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Abstract A structural health monitoring (SHM) system acquires sensor measurements from which a structural state can 
be inferred. An updated understanding of the structural state is crucial in making appropriate maintenance decisions over 
the life cycle of the structure. However, the inferred structural state may be incorrect if the sensing system that initiates 
the SHM workflow is unreliable. The operational and environmental conditions that these sensors can face, in addition to 
normal manufacturing defects, result in varying functionality at different monitoring locations, at different times. Therefore, 
it is important to account for sensor reliability in the optimal sensor design process for the SHM system at the outset. In 
this chapter, we propose an optimal sensor design framework that accounts for the time-dependent reliability of the sensor 
network over the life cycle of the structure. The targeted objective function (Bayes risk) must consider the consequence 
of unreliable measurements over time, uncertainties in loading, sensor readings, and bias. This makes the Bayes risk a 
multidimensional integral with a non-linear integrand. The algorithm deploys the Bayesian optimization technique in tandem 
with univariate dimensional reduction and Gaussian-Hermite numerical approximation of the Bayes risk that catalyzes 
efficient numerical implementation of an otherwise computationally exhaustive process. We consider monitoring of a miter 
gate as the demonstration example and focus on the inference of an unknown and uncertain state-parameter(s) (i.e., damage 
from the loss of contact between the gate and wall, the “gap”) from the acquired sensor data. 

Keywords Bayesian optimization · Sensor reliability · Structural health monitoring · Miter gate · Uncertainty 
quantification 

14.1 Introduction 

This chapter describes a sensor optimization framework with consideration of spatial and time-dependent sensor reliability. 
That is, the framework considers the possibility of sensors malfunctioning over time. The goal here is to design a reliable 
sensor network such that the measurements lead to a reliable inference of the damage state over the life cycle of the 
structure even in a situation where some sensors in the network have malfunctioned. This research is built on the Bayesian 
optimization-based sensor placement framework that we had developed in our previous works (see Yang et al. [1, 2]). A well-
designed data acquisition system leads to an improvement in the Value of Information (see Chadha et al. [3]) and is crucial 
for reliable decision-making (see Chadha et al. [4]). The sensor optimization algorithm is applied to a complex real-world 
miter gate structure where different parts of the structure are exposed to different environmental conditions that dynamically 
change over time. 
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14.2 Problem Definition 

We consider three scenarios of sensor reliability. In scenario 1, the sensor is perfectly functional (hence yields reliable 
readings) but has standard measurement noise. In scenario 2, the sensor is partially malfunctioning. Therefore, along with 
the standard measurement noise, the sensor readings also suffer from reliability bias. In scenario 3, the sensor has completely 
failed. In most cases, the third scenario can be easily recognized and rectified by an on-site repair/replacement. We focus on 
the second scenario of accounting for sensor reliability over the life cycle of the structure in an optimal sensor placement 
framework. 

Consider a sensor design e ∈ �E consisting of Nsg(e) number of sensors with the measurement .xe(t) ∈ �Xe(t). Over its life 
cycle, a structure is subjected to uncertain loading, denoted by the random vector H(t) with a realization h(t) ∈ �H(t). Let�(t) 
denote a random variable representing the state/damage parameter vector at any time t with a realization denoted by θ (t). Let 
the random vector ζ e(t) represent the measurement noise (composed of standard observation noise and reliability bias), with 
a realization denoted by .εe(t) = (

εe1(t), εe2(t), · · · , εeNsg(e)(t)
) ∈ �ζe(t). We consider a general case where the structure 

is divided into various reliability zones depending on the parts of structures exposed to different environmental conditions 
[modeled by the loading term denoted by h(t)]. Let �S = {sunrel, srel} denote the set of functional states of the sensor, where 
sunrel denotes that a sensor is malfunctional and unreliable (scenario 2) and srel represents a fully functional and reliable sensor 
(scenario 1). The probability mass functions .PSei (t)|H(t) (sunrel|h(t)) and . PSei (t)|H(t) (srel|h(t)) = 1 − PSei (t)|H(t) (sunrel|h(t))

denote the probability of the i-th sensor malfunction or fully functional at time t conditioned upon the loading zone [defined 
by the load vector h(t) and the sensor location of the i-th sensor in sensor array design e]. Let .fζei (t)|H(t) (εei(t)|h(t)) denote 
the distribution of observation noise in the i-th sensor conditioned upon the loading zone at which the sensor is installed 
(which is assumed to be defined in terms of various loading situations). The uncertainty in the measurements is contributed 
by two effects: (a) the standard observation noise of scenario 1 and (b) the reliability bias as a consequence of the sensor’s 
partial malfunction. That is, 

.εei(t) =
{

εei(t) for sensor functional state srel;
εei(t) + nei(t) for sensor functional state sunrel.

(14.1) 

Here, nei(t) is a realization of the random variable ηei (with the mean .μnei(t) and standard deviation .σnei (t)) that models 
the sensor reliability bias in the i-th sensor of the design e. .εei(t) is the standard observation noise for scenario 1 and it has a 
standard deviation of .σεei (t). The distribution of the measurement noise is then given by: 

.

fζei (t)|H(t) (εei (t)|h(t)) = PSei (t)|H(t) (srel|h(t)) 1
σεei (t)

φ
(

εei (t)
σεei (t)

)
+

PSei (t)|H(t) (sunrel|h(t)) 1√
σ 2

εei (t)
+σ 2

nei (t)

φ

(
εei (t)−μnei (t)√
σ 2

εei (t)
+σ 2

nei (t)

)

.
(14.2) 

We obtain the observed sensor readings xe(t) by adding the noise vector εe(t) to the exact/ground-truth value of the sensor 
measurement obtained using the FEM model ge(θ true(t), h(t); t). That is, 

.xe(t) = ge (θtrue(t), h(t); t) + εe(t). (14.3) 

Obtaining optimal sensor design using Bayesian optimization requires accessing the posterior distribution of the damage 
parameter θ (t) for a given measurement reading xe(t) numerous times. The posterior distribution is obtained using Bayes 
theorem as .f�(t)|Xe(t),H(t) (θ(t)|xe, h) ∝ fXe(t)|�(t) (xe|θ) .f�(t) (θ(t)). The likelihood is obtained using the measurement 
model for xe defined in Eq. (14.1) and the observation noise structure defined in Eq. (14.2) as:  

.

fXe(t)|�(t) (xe|θ) =
Nsg(e)∏

i=1
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⎠ .

(14.4) 

We use particle filtering technique for Bayesian inference of damage parameter θ (t) given the measurements xe(t).
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14.3 Objective Function Focused on Reliable Sensor Measurements 

We define the risk of sensor bias at time t as the absolute deviation between the true state and the mean of the posterior: 

.L (θtrue(t), h(t), εe(t); t) = ∣
∣μ�(t)|Xe(t),H(t) − θtrue(t)

∣
∣ . (14.5) 

The expected risk of sensor bias at time t is defined as follows: 

.E(e; t) =
∫∫∫

f�(t) (θ(t)) fH(t) (h(t)) fζei (t)|H(t) (εei(t)|h(t))L (θtrue(t), h(t), εe(t); t) dθ(t)dh(t)dεe(t). (14.6) 

Finally, the aggregate expected risk of sensor bias over the life cycle is given as: 

.ELC(e) =
∫

�T

E (e; t) dt =
∑tk∈�T

k=1
E(e; tk) . (14.7) 

We obtain the optimal sensor design e∗ using .ELC(e) as the objective functional by deploying the Bayesian optimization 
algorithm described in Yang et al. [1, 2], such that: 

.e∗ = argmin
e

ELC(e) (14.8) 

14.4 Results 

Figure 14.1 shows the optimal sensor network design e∗ obtained using Eq. (14.8) and the optimization algorithm delineated 
in Yang et al. [1, 2]. 

We observe that in the reliability-focused design there are more sensors above the mean downstream water head than 
the number of sensors below it. This is because the probability of sensors malfunctioning is higher when they are located 
below the mean downstream water head (higher likelihood of being in the submerged zone) than when they are installed 
above the mean water head (higher likelihood of being in the splash zone). The sensors are strategically placed in the gap’s 
neighborhood allowing for a realistic inference of the gap length and at the same time, collectively, sensors spend a higher 
average time in the splash zone over the life span of the structure, such that if the submerged sensors malfunction, the sensors 
in the splash zone can carry the burden of performing acceptable inference over the life cycle of the miter gate. 

Fig. 14.1 Miter gate and the optimal sensor network design for .μnei (t) = 10−4 and .σnei (t) = 2 × 10−6. (a) Rendered front view. (b) Rendered 
side view
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14.5 Conclusions 

This chapter briefly details the mathematical formulation behind a sensor optimization framework with a dual target: (1) 
the design obtained should lead to damage inference to an acceptable degree of accuracy; (2) the framework must consider 
all the uncertainties that the system is subjected to and account for the possibility of sensors malfunctioning over time. The 
reliability-focused designs lead to inference results that are overall reliable, consistent, representative of true gap evolution 
over time, and hence lead to improved Value of Information relative to random design. 
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