

7. The results of calculations of deflections satisfactorily correlatewith experimental
data.
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Chapter 27
Nonstationary Thermoelastic Problem
for a Multilayer Coating/Half-Space
Assembly at Radiative and Convective
Loading

Victor Shevchuk

27.1 Introduction

In actual operating conditions, non-uniform temperature fields give rise to significant
thermal strains and stresses in the elements of constructions and equipment with one-
or multilayer coatings of various functionality. As a result, this may cause cracking,
exfoliation of coatings, and loss of bearing capacity of such systems.

The problems of determining the thermal stressed state of multilayered structures
under radiative–convective heat exchange with the environment were considered in
Jendrzejewski et al. (2006), Jiguang and Fei (2015), Kushnir et al. (2002), Protsyuk
and Horun (2017), Zhao et al. (2017), where existing mathematical models are used,
and corresponding boundary value problems of heat conduction and thermoelasticity
are solved based on analytical–numerical and various numerical methods.

One of the problems arising in the study and calculation of the temperature fields of
structural elements under radiative and convective heating or cooling is the choice of
an efficient method for solving appropriate nonlinear nonstationary heat conduction
boundary value problems and elaboration of their approximate solutions. The well-
known ways of solving nonlinear boundary value heat conduction problems are
their linearization, use of numerical methods, construction of iteration schemes,
application of variational or integral methods, and the perturbation technique (Aziz
and Na 1984; Hogan and Gartling 2008; Kushnir and Popovych 2011). Recently, the
following new approaches have become widespread: the Adomian decomposition
method (Oguntala et al. 2019), the homotopy analysis method (Liao 2003; Liao et al.
2006), the homotopy perturbation method (Ganji 2006; Torabi et al. 2011), and the
differential transform method (Bervillier 2012; Yaghoobi and Torabi 2011).

Among the approaches used to solve thermal problems with a nonlinear boundary
condition is the reduction to the equivalent nonlinear integral equation of the Volterra
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type using Green functions (Kushnir et al. 2002) and Laplace integral transformation
(Villasenor 1994). To solve this nonlinear integral equation, the implicit Runge–Kutta
method is applied in Abdalkhani (1992), linear splines—in Kushnir et al. (2002), and
the reduction to a nonlinear algebraic equation—in Villasenor (1994). In Onur and
Sivrioglu (1993), Sundén (1989), the finite-difference computing technique and in
Fetni et al. (2021), Guo et al. (2016), the finite element method are used for solving
such heat conduction problems. A numerical–analytical procedure for determining
the nonstationary temperature field in the half-space, taking into account thermal
radiation, is proposed in Protsyuk (2021). The nonlinear heat conduction problem is
reduced to the recurrent systemof nonlinear algebraic equations using theGreen func-
tion and linear splines. The method of successive approximations (Popovych et al.
2012) and the lumped parameter model approach (An and Su 2011; Tan et al. 2009)
are applied to determine the temperature field in bodies under radiative–convective
heat exchange with the environment. In Choudhury (2006), Fakoor-Pakdaman et al.
(2015), the fourth-order nonlinear effect of radiative heat transfer in the boundary
condition is linearized, assuming that the difference between the ambient and initial
solid temperature is small.

To solve the nonlinear boundary value problem of nonstationary heat conduction
and investigate the influence of radiation on heat transfer in plates with thin coatings,
the quasi-linearization of boundary conditions and the finite-difference method are
used in Terlets’kyi and Turii (2013). By solving the boundary value heat conduction
problem for a half-space under radiative cooling in the environment, the substantial
advantage of the method of quasi-linearization, which has a high rate of convergence
comparedwith other iterativemethods, has been shown (Shevchuk andHavrys 2017).
For solving boundary value problems of heat conduction for solidswith thin coatings,
the application of generalized linear boundary conditions (Shevchuk 2012, 2013,
2014; Shevchuk and Gavris 2020) (for solids with one- or multilayer coatings) and
generalized nonlinear boundary conditions (Terlets’kyi and Turii 2013) (for bodies
with one-layer coatings) appears to be the most efficient approach. In Shevchuk
(2022), generalized nonlinear boundary conditions have been obtained for describing
radiative–convective heat transfer of the bodies with the environment via multilayer
coating.

In this study, using a nonlinear boundary condition (Shevchuk 2022), the results
of determining the temperature field in a half-space during convective interaction
with the environment through a multilayer coating (Shevchuk 2013) are generalized
for the case of radiative–convective heating or cooling of such a system. Based on
the method of quasi-linearization (Bellman and Kalaba 1965), an iterative scheme
for determining the temperature in the half-space is built. Using the Laplace trans-
form (Luikov 1968), the approximate analytical solution of the linearized problem
is obtained for each iteration.

For a half-space/two-layer wear-resistant coating assembly, the influence of ther-
mophysical and thermomechanical characteristics of the system and the conditions of
interaction with the ambient medium on the distribution of temperature and stresses
has been studied.
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27.2 Statement of the Heat Conduction Problem

We study the radiative–convective heat exchange for a half-space with an ambient
medium via an n-layer coating of thickness δ = ∑n

i=1 δi , where δi is the thickness of
the i th coating layer. The rectangular coordinates (x, y, z) are chosen so that plane
z = 0 coincides with the coating/substrate interface, and the z-axis is directed toward
the system.

The one-dimensional nonstationary boundary value problem of heat conduction
is formulated as follows:

• heat equation and initial condition

∂Tj

∂τ
= a j

∂2Tj

∂z2
, j = b, 1, 2, . . . , n, (27.1)

Tj

∣
∣
τ=0 = T0 = const, (27.2)

• boundary condition of radiative–convective heat transfer between the coating and
the ambient medium

λn
∂Tn
∂z

= εσ0
(
T 4
n − T 4

a

) + μ (Tn − Ta) at z = zn = −δ, (27.3)

• conditions of perfect thermal contact on the interfaces of coating layers and
coating/half-space

Ti = Ti−1, λi
∂Ti
∂z

= λi−1
∂Ti−1

∂z
at z = zi−1 = −

i−1∑

m=1
δm, i = 2, . . . , n,

1 = Tb, λ1
∂T1
∂z

= λb
∂Tb
∂z

at z = z0 = 0,

(27.4)
• condition at infinity

Tb → T0 at z → ∞. (27.5)

Here, the following notations are introduced: T is the absolute temperature, a =
λ/(ωρ) is the thermal diffusivity, λ is the thermal conductivity, ω is the specific heat,
ρ is the density, τ is the time,μ is the heat transfer coefficient for the coating surface,
ε is the emissivity factor of the coating surface, σ0 is the Stefan–Boltzmann constant.

Indices i , b, and a refer to the number of a coating layer, body (half-space), and
ambient medium, respectively.

To solve the problem, we use an approach based on the simulation of the influence
of the coating on the heat conduction process in the system by generalized boundary
conditions. Under this approach, the temperature is determined by the solution of
Eq. (27.1) for a half-space with initial condition (27.2), condition at infinity (27.5),
and the generalized boundary condition, which has the following form for this case
(Shevchuk 2022)
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λb

(
1 + μ

H

) ∂Tb
∂z

+ μ (Ta − Tb) − 

∂Tb
∂τ

+ εσ0T
4
a

− εσ0

4∑

m=0

(−1)m Cm
4

(
λb

H

)m

T 4−m
b

(
∂Tb
∂z

)m

= 0,

Tb
∣
∣
τ=0 = T0 at z = 0, (27.6)

where 
 = ∑n
i=1 ωiρiδi and H−1 = ∑n

i=1 δi/λi are the reduced heat capacity and
thermal resistance of the whole coating, andCm

4 = 4!/(m!(4 − m)!) are the binomial
coefficients.

We introduce the dimensionless temperatures

θb = Tb/T∗, θ0 = T0/T∗, θa = Ta/T∗, (27.7)

where the reference temperature

T∗ =
{
Ta during heating of the system

T0 during its cooling.
(27.8)

Here z̄ = z/z∗ is the dimensionless coordinate; Fo = abτ/z2∗ is the Fourier num-
ber; Bi = μz∗/λb is the Biot criterion; Sk = εσ0T 3∗ z∗/λb is the Stark criterion; ξ =
λb/ (Hz∗) is the relative effective thermal resistance of the coating; η = 
/ (ωbρbz∗)
is the relative effective heat capacity of the coating (z∗ is a selected scale unit).

Then the nonlinear boundary value problem of heat conduction (27.1), (27.2),
(27.5), and (27.6) for a half-space is given in dimensionless quantities as follows:

∂2θb(z̄,Fo)

∂ z̄2
= ∂θb(z̄,Fo)

∂Fo
, z̄ > 0, Fo > 0, (27.9)

θb (z̄, 0) = θ0, (27.10)

lim
z̄→∞ θb (z̄,Fo) = θ0, (27.11)

(1 + ξBi)
∂θb

∂ z̄
+ Bi (θa − θb) − η

∂θb

∂Fo

− Sk

[
4∑

m=0

(−1)m Cm
4 ξmθ4−m

b

(
∂θb

∂ z̄

)m

− θ4
a

]

= 0,

θb
∣
∣
Fo=0 = θ0 at z̄ = 0. (27.12)

It may be noted that the introduction of dimensionless temperature θb using (27.7)
and (27.8), as in Campo (1977), allows formulating the nonlinear heat conduction
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problem of radiative–convective heating or cooling, including cooling in the ambient
medium with zero temperature, by one system of relations.

27.3 Solution of the Heat Conduction Problem With a
Generalized Boundary Condition

27.3.1 Scheme of the Quasi-linearization Method

We apply the iterative procedure based on the quasi-linearization method (Bellman
andKalaba 1965;Campo 1977) to the solution of the boundary value problem (27.9)–
(27.12). We represent the boundary value problem for the kth approximation as
follows:

∂2θ
(k)
b (z̄,Fo)

∂ z̄2
= ∂θ

(k)
b (z̄,Fo)

∂Fo
, z̄ > 0, Fo > 0, (27.13)

θ
(k)
b (z̄, 0) = θ0, (27.14)

lim
x→∞ θ

(k)
b (z̄,Fo) = θ0, (27.15)

(1 + ξBi)
∂θ

(k)
b

∂ z̄
+ Bi

(
θa − θ

(k)
b

)
− η

∂θ
(k)
b

∂Fo

− Sk

[
4∑

m=0

(−1)m Cm
4 ξm

(
θ

(k)
b

)4−m
(

∂θ
(k)
b

∂ z̄

)m

− θ4
a

]

= 0 at z̄ = 0,

θ
(k)
b (0, 0) = θ0. (27.16)

To linearize the nonlinear term in the boundary condition (27.16), we use the
following formula (Bellman and Kalaba 1965; Campo 1977):

f

(

θ
(k)
b ,

∂θ
(k)
b

∂ z̄

)

= f

(

θ
(k−1)
b ,

∂θ
(k−1)
b

∂ z̄

)

+ f ′
θb

(

θ
(k−1)
b ,

∂θ
(k−1)
b

∂ z̄

)
(
θ

(k)
b − θ

(k−1)
b

)

+ f ′
∂θb/∂ z̄

(

θ
(k−1)
b ,

∂θ
(k−1)
b

∂ z̄

) (
∂θ

(k)
b

∂ z̄
− ∂θ

(k−1)
b

∂ z̄

)

, (27.17)

where
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f

(

θb,
∂θb

∂ z̄

)

=
4∑

m=0

(−1)m Cm
4 ξm (θb)

4−m

(
∂θb

∂ z̄

)m

.

Then the linearized condition (27.16) has the following form:

∂θ
(k)
b (0,Fo)

∂ z̄
− M(k)(Fo)

∂θ
(k)
b (0,Fo)

∂Fo

= Bi(k)∗ (Fo)θ (k)
b (0,Fo) + Q(k)(Fo), θ

(k)
b (0, 0) = θ0, (27.18)

where

Bi(k)∗ (Fo) = Bi + Skα(k−1)
2 (Fo)

1 + ξBi − Skα(k−1)
1 (Fo)

,

M(k)(Fo) = η

1 + ξBi − Skα(k−1)
1 (Fo)

,

Q(k)(Fo) = −
Bi +

(
1+α

(k−1)
3 (Fo)

)
Sk

1 + ξBi − Skα(k−1)
1 (Fo)

,

(27.19)

α
(k−1)
1 =

4∑

m=1
(−1)m mCm

4 ξm
(
θ

(k−1)
b

)4−m
(

∂θ
(k−1)
b

∂ z̄

)m−1

,

α
(k−1)
2 =

4∑

m=1
(−1)m−1 (5 − m)Cm−1

4 ξm−1
(
θ

(k−1)
b

)4−m
(

∂θ
(k−1)
b

∂ z̄

)m−1

,

α
(k−1)
3 = 3

4∑

m=0
(−1)m Cm

4 ξm
(
θ

(k−1)
b

)4−m
(

∂θ
(k−1)
b

∂ z̄

)m

.

(27.20)

27.3.2 Construction of an Approximate Solution of the
Linearized Problem for the kth Approximation

To solve the problem, we use the integral Laplace transform (Luikov 1968)

θ̃
(k)
b (z̄, s) = L

[
θ

(k)
b (z̄,Fo)

]
=

∫ ∞

0
θ

(k)
b (z̄,Fo) exp(−sFo)dFo.

To obtain an analytical solution, we consider the quantities Bi(k)∗ , Q(k), and M(k)

constant at each iteration. Then the solution of (27.13) in the half-space in the trans-
form domain, taking into account the conditions (27.14), (27.15), and (27.18), has
the following form:
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θ̃
(k)
b (z̄, s) = θ0

s
− g(k) exp (−qz̄)

s
(
ψ(k)q2 + (

Bi(k)∗
)−1

q + 1
) , (27.21)

where q = √
s, ψ(k) = M(k)/Bi(k)∗ , and g(k) = θ0 + Q(k)/Bi(k)∗ .

In obtaining the inverse transform of (27.21), some cases of representation are
possible depending on the character of the roots of the equation

ψ(k)q2 + (
Bi(k)∗

)−1
q + 1 = 0 : (27.22)

1. For η �= 0, when (Bi(k)∗ )−2 − 4ψ(k) �= 0, Eq. (27.22) has two different roots:

q(k)
1,2 = −1 ±

√

1 − 4ψ(k)
(
Bi(k)∗

)2

2ψ(k)Bi(k)∗
. (27.23)

Accordingly, transform (27.21) can be represented in the form

θ̃
(k)
b (z̄, s) = θ0

s
− g(k) exp

(−z̄
√
s
)

ψ(k)
(
q(k)
1 − q(k)

2

)
s

(
1√

s − q(k)
1

− 1√
s − q(k)

2

)

. (27.24)

Using the inversion formula of the Laplace transform (Luikov 1968, p. 664)

L −1

[
exp

(−l
√
s
)

s
(√

s + b
)

]

= 1

b

[

erfc

(
l

2
√

τ

)

− exp
(
bk + b2τ

)
erfc

(
l

2
√

τ
+ b

√
τ

)]

, (27.25)

we finally obtain the expression to determine the kth temperature approximation:

θ
(k)
b (z̄,Fo) = θ0 − g(k)

{
erfcϕ + 1

2�(k)

[ (
1 + �(k)

)
F (k)
1 (z̄,Fo)

− (
1 − �(k)

)
F (k)
2 (z̄,Fo)

]}
, 0 � z̄ < ∞. (27.26)

Here

ϕ = z̄

2
√
Fo

, �(k) =
√
1 − 4M(k)Bi(k)∗ ,

F (k)
m (z̄,Fo) = exp

(
−q(k)

m z̄ + (
q(k)
m

)2
Fo

)
erfc

(
ϕ − q(k)

m

√
Fo

)
,

m = 1, 2, 3, 4.

(27.27)

2. For η �= 0, when (Bi(k)∗ )−2 − 4ψ(k) = 0, Eq. (27.22) has one real double root
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q(k)
3 = −0.5/M(k). (27.28)

Then transform (27.21) has the form

θ̃
(k)
b (z̄, s) = θ0

s
− g(k) exp

(−z̄
√
s
)

sψ(k)
(√

s − q(k)
3

)2 . (27.29)

Using the inversion formula of the Laplace transform (Luikov 1968, p. 665)

L−1

[
exp

(−l
√
s
)

s
(√

s + b
)2

]

= 1

b2
erfc

(
l

2
√

τ

)

− 2

b

√
τ

π
exp

(

− l2

4τ

)

+
(

2τ + l

b
− 1

b2

)

exp
(
bl + b2τ

)
erfc

(
l

2
√

τ
+ b

√
τ

)

,

we obtain the inverse transform on the kth iteration of finding the temperature

θ
(k)
b (z̄,Fo) = θ0 − g(k)

{

erfcϕ + 2q(k)
3

√
Fo

π
exp

(−ϕ2
)

+
[

2
(
q(k)
3

)2
Fo − q(k)

3 z̄ − 1

]

F (k)
3 (z̄,Fo)

}

, 0 � z̄ < ∞. (27.30)

3. For η = 0, Eq. (27.22) has one real root

q(k)
4 = −Bi(k)∗ , (27.31)

and transform (27.21) can be written as

θ̃
(k)
b (z̄, s) = θ0

s
− Bi(k)∗ θ0 + Q(k)

s
(√

s + Bi(k)∗
) exp

(−z̄
√
s
)
. (27.32)

Using inversion formula (27.25), we write the expression for the kth temperature
approximation:

θ
(k)
b (z̄,Fo) = θ0 − g(k)

[
erfcϕ − F (k)

4 (z̄,Fo)
]
, 0 � z̄ < ∞. (27.33)

27.3.3 Iterative Scheme for Determining Temperature in the
Half-Space

We present the computational algorithm as follows:

θ
(0)
b = θ0, θ

(k)
b (z̄,Fo) = �

(

θ
(k−1)
b ,

∂θ
(k−1)
b

∂ z̄

)

, k = 1, 2, . . . (27.34)
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where the form of the operator � depending on the character of the roots of Eq.
(27.22) is given by (27.26), (27.30), or (27.33).

27.4 Relations for Determining the Coating Temperature

The temperature in the multilayer coating is determined via the boundary values of
the temperature and of its derivative using the recovery formula (Shevchuk 2013,
2014, 2022)

θi (z̄,Fo) = θb(0,Fo) + ri (z̄)
∂θb

∂x
(0,Fo), z̄i � z̄ � z̄i−1, i = 1, . . . , n,

(27.35)
where

ri (z̄) = λb

⎛

⎝−
i−1∑

j=1

δ j

z∗λ j
+ z̄ − z̄i−1

λi

⎞

⎠ , θi = Ti
T∗

, z̄i = zi
z∗

, z̄0 = 0.

We obtain expressions for the temperature in the i th coating layer by substituting
approximations (27.26), (27.30), and (27.33) into recovery formula (27.35) on the
last iteration at k = k̃. Here k̃ is the number of iterations required to achieve the
specified accuracy of calculations.

1. For η �= 0, when (Bi(k̃)∗ )−2 − 4ψ(k̃) �= 0

θi (z̄,Fo) = θ0 + g(k̃)

{

1 − 1

2�(k̃)

2∑

m=1

(
(−1)m+1 + �(k̃)

) (
1 + ri (z̄) q

(k̃)
m

)
F (k̃)
m (0,Fo)

}

. (27.36)

2. For η �= 0, when (Bi(k̃)∗ )−2 − 4ψ(k̃) = 0

θi (z̄,Fo) = θ0 − g(k̃)
{
1 + 2

(
1 + q(k̃)

3 r j (z̄)
)
q(k̃)
3

√
Fo/π

−
[
1 − 2q(k̃)

3

(
1 + q(k̃)

3 r j (z̄)
)
Fo

]
F (k̃)
3 (0,Fo)

}
. (27.37)

3. For η = 0

θi (z̄,Fo) = θ0 − g(k̃)
[
1 −

(
1 + Bi(k̃)∗ ri (z̄)

)
F (k̃)
4 (0,Fo)

]
. (27.38)
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27.5 Solution of the Problem of Thermoelasticity

The non-uniform distribution of temperature in the system causes temperature
stresses in it, which can be determined by the relations (Shevchuk 2017)

σ b
xx = σ b

yy = σ b(z, τ ) = − Eb

1 − νb
βb [Tb (z, τ ) − T0] , 0 ≤ z < ∞,

σ i
xx = σ i

yy = σ i (z, τ ) = − Ei

1 − νi
βi [Ti (z, τ ) − T0] ,

i = 1, 2, . . . , n, zi � z � zi−1,

(27.39)

where E j are Young’s moduli, β j are the coefficients of linear thermal expansion,
and ν j are Poisson’s ratios.

Having introduced dimensionless stresses by formula

σ̃ j (z̄,Fo) = σ j (z, τ )

(
Ebβb (Ta − T0)

1 − νb

)−1

, j = b, 1, 2, . . . , n, (27.40)

we write the relations to determine the thermal stresses in the system:

• during heating

σ̃ j (z̄,Fo) = E jβ j

1 − ν j

(
Ebβb

1 − νb

)−1
θ0 − θ j (z̄,Fo)

1 − θ0
; (27.41)

• during cooling

σ̃ j (z̄,Fo) = E jβ j

1 − ν j

(
Ebβb

1 − νb

)−1
θ j (z̄,Fo) − 1

1 − θa
. (27.42)

27.6 Numerical Results and Their Analysis

Consider the radiative–convective heating of a half-space made of stainless steel
316L with a two-layer wear-resistant coating made of nichrome Cr–Ni (inner layer
is δ1 = 0.1 mm in thickness) and WC–Co alloy (outer layer is δ2 = 0.3 mm in
thickness).

Computations are performed at Ta = 1073K, T0 = 293K, ε = 0.5, and z∗ = 1m.
The input parameters of the problem are selected as some average values in the
considered temperature range (Sayman et al. 2009); they are presented in Table 27.1
(with such parameters Sk = 2.06).

Figure 27.1 illustrates the effect of increasing the intensity of convective (solid
curves) and radiative–convective (dashed curves) heating on the change in time of
the contact temperature θb(0,Fo).
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Table 27.1 Properties of materials

Thermomechanical parameters 316L steel Cr–Ni WC–Co

Thermal conductivity λ, W/(m · K) 17 13 24

Specific heat, ω, J/(kg·K) 535 530 166

Density, ρ, kg/m3 8031 8050 13900

Elasticity modulus, E , GPa 170 200 367

Poisson’s ratio, ν 0.29 0.29 0.29

Thermal expansion
coefficient, β, K−1 × 10−6

18 14 6.5

Fig. 27.1 Influence of
heating intensity on variation
of contact temperature
θ = θb (0,Fo): solid
curves—Sk = 0; dashed
curves—2.06

As we can see, if at μ = 20 W/(m2 · K) (Bi ≈ 1.18) and μ = 100 W/(m2 · K)

(Bi ≈ 5.88), the radiative component (Sk = 2.06) significantly increases the contact
temperature, then atμ � 500 W/(m2 · K) (respectivelyBi � 29.41), its influence on
heating of the system is insignificant (the upper dashed and solid curves practically
merge).

The temperature change in the half-space/two-layer coating systemover the spatial
coordinate for some moments of time, depending on the intensity of convective and
radiative–convective heating, is shown in Fig. 27.2.

Intensification of heating causes a significant increase in temperature drop along
the depth of the base. Note that, as for the case of the contact temperature (Fig. 27.1),
the influence of the radiative component on the temperature distribution in the system
with an increase in the heat transfer coefficient up to 500 W/(m2 · K) (Bi ≈ 29.41)
appears to be insignificant. It should be noted that with such relations of the charac-
teristics of the coating and the base, there is practically no temperature drop over the
thickness of the coating layers in the considered rangeofμ.However, for another half-
space/multilayer coating assembly, the influence of the intensity of heat exchange
can cause a noticeable temperature drop over the thickness of the coating layers.

Figure 27.3 shows the change in time of the dimensionless contact stresses
σ̃ b (0,Fo) in a half-space on the coating/half-space interface depending on heating
intensity. As previously for the case of Fig. 27.1, this causes an increase in compres-
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Fig. 27.2 Temperature distribution θ = θ j (z̄,Fo) in the half-space/two-layer coating assembly
for some time moments: a—convective heating (Sk = 0), b—radiative–convective heating (Sk =
2.06), solid curves—Fo = 0.02, dashed curves—0.1, and dotted curves—0.5

Fig. 27.3 Influence of
heating intensity on contact
stresses σ = σ̃ b(0,Fo): solid
curves—Sk = 0, dashed
curves—2.06

Fig. 27.4 Thermal stress
distribution σ = σ̃ j (z̄,Fo)
in the half-space/two-layer
coating assembly for some
time moments: solid
curve—Fo = 0.02, dashed
curve—0.1, and dotted
curve—0.5

sive stresses on the substrate surface, and if Bi � 29.41 (μ � 500 W/(m2 · K)), the
effect of the radiative component on the contact stresses is insignificant.

In Figs. 27.4 and 27.5, the distribution of stresses over spatial coordinate in
the half-space/two-layer coating assembly is shown for some time moments under
radiative–convective heating at Bi ≈ 1.18, Sk = 2.06 (Fig. 27.4) and for some values
of Bi and Sk at Fo = 0.02 (Fig. 27.5).
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Fig. 27.5 Thermal stress
distribution σ = σ̃ j (z̄,Fo)
in the half-space/two-layer
coating assembly at fixed
time moment Fo = 0.02:
solid curves—Sk = 0,
dashed curves—2.06

Hence, compressive stresses in the coating have a discontinuous character and
increase with time. The relation

E2β2

1 − ν2

(
E1β1

1 − ν1

)−1

determines their jump on the coating layers’ interface and

E1β1

1 − ν1

(
Ebβb

1 − νb

)−1

,

on the coating/substrate interface.
As for the temperature field, if μ � 500 W/(m2 · K) (Bi � 29.41), the radiative

component has a negligible effect on the thermal stress state of the system, which is
particularly noticeable in the character of the distribution of compressive stresses in
the depth of the half-space, and somewhat less—on their values in the coating layers
(Fig. 27.5).

27.7 Conclusions

Based on generalized nonlinear boundary conditions, the method of quasi-
linearization, and the integral Laplace transform, an effective approach has been
developed for determining the thermal stress state of a half-space with a multilayer
thin coating during radiative–convective heat exchange with the environment. The
cooling and heating processes of the system are combined and described by unified
relations. For the half-space/two-layer wear-resistant coating assembly, the effect of
the radiative–convective heat exchange parameters on the nonstationary tempera-
ture field and the thermal stress state caused by it has been investigated. The range
of variation in the heat transfer coefficient, in which the influence of the radiative
component upon the thermal stressed state of the system is non-essential, has been
revealed.
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Chapter 28
Model of Nonlinear Deformation
of Layered-Fibrous Materials with
Physically Nonlinear Components

Elena Shikula and Viktor Vyshnivskyi

28.1 Introduction

When the load increases, many homogeneous and composite materials exhibit a
nonlinear nature of the dependences betweenmacrostresses andmacrostrains. It may
be due to the physical nonlinearity of component deformation (Kauderer 1958). This
type of nonlinearity is typical for composites with plastic metal matrix or polymer
matrix at elevated temperatures. Experimental studies show (Wolf and Romadin
1967) that high-modulus materials such as organic glass fibers exhibit nonlinearity
at sufficiently high temperatures. Figure 28.1 shows the experimental dependence of
stress on strain for organic glass at some temperatures. As we can see, the relations
between stress and strain have a parabolic character at sufficiently high temperatures.
Therefore, studying thephysically nonlinear deformationof compositematerialswith
nonlinear deformation of both matrix and fibers is essential.

Many authors studied nonlinear fibrous and layered-fibrous composite materials
theoretically and experimentally. For example, the effective properties of materi-
als within the elastic range were studied by Choy et al. (1992), Geiger and Weich
(1997) to determine their ultimate load-bearing capacity. Damage models of fibrous
composites were built by Voyiadjis and Kattan (2006). The effective properties of
fibrous composite materials were determined by Chen et al. (2007), Duan et al.
(2007), Gray (2009), Hashin (1990), Hashin (2002), Liu et al. (2004), Khoroshun
et al. (2013), Nazarenko and Stolarski (2016), Nazarenko et al. (2017a, b, 2018a, b,
2019), Maslov (2022) and others. However, the authors considered materials with a
nonlinear or elastoplastic matrix but fibers were assumed to be elastic. The deforma-
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Fig. 28.1 Experimental
dependence of stress on
strain for organic glass for
some temperatures
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tion of fibrous and layered-fibrous composites for the case of nonlinear deformation
of both matrix and fibers has yet to be investigated. For fibrous materials, this prob-
lem was solved by Khoroshun and Shikula (2016). Therefore, constructing a model
of nonlinear deformation of layered-fibrous composite materials with a nonlinearly
deformable matrix and fibers is hugely important.

28.2 Nonlinear Equations for Determination of the
Effective Deformative Properties and Stress-Strain
State of the Composite

Let us consider a layered-fibrous composite material of oblique winding. It is a lay-
ered material, in which each layer is a unidirectional fibrous composite material.
Two types of layers with different orientation angles are possible, while the volume
content of layers with different fiber orientations is the same. In addition, the elas-
tic characteristics and volume contents of fibers and matrix are the same in layers
with different fiber orientations. Finally, we consider a composite with isotropic,
physically nonlinear fibers and a matrix.

We choose a global coordinate system for the layered-fibrous material so that
the fibers in the layers lie in the plane x1x2, and the x3-axis is normal to the planes
of all layers. The angle between the direction of the fibers in the layer and the x1-
axis equals γ . Two orientation angles are possible for layered-fibrous materials with
oblique winding: γ1 = γ and γ2 = −γ . Let us choose the local coordinate system
of the layer so that the axis x ′

1 coincides with the direction of the fibers in this layer,
and the axis x ′

3 coincides with the axis x3, which is normal to the planes of all layers.
Determining the stress-strain state and effective deformative characteristics of

layered-fibrous materials is reduced to two consecutive problems. The first one is the
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determination of the stress-strain state of the fibers (〈σpq
1〉 and 〈εpq

1〉) and thematrix
(〈σpq

2〉 and 〈εpq
2〉) of the layer, as well as the effective properties λ∗

11, λ
∗
22, λ

∗
12, λ

∗
23,

and λ∗
55 of the unidirectional fibrous material of the layer under given deformations

of the layer 〈εpq〉. The second problem is to determine the stress-strain state of the
layer (〈σpq〉 and 〈εpq〉) and the effective properties of the layered-fibrous material
l∗11, l∗22, l∗33, l∗12, l∗13, l∗23, l∗44, l∗55, and l∗66 under given macrostrains of the composite
〈〈εpq〉〉.

Consider the unidirectional fibrous material of the layer. We denote the volume
contents of fibers and matrix by c1 and c2; K1 and μ1 are the bulk and shear moduli
of the fibers, respectively, K2 and μ2—of the matrix. Assume that the volume defor-
mations of the components are linear, i.e., the bulk moduli K1 and K2 do not depend
on strains. Nonlinear diagrams describe the shear deformations, that is, μ1(〈ε1〉) and
μ2(〈ε2〉). Then the dependence between the average stresses 〈σpq〉l and strains 〈εpq〉l
in the local coordinate system of the layer can be written in the form

〈σ11〉l = λ∗
11〈ε11〉l + λ∗

12〈εrr 〉l ,〈σkm〉l = (λ∗
22 − λ∗

23)〈εkm〉l + (λ∗
12〈ε11〉l + λ∗

23〈εrr 〉l) δkm,

〈σ1k〉l = 2λ∗
55〈ε1k〉l (k,m, r = 2, 3),

(28.1)

where the effective deformative characteristics of the layer λ∗
11, λ

∗
22, λ

∗
12, λ

∗
23, and λ∗

55
depend on the strains in the layer 〈εpq〉l . In the local coordinate system of this layer,
the effective characteristics are determined by the bulk and shear moduli of the fibers
and the matrix of this layer as follows (Khoroshun and Shikula 1996, 2002, 2012)

λ∗
11 = c1(λ1 + 2μ1) + c2(λ2 + 2μ2)

− c1c2(λ1 − λ2)
2

c1(λ2 + μ2) + c2(λ1 + μ1) + m
,

λ∗
12 = c1λ1 + c2λ2 − c1c2 (λ1 + μ1 − λ2 − μ2)(λ1 − λ2)

c1(λ2 + μ2) + c2(λ1 + μ1) + m
,

λ∗
22 + λ∗

23 = 2c1(λ1 + μ1) + 2c2(λ2 + μ2)

− 2c1c2 (λ1 + μ1 − λ2 − μ2)
2

c1(λ2 + μ2) + c2(λ1 + μ1) + m
,

λ∗
22 − λ∗

23 = 2c1μ1 + 2c2μ2 − 2c1c2(μ1 − μ2)
2

c1μ2 + c2μ1 + mn

n + 2m

,

λ∗
55 = c1μ1 + c2μ2 − c1c2(μ1 − μ2)

2

c1μ2 + c2μ1 + m
, (28.2)

where
λχ = Kχ − 2

3μχ (χ = 1, 2),

m = c1μ1 + c2μ2; n = c1(λ1 + μ1) + c2(λ2 + μ2) (28.3)
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if the stiffness of the matrix is greater than the stiffness of the fibers in this layer, and

m =
(
c1
μ1

+ c2
μ2

)−1

, n =
(

c1
λ1 + μ1

+ c2
λ2 + μ2

)−1

(28.4)

otherwise.
In the local coordinate system, for the layer, the average strains in the fibers

〈εpq
1〉 and in the matrix 〈εpq

2〉 are related to average strains in this layer 〈εpq〉l by
the following dependence (Khoroshun and Shikula 2002, 2008, 2012):

〈ε 1
11〉 = 1

� 1

{[(λ∗
11 − λ2 − 2μ2)a 1 − 2(λ∗

12 − λ2)a2]〈ε 11〉l
+ [(λ∗

12 − λ2)a 1 − (λ∗
22 + λ∗

23 − 2λ2 − 2μ2)a2]
× (〈ε22〉l + 〈ε 33〉l)

}
,

〈ε 1
pq〉 = λ∗

22 − λ∗
23 − 2μ2

2c1(μ1 − μ2)
〈ε pq〉l

+ 1

�1

{[(λ∗
12 − λ2)(a1 − a2) − (λ∗

11 − λ2 − 2μ2)a2]〈ε 11〉l
+ [−(λ∗

22 − λ2 − 2μ2)a2 + (λ∗
23 − λ2)a1 − (λ∗

12 − λ2)a2]
× (〈ε 22〉l + 〈ε33 〉l)

}
,

〈ε 1
1q〉 = λ∗

55 − μ2

c1(μ1 − μ2)
〈ε1q〉l (p, q = 2, 3), (28.5)

〈ε211〉 = 1

�2

{[(λ∗
11 − λ1 − 2μ1)a1 − 2(λ∗

12 − λ1)a2]〈ε11〉l
+ [(λ∗

12 − λ1)a1 − (λ∗
22 + λ∗

23 − 2λ1 − 2μ1)a2]
× (〈ε22〉l + 〈ε33〉l)

}
,

〈ε2pq〉 = λ∗
22 − λ∗

23 − 2μ1

2c2(μ2 − μ1)
〈εpq〉l

+ 1

�2

{[(λ∗
12 − λ1)(a1 − a2) − (λ∗

11 − λ1 − 2μ1)a2]〈ε11〉l
+ [−(λ∗

22 − λ1 − 2μ1)a2 + (λ∗
23 − λ1)a1 − (λ∗

12 − λ1)a2]
× (〈ε22〉l + 〈ε33〉l)

}
,

〈ε21q〉 = λ∗
55 − μ1

c2(μ2 − μ1)
〈ε1q〉l (p, q = 2, 3), (28.6)

where
�1 = 2c1(μ1 − μ2)(3λ1 + 2μ1 − 3λ2 − 2μ2),

�2 = 2c2(μ2 − μ1)(3λ1 + 2μ1 − 3λ2 − 2μ2),

a1 = 2(λ1 + μ1 − λ2 − μ2), a2 = (λ1 − λ2).

(28.7)
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Average strains in the layer in the local 〈εpq〉l and global 〈εpq〉 coordinate systems
of this layer are related as follows

〈ε11〉l = 〈ε11〉 cos2 γ + 〈ε22〉 sin2 γ + 〈ε12〉 sin 2γ,

〈ε22〉l = 〈ε11〉 sin2 γ + 〈ε22〉 cos2 γ − 〈ε12〉 sin 2γ,

〈ε12〉l = 〈ε12〉 cos 2γ + 1
2 (〈ε22〉 − 〈ε11〉) sin 2γ,

〈ε33〉l = 〈ε33〉,
〈ε13〉l = 〈ε13〉 cos γ + 〈ε23〉 sin γ,

〈ε23〉l = −〈ε13〉 sin γ + 〈ε23〉 cos γ.

(28.8)

Consider the layered-fibrous material of oblique winding. We assume that the
macrostrains in the composite 〈〈εpq〉〉 are given. Then the macrostresses 〈〈σpq〉〉 are
depend on them by formulas

〈〈σ11〉〉 = l∗11〈〈ε11〉〉 + l∗12〈〈ε22〉〉 + l∗13〈〈ε33〉〉,〈〈σ22〉〉 = l∗12〈〈ε11〉〉 + l∗22〈〈ε22〉〉 + l∗23〈〈ε33〉〉,〈〈σ33〉〉 = l∗31〈〈ε11〉〉 + l∗32〈〈ε22〉〉 + l∗33〈〈ε33〉〉,〈〈σ13〉〉 = l∗44〈〈ε13〉〉,〈〈σ23〉〉 = l∗55〈〈ε23〉〉,〈〈σ12〉〉 = l∗66〈〈ε12〉〉,

(28.9)

where the effective deformative characteristics of the composite material l∗11, l∗22, l∗33,
l∗12, l∗13, l∗23, l∗44, l∗55, and l

∗
66 are functions of macrostrains 〈〈εpq〉〉.

The effective deformative modulus l∗pql∗ pqof the layered-fibrous composite are
determined by the formulas (Khoroshun and Shikula 1996, 2002)

l∗11 = λ∗
12 + (λ∗

22 − λ∗
12) sin

4 γ + (λ∗
11 − λ∗

12) cos
4 γ + λ∗

55 sin
2 2γ,

l∗22 = λ∗
12 + (λ∗

22 − λ∗
12) cos

4 γ + (λ∗
11 − λ∗

12) sin
4 γ + λ∗

55 sin
2 2γ,

l∗33 = λ∗
22, l∗12 = λ∗

12 + 1
4 (λ

∗
11 + λ∗

22 − 2λ∗
12 − 4λ∗

55) sin
2 2γ,

l∗13 = λ∗
12 + λ∗

23 sin
2 γ, l∗23 = λ∗

12 + λ∗
23 cos

2 γ,

l∗66 = l66 − l236/l
∗
33, l∗44 = l44 − l245/l55, l∗55 = l55 − l245/l44,

(28.10)

where

l36 = 1
2 (λ

∗
12 − λ∗

23) sin 2γ,

l66 = λ∗
55 + 1

4 (λ
∗
11 + λ∗

22 − 2λ∗
12 − 4λ∗

55) sin
2 2γ,

l44 = 1
2 (λ

∗
22 − λ∗

23) sin
2 γ + λ∗

55 cos
2 γ, l45 = 1

4 (2λ
∗
55 − λ∗

22 + λ∗
23) sin 2γ,

l55 = 1
2 (λ

∗
22 − λ∗

23) cos
2 γ + λ∗

55 sin
2 γ.

(28.11)

In the global coordinate system, the average strains in the layer 〈εpq〉 are related
to macrostrains 〈〈εpq〉〉 by the following relations
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〈εkm〉 = 〈〈εkm〉〉 (k,m = 1, 2),

〈ε33〉 = 〈〈ε33〉〉 ∓ 2l36
l∗33

〈〈ε12〉〉,

〈ε13〉 = 〈〈ε13〉〉 ∓ 2l45
l55

〈〈ε23〉〉,
〈ε23〉 = 〈〈ε23〉〉 ∓ 2l45

l44
〈〈ε13〉〉.

(28.12)

Here the sign “−” refers to layers with fiber orientation γ , and the sign “+”—to −γ .
Equations (28.2)–(28.8) and (28.10)–(28.12) are the systemof nonlinear equations

for determining the effective deformative characteristics of the composite and the
average strains in the fibers and the matrix of the layer.

28.3 Algorithm for Determination of the Effective
Deformative Properties and Stress-Strain State of the
Composite

The solution of the system of nonlinear Eqs. (28.2)–(28.8), (28.10)–(28.12) can be
found by the iterative method according to the following scheme. We assume that
the volume strains and stresses in the fibers and the matrix are linearly related, i.e.,
their bulk moduli

Kχ = λχ + 2
3μχ (χ = 1, 2)

do not depend on the strains, and the nonlinear law

〈σχ
pq〉 = 2μχ(Jχ

ε )〈εχ
pq〉, Jχ

ε = (〈εχ
pq〉′〈εχ

pq〉′
)12

(χ = 1, 2) (28.13)

relates the deviators of stresses and strains. At the same time, we assume that the
nonlinear deformation diagrams of the fibers and thematrix under small deformations
have linear regions corresponding to the shear moduliμ1(0) andμ2(0), respectively.

In the local coordinate systemof the layer, the effective deformative characteristics
of the fibrous composite that forms the layer are determined in the nth approximation
by the following formulas

λ
∗(n)
11 = c1

[
λ1

(
J 1(n)
ε

) + 2μ1
(
J 1(n)
ε

)] + c2
[
λ2

(
J 2(n)
ε

) + 2μ2
(
J 2(n)
ε

)]

− c1c2
[
λ1

(
J 1(n)
ε

) − λ2
(
J 2(n)
ε

)]2
c1

[
λ2

(
J 2(n)
ε

)
+ μ2

(
J 2(n)
ε

)]
+ c2

[
λ1

(
J 1(n)
ε

)
+ μ1

(
J 1(n)
ε

)]
+ m

,

λ
∗(n)
12 = c1λ1

(
J 1(n)
ε

) + c2λ2
(
J 2(n)
ε

)
− c1c2

[
λ1

(
J 1(n)
ε

) + μ1
(
J 1(n)
ε

) − λ2
(
J 2(n)
ε

) − μ2
(
J 2(n)
ε

)]
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× λ1
(
J 1(n)
ε

) − λ2
(
J 2(n)
ε

)
c1

[
λ2

(
J 2(n)
ε

)
+ μ2

(
J 2(n)
ε

)]
+ c2

[
λ1

(
J 1(n)
ε

)
+ μ1

(
J 1(n)
ε

)]
+ m

,

λ
∗(n)
22 + λ
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23 = 2c1

[
λ1

(
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ε

) + μ1
(
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ε
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(
J 2(n)
ε

) + μ2
(
J 2(n)
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(
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ε

) + μ1
(
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(
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(
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(
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(
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ε
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+ μ1

(
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ε
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,

λ
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22 − λ

∗(n)
23 = 2c1μ1

(
J 1(n)
ε

) + 2c2μ2
(
J 2(n)
ε

)

− 2c1c2
[
μ1

(
J 1(n)
ε

) − μ2
(
J 2(n)
ε

)]
2

c1μ2

(
J 2(n)
ε

)
+ c2μ1

(
J 1(n)
ε

)
+ mn

n + 2m

,

λ
∗(n)

55 = c1μ1
(
J 1(n)
ε

) + c2μ2
(
J 2(n)
ε

) − c1c2
[
μ1

(
J 1(n)
ε

) − μ2
(
J 2(n)
ε

)]2
c1μ2

(
J 2(n)
ε

)
+ c2μ1

(
J 1(n)
ε

)
+ m

,

(28.14)

λχ

(
Jχ(n)
ε

) = Kχ − 2
3μχ

(
Jχ(n)
ε

)
(χ = 1, 2),

m = c1μ1(0) + c2μ2(0), n = c1[λ1(0) + μ1(0)] + c2[λ2(0) + μ2(0)], (28.15)

where if the stiffness of the matrix is greater than the stiffness of the fibers in this
layer

m =
[

c1
μ1(0)

+ c2
μ2(0)

]−1

, n =
[

c1
λ1(0) + μ1(0)

+ c2
λ2(0) + μ2(0)

]−1

.

(28.16)

otherwise
In the global coordinate system, for the nth approximation, the effective defor-

mative characteristics of the layered-fibrous composite material of oblique winding
are related to the effective characteristics of the fibrous composite (28.14)–(28.16)
as follows

l∗(n)
11 = λ

∗(n)
12 +

(
λ

∗(n)
22 − λ

∗(n)
12

)
sin4 γ

+
(
λ

∗(n)
11 − λ

∗(n)
12

)
cos4 γ + λ

∗(n)

55 sin2 2γ,

l∗(n)
12 = λ

∗(n)
12 + 1

4

(
λ

∗(n)
11 + λ

∗(n)
22 − 2λ∗(n)

12 − 4λ∗(n)

55

)
sin2 2γ,
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l∗(n)
13 = λ

∗(n)
12 + λ

∗(n)
23 sin2 γ,

l∗(n)
23 = λ

∗(n)
12 + λ

∗(n)
23 cos2 γ, (28.17)

l∗(n)
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55 sin2 2γ,

l∗(n)
33 = λ
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l∗(n)
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36

]2/
l∗(n)
33 ,

l∗(n)
44 = l(n)

44 − [
l(n)

45

]2/
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55 ,

l∗(n)

55 = l(n)
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l(n)

45

]2/
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44 ,

where

l(n)
36 = 1

2

(
λ

∗(n)
12 − λ

∗(n)
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)
sin 2γ,
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11 + λ

∗(n)
22 − 2λ∗(n)

12 − 4λ∗(n)

55

)
sin2 2γ,

l(n)
44 = 1

2

(
λ

∗(n)
22 − λ

∗(n)
23

)
sin2 γ + λ
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55 cos2 γ,

l(n)

45 = 1
4

(
2λ∗(n)

55 − λ
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22 + λ
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23

)
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55 = 1
2

(
λ

∗(n)
22 − λ

∗(n)
23

)
cos2 γ + λ
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55 sin2 γ.

(28.18)

For the (n + 1)th approximation, average strains in layers 〈εpq〉(n+1) depends on
macrostrains 〈〈εpq〉〉 according to the following relations

〈εkm〉(n+1) = 〈〈εkm〉〉 (k,m = 1, 2),
〈ε33〉(n+1) = 〈〈ε33〉〉 ∓ 2l(n)

36 /l∗(n)
33 〈〈ε12〉〉,

〈ε13〉(n+1) = 〈〈ε13〉〉 ∓ 2l(n)

45 /l(n)

55 〈〈ε23〉〉,
〈ε23〉(n+1) = 〈〈ε23〉〉 ∓ 2l(n)

45 /l(n)
44 〈〈ε13〉〉.

(28.19)

In the (n + 1)th approximation, average strains in the layer relative to its local
(with subscript l) and the global (without subscript) coordinate systems are related
by dependence

〈ε11〉(n+1)
l = 〈ε11〉(n+1) cos2 γ + 〈ε22〉(n+1) sin2 γ + 〈ε12〉(n+1) sin 2γ,

〈ε22〉(n+1)
l = 〈ε11〉(n+1) sin2 γ + 〈ε22〉(n+1) cos2 γ − 〈ε12〉(n+1) sin 2γ,

〈ε33〉(n+1)
l = 〈ε33〉(n+1),

〈ε12〉(n+1)
l = 〈ε12〉(n+1) cos 2γ + 1

2

(〈ε22〉(n+1) − 〈ε11〉(n+1)
)
sin 2γ,

〈ε13〉(n+1)
l = 〈ε13〉(n+1) cos γ + 〈ε23〉(n+1) sin γ,

〈ε23〉(n+1)
l = −〈ε13〉(n+1) sin γ + 〈ε23〉(n+1) cos γ.

(28.20)



28 Model of Nonlinear Deformation of Layered-Fibrous Materials . . . 511

For the (n + 1)th approximation, in the local coordinate system, the average
strains in the fibers (with superscript 1) and the matrix (with superscript 2) are
related to the average strains in the layer 〈εpq〉l (n+1) by the following dependence

〈ε111〉(n+1) = 1
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. (28.23)

The linear deformation of a layered-fibrous composite material is associated with a
zero approximation.

28.4 Influence of Component Nonlinearity on the
Deformation of the Composite

As an example, we study the nonlinear deformation of a layered-fibrous composite
material, in which the bulk moduli of the fibers and the matrix are constant for the
layers, and the following functions give the shear moduli

μ1
(
J 1
ε
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⎧⎪⎪⎨
⎪⎪⎩
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2J 1
ε

)
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ε � k1
2μ01
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μ02, J 2
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k2
2μ02

μ′
2 +

(
1 − μ′

2

μ02

)
ki2
2J i2ε

, J 2
ε � k2

2μ02
,

(28.24)

where μ0χ , μ′
χ , kχ = σ0χ

√
2/3 are fiber (at χ = 1) and matrix (at χ = 2) constants,

σ0χ are their yield strength, Jχ
ε = (〈εχ

pq〉′〈εχ
pq〉′

)
1/2, 〈εχ

pq〉′ are the deviator of the
average strains in fibers (at χ = 1) and matrix (at χ = 2).
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For numerical solutions, diagrams of nonlinear deformation (28.24) for glass
fibers with the following constants (Khoroshun and Shikula 2016; Kregers 1988;
Mikheev et al. 2002; Wolf and Romadin 1967) are used

K1 = 27.78 GPa, μ01 = 20.83 GPa,
μ′
1 = 0.184 GPa, σ01 = 1.8 GPa;

volume contents c1 = {0, 0.2, 0.4, 0.6, 1.0} are chosen for the solutions; the epoxy
matrix has a diagram of linear strengthening (28.24) with the following constants
(Khoroshun andShikula 2016;Kregers 1988;Mikheev et al. 2002;Wolf andRomadin
1967)

K2 = 3.33 GPa, μ02 = 1.11 GPa,
μ′
2 = 0.02 GPa, σ02 = 0.12 GPa.

Based on the obtained dependence, the effective diagrams of nonlinear deforma-
tion of the layered-fibrous composite material at specified volume concentrations of
the components in the layers and some values of the winding angle are studied.

In the case when the uniaxial tension of the composite is given by

〈〈ε11〉〉 �= 0; 〈〈σ22〉〉 = 〈〈σ33〉〉 = 0, (28.25)

the macrostress 〈〈σ11〉〉 in the composite depends on the macrostrain 〈〈ε11〉〉 as follows

〈〈σ11〉〉 = 1

l∗22l∗33 − (l∗23)2
[
l∗11l

∗
22l

∗
33 + 2l∗12l

∗
13l

∗
23

− (l∗12)2l∗33 − (l∗13)
2l∗22 − (l∗23)2l∗11

]〈〈ε11〉〉. (28.26)

At that

〈〈ε22〉〉 = l∗13l∗23 − l∗12l∗33
l∗22l∗33 − (l∗23)2

〈〈ε11〉〉, 〈〈ε33〉〉 = l ∗
12l

∗
23 − l∗13l∗22

l∗22l∗33 − (l∗23)2
〈〈ε11〉〉. (28.27)

Figure 28.2 shows the dependence of 〈〈σ11〉〉/μ2 on 〈〈ε11〉〉 for somewinding angles
γ = {π/12, π/6, π/4}. The solid curves correspond to γ = π/12, dashed curves—
γ = π/6, and dotted curves—γ = π/4.

In the case when the uniaxial tension of the composite is given by

〈〈ε22〉〉 �= 0, 〈〈σ11〉〉 = 〈〈σ33〉〉 = 0, (28.28)

the macrostress 〈〈σ22〉〉 of composite depends on the macrostrain 〈〈ε22〉〉 according to

〈〈σ22〉〉 = 1

l∗11l∗33 − (l∗13)2
[l∗11l∗22l∗33 + 2l∗12l

∗
13l

∗
23

− (l∗12)2l∗33 − (l∗13)
2l∗22 − (l∗23)2l∗11]〈〈ε22〉〉. (28.29)
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At that

〈〈ε11〉〉 = l∗13l∗23 − l∗12l∗33
l∗11l∗33 − (l∗13)2

〈〈ε22〉〉, 〈〈ε33〉〉 = l∗12l∗13 − l∗23l∗11
l∗11l∗33 − (l∗13)2

〈〈ε22〉〉. (28.30)

Figure 28.3 shows the dependence of 〈〈σ22〉〉/μ2 on 〈〈ε22〉〉 for some winding angle
γ = {π/12, π/6, π/4}. The same notations as in Fig. 28.2 are used.

The figures give evidence of the significant influence of the nonlinearity of the
deformative properties of the components on the deformation of the composite.

Fig. 28.2 Dependence of
the macrostress 〈〈σ11〉〉 on the
macrostrain 〈〈ε11〉〉 for some
winding angles
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Fig. 28.3 Dependence of
the macrostress 〈〈σ22〉〉 on the
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winding angles
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As we can see, when c1 > 0, the dependence 〈〈σ11〉〉/μ2 on 〈〈ε11〉〉 is parabolic; the
dependence 〈〈σ22〉〉/μ2 on 〈〈ε22〉〉 consists of two linear sections for 0 < c1 < 0.4.

The winding angle γ significantly affects the dependence 〈〈σ11〉〉/μ2 on 〈〈ε11〉〉.
For a fixed strain 〈ε11〉, the stress 〈〈σ11〉〉 increases with the angle γ . For a fixed
strain 〈〈ε22〉〉, according to the dependence of 〈〈σ22〉〉/μ2 on 〈〈ε22〉〉, the stress 〈〈σ22〉〉
decreases with an increase in the winding angle. Its influence on the deformation
curves is insignificant for sufficiently large winding angles (γ = π/6 ÷ π/4)).

28.5 Conclusions

The process of nonlinear deformation of layered-fibrous composite materials of
oblique winding with physically nonlinear components has been modeled. For the
mentioned materials, in the framework of the proposed model, the algorithms for
determining the effective deformative properties and stress-strain state are built.
Furthermore, the effect of nonlinearity on the deformation of the composite is inves-
tigated.
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Chapter 29
Contact Problems for Cylindrical Stamps
and Elastic Bodies with Initial (Residual)
Stresses

Natalia Yarets’ka

29.1 Introduction

Studying the problems of contact mechanics, which is the primary purpose of this
chapter, is a fundamental issue since contact interaction is one of the most common
ways of transmitting external loads in practice. Contact mechanics allows us to
find die-pressure distribution, study its concentration, and develop ways to reduce
it. The significance of this problem has no doubts from the point of view of the
development of fundamental achievements in contact mechanics as from the point of
view of the applied branches of modern technology. Furthermore, contact mechanics
theory is critical in mechanical engineering since the contact of structural members
with each other carries out the force transfer in machines and columns of buildings.
Also, similar problems can occur when calculating the critical characteristics of
foundations of building columns, chimneys, cooling towers, water towers, and other
high-rise structures for wind load or load from their weight.

The circle of problems about the contact of elastic, viscoelastic, and plastic bod-
ies without initial stresses is quite broad (Grilitskiy and Kizyima 1981). Neverthe-
less, modern engineering practice demands have presented some new problems to
researchers. They require the use ofmore complex continuousmediummodels. These
are problems with complicated physical and mechanical properties. Models of con-
tact interactionmust consider the following factors: heat generation, the effect of fric-
tion, stiffness, surface properties of the material, and wear resistance of the surface.

Another fundamental problem of contact mechanics is the consideration of initial
stresses, which need to be studied more intensely. Various factors, such as tech-
nological operations, manufacturing processes, and assembly of structures, cause
initial stresses. When applying geostatic and geodynamic forces, the initial stresses
arise in the earth’s crust. We consider initial stresses when solving problems about
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the deformation of soils (especially frozen ones). They arise due to technological
processes in the creation of composite materials. Initial stresses are present in the
blood vessels of living organisms. Internal residual stresses may exist in elastoplas-
tic bodies after the removal of the load. Sometimes it is appropriate to deliberately
create initial stresses (residual and technological) to compensate for those that arise
in structural members. Such an approach increases the strength characteristics of the
structure. Of particular interest is the study of contact problems for prestressed bodies
due to the manufacturing of new artificial materials that can withstand large initial
deformations. Considering the initial stresses in the approbation of critical structural
members makes it possible to use strength resources more effectively, significantly
reducing material consumption.

Quite often, in order to increase the strength of the structure, there is a need to
strengthen some of its load-bearing elements with elastic fasteners (stringers). The
results of research that accounted for initial stresses in the structure were carried out
in Babich and Dikhtyaruk (2001), Babich et al. (2019). As in the mentioned papers,
the current study is characterized by all considered punches being elastic, and the
bases are prestressed.

Two approaches have historically been developed while studying problems of
contact interaction of bodies with initial stresses. The first one is related to studying
bodies with a specific form of elastic potential. The paper (Kurashige 1969) became
pioneering in this field of research. It deals with the problem of a coin-shaped crack in
the case of an incompressible elastic bodywith initial stresses for theTreloar potential
(a body of the neo-Hookean type). Studies related to this approach are reviewed in
Aleksandrov and Arutyunyan (1969), Dhaliwal et al. (1980) for other potentials.

The second approach (Guz 2003, 2019, 2022) is developed in parallel with the
first one. It is related to the study of problems formulated for elastic bodieswith initial
stresses with an arbitrary structure of elastic potential. In the mentioned papers, the
problems are solved in a general way for compressible and incompressible materials.
For this purpose, the theories of large (finite) initial strains and two versions of the
theory of small initial strains for equal and unequal roots of the characteristic equation
are used (Guz et al. 2015; Guz 2022). All the results presented in this chapter are
obtained within the framework of the second approach. The authors believe it has
several advantages compared to the first approach.

Thus, the same problem (contact or crack problem) for prestressed bodies was
considered by some authors, for example, for the Treloar potential and by other
authors for the Mooney potential, that is, for a specific form of elastic potential.
This chapter presents the research results in a single general form for compressible
and incompressible prestressed bodies for an arbitrary structure of the elastic poten-
tial. Specific elastic potentials were used only at the final research stage (obtaining
numerical results).

Contact problems for rigid and elastic puncheswithin the framework of the second
approach in Ukraine were solved in the works of Guz (2022), Guz et al. (2015), Guz
et al. (2021), Yaretskaya (2014), Yaretskaya (2018), Babych and Yarets’ka (2021),
Hutchinson and Thompson (2017), Guz et al. (1998). In the current chapter, using the
relations of the linearized theory of elasticity, the main results of research on contact
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interaction are presented, namely: the 3D problem on a prestressed cylindrical punch
and an elastic layer with initial stresses (Hutchinson and Thompson 2017; Yaretskaya
2014); problems dealingwith the pressure of two prestressed half-spaces on an elastic
cylindrical punch with initial stresses (Babych et al. 2022); problems on a rigid ring-
shaped punch with a half-space with initial stresses (Yaretskaya 2018); problems
dealing with the pressure of a prestressed elastic ring-shaped punch with a flat base
on a half-space with initial stresses (Babych and Yarets’ka 2021). The results of
the study are expressed in a general form without taking into account the friction for
compressible and incompressible bodies.We obtained the solutions within the theory
of large (finite) initial deformations and two theories of small initial deformations
with an arbitrary form of the elastic potential (within the framework of the second
approach).

As the initial stresses cannot be taken into account in the linear elastic mechanics
of materials, the general nonlinear theory of elasticity (Guz 2019, 2022; Hutchinson
and Thompson 2017) can be used. However, it is challenging to get a solution directly
in this case. Therefore, with sufficiently large initial stresses, it is better to use its
linearized option (Guz et al. 2015; Guz 2022; Hutchinson and Thompson 2017).

Thus, let us assume that the following fundamental conditions of linearized elas-
ticity theory hold (Guz et al. 2015):

1. Contact interaction of an elastic finite cylindrical or ring-shaped punchwith initial
stresses (or without it) with a prestressed elastic body (layer or half-space) occurs
after appearing of the initial stress state.

2. Additional (relative to the initial state) external loading causes much less stress-
strain disturbance in prestressed bodies compared to the corresponding values of
the initial stress state.

3. The initial stress-strain state in the area of contact interaction can be approximately
considered homogeneous.

4. The solution of linearized problems of the elasticity theory of the contact inter-
action of prestressed bodies and punches (cylindrical or circular) is unique (Guz
et al. 2015). Thus, condition (2.23) in Guz et al. (2015) is satisfied.

The second condition can be violated in the points where boundary conditions
change (Guz et al. 2015); at these points, the contact stresses are unbounded. A
detailed discussion of this phenomenon in the theory of contact problems of the
linear and linearized theory of elasticity is given in Grilitskiy and Kizyima (1981),
Guz et al. (2015). Based on the results of mentioned papers, the following can be
concluded. There are power singularities in the solutions of contact problems for
elastic and rigid bodies. The contact stresses are O(ρ1−γ ), where ρ is the distance
from a point to the point where boundary conditions change, γ is a parameter that is
determined by a transcendental equation (Grilitskiy and Kizyima 1981) and depends
on the elastic constants of contacting bodies, as well as on the elastic potential.
Thus, at the mentioned points, the stresses have no physical sense and do not affect
determining the integral characteristics of the contact problems.
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29.2 Main Relations

Let elastic solids interact with elastic or rigid punches. The surfaces outside the
contact boundary are assumed to remain free from the influence of external forces,
and displacements and stresses are continuous at the contact boundary.

Weuse the coordinatesOyi (i = 1, 2, 3),which are associatedwith theLagrangian
coordinates xi (i = 1, 2, 3) by the relations: Oyi = λi xi (i = 1, 2, 3), where λi

(i = 1, 2, 3) are the elongation factors determining displacements of the initial state,
λi = const. The y3-axis is normal to the contact boundary.

Consider elastic isotropic bodies (compressible or incompressible) with an arbi-
trary form of the elastic potential (Guz et al. 2015). For orthotropic bodies, the
elastic-equivalent directions are assumed to coincide with the coordinate axes in the
deformed state yi (i = 1, 2, 3).

We assume that the initial stress state is homogeneous, the contact boundary of
elastic bodies is in the plane y3 = const, and the initial stresses act along the contact
boundary (Guz et al. 2015; Hutchinson and Thompson 2017)

ym = xm +U 0
m, U 0

m = δmi (λm − 1)λ−1
i yi (i = 1, 2, 3),

where δmi is the Kronecker symbol.
Then, for compressible bodies, the basic equation in terms of displacements (Guz

et al. 2015; Hutchinson and Thompson 2017) is the following

L ′
mαUα = 0, L ′

mα = ω′
i jαβ∂2

∂yi∂yβi

(i,m, α, β = 1, 2, 3); (29.1)

for non-rigid bodies, the incompressibility condition is satisfied

L ′
mαUα + q ′

αm∂p′

∂yα

= 0, L ′
mα = κ ′

i jαβ∂2

∂yi∂yβi

,

q ′
i j

∂Uj

∂yi
= 0, q ′

i j = λi qi j (i, j,m, α, β = 1, 2, 3).
(29.2)

Stress tensor components for compressible bodies at yi = const (i = 1, 2, 3) reeds

Q′
i j = ω′

i jαβ

∂Uα

∂yβ

, ω′
i jαβ = λiλβ

λ1λ2λ3
ωi jαβ,

and for non-compressible bodies

Q′
i j = κ ′

i jαβ

∂Uα

∂yβ

+ q ′
i j p, κ ′

i jαβ = λiλβ

λ1λ2λ3
κi jαβ,
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whereω′
imαβ = ω′

imαβ

(
S110, S220, S330

)
and κ ′

imαβ = κ ′
imαβ

(
S110, S220, S330

)
are the

components of the fourth-order tensor of elasticity modules.
The initial stresses being homogeneous, the following condition takes place

S110 = S220 �= 0, S330 = 0, λ1 = λ2 �= λ3. (29.3)

Taking into account (29.3), the solution of (29.1) and (29.2) can be represented
using function χ̃ that, in cylindrical coordinates (r, θ, y3), satisfies the characteristic
equation (

1 + ξ ′2
2

∂2

∂y23

)(
1 + ξ ′2

3
∂2

∂y23

)
χ̃ = 0, (29.4)

where 1 = ∂2/∂r2 + ∂/∂r .
We take into account the uniqueness of the solution of the linearized theory of elas-

ticity for compressible and incompressible bodies and present two possible variants
of the general solution of (29.4):

• the case of equal roots (ξ ′2
2 = ξ ′2

3 ):

χ̃ = χ̃1 + y3χ̃2,

(
1 + ξ ′2

2
∂2

∂y23

)
χ̃1 = 0,

(
1 + ξ ′2

2
∂2

∂y23

)
χ̃2 = 0; (29.5)

• case of unequal roots (ξ ′2
2 �= ξ ′2

3 ):

χ̃ = χ̃1 + χ̃2,

(
1 + ξ ′2

2
∂2

∂y23

)
χ̃1 = 0,

(
1 + ξ ′2

3
∂2

∂y23

)
χ̃2 = 0. (29.6)

In circular cylindrical coordinates (r, θ, zi ) ( zi = v−1
i y3, vi = √

ni (i = 1, 2),
n1 = ξ2

′2 and n2 = ξ3
′2) we obtained the solutions for finite cylindrical (circular)

punches with initial stresses using variable separation methods (Fourier method) in
the form of infinite system for constants. The stress-strain state in elastic bodies
with initial stresses for cases (29.5) and (29.6) is determined in terms of harmonic
functions in the form of Hankel integrals.

Further, we consider the solved problems in detail.

29.3 Spatial Contact Problem for Prestressed Cylindrical
Punch and Elastic Layer With Initial (Residual)
Stresses

The section presents the problem statement, boundary conditions,method of solution,
and numerical results.
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29.3.1 Problem Statement and Boundary Conditions

Let the finite elastic cylindrical punch (with the radius of the base R and height
H ) with initial stresses be pressed into the elastic layer under the action of force P
(Fig. 29.1). We use the following notations in Fig. 29.1: h1 is the thickness of the
layer in the initial stress state, which is related to the thickness h2 in the undeformed
state by the ratio λ3 = h2/h1. We assume that P is applied only to the free end
of the elastic punch. All the points of the end of the punch move in the direction
of the symmetry axis y3 by the same value ε. In the case of a prestressed layer,
three types of contact interaction are considered: (1) the layer is located on a rigid
foundation without friction; (2) the layer with initial stresses is rigidly fixed on an
undeformed foundation; (3a) the layer with the initial stresses lays without friction
on the foundation with the initial stresses; (3b) the layer with initial stresses lays
without friction on a foundation without initial stresses.

In a cylindrical coordinate system (r, θ, zi ), the following boundary conditions
correspond to the problem statement:

1. At the end of the elastic punch zi = Hv−1
i :

u′(1)
3 = −ε, Q′(1)

3r = 0 (0 � r � R). (29.7)

2. On the edge of the elastic layer in the contact area:

u′(1)
3 = u′(2)

3 , Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r = 0

(zi = 0, i = 1, 2; 0 � r � R). (29.8)

Fig. 29.1 Prestressed
cylindrical punch on the
elastic layer with initial
stresses
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3. On the edge of the elastic layer outside the contact area:

Q′(2)
33 = 0, Q′(2)

3r = 0 (zi = 0, i = 1, 2; R � r < ∞). (29.9)

4. On the side surface of the elastic punch:

Q′(1)
rr = 0, Q′(1)

3r = 0 (0 � zi � Hv−1
i ; r = R). (29.10)

5. On the lower surface of the layer zi = −λ3h2v
−1
i = −Hv−1

i (i = 1, 2):

a. for a layer with initial stresses lying without friction on an undeformed foun-
dation:

u′(2)
3 = 0, Q′(2)

3r = 0 (0 � r < ∞); (29.11)

b. for a layer with initial stresses rigidly fixed to an undeformed foundation:

u′(2)
3 = 0, u′(2)

r = 0 (0 � r < ∞); (29.12)

c. for a layer with initial stresses lying without friction on an elastic basis with
initial stresses:

u′(2)
3 = u′(3)

3 , Q′(2)
3r = Q′(3)

3r = 0 (0 � r < ∞). (29.13)

29.3.2 Method of Solution

Solutions are found in the case of roots (29.5) and (29.6) of (29.4). For example, the
solution in general form for a cylindrical punch reads

• for n1 = n2:

χ̃ = ε

{
v1z1

[
(m2 − 1)−1 + χ0

(
(1 − m2)

−1 − 2E(3Hθ2)
−1(3r2 − 2z21)

)]

+ R
∞∑

k=1

χk

[
R(2γk)

−1b(k)
1

(
H

(
1 + s0(1 − I0(v1γk R))

v1γk R I1(v1γk R)

)
+ z1

)
I0(γk z1v1)

× sin(γk z1v1) + J0(αkr)μ
−1
k (S̃2(αk z1) + z1 S̃3(αk z1))

]}
;
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• for n1 �= n2:

χ̃ = ε

2

{
1

θ8
(r2 − z21 − z22) − χ0

[
r2
(
1

θ8
+ z1 + z2

2Hθ6

)
− z21 + z22

θ8
− z31 + z32

3Hθ6

]}

−
∞∑

k=1

{
b(k)
3

[
s0
I1(γkv2R)

I1(γkv1R)
I0(γkv1r) sin(γk z1v1) + I0(γkv2r) sin(γk z2v2)

]

−J0(αkr)
[
S̃2(αk z1) + S̃3(αk z2)

]}
χk,

where Jv(x), Iv(x) are Bessel functions of real and imaginary arguments; for
n1 = n2, γk = 2πkH−1; for n1 �= n2, γk = π(2k + 1)H−1, (k = 0, 1, 2, . . . );

s0 = (1 + m2)(1 + m1)
−1, θ8 = m1n

−1
1 + m2n

−1
2 , θ6 = m1v

−3
1 + m2v

−3
2 ,

b(k)
3 = 4εR2 J0(νk)

[
c̃1 − c̃0

ν2
k + (γkv1R)2

− v2

v1s0

c̃2 − c̃0
ν2
k + (γkv2R)2

]

× v1Hγ 3
k I1(γkv2R)

v2Wk(2) − v1s0Wk(1)
, W ( j) = (c̃0 − c̃ j )I0(γkv j R)

I1(γkv j R)
+ 1 − c̃0

γkv j R
,

m1 =
{

(ω′
1111n1 − ω′

1331)(ω
′
1133ω

′
1313)

−1, for compressible bodies

λ1q1n1(λ3q3)−1, for non-compressible bodies,

c̃0 =
{

ω′
1111ω

′−1
1122, for compressible bodies

λ1q1(λ3q3)−1(κ ′
1133 + κ ′

1313)κ
′
1122, for non-compressible bodies,

m2 =
{

(ω′
1133 − ω′

1313)(ω
′
1133 + ω′

1313)
−1, for compressible bodies,

1, for non-compressible bodies,

c̃i =
{

λ3ω
′
1133miω

′−1
1122n

−1
i , for compressible bodies;

(κ ′
1133mi − κ ′

3113)κ
′−1
1122n

−1
i (i = 1, 2), for non-compressible bodies,

b(k)
1 = J0(νk)γk t00

[
t14 sinh2(αk Hv−1

1 ) cosh(αk Hv−1
1 ) + t11t29

]

(I0(αkv1R) − 1)t33 + c1(cosh(αk Hv−1
1 ) − 1)t34 + sinh(αk Hv−1

1 )t35
,

M (k) = MkN
−1
k , E (k) = −EkN

−1
k ,

S̃2(αk z1) = Rs0μ
−1
k cosh(αk z1) + E (k) sinh(αk z1),

S̃3(αk z2) = − sinh(αk z1) − M (k) cosh(αk z1),
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t00 = μ2
k(μ

2
k + R2v21γ

2
k ), t01 = (1 + m2t23 + t10c̃1s0), t02 = 2(Hc̃1αk − c̃0s0),

t03 = 2(m1 + 1)(m2 − 1), t10 = αk H(m1 + 1),
t14 = αk Hc̃1 (v1(m1 + 1)(m2 − 1) + m1(1 + m2)) , t12 = αk Hc̃0 − c̃1s0,
t13 = v1(c̃2 − c̃1 + c̃0) + αk Hc̃1 − c̃0s0, t11 = v1(1 − m2) + s0m1,

t15 = v1(c̃0 − c̃1 + c̃2)t10 − c̃1s0(m2 + 1), t23 = v1(c̃2 − c̃1 + c̃0) − c̃0s0,
t21 = H(H(3 + 2c̃2 − 4c̃1 + c̃0) + 1 + 2c̃1 + c̃0), t22 = 2v41γ

2
k R

2(m2 − 1),
t24 = v1(1 + m1)(c̃2 − c̃1 + c̃0) + c̃0(1 + m2),

J1(αk R) = 0, αk = μk R−1,

t27 = c0 sinh(αk Hv−1
1 ) + c1(1 − cosh(αk Hv−1

1 )), t26 = t12 sinh(αk Hv−1
1 ) + t13,

t28 = t10 cosh(αk Hv−1
1 )t27 + c1(1 + m2) sinh(αk Hv−1

1 )
(
1 − cosh(αk Hv−1

1 )
)

,

t29 = (1 + m1) sinh2(αk Hv−1
1 )t26 + cosh(αk Hv−1

1 )t28,
t30 = t12 cosh(αk Hv−1

1 ) + c1s0 + t23 sinh(αk Hv−1
1 ),

t31 = c1t10 cosh(αk Hv−1
1 )(1 + cosh(αk Hv−1

1 )),

t32 = t31 + (1 + m1)t30 sinh(αk Hv−1
1 ), t33 = t11t21t00 sinh2(αk Hv−1

1 ) + t22t32,
t34 = t10 cosh(αk Hv−1

1 ) + (1 + m2) sinh(αk Hv−1
1 ),

t35 = c0t10 cosh(αk Hv−1
1 ) − t24 sinh(αk Hv−1

1 ).

Applying (29.7)–(29.13), the stress-strain state in the prestressed layer is defined
for equal roots (29.5) (29.1) by

u′(2)
3 = θ3

(∫ ∞

0

F(η)

η
J0(ηρ)dη −

∫ ∞

0

F(η)

η
G(ηh)J0(ηρ)dη

)
,

Q′(2)
33 = θ1

∫ ∞

0
F(η)J0(ηρ)dη, Q′(2)

3r = 0,
(29.14)

where

θ1 = C44l1(1 + m1)κ, h = h1
R

, θ3 = m1

v1
(s1 − s0), s1 = m1 − 1

m1
,

C44 =
{

ω′
1313, for compressible bodies

κ ′
1313, for non-compressible bodies,

m1 =

⎧
⎪⎪⎨

⎪⎪⎩

ω′
1111ni − ω′

3113

ω′
1133 + ω′

1313

, for compressible bodies

λ1q1
λ3q3

ni , for non-compressible bodies,

Ii =

⎧
⎪⎪⎨

⎪⎪⎩

ω′
1331

ω′
1313

+ ω′
1313 − ω′

1331

ω′
1313

ω′
1133 + ω′

1313

ω′
1111ni + ω′

1133

, for compressible bodies

κ ′
1331

κ ′
1313

+ κ ′
1313 − κ ′

1331

κ ′
1313

λ3q3
λ3q3 + λ1q1ni

, for non-compressible bodies,
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In (29.14), we introduces the notation F(η) = η3B2R−3(1 − G(η))−1; the func-
tion G(η) is determined by (29.7)–(29.13).

Next, we introduce variables χk (k = 0, 1, 2, . . . ), which define the stress state
in the layer, punch, and foundation for equal (29.5) and unequal roots (29.6); these
variables depend on the elastic potential.

From the conditions of continuity of stresses and displacements (29.8) at the
contact boundary and outside it, we write down the dual integral equations with the
unknown function F(η):

∫ ∞

0
F(η)η−1 J0(ηρ)dη = f (ρ) (ρ < 1),
∫ ∞

0
F(η)J0(ηρ)dη = 0 (ρ > 1),

where, in the case of unequal roots, we have

f (ρ) = ε

θ3

(

χ0 − 1 − θ4

∞∑

k=1

χk J0(μkρ) + θ3

ε

∫ ∞

0

η

F(η)
G(ηh)J1(ηρ)dη

)

,

θ4 = n−1
1 (v1(m2 − 1) − m1s0).

Using the inversion formula (Guz et al. 2015), we obtain integral Fredholm equa-
tions of the second kind with the unknown function F(η) determined by (29.5):

F(η)

η
= − 2ε

πθ3

(
(1 − χ0)�0(η, 0) − 2(m2 − 1)

R2

θ2
χ0�1(η, 0)

)

− 2ε

πθ3

(

θ4

∞∑

k=1

χk�0(η, μk) + m2 − 1

2
R2

∞∑

k=1

b(k)
1 χk�0(η, iγkv1R)

)

+ 2

π

∫ ∞

0

F(u)

u
G(uh)�0(η, u)du (29.15)

for equal roots (29.5), and

F(η)

η
= 2ε

πθ3

(

(χ0 − 1)�0(η, 0) − θ4

∞∑

k=1

χk�0(η, μk)

)

+ 2

π

∫ ∞

0

F(u)

u
G(uh)�0(η, u)du (29.16)

for unequal roots (29.6). In (29.15) and (29.16)

�n(x, y) =
∫ 1

0
tn cos(xt) cos(y)tdt.
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We use the method of successive approximations to find the solution of (29.15)
and (29.16) in the form

F(η) =
∞∑

k=1

F (k)(η). (29.17)

The convergence of the method of successive approximations is studied based on
the principle of compressed mappings. Note that the process of successive approx-
imations (29.17) is convergent for λ1 > λkp. This method was used when solving
Eqs. (29.14) and (29.15) under the condition

h > v1
√
D1(2π)−1, Dn =

∫ ∞

0
tnG(t)dt.

In the case of harmonic potential, the minimum layer thickness values h are given
in Hutchinson and Thompson (2017). In the case of the absence of initial stresses in
the cylinder, the thickness of the layer is given for comparison. It was shown that the
initial stresses affect the implementation of themethod of successive approximations.

Using the boundary conditions (29.7)–(29.13) and the orthogonality of the Bessel
functions, we obtain the infinite quasi-regular system of linear equations

ϑkχk +
∞∑

n=0

ϑknχn = ω̄k (k = 0, 1, 2, . . . ). (29.18)

The quasi-regularity of (29.18) can be established using asymptotic represen-
tations for the Bessel functions, and μk and boundedness of integrals �(μk, μn)

for λ1 > λkp (Hutchinson and Thompson 2017). Thus, the problem is reduced to
determining the constants χk (k = 0, 1, 2, . . . ), by which the characteristics of the
stress-strain state of the elastic layer, punch, and foundation with initial stresses are
expressed. The relation between the punch base displacements and the load P for
equal (29.5) and unequal roots (29.6) of (29.4) are the following

P = 8πεEθ1(κθ2 I R)−1χ0, P = 2πεEθ5θ1(κH)−1χ0,

where I = H/R, θ5 = (v2 + v1s)n1n2((m1v
3
2 + m2v

3
1)E)−1.

When determining the stress state of the layer and foundation,most of the integrals
cannot be found analytically due to the complexity of the function G(t). Therefore,
starting from the second approximation of the function (29.17),we expand the expres-
sions under integrals into power series h−i (i = 1, 2, . . . ); it allows us to calculate
the coefficients of (29.18) approximately.
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29.3.3 Numerical Results

Here, the impact of initial stresses on the contact interaction of the elastic cylinder and
layer is studied for the potentials of Bartenev–Khazanovich, Treloar, and harmonic
potential. We find a numerical solution of the quasi-regular system (29.18) at k =
32. The algorithm based on the reduction method was tested on some reference
problems and showed its efficiency. Numerical analysis is presented in dimensionless
coordinates (Figs. 29.2, 29.3, 29.4, 29.5 and 29.6). In the figures, the dashed line
corresponds to a stress state without initial stresses.

Figures 29.2 and 29.3 show the die pressure for the cylinder with initial stresses at
h = 1.6. The impact of initial stresses on contact displacements in the cylinder and
layer is illustrated in Figs. 29.4 and 29.5. Figure 29.6 shows that tangential stresses
are the most concentrated near the contact zone.

By comparing the stress state of bodies with initial stresses and the corresponding
state for an isotropic body without initial stresses, the following equation is obtained
at zi = 0

U3(r, 0) = kU 0
3 (r, 0), Q33(r, 0) = ks Q

0
33(r, 0), (29.19)

whereU3(r, 0) and Q33(r, 0) are displacement and stress under the punch pressed into
the layer with initial stresses; U3

0(r, 0) and Q33
0(r, 0) are displacement and stress

under the punch pressed into the layerwithout initial stresses; k and ks are coefficients
that illustrate the effect of initial stresses on contact stresses and displacement of
elastic cylinder and layer.

The dependence of coefficients changes k and ks from (29.19) is presented in
Hutchinson and Thompson (2017). When the elongation coefficient approaches the

Fig. 29.2 Harmonic
potential
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Fig. 29.3 Treloar potential

Fig. 29.4 Bartenev–
Khazanovich
potential

value of the surface instability of the material, displacements increase unboundedly,
and stresses tend to zero.

29.4 Pressure of Two Prestressed Half-Spaces on Elastic
Cylindrical Punch With Initial (Residual) Stresses

The section presents the problem statement, boundary conditions, solution method,
and numerical results for this problem.
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Fig. 29.5 Treolar potential

Fig. 29.6 Treolar potential

29.4.1 Problem Statement and Boundary Conditions

Let the finite elastic cylindrical punch with initial stresses is compressed (stretched)
by two identical prestressed half-spaces reduced to equal and oppositely directed
forces P (Fig. 29.7). The geometrical axis of symmetry of the punch coincides with
the y3-axis of the cylindrical coordinate system (r, θ, y3). The external load is applied
so that the points of the unloaded surfaces of the basesmove in the direction of y3 = 0
by ε. Let h = 0.5H .

The following boundary conditions correspond to the problem statement

1. at the base of the elastic punch
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Fig. 29.7 Two prestressed
half-spaces and an elastic
cylindrical punch with initial
stresses

u′(i)
3 − u′(3)

3 = ε, Q′(3)
33 = Q′(i)

33 , Q′(3)
3r = 0, Q′(i)

3r = 0

(zi = ±h/vi , i = 1, 2; 0 � r � R), (29.20)

2. on the boundaries of elastic half-spaces outside the contact area

Q′(3)
33 = 0, Q′(i)

3r = 0, u′(i)
3 = 0, (zi = ±h/vi , i = 1, 2; r > R),

(29.21)
3. on the side surface of the elastic punch

Q′(3)
rr = 0, Q′(3)

3r = 0 (|zi | � h/vi , i = 1, 2; r = R). (29.22)

The equilibrium condition that establishes the dependence of load P on displace-
ments of punch bases is as follows:

P = −2π
∫ R

0
r
∣∣
∣ Q′(i)

33

∣∣
∣ dr,

∣∣
∣Q′(i)

33

∣∣
∣ =

∣∣
∣Q′(i)

3r

∣∣
∣
zi=±H/vi

(i = 1, 2). (29.23)

29.4.2 Method of Solution

In the case of unequal roots (ξ ′2
2 �= ξ ′2

3 ) of the characteristic Eq. (29.4), the solution
for a cylindrical elastic punch with initial stresses reads
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χ̃ = εχ0

2hθ6

(
r2

2
(z1 + z2) − 1

3
(z31 + z32)

)

+ εω2

Rn1

∞∑

k=1

μkχk

{[
s0 I1(γkv2R)

I1(γkv1R)
I0(γkv1r) sin(γkv1z1) − I0(γkv2r) sin(γkv2z1)

]

−J0(αkr)F
∗
k

⎡

⎢
⎢
⎣

v2(c̃0 − c̃2)

(
cot

(
αkh

v2

)
sinh

(
αkh

v1

)
− cosh

(
αkh

v1

))
sinh(αk z1)

sinh(αkhv−1
1 ) (v2(c̃0 − c̃2) + v1s0(c̃1 − c̃0))

+ cosh(αk z1) +
n2(c̃1 − c̃0)

(
cot

(
αkh

v2

)
sinh

(
αkh

v1

)
− cosh

(
αkh

v2

))
sinh(αk z2)

v1 sinh(αkhv−1
1 ) (v2(c̃0 − c̃2) + v1s0(c̃1 − c̃0))

− n2 sinh(αkhv−1
1 ) cosh(αk z2)

n1s0 sinh(αkhv−1
2 )

]}

, (29.24)

where

ω2 = v3
1m

−1
1 (s3 − s2)

−1, γk = πkh−1, αk = μk R
−1 (J1(αk R) = 0),

F∗
k = (1 + α3

k )γ
3
k

[
n1 Ã

∗
kGk(1; R)

1 − γ 2
k v21

(
γkv1 sin(γkh) cos

(
h

v1

)
− cos(γkh) sin

(
h

v1

))

+n2Gk(2; R)

1 − γ 2
k v22

(
γkv2 sin(γkh) cos

(
h

v2

)
− cos(γkh) sin

(
h

v2

))]

×
(

α3
k J0(αk R)

[
c̃1 − c̃0

v1
E∗
k

(
αk sinh

(
αkh

v1

)
cos

(
h

v1

)
+ cosh

(
αkh

v1

)
sin

(
h

v1

))

+ c̃2 − c̃0
v2

N∗
k

(
αk sinh

(
αkh

v2

)
cos

(
h

v2

)
+ cosh

(
αkh

v2

)
sin

(
h

v2

))])
.

The stress-strain state in prestressed half-spaces is defined by the following lin-
earized equations (Guz et al. 2015)

Q′(i)
33 (ρ; ζi ) = C44(1 + m1)l1

R

∫ ∞

0
F(η)(seηζ2 − s3e

ηζ1)J0(ηρ)dη,

Q′(i)
3r (ρ; ζi ) = −C44(1 + m1)

v1R

∫ ∞

0
F(η)(eηζ2 − eηζ1)J1(ηρ)dη,

U ′(i)
3 (ρ; ζi ) = −m1

v1

∫ ∞

0

F(η)

η
(s2e

ηζ2 − s3e
ηζ1)J0(ηρ)dη,

U ′(i)
r (ρ; ζi ) = −

∫ ∞

0

F(η)

η
(eηζ2 − s3e

ηζ1)J1(ηρ)dη,

(29.25)

where ξ = zivi R−1, ζi = ξv−1
i = zi R−1,η = ξ R (i = 1, 2), s = s0l2l

−1
1 , s1 = (m1 −

1)m−1
1 , s2 = v1m2(v2m1)

−1, s3 = s0v1v
−1
2 and F(η) is the unknown function.
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From thefirst boundary conditions in (29.20)–(29.21), the unknown function F(η)

can be defined from the dual integral equations

∫ ∞

0

F(η)

η
J0(ηρ)dη = q(ρ) (0 < ρ < 1),

∫ ∞

0
F(η)J0(ηρ)dη = 0 (ρ > 1),

(29.26)

where

q(ρ) = ε

{

(1 − χ0)
ω2

n1
+

∞∑

k=1

αk J0(μkρ)F∗
k

[
m1

n1

(
E∗
k sinh

(
μkh

v1R

)

+ cosh

(
μkh

v1R

))
+ m2

n2

(
N ∗
k sinh

(
μkh

Rv2

)
+ M∗

k cosh

(
μkh

Rv2

))]
χk

}
.

Using the inversion formula (Guz et al. 2015), we obtain

F(η)

η
= 2ε

π

(
(1 − χ0)

ω2

n1
�(η, 0)

+
∞∑

k=1

μk

R
F∗
k

[
m1

n1

(
E∗
k sinh

(
μkh

v1R

)
+ cosh

(
μkh

v1R

))

+m2

n2

(
N ∗
k sinh

(
μkh

Rv2

)
+ M∗

k cosh

(
μkh

Rv2

))]
χk�(η,μk)

)
. (29.27)

To determine the coefficients Nk
∗, Ek

∗, Mk
∗ and the function F(η), new variables

are introduced:

∫ ∞

0

F(η)

η
J1(ηρ)dρ = − εR(v2 + v1s)

2v1v2h(s − s3)θ6
χ0, χk = − Rn1

εμkω2
B̃k,

∫ ∞

0
η�(η,μk)

∫ 1

0
ρ J0(μnρ)J0(ηρ)dρdη = �(μn, μk).

(29.28)

The infinite system,which is similar to (29.18) for the unknownsχk (k = 0, 1, . . . )
in (29.24)–(29.27), is obtained. Thus, this problem is also reduced to the determi-
nation of constants χk (k = 0, 1, 2, . . . ) that determine the stress state of the elas-
tic punch and two half-spaces with initial stresses. Using the equilibrium condi-
tion (29.23), the formula for the load P is found as P = πεR2C44(1 + m1)l1(v2 +
sv1)(v2v1hθ6)−1.

After defining the unknownsχk (k = 0, 1, 2, . . . ) froma systemof linear algebraic
equations similar to (29.18), it is possible to obtain displacements and stresses in both
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elastic half-spaces and elastic punch (Babych et al. 2022). Problem solutions are also
represented as series containing an infinite system of constants χk (k = 0, 1, . . . ).

29.4.3 Numerical Results

Numerical analysis is presented for the Treloar potential (for Neo-Hookean bod-
ies). The distribution of normal stresses Q33

′(3)/P in the contact zone (at zi = h/vi )
and along the elastic cylinder is shown in Fig. 29.7. Displacement U3

′(3)/ε in the
contact zone (at zi = h/vi ) and along the cross section of the elastic cylinder (at
zi = 0) is shown in Fig. 29.8, where the dashed curve corresponds to contact with-
out initial stresses (λ1 = 1), and the solid curve—with initial stresses. All quantities
in Figs. 29.9 and 29.10 are presented in dimensionless coordinates. When initial
(residual) stresses are absent (λ1 = 1), the graph of contact stresses distribution cor-
responds to the known solutions of the contact problem about the pressure of two
half-spaces on a cylinder without accounting for initial stresses (Grilitskiy and Kizy-
ima 1981). The dependence of the equivalent load P on the elongation coefficient
λ1 is illustrated in Fig. 29.10 for some argument values.

29.5 Contact Problem for a Rigid Ring Punch With
Half-Space With Initial (Residual) Stresses

The section presents the problem formulation, boundary conditions, solutionmethod,
and numerical results for the problem.

Fig. 29.8 Contact stresses
Q′(3)

33 /P
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Fig. 29.9 Contact

displacement U
′(3)
3 /ε in the

contact zone

Fig. 29.10 Dependence of
equivalent force P on the
elongation coefficient λ1

29.5.1 Problem Statement and Boundary Conditions

Let a finite rigid ring-shaped punch (with a flat base) is pressed into a prestressed
half-space with force P (Fig. 29.11). The geometric symmetry axis of the punch
coincides with the y3-axis (in the cylindrical coordinate system) directed into the
half-space. The geometry parameters R1 and R2 are the inner and outer radii of the
punch, respectively. The external load is assumed to be applied only to the free end
of the elastic punch. All the points of the punch base move to the direction of the
symmetry axis y3 by the same value ε.
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Fig. 29.11 Rigid
ring-shaped punch on elastic
half-space with initial
stresses

In the circular cylindrical coordinate system (r, θ, zi ), the following boundary
conditions correspond to the given above problem statement:

Uz = ε (R1 < r < R2), (29.29)

Qzz = 0 (0 < r < R1 R2 < r < ∞), (29.30)

Qrz = 0 (0 < r < ∞), (29.31)

Uz = 0 (0 < r < R1, R2 < r < ∞), (29.32)

Qzz = −σ 0
z (R1 < r < R2), (29.33)

whereσ 0
z = 8εω3(π

√
1 − r2)−1 for R1 < r < R2, andσ 0

z = 0 for 0 < r < R1, R2 <

r < ∞; ω3 = C44(1 + m1)l1(s − s0).
The equilibrium condition that establishes the relation between the punch inden-

tation and the equivalent load P is as follows

P = −2π
∫ R2

R1

r Qzz(0, r)dr. (29.34)

29.5.2 Method of Solution

The stress-strain state in prestressed half-space is determined based on conditions
(29.29)–(29.33) and z1 = 0 for unequal roots by the following quantities (Habrusieva
and Shelestovskyi 2011; Yaretskaya 2018)
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Q33 = ω4

R0

∫ ∞

0
F(η)J0(ηr)dη,

U3 = − 1

ω5

∫ ∞

0

F(η)

η
J0(ηr)dη,

Ur = ω6

∫ ∞

0

F(η)

η
J1(ηr)dη,

(29.35)

where

R0 = R1

R2
, ω4 = C44(1 + m1)l1(s − s3), ω5 = v1

m1(s2 − s3)
, ω6 = s3 − 1.

Taking into account condition (29.33), we obtain:

ω4

R0

∫ ∞

0
F(η)J0(ηr)dη = 0 (0 < r < R1, R2 < r < ∞) (29.36)

Introducing the unknown continuous function f (r) (R1 < r < R2) defining the dis-
tribution of die pressure, and extending (29.36) to 0 < r < ∞, we get (Habrusieva
and Shelestovskyi 2011)

ω4

R0

∫ ∞

0
F(η)J0(ηr)dη = f (r) (δ(r − R1) − δ(r − R2)) (0 < r < ∞) (29.37)

where δ(r) is the delta function.
Since the function f (r) ( f (r) = 0 at r � R1 and r � R2) is continuous, we

present it by a segment of the generalized Furrier series (Habrusieva and She-
lestovskyi 2011; Yaretskaya 2018):

Ln(r) = J0

(
γn

R1
r

)
Y0(γn) − J0(γn)Y0

(
γn

R1
r

)
,

where γn are the positive roots of the equation

J0

(
γn

R1
R2

)
Y0(γn) − J0(γn)Y0

(
R2

R1
γn

)
= 0,

Y0(x) is the Weber function. Thus,

f (r) =
∞∑

n=1

anLn(r),

where an are unknown coefficients.
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Applying the inversion formula of the integral Hankel transform to (29.37), we
get

F(η)

η
= R0

ω4

∞∑

n=1

an�n(η) (0 < η < ∞), (29.38)

where

�n(η) =
∫ R2

R1

r Ln(r)J0(ηr)dr

= γnη
2

γ 2
n − (ηR1)2

{
R2

R1

[
J1

(
R2

R1
γn

)
Y0(γn) − Y1

(
R2

R1
γn

)
J0(γn)

]

× J0(ηR2) − [
J1(γn)Y0(γn) − Y1(γn)J0(γn)

]
J0(ηR1)

}
.

Using the second expression in (29.35), Eqs. (29.38) and (29.40), we obtain

∞∑

n=1

anφn(r) = ε

k1
(R1 < r < R2), (29.39)

where

k1 = − R0

ω4ω5
, φn(r) =

∫ ∞

0
�n(η)J0(ηr)dη.

After determining an from (29.39), it is possible to obtain the components of
the stress-strain state in the elastic half-space using (29.38) and (29.35). The rela-
tion between the indentation displacement and the equivalent force P , according to
(29.34), reads P = 16ω3ε(1 − √

1 − R0).

29.5.3 Numerical Results

This section presents a numerical analysis corresponding to the Treloar potential
(Neo-Hookean bodies). The normal contact stress ε−1Q33 and radial displacement
ε−1Ur is shown in Figs. 29.12 and 29.13 in dimensionless coordinates. The larger
the elongation coefficients λ1, the higher the curve for mentioned relations. Dotted
curves correspond to half-space without initial stresses (λ1 = 1), and solid curves—
with initial stresses.
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Fig. 29.12 Contact stresses
Q33ε

−1. The potential of
Treloar

Fig. 29.13 Contact
displacement Ur ε

−1. The
potential of Treloar

29.6 Pressure of Elastic Ring Punch With Initial Stresses
on Prestressed Half-Space

The section presents the formulation of the problem, boundary conditions, solution
method, and numerical results of the problem on the indentation of an elastic ring-
shaped punch with initial stresses into a prestressed half-space.
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Fig. 29.14 Elastic
ring-shaped punch and
elastic half-space with initial
stresses

29.6.1 Problem Statement and Boundary Conditions

Let a finite elastic ring-shaped punch of height H is pressed into a half-space with
force P . The geometric axis of symmetry coincides with the axis y3 of the cylindrical
coordinate system (r, θ, y3) and is directed inside the half-space (Fig. 29.14). Geom-
etry parameters R1 and R2 are the inner and outer radii of the punch, respectively.
The external load is assumed to be applied only to the free end of the punch, where
all points move along the axis of symmetry y3 by the same value ε. The punch is
assumed to be prestressed.

In the system of cylindrical coordinates (r, θ, y3), the following equations corre-
spond to the boundary conditions:

U ′(1)
3 = −ε, Q′(1)

3r = 0 (zi = Hv−1
i , i = 1, 2; R1 < r < R2),

(29.40)

U ′(1)
3 = U ′(2)

3 , Q′(1)
33 = Q′(2)

33 , Q′(1)
3r = Q′(2)

3r = 0
(zi = 0, i = 1, 2; R1 < r < R2),

(29.41)

Q′(2)
33 = 0, Q′(2)

3r = 0 (zi = 0, i = 1, 2; 0 < r < R1, R2 < r < ∞),

(29.42)

Q′(1)
rr = 0, Q′(1)

3r = 0 (0 � zi � Hv−1
i , r = R1, r = R2).

(29.43)

The equilibrium condition that establishes the relation between the indentation
displacement and the equivalent force P is as follows
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P = −2π
∫ R2

R1

r Q′(2)
33 (0, r)dr. (29.44)

29.6.2 Method of Solution

To determine the stress-strain state in an elastic ring-shaped punch with initial
stresses, was use the linearized equations (see p. 78 in Babych and Yarets’ka (2021)).
These equations give the displacement and the stress for compressible and non-
compressible bodies. The general solution χ = χ1 + χ2 for the case of unequal roots
of the characteristic equation (Babych and Yarets’ka 2021) is obtained in the form

χ̃ = 2A0(r
2 − z21 − z22) + 3r2C0(z

3
1 + z32)

+
∞∑

k=1

〈
Ck

{[
A(1)
k I0(γkv1r) + A(2)

k K0(γkv1r)
]
sin(γkv1z1)

+
[
A(1)
k I0(γkv1r) + A(2)

k K0(γkv1r)
]
sin(γkv1z1)

}

+Mk

[
T (1)
k J0(αkr) + T (2)

k Y0(αkr)
] (

S̃2(αk z1) + S̃3(αk z2)
)〉

,

where A(2)
k , B(2)

k , T (2)
k , C0, Ck , M̃k = const, and Mk are the unknowns,

S̃(x) = Ẽk sinh(x) + F̃k cosh(x), S̃3(x) = Ñk sinh(x) + cosh(x),
T (1)
k = −Y1(αk R1R

−1
2 )(J1(αk R1R

−1
2 ))−1T (2)

k ,

A(1)
k = K1(γkv1R1)(I1(γkv1R1))

−1A(2)
k ,

B(1)
k = K1(γkv2R1)(I1(γkv2R1))

−1B(2)
k ,

Ñk = − coth(αk Hv−1
2 ), S̃4(x) = Ẽk cosh(x) + F̃k sinh(x),

A0 = (3C0H(v1)
−1 − εn1n2(4(m1n2 + m2n1))−1),

Mk = M̃kT
(2)
k , Ẽk = (1 + m2)n1((1 + m1)n2)−1 coth(αk Hv−1

1 ),

F̃k = −(1 + m2)n1((1 + m1)n2)−1, γk = πkH−1,

αk = μk R2R
−1
1 , J1(μk)Y1(μk R2R

−1
1 ) − Y1(μk)J1(μk R2R

−1
1 ) = 0.

Basing on (29.40)–(29.43) and z1 = 0, the stress-strain state in the prestressed
half-space is obtained for unequal roots in the form (Babych and Yarets’ka 2021;
Guz et al. 2015; Guz 2022):
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Q′(2)
33 = ω3

R2 − R1

∫ ∞

0
F(η)J0(ηr)dη,

u′(2)
3 = − 1

ω2

∫ ∞

0

F(η)

η
J0(ηr)dη,

u′(2)
r = ω1

∫ ∞

0

F(η)

η
J1(ηr)dη,

(29.45)

where ω2 = v1 (m1(s3 − s2))
−1, ω1 = s0 − 1.

Satisfying the first condition (29.41), we define the unknown function F(η) in
(29.45) from of the triple integral equations

∫ ∞

0
F(η)J0(ηr)dη = 0 (R2 < r < ∞),

∫ ∞

0

F(η)

η
J0(ηr)dη = f (r) (R1 < r < R2),

∫ ∞

0
F(η)J0(ηr)dη = 0 (0 < r < R1),

(29.46)

where

f (r) = ω2

R2

(

ε + t1

∞∑

k=1

α2
k

(
Y1(αk R1R

−1
2 )

J1(αk R1R
−1
2 )

J0(αk R
−1
2 r) − Y0

(
αk R

−1
2 r

)
)

Mk

)

,

t1 = m1 − m2

n2(1 + m1)
.

Further, we reduce the integral Eq. (29.46) to a single equation (Bosakov 2018).
The function F(η) then can be sought in the form (Bosakov 2018):

F(η) = R2

∞∑

n=0

W2n J2n
(
1
2η(R2 − R1)

)
J2n
(
1
2η(R2 + R1)

)
, (29.47)

whereW2n are unknown constants. Substituting (29.47) in (29.46), we get the integral
equation

∞∑

n=0

W2n

∫ ∞

0
J2n
(
1
2η(R2 − R1)

)
J2n
(
1
2η(R2 + R1)

)
J0(ηr)dη = f (r). (29.48)

From the second boundary condition (29.41), we obtain
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∞∑

n=0

W2n

∫ ∞

0
J2n
(
1
2η(R2 − R1)

)

× J2n
(
1
2η(R2 + R1)

) ∫ R2

R1

r J0(μkr)J0(ηr)drdη

= N̂44(R2 − m1)(1 + m2)

ω3v2
α2
k t1

[
Y1(αk R1R

−1
2 )

J1(αk R1R
−1
2 )

Õ(1)
k − Õ(2)

k

]

Mk . (29.49)

where

Õ(1)
k = R2

αk

[
R1 J1

(
αk R1R

−1
2

)− R2 J1(αk)
]
,

Õ(2)
k = R2

αk

[
R1Y1

(
αk R1R

−1
2

)− R2Y1(αk)
]
.

To determine the constants Mi and W2i (i = 0, 1, . . . ) from (29.45) and (29.46),
we use an infinite system of linear algebraic equations consisting of (29.48) and
(29.49). This system is solved by the reductionmethod, taking into account thatW0 =
ω2επ(R2 − R1)(8ω3R2)

−1. Using the equilibrium condition (29.44), we establish
the relation between the indention displacement and the equivalent force P in the
following form

P = 2ω2ω3ε

π(R2 − R1)
.

Having determined the unknown constants Mi and W2i (i = 0, 1, . . . ), we can
obtain displacement and stress in the elastic half-space as well as in the punch. It
should be noted that the coefficients depend on the elastic potential and the height
of the elastic punch H .

29.6.3 Numerical Results

In this section, numerical solutions corresponding to the Treloar potential are pre-
sented. Figures 29.15 and 29.16 show the normal contact stress P−1Q33

(1) distri-
bution and displacement −(εR2)

−1U3
(1) under the ring-shaped punch at the contact

area boundary in dimensionless coordinates. The dashed curve corresponds to the
half-space without initial stresses (λ1 = 1), and the solid curve—with initial stresses.
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Fig. 29.15 Contact stress

Fig. 29.16 Contact
displacement

29.7 Conclusion

The general engineering conclusions for the considered problems are as follows:

1. initial stresses in bodies lead to a decrease in stresses and an increase in the abso-
lute values of displacements in compression (λ1 < 1) an increase in stresses and
a decrease in the absolute values of displacements in tension (λ1 > 1). Thus, a
prestressed state during the contact interaction of elastic bodies makes it possi-
ble to adjust contact stress and displacement when determining the strength of
structures and their members. Moreover, for contact stresses, initial stresses are
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dangerous in case of tension, and for displacements, initial stresses are dangerous
in case of compression;

2. more significantly, in quantitative terms, initial stresses act in highly elastic mate-
rials in comparisonwithmore rigid ones, but their influence remains qualitatively;

3. in cases of absence of initial stresses, the obtained results coincide with the clas-
sical ones.

In the case of the pressure of two prestressed half-spaces on the elastic cylindrical
punch and the pressure of the cylindrical punch on the layer, it was established that
the most significant effect of initial stresses is observed on the side surface of the
punches. The thickness of the layer does not affect the nature of the initial stress and
affects only their value. The situation is dangerous when initial stresses approach
the values of surface instability since contact stresses and displacement dramatically
change their values.

Thus, from the study of the contact interaction of two prestressed half-spaces
and an elastic cylindrical punch, it can be concluded that the closer to the central
cross section of the cylindrical punch, the faster the normal stresses tend to zero.
Furthermore, displacement U3

′(3)/ε takes significantly higher values closer to the
axis of the cylindrical punch than to its side surface. The values of the equivalent
force P decrease with an increase in the elongation coefficient λ1. Thus, the force P
takes greater values during tension than during compression.

The research made it possible to

1. obtain analytical and numerical dependencies that determine the behavior of
stresses and displacements in the contact zone;

2. develop algorithms for numerical determination of contact characteristics;
3. use the proposed research principle and solution algorithm when designing tech-

nological types of equipment, buildings, and other structures.

Thus, this chapter presents research on contact problems for prestressed bodies
with elastic or rigid punches. We believe that further progress in the development of
themechanics of contact interactionof prestressedbodies (both in the case of rigid and
elastic punches) is determined by the research of more complex classes of problems,
for example, taking into account friction, conducting experimental researches on the
effect of initial stresses on the main characteristics of contact interaction of structural
materials.
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Chapter 30
Express Diagnostics of Material Strength
Properties Under Shock-Wave
Destruction

Yaroslav Zhuk, Mykola Melnichenko, Volodymyr Andruschenko,
and Mykhailo Vodotovka

30.1 Introduction

The development of aerospace and military equipment, energy, and other branches
of industry calls for a detailed experimental study of the reaction of various structural
materials to shock-wave loading. The analysis of shock-wave phenomena in solids
allows us to establish the peculiarities of the course of deformation processes at high-
impact velocities. Currently, there is still no unified theory that would explain the key
effects that determine the elastic-plastic properties and dynamic strength of materials
under intense loadings. Peculiarities of the behavior of metals and ceramics under
conditions of dynamic and shock-wave loading caused by the development of defects
are the subject of modern active research, which consists of the experimental study
of the behavior of materials and the development of wide-range modeling methods.

For a long time, obtaining planar non-stationary shock waves to study the thermo-
dynamic and mechanical properties of solid and liquid continua under the influence
of impulse pressure was carried out by traditional methods, such as the detonation of
a charge of a chemical explosive located on the surface of a sample, or by the impact
of a thin plate previously accelerated by the products of the explosion, or electric gun
(Saxena et al. 2010; Zirnheld et al. 2009). The use of these methods of studying the
mechanical properties of materials under conditions of high deformation rates at low
impulse loads is limited either by the critical thickness of the explosive substance or
by the stability of the acceleration of thin plates.
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Therefore, for these purposes, an electric explosion of a metal foil placed on the
surface of the tested samples is currently used. The electric explosion method pro-
vides for the possibility of rapid conversion of electromagnetic energy into thermal
energy of the foil material and ensures the production of fading shock waves with
an amplitude ranging from several units to tens of GPa (Grigor’ev and Pavlenko
2009; Muffoletto et al. 2018). At the same time, it was experimentally proven that
the method of an electrical explosion of the foil allows for studying the mechani-
cal properties under planar-impulse loading. Shock waves initiated by the electrical
explosion of conductors in various environments are widely used due to the ability
to control their characteristics in wide ranges by changing the parameters of the dis-
charge RLC circuit, the size, and the material of the exploding conductor. Studies of
the dynamic destruction of solids under shock-wave loading demonstrate a number
of effects (Kanel et al. 2013; Stepanov and Makovei 1993) that contradict classical
models of strength and crack resistance (Kundu 2008). The latter is very important
since dynamic destruction is decisive in armor-piercing and projectile fragmentation.
At the same time, the complexity of dynamic research consists of the need to record
the process parameters in the microsecond time range and to increase the informa-
tiveness; it is necessary to evaluate the behavior of materials under various types of
loading and destruction: in plane load waves, during the development of a single
crack, and when breaking through an obstacle.

The specificity of shock-wave effects is that due to the short duration of the
loading time, there is practically no mutual influence of individual sections of the
loaded body containing any large defects, and, accordingly, their contribution to the
destruction process. In addition, at the same time, extremely high rates of deformation
develop, heating of the substance occurs, and the mechanism of plastic deformation
itself changes (for example, additional sliding planes are activated in metals, the
contribution of twinning to deformation increases even for those materials where
deformation twins do not form under normal loading conditions).

The relevance of research in this field is also due to the need to developmathemati-
cal models capable of describing the connection between elastic-plastic behavior and
the destruction of materials with the kinetics of defect accumulation. At the same
time, further studies of changes in strength at the micro level and mechanisms of
plastic deformation will contribute to the design of new high-strength materials and
the improvement of their processing technology.

30.2 Problem Statement and Experimental Technique

The main goal of the work was to develop a method of express diagnostics for the
experimental determination of the strength properties of ceramic, glass, and polymer
materials during their shock-wave destruction.

For this purpose, the authors developed a shock-wave experimental device based
on the use of the specifics of shock-wave effects. It was designed to test the dynamic
strength of ceramics, glass, andPlexiglasmaterials of various thicknesses. The shock-
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wave device allows for generating an elastic compression pulse up to 5 GPa for less
than 0.4 microseconds on an area of several tens of square millimeters. In this case,
a thin metal foil is clamped between two smooth plates (for example, made of glass)
and explodes (melts and evaporates) from the discharge of the storage capacitor. The
compression wave reaches the upper free boundary of the tested plate and, reflecting
from it, forms awave of destruction, which ensures conical spalling destruction.With
the help of such a device, it is possible to accurately determine the value of dynamic
strength at the beginning of spalling failure and, thus, to modify the technological
process to obtain the required strength parameters or to compare and select materials
for specific purposes.

30.3 Experimental Results

Using the shock-wave experimental device designed by the authors, an express diag-
nosis of the strength properties of the studied platesmade of ceramics, artificial stone,
and composite material during their shock-wave destruction was carried out.

30.3.1 Investigation of Ceramic Plate Strength Properties

The peculiarities of the properties of ceramics as a material are determined both by
the raw materials (clays and their mixtures with mineral additives, as well as oxides
and their compounds) and by the production technology (sintering of components
with subsequent cooling). Therefore, the shock-wave strength characteristics can
differ significantly for different compositions. In practice, it is important to know
at least two experimental parameters. The first is the magnitude of the shock pulse
when quasi-static failure begins. In this case, the plate is destroyed only with the
formation of radial cracks. The second is the value of the shock pulse when the cone
spalling failure begins. Figure 30.1 presents photos of the destruction of ceramic
plates measuring 100× 100× 10 mm from household ceramics.

The test at the minimum power of the electric explosion leads to quasi-static
destruction with the formation of radial cracks Fig. 30.1a. With an increase in the
power of the explosion, not only quasi-static destruction is observed but also spalling
destruction due to the formation of one cone, Fig. 30.1b, c.

A similar pattern of simultaneous quasi-static destruction and spalling destruction
was observed for armor plates made of silicon carbide (Fig. 30.2a). Figure 30.2b
shows the spalling cone that was formed after the shock-wave destruction.

A further increase in the power of the explosion and a decrease in the duration
of the front leads to the appearance of multi-conical spalling destruction. It should
be noted that spalling damage is possible with the formation of two (Fig. 30.3a, b,
c), three, or four cones with impressive damage patterns. The analysis of ceramic
samples obtained in this work after quasi-static destruction makes it possible to
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Fig. 30.1 Destruction patterns of 100× 100× 10 mm ceramic plates: quasi-static loading a,
spalling cone formation b, c at high power loading

Fig. 30.2 Mixed quasi-static and spalling destruction pattern of armor plate made of silicon carbide
a; spalling cone formed as a result of the shock-wave destruction b

Fig. 30.3 Multi-conical spalling destruction image at elevated power: without cone a, one- b, and
two-cone c patterns

estimate the speed of crack growth in ceramics which in this case is, on average,
equal to an impressive 180 km/s.

For comparison, Fig. 30.4a, b shows a picture of the characteristics of the destruc-
tion of ceramic plates under the action of penetration of high-velocity impact ele-
ments. For shock tests, a table-top acceleration stand was used in which a ball with a
diameter of 8 mm made of SHX15 steel is accelerated by the energy of the gases of
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Fig. 30.4 Patterns of the ceramic plate destruction as a result of high-velocity impact element
penetration at the velocity of 400 m/s a and 600 m/s b

the mounting cartridge while moving along a channel 570 mm long at a controlled
velocity, which makes it possible to form shock waves in a wide range of pressures.

As can be seen from Fig. 30.4, destruction processes are very different depending
on the velocity of the impact element (Fig. 30.4a—the velocity of the impact element
is 400 m/s, Fig. 30.4b—the velocity of the impact element is 600 m/s). At the same
time, quasi-static failure, spalling failure, and specific edge failure in the form of
fragmentation into a large number of particles of different configurations and sizes
are observed.

30.3.2 Strength Properties of Artificial Stone

In the work, systematic studies of the dynamics of destruction processes were carried
out for samples of artificial stone manufactured according to factory requirements.
Artificial stone is created from natural stone chips, primarily quartzite. The strength
characteristics of quartzite are very high. Artificial stone surpasses not only marble
but also granite in all indicators of strength: impact, bending, compression, and
compression during cooling. The size of the sample was 60 mm by 60 mm and 3
mm thick. During the experimental study of artificial stone samples after shock-wave
loading, no sample destruction was observed. At the same time, only the formation
of radial cracks is observed (see Fig. 30.5a, b). Analysis of Fig. 30.5 demonstrates
the need for metallographic studies of radial cracks to illuminate samples at different
angles.

The obtained results of the study of the formation and movement of cracks after
shock-wave loading of artificial stone samples make it possible to evaluate the rate
of crack growth in such samples. Unlike ceramics, under the same load conditions,
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Fig. 30.5 Radial cracks formation in artificial stone samples 60× 60× 3 mm under different
angles of illumination a, b

Fig. 30.6 3D surface of the central part a of the artificial stone sample and its periphery b

the rate of crack growth in artificial stone samples is, on average, 75 km/s, which is
almost two times less than in ceramics.

For a detailed study of the nucleation and movement of cracks after shock-wave
loading, software tools for 3D reconstruction of the surface with high spatial reso-
lution were used in the work. Figure 30.6a, b shows the obtained 3D surface of the
central part of the artificial stone sample and its periphery. 3D reconstruction of the
surface makes it possible to observe and study the entire pattern of crack growth
from the center to the periphery of the sample.

In this work, the study and analysis of individual parts of the crack were also
carried out, in particular, in the areas where their bifurcation and further growth occur
(Fig. 30.7a, b). Analysis of Fig. 30.6b indicates the possibility of studying in detail
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Fig. 30.7 Images of different parts of the crack: bifurcation area a and further growth area b

the movement of cracks to the edge of the samples under the action of high-velocity
impact load, regardless of the angles of illumination necessary for metallographic
studies. At the same time, the nucleation and movement of local cracks in different
places of the samples are also observed. The latter makes it possible to assert the
existence of complex multi-level destruction of samples under the action of shock-
wave loading. It is very important to be able to study the growth of the crack with the
bifurcation of the last feature (Fig. 30.7a, b). After the bifurcation of the crack, the
energy for growth is usually enough for only one branch of the bifurcated crack. All
obtained experimental results are necessary and very important for the mathematical
modeling of these processes in order to obtain new materials with high-strength
values necessary to resist high-velocity shock loads.

30.3.3 Investigation of Composite Material Strength
Properties

Plates made of the composite material were also a subject of research in this work.
Conductive plates were made of thermally expanded graphite in a rubber matrix.
Samples were obtained from one plate by cutting it into four parts. The sample size
was 70 mm by 70 mm and 10 mm thick. When investigating the impact of high-
velocity shock-wave loading, it was established that a single shock-wave load with
the parameters indicated above did not lead to the destruction of the samples or the
appearance of cracks on it. Therefore, in this work, experiments were carried out
on two-fold shock-wave loading of samples. In this case, after loading, the metallo-
graphic method revealed the appearance of radial cracks (Fig. 30.8a, b). Figure 30.8
shows the view of the surface of the sample at different magnifications (initial—
Fig. 30.8a, ten times optical magnification—Fig. 30.8b). Analysis of the samples
obtained in the work after loading makes it possible to estimate the speed of crack
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Fig. 30.8 Crack formation in the 70× 70× 10 mm composite plate(thermally expanded graphite
in a rubber matrix) under two-fold shock-wave loading: normal view a; ten timesmagnified image b

Fig. 30.9 Surface structure changes from the impact site to the periphery of the sample

growth in the samples, which in this case is, on average, equal to a velocity of 25
km/s, which is much less than in the ceramics and artificial stone samples. The latter
indicates significant resistance to high-velocity shock-wave loading.

The study of the surface structure by the metallographic method (at a small mag-
nification of 5 times) from the side of the applied load indicates significant changes
in the surface structure from the center of the impact to the periphery of the samples
(Fig. 30.9).

30.4 Conclusions

The analysis of shock-wave phenomena in solids allows for studying the peculiarities
of deformation processes at high-impact velocities. The work used a developed and
manufactured compact shock-wave device for rapid testing of the dynamic strength
of such materials as ceramics, glass, and Plexiglas of various thicknesses, as well
as an experimental study of the physical and mechanical parameters of the studied
materials after exposure to high-velocity shock loads.
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The developed design of the experimental complex is capable of forming a pres-
sure pulse with a maximally planar front and with the possibility of increasing the
power of the explosion of a thin metal foil to achieve spalling destruction. The shock-
wave device allows for generating an elastic compression pulse up to 5 GPa for less
than 0.4 microseconds on an area of several tens of square millimeters.

It was demonstrated in the example of ceramic samples that at the minimum value
of the shock-wave load, the plate is destroyed onlywith the formation of radial cracks.
When the power of the explosion increases (the shock-wave load increases), not only
quasi-static destruction is observed, but also spalling destruction due to the formation
of one cone. A further increase in the power of the explosion leads to the appearance
of multi-cone spalling destruction. At the same time, the rate of growth of cracks
in ceramics is, on average, equal to an impressive velocity of 180 km/s. The use of
such a device allows you to accurately determine the value of dynamic strength at the
beginning of spalling failure and thus modify the technological process to obtain the
necessary strength parameters or compare and select materials for specific purposes.

In this work, systematic studies of the dynamics of destruction processes and
the evolution of defects are carried out on the example of artificial stone samples.
During the experimental evaluation of samples made of artificial stone after shock-
wave loading, no destruction of the samples was observed. At the same time, only
the formation of radial cracks is observed. In contrast to ceramics, under the same
loading conditions, the rate of crack growth in artificial stone samples is, on average,
75 km/s. Software for 3D surface reconstruction with high spatial resolution were
used to study the initiation and movement of cracks after shock-wave loading. 3D
reconstruction of the surface makes it possible to observe and study the entire pattern
of crack growth from the center to the periphery of the sample. The study and analysis
of individual parts of the crack were carried out, particularly in the areas where their
bifurcation and further growth occur. The nucleation and movement of local cracks
in different places of the samples are also observed. The latter makes it possible to
assert the existence of complex multi-level destruction of samples under the effect
of shock-wave loading.

The work also investigated plates made of composite material—electrically con-
ductive plates made of thermally expanded graphite in a rubber matrix. When study-
ing the effect of high-velocity shock-wave loading, it was established that a single
shock-wave load with the parameters indicated for previous samples did not lead to
the destruction of the composite material samples or the appearance of cracks on
them. Therefore, in this work, experiments were carried out on two-fold shock-wave
loading. The appearance of radial cracks was detected by the metallographic method
after two-fold shock-wave loading. Analysis of the samples obtained in the work
after loading makes it possible to estimate the speed of crack growth in the samples,
which in this case is, on average, equal to a velocity of 25 km/s, which is much
less than in the previous ceramics and artificial stone samples. The latter indicates
significant resistance to high-velocity shock-wave loading. The study of the surface
structure by the metallographic method from the side of the applied load shows sub-
stantial changes in the surface structure from the impact center to the periphery of
the samples.
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It should be noted that the developed method of shock-wave testing allows for the
investigation of awhole complex of effects associatedwith high-velocity destruction.
The importance of the technique is due to the fact that there is no single theory that
explains the crucial effects that determine the elastic-plastic properties and dynamic
strength of the latest materials under intense loads. Therefore, the development of
relevant theoretical models is an urgent problem. From this point of view, in addition
to the direct value of the obtained experimental data for applied applications, it
is necessary and important for the mathematical modeling of these processes in
order to obtain new materials with high-strength values necessary to resist high-
velocity shock loads. The use of computer modeling will allow for obtaining the
necessary information at the selected point of interaction and evaluating the degree
of deformation and destruction of the studied samples.
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