
Chapter 7 
Periodic Response Prediction for Hybrid and Piecewise Linear 
Systems 

G. Manson 

Abstract This chapter presents a completely novel framework for the prediction and understanding of nonlinear system 
behavior. The idea is simply that all nonlinear systems can be represented as a combination of linear systems between 
which information is exchanged. Under harmonic excitation, the periodic responses of such hybrid systems may be easily 
calculated when the switching between linear systems is specified in terms of time. These time-switching hybrid systems 
provide a useful stepping stone to more realistic piecewise linear systems where the switching criteria are specified in terms 
of displacement and/or velocity. This chapter details the framework and illustrates its ability to efficiently predict the periodic 
responses from piecewise linear systems. The framework is also shown to be capable of predicting both stable and unstable 
periodic responses for conditions where jump behavior is possible. The extension of the work to continuous nonlinear systems 
is also briefly discussed. 
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7.1 Introduction 

The environmental and economic pressures of the last couple of decades have resulted in an unprecedented effort on the 
part of structural design engineers to design structures that are more lightweight than, yet are at least as strong as, their 
structural ancestors. While this drive for strong, lightweight structures is clearly desirable, in many cases, this will also 
result in the structural response becoming significantly nonlinear. While research has been conducted into nonlinear system 
behavior for centuries, the current situation appears to be, as Worden and Tomlinson wrote in their monograph “Nonlinearity 
in Structural Dynamics” [1] that “there is no unique approach to dealing with the problem of nonlinearity either analytically 
or experimentally and thus we must be prepared to experiment with several approaches.” The primary aim of this monograph 
was to introduce and explain a number of these approaches that would belong in a “toolbox” for the analysis of nonlinear 
structural systems and included Harmonic Balance [2], Hilbert Transform [3], NARMAX modeling [4], the Masri-Caughey 
Restoring Force Surface method [5], Direct Parameter Estimation [6], and the Volterra Series approximation [7]. Approaches 
not considered in the monograph included perturbation methods [8], multiple scales [9], and nonlinear normal modes [10]. 
The research conducted using the aforementioned approaches over the last five or so decades has undoubtedly led to much 
greater understanding of the behavior of nonlinear systems and has resulted in countless applications. That said, it is fair to say 
that all approaches are not without their limitations. These limitations are often associated with the need for approximation 
or, where infinite series are being employed, are associated with the related issues of series convergence and truncation. 
Another limitation with the bulk of these approaches is that they are only capable of representing what is often termed “weak 
nonlinearity.” 

One of the reasons as to why there has not yet emerged a General Theory of Nonlinearity may be in the nonlinear 
dynamicists’ simple system of choice, namely, the Duffing oscillator [11]. While the classical Duffing oscillator model 
of a linear plus cubic stiffness term lends itself as a good approximation for many real engineering systems, it may not 
have been the best starting point for the development of a General Theory. The author would instead like to propose that a 
better starting point may be provided via hybrid systems and, their close counterparts, piecewise linear systems. The reason 
behind this proposal is that the responses of such systems may be written in terms of linear steady-state and linear transient 
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components without any recourse to a framework that presupposes the nature of the resulting response. Within the field of 
Control Engineering, hybrid systems are very well known and there have been several papers [12–14] that have demonstrated 
that such systems are capable of the most extreme form of nonlinear behavior, namely, chaos. It should be stated however 
that these papers all relied upon numerical simulation as opposed to any theoretical framework, which is the purpose of this 
chapter. 

The layout of this chapter is as follows: Sect. 7.2 develops the closed-form solution for the periodic response of a 
harmonically-excited time-switched hybrid system. Section 7.3 introduces an iterative approach that allows the closed-form 
solution of the previous section to be used for the prediction of periodic responses of piecewise linear systems, including 
the identification of stable and unstable solutions when the jump phenomenon is present. Section 7.4 rounds off with some 
discussion including how the approach may eventually be extended to predict the periodic responses of the Duffing oscillator. 

7.2 Periodic Response of Harmonically-Excited Time-Switched Hybrid Systems 

In this section, the format of the hybrid system will be introduced, followed by the development of the theory regarding the 
calculation of the periodic responses of these systems. The hybrid system will be composed of n linear systems with a single 
linear system being active at any point in time. The equation of motion for the ith linear system is written in nondimensional 
form: 

.Ÿ (τ ) + 2ζi

(
Ẏ (τ ) − Ẏoffseti

)

︸ ︷︷ ︸
Fdi

+ γi

(
Y (τ) − Yoffseti

)

︸ ︷︷ ︸
Fsi

= cos(ατ) (7.1) 

The above equation allows each linear system to have individual damping and stiffness parameters ζ i and γ i. The inclusion 
of .Ẏoffseti and .Yoffseti means that the zero values of damping force . Fdi

and stiffness force . Fsi may occur at nonzero values of 
velocity and displacement, respectively. 

The time point at which the active system changes will be referred to as a time switch. There will be multiple time 
switches and therefore, there will be multiple response segments. Assuming that the jth response segment occurs when the 
ith linear system is active, the total output displacement and velocity response segments, Yj(τ ) and .Ẏj (τ ), respectively, may 
be expressed as a sum of the steady-state and transient response segments: 

.
Yj (τ ) = Yssj (τ ) + Ytrj (τ )

Ẏj (τ ) = Ẏssj (τ ) + Ẏtrj (τ )
(7.2) 

The steady-state displacement response segment .Yssj (τ ) may be written as follows: 

.Yssj (τ ) = 2ζi

γi

Ẏoffseti + Yoffseti + |Hi(α)| cos (ατ + � Hi(α)) (7.3) 

where Hi(α), the frequency response function (FRF) of the ith linear system, is given by

.Hi(α) = 1

γi − α2 + i2ζiα
(7.4) 

The steady-state velocity response segment .Ẏssj (τ ) is the derivative of Eq. (7.3): 

.Ẏssj (τ ) = −α |Hi(α)| sin (ατ + � Hi(α)) (7.5) 

The transient displacement response segment .Ytrj (τ ) will be written as follows: 

.Ytrj (τ ) = exp
(−ζi

(
�τj

)) [
Aj cos

(
βi

(
�τj

)) + Bj sin
(
βi

(
�τj

))]
(7.6)
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where .βi =
√

γi − ζ 2
i and �τ j is the dimensionless time measured from the point at which the system became active. The 

transient parameters Aj and Bj will be calculated to ensure that the displacement and velocity values of the newly active 
system and those of the previously active system are the same at the point of switching. 

The transient velocity response segment .Ẏtrj (τ ) is the derivative of Eq. (7.6): 

.Ẏtrj (τ ) = exp
(−ζi

(
�τj

)) [(
βiBj − ζiAj

)
cos

(
βi

(
�τj

)) + (−βiAj − ζiBj

)
sin

(
βi

(
�τj

))]
(7.7) 

The above equations may now be used for the first idea of this chapter, namely, that the periodic response of harmonically-
excited hybrid systems, subjected to time switches that occur at the same point in the forcing cycle, may be expressed in a 
closed-form. It is assumed that the system parameters will be specified for each system as will the forcing frequency ratio 
α. Information regarding the times at which specific linear systems become active will also need to be specified. If there are 
a total of m time switches, vectors of size 1 × m must be specified that state which linear system becomes active at each 
switch and the time at which that switch occurs. The active system vector will be labeled S and the time switch vector will be 
labeled τ sw. All elements Sj (where j = 1, . . . , m) must be integers between 1 and n, while all elements .τswj

(where j = 1, 
. . .  , m) must be between zero and the repeat period τ period = 2π /α. It is also necessary that successive elements of τ sw must 
increase in value (in order to give a positive value for time spent in each active system) – there can be a single decrease in 
value, which will describe a “wrap-around” effect into the next forcing period. This concept should become clearer when an 
illustrative example is considered shortly. Once the τ sw vector has been specified, the �τ vector that details the time spent 
in each active system segment may be calculated. 

The time spent in system Sj (if j �= m) is given  by  

.
�τj = τswj+1 − τswj

if τswj+1 > τswj

�τj = τperiod + τswj+1 − τswj
if τswj+1 < τswj

(7.8) 

and, if j = m, the time spent in system Sj is given by

.
�τj = τsw1 − τswm if τsw1 > τswm

�τj = τperiod + τsw1 − τswm if τsw1 < τswm

(7.9) 

As stated previously, the closed-form expression for the periodic responses of harmonically-excited hybrid systems will be 
derived via equating the displacement of the newly active system to that of the previously active system at each time switch 
and doing the same with the velocity. Expressing the displacements and velocities in terms of steady-state and transient 
components gives rise to expressions that equate the steady-state differences to the transient differences as shown below (for 
j �= 1): 

.
Ytrj

(
τswj

) − Ytrj−1

(
τswj

) = Yssj−1

(
τswj

) − Yssj
(
τswj

)

Ẏtrj
(
τswj

) − Ẏtrj−1

(
τswj

) = Ẏssj−1

(
τswj

) − Ẏssj
(
τswj

) (7.10) 

and, for j = 1,

.
Ytr1

(
τsw1

) − Ytrm
(
τsw1

) = Yssm
(
τsw1

) − Yss1
(
τsw1

)

Ẏtr1
(
τsw1

) − Ẏtrm
(
τsw1

) = Ẏssm
(
τsw1

) − Ẏss1
(
τsw1

) (7.11) 

The steady-state displacement for the jth response segment (i.e., when system Sj is active) at the kth time switch is given 
by 

.Yssj
(
τswk

) = 2ζSj

γSj

ẎoffsetSj
+ YoffsetSj

+ ∣∣HSj
(α)

∣∣ cos
(
ατ swk

+ � HSj
(α)

)
(7.12) 

and the corresponding steady-state velocity is

.Ẏssj
(
τswk

) = −α
∣∣HSj

(α)
∣∣ sin

(
ατ swk

+ � HSj
(α)

)
(7.13)
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The transient displacement and velocity expressions at each time switch are a little less straightforward, and it is 
also necessary to develop expressions that relate the transient behavior between successive time switches. The transient 
displacement for the jth response segment (i.e., when system Sj is active) is given by 

.Ytrj
(
τswj

+ τj

) = exp
(−ζSj

τj

) [
Aj cos

(
βSj

τj

) + Bj sin
(
βSj

τj

)]
(7.14) 

where τ j varies from 0 (when system Sj becomes active) to �τ j (when system Sj stops being active). Similarly, the velocity
response for the jth response segment is given by a slightly modified version of Eq. (7.16): 

.Ẏtrj
(
τswj

+ τj

) = exp
(−ζSj

τj

) [(
βSj

Bj − ζSj
Aj

)
cos

(
βSj

τj

) + (−βSj
Aj − ζSj

Bj

)
sin

(
βSj

τj

)]
(7.15) 

Setting τ j equal to zero in the above two expressions and rearranging a little gives expressions for the transient parameters 
Aj and Bj in terms of the transient displacement and velocity at the time switch where system Sj becomes active. Similarly, 
setting τ j equal to �τ j in Eqs. (7.14) and (7.15) gives expressions for the transient displacement and velocity for system 
Sj at the time switch where it stops being active. These four equations may be combined to express the equality of the 
displacements and velocities of the previously active and newly active systems at any switch point. For .τswj

, the displacement 
and velocity equalities may be presented in matrix form: 

.

⎡

⎢
⎣
ecj−1 + ζSj−1

βSj−1
esj−1

1
βSj−1

esj−1 1 0

−β2
Sj−1

−ζ 2Sj−1
βSj−1

esj−1 ecj−1 − ζSj−1
βSj−1

esj−1 0 1

⎤

⎥
⎦

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ytrj−1

(
τswj−1

)

Ẏtrj−1

(
τswj−1

)

Ytrj
(
τswj

)

Ẏtrj
(
τswj

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
{

Yssj−1

(
τswj

) − Yssj
(
τswj

)

Ẏssj−1

(
τswj

) − Ẏssj
(
τswj

)

}

(7.16) 

where the shorthand notation ecj − 1 represents .exp
(−ζSj−1

(
�τj−1

))
cos

(
βSj−1

(
�τj−1

))
and esj − 1 represents 

.exp
(−ζSj−1

(
�τj−1

))
sin

(
βSj−1

(
�τj−1

))
. 

Repeating this for all m time switches results in the matrix expression [λ]{T} = {φ} where [λ] is a 2m × 2m matrix given 
by 

. [λ] =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

q1 r1 1 0 0 0 · · · 0 0
s1 t1 0 1 0 0 · · · 0 0
0 0 q2 r2 1 0 · · · 0 0
0 0 s2 t2 0 1 · · · 0 0
...

...
...

...
...

...
. . .

...
...

1 0 0 0 0 0 · · · qm rm

0 1 0 0 0 0 · · · sm tm

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

(7.17) 

where

.

qj = ecj + ζSj

βSj
esj , rj = 1

βSj
esj ,

sj = −β2
Sj

−ζ 2Sj

βSj
esj , tj = ecj − ζSj

βSj
esj

(7.18) 

{T} and {φ} are 2m × 1 column vectors given by 

. {T } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ytr1
(
τsw1

)

Ẏtr1
(
τsw1

)

Ytr2
(
τsw2

)

Ẏtr2
(
τsw2

)

...

Ytrm
(
τswm

)

Ẏtrm
(
τswm

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, {φ} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yss1
(
τsw2

) − Yss2
(
τsw2

)

Ẏss1
(
τsw2

) − Ẏss2
(
τsw2

)

Yss2
(
τsw3

) − Yss3
(
τsw3

)

Ẏss2
(
τsw3

) − Ẏss3
(
τsw3

)

...

Yssm
(
τsw1

) − Yss1
(
τsw1

)

Ẏssm
(
τsw1

) − Ẏss1
(
τsw1

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.19)
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Fig. 7.1 System response of the hybrid SDOF system composed of two linear systems. (a) The phase plane plot of total displacement against total 
velocity. (b) The same phase plane plot with the steady-state and transient responses superimposed. (c) The spring force versus displacement for 
the two linear systems with the dotted lines showing the switch discontinuities. In all three plots, the black lines show the response when linear 
system 1 is active and the red lines show the response when linear system 2 is active 

The transient displacements and velocities required at each switch point to ensure a periodic response may then be 
calculated using {T} =  [λ]−1{φ}. Once the time switch transient displacements and velocities have been calculated, the 
values of the transient parameters Aj and Bj may then be calculated, followed by the segment responses. Note that it would 
have been no more complicated to formulate an expression to directly calculate the transient parameters Aj and Bj but it was 
felt that the current formulation would be more consistent with any future plans to extend the approach for multi-degree-of-
freedom (MDOF) hybrid systems. 

A numerical example will now be given to illustrate the previous theory. A hybrid system composed of two linear systems 
will be considered. The first linear system parameters are ζ 1 = 0.1, γ 1 = 1, and .Yoffset1 = Ẏoffset1 = 0, while the second 
linear system parameters are ζ 2 = 0.1, γ 2 = 2, .Ẏoffset2 = 0, and .Yoffset2 = 0.5. It may be observed that the two linear systems 
only differ in their spring force versus displacement relationships, which are shown above in Fig. 7.1c. The forcing frequency 
ratio is α = 0.5 meaning that the repeat period will be τ period = 4π . The active system vector S is [1 2] and the time switch 
vector will initially be set as τ sw = [4 10]. This means that linear system 1 will become active at τ = 4 and remain so until 
τ = 10, at which point linear system 2 will become active. Linear system 2 will remain active until τ = 4 in the next forcing 
cycle and so on. Using Eqs. (7.8) and (7.9) gives  a �τ vector (time spent in each active system segment) as �τ = [6 6.57]. 
Note that these two time values sum to give the τ period value. The 4 × 4 [λ] matrix and the 4 × 1 {φ} column vector can then 
be constructed and substituted into Eqs. (7.17) and (7.19) to give the  4  × 1 {T} column vector that will result in a periodic 
response. The various steady-state, transient, and total displacement and velocity response segments may then be calculated. 
These are plotted in Fig. 7.1 in the form of two phase planes and a spring force versus displacement plot. The phase plane in 
Fig. 7.1a shows the phase plane segments of the linear system 1 total response as a black trajectory line and the phase plane 
segments of the linear system 2 total response as a red trajectory line and the continuity between the two segments is clear 
to see. Figure 7.1b shows the same phase plane plot but with the inclusion of both the steady-state and transient phase plane 
segments. The dashed black and red lines show the steady-state phase plane segments of linear system 1 and linear system 2, 
respectively, and may be seen to take the form of elliptical arcs. Emanating from the steady-state arcs and terminating at the 
solid total response segments are shown a series of dotted lines that depict the progression of the transient response segments. 
While this plot may appear a little more cluttered than the top left plot, it does contain valuable information about how the 
total periodic response arises from the equilibrium between the steady-state and transient components. Figure 7.1c shows 
the spring force versus displacement plot for the two active systems. The discontinuities of spring force at the switches are 
shown by the dotted vertical lines – in the next section, an approach for eliminating these discontinuities, thereby resulting 
in prediction of periodic responses of piecewise linear systems, will be discussed. 

7.3 Periodic Response of Harmonically-Excited Piecewise Linear Systems 

The previous section presented a relatively straightforward methodology for calculating the periodic response of a 
harmonically excited hybrid system composed of a number of linear systems assuming that all of the switches between 
systems were conducted on the basis of time and were fully specified. While there may be situations, particularly in control 
systems, where switches are conducted on the basis of time, it will be much more common for switches between linear
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Fig. 7.2 Flowchart illustrating 
the iterative optimization 
approach for identifying the time 
switches to give the desired 
displacement switch behavior 

systems to occur on the basis of displacement and/or velocity. This section will be concerned with how the time-switching 
method of the previous section may be exploited to predict the periodic responses of piecewise linear systems whose system 
parameters change on the basis of displacement. All of the ideas that are introduced here will be easily extendable to hybrid 
systems whose system parameters change on the basis of velocity or a combination of displacement and velocity. 

For hybrid systems that require only two time switches (such as that shown in the previous section), it will be possible to 
conduct an exhaustive search to identify the correct time switch values to give the desired displacement switch values. For 
situations where there are more than two time switches, it will be preferable to adopt an iterative approach to finding the 
correct time switch values. This iterative approach is best described using the flowchart of Fig. 7.2. As may be seen from the 
flowchart, the process begins with the specification of the system parameters for each linear system and the specification of 
the forcing frequency ratio α. The active system vector S must also be specified to state the order in which the systems will 
become active – this will also specify the number of switches m. The next step of the process is to generate, or specify, a 
valid initial time switch vector. This may be done via the specification of an initial time switch vector that is believed to be 
in close proximity to the required time switch vector – this approach will be used later to calculate periodic responses over 
a range of frequencies. For situations where a nearby initial time switch vector cannot be specified, a randomly generated 
initial time switch vector may be used. It has been found that the overall method is more computationally efficient if the 
random generation process is repeated until the generation of an initial time switch vector that results in the desired signs for 
each of the velocities at the switch points. The iterative part of the process is simply updating the time switch vector values so 
as to reduce the difference between the desired and actual switch displacements. The size of the time switch increments will 
depend upon the values of the displacement differences. This process is repeated until the sum of the absolute displacement 
differences is less than some pre-specified threshold level, at which point the overall periodic response may be plotted. 

The iterative process described above will now be employed to demonstrate how the steady-state and transient components 
combine to produce the overall system response for a trilinear system as the forcing frequency ratio changes. The first linear 
system parameters are ζ 1 = 0.1, γ 1 = 2, .Yoffset1 = −0.5, and .Ẏoffset1 = 0, the second linear system parameters are ζ 2 = 0.1, 
γ 2 = 1, and .Yoffset2 = Ẏoffset2 = 0, and the third linear system parameters are ζ 3 = 0.1, γ 3 = 2, .Yoffset3 = 0.5, and 
.Ẏoffset3 = 0. This hybrid system would be a trilinear stiffness oscillator if the switches between linear system 1 and linear 
system 2 occurred when the displacement Y = −  1 and the switches between linear system 2 and linear system 3 occurred 
when the displacement Y = 1. Forcing frequency ratios from α = 0.2 to α = 1.2 in steps of 0.2 were investigated. The active 
system vector S is [1 2 3 2]. The resulting phase plane plots are shown in Fig. 7.3. The solid lines again show the overall 
phase plane with the following colors being used: black for segment 1 (linear system 1 active), red for segment 2 (linear 
system 2 active for the first time), green for segment 3 (linear system 3 active), and blue for segment 4 (linear system 2 active 
for the second time). The dashed lines show the steady-state response segments for when each system is active and the dotted 
lines show the transient response segments for the same period. These plots hopefully show how the interaction between the
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Fig. 7.3 System response of a trilinear system for various forcing frequency ratios. In all plots, the black lines show the response during segment 
1, the red lines show the segment 2 response, the green lines show the segment 3 response, and the blue lines show the segment 4 response. Solid 
lines denote the phase plane of the overall response, while dashed lines show the steady-state components of the response when each system is 
active. The dotted lines emanating from the steady-state arcs show the progression of the transient components of the response 

steady-state and transient responses results in the overall response. This explains how the distorted phase planes for α = 0.2 
and α = 0.4 arise and also how the steady-state phase mismatch at α = 1.2 results in large transient responses and a large 
overall response. Note that it is not possible for the trilinear system to maintain a nonlinear periodic response for α ≥ 1.4 
with the only possible periodic response being the steady-state response of linear system 2. 

In the previous example, there was only one possible periodic response for all forcing frequency ratios – this response 
was nonlinear for α < 1.4 and linear for α ≥ 1.4. It will now be shown that, by increasing the values of the linear stiffness 
terms, the iterative method can identify a stable nonlinear periodic response, an unstable nonlinear periodic response in 
addition to the linear periodic response for a region of frequency ratios α ≥ 1.4. The stiffness parameters for linear system 
1 and 3 will now be increased in value, with linear system 2 remaining the same as in the previous example. The first linear 
system parameters are now ζ 1 = 0.1, γ 1 = 5, .Yoffset1 = −0.8, and .Ẏoffset1 = 0; the second linear system parameters are still 
ζ 2 = 0.1, γ 2 = 1, and .Yoffset2 = Ẏoffset2 = 0; and the third linear system parameters are ζ 3 = 0.1, γ 3 = 5, .Yoffset3 = 0.8, 
and .Ẏoffset3 = 0. Again, this hybrid system would be a trilinear stiffness oscillator if the switches between linear system 1 
and linear system 2 occurred when the displacement Y = −  1 and the switches between linear system 2 and linear system 3 
occurred when the displacement Y = 1. The active system vector S is again [1 2 3 2]. The same iterative process described 
above was employed to identify the stable and unstable nonlinear periodic responses along with the stable linear periodic 
response for the region between 1.4 ≤ α ≤ 1.8. The process for consistently maintaining the stable or unstable nonlinear 
branch was through “seeding” the approach with the previous time switch vector. The active system vector S is [1 2 3 2]. The 
resulting phase plane plots for forcing frequency ratios from α = 1.4 to α = 1.8 in steps of 0.1 are shown in Fig. 7.4. On this  
occasion, the black lines depict the stable nonlinear response, the green lines depict the stable linear response and the red 
lines depict the unstable nonlinear response. The progression of the red unstable nonlinear response from being very near 
to the green linear response at α = 1.4 to being very near to the black stable nonlinear response at α = 1.8 may be clearly 
observed. Note that it is not possible for this trilinear system to maintain a nonlinear periodic response for α ≥ 1.8 with the 
only possible periodic response being the steady-state response of linear system 2.
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Fig. 7.4 System response of a trilinear system for various forcing frequency ratios. In all plots, the black lines show the nonlinear stable response, 
the red lines show the nonlinear unstable response, while the green lines show the linear stable response 

7.4 Discussion and Conclusion 

This chapter has presented a closed-form solution for the periodic response of a time-switched hybrid system. As stated 
earlier, this may be of use in some control engineering applications but the main thrust of this chapter was how this closed-
form solution could be wrapped into an efficient iterative approach for the calculation of periodic responses of piecewise 
linear systems, including the prediction of stable and unstable solutions in the jump frequency range. The method shown 
can very easily be extended to other piecewise linear systems – this could include systems whereby nonlinear damping (e.g., 
combinations of friction and viscous damping) is represented via a number of linear systems. 

That said, the true potential of this work, in the author’s view, will be its possibility to be extended to continuous nonlinear 
systems, such as the Duffing oscillator. It is a simple matter to include more linear systems into the piecewise linear model 
and thereby start to approach the Duffing oscillator’s stiffness curve. It is hoped that, by considering the overall response as 
the combination of linear steady-state and linear transient components, the ever-surprising Duffing oscillator may reveal all 
of its secrets. 
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