
Chapter 16 
Derivative-Less Arclength Control-Based Continuation for the 
Experimental Identification of Nonlinear Frequency Responses 

Gaëtan Abeloos and Gaëtan Kerschen 

Abstract This study focuses on the continuation process that is inherent to control-based continuation. Existing continuation 
procedures can be separated in two families. Similarly to numerical continuation, derivative-based methods find the solution 
of an objective function, the derivatives of which are estimated using finite differences. In mapping-based methods, the input 
parameter space is exhaustively or partially explored during the experiment. The features of interest can then be extracted 
during a post-processing phase or in parallel to the experiment. A novel arclength continuation procedure is developed in this 
paper. It requires neither the estimation of derivatives nor the identification of responses outside the features of interest, thus 
simplifying and accelerating the continuation process. The method is demonstrated numerically using a Duffing oscillator. 

Keywords Nonlinear vibration · Control-based continuation · Arclength continuation · Duffing oscillator · Frequency 
responses 

16.1 Arclength Continuation: The Basic Idea 

The objective of this paper is to develop a continuation procedure which is simple to conceptualize and to implement and 
which avoids the need for post-processing or offline computations. The method is inspired by (i) the numerical arclength 
continuation procedure [1, 2], during which a control parameter is changed until it reaches the desired equilibrium, and (ii) 
the adaptive filtering-based online CBC experiment [3]. 

Because the sought frequency response curve (FRC) is one-dimensional in the input parameter space, a sufficiently small 
ellipse centered on the branch intersects it twice, as illustrated by the red markers in Fig. 16.1. One intersection is a previously 
identified response, and the other one is the next response to be identified. Successive responses on the FRC can thus be 
identified by increasing the arc angle . α on the ellipse until the system reaches the next intersection. The response lies on the 
FRC if the excitation amplitude p given by the CBC controller equals the targeted excitation amplitude . p∗. For illustration, 
Fig. 16.2 depicts the value of p depending on the arc angle . α along the ellipse in Fig. 16.1. The ellipse intersects the FRC 
twice, because p reaches the target value . p∗ twice. 

The continuation procedure is detailed in Fig. 16.3. We only need to know two responses on the FRC to identify a third 
one; the current one is denoted .(�c, X

∗
c ), and the previous one .(�p, X

∗
p). An ellipse with semi-major axes .�� and .�X∗

1 is 
centered at the current point. The slope angle . β between the current and previous points approximates the FRC slope. The 
input parameters .(�,X∗

1) are set on the ellipse with an arc angle . α from the previous point. The arc angle . α is increased 
progressively from an initial angle . α0 sufficiently far away from the previous point until p reaches . p∗, up to a certain 
tolerance . tolp. 

In practice, we advise to identify the backbone curve before using the arclength continuation method to identify an FRC. In 
doing so, the experimenter can estimate the intervals in which the frequency and amplitude vary, and, in turn, adimentionalize 
the input parameter space .(�,X∗

1) such that the eccentricity of the ellipse is close to unity, i.e., .�� ≈ �X∗
1 . Additionally, 

knowing the backbone allows to decrease the rate of change of the arclength when approaching the resonance peak, the 
region where transients can have the greatest effect on accuracy. The resonance peak can also be localized by looking at 
the evolution of the phase lag. An arc angle margin . α0 is chosen to ensure a sufficient distance with previously identified 
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Fig. 16.1 The proposed arclength continuation procedure. Previously identified responses: circles; next response to be identified: square, center 
of the arc (blue) and responses on the arc (red) 
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Fig. 16.2 Force amplitude p during the CBC experiment (Table 16.2) along the arc centered at .X∗ = 0.02, .� = 40.8 with the continuation 
parameters in Table 16.3 and excitation amplitude target .p∗ = 0.01. Previously identified response, circles, and next response: square 

Fig. 16.3 Arclength continuation for CBC experiment 

responses on the FRC. Finally, a cooldown time .twait is needed for damping the transients resulting from sudden changes in 
input parameters.
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16.2 Numerical Example 

In this section, the arclength continuation method is demonstrated numerically using the Duffing oscillator in Table 16.1 with 
the parameters in Tables 16.2 and 16.3. N is the number of harmonics considered in the harmonic balance method used to 
calculate the reference FRCs, . μ is the internal parameter of the adaptive filter, and . kd is the differential gain. 

During a CBC experiment, the reference derivative . ẋ∗ appears in the differential controller. It is usually equivalent to 
define the reference signal . x∗, then differentiate it to obtain . ẋ∗, or to define . ẋ∗ directly. However, for arclength continuation, 
because the reference amplitude follows an ellipse in the input parameter space, the path is different if the fundamental 
amplitude of . x∗, . X∗

1 , or the fundamental amplitude of . ẋ∗, .�X∗
1 , is considered, especially when the frequency . � changes 

significantly during the experiment. In this section, we implement the CBC experiment by defining . ẋ∗ directly. The reference 
amplitudes are therefore displayed as .�X∗

1 . 
Three strategies for moving along the ellipse and reaching the force target . p∗ are introduced. The first method is to sweep 

at a constant rate .α̇ = ηα until the excitation amplitude tolerance .tolp is reached. The path followed in the input parameter 
space is represented in Fig. 16.4. Figure 16.5 shows that the system is not in steady state when . p∗ is reached. Transients both 
in the system response and in the adaptive filters thus decrease the accuracy of the identified FRC, which is slightly shifted 
compared to the harmonic balance reference in Fig. 16.4. 

The impact of changes in the sweep rate . ηα or the semi-major axes .(��,�X∗) is plotted in Fig. 16.6. As expected, 
decreasing the sweep rate reduces the transients, which, in turn, increases the accuracy. However, this comes at the cost of a 
longer testing time (Table 16.4). When increasing the sweep rate, the more important transients may prevent the estimated 
force amplitude from reaching . p∗. In this case, the continuation procedure is looping indefinitely and fails to go across the 
fold bifurcation. Reducing the size of the arc allows the experimenter to identify more points on the FRC, as confirmed in 
Fig. 16.6. Additionally, smaller arcs reduce the magnitude of the transients. Eventually, the accuracy is improved, whereas 
testing time is increased (Table 16.4). 

Table 16.1 Parameters of the Duffing oscillator 

m c k . fnl(x) 
0.05 0.2 57 . 2 × 108x3 

Table 16.2 Simulation parameters of the CBC experiment 

N . fs in kHz .μ . kd 

5 5 0.001 2 

Table 16.3 CBC continuation parameters 

.tolp .α0 .ηα .ki .�� .�X∗ . twait 

.p∗/100 .π/4 .π/15 75 0.5 0.002 2 

Fig. 16.4 Arclength continuation of a cubic oscillator with arclength sweep. The accepted points are marked by circles. (a) Input parameter space 
and (b) FRC  at .p = 0.01 (harmonic balance in dotted curve)



122 G. Abeloos and G. Kerschen

/4 

/2 

3 /4

 in
 r

ad
 

0 2 4 6 8  10  

t 

0.01 

0.012 

0.014 

0.016 

p 

Fig. 16.5 Time series of the arc angle . α (arc sweep) and force amplitude p along an arc centered at .�X∗ = 0.02, . � = 6.5
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Fig. 16.6 Parametric study varying (a) the sweep rate .ηα = π/30 (blue . ×), .π/15 (black . ◦), and .2π/15 (orange . +) or (b) the semi-major axes 
.(��,�X∗) = (0.25, 0.001) (blue . ×), .(0.5, 0.002) (black . ◦), and .(1, 0.004) (orange . +). The dotted curve represents harmonic balance results 

Table 16.4 Time (s) to reach the 
amplitude peak of the cubic 
oscillator 

Arc sweep Arc control 

Reference 365 259 

Slower 650 500 

Faster *210 *153 

Smaller arc 908 1486 

Larger arc 180 *73 

The reference parameters are 
.(��,�X∗) = (0.5, 0.002), .ηα = π/30, 
and .ki = 75. The slower and faster runs 
correspond to .ηα/2 − ki/2 and .2ηα − 2ki, 
respectively. Smaller and larger arcs 
correspond to half and twice the reference 
semi-major axes. An asterisk means CBC 
failed to go across the fold bifurcation
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Fig. 16.7 Arclength continuation of a cubic oscillator with arclength integral control. The accepted points are marked by circles. (a) Input 
parameter space and (b) FRC  at .p = 0.01 (harmonic balance in dotted curve) 
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Fig. 16.8 Time series of the arc angle . α (integral control) and force amplitude p along an arc centered at .�X∗ = 0.02, . � = 6.5

The second arclength strategy is to use an integral controller acting on the arc angle . α with the excitation amplitude error 
as the input, i.e., .α̇ = ki(p − p∗). The path followed in Fig. 16.7 is similar to that in Fig. 16.4, because the arcs have the 
same dimensions. The effects of the transients are, however, diminished as the arc angle gently converges toward its target, 
as displayed in Fig. 16.8. The identified FRC in Fig. 16.7 is thus more accurate. 

The influence of the integral gain . ki is similar to that of the sweep rate . ηα . For instance, decreasing . ki leads to a longer 
(Table 16.4) but more accurate experiment (Fig. 16.9). Figure 16.9 evidences one drawback of the integral controller, namely, 
the arclength evolution depends on the force amplitude error. Input parameters further away from the desired values mean 
a greater force amplitude error and therefore faster evolution of the arclength. Decreasing the semi-major axes causes the 
experiment to last much longer (Table 16.4), but leads to excellent accuracy (Fig. 16.9). We note that a PID controller could 
also be considered. In theory, the proportional and differential gains could decrease the settling time and the overshoot. 
However, we think that a single control law cannot be optimal for the identification of the complete FRC, because the 
settling time would increase far away from resonance, whereas the overshoot would increase close to resonance. 

The third arclength strategy combines both arc sweep and integral control. The arc is first swept at a constant rate . ηα . 
This has the advantage that the arc’s semi-major axes are decoupled from the rate at which the arclength evolves. When 
. p∗ is reached, the sweep is interrupted, and an integral controller is activated, allowing a gentle convergence toward . p∗. 
Figure 16.10 plots the results for this strategy.
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Fig. 16.9 Parametric study varying (a) the integral gain .ki = 40 (blue . ×), 75 (black . ◦), and 150 (orange . +) or (b) the semi-major axes 
.(��,�X∗) = (0.25, 0.001) (blue . ×), .(0.5, 0.002) (black . ◦), and .(1, 0.004) (orange . +). The dotted curve represents harmonic balance results 
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Fig. 16.10 Time series of the arc angle . α (arc sweep+integral control) and force amplitude p along an arc centered at .�X∗ = 0.02, . � = 6.5

16.3 Conclusion 

This paper has introduced a novel experimental continuation method for FRCs requiring neither the estimation of derivatives 
nor the approximation of the response surface. One underlying assumption is that the input parameter space has no more 
than two dimensions. At the root of the method is an arclength continuation process during which the experiment follows an 
elliptic arc (centered on a previously identified response on the FRC) until it intersects the FRC again. Thanks to adaptive 
filtering, the continuation does not need to be halted, rendering the complete process fully online. The arclength continuation 
procedure was successfully validated numerically using a Duffing oscillator. 
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