
Visual Programming for Robot Control: 
Technology Transfer Between AEC 
and Industry 

Johannes Braumann , Karl Singline , and Martin Schwab 

Abstract For a long time, the construction sector has been considered a field with a 
low degree of digitization and automation with architects and designers looking for 
inspiration in other industries. Today, the construction sector is steadily innovating 
and automating, prompted by the lack of skilled labor. While robots are gradually 
starting to be used in situ for construction, robotic arms−also referred to as industrial 
robots−have already created new ways for the creative industries to develop inno-
vative machinic processes at 1:1 scale. As the field of architecture eagerly moved 
towards robotics with an open mindset and little existing infrastructure or established 
protocols, architects and designers were quick to adapt the key themes of Industry 4.0 
for their purposes. A core enabling factor has been the field’s expertise in advanced, 
geometry-focused visual programming tools, which have since been adapted for 
robotic fabrication in order to enable individualized fabrication processes and mass 
customization. This chapter explores this development through several case studies 
and provides an outlook how visual programming and robotics may lead to a more 
sustainable, local, decentralized, and innovative post-industrial manufacturing in the 
creative industries and beyond. 

Keywords Visual programming · Technology transfer · Creative industries ·
Robotic fabrication ·Mass customization 

United Nations’ Sustainable Development Goals 9. Industry, Innovation and 
Infrastructure · 11. Sustainable Cities and Communities · 12. Responsible 
Consumption and Production

J. Braumann (B) 
Creative Robotics and Association for Robots in Architecture, 4020 Linz, Austria 
e-mail: johannes@robotsinarchitecture.org 

K. Singline · M. Schwab 
Creative Robotics, University of Arts and Industrial Design Linz, 4020 Linz, Austria 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
M. Barberio et al. (eds.), Architecture and Design for Industry 4.0, Lecture Notes in 
Mechanical Engineering, https://doi.org/10.1007/978-3-031-36922-3_26 

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36922-3_26&domain=pdf
http://orcid.org/0000-0001-9924-2787
http://orcid.org/0000-0003-1480-4758
http://orcid.org/0000-0002-3428-4668
mailto:johannes@robotsinarchitecture.org
https://doi.org/10.1007/978-3-031-36922-3_26


454 J. Braumann et al.

1 Introduction 

For a long time, the construction sector has been considered a field with a low 
degree of digitization and automation [1], with architects and designers looking for 
inspiration in other industries. Today, the construction sector is steadily innovating 
and automating, prompted by the lack of skilled labor. While robots are gradually 
starting to be used in situ for construction, robotic arms−also referred to as indus-
trial robots−have already created new ways for the creative industries to develop 
innovative machinic processes at 1:1 scale. Startups from the field of architecture are 
developing new additive fabrication technologies [2] or radically rethinking existing 
processes like shotcrete [3] while established construction companies innovate their 
fabrication workflows (Fig. 1). This innovation can partly be attributed to universities, 
where many architecture and design students are today exposed to those technologies 
during their studies. 

This leap in competence, from a few key research institutions to a much wider 
range of users, coincided with the definition of Industry 4.0 at Hannover Fair 2011, 
as marked by the first conference on Robotic Fabrication in Architecture, Art, and 
Design, ROB|ARCH a year later in 2012. 

As the field of architecture eagerly moved towards robotics with an open mindset 
and little existing infrastructure or established protocols, architects and designers 
were quick to adapt the key themes of Industry 4.0 for their purposes.

Fig. 1 Large-scale robotic fabrication process defined in a visual programming environment at 
ZÜBLIN Timber, Germany 



Visual Programming for Robot Control: Technology Transfer Between … 455

This chapter traces the connection between Industry 4.0 and robotic fabrication in 
architecture, with a specific focus on the role of visual, flow-based programming as a 
driver for algorithmic thinking, resulting in innovative robotic fabrication workflows 
that are today also increasingly adopted by other industries. 

2 Industry 4.0 

2.1 Individualization 

While research into robotic fabrication in architecture has been ongoing since as 
early as the 1980s [4] the results of that research did not reach the larger community 
of the creative industry but was primarily rooted in academic research and engi-
neering applications. Now in the fourth industrial revolution, innovative architectural 
applications using robotic arms are no longer just trailing the perfectly orchestrated 
mass-fabrication in industry but matching or even exceeding the state of the art of 
industry regarding individualization and mass-customization. 

While the “smart factory” as the overlaying idea of Industry 4.0 does not directly 
apply to many architectural applications, it contains a range of sub-topics that strongly 
resonate with the creative industries. Custom manufacturing enables individualiza-
tion and small lot sizes, while digital twins facilitate process simulation and rapid 
(design) iterations. 

An enabling factor for that development can be found in the repurposing of digital 
tools originating from the creative industries for automation and robotics, which allow 
architects and designers to apply their deep knowledge and understanding of working 
with small lot sizes to the—for them—still new field of robotics, particularly robotic 
arms, or industrial robots. 

The development and repurposing of tools has become important because while 
individualization is of course actively used in industry for a variety of applications 
[5], these developments are mostly built on custom, purpose-built software, rather 
than accessible programming environments. Though there are commercial software 
packages for a variety of tasks like milling, 3D printing, 3D scanning, etc., they only 
cover the most common, commercially relevant robotic tasks. 

2.2 Digital Twin 

Currently, a main selling point of industrial manufacturing software is the digital 
twin, which promises to speed up the development of new production processes 
as well as the quality of their output by enabling an accurate simulation of entire 
production lines.



456 J. Braumann et al.

When looking closer at these processes, it becomes apparent that while their scale 
and orchestration makes them highly complex, the individual actions making up those 
processes are often comparably simple, moving elements from A to B, performing 
spot welding, or dispensing glue along a curve. 

The limitations of digital twins become apparent once non-standard processes are 
involved that go beyond the state of the art. Even industrially applied processes like 
fused filament fabrication still cannot be efficiently simulated due to the complex 
interactions of heat and material [6]. Thus, these fabrication processes rely on their 
software making viable assumptions about the process parameters, along with the 
process expertise of the machine operator that is often the results of years or decades 
of working with a given manufacturing method (Fig. 2).

2.3 Collaboration 

However, when working with completely new processes, no viable assumptions or 
simulation frameworks yet exist. In industry, interdisciplinary teams solve these chal-
lenges in a collaborative approach with each discipline contributing their expertise, 
from geometry to material to robotics. This approach can also be seen in the early 
robotics projects in the field of architecture, where mathematicians collaborated with 
architects to realize complex brick stacking patterns [7]. 

Beyond large-scale industry, it often is not feasible for smaller enterprises, espe-
cially in the creative industries, to assemble interdisciplinary teams, instead having 
to rely on the local process experts with a deep understanding of a given material, 
but less programming and robotics expertise. 

Geometry-focused, visual programming like McNeel Grasshopper and Autodesk 
Dynamo today provides a pathway for these user groups to apply their process knowl-
edge to a robotic process through an accessible, responsive interfaces that fosters 
experimentation and by design facilitates iteration and individualization. 

3 Visual Programming 

Today, visual or flow-based programming is often associated with “low-code” [8] 
strategies that make complex processes accessible to non-experts, such as allowing 
designers to create complex, parametric geometries [9] or non-coders to automate 
processes and workflows [10]. However, visual programming is today also frequently 
used in industry, from complex factory automation to the definition of robotic 
processes.



Visual Programming for Robot Control: Technology Transfer Between … 457

(a) 

(b) 

Fig. 2 Digital, idealized representation of a robotic milling process (Fig. 2a), actual complexity of 
timber as a cross-laminated, anisotropic material (Fig. 2b)

3.1 Visual Programming in Industry 

The underlying programming paradigm of flow-based programming was first devel-
oped by Morrison [11] in the late 60 s for IBM, building upon the concept of 
co-routines that was sketched out even earlier [12]. 

The concept of flow-based programming is that the process of programming does 
not happen in a textual, but in a graphical way. This often results in a flowchart-
like appearance, where modules, containing certain functionality or processes, are 
connected via lines or arrows, thus defining their parametric relationship (Fig. 3, 
left).



458 J. Braumann et al.

(a) (b) 

Fig. 3 Flow-based programming by Morrison dating back to the 60 s (Fig. 3a). CAD-oriented 
visual programming through McNeel Grasshopper (Fig. 3b) 

Within the area of robotics, a basic visual programming language for PLCs is the 
Function Block Diagram (FBD) which was standardized as part of IEC 1131–3 [13] 
and allows the user to e.g. create individual functions via ST (Structured Text) and 
then make them more easily useable via the graphical representation as a FBD. 

More recently there has been a large number of new, visual programming envi-
ronments presented within the scope of industrial robots, such as drag&bot [14], 
Fox|Core by Faude, and the Desk software used to program Franka Emika robots, 
all of which are running within the browser. Within the greater area of robotic 
research there are also educational environments like Scratch [15] and Blockly, 
whose block-based visual programming has been expanded to include industrial 
robots [16–18]. 

These environments are highly flexible and can be used to program a wide variety 
of tasks, even allowing the easy integration of a wide array of external sensors and data 
sources. However, their primary use-cases can be found in the area of pick-and-place, 
bin picking and assembly, as they lack CAD integration and more complex geometric 
functionality that would be needed to e.g., derive toolpaths from an imported surface 
geometry. 

3.2 Visual Programming in Architecture, Art, and Design 

Geometry-focused approaches towards visual programming are instead often found 
in the creative industry. Users in the field of architecture and design utilize tools such 
as McNeel Grasshopper and Autodesk Dynamo to define parametric objects, artists 
create real-time visualization and digital art through VVVV and Max/MSP and entire 
video games are developed through Unreal Blueprints and Unity Visual Scripting. In 
the area of 3D-modelling, visual programming has been pioneered for the definition 
of photorealistic materials, defining how different textures are blended and linked 
via a node-based system, but has since been expanded to geometric operations, e.g. 
via Blender Animation Nodes, XPresso, Houdini and others. 

A fundamental difference in these systems is whether they are real-time based 
or not. Programs like VVVV, but also FBDs in PLCs, are generally running in real-
time, i.e., the graph is constantly being refreshed at a high rate, ideally at 60 Hz for



Visual Programming for Robot Control: Technology Transfer Between … 459

live-visuals and potentially much more frequently for PLC-programs that might be 
triggered every millisecond or less, for 1000 Hz and more. 

CAD-oriented programming environments like Grasshopper (Fig. 3, right) on 
the other hand are optimized for longer-running, more complex processes and by 
default not constantly updating: operations are represented as function blocks with 
inputs on the left and outputs on the right side, creating a directed, acyclic graph. 
Only when an input changes, the downstream components refresh automatically to 
reflect the change in input values, creating a highly reactive system that lends itself 
to a very intuitive interaction with data and geometry. Commonly, such function 
blocks include geometric operations like e.g., creating a point out of three numeric 
values representing its XYZ coordinates, but through plugins like KUKA|prc, HAL, 
RoboDK, and Robots, the range of function blocks can be expanded to include robotic 
fabrication, thus for example defining the robot’s programmed position through a 
coordinate system. 

3.3 Towards Robotics 

Since 2007 Grasshopper has established itself as the core platform for applications 
utilizing industrial robots within the field of architecture and design. There are several 
advantages of using such a platform for robotic processes: Geometry and toolpath 
strategies can be generated at the same time, so that it is possible to intelligently have 
the geometry respect certain fabrication-related parameters, while the fabrication-
related data can be automatically assigned to the relevant geometric features. This 
automatically translates both into the potential to be used for the automated batch-
generation for mass-customization, as well as providing immediate feedback on the 
feasibility of the developed fabrication process, thus speeding up the learning process 
for new users. Furthermore, as the user is defining their own fabrication strategy, the 
potential scope of robotic fabrication is expanded beyond the functionality offered 
by CAM software such as milling, wire-erosion and plasma cutting. 

3.4 Limitations 

However, going beyond the state of the art also leads to an increased complexity 
for the user, as the development of such strategies requires both in-depth robotic 
knowledge, as well as material expertise and proficiency with the visual programming 
environment. Unlike many CAM environments, visual programming frameworks 
generally offer little official documentation and training, instead relying on third 
party and community-led initiatives. 

A related general criticism of flow-based visual programming in Grasshopper by 
Davis et al. [19] is the lack of modularization to facilitate efficient code re-use as 
well the infrequent use of clearly named parameters.



460 J. Braumann et al.

Integrated development environments (IDE) for text-based programming like 
Microsoft Visual Studio support the user in creating a clear and easily readable 
syntax, often offering refactored code automatically. This process is based on consis-
tent coding conventions for programming languages, which do not yet exist for visual 
programming. 

Finally, especially within the scope of robotic fabrication, a limitation of CAD-
oriented flow-based programming environments is that while they are very efficient 
in defining data flows, they are less optimized for process flows, i.e., conditional 
clauses, parallel processes [20]. This can be especially an issue for flexible fabrication 
processes that incorporate sensors and feedback loops (see Sect. 4.2). 

4 Robotic Workflows and Dataflows 

4.1 Defining a Robotic Process 

A core appeal of using robotic arms lies in the abstraction of complexity. Rather than 
having to design and fabricate a bespoke, complex machine, robotic arms instead 
allow users to deploy an extremely reliable, well-tested and readily available manip-
ulator, that then must be equipped with a suitable tool to perform a given task. The 
robot therefore forms the basis of a larger, robotic setup (Fig. 4). While they may 
not reach the level of performance of a purpose-built machine [21], their capabilities 
generally exceed the tolerances required at construction sites. 

Their programming consists mostly of a sequence of movement commands and 
IO operations, structured by conditionals and logical expressions. A movement 
command defines where to move in relation to the current position of the robot,

Fig. 4 Overview industrial robotic system—schematic layout for robot-based fabrication 



Visual Programming for Robot Control: Technology Transfer Between … 461

the speed of the movement, and how to interpolate between the current and subse-
quent position. The robot’s position can either be expressed in axis values, with a 
numerical value corresponding to each of its degrees of freedom, or in a Cartesian 
format, expressing a coordinate system through an XYZ coordinate and three Euler 
angles ABC in the case of KUKA robots. Common interpolation methods are linear 
interpolation, that moves in a straight line, circular interpolation that creates an arc 
through an auxiliary point, and point-to-point interpolation that interpolates at the 
axis level, creating a highly efficient trajectory. 

4.2 Robotic Fabrication Through Visual Programming 

In a visual programming environment, these movements can be represented by indi-
vidual nodes. In most robotics-focused, accessible programming environments, the 
axis values or Cartesian position of the robot’s tool is extracted from the current 
position of the—simulated or real—robotic arm. Therefore, the robot is moved, the 
position saved, and then the process repeated until the final program exists—similar to 
teaching by demonstration [22] done on a physical robot, but through the flow-based 
programming with an easier control over the structure of a program. 

Within a geometry-focused visual programming environment like Grasshopper, 
the toolpath logic can be extracted from the underlying geometry: A NURBS curve is 
projected onto a free-formed surface and then segmented into a series of point objects. 
Based on the parametrization of the surface closest to each point, a coordinate system 
is defined. Along with a numerical value for the movement speed, each coordinate 
system results a linear movement, that is then traced by the robot, moving along the 
given surface while keeping the tool axis perpendicular to it. 

To achieve a reliable simulation, the entire robotic setup must be known: As there 
are barely any standardized tools for industrial robots, calibration of each tool is 
required so that the robot is aware of the position and orientation of the tool center 
point in relation to the robot’s flange. Similarly, local coordinate systems are defined 
in relation to the robot’s world coordinate system—commonly at its base—to define 
the program origin and orientation. This modularity can also be well represented 
in a visual programming environment, coupling the robot node with different tools 
or external equipment to define the so-called robot cell. The typical setup for robot-
based manufacturing shown in Fig. 4 consists of the product and associated geometry 
and process parameters (0), the industrial robot unit consisting of manipulator and 
controller (1), the end effector—with tools like gripper, extruder or spindle (2), a static 
or dynamic base for the workpiece—e.g. a rotary table for increased reachability (3), 
a static or dynamic robot foundation—e.g. a linear rail for expanding the working 
volume (4) and peripheral elements like industrial control systems, sensors, actuators 
and safety equipment (5).



462 J. Braumann et al.

4.3 Dataflows for Robotic Fabrication 

Having both the accurate robotic setup and the parametric design within a single 
environment allows architects and designers to constrain the toolpath generation to 
parametric geometry, automatically creating an individual robot control data file for 
each design variation and thus fostering individualization. 

Thus, a robotic process in a geometry-focused visual programming environment 
commonly consists of three parts (Fig. 5): The generation of the parametric geometry, 
the extraction of toolpaths, most commonly as sets of coordinate systems, and finally 
the robotic simulation and code generation. This sequence forms a directed graph 
where the user can easily interact with a complex, parametric system that covers both 
design and fabrication. Once a process is free of collisions and other problems, the 
resulting file can be copied to the robot, or streamed to the robot in real-time. 

As geometry-focused visual programming environments create acyclic, directed 
graphs, they are best suited for bringing parametric designs to fabrication. However, 
fabrication processes that incorporate sensor feedback or user interaction are chal-
lenging to represent within such a system, as it becomes necessary to differentiate 
between data flow and process flow. This can be achieved implementing behavior 
models like state machines. Recent projects have implemented Unity Visual Scripting 
for that purpose as it differentiates between flow-graphs—creating similar graphs 
like Grasshopper—and state graphs—controlling the process flow from one state to 
another, e.g., informed by user interaction [20]. 

Due to the flexibility of the paradigm of visual programming, it has become the 
predominant way of programming applications that go beyond the state of the art in 
robotic fabrication in the creative industry, at academia and startups as well as within 
the established industry.

Fig. 5 Schematic workflow diagram—visual programming setup for robot-based fabrication: (1) 
parametric design and toolpath generation (2) digital representation of physical machine setup and 
process parameters (3) simulation, code generation and manual interpretation 



Visual Programming for Robot Control: Technology Transfer Between … 463

5 Case Studies 

This section provides an overview of innovative robotic applications within the field 
of architecture, where visual programming has become a core enabling factor for 
the realization of innovative processes. From large-scale, multinational construction 
companies to architectural offices, innovative construction startups and the wide 
dissemination at maker spaces. 

5.1 Architecture and Design Office: Matter Make, Malta 

Located on the island country of Malta, holistic design, and fabrication studio 
Matter Make identified the complexity of operating within the disconnected region 
regarding the lack of easy access to building materials (Fig. 6). This absence of 
access to a singular raw material led them to reconsider traditional architectural and 
interior design techniques and incorporate a workflow built upon a flexible visual 
programming as a core component of their working environment focused on complete 
processes based on the products available for import. 

This approach prompted Matter Make to add value through means of design 
creativity that was supported by the novel workflow and flexibility of an industrial 
robotic arm which allowed a range of materials and processes. This meant projects 
could differ vastly between materials such as copper to plywood to high density foam 
without requiring additional software or equipment. 

Within their visual programming environment, the same digital model is created 
and evolved from initial conception through to finalized design form can feature 
layered data of varying complexities which is used for a multitude of tasks such as 
quantifying a bill of materials, while simultaneously generating toolpaths required 
to produce their designs robotically.

(a) (b) 

Fig. 6 Robotic incremental sheet forming of copper (Fig. 6a), free-formed home theatre by Matter 
Make (Fig. 6b) 



464 J. Braumann et al.

Fig. 7 Large-scale 
robotically fabricated timber 
formwork for free-formed 
concrete columns 

5.2 Large-Scale Construction Company: ZÜBLIN Timber, 
Germany 

ZÜBLIN Timber is a leading timber construction company based in Germany that 
has worked on high-end projects such as the Metropol Parasol in Sevilla and Stuttgart 
21 in Germany (Fig. 7). A pioneer in robotic fabrication in architecture, ZÜBLIN 
Timber set up their first robotic timber fabrication setup already in 1995 and has 
since upgraded it to be able to cover 160m2 with a large robot and two linear axes. 

ZÜBLIN Timber uses visual programming in-house for both general production 
preparation and the definition of robotic processes. This facilitates the integration 
of advanced algorithms coming from architects and fabrication consultation offices 
and greatly streamlines the workflow from design to production: Where parametric 
geometry is often reduced to plan drawings that are then manually processed at the 
fabricator, ZÜBLIN Timber can keep the entire process within a single environment. 

5.3 Construction Startup: REPRECT, Austria 

Austrian based start-up, Reprect, is a research and development group with a focus 
on innovating precast concrete through adaptation of novel technologies. In 2020 
Reprect explored the challenges and advantages of that the introduction of an indus-
trial six-axis robotic arm could be for digital fabrication across multiple aspects of 
precast concrete manufacturing techniques. This was completed over several steps: 
research into existing workflows for traditional precast concrete fabrication, identi-
fying key areas where automation could play a significant role and frameworks that 
would be required to support such an integration. 

A significant challenge was the countless variables introduced when handling 
custom building components, rarely were two precast elements identical. To ensure



Visual Programming for Robot Control: Technology Transfer Between … 465

the workflow was feasible, it had to accommodate precast panels of various dimen-
sions, penetrations, and modifications: horizontal and vertical drilling, surface 
milling and contouring. The visual programming environment Grasshopper was used 
for its ability to process traditional CAD data that was combined with domain-specific 
meta-data in the form of a JSON file. Based on that, toolpaths are calculated to 
provide visual feedback in the form of a full robotic simulation almost immediately. 
This research resulted in a software solution was designed to allow for the growth of 
projects without a requirement of significant retooling. 

5.4 Education 

Educational institutions take up a central role in the popularization of new tech-
nologies. Within the field of construction robotics, there are now dedicated Master 
programs at several universities such as RWTH Aachen, ICD Stuttgart and ETH 
Zurich where visual programming is used as a core tool to get students exposed to 
robotics. 

A different approach is to specifically use robotics as a cross-sectional, interdis-
ciplinary tool that can be applied in a wide variety of creative disciplines. At the 
research department Creative Robotics in Linz, Austria, students from a variety of 
programs such as architecture, industrial design, fashion, and interactive media take 
robotic courses where they are encouraged to apply robotic technologies within their 
own field of expertise. 

Visual programming environments like Grasshopper and Unity Visual Scripting 
are therefore taught to students with widely varying degrees of experience in working 
with CAD software and digital software tools. Through that, robotics and visual 
programming put together become an interface that encourages interdisciplinary 
collaboration and experimentation, that has already resulted in several startups, such 
as Print-a-Drink for robotically fabricated cocktails and YOKAI Studios for innova-
tive textile processes (Fig. 8, left). Research-led teaching also contributed to exper-
imental projects like a mobile 3D-printing platform that was exhibited at the Ars 
Electronica Festival (Fig. 8, right).

That process is facilitated by the close collaboration of Creative Robotics with 
the Grand Garage, Europe’s largest maker space, embedding academic research in a 
semi-public environment that encourages interdisciplinary thinking. 

5.5 Case Study Summary 

In summary, the collated projects described above demonstrate the discrete capa-
bilities of incorporating visual programming and automation techniques already 
utilized in industry 4.0 within a contrasting range of architectural and related fields, 
from education to small bespoke design and large-scale fabrication for construction.



466 J. Braumann et al.

Fig. 8 Education resulting in student-led startups, like YOKAI Studios in the field of fashion and 
textiles (Fig. 8a), research-led teaching for the “Wandering Factory” at Ars Electronica Festival 
(Fig. 8b)

Although each case study is operating at a distinct scale and output, all actively 
demonstrate capabilities for non-standardized and mass customization construc-
tion methods facilitated by robotics that was previously deemed unavailable due 
to economic and efficacy constraints [23]. 

6 Outlook 

The field of architecture has taken a pioneering role in the rapid adoption of robotic 
technology, questioning established standards and through that realizing advanced 
applications that have also caught the eyes of industry. While the ultimate goal of 
an automated construction site still lies in the future, current projects with industrial 
robots have moved beyond academic research, towards creating the foundation for 
innovative startups in the fields of architecture and design. 

An enabling factor for this process has been the critical mass of users within 
architecture and design, often in academia, who have laid a foundation of knowl-
edge for new users to build upon. Achieving this critical mass can at least partly 
be attributed to the development of domain-specific visual programming tools that 
allowed architects and designers to build upon their existing knowledge of para-
metric and generative design but expand it to cover also robotic fabrication. This 
can be seen as a testament to the efficiency of peer-to-peer teaching for knowledge 
transfer between different fields.



Visual Programming for Robot Control: Technology Transfer Between … 467

Other fields in the creative industries, such as fashion and textiles or crafts, are 
also starting to increasingly adopt digitization and concepts of Industry 4.0. However, 
their fundamental knowledge as well as their goals and the scale and valorization 
of their output differ significantly from architecture and design. It will therefore be 
necessary to adapt and modify the workflows and dataflows developed by architects 
and designs, towards again creating bespoke, domain-specific tools that have the 
potential of greatly accelerating the adoption and integration of new technologies. 

The underlying technologies for simulation and control can be maintained, 
requiring mostly the interaction metaphors and concepts, including the degree of 
abstraction, to be adapted to new user groups. Building on the current approach 
of linking functional elements that often represent only basic geometrical methods, 
reduced workflows can be developed that group functionalities (Fig. 9) and automat-
ically assign data to the correct inputs and outputs, guided by intelligent assistant 
systems. Having a clearly defined data structure opens possibilities for an acces-
sible, automated optimization of robotic process parameters that can consider the 
individual degrees of freedom provided by each production process. 

This reduction in complexity and scope enables new users to focus on the 
domain-specific input and associated process parameters, while providing them with 
a pathway to extend their level of control over a process by interacting with the 
underlying building blocks. 

Ultimately, robotics combined with powerful and accessible tools for robot 
programming offers startups the potential to create highly innovative, disruptive 
applications, but also gives the much wider field of smaller architectural offices the 
possibility to take control of the fabrication process with the potential to realize high-
end construction processes that strongly incorporate individualization, thus bridging 
the gap to much larger architecture and construction firms that employ specialized, 
interdisciplinary teams to fabricate their designs.

Fig. 9 Outlook for data-based workflow approaches: design-based geometry and process parameter 
generation (1) process related simulation (2) computer-aided analysis and automated optimization 
for design and process adjustment (3) 



468 J. Braumann et al.

When looking at the impact of digital fabrication combined with visual program-
ming on a higher level, the increasing accessibility of customization and multi-
level-optimization leads to a potential reduction of energy consumption and use of 
resources whereas the low system costs enable and support a return to local and 
decentralized production. 

By combining high flexibility with scalability, we expect individualized robotic 
fabrication informed by visual programming to support the creation of sustainable 
and innovative post-industrial manufacturing, in architecture and beyond. 

References 

1. IFR: World Robotics 2018—Industrial Robots. (2018) 
2. Branch Technology. https://www.branch.technology. Last Accessed 11 June 2021 
3. Aeditive—Revolutionäre Effizienz im Betonbau. https://www.aeditive.de/en/. Last Accessed 

11 June 2021 
4. Bock, T.: Innovationen im bauwesen: Roboter auf japanischen Baustellen. Bauingenieur. 63, 

121–124 (1988) 
5. Da Silveira, G., Borenstein, D., Fogliatto, F.S.: Mass customization: Literature review and 

research directions. Int. J. Prod. Econ. 72, 1–13 (2001). https://doi.org/10.1016/S0925-527 
3(00)00079-7 

6. Rashid, A.A., Koç, M.: Fused filament fabrication process: a review of numerical simulation 
techniques. Polymers (Basel). 13, 3534 (2021). https://doi.org/10.3390/polym13203534 

7. Bärtschi, R., Knauss, M., Bonwetsch, T., Gramazio, F., Kohler, M.: Wiggled brick bond. In: 
Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., and Wallner, J. (eds.) Advances in archi-
tectural geometry 2010, pp. 137–147. Springer, Vienna (2010). https://doi.org/10.1007/978-3-
7091-0309-8_10 

8. Fryling, M.: Low code app development. J. Comput. Sci. Coll. 34, 119 (2019) 
9. Mamou-Mani, A.: Structural innovation through digital means: Wooden waves, galaxia, 

conifera, sandwaves, polibot, silkworm. http://mamou-mani.com. Last Accessed 27 April 2022 
10. Brell-Cokcan, S., Braumann, J.: Industrial robots for design education: robots as open inter-

faces beyond fabrication. In: Zhang, J., Sun, C. (eds.) Global design and local materialization, 
pp. 109–117. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38974-
0_10 

11. Morrison, J.P.: Flow-based Programming: A new approach to application development. J.P. 
Morrison Enterprises, (2010) 

12. Conway, M.E.: Design of a separable transition-diagram compiler. Commun. ACM. 6, 396–408 
(1963). https://doi.org/10.1145/366663.366704 

13. Maslar, M.: PLC standard programming languages: IEC 1131–3. In: Conference Record of 
1996 Annual pulp and paper industry technical conference, pp. 26–31. (1996). https://doi.org/ 
10.1109/PAPCON.1996.535979. 

14. Naumann, M., Wegener, K., Schraft, R.D., Lachello, L.: Robot cell integration by means of 
application-P’n’P. In: In: Proceedings of ISR 2006. (2006) 

15. Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., 
Millner, A., Rosenbaum, E., Silver, J., Silverman, B., Kafai, Y.: Scratch: programming for 
all. Commun. ACM. 52, 60–67 (2009). https://doi.org/10.1145/1592761.1592779 

16. Mateo, C., Brunete, A., Gambao, E., Hernando, M.: Hammer: An android based application 
for end-user industrial robot programming. Presented at the (2014). https://doi.org/10.1109/ 
MESA.2014.6935597

https://www.branch.technology
https://www.aeditive.de/en/
https://doi.org/10.1016/S0925-5273(00)00079-7
https://doi.org/10.1016/S0925-5273(00)00079-7
https://doi.org/10.3390/polym13203534
https://doi.org/10.1007/978-3-7091-0309-8_10
https://doi.org/10.1007/978-3-7091-0309-8_10
http://mamou-mani.com
https://doi.org/10.1007/978-3-642-38974-0_10
https://doi.org/10.1007/978-3-642-38974-0_10
https://doi.org/10.1145/366663.366704
https://doi.org/10.1109/PAPCON.1996.535979
https://doi.org/10.1109/PAPCON.1996.535979
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/MESA.2014.6935597
https://doi.org/10.1109/MESA.2014.6935597


Visual Programming for Robot Control: Technology Transfer Between … 469

17. Trower, J., Gray, J.: Blockly language creation and applications: Visual programming for 
media computation and bluetooth robotics control. In: Proceedings of the 46th ACM Technical 
symposium on computer science education, pp. 5–5. (2015) 

18. Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D., Franklin, D.: Evalu-
ating CoBlox: A comparative study of robotics programming environments for adult novices. 
Presented at the (2018). https://doi.org/10.1145/3170427.3186599 

19. Davis, D., Burry, J., Burry, M.C.: Understanding visual scripts: Improving collaboration 
through modular programming. Int J Archit Comput. 9, (2011). https://doi.org/10.1260/1478-
0771.9.4.361 

20. Braumann, J., Gollob, E., Bastan, A.: Towards AR for large-scale robotics. In: 2022 IEEE 
conference on virtual reality and 3d user interfaces. Christchurch, New Zealand (2022) 

21. Perez, R., Gutierrez Rubert, S.C., Zotovic, R.: A study on robot arm machining: advance 
and future challenges. In: Katalinic, B. (ed.) DAAAM proceedings, pp. 0931–0940. DAAAM 
International Vienna (2018). https://doi.org/10.2507/29th.daaam.proceedings.134. 

22. Biggs, G., MacDonald, B.: A survey of robot programming systems, vol. 10 
23. Apolinarska, A.A., Knauss, M., Gramazio, F., Kohler, M.: The Sequential Roof. In: Advancing 

wood architecture. Routledge (2016)

https://doi.org/10.1145/3170427.3186599
https://doi.org/10.1260/1478-0771.9.4.361
https://doi.org/10.1260/1478-0771.9.4.361
https://doi.org/10.2507/29th.daaam.proceedings.134

	 Visual Programming for Robot Control: Technology Transfer Between AEC and Industry
	1 Introduction
	2 Industry 4.0
	2.1 Individualization
	2.2 Digital Twin
	2.3 Collaboration

	3 Visual Programming
	3.1 Visual Programming in Industry
	3.2 Visual Programming in Architecture, Art, and Design
	3.3 Towards Robotics
	3.4 Limitations

	4 Robotic Workflows and Dataflows
	4.1 Defining a Robotic Process
	4.2 Robotic Fabrication Through Visual Programming
	4.3 Dataflows for Robotic Fabrication

	5 Case Studies
	5.1 Architecture and Design Office: Matter Make, Malta
	5.2 Large-Scale Construction Company: ZÜBLIN Timber, Germany
	5.3 Construction Startup: REPRECT, Austria
	5.4 Education
	5.5 Case Study Summary

	6 Outlook
	References


