
Quasi-Decentralized Cyber-Physical
Fabrication Systems—A Practical
Overview

Ilija Vukorep and Anatolii Kotov

Abstract Building an effective cyber-physical system is difficult due to the overall
complexity of technologies on their own, challenges with the interaction between
all parts of workflow and applicability issues. This makes the real-world applica-
tion of complex cyber-physical systems only available to the big industry parties or
high-tech startups, leaving small and medium-sized businesses behind. Therefore,
the democratization of such applications is a reasonable goal to achieve. Cyber-
physical systems of this kind are in the experimental stages and incorporate robotics,
IoT, materials science, visual and 3D-scanning techniques, and machine learning
(ML) tools all under the heading of Industry 4.0. This paper covers specific practical
approaches in several application fields using robotics and IoT. We use custom-built
hardware and software setups together with standard frameworks and the MQTT
protocol for different applications. Due to the practice-driven approach, the paper
will illustrate both positive and negative effects. We describe the use of our systems in
several case studies: Multi-layer automated robotic concrete spraying using ML, IoT
spatial awareness via sensors (such as Lidar, Kinect), robotic multi-axis milling and
quasi-autonomous robot movements. A unifying issue is a decentralized approach of
modular IoT elements that we grouped to achieve specific tasks. The paper illustrates
how these elements exchange data and communicate, and all services are controlled
on each computer instances, connected to an IoT network to ensure a high level of
system stability.

Keywords Cyber-physical system · Digital fabrication · Industry 4.0 ·
Decentralized digital services

United Nations’ Sustainable Development Goals 9. Industry Innovation and
Infrastructure · 12. Responsible Consumption and Production

I. Vukorep (B) · A. Kotov
Chair of Digital Design Department, Brandenburg University of Technology, 03046 Cottbus,
Germany
e-mail: ilija.vukorep@b-tu.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Barberio et al. (eds.), Architecture and Design for Industry 4.0, Lecture Notes in
Mechanical Engineering, https://doi.org/10.1007/978-3-031-36922-3_12

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36922-3_12&domain=pdf
http://orcid.org/0000-0002-3967-9255
http://orcid.org/0000-0002-2553-8013
mailto:ilija.vukorep@b-tu.de
https://doi.org/10.1007/978-3-031-36922-3_12

186 I. Vukorep and A. Kotov

1 Introduction

Our paper discusses practical approaches to robotics and Internet of Things (IoT) in
several application fields. In order to increase the reusability of such cyber-physical
setups, a combination of custom hardware and software, as well as standard frame-
works and protocols are used for different applications. We implement principles
of Industry 4.0 paradigm by using several architecture defining principles such as
microservices, applied robotics and ML. There are several examples of similar setups
of using industry 4.0 principles in robotic fabrication [1, 2]. Micro-services allow us
to isolate key services and machines, enabling us to create decentralized, modular
IoT elements that can be grouped together to achieve specific tasks. Furthermore,
microservices are used within the software and hardware domains, allowing for better
communication and data exchange between different segments. This further enhances
the integration of our cyber-physical systems, allowing us to achieve greater levels
of automation and efficiency. This concept embodies one of industry 4.0’s main
strengths, which is the democratization of complex tools.

We are discussing some typical services in detail used in our applications and
providing links to some own developed libraries and components on GitLab [3].
Our system is demonstrated in several case studies: Multi-layer automated robotic
concrete spraying using machine Learning (ML), IoT, spatial awareness using sensors
(such as LiDAR, Kinect), robotic multi-axis milling, and in teaching scenarios. A
common theme is a decentralized approach of modular IoT elements that we group
to achieve specific tasks. One of the tasks is the concrete spraying case study that is
aiming to reduce the weight of produced elements and increase the potential design
space through its capability to produce free-form shaped parts. Its production incor-
porates a wide range of machine control, space observation and data processing
segments. The paper will describe how these segments exchange data and communi-
cate with each other. In the quasi-autonomous case study section, we will cover the
interaction of a pair of robots, where one robot is performing target action, while the
second is following the first one via dynamic observation. Micro-services are used
both in a software and hardware sense—both key services and machines are isolated.
We start by defining the problem statement, which discusses the use of Robot Oper-
ating System (ROS), a leading system for developing cyber-physical systems. The
following chapter is about categorizing various types of cyber-physical systems in
terms of their internal organization and communication of processes.

2 Problem Statement

There are several systems that can help in developing automatized and robotic appli-
cations. One of the most popular and robust is ROS—robot operating system, a
framework for various robots founded 2007 at Stanford University. It is suitable
for heterogeneous clusters with a highly developed messaging system with low

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 187

latency. Its publish-subscription communication management is even near real-time
in the new ROS 2 version. Furthermore, its services run decentralized, so demanding
processes can execute remotely. ROS’ lively community is providing libraries for
all kinds of hardware. Communication with external non-ROS clients is possible
(Websockets, mqtt). The ROS-industrial is an extension of ROS and provides open
source industrial general and vendor specific libraries in an industrial context. The
drawback of such a powerful system is that the implementation can be very complex.
In a typical academic scenario, where experiments are performed with light and atyp-
ical configurations, setting up ROS with its enormous overhead can be extremely
time-consuming. Although ROS covers a big range of hardware and allows imple-
mentation of one’s own libraries, installing unsupported sensors and actuators inside
of ROS proved to be unrealistic in our context of projects.

The setup of a construction-related robotic system requires the creation of several
services that can work robustly and independently and have a clear way of interacting.
As most robotic setups are different, those services should operate in different constel-
lations. The software can be written in different languages, and the services can run
on completely different hardware. With this, to distribute the development of single
parts to a wider range of people is easily possible, in our case to students and academic
researchers. When working with parametric geometry, such as connecting Rhino 3D
Grasshopper results to a robotic setup with many sensory inputs and complex actu-
ator control, this flexibility is especially important. Another important feature is also
the ability to work remotely, via VPN, when needed, with visual feedback.

3 State-of-the-Art

In the architectural and construction context, most academic experimental robotic
setups are very narrowly and pragmatically tailored to solve some specific scientific
problem. The majority of related research papers do not detail their technical setup,
but a few of them mention their software equipment and this has been analyzed.
Generally, we can divide architecture- and construction-oriented robotic setups into
several groups:

1. ROS as a central unit. ROS is often used for its integrated and decentralized
service platform and communication protocol. In [4] research, a collaborative
human–robot construction system is developed around a ROS computational
core and its ability to communicate with virtual reality in Unity, sensor data, and
the robot. In the work of [5], ROS is exchanging data with MATLAB Robotics
System Toolbox for path creation. In [6] ROS is used together with MoveIt for
trajectory planning of the robots. In [7] Choreo is used along with ROS-industry
and Move-it to plan motion and choreography.

2. ROS as one of several parallel services. The work [8] involves modeling
in Rhino, kinematic modeling in the COMPAS FAB package, and ROS as a
robot controller with communication via Roslibpy. This library was developed

188 I. Vukorep and A. Kotov

at the ETH Gramazio. Kohler and is based on WebSockets and bridges between
services. For [9] GH/Lunchbox ML services, as well as serialized data in JSON
format, are implemented.

3. Decentralized system with heterogeneous communication. The work [10] uses
individual services for scanning (python), ML analysis (Tensorflow, python),
modelling (GH/Rhino) and path planning (RoboDK) without a specific commu-
nication protocol. In this study, [11] Rhino for modelling, GH to simulate
robotic processes, Unity for VR-visualization, DynamoDB at Amazon Web
Services (AWS) for data handling and data storage are used and heterogeneously
connected.

4. Decentralized system with specific server communication. Described in [12] is
a robot setup controlled by a self-written python server (XML, TCP/IP Ethernet)
that transmits data between services (clients: Python algorithms, Rhino visual-
ization, camera, and robot). In [13] the communication is arranged through Java
in Processing and an UDP protocol exchanging data with the Scorpion plugin in
Rhino/GH for path creation and transmission to the robot.

These categories each have their own advantages and impact on scalability, modu-
larity, and reusability. A decentralized system with a Message Queuing Telemetry
Transport (MQTT) protocol is described in this article based on experiences gained
in a variety of scenarios. The protocol serves as a basis for IoT development, as all
clients and services in an IoT system communicate via the web. These services will
be described in more detail within the following chapters.

4 Components/Services

Our system uses a modular microservices architecture. Most commonly, this term
describes the organization of software complexes and information systems. Contrary
to a monolithic approach where all the code is merged together, the microservices
concept divides a program into several independent components (services) that can
run on multiple/divided platforms and have a unified communication vocabulary. If
one subsystem fails, the whole system will be less likely to crash, what improves
stability. Another advantage is a possible update/change of individual components
inside the system without having to rebuild the entire system. There are currently
many distributed online systems with millions of users using it. As a basis for further
development, this approach was chosen due to the need for stability, modularity
(reusability), and scalability.

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 189

4.1 MQTT Broker—Infrastructure Server

The core element of this decentralized cyber-physical system is the IoT data exchange
protocol (MQTT). In contrast to XML over TCP/IP, Websockets, UDP or other previ-
ously mentioned communication protocols, is that it can deliver messages with
requested quality of service (QoS). This includes fire and forget, at least once
and exactly once. QoS can help when connections are unstable or we have crit-
ical command execution procedures (as running a robot). It’s supplying sufficient
speed and it’s lightweight. The principle of subscription and publishing over topics
is similar to ROS’ handling messages. The issues of security around MQTT are not
explicitly handled in this article and need special care by using client identification
rules. The broker runs in the background inside a network. In our settings, we ran
a Mosquitto broker (mosquitto.org) on Raspberry Pi 4 that automatically activates
the service on booting. It can run on any OS system with a known IP address to the
clients. For testing purposes, we provide a self-developed MQTT server on local-
host running inside GH/Rhino as a component. Furthermore, we wrote a MQTT
subscription and publication component for GH/Rhino [3].

4.2 Dashboard

To manage all processes, we could theoretically use any MQTT-browser like MQTT-
lens [14] but this will not give us a good overall overview of incoming and outgoing
information. For visualization and administration of all processes, a central dashboard
is necessary. Fig. 1 is showing an example of such a dashboard with several pages.
The best method of a dashboard that is compatible for diverse use cases is to keep it
growing as services are being added. This means that services that are not used are
automatically disabled in some applications. This can be done by internal checking
if services are available (online).

Key features of a dashboard are:

– Robot control, with some predefined robot positions or movements, manually
loading robot scripts or others,

– System observation, key vital data of robot TCP position, availability of hardware
and program components,

– Visual observation from connected cameras,
– Control of additional machines as scanners, grippers,
– Database connection with data presentation and editing options.

Our dashboard is built with Python and Flask backend programming framework
that can easily be scaled as it uses templates and sophisticated data interaction. These
packages can run on Raspberry Pi 4 or any other computer (also together with the
broker) in the network and can be reached at the local network.

190 I. Vukorep and A. Kotov

Fig. 1 Dashboard pages: status, robot control, scan data view and info page

4.3 Robot—IoT Interface

One central part of the IoT robotic setup is the connection of the robot to the rest
of the system. For this connection, we use an interface service that is transferring
incoming data directly to the robot over an Ethernet/Lan connection and vice versa,
publishing information like robots joint and TCP positions data. As this interface is
embedded in a wireless network to other clients, huge flexibility of robotic control
is provided, which means we can control the robot without being directly connected
to it.

As every robotic company has got its own I/O solution, this interface has to
be tailored individually to robotic families. We tested this setup with Universal
Robots running the interface on a Raspberry Pi 4 and written in Python. All outgoing
information about the robot is read by the IO Modbus protocol of the UR robots and
broadcasted over MQTT.

Additional machines connected to the robot are also accessible through this inter-
face as part of the script that is transferred to the robot. This transfer incorporates
also some extra features such as comparing the robot position with the target position
or relative and absolute movements and some special positions, like home, self-test
or tool changing position.

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 191

4.4 Data Management

Data management is not organized as a single service but can be found in all
other services and processes. In our cyber-physical arrangements, we have four data
streams that handles: Configuration files of the setup, incoming (i.e. sensor) data,
processed data and logging data. Configuration files are actual settings (home posi-
tion, special robotic positions, broker addresses, storage credential data) stored as
JSON-files. Besides this, we also have environment and tool data stored as Rhino
3 dm-files. Both types are inside the folder structure of the dashboard.

Incoming data are files made by sensors and are mostly of high volume. Those are
saved in a project folder with a time-stamp and additionally automatically processed
or triggered by incoming commands. Those processed files are then saved in addi-
tional folders like thumb views of scanning or images, automatically generated scripts
or other project specific data. All processed data that are part of closed procedure,
are saved in the job-folder. This decentralized database-free approach is working
well in closed networks but there are security issues when we expose them in open
networks. For this usually some professional data handling services can be used
like AWS S3 services that is also handling user-right-management and some data
processing through APIs. In our setup we used a Resilio Sync—BitTorrent protocol
for data synchronization as this proved to be fast.

Logging is an important step toward error tracking and statistical analysis. Some
of the services in our cyber-physical system are logging their processes. Advisable
would be a central logging device, even organized as an own service, that is collecting
logging data from other services with the capability of analytic display in dashboard
or other viewer.

4.5 Vision

Cameras can be used for tracking movement, security control, position diagnosis or
simple documentation purposes. The application will define if camera stream will be
recorded or not, if the processed image will be directly processed or high computation
is necessary (i.e. OpenCV postprocessing). Any stream data client can be connected
to the network and then retrieved from the dashboard. Based on streamed data it’s
possible to detect movement, risk situations (and use MQTT for signaling) or incor-
porate customized recognition of elements. In our case we have used the camera for
finding edges of the scanning area. For simple low resolution processing, a camera
can be connected to a Raspberry Pi 4, which can run OpenCV4, and transfer the data
over Wi-Fi. For higher resolution data streams an Ethernet connection is necessary.
Remote control of the system is also facilitated by vision.

192 I. Vukorep and A. Kotov

Fig. 2 Illustration of the scanner movement over the observed object

4.6 Sensing

The complexity of the task and models meant that we had to use different scanning
systems in our project. We did tests with Kinect, azure Kinect DK and RPLidar
scanners. All three have different capacities and options of sensing the environment.

4.6.1 Rotation Lidar Scanner

Rotation lidar scanner like is measuring distance to an object at some specified angle.
As it rotates, it can only measure in slices, meaning if we want to measure distances in
all 3 axes, the lidar scanner has to move. In combination with a precise movement of a
robot we can have a very effective scanner that can, in some cases, make better scans
of areas that are obscured, deep objects or with cantilevers (Fig. 2). We connected our
RPLidar A2M8 scanner to a Raspberry Pi 4. Together with the UR-robot, both were
triggered by an MQTT command [3]. Scanning results grouped with the coordinates
of the scanner positions were saved in the incoming data folder and automatically
further processed. This data processing usually depends on the application and in
our case it consisted of deleting the unnecessary data and transforming the rest into
a 3D point cloud.

4.6.2 Azure Kinect SDK Scanner

For certain tasks, such as real-time scanning for object presence and control, a
moving lidar is not the best solution. Therefore, a depth camera coupled with a
RGB-camera seemed like a good option [3]. We chose an Azure Kinect SDK scanner
that is connected to a computer with the Ubuntu OS. Even though the hardware

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 193

and software requirements are high, the scanning process worked well because we
needed a high level of precision without a high resolution. As the RGB-stream can be
read separately, we use the camera also for documentation purposes. Several MQTT
commands are running the scanner: RGB-single shot, RGB-stream, hi-resolution
scan, low-resolution scan. The results are stored in the incoming data folder and are
automatically processed like creating thumb views of the point clouds or detecting
objects.

In our case we mounted the scanner above the active zone of the robot, see Fig. 5.
In the usage examples described later, the scanner serves for sensing the actual state
of robot production. For this, every process step is scanned and the object scan are
compared after the process step is finished. Before the process starts, a calibration
scan is executed that marks the clean table and initializes the process.

4.7 Point Cloud Processing Service

When scan data is stored in the incoming folder, several application dependent
processing steps are necessary. Usually object have to be detected from out of a
messy point cloud and for this the following functions are executed: (1) the empty
table scan detects a plane, (2) the object scan is been cleaned against this plane,
(3) the result is clustered so some flying points eliminated, (4) the outline of the
object is found, that all further scans can use for the eliminating unnecessary point
data. Although this service depends on the application we wanted to develop, it as
a module that can be reused in other applications. The algorithms are triggered by
MQTT-commands from the dashboard. Most processing work is done in the back-
ground while the dashboard lists the objects in the browser views. Fig. 3 shows a 3D
scanned mould after the point cloud cleaning procedures.

4.8 Grasshopper Components

Since the wide adoption and the abilities of Rhino/Grasshopper, it was essential
to create viable MQTT components for Grasshopper. During different development
phases we also used GH/Python connected modules, but that was not offering enough
scalability, since one has to install and configure a Python environment for any new
machine. GH components are simpler to use and also better in terms of response of
the GUI since they’re natively compiled from C# and Grasshopper is built on.NET
technology. The components for Rhino 6 and 7 can be downloaded from GitLab [3].

194 I. Vukorep and A. Kotov

Fig. 3 Mold 3d scan
example automatically
subtracted from the
surrounding environment

4.9 Path Planning Service

The goal of the path planning service is to provide a viable adaptive trajectory over
a given surface keeping in mind execution of additional tasks. Those tasks are the
execution of actions or activating hardware connected to the robot depending on
path and/or surface properties. The path planning are then combined with action
augmentation. This means, in certain positions or areas robot activates connected
hardware (e.g. use gripper or run the concrete pump).

A naive path planning approach can be defined as a zig-zag pattern based on
a given shape (Fig. 4). However, such an approach is ignoring the curvature of the
target surface. In this case it is not adaptive, and this can cause problems with complex
shapes and where actions require precision. We calculate simple patterns based on
the previously mentioned outline form without any usage of additional 3D programs.

An alternative approach would be the use of ML methods with the aim to be
adaptive to any form and be compatible with imperfections of the scanned object.
We use a Multi-Objective Optimization (MOO) strategy in conjunction with other
ML methods. These methods are proven to be useful as one of the tools in archi-
tectural production [14]. However, to apply those methods, the transformation of
several stages of data is necessary. The path planning between different zones can
be also formulated with the Travel Salesman Problem (TCP), which enables us to
find the optimal path. To solve it, we’re using internal Grasshopper components with
custom Python processing. Thus, we’re solving the problem of uniform distribution
of the points over the given surface with desired in-between distance (a derivative of
action radius and distance between TCP and surface). As a result, a waypoint graph
with equal edge length based on the surface of any curvature is generated. Using the

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 195

Fig. 4 Left: naive zigzag approach, right: ML approach with the determination of the working area
for the path planning algorithm as well as for dynamic hardware control settings (e.g., we stop air &
concrete pumps while the robot is travelling outside/between red and blue line, and enable it over
islands/inside blue line)

previously generated graph and applying TCP guided local search algorithm, we’re
able to find the optimal path. In our examples we are using different script gener-
ation software like RoboDK (robodk.com) and Robots (github.com/visose/Robots)
running in Rhino/GH instances. Those are activated by MQTT commands that sends
the number of the job so the identification of the files in the job folder is possible.

To ensure that the robot movement is safe, the path is being simulated in a dupli-
cated virtual environment where the virtual robot and all the robotic movements are
synchronously simulated prior to the machine execution. Thus, we’re testing that the
given path can be executed, that all points can be reached, that there are no singu-
larities and collisions (and signaling an error over MQTT). As a final part of the
program, the resulting script is being augmented according to the target setting for
acceleration and speed of the robot’s linear and joint movements’ settings.

4.9.1 Digital Twin

During the implementation of certain use strategies we found it very useful to imple-
ment a digital twin of the URs that we use in the lab. This can help us to prevent
singularities or collisions with itself, other robots or the environment. The difference
between a digital twin and a simulation is that it simulates the setup in real time
and with all possible MQTT inputs that is streamed over the Robot—IoT interface.
Each simulation is using individual UR calibration files, so we can be sure that it’s
1:1 to the real setup. The other benefit of using digital twins is the fact that one can
develop programs for robots without the physical availability of the systems (e.g.
develop robot control system not from the robot lab, but from home office). Later,
the algorithms and models tested on digital twins can be propagated onto real hard-
ware. For implementation we are using Python for MQTT-side communication and

196 I. Vukorep and A. Kotov

control, sharing part of the codebase with a Robot—IoT interface and RoboDK, all
running on a windows machine inside a Rhino/GH instance. The limitations lie in
limited sensor (vision and scanning) data or the simulated production process that
can be complex.

5 Applications

5.1 Adaptive Robotic Concrete Spraying

Concrete spraying is one of the promising technologies that aim to reduce the weight
of produced elements and increase the possible design space through its feasibility in
producing free-form shaped parts. Even though thin-formed concrete shells produc-
tion is efficient for many situations, a variable thickness would increase applications.
First situation is resulting from the inconsistent process of spraying. It often suffers
from an interruption in concrete feeding that the pump is pushing through the tube.
As these interruptions are happening during the robot movement, the applied material
unintentionally varies in thickness. The second situation comes from the structural
properties of the element that sometimes demands to have ticker or slimmer areas
depending on its structural needs.

Using ML methods this system offers different spraying strategies: Using target
thickness or matching the target form. The spraying is done automatically using 3d
scanning and adaptive robot path planning (Fig. 5). The software subsystem consists
of several parts:

– Point-cloud scanning of mould and scanning the processing phases,
– Form comparison/matching—comparison of the given form to target goals,
– Robot path planning component—optimal robot spraying trajectory,
– Robot—IoT interface for execution of desired spraying path, controlling pump

and air valve.

While there may be simple forms, the high curvature forms’ surfaces present a
challenge. This requires a complex path plan strategy as the mechanical movements
of the robot should not collide with the mold during the spraying process as well
as to follow the goal parameters of the target concrete shape. The outcome of the
research can be found [15].

5.2 6-Axis Milling

Traditional CNC-milling is usually limited to milling in 3 axes. However, attaching a
milling machine to a 6 axis robot arm allows to achieve much more versatile milling.

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 197

Fig. 5 Hardware and software elements of a cyber-physical concrete spraying system

One of the key abilities is so-called “undercutting”, the movement when a robot drill
goes under an already existing form without destroying it (Fig. 6).

In our setup the robot was controlled via a Raspberry Pi with our software. The
most challenging part of this application was the software that forms the movement
trajectories in 6 axis movements, to check if the form is feasible to milling and the
robot arm and milling drill will not collide with the milled model itself. Furthermore,
there are also issues of visibility of milling paths on the target surface in case of
sophisticated target form. Despite the proof-of-work state, developing a full-scale
application seems challenging due to the complexity of robot path planning and
challenges with fine milling of complex curvatures.

Fig. 6 Left: undercutting maneuver, right: resulting mold

198 I. Vukorep and A. Kotov

Fig. 7 Left: system setup, right: milling-following-vacuuming

5.3 Milling with Real-Time Relative Robot Movements

Milling produces a lot of dust, which is a problem. In this instance, we are solving
this with a robotic IoT toolset. Next to a milling instrument attached to one UR, we
added another actor; a new UR with the vacuum nozzle that is designed to follow the
milling TCP of the first UR robot to vacuum all dust generated during the milling
process.

Hardware setup consists of UR robots each connected with Raspberries. During
the implementation of this solution we found the need to create the 1:1 digital twin
of the acting robots in the environment due to the fact that it was more convenient to
debug controlling algorithms in a digital way. UR1 is milling, while UR2 is following
UR1 TCP via constant reading real-time position and axis data (Fig. 7). Using this
data UR2 is correcting its position.

5.4 Teaching

Teaching digital design methods in universities often involves the use of robots.
The robots are usually housed in cages and separated from the workshop area to
minimize injury risks. Several groups of students can work with the robot and develop
experimental setups. We found that the possibility to wireless control the robot over
MQTT can help in the workflow as there is no need to always re-switch the cable to the
robot control unit. Still, as everybody can control the robot from their computer and
if the right MQTT topic name and the broker’s address is known, this can increase
the risk of uncontrolled sending commands to the robot. This type of dangerous
interference can be reduced with strict rules in robotic workshops (time-slots for
groups) and vision-based recognition to signal, when the robot area is free of people.

Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical … 199

6 Results and Future Work

In this paper we described a decentralized cyber-physical setup based on services that
can be easily reused for various applications. As the main communication protocol is
MQTT with good remote capabilities it can serve as a classical IoT example. Due to
security and latency issues, the described setup has still no direct industrial potential
but as the system is modular, elements can be evolved towards professional use cases.
It is perfect for academic workshops where a lot of task-driven pragmatic and quick
development is possible.

All presented services can be improved, especially where real-time is necessary
(i.e. controlling safety measures is high risk environments). We noticed 300–500 ms
latency when controlling the robot with a gamepad or in the milling-following-
vacuuming application example. Also the data management can incorporate industry-
grade data handling services such as AWS S3 services, Azure or Google Cloud to
avoid exposure of data with a safe user-management. Logging can be incorporated
as a single central service together with a good analytic visualization. This setup was
tested only with the UR robot family. The interaction with other robots should be
further developed and tested. Some of the libraries and GH components are publicly
available at GitLab [3].

References

1. Betti, G., Aziz, S., Rossi, A., Tessmann, O.: Communication landscapes. In: Robotic Fabrication
in Architecture, Art and Design, Springer International Publishing, Cham, pp. 74–84 (2019).
https://doi.org/10.1007/978-3-319-92294-2_6

2. Reinhardt, D., Haeusler, M.H., London, K., Loke, L., Feng, Y., De Oliveira Barata, E., Firth,
C., Dunn, K., Khean, N., Fabbri, A., Wozniak-O’Connor, D., Masuda, R.: CoBuilt 4.0: Investi-
gating the potential of collaborative robotics for subject matter experts. Int. J. Archit. Comput.
18, 353–370 (2020). https://doi.org/10.1177/1478077120948742

3. https://gitlab.com/Digitales_Entwerfen/pub_repository
4. Wang, X., Liang, C.-J., Menassa, C., Kamat, V.: Real-time process-level digital twin for collab-

orative human-robot construction work. In: Presented at the 37th International Symposium on
Automation and Robotics in Construction, Kitakyushu, Japan (2020). https://doi.org/10.22260/
ISARC2020/0212

5. Gill, R., Kulić, D., Nielsen, C.: Path following for mobile manipulators. In: Bicchi, A., Burgard,
W. (eds.) Robotics Research: Springer Proceedings in Advanced Robotics, vol. 2, pp. 527–544.
Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-60916-4_
30

6. Kaiser, B., Littfinski, D., Verl, A.: Automatic generation of digital twin models for simulation
of reconfigurable robotic fabrication systems for timber prefabrication. In: Presented at the 38th
International Symposium on Automation and Robotics in Construction, Dubai, UAE (2021).
https://doi.org/10.22260/ISARC2021/0097

7. Huang, Y., Carstensen, J., Tessmer, L., Mueller, C.: Robotic extrusion of architectural structures
with nonstandard topology. In: Robotic Fabrication in Architecture, Art and Design 2018,
pp. 377–389. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-
319-92294-2_29

https://doi.org/10.1007/978-3-319-92294-2_6
https://doi.org/10.1177/1478077120948742
https://gitlab.com/Digitales_Entwerfen/pub_repository
https://doi.org/10.22260/ISARC2020/0212
https://doi.org/10.22260/ISARC2020/0212
https://doi.org/10.1007/978-3-319-60916-4_30
https://doi.org/10.1007/978-3-319-60916-4_30
https://doi.org/10.22260/ISARC2021/0097
https://doi.org/10.1007/978-3-319-92294-2_29
https://doi.org/10.1007/978-3-319-92294-2_29

200 I. Vukorep and A. Kotov

8. Ercan Jenny, S., Lloret, E., Gramazio, F., Kohler, M.: Crafting plaster through continuous
mobile robotic fabrication on-site. Constr. Robot. 4, 1–11 (2020). https://doi.org/10.1007/s41
693-020-00043-8

9. Ercan Jenny, S., Lloret-Fritschi, E., Jenny, D., Sounigo, E., Tsai, P.-H., Gramazio, F., Kohler,
M.: Robotic plaster spraying: crafting surfaces with adaptive thin-layer printing. 3D Print.
Addit. Manuf. 3dp.2020.0355 (2021). https://doi.org/10.1089/3dp.2020.0355

10. Nicholas, P., Rossi, G., Williams, E., Bennett, M., Schork, T.: Integrating real-time multi-
resolution scanning and machine learning for conformal robotic 3D printing in architecture.
Int. J. Archit. Comput. 18, 371–384 (2020). https://doi.org/10.1177/1478077120948203

11. Ravi, K.S.D., Ng, M.S., Ibáñez, J.M., Hall, D.M.: Real-time digital twin of on-site robotic
construction processes in mixed reality 8. (2021)

12. Dörfler, K., Rist, F., Rust, R.: Interlacing. pp. 82–91 (2013). https://doi.org/10.1007/978-3-
7091-1465-0_7

13. Elashry, K., Glynn, R.: An approach to automated construction using adaptive programing.
pp. 51–66 (2014). https://doi.org/10.1007/978-3-319-04663-1_4

14. Vukorep, I., Kotov, A.: Machine learning in architecture. In: The Routledge Companion to
Artificial Intelligence in Architecture, pp. 93–109. Taylor & Francis, London (2021)

15. Vukorep, I., Zimmermann, G., Sablotny, T.: Robot-controlled fabrication of sprayed concrete
elements as a cyber-physical-system. In: Second RILEM International Conference on Concrete
and Digital Fabrication, RILEM Bookseries, pp. 967–977. Springer International Publishing,
Cham (2020). https://doi.org/10.1007/978-3-030-49916-7_94

https://doi.org/10.1007/s41693-020-00043-8
https://doi.org/10.1007/s41693-020-00043-8
https://doi.org/10.1089/3dp.2020.0355
https://doi.org/10.1177/1478077120948203
https://doi.org/10.1007/978-3-7091-1465-0_7
https://doi.org/10.1007/978-3-7091-1465-0_7
https://doi.org/10.1007/978-3-319-04663-1_4
https://doi.org/10.1007/978-3-030-49916-7_94

	 Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical Overview
	1 Introduction
	2 Problem Statement
	3 State-of-the-Art
	4 Components/Services
	4.1 MQTT Broker—Infrastructure Server
	4.2 Dashboard
	4.3 Robot—IoT Interface
	4.4 Data Management
	4.5 Vision
	4.6 Sensing
	4.7 Point Cloud Processing Service
	4.8 Grasshopper Components
	4.9 Path Planning Service

	5 Applications
	5.1 Adaptive Robotic Concrete Spraying
	5.2 6-Axis Milling
	5.3 Milling with Real-Time Relative Robot Movements
	5.4 Teaching

	6 Results and Future Work
	References

