
Chapter 15 
Sequential Harmonic Component Tracking for Underdetermined 
Blind Source Separation in a Multitarget Tracking Framework 

Romain Delabeye, Martin Ghienne, and Jean-Luc Dion 

Abstract Smart factories are composed of heterogeneous cyber-physical systems. In light of their complexity and the 
lack of transparency in their design, monitoring the health of these machines in real time is made possible by the use of 
nonintrusive sensors. Such sensors produce mixed signals capturing component-specific signatures. Retrieving the activation 
statuses of the components (over the different operating modes of a machine) is essential for estimating their associated 
performance indicators. This is a special case of underdetermined blind source separation (UBSS), yet a sensor fusion 
perspective is adopted in this chapter. A harmonic component detector produces observations in the time-frequency (TF) 
domain, inherently entailing noise-induced false alarms. The main contribution of this chapter consists of a clutter-resilient 
multiharmonic component tracking algorithm, based on the sequential Monte Carlo probability hypothesis density (SMC-
PHD) filter. Additionally, this chapter presents a track association algorithm adapting the results obtained in the multitarget 
tracking framework for unsupervised multilabel classification. The combination of the two algorithms mitigates typical 
difficulties encountered in traditional UBSS problems, such as nonstationary and partially coupled mode decomposition. 
The performance of the proposed technique is assessed on synthetic data. 

Keywords Harmonic component tracking · Multitarget tracking · Sensor fusion · Underdetermined blind source 
separation · SMC-PHD filter 

15.1 Introduction 

Energy sustainability is one of the greatest challenges faced by the manufacturing industry. The manufacturing industry 
is energy-intensive by nature, making it worthwhile to put the emphasis on energy efficiency when aiming for substantial 
discounts in energy usage and associated carbon emissions. From a physical point of view, energy efficiency boils down 
to minimizing dissipated energy for a given production. General indicators such as the specific energy consumption (SEC), 
that is, the total energy consumption per unit of output, only allow for a shallow analysis of a system’s energy efficiency. A 
key success factor in enhancing a production system’s energy sustainability lies in the ability to allocate energy performance 
indicators (EnPI) to dedicated active components, actuators, and operating modes, designated as components, actuators, and 
operations, respectively. In this context, an actuator consists of a group of physical components always active simultaneously 
(e.g., a rotor and bearings), and an operation relates to the accomplishment of a task using a fixed group of actuators (e.g., 
drilling would use two motors to rotate and advance the drill). A machine thus obeys the same dynamics throughout an 
operation. This dynamics is more specifically made up of the actuators’ dynamics and possible couplings between them. In 
practice, though it is common to monitor a manufacturing machine’s total energy consumption (a mandatory requirement 
to compute EnPI), the activation sequences of (i) the actuators composing this machine and (ii) the different operations 
performed by the machine are seldom available. Hence, the times at which components, actuators, and operations are 
active need to be inferred from sensor data, without any prior regarding the studied system (no physical or process models). 
Furthermore, in order for such a process identification technique to scale, the use of nonintrusive sensors is preferred (e.g., 
accelerometers or current sensors). These sensors have the particularity of sensing much information from multiple remote 
sources, resulting in coupled dynamics from a sensor’s point of view. Signal processing is thus required to uncouple these 
sources. This constitutes an underdetermined blind source separation (UBSS) problem, yet only activation statuses are sought 
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rather than mixed signal. By putting the emphasis on the activation statuses of the components, actuators, and operations 
rather than source signal recovery, the latter aspect can be performed using an independent physics-informed regression 
algorithm instead of a statistical decomposition. Only the former aspect is considered here. Moreover, data are represented 
in the time-frequency (TF) domain. 

UBSS problems are traditionally tackled using decomposition algorithms either identifying a mixing matrix and source 
signals or learning a sparse representation from a dictionary of representative vectors built iteratively. Such processes 
(subspace methods in particular) are very efficient when data are piecewise stationary [1], yet this assumption is too restrictive 
in this context since this would not cover controlled systems. 

This motivates the use of multitarget tracking (MTT) for estimating both the state and the number of active components 
in a signal. The main contribution of this chapter hence consists of an MTT formulation allowing for tracking harmonic 
components over time. We propose a simple peak-based harmonic component detector (stemming from the signal’s power 
spectral density). A particularity of the problem on hand is the time-varying number of false alarms per scan, which depends 
on the level of noise associated with each source signal. We hence propose a feature-aided tracking (FAT) formulation, based 
on the spectral kurtosis, increasing the clutter resilience of our tracking filter. 

Related works focusing on MTT and frequency tracking are presented in the first section. Problem formulation is detailed 
in the second section, together with background knowledge regarding the techniques used in this chapter. The enhancements 
made to the tracker in order to increase its resilience to clutter are presented in the third section. The fourth section details 
how this MTT formulation is adapted to solve an unsupervised multilabel classification problem. The verification of the 
developed technique is performed on synthetic data; the results are presented and discussed in the fifth section. 

15.2 Related Works 

In blind source separation, independent component analysis (ICA) and its extension to the underdetermined case [2] have  
received great attention over the years, yet this method cannot separate sub-Gaussian distributions and is not well suited to 
discrete event data. Diverse techniques exist to estimate the number of source signals [3], often based on subspace methods. 
For the problem on hand, the number of actuators cannot be recovered using these methods [4], but the number of distinct 
operations can be retrieved. A traditional approach to tackle UBSS problems consists of clustering time-series data into 
chunks over which the number of sources is assumed to be constant; the signal is then factorized into a mixing matrix and 
unmixed source signals [5–7]. Another formulation consists of factorizing data as a dictionary of atoms (representing relevant 
modes) and a representation (linear combination of atoms) [8]. For these linear combinations to truly represent the sought 
labels, the representation must remain binary as in the semi-binary non-negative matrix factorization [9, 10]. Alternatively, 
dynamic time warping (DTW) can be coupled with hidden Markov models when clustering signals with different shapes 
[11, 12]. 

In this chapter, we adopt a multitarget tracking framework in which the number and states of target harmonic components 
are sought. Multifrequency tracking has been extensively studied in the literature as a data assimilation problem using 
Kalman filters [13, 14] and particle filters [15, 16] in particular. In these applications, tracks are initiated heuristically, and 
tracking is then treated solely as a state estimation problem. 

Two additional challenges arise in the class of applications considered in this chapter. First, the number of harmonic 
components to track is not known a priori, evolves over time, and is not necessarily detected at each time step. A 
second important aspect is the presence of a time-varying number of false alarms (clutter). Suitable real-time compatible 
data association filters (responsible for mitigating the effect of clutter on state estimation performance) include the joint 
probabilistic data association (JPDA) filter, probabilistically associating measurements to tracks, and probability hypothesis 
density (PHD) filters [17, 18], implicitly fusing all states with all measurements at each time step. In between these two types 
of filter, a set JPDA has been proposed in [19]. 

With a view to increasing state estimation performance, feature-aided tracking has been investigated in the literature. 
The association probability of the JPDA was refined using signal-to-noise ratio (SNR) [20], radar high-resolution range 
(HRR) [21], and wavelet-based spectral features [22]. Target Doppler and down-range extent were implemented in feature-
aided PHD filters [23, 24]. In these applications, the ingenious integration of feature information—essentially in the data 
association part of the filter—resulted in better tracking performance and exhibited clutter-resilient behaviors.
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15.3 Problem Formulation 

Among existing frameworks, the MTT formulation has the potential to track time-varying spectral components while 
detecting when a new component appears or disappears, thus alleviating major limitations in subspace decomposition 
methods. 

As a machine operates through its manufacturing process, an actuator a with status .δa
t ∈ {0, 1} at a time step t can switch 

on (1) or off (0) components with status .δc
t ∈ {0, 1}, producing sudden changes in sensor data, and bringing the machine 

into a new operating mode with status .δo
t ∈ {0, 1}. From a set of . Ht harmonic components (targets) with states .

{
xh

t

}Ht

h=1 at 

time step t in the TF domain, a set .
{
zm
t

}Mt

m=1 of . Mt measurements is produced from a single sensor. Targets follow a Markov 
transition model .p(xh

t |xh
t−1). 

A simple harmonic component detector is proposed. The discrete Fourier transform (DFT) is evaluated on successive 
overlapping windows with time index t . Then a detection .zm

t = [
am
t , bm

t , Am
t , ωm

t

]T + wt is triggered every time the 

power spectral density reaches a peak above a threshold . τ , where .wt ∼ N
(
.; 0; diag(

[
σa, σb, σA, σω

]
)
)

; . Am
t , . ωm

t , . am
t , 

. bm
t are a harmonic component’s amplitude, pulse, and complex coefficients, respectively, and . σA, . σω, . σa , . σb denote their 

corresponding standard deviations. This measurement m corresponds to a complex yet undamped modulated sine wave 
supplemented with Gaussian noise .ws

t ∼ N
(
.; 0; σs

)
, i.e., .sm

t = Am
t exp

(
i ωm

t t
) + ws

t = am
t + i bm

t . An immediate 
consequence of this detection technique is the time-varying nature of the number of false alarms per scan . λFA. In this  
formulation, .λFA is implicitly defined by the noise level . σs . The underlying detection probability .pD is unknown, yet close 
to unity. 

The trajectory .T h
ti :tf of a target h is made of associated states . xh

t (defined by the same variables as the measurement 
vector) between times . ti and . tf . For simplicity, the same target index h is kept over time. 

For interpretation, a trajectory represents the behavior of a physical component, unless its frequency can be expressed as 
a positive integer multiple of another trajectory’s (i.e., as a harmonic of the fundamental frequency). 

Formally, an occurrence of an operation o thus corresponds to a set of trajectories .�o
toi :tof = {

T h
toi :tof

}Ho

h=1 made of . Ho

components between times . toi and . tof . Similarly, each time an actuator a is activated, it induces a set of trajectories . �a
tai :taf =

{
T h

tai :taf
}Ha

h=1 composed of .Ha components between times . tai and . taf . 

15.4 Feature-Aided SMC-PHD for Harmonic Component Tracking 

The SMC-PHD filter is considered in this chapter due to its inherent clutter-resilience and computational efficiency (from a 
data association point of view) [17]. Indeed, in this MTT framework, target dynamics is nonlinear and much clutter (false 
alarms) is expected, yet the detection probability is high. The SMC-PHD filter is particularly well suited to such problems. 
This filter consists of five steps: (i) particle sampling, (ii) prediction, (iii) update, (iv) resampling, (v) clustering, and (vi) 
assignment. Particle sampling is responsible for exploring the state space and spotting new targets. Prediction, update, 
resampling, and clustering constitute the multitarget state estimation activities. Assignment binds tracks (states and associated 
covariances) to one another across time steps, resulting in trajectories. The SMC-PHD filter relies on two assumptions [24]: 

Assumption 1 The targets are independent of one another and generate at most one measurement per scan. 

Assumption 2 Clutter and target birth distributions are Poisson and target-independent. 

We apply uniform particle sampling over the field of view (FOV), that is, the whole spectrum. This degrades the state 
estimation performance but allows locating any target appearing within the FOV. 

State estimation relies on a transition model, here the amplitude and the frequency follow a generic random walk, whereas 
the complex coefficients rotate at the harmonic component’s angular frequency. The transition equation is given by Stephan 
et al. [25] 

.

⎡

⎢⎢⎢
⎣

ah
t+1

bh
t+1

Ah
t+1

ωh
t+1

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢
⎣

cos (ωh
t �t) − sin (ωh

t �t) 0 0
sin (ωh

t �t) cos (ωh
t �t) 0 0

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦
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⎢⎢
⎣
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t
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t
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t

ωh
t

⎤

⎥⎥
⎦ + vt (15.1)
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where . vt is a zero-mean Gaussian noise and . �t is the duration of a time step. 
Similarly to [24], we augment the likelihood (Eq. (15.3a)) as well as the PHD of the posterior (Eq. (15.3b)) using a  

feature likelihood, that is, the probability for a measurement to be target-originated, based on the spectral kurtosis. The 
spectral kurtosis . κm

t is obtained by evaluating the kurtosis on a window t filtered using a band-pass filter (BPF) with a . �ωbp

bandwidth centered around . ωm
t ; a more detailed definition is presented in [26, 27]. In order to interpret the spectral kurtosis 

and elicit a feature likelihood, the following assumption is made [27]: 

Assumption 3 Noise and excitations highlighting normal modes are assumed to be mesokurtic or leptokurtic. 

That is, the deterministic part of the signals of interest (in their bandwidth) must have a kurtosis strictly below 3 (kurtosis 
of a Gaussian distribution, i.e., noise in this context). This assumption also leads to a restriction on transient responses. Fast 
and spiky transients will be leptokurtic and difficult to distinguish from noise and exceptional events. Such transients will 
thus be treated as clutter. For this reason, we use the spectral kurtosis to correct the estimation in a probabilistic framework 
rather than triggering measurements solely based on this information. 

With a view to lower the weight of clutter-influenced particles, a feature likelihood (assessing the extent to which a 
measurement was target- or clutter-originated) is elicited from the spectral kurtosis. To this end, we fit a gamma distribution 
such that the cumulative probability function (cdf) reaches 95% at .κ = 3 (shape parameter .α = 2.615 and scale parameter 
.θ = 0.525), resulting in the spectral kurtosis likelihood: 

.pf (κm
t ) = 1

�(α)θα

(
κm
t

)α−1 exp

(
− κm

t

θ

)
(15.2) 

This feature likelihood is assumed to be independent of the kinematic likelihood .gt (z
m
t |xh

t ). It refines the weights 

.
{
w

(p)
t |t

}Lt

p=1 of the . Lt particles approximating the PHD of the posterior at time step t , expressed with respect to prior weights 

.
{
w

(p)

t |t−1

}Lt

p=1: 

.gt (z
m
t |xh

t ) ←− gt (z
m
t |xh

t )pf (κm
t ) (15.3a) 

.w
(p)
t |t =

⎡

⎣1 − pD +
∑

m∈�1,Mt �

pD gk(z
m
t |x(p)

t )

K + ∑Lt

p′=1 pD gt (z
m
t |x(p′)

t )w
(p′)
t |t−1

⎤

⎦w
(p)

t |t−1 (15.3b) 

where the detection probability .pD and the clutter spatial density K are assumed to be constant and uniformly distributed 
over the FOV. These weights are also further scaled up or down (and carefully re-normalized to their original mass) according 
to their probability .pf (κ

(p)
t ) to represent a target, that is, .w(p)

t |t ←− w
(p)
t |t pf (κ

(p)
t ). However, evaluating the spectral kurtosis of 

each particle at its estimated frequency would be computationally intractable. Instead, the spectral kurtosis of a particle 
is computed as a linear interpolation of the one calculated during preprocessing (for each frequency bin of the DFT). 
Alternatively, this step can be skipped for real-time applications. 

This feature-aided SMC-PHD filter finally yields tracks (states and associated covariances) .
{
T h

}H

h=1, where H is the total 
number of harmonic components detected in a dataset. 

15.5 Multitarget Tracking to Unsupervised Multilabel Classification 

The tracks obtained in the previous section at most represent the behavior of physical components. In this section, a technique 
is proposed to process and interpret these tracking results in order to recover the activation sequences of the actuators, and 
the operations they perform. 

A first step consists of grouping harmonic components according to their trajectories’ states. For simplicity, a descriptive 
vector is computed for each component, namely .μh = [

Ah,ωh, σh
A, σh

ω

]T , corresponding to the average amplitude, 
angular frequency, and associated covariances over a trajectory . T h. Pairwise distances are computed, allowing for harmonic 
components to be grouped with one another according to these descriptors. Euclidean distance upon standardized features 
was considered in this chapter. In more complex cases than those considered, other metrics can be used to associate the 
tracks between them. For instance, Fréchet distance [28] takes the shape of the trajectory into account, and distances based
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on Gaussian processes (GP) [29] can take advantage of uncertainty information (i.e., state covariance along each trajectory) 
provided by the MTT framework. Furthermore, actual harmonics are grouped together. That is, given two components h and 
. h′, h is paired with . h′ as one of its harmonics if there exist .k ∈ N such that .ωh

t ≈ k ωh′
t throughout the tracks’ lifespans. 

This step results in sets of trajectories . �c for each component c. The activation statuses .δc ∈ {0, 1}1×T over T time steps are 
immediately deducted from these groups. 

In a second step, components are grouped together according to their activation sequences. Pairwise similarities are 
computed to identify components that are always simultaneously active. The Jaccard index [30] is considered here, yet other 
clustering metrics can be used to compare label sequences with each other. This step results in the activation statuses . δa of 
the actuators. At last, each operation can be characterized by a set of actuators simultaneously active. Operation activation 
statuses . δo hence immediately stem from the actuators’ statuses. 

Interestingly, the transition from multitarget tracking to unsupervised multilabel classification follows a bottom-up 
approach (gradually building the operation activation statuses from atomic components), whereas traditional underdeter-
mined blind source separation methods use top-down approaches (from operation clustering to their decomposition into 
atoms) [4, 5]. 

15.6 Numerical Simulations and Discussion 

A study has been conducted to assess the ability of the proposed approach to identify a machine’s production process. A 
representative synthetic scenario has been designed. A univariate signal was composed as the superimposition of actuator-
originated signals, according to the pattern “.AC − AB − BC − ABC”, where A, B, C denote both actuators and atomic 
operations (i.e., originated by a single actuator). 

These actuators produce a 50 Hz-triangle wave, a .700–800 Hz second order (with rise time .τa
1 = 0.3 s and damping 

.ζ = 0.3), and a .400–500 Hz first order (with rise time .τa
2 = 4s) modulated sine waves as source signals respectively, 

with amplitudes 1, 1 and 3 units; noise standard deviations .σa
s,0 = 0.2, .σa

s,1 = 0.8, .σa
s,2 = 1.2. The signal is sampled at 

.fs = 6250 Hz, and windowed at .w = 0.3 s with a .50% overlap for short-time Fourier transform (STFT) and spectral kurtosis 
computation. Measurements are generated according to a detection threshold .τ = −5.5 on the log power spectral density. 

To compute the spectral kurtosis, a second-order Butterworth band-pass filter is used with a bandwidth .�ωbp = 3�f , 
depending on the spectral resolution .�f = 1/w. 

This scenario has several specificities. An actuator is never active alone to begin with. This case would typically be 
misinterpreted by traditional decomposition algorithms, in that the pairs AB, BC, and AC would form atomic unseparated 
modes. Furthermore, the second-order source signal is characterized by its fast rise time and important overshoot. This signal 
highlights the expected difficulties encountered by the filter when presented with such transients, as mentioned in the third 
section. 

The SMC-PHD is parametered by a clutter rate .λ̂FA = 20 false alarms per scan, a probability of detection .pD = 99%, 
noise standard deviations .σA = 0.3, .σω = 2 ·2π rad · s−1, and 1500 particles per expected target. As a birth model, particles 
are sampled uniformly over the FOV in order to spot targets as they appear. Due to the high-frequency resolution and the 
fast convergence of target states, we apply the roughening strategy proposed in [31] in order to limit the risk of sample 
impoverishment. 

Despite obvious difficulties with fast-rising transients, we observe that smooth transients are correctly tracked. In 
comparison to other UBSS frameworks in which data is represented as successive vectors, the orthogonality between the 
dimensions would make the associated techniques fail (e.g., singular value decomposition [SVD] or sparse regression). 

The results of the proposed approach are presented in Fig. 15.1. 
Numerical experiments highlighted the little sensitivity the SMC-PHD filter has with respect to its estimated clutter 

rate. Furthermore, slightly overestimating .λ̂FA results in better estimation performance, yet at this stage, artifacts remained. 
This motivated the use of the spectral kurtosis feature to make the filter less dependent on the true (noise-induced) 
clutter rate across the different operations. Although this enhancement had a very positive effect on clutter resilience, the 
formulation proposed to elicit a feature likelihood out of the spectral kurtosis experimentally suffered the (theoretically 
expected) drawback of preventing the tracker to pick up on fast transient responses. Additionally, the birth model is 
corrected immediately after particle sampling using the proposed feature likelihood. This prevents erroneous tracks from 
being generated. 

Another major advantage of the proposed method for UBSS problems is the ability to decompose a signal despite 
nonlinearly mixed signals. In practice, actuators emit component-specific signatures, that is, harmonic components that
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Fig. 15.1 Tracking and decomposition results on a synthetic use case (“.AB − BC − AC − ABC” sequence of operations with actuators .A = δa
0 , 

.B = δa
1 , .C = δa

2 ; active operations and actuators are shown in red) 

uniquely define them in a machine. Hence, by removing coupled harmonics (same frequencies, but different amplitudes), 
actuators can be well separated regardless of the way they were aggregated in the first place by the remote nonintrusive 
sensor. 

15.7 Conclusions 

In this chapter, a feature-aided SMC-PHD was proposed to track harmonic components using the spectral kurtosis to 
distinguish targets from noise-originated clutter. An algorithm was developed to convert MTT results (trajectories, states,
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and covariances) into component, actuator, and operation activation sequences. This end-to-end unsupervised process 
identification approach was verified on synthetic data in a nontrivial scenario in which typical UBSS methods would 
underperform. 

Future work will focus on increasing clutter resilience, handling stronger nonlinearities and transient responses, and 
validating the generalizability of the approach. Indeed, real-world signals often exhibit a variety of mixed behaviors, from 
stationary to nonstationary and nonlinear harmonic components. The use of heterogeneous models will be investigated. 
Moreover, uncertainty information provided by the MTT framework will be leveraged using statistical distances between 
tracked harmonic components for a better multilabel clustering performance. 
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