
Chapter 1 
Damage Identification for Beam-Like Structures Based 
on Physics-Informed Neural Networks 

Wei Zhou and Y. F. Xu 

Abstract Damage in a beam-like structure due to decreases in its stiffness and/or mass can cause local anomalies in its 
flexural guided wavefield at locations of damage. Usually, these local anomalies can be intensified by data-driven techniques 
such as the continuous wavelet transform, the gapped smoothing method, etc. However, the physics of beam-like structures 
are not considered in these data-driven techniques, leading to a lack of physical consistency in the damage identification 
results. In this paper, a baseline-free damage identification method is proposed to extract these local anomalies under the 
assumption that the pristine beam-like structures are homogeneous and isotropic. Flexural guided wavefield of a damaged 
beam-like structure is used to build a pseudo-pristine model of the beam-like structure by using physics-informed neural 
networks. When the pseudo-pristine model is built, the prediction of flexural guided wavefield can be generated, and 
those local anomalies can be approximated by the difference between the prediction of flexural guided wavefield and the 
corresponding measured flexural guided wavefield. The difference is used to yield an accumulative two-dimensional damage 
index for further damage identification. Effectiveness and noise-robustness of the proposed method are investigated in a 
numerical example. Results show that the proposed method is effective and noise-robust in identifying the location and 
extent of the damage. 

Keywords Structural damage identification · Physics-informed neural networks · Pseudo-pristine model · Beam-like 
structures · Local anomalies 

1.1 Introduction 

Engineering structures in service suffer from long-term environmental effects and operational loads, which cause unexpected 
structural damage. Monitoring structural damage is important for preserving and sustaining the service life of engineering 
structures. It is necessary to monitor structural damage by developing noise-robust and accurate damage identification 
methods. Recently, machine learning and especially deep learning algorithms have been studied widely in damage 
identification methods, thanks to the rapid development of graphics processing units (GPUs) and sensing technology in the 
last decade, including acoustic emission-based methods [1], guided wavefield-based methods [2], vibration-based structural 
damage identification methods [3, 4], etc. 

Guided wavefield-based methods have been studied widely for damage Identification, owing to the capability of scanning 
laser Doppler vibrometers (SLDVs), which can measure velocities of a structure on each point of a predefined grid. It allows 
the visualization and post-processing of a guided wavefield by reconstructing measured velocities [5]. Joseph et al. [6] 
proposed a guided wavefield-based method for damage detection in thin metal plates. It uses full wavefield data acquired 
by SLDV, half from the damaged state and another half from the undamaged state, to train a deep neural network with two 
convolutional layers and two fully connected layers. It was reported that their proposed method has a better performance 
than support vector machine-based methods. Abdalraheem et al. [2] proposed guided wavefield-based method for damage 
detection by using deep fully convolutional neural networks (CNNs) FCN-DenseNet. It was fed by a large dataset of guided 
wavefields, which contains 475 cases of guided wavefields resulting from interaction with delaminations of random shape, 
size, and location. The results reveal that their proposed method performs better than the adaptive wavenumber filtering 
method. Besides, the same dataset has been used in a comparative study for delamination identification by using several deep 
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fully CNNs models, including VGG16 encoder-decoder, PSPNet, residual UNet, and FCN-DenseNet [7]. It was reported 
that GCN model has the highest identification accuracy among the five implemented models. Song et al. [8] proposed guided 
wavefield-based method for identifying sub-wavelength defects. It combines two distinct fully CNNs, including a global 
detection network and a local super-resolution network. It was reported that their proposed method can not only locate 
sub-wavelength defects but also estimate the shape and size of the identified sub-wavelength defects. The aforementioned 
methods require labeled dataset which not only contains guided wavefields but also contains corresponding information of 
damage. However, labels are usually unavailable in practice, or acquiring these datasets are very time-consuming. Hence, 
it is necessary for researchers to come up with innovative methods using guided wavefields without labels under machine 
learning or deep learning applications. 

Physics-informed neural networks (PINNs) are a mesh-free scientific machine learning technique used to solve equations, 
like nonlinear partial differential equations [9]. PINNs approximate solutions of equations by training a multilayer perceptron 
neural network to minimize a loss function, which includes terms reflecting the equations residual at selected points in the 
spatial-temporal domain, and the initial as well as boundary conditions along boundaries of the domain [10]. PINNs have 
been applied in several works with the ability of incorporating data and their governing physics equation, especially solving 
inverse problems, where unknown parameters of equation are estimated. Shukla et al. [11] used a PINN to identify a surface 
breaking crack in a metal plate. Measured ultrasonic surface acoustic waves of the metal were target of the PINN, and a wave 
velocity field of the metal plate was estimated as a damage index. Rathod et al. [12] identified the change of a wave velocity 
in a rod by a trained PINN, where 50% reduction in Young’s modulus in the mid part can be represented in the identified 
wave velocity along the rod, but the sharp variation in the wave velocity was not captured. Zhang et al. [13] presented a 
general framework based on PINNs for solving inverse problems involving unknown material properties and geometric in 
continuum solid mechanics. It was reported that the framework can accurately estimate the unknown material properties and 
geometric with a relative error in the order of .10−2. 

In this paper, a guided wavefields-based damage identification method based on PINNs is proposed for beam-like 
structures. In this proposed method, a pseudo-pristine beam model is constructed by a PINN from a measured flexural 
guided wavefield of a damaged beam-like structure. The residual of Euler–Bernoulli equation with an unknown parameter 
. α, i.e., the ratio of bending stiffness and mass per unit length, is used in the PINN as a loss term. This parameter serves 
as a variable and is updated in each iteration of gradient descent during the training process of the pseudo-pristine beam 
model. A predicted flexural guided wavefield is obtained from the pseudo-pristine beam model when the PINN is trained. 
An accumulative two-dimensional damage index is calculated based on the difference between the measured flexural guided 
wavefield and the predicted flexural guided wavefield. The location and extent of damage can be identified by consistently 
high values of the damage index. Accuracy and noise-robustness of the proposed method are investigated in a numerical 
example of a damaged beam-like structure with different noise levels. 

The rest of the paper is arranged as follows. In Sect. 1.2, the proposed damage identification method based on PINNs is 
presented. In Sect. 1.3, the numerical investigation is described. Conclusions of this work are presented in Sect. 1.4. 

1.2 Methodology 

1.2.1 Euler–Bernoulli Beam 

Consider a narrow, long beam with a lateral load applied, and, consequently, its displacement is off the centerline. The type 
of dynamic behavior is called flexural motion [14]. In this study, the Euler–Bernoulli beam model is considered. It is a 
simplification of the linear theory of elasticity which governs the flexural motion of beams. Assuming a pristine beam-like 
structure is homogeneous undamped, hence its governing equation of flexural motion on a bounded spatial-temporal domain 
is defined by [15] 

.EI
∂4u (x, t)

∂x4 + μ
∂2u (x, t)

∂t2
= p (x, t) , x ∈ [0, L] , and t ∈ [0, T ] (1.1) 

where .u (x, t) is the spatial-temporal flexural motion of the beam with L spatial lengths and T temporal lengths, E is the 
elastic modulus, I is the second moment of area of the beam’s cross sections, . μ is the mass per unit length of the beam, and
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.p (x, t) is the external force. Divide by . μ in each term of Eq. (1.1), and one has 

.α
∂4u (x, t)

∂x4 + ∂2u (x, t)

∂t2
= p (x, t)

μ
(1.2) 

where 

.α := EI

μ
(1.3) 

It is observed that Eqs. (1.1) and (1.2) are fourth-order partial differential equations in space, and second order in time. 

1.2.2 PINNs for the Euler–Bernoulli Beam 

Let .N (s; θ): .Rds → R
dy be a multilayer perceptron neural network with input vector . s, H hidden layers, an output vector . y, 

and trainable network parameters . θ . In the  h-th hidden layer, . Nh number of neurons is present. Each hidden layer receives 
an input .sh−1 ∈ R

Nh−1 from the output of the previous layer through the following nested transformations: 

.Qh := σh
(
whsh−1 + bh

)
, h = 1, . . . , H (1.4) 

where . σh is the nonlinear activation function in the h-th hidden layer, .wh ∈ R
Nh×Nh−1 and .bh ∈ R

Nh are weight matrices 
and bias vectors in the h-th hidden layer, respectively. Output layer has the similar transformations in Eq. (1.4) but without 
nonlinear activation. Hence, the final neural network representation can be expressed as 

.N (s; θ) = wH+1 (QH ◦ QH−1 ◦ · · · ◦ Q1) + bH+1 (1.5) 

where the operator . ◦ is the composition operator, .wH+1 ∈ R
NH and .bH+1 ∈ R are weight and bias parameters of the 

output layer, respectively. Hence, all trainable network parameters can be represented as .θ = {
w1,b1, ...,wH+1,bH+1

}
. 

With reference to the universal approximation theorem [16], .u (x, t) can be approximated by 

.u (x, t) ≈ N (x, t; θ) (1.6) 

where .x = {x : x ∈ [0, L]} and .t = {t : t ∈ [0, T ]} are input vectors of .N (x, t; θ). Based on the governing equation of the 
beam, i.e., Eq. (1.2), the partial differential equation residual .R (x, t) is defined as 

.R (x, t) := α
∂4N (x, t; θ)

∂x4
+ ∂2N (x, t; θ)

∂t2
− p (x, t)

μ
(1.7) 

The value of . α is unknown, which updates in each iteration of gradient descent in the training process. Note that . θ can be 
learned by minimizing the following composite loss function: 

.L (θ) = λLd (θ) + Lr (θ) (1.8) 

where 

.Ld (θ) = 1

Nd

∑(
û (xd , td) − N (xd , td; θ)

)2 (1.9) 

.Lr (θ) = 1

Nd

∑
(R (xd , td))2 (1.10) 

are residual loss and data loss, respectively. Here, . λ is a hyperparameter that is larger than 0, and . Nd denotes the number 
of inputs .{xd , td} in each channel, which can be randomly sampled from the spatial-temporal domain .[0, L] × [0, T ], and
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Fig. 1.1 Block diagram of the PINN model for the Euler–Bernoulli beam 

.û (xd , td) is a sampled dataset from the measured flexural guided wavefield with corresponding coordinates .{xd , td}. The  
finally learned trainable network parameters are defined as . θ l . A block diagram describing the PINN model used in this 
study is shown in Fig. 1.1. 

1.2.3 Damage Identification Process 

Damage in a homogeneous beam-like structure can cause structural flexural motion anomalies at locations of damage 
although such local anomalies may not be apparent from the measured flexural motion [17]. In the piecewise form, . ̂u (x, t)

can be written as a sum of three components, including the flexural motion for corresponding the pristine structure .ût (x, t), 
local anomalies .ûp (x, t), if existing, and white noise .ûn (x, t), if existing, and .û (x, t) can be expressed by 

.û (x, t) = ût (x, t) + ûp (x, t) + ûn (x, t) (1.11) 

When a surrogate model learned from .û (x, t) by PINNs, .N (x, t; θ l ) is close to .ût (x, t). Hence, the difference between 
.û (x, t) and .N (x, t; θ l ) can eliminate most effect from .ût (x, t): 

.�u (x, t) = û (x, t) − N (x, t; θ l ) (1.12) 

When .û (x, t) is measured from a pristine beam, .�u (x, t) will contain errors of the surrogate model and .ûn (x, t). On  
the other side, .�u (x, t) will contain one more term, i.e., .ûp (x, t), than the former one, when .û (x, t) is measured from a 
damaged beam. Hence, unapparent local anomalies in .û (x, t) will become dominated in .�u (x, t) when damage exists. 

An accumulative two-dimensional damage index can be constructed for damage identification for accumulating local 
anomalies, and alleviating the adverse effect of noise and errors in .�u (x, t), which is defined as 

δ (x, m) = 

⎛ 

⎝
∑T 

t=0 |�u (x, t)| 
max

(∑T 
t=0 |�u (x, t)|

)
⎞ 

⎠ 
m 

, m  ∈ [1, ∞) (1.13) 

where . |·| denotes the absolute value of a function and .max (·) is the maximum of a function. With increasing the value of 
m, the small values of .δ (x,m) responding to noise and errors can be eliminated ultimately. While too large value of m can 
also lower the value of .δ (x,m) in locations of damage. In this study, m is chosen in .[1, 10] for all cases of .δ (x,m). Note  
that .δ (x,m) ∈ [0, 1] and damage can be identified in neighborhoods with consistently high values of .δ (x,m) with different 
values of m. A flowchart summarizing the proposed damage identification method is shown in Fig. 1.2.
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Fig. 1.2 Flowchart of the proposed damage identification method 

1.3 Numerical Investigation 

In this section, flexural guided wavefields obtained from numerical simulations of two cantilever beams: one is a pristine 
beam and the other is a damage beam which is generated from the pristine beam with damage in form of a thickness 
reduction area. The former one is used to study the capability of modeling by PINNs in constructing a surrogate model for 
the pristine beam. The latter one is used to study the effectiveness of the proposed damage identification method. Besides, 
the noise-robustness of the method is also investigated and discussed. 

1.3.1 Numerical Models of Two Cantilever Beams 

For the pristine cantilever beam, it has a height of 6 mm, a width of 3 mm, and a length of 300 mm. The damaged cantilever 
beam has the same dimensions as the pristine beam, and damage is introduced by a one-sided through-width thickness 
reduction area with a length of 10 mm and a depth of . 0.3 mm. Dimensions of these two beams and the location of the 
damage are shown in Fig. 1.3. The pristine beam and damaged beam are made of aluminum 6061-T6 with a mass density 
of 2700 .kg/m3, Young’s modulus of .68.9 GPa, and Poisson’s ratio of .0.33. The ratio of bending stiffness and mass per unit 
length, i.e., . α, is  .19.1389 .

(
m4/s2

)
for the pristine beam. Their numerical model is modeled by the finite element method 

in finite element analysis software ABAQUS. The models of these two beams are built with the linear eight-node brick 
(C3D8R) elements. The size of elements is . 0.3 mm so that a total of 1001 nodes are evenly distributed along the length of 
the intact side of each beam. These two cantilever beams are under zero initial conditions, and their free ends are subjected 
to a five-count wave packet force, which is expressed by 

.h (t) = A

(
H (t) − H

(
t − 5

fc

)) (
1 − cos

(
2πfct

5

))
sin (2πfct) (1.14) 

Fig. 1.3 Dimensions of the pristine beam and damaged beam, and the location of the damage on the damaged beam
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Fig. 1.4 Flexural guided wavefields for (a) the pristine beam and (b) the damaged beam. The amplitudes of the flexural guided wavefield shown 
in each figure are normalized for better comparison. Edges of the damage area are depicted by vertical dotted lines 

where A defines the magnitude of the force, H is Heaviside function expressed by 

.H (t) =
{
1, t � 0

0, t < 0
(1.15) 

and . fc is the central frequency of the force. The values of A and . fc are chosen to be . 0.5 N and 3 kHz, respectively. The 
force is only applied in the free end nodes of two beams, and other nodes of beams are zeros. Hence, the force field, i.e., the 
rightmost item, is approximated by zeros in .R (x, t) of Eq. (1.7). 

Two flexural guided wavefields for the pristine beam and damaged beam are obtained on a grid with 1001 nodes that are 
evenly distributed along the length of the intact side of each beam and 2501 steps in 2 ms after the excitation force is applied. 
These flexural guided wavefields are shown in Fig. 1.4. Figure 1.4a shows the flexural guided wavefield consists of a wave 
packet that is generated from the excitation point and propagating toward the fixed end, and reflecting back to the free end. In 
Fig. 1.4b, similar observations can be made regarding the resulted flexural guided wavefield for the damaged beam. Besides, 
reflections and/or local anomalies cannot be directly observed near the damage area. 

1.3.2 Numerical Verification Process 

The capability of modeling by PINNs is first investigated based on the flexural guided wavefield obtained from the pristine 
beam. PINNs are notoriously hard to train especially when high-frequency or multi-scale behavior exists [18]. In this study, 
the spatial-domain frequency is lowered by scaling .x = {x : x ∈ [0, 0.3]} with unit of meter to .x̄ = {x̄ : x̄ ∈ [0, 1]}. 
In the temporal domain, only part of ranges are used and then scale .t = {t : t ∈ [t1, t2]} with unit of second to . ̄t ={
t̄ : t̄ ∈ [t1/t2, 1]

}
. Besides, the amplitudes of corresponding flexural motion are scaled to the interval .[−1, 1] ∈ R as 

follows 

.ū (x, t) = −1 + 2 × û (x, t) − min
(
û (x, t)

)

max
(
û (x, t)

) − min
(
û (x, t)

) , t ∈ [t1, t2] (1.16) 

where .min (·) is the minimum of a function. Two models, i.e., model #1 and #2, are built based on two different ranges of the 
temporal domain to verify the consistence of modeling by PINNs, and they are .t ∈ [0.5, 0.7]×10−3 s and . t ∈ [1, 1.2]×10−3

s, respectively. A three-layer fully connected neural network with 100 neurons per hidden layer is used in each model. Two 
input channels exist in the neural network and number of .Nd = 20,000 points .

{
x̄i , t̄i

}Nd

i=1 which are randomly sampled 

from the selected spatial-temporal domain. The corresponding .
{
ū

(
x̄i , t̄i

)}Nd

i=1 are sampled from the scaled flexural guided
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wavefield .ū
(
x̄, t̄

)
. The target function is used as the nonlinear activation function in the two models. The hyperparameter . λ

in the loss function Eq. (1.8) is set  to . 105. A two-phase optimizer is used to minimize the loss function. In the first phase, the 
Adam optimizer [19] with a learning rate of .10−3 and a weight decay of .10−5 is used via .50,000 iterations of gradient descent. 
In the second phase, the L-BFGS optimizer [20] with a learning rate of .10−1 is used until the two models are converged. 

The capability of the proposed damage identification method is investigated based on the flexural guided wavefield from 
the damaged beam. Two pseudo-pristine beam models, i.e., model #3 and #4, are trained under the same setups as the 
model #1 and #2 with different .

{
ū

(
x̄i , t̄i

)}Nd

i=1 sampled from the damaged beam, respectively. When the model #3 and #4 
are trained, a damage index is calculated based on Eq. (1.13) for damage identification. Besides, the noise robustness of the 
proposed damage identification method is investigated. Model #5 is trained under the same setups as the model #4 with noise-
contaminated .

{
ū

(
x̄i , t̄i

)}Nd

i=1, which is sampled from noise-contaminated flexural guided wavefield. It is generated by adding 
a Gaussian noise with a signal-to-noise ratio of 30 dB to the flexural guided wavefield obtained from the damaged beam. 

1.3.3 Numerical Verification Results 

The model #1 is trained after .50,200 iterations of gradient descent, and its results are shown in Fig. 1.5. It can be seen that 
. Lr is smaller than . Ld at the initial iterations, but . Lr increases radially under the effect of . λ and then generally decreases 

Fig. 1.5 Results for the model #1: (a) the composite loss . L, the residual loss . Lr , and  the data loss  . Ld with iterations; (b) comparison of the 
estimated value of . α and the ground truth of . α; (c) the prediction of flexural guided wavefield; and (d) the difference between the predicted 
wavefield and the corresponding measured wavefield
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Fig. 1.6 Results for the model #2: (a) the composite loss . L, the residual loss . Lr , and  the data loss  . Ld with iterations; (b) comparison of the 
estimated value of . α and the ground truth of . α; (c) the prediction of flexural guided wavefield; and (d) the difference between the predicted 
wavefield and the corresponding measured wavefield 

as same to . Ld as shown in Fig. 1.5a. The estimated . α needs to be divided by a factor of .
(
L4/t22

)
with .L = 0.3 m and 

.t2 = 0.7 × 10−3 s due to the scaling in spatial and temporal coordinates in the model #1. The estimated . α with iterations 
is  shown in Fig. 1.5b. It can be seen that the estimated . α is always nearby the ground truth after approximately . 0.5 × 104

iterations. The final estimated . α is .18.7446 .
(
m4/s2

)
, and the relative error to the ground truth is .2.06%. The prediction of 

flexural guided wavefield by the model #1 is shown in Fig. 1.5c, and the difference between the predicted wavefield and the 
corresponding measured wavefield is shown in Fig. 1.5d. Small magnitudes are dominated in the majority ranges, and only 
relative large magnitudes exist in boundaries of the spatial-temporal domain of the model #1. 

The model #2 is trained after .63,400 iterations of gradient descent, and its results are shown in Fig. 1.6. The loss and 
estimated . α have the similar trend as that of model #1, and their values become stable in iterations of gradient descent by 
the L-BFGS optimizer. The final estimated . α is .18.7399 .

(
m4/s2

)
, and the relative error to the ground truth is .2.09%. The  

prediction of flexural guided wavefield by the model #2 is shown in Fig. 1.6c, and the difference between the predicted 
wavefield and the corresponding measured wavefield is shown in Fig. 1.6d. It can be seen that the prediction wavefield is 
close to the corresponding measured one. The results for model #1 and model #2 show that PINNs can model the pristine 
beam with high accuracy and consistency. 

The model #3 and #4 are trained after .51,400 and .55,100 iterations of gradient descent, respectively. The difference 
between the predicted wavefield and the corresponding measured wavefield for the model #3 is shown in Fig. 1.7a. Large 
magnitudes of the difference mainly exist in the areas of damage, but others exist nearly by the areas of damage and 
boundaries. The difference is used to calculate .δ (x,m) in a domain .(x,m) ∈ [5, 295] × [1, 10] with a step of .0.01 for
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Fig. 1.7 (a) The difference between the predicted wavefield and the corresponding measured wavefield for model #3, (b) the damage identification 
result .δ (x,m) for model #3, (c) the difference between the predicted wavefield and the corresponding measured wavefield for model #4, and (d) 
damage identification results .δ (x,m) for model #4. Edges of the damage area are depicted by vertical dotted lines 

m, which is shown in Fig. 1.7b. It can be seen that high .δ (x,m) values mainly exist in the damage area so that the locations 
and extent of the damage can be accurately identified by the consistently high .δ (x,m) values. Large magnitudes of the 
difference between the predicted wavefield and the corresponding measured wavefield for the model #4 also mainly exist in 
the areas of damage as shown in Fig. 1.7c. The difference is used to calculate .δ (x,m) in a domain . (x,m) ∈ [0, 300]× [1, 10]
with a step of .0.01 for m, which is shown in Fig. 1.7d. Similarly, consistently high .δ (x,m) values mainly exist in the damage 
area. The damage identification results for model #3 and model #4 show that the proposed method can identify the locations 
and extent of the damage with high accuracy and consistency. 

It takes .50,700 iterations of gradient descent to train the model #5. The difference between the predicted wavefield and 
the corresponding measured wavefield for the model #5 is shown in Fig. 1.8a. Gaussian noise can be clearly detected in the 
difference, and large magnitudes of the difference exist in the damage area, boundaries, as well as nearby the damage area. 
The difference is used to calculate .δ (x,m) in a domain .(x,m) ∈ [5, 295]× [1, 10] with a step of .0.01 for m, which is shown 
in Fig. 1.8b. It can be seen that high .δ (x,m) values mainly exist in the damage area, and Gaussian noise is alleviated with 
increasing the value of m.
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Fig. 1.8 (a) The difference between the predicted wavefield and the corresponding measured wavefield for model #5 and (b) the damage 
identification result .δ (x,m) for model #5. Edges of the damage area are depicted by vertical dotted lines 

1.4 Concluding Remarks 

In this paper, a baseline-free structural damage identification method is developed for beam-like structures based on PINNs. 
Pseudo-pristine beam models are built by PINNs from measured flexural guided wavefields of damaged beam-like structures. 
A two-dimensional damage index is calculated based on the difference of the predicted flexural guided wavefields by pseudo-
pristine beams and their corresponding measured flexural guided wavefields. Damage can be identified in neighborhoods 
with consistently high values of the damage index. The capability of modeling by PINNs is studied on the pristine beam. The 
results demonstrate that PINNs can accurately model the pristine beam, providing highly accurate and consistent estimates 
of the ratio of bending stiffness to mass per unit length. The effectiveness of the proposed damage identification method is 
investigated in a damage cantilever beam. It was found that (1) the proposed method can accurately identify the location and 
extent of damage, and (2) the proposed method is robust for measurement noise. In future works, it is worthwhile to conduct 
investigations on experiments by the proposed method. Besides, segmentation is only used in the temporal domain of flexural 
guided wavefields for better training PINNs in this study. Segmentation in the spatial-temporal domain for flexural guided 
wavefields can be studied when higher excitation frequencies are applied to structures. 
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