
Chapter 31 
Footbridge Vibration Predictions and Interaction with Walking 
Load Model Decisions 

Lars Pedersen and Christian Frier 

Abstract Vibrations in footbridges generated by pedestrians are a matter of concern, typically because there is the risk that 
vibration thresholds may exceed resulting in an unacceptable serviceability-limit-state. 

There are challenges involved with predicting vibration levels at the design stage as the engineer in charge of predictions 
needs to make a number of choices for his calculations, for instance, regarding the load model for the pedestrians and the 
adjoining parameters (walking parameters). Through sensitivity studies employing artificial footbridges, the chapter will 
investigate the impact selected choices will have on the outcome of bridge vibration response predictions. In the chapter, 
a stochastic representation of the load will be considered, and hence the response calculations will end up in a stochastic 
representation of footbridge response. 

The way to arrive at stochastic representations of bridge response will be by employing Newmark time integration and 
Monte Carlo simulations. The action in focus is the vertical load by pedestrians, and likewise, it will be the vertical footbridge 
response that is focused on. 

Keywords Footbridge · Vibrations · Walking · Serviceability 

Nomenclature 

a Bridge acceleration 
F Walking load 
f1 Bridge fundamental frequency 
fs Step frequency 
i Integer 
L Bridge length 
ls Step length 
m1 Bridge modal mass 
Q Modal load 
t Time 
v Pacing speed 
W Weight of pedestrian
� Phase
� Mode shape 
α Dynamic load factor 
μ Mean value 
σ Standard deviation 
ζ 1 Bridge damping ratio 
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31.1 Introduction 

For footbridges, the serviceability-limit-state can be of concern. An unwanted scenario is excessive vibrations brought about 
by pedestrians. The Millennium Bridge vibrations [1] serve as an example, where resonant excitation caused by pedestrians 
resulted in excessive vibrations. 

Different efforts have been devoted to describing the actions of humans whilst crossing a footbridge. Deterministic 
approaches were introduced in [2–4]. Later, it was recognised that it might be more appropriate to model the action of a 
pedestrian in a stochastic manner, modelling walking parameters as stochastic variables and to employ a stochastic framework 
for predicting footbridge vibrations [5–10]. 

Having settled on a stochastic approach for addressing the mechanisms of walking loads and recognised that a stochastic 
approach for studying predictions of footbridge vibrations is useful, there are yet other decisions to be made by the engineer 
in charge of computations. 

In literature, there are different suggestions as to how to model the random nature of the different walking parameters, as 
will be shown in the chapter, and some of the different possible modelling approaches (in the form of the different potential 
settings of parameters for statistical distributions or fundamentally different relationships) will be applied in numerical 
simulations of pedestrian-induced vibrations in footbridges in this chapter. This is with a view to examine how different 
approaches affect estimates of bridge acceleration quantiles, the latter being considered a relevant parameter for assessing 
the serviceability-limit-state of a footbridge. 

Occasionally, in a numerical simulation (modelling walking parameters as random variables and assuming mutual 
dependency between walking parameters), there will be scenarios where values for a walking parameter end up outside 
the range in which it was originally calibrated from experiments. These scenarios need to be appropriately handled in 
simulations. The authors of this chapter might not in all previous publications have addressed this issue thoroughly as they 
have been asked questions regarding this issue on different occasions. Hence, in this chapter, different assumptions as to how 
to possibly consider and address out-of-range properties of some walking parameters in numerical simulations are addressed 
and evaluated. 

Section 31.2 describes the footbridges assumed for the studies of this chapter, and why a set of bridges are considered. 
Section 31.3 outlines the load modelling approach, different approaches for setting up a statistical framework for computing 
bridge acceleration response, and different approaches for handling out-of-range properties for walking parameters in 
numerical simulations. Section 31.4 outlines the overall methodology, and Sect. 31.5 presents the results. Conclusions are 
provided in Sect. 31.6. 

31.2 Bridges Assumed for the Study 

Assumed for this chapter are three single-span pin-supported single-degree-of-freedom (SDOF)-bridges. The general idea 
is to provide results for more than a single bridge so as to widen the basis for assessments and conclusions. The modal 
characteristics for the three bridges are provided in Table 31.1, along with adjoining assumptions regarding the bridge 
length, L. 

The modal properties for the bridges are those valid for the bending axis in focus when considering the vertical action 
generated by pedestrians. The potential second, third, or higher bending modes are not considered for the studies. 

Overall, the properties of the artificial footbridges, lined up in Table 31.1, are believed to be sensible for simple single-
span pin-supported footbridges. For the investigations of this chapter, it is judged sensible to consider fairly simple bridges 
to allow the focus to be on possible implications of employing different load modelling assumptions in simulations. 

Table 31.1 Modal properties of 
bridges (f1, ζ 1, m1) and bridge 
lengths (L) 

Property f1 ζ 1 m1 L 

Bridge I 1.6 0.5 61.7 53.8 
Bridge II 1.9 0.5 43.8 45.3 
Bridge III 2.2 0.5 32.6 39.1 
Unit Hz % 103 kg m
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31.3 Modelling of Walking Loads 

31.3.1 Basic Load Model Assumptions 

The vertical action of a pedestrian, F(t), is modelled as a summation of the two contributions outlined in Eqs. (31.1) and 
(31.2). 

.Fi(t) = Wαi
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In this chapter not all details about the modelling approach are explained, neither is the summation of load contributions 
which is somewhat more complex than explained right above. Interested readers can study [9]. The general idea is that the 
modelling approach accounts for the main harmonics and subharmonics of excitation to be present and that it accounts for 
the leakage of energy around the excitation frequencies, which some load models do not. Basically, it is considered the most 
refined time-domain load model of walking loads available. Hence, this model is chosen for the investigations of this chapter. 

Having determined F(t), the modal load Q(t) can be derived using Eq. (31.3). 

.Q(t) = �(t)F (t) (31.3) 

Here, ·(t) is the mode shape function assumed for the first mode of bending action and Eqs. (31.4) and (31.5) outline the 
assumptions in that regard. 

.�(t) = sin (πvt/L) (31.4) 

.v = fsls (31.5) 

For employing Eq. (31.4), the pacing speed, v, is required and it is calculated using Eq. (31.5). In this equation, fs is the 
step frequency and ls is the step length of the pedestrian. 

For the studies of this chapter, in most cases, these two parameters will be modelled as random variables, assuming 
Gaussian distributions. Mean values and standard deviations are shown in Table 31.2. 

In Table 31.2 two different statistical distributions for fs (both suggested in the literature) are introduced to allow 
examining the sensitivity of choosing one or the other distribution as the basis for computing bridge accelerations. 

The static weight of the pedestrian, W, is assumed to take on a value of 750 N, hence it is considered being a deterministic 
property for the studies of this chapter. 

Adding to the complexity of possible choices to be made by the engineer in charge of computations is that there would be 
another way to arrive at the modal load Q(t) in that it would be possible to employ Eq. (31.6) for determining the step length 
of the pedestrian. 

.ls = 0.2011f 3
s − 0.6021f 2

s + 0.6462fs + 0.2547 (31.6) 

This is a relationship introduced for the first time in [8] based on a graph shown in [12]. Equation (31.6) is a polynomial 
approximation to the graph presented in [12], which had no adjoining mathematical formula. The polynomial fit was made 
for fs in the range [1.0 Hz; 2.7 Hz]. In Eq. (31.6), the value of fs is to be inserted in the unit Hz for arriving at ls –values in 
the unit meters. 

Table 31.2 Mean values (μ) and  
standard deviations (σ ) 

– μ σ Reference 

ls 0.71 m 0.071 m [9] 
fs 1.87 Hz 0.186 Hz [9] 
fs 2.20 Hz 0.300 Hz [11]
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Table 31.3 Mean values (μ) and  
standard deviations (σ ) [7, 9] 

– α2 α3 α4 α5 

μ 0.07 0.05 0.05 0.03 
σ 0.030 0.020 0.020 0.015 

Table 31.4 Handling of out-of-range properties for Eq. (31.7) 

Approach Description 

A Setting values of μ equal to zero when fs is outside the range [1.0 Hz; 2.7 Hz] 
B Setting values of μ equal to the value attained at fs = 1.0 Hz also for values of fs < 1 Hz and setting the values of μ equal to values 

attained at fs = 2.7 Hz also for values of fs > 2.7 Hz  
C Using Eq. (31.7) also when  fs is outside the range [1.0 Hz; 2.7 Hz] 

As for the first main harmonic, α1, for use in Eq. (31.1), its mean value, μ, and standard variation, σ , may be calculated 
using Eq. (31.7). 

.μ = −0.2649f 3
s + 1.3206f 2

s − 1.7597fs + 0.7613; σ = 0.16μ (31.7) 

This is a suggestion introduced in [7] as regards μ, calibrated to measured data for values of fs in the range [1.0 Hz; 
2.7 Hz]. 

The load model, Eq. (31.1), also requires settling on mean values and standard deviations for other main harmonics 
beyond the first harmonic. Table 31.3 defines the assumptions made for the remaining main dynamic load factors assumed 
in the load model. 

There is also a set of subharmonic dynamic load factors to be entered into Eq. (31.2). These are computed following lines 
of procedures outlined in [9]. Here it is just mentioned that they depend on the main harmonic load factor, α1. 

31.3.2 Out-of-Range Considerations 

Having outlined the general load assumptions, the focus is on Eqs. (31.6) and (31.7). These are assumed valid for fs in the 
range [1.0 Hz; 2.7 Hz]. In numerical simulations, handling fs as a random property, there will be outcomes of fs outside this 
range. 

This can be handled in different ways. For the studies of this chapter, three different approaches (A, B, and C) are 
considered. The approaches are outlined in Table 31.4. 

Table 31.4 has focused on μ for the first main harmonic load factor as function of fs. Exact similar approaches to handling 
ls as function of fs (in Eq. (31.6)) are also considered for the studies of this chapter. The general idea is to examine how 
sensitive the predicted bridge acceleration response is to the choice between the three different approaches. 

31.4 Methodology 

Using Newmark time integration, it is possible to generate a load-time history and to compute vertical bridge acceleration 
response whilst a pedestrian is assumed to cross the bridge. Repeating this exercise using Monte Carlo simulations allows 
for obtaining a statistical representation of bridge acceleration response. From each simulated bridge crossing, the maximum 
acceleration at the bridge midspan, denoted a, is extracted. 

This exercise is carried out for the three different bridges, for instance, for the different assumptions regarding how to 
handle out-of-range properties of fs as well as for other studied scenarios. For each bridge and study condition, 100,000 
bridge crossings by a single pedestrian (at each crossing assuming different values for fs and ls) are simulated. 

From the simulation results, it is possible to extract different quantiles of a. It is believed that the higher quantiles are those 
most relevant for consideration as it is believed to be these that might be problematic in the matter of bridge serviceability, 
but the result section of this chapter (in some cases) will also present acceleration quantiles lower than a95, for the sake of 
completeness.
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31.5 Results 

This section presents and evaluates results obtained for acceleration quantiles for the three different bridges. Three 
investigations are made (I, II, and III). 

31.5.1 Investigation I 

Table 31.5 shows the results obtained for a95 for bridge I, II, and III computed using the relationship v = fsls where both fs 
and ls are handled as random variables. The assumption as for the distribution of ls is the values set out in Table 31.2 for 
mean value and standard deviation of this parameter. However, computations were made on the two different assumptions 
for the distribution of fs also presented in Table 31.2, and Table 31.5 compares the results. 

In Table 31.5, model FS1 refers to the model for fs in which (μ, σ ) = (1.87 Hz, 0.186 Hz) is assumed and model FS2 
to the model in which (μ, σ ) = (2.20 Hz, 0.30 Hz) is assumed. For all calculations, approach B for handling out-of-range 
conditions is employed. 

It is apparent that there is a significant difference between the a95-values computed for the three different bridges (for 
instance, compare results for FS1). This is not surprising, as the likelihood of resonant excitation is different for the three 
bridges. For bridge II (having a fundamental frequency of 1.9 Hz), the a95-value is quite high for model FS1, which is 
because the mean value of fs is relatively close to the fundamental frequency of the bridge. For bridges I and III, again 
looking at results for FS1, the a95-values are lower, as would be expected. 

A similar tendency is seen in results obtained assuming FS2, where it is apparent that the a95-value peaks when the mean 
value of fs equals the bridge frequency (being the case for bridge III). 

Overall, the results suggest that assumptions made about the statistical representation of fs have a relatively high impact 
on a95-values. This is because the values of this acceleration quantile differ quite a lot assuming model FS1 or model FS2 
for simulations. 

31.5.2 Investigation II 

Next up is addressing the influence of the choice made regarding setting up a model for arriving at values for ls. For the  
investigation, there are two possible ways referred to as model LS1 and LS2. For both models, the basic assumption v = fsls 
will be used, and it will be assumed that fs follows a Gaussian distribution which (μ, σ ) = (1.87 Hz, 0.186 Hz). In model 
LS1, it is assumed that the value of ls is derived also assuming a Gaussian distribution with values (μ, σ ) = (0.71 m, 
0.071 m), in accordance with Table 31.2. In model LS2, the values of ls are computed using Eq. (31.6). Table 31.6 presents 
the results obtained using the two different approaches. For all calculations, approach B for handling out-of-range conditions 
is employed. 

Table 31.5 Computed values of acceleration quantile a95 for two different assumptions for modelling step frequency 

Bridge I II III 

Bridge frequency f1 1.60 Hz 1.90 Hz 2.20 Hz 
Model for fs FS1 FS2 FS1 FS2 FS1 FS2 
Mean value for fs 1.87 Hz 2.20 Hz 1.87 Hz 2.20 Hz 1.87 Hz 2.20 Hz 
a95 0.0932 m/s2 0.0338 m/s2 0.3456 m/s2 0.2267 m/s2 0.2728 m/s2 0.4973 m/s2 

Table 31.6 Computed values of acceleration quantiles a95 for two different assumptions for modelling step length 

Bridge I II III 

Bridge frequency f1 1.60 Hz 1.90 Hz 2.20 Hz 
Model for ls LS1 LS2 LS1 LS2 LS1 LS2 
a95 0.0932 m/s2 0.0932 m/s2 0.3456 m/s2 0.3456 m/s2 0.2728 m/s2 0.2728 m/s2
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Table 31.7 Computed values of acceleration quantiles (on the basis of the FS1 assumption) 

Bridge I II III 
Approach A B C A B C A B C 

a95 0.0909 0.0932 0.0932 0.3442 0.3456 0.3456 0.2674 0.2728 0.2728 
a75 0.0306 0.0308 0.0308 0.1316 0.1308 0.1308 0.0630 0.0634 0.0634 
a50 0.0227 0.0227 0.0227 0.0629 0.0629 0.0629 0.0364 0.0367 0.0367 
Unit m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 

Table 31.8 Computed values of acceleration quantiles (on the basis of the FS2 assumption) 

Bridge I II III 
Approach A B C A B C A B C 

a95 0.1818 0.0338 0.0338 0.4646 0.2267 0.2267 0.8082 0.4973 0.4973 
a75 0.0216 0.0204 0.0204 0.0705 0.0604 0.0604 0.1946 0.1562 0.1562 
a50 0.0171 0.0165 0.0165 0.0406 0.0379 0.0379 0.0833 0.0746 0.0746 
Unit m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 

Studying the a95-values, it is apparent that they differ for the different bridges, as would be expected. Another thing to look 
for is the difference between values obtained employing model LS1 and model LS2 for simulations. In fact, no difference 
is seen in results even when employing four digits for displaying a95-values, suggesting that the choice between employing 
LS1 and LS2 is not important for obtaining values of a95. 

31.5.3 Investigation III 

In this section, the focus is on the results of computed acceleration quantiles for the three different bridges (I, II, and III) 
assuming the three different approaches (A, B, and C) for handling out-of-range conditions for the equations for the walking 
parameters fs and ls. 

First up is a presentation of results of acceleration quantiles obtained using v = fsls where both fs and ls are handled as 
random variables. The walking parameter fs is modelled with a distribution in which (μ, σ ) = (1.87 Hz, 0.186 Hz) is assumed 
(FS1) and ls is modelled with a distribution in which (μ, σ ) = (0.71 m, 0.071 m) is assumed, in accordance with Table 31.2. 
Table 31.7 presents the results. 

As expected, the values of acceleration quantiles turn out different for the three bridges, and highest for Bridge II, 
explained by the fact that the fundamental frequency of this bridge is very close to the mean value assumed for fs. The  
results also show that for any of the presented acceleration quantiles for a specific bridge, there appears to be a very limited 
difference having calculated them on the basis of approach A, B or C. It suggests that the choice of approach for handling 
out-of-range conditions for fs is not of significant importance. At least in the studied case, with the mean value of fs at 1.87 Hz 
and a relatively small standard deviation (0.186 Hz), the likelihood of scenarios in simulations with a pedestrian crossing 
using a step frequency fs < 1.0 Hz or  fs > 2.7 Hz (the out-of-range conditions for Eq. (31.7)) is very small, at the same time 
explaining why almost similar values of acceleration quantiles are obtained in simulation for the three approaches (A, B, and 
C). 

However, there are other assumptions for the statistical distribution for fs available in the literature. There is the proposal 
suggested in [11], see Table 31.2. In this (μ, σ ) = (2.20 Hz, 0.30 Hz) is assumed (FS2). Here the mean value of fs is higher 
than assumed for the previous study and so is the standard deviation. Hence, the likelihood of reaching simulation conditions 
where fs > 2.7 Hz is higher than in the previous study. 

Table 31.8 presents the results for acceleration quantiles for the three different bridges, again using v = fsls and the model 
for ls is yet again based on the assumption (μ, σ ) = (0.71 m, 0.071 m). 

It comes as no surprise that on these assumptions for computation of acceleration quantiles, it is bridge III that experiences 
the highest acceleration levels as bridge III has a fundamental frequency in fact equal to the mean value assumed for fs 
(2.20 Hz). The interesting part is to examine the difference between outcomes of acceleration quantiles computed for the 
three different approaches (A, B, and C) employed for handling outcomes of fs outside the range [1.0 Hz; 2.70 Hz]. It is 
computed that the probability of obtaining values of fs > 2.70 Hz in simulations is at 4.78% when assuming (μ, σ ) = (2.20 Hz, 
0.30 Hz) for fs as done for these simulations whereas it was only at 0.0004% when assuming (μ, σ ) = (1.87 Hz, 0.186 Hz).
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For all three bridges, it is seen that there is no difference between the acceleration quantiles computed employing 
approaches B and C. Furthermore, it is seen that the acceleration quantiles computed employing approach A differ rather 
significantly from those computed on the assumption of approaches B and C, at least for the a95-estimates. Thinking it 
through, this is not all that surprising as in approach A for every outcome of fs > 2.70 Hz in simulations, a figure of 0 enters for 
the first main harmonic load factor, α1. This basically has the effect that the pedestrian force is set to zero for this pedestrian 
crossing, which cannot be meaningful, and consequently, the computed distribution function for bridge acceleration is messed 
up, rendering the acceleration quantiles not meaningful. However, it is comforting to find that approaches B and C result in 
close to identical estimates of the acceleration quantiles and that approach B has been used by the authors of this chapter in 
previous studies published in the literature. 

Other simulation runs were made studying the implications of choosing approach A, B, or C for handling out-of-range 
properties for ls when using the relationship outlined in Eq. (31.6) for  ls. Results are not shown here but they generally 
confirm that there are no differences in estimates of acceleration quantiles between choosing approach B or C for these 
simulations. A fun fact is that it turned out that using approach A resulted in infinitely long simulation runs. This was and is 
because setting values of ls to zero (and this will happen during simulations using approach A), the value of v using v = fsls 
will be set to zero, resulting in an infinitely long time for the pedestrian to cross the bridge. Hence, these simulation runs are 
not meaningful. 

31.6 Conclusion and Discussion 

The chapter has addressed the implications of decision-making for the engineer in charge of predicting bridge accelerations 
using a probability-based approach for modelling the action. This is by doing simulation studies. 

The results suggest that acceleration quantiles of bridge response are sensitive to choices made for the statistical 
distribution representing the step frequency of walking, fs. Different ways to modelling the walking parameter ls representing 
the step length of a pedestrian were also studied. It turned out so that the manner in which this parameter (ls) was modelled 
did not have much bearing on the outcome of simulation results for bridge acceleration quantiles. 

Another matter of interest for the studies of this chapter was to examine how sensitive simulation results in terms of bridge 
acceleration quantiles would be to different ways of handling out-of-range conditions for walking parameters in numerical 
simulations. As mentioned in the introduction, questions have been asked and the chapter has provided results. 

The results suggest that basically either approach B or approach C studied in this chapter can be employed without 
inflicting differences in estimates of bridge acceleration quantiles, at least for the SDOF bridges assumed for the studies of 
this chapter. Approach A would be the approach not to choose, for the reasons described in Sect. 31.5. 

For the study of possible out-of-range study conditions for the dynamic load factor, it should be mentioned that it 
encompassed an assumption where the probability of arriving at out-of-range conditions is relatively high (by employing 
model FS2). It is worth mentioning that this is the only model for the step frequency that the authors of this chapter have 
encountered that translates into out-of-range probabilities for the main dynamic load factor that are that high. The data basis 
and sample size for calibrating this model are not very-well described in [11]. However, as it is a model available in the 
literature, it was considered relevant to address it for the context of the studies of this chapter. 
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