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Optimal Sensor Placement for Developing Reliable Digital Twins 
of Structures 

Tulay Ercan and Costas Papadimitriou 

Abstract Sensor networks are mounted on structures to collect information for addressing a number of important but 
competing tasks involved in building a reliable digital twin from the collected data. These monitoring tasks include (1) 
modal identification under low vibration measurements assuming that the system can behave linearly, (2) physics-based 
model selection and model parameter estimation under various vibration levels activating nonlinear mechanisms at subsystem 
levels, (3) virtual sensing and response reconstruction over the whole body of the structure using the information from the 
limited number of sensors, and finally (4) structural health monitoring and damage identification (location and severity). 
Optimal sensor configuration (OSC) designs (type, number and location of sensors) have been developed in the past to 
address individual tasks, making assumptions about the loads, models and environmental conditions. However, the sensor 
network should be designed to collect data that are informative for all tasks simultaneously. In addition, the OSC design 
should be made robust to modelling, loading and environmental uncertainties. Cost issues related to budget availability 
for implementing and maintaining a sensor configuration should also be considered in the sensor network design. In this 
work, a multi-objective OSC framework based on utility functions that are built from information theoretic measures 
and cost considerations is presented for accounting simultaneously for the aforementioned tasks and thus using cost-
effective information extracted from the physical sensing system for developing reliable digital twins. The Kullback-Liebler 
divergence is used to quantify the information gain from a sensor network, and heuristic algorithms to solve the multi-
objective optimization problem are proposed. 

Keywords Bayesian inference · Optimal experimental design · Information gain · Virtual sensing · Parameter 
estimation · Nonlinear structural dynamics · Multi-objective optimization 

12.1 Introduction 

The objective of an optimal sensor configuration (OSC) design is to maximize the quality of the data collected from a 
monitoring system. The instrumentation should be designed to collect data that are most informative for different and 
competing monitoring tasks, including model selection; model updating and parameter estimation; identification of location 
and magnitude of damage; as well as response reconstruction or virtual sensing of important quantities of interest that are 
deemed useful to evaluate the condition of structures, detect damages, and make decisions regarding structural health, safety, 
and performance. Realizing that an OSC for one monitoring task can be suboptimal for another task, a trade-off between the 
information gained from multiple tasks is needed when designing a monitoring system to be cost-effective and optimal for 
all the monitoring tasks. 

Let . δ be a sensor configuration involving the type, location and number of sensors in a structure. Information theoretic 
measures [1] such as mutual information, Kullback-Liebler divergence, information entropy, joint information and value 
of information can be used to measure the information content in the data obtained from a sensor network installed on 
a structure. For a monitoring task i the information gained by the sensor configuration . δ is denoted by .Ui

(
δ, ϕ

)
. The  

information contained in the data depends on the type, location and number of sensors in . δ. Uncertainties included in the 
parameter set . ϕ arise from modelling and measurement errors, as well as environmental and operational variabilities. Cost 
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of the monitoring system is also very important in the design of a sensor configuration in order to limit the overall lifetime 
cost associated with installing and maintaining the sensor network. 

The present study uses previous developments on the information gain indices .Ui

(
δ, ϕ

)
for measuring the information 

contained in a sensor configuration for each monitoring task and presents a multi-objective methodology for designing an 
OSC for building a reliable digital twin of an engineering system for the purpose of monitoring its state, performance, 
reliability and safety. In particular, the information gain for various monitoring tasks has been studied in the literature. 
Information gain measures have been developed for modal identification [2], for model updating [3] and parameter estimation 
[1, 4] of nonlinear models of structures, for damage identification [5], and for virtual sensing using modal expansion 
techniques [6, 7] and sequential Bayesian techniques [1] for linear systems. The sensor network is designed in this work 
to be optimal for several monitoring tasks simultaneously, cost-effectively trading off the information gained for each of the 
aforementioned monitoring tasks. 

12.2 Information Gain Accounting for Uncertainties 

The parameter set . ϕ introduced in .Ui

(
δ, ϕ

)
accounts for uncertainties in the model parameters such as stiffness and mass 

properties of the finite element model of the structure, model error uncertainties, as well as operational and environmental 
(e.g. input) uncertainties [1]. Probability distributions are used to quantify the uncertainty in the values of these model 

parameters. For this, the uncertain parameter vector . ϕ is modelled by a prior probability distribution .π
(
ϕ
)

. Then the 

information gain .Ui

(
δ, ϕ

)
is extended to account for the uncertainty in the parameter vector . ϕ so that the optimal design is 

robust to uncertainties involved in . ϕ. For this, the information contained in a sensor configuration for the i-th monitoring task 
is defined to be the expected information gain given by 

.Ui

(
δ
) =

∫
Ui

(
δ, ϕ

)
π

(
ϕ
)

dϕ (12.1) 

over all possible values of the parameter set . ϕ. The sources of uncertainties in the parameter set . ϕ vary from excitation 
uncertainties to structural model and prediction error model uncertainties. The integral in (12.1) can be computed using 
Monte Carlo techniques. 

12.3 Cost-Effective OSP for Multiple Monitoring Tasks 

The OSC design .δopt has to trade-off information provided for different monitoring tasks such as modal identification, 
structural identification, structural health monitoring, and response reconstruction (virtual sensing). It can be obtained by 
maximizing the normalized information gain values for each monitoring task. Herein, the OSC design is formulating as a 
multi-objective optimization problem of finding the optimal type and location of sensors that simultaneously maximizes the 
objectives 

.u
(
δ
) = {

u1
(
δ
)
, u2

(
δ
)
, . . . , un

(
δ
)}

(12.2) 

over all possible sensor configurations . δ, where .ui

(
δ
) = Ui

(
δ
)
/Ui,max is the normalized robust information gain and Ui, max 

is the maximum information gain that could be achieved for the monitoring task i by placing sensors at all possible sensor 
locations. The normalized information gain for each monitoring task guarantees that each term .ui

(
δ
)

in Eq. (12.2) varies  
from 0 (no information gain) to 1 (maximum information gain). The different information gains can also be combined into a 
single measure of the total information gain for all tasks, as follows: 

.u
(
δ
) =

n∑
i=1

wiui

(
δ
)

(12.3)
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where the weights wi, i= 1, . . . , n, sum to 1 and they measure the contribution of each monitoring task on the OSC. Heuristic 
algorithms such as forward and backward sequential sensor placement (FSSP/BSSP) algorithms [8] can be employed to solve 
the optimization problem. 

Analytical derivations [3] have shown that the information gain for each individual task increases as the number of sensors 
increases. As a result, the optimal number of sensors cannot be found by information gain considerations only, although after 
a number of sensors is optimally placed in the structure, the additional information gain is insignificant as one keeps adding 
sensors in the structure and this could be used as a criterion to select the optimal number of sensors. In practical applications, 
cost issues should be considered to select the optimal number of sensors. Specifically, the optimal number of sensors should 
be a trade-off between the information gain from the data and the lifetime cost of instrumentation and maintenance of the 
sensor system. Let .c

(
δ
)

be the total cost of a sensor configuration . δ, including the cost of sensors, the installation cost and 
the maintenance cost over the lifetime of the sensor system. The optimal number and location of sensors is obtained as the 
one that maximizes the information gain vector .u

(
δ
)

and minimizes the cost .c
(
δ
)
. Using the total information gain in Eq. 

(12.3), the selection of the OSC (type, location and number of sensors) can be setup as a two-objective optimization problem 
of minimizing the weighted sum .u

(
δ
)

and maximizing .c
(
δ
)
. The problem can be readily solved (e.g. [7]) to find the Pareto 

optimal solutions. Alternatively, given cost constrains (a fixed budget ct available for designing a monitoring system), the 
optimal sensor configurations can be reformulated as a constrained optimization problem of maximizing the objectives . u

(
δ
)

or the single objective .u
(
δ
)

subject to the cost constrain .c
(
δ
) ≤ ct . A special case of cost consideration in optimal sensor 

placement (OSP) can be found in [7] for a single monitoring task. 

12.4 Conclusions 

The conceptual design of a cost-effective OSC is formulated as a multi-objective optimization problem that trades off 
the information gained for each monitoring task and the installation and maintenance cost of instrumentation. The 
formulation presented can account for a variety of monitoring tasks provided that an information gain index is built for 
each monitoring task. The tasks may include modal identification, model selection, model updating, parameter estimation, 
damage identification and virtual sensing. The proposed methodology can accommodate the environmental and operational 
uncertainties, including input as well as modelling uncertainties manifested in building information gain indices. Monte 
Carlo techniques can estimate the resulting probability integrals, and a number of optimization strategies are available to use 
for solving the resulting multi-objective optimization problem and estimate the Pareto optimal sensor configurations. 
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