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Abstract Building an effective cyber-physical system is difficult due to the overall 
complexity of technologies on their own, challenges with the interaction between 
all parts of workflow and applicability issues. This makes the real-world applica-
tion of complex cyber-physical systems only available to the big industry parties or 
high-tech startups, leaving small and medium-sized businesses behind. Therefore, 
the democratization of such applications is a reasonable goal to achieve. Cyber-
physical systems of this kind are in the experimental stages and incorporate robotics, 
IoT, materials science, visual and 3D-scanning techniques, and machine learning 
(ML) tools all under the heading of Industry 4.0. This paper covers specific practical 
approaches in several application fields using robotics and IoT. We use custom-built 
hardware and software setups together with standard frameworks and the MQTT 
protocol for different applications. Due to the practice-driven approach, the paper 
will illustrate both positive and negative effects. We describe the use of our systems in 
several case studies: Multi-layer automated robotic concrete spraying using ML, IoT 
spatial awareness via sensors (such as Lidar, Kinect), robotic multi-axis milling and 
quasi-autonomous robot movements. A unifying issue is a decentralized approach of 
modular IoT elements that we grouped to achieve specific tasks. The paper illustrates 
how these elements exchange data and communicate, and all services are controlled 
on each computer instances, connected to an IoT network to ensure a high level of 
system stability. 
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1 Introduction 

Our paper discusses practical approaches to robotics and Internet of Things (IoT) in 
several application fields. In order to increase the reusability of such cyber-physical 
setups, a combination of custom hardware and software, as well as standard frame-
works and protocols are used for different applications. We implement principles 
of Industry 4.0 paradigm by using several architecture defining principles such as 
microservices, applied robotics and ML. There are several examples of similar setups 
of using industry 4.0 principles in robotic fabrication [1, 2]. Micro-services allow us 
to isolate key services and machines, enabling us to create decentralized, modular 
IoT elements that can be grouped together to achieve specific tasks. Furthermore, 
microservices are used within the software and hardware domains, allowing for better 
communication and data exchange between different segments. This further enhances 
the integration of our cyber-physical systems, allowing us to achieve greater levels 
of automation and efficiency. This concept embodies one of industry 4.0’s main 
strengths, which is the democratization of complex tools. 

We are discussing some typical services in detail used in our applications and 
providing links to some own developed libraries and components on GitLab [3]. 
Our system is demonstrated in several case studies: Multi-layer automated robotic 
concrete spraying using machine Learning (ML), IoT, spatial awareness using sensors 
(such as LiDAR, Kinect), robotic multi-axis milling, and in teaching scenarios. A 
common theme is a decentralized approach of modular IoT elements that we group 
to achieve specific tasks. One of the tasks is the concrete spraying case study that is 
aiming to reduce the weight of produced elements and increase the potential design 
space through its capability to produce free-form shaped parts. Its production incor-
porates a wide range of machine control, space observation and data processing 
segments. The paper will describe how these segments exchange data and communi-
cate with each other. In the quasi-autonomous case study section, we will cover the 
interaction of a pair of robots, where one robot is performing target action, while the 
second is following the first one via dynamic observation. Micro-services are used 
both in a software and hardware sense—both key services and machines are isolated. 
We start by defining the problem statement, which discusses the use of Robot Oper-
ating System (ROS), a leading system for developing cyber-physical systems. The 
following chapter is about categorizing various types of cyber-physical systems in 
terms of their internal organization and communication of processes. 

2 Problem Statement 

There are several systems that can help in developing automatized and robotic appli-
cations. One of the most popular and robust is ROS—robot operating system, a 
framework for various robots founded 2007 at Stanford University. It is suitable 
for heterogeneous clusters with a highly developed messaging system with low
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latency. Its publish-subscription communication management is even near real-time 
in the new ROS 2 version. Furthermore, its services run decentralized, so demanding 
processes can execute remotely. ROS’ lively community is providing libraries for 
all kinds of hardware. Communication with external non-ROS clients is possible 
(Websockets, mqtt). The ROS-industrial is an extension of ROS and provides open 
source industrial general and vendor specific libraries in an industrial context. The 
drawback of such a powerful system is that the implementation can be very complex. 
In a typical academic scenario, where experiments are performed with light and atyp-
ical configurations, setting up ROS with its enormous overhead can be extremely 
time-consuming. Although ROS covers a big range of hardware and allows imple-
mentation of one’s own libraries, installing unsupported sensors and actuators inside 
of ROS proved to be unrealistic in our context of projects. 

The setup of a construction-related robotic system requires the creation of several 
services that can work robustly and independently and have a clear way of interacting. 
As most robotic setups are different, those services should operate in different constel-
lations. The software can be written in different languages, and the services can run 
on completely different hardware. With this, to distribute the development of single 
parts to a wider range of people is easily possible, in our case to students and academic 
researchers. When working with parametric geometry, such as connecting Rhino 3D 
Grasshopper results to a robotic setup with many sensory inputs and complex actu-
ator control, this flexibility is especially important. Another important feature is also 
the ability to work remotely, via VPN, when needed, with visual feedback. 

3 State-of-the-Art 

In the architectural and construction context, most academic experimental robotic 
setups are very narrowly and pragmatically tailored to solve some specific scientific 
problem. The majority of related research papers do not detail their technical setup, 
but a few of them mention their software equipment and this has been analyzed. 
Generally, we can divide architecture- and construction-oriented robotic setups into 
several groups: 

1. ROS as a central unit. ROS is often used for its integrated and decentralized 
service platform and communication protocol. In [4] research, a collaborative 
human–robot construction system is developed around a ROS computational 
core and its ability to communicate with virtual reality in Unity, sensor data, and 
the robot. In the work of [5], ROS is exchanging data with MATLAB Robotics 
System Toolbox for path creation. In [6] ROS is used together with MoveIt for 
trajectory planning of the robots. In [7] Choreo is used along with ROS-industry 
and Move-it to plan motion and choreography. 

2. ROS as one of several parallel services. The  work  [8] involves modeling 
in Rhino, kinematic modeling in the COMPAS FAB package, and ROS as a 
robot controller with communication via Roslibpy. This library was developed
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at the ETH Gramazio. Kohler and is based on WebSockets and bridges between 
services. For [9] GH/Lunchbox ML services, as well as serialized data in JSON 
format, are implemented. 

3. Decentralized system with heterogeneous communication. The  work  [10] uses  
individual services for scanning (python), ML analysis (Tensorflow, python), 
modelling (GH/Rhino) and path planning (RoboDK) without a specific commu-
nication protocol. In this study, [11] Rhino for modelling, GH to simulate 
robotic processes, Unity for VR-visualization, DynamoDB at Amazon Web 
Services (AWS) for data handling and data storage are used and heterogeneously 
connected. 

4. Decentralized system with specific server communication. Described in [12] is  
a robot setup controlled by a self-written python server (XML, TCP/IP Ethernet) 
that transmits data between services (clients: Python algorithms, Rhino visual-
ization, camera, and robot). In [13] the communication is arranged through Java 
in Processing and an UDP protocol exchanging data with the Scorpion plugin in 
Rhino/GH for path creation and transmission to the robot. 

These categories each have their own advantages and impact on scalability, modu-
larity, and reusability. A decentralized system with a Message Queuing Telemetry 
Transport (MQTT) protocol is described in this article based on experiences gained 
in a variety of scenarios. The protocol serves as a basis for IoT development, as all 
clients and services in an IoT system communicate via the web. These services will 
be described in more detail within the following chapters. 

4 Components/Services 

Our system uses a modular microservices architecture. Most commonly, this term 
describes the organization of software complexes and information systems. Contrary 
to a monolithic approach where all the code is merged together, the microservices 
concept divides a program into several independent components (services) that can 
run on multiple/divided platforms and have a unified communication vocabulary. If 
one subsystem fails, the whole system will be less likely to crash, what improves 
stability. Another advantage is a possible update/change of individual components 
inside the system without having to rebuild the entire system. There are currently 
many distributed online systems with millions of users using it. As a basis for further 
development, this approach was chosen due to the need for stability, modularity 
(reusability), and scalability.
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4.1 MQTT Broker—Infrastructure Server 

The core element of this decentralized cyber-physical system is the IoT data exchange 
protocol (MQTT). In contrast to XML over TCP/IP, Websockets, UDP or other previ-
ously mentioned communication protocols, is that it can deliver messages with 
requested quality of service (QoS). This includes fire and forget, at least once 
and exactly once. QoS can help when connections are unstable or we have crit-
ical command execution procedures (as running a robot). It’s supplying sufficient 
speed and it’s lightweight. The principle of subscription and publishing over topics 
is similar to ROS’ handling messages. The issues of security around MQTT are not 
explicitly handled in this article and need special care by using client identification 
rules. The broker runs in the background inside a network. In our settings, we ran 
a Mosquitto broker (mosquitto.org) on Raspberry Pi 4 that automatically activates 
the service on booting. It can run on any OS system with a known IP address to the 
clients. For testing purposes, we provide a self-developed MQTT server on local-
host running inside GH/Rhino as a component. Furthermore, we wrote a MQTT 
subscription and publication component for GH/Rhino [3]. 

4.2 Dashboard 

To manage all processes, we could theoretically use any MQTT-browser like MQTT-
lens [14] but this will not give us a good overall overview of incoming and outgoing 
information. For visualization and administration of all processes, a central dashboard 
is necessary. Fig. 1 is showing an example of such a dashboard with several pages. 
The best method of a dashboard that is compatible for diverse use cases is to keep it 
growing as services are being added. This means that services that are not used are 
automatically disabled in some applications. This can be done by internal checking 
if services are available (online).

Key features of a dashboard are: 

– Robot control, with some predefined robot positions or movements, manually 
loading robot scripts or others, 

– System observation, key vital data of robot TCP position, availability of hardware 
and program components, 

– Visual observation from connected cameras, 
– Control of additional machines as scanners, grippers, 
– Database connection with data presentation and editing options. 

Our dashboard is built with Python and Flask backend programming framework 
that can easily be scaled as it uses templates and sophisticated data interaction. These 
packages can run on Raspberry Pi 4 or any other computer (also together with the 
broker) in the network and can be reached at the local network.
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Fig. 1 Dashboard pages: status, robot control, scan data view and info page

4.3 Robot—IoT Interface 

One central part of the IoT robotic setup is the connection of the robot to the rest 
of the system. For this connection, we use an interface service that is transferring 
incoming data directly to the robot over an Ethernet/Lan connection and vice versa, 
publishing information like robots joint and TCP positions data. As this interface is 
embedded in a wireless network to other clients, huge flexibility of robotic control 
is provided, which means we can control the robot without being directly connected 
to it. 

As every robotic company has got its own I/O solution, this interface has to 
be tailored individually to robotic families. We tested this setup with Universal 
Robots running the interface on a Raspberry Pi 4 and written in Python. All outgoing 
information about the robot is read by the IO Modbus protocol of the UR robots and 
broadcasted over MQTT. 

Additional machines connected to the robot are also accessible through this inter-
face as part of the script that is transferred to the robot. This transfer incorporates 
also some extra features such as comparing the robot position with the target position 
or relative and absolute movements and some special positions, like home, self-test 
or tool changing position.
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4.4 Data Management 

Data management is not organized as a single service but can be found in all 
other services and processes. In our cyber-physical arrangements, we have four data 
streams that handles: Configuration files of the setup, incoming (i.e. sensor) data, 
processed data and logging data. Configuration files are actual settings (home posi-
tion, special robotic positions, broker addresses, storage credential data) stored as 
JSON-files. Besides this, we also have environment and tool data stored as Rhino 
3 dm-files. Both types are inside the folder structure of the dashboard. 

Incoming data are files made by sensors and are mostly of high volume. Those are 
saved in a project folder with a time-stamp and additionally automatically processed 
or triggered by incoming commands. Those processed files are then saved in addi-
tional folders like thumb views of scanning or images, automatically generated scripts 
or other project specific data. All processed data that are part of closed procedure, 
are saved in the job-folder. This decentralized database-free approach is working 
well in closed networks but there are security issues when we expose them in open 
networks. For this usually some professional data handling services can be used 
like AWS S3 services that is also handling user-right-management and some data 
processing through APIs. In our setup we used a Resilio Sync—BitTorrent protocol 
for data synchronization as this proved to be fast. 

Logging is an important step toward error tracking and statistical analysis. Some 
of the services in our cyber-physical system are logging their processes. Advisable 
would be a central logging device, even organized as an own service, that is collecting 
logging data from other services with the capability of analytic display in dashboard 
or other viewer. 

4.5 Vision 

Cameras can be used for tracking movement, security control, position diagnosis or 
simple documentation purposes. The application will define if camera stream will be 
recorded or not, if the processed image will be directly processed or high computation 
is necessary (i.e. OpenCV postprocessing). Any stream data client can be connected 
to the network and then retrieved from the dashboard. Based on streamed data it’s 
possible to detect movement, risk situations (and use MQTT for signaling) or incor-
porate customized recognition of elements. In our case we have used the camera for 
finding edges of the scanning area. For simple low resolution processing, a camera 
can be connected to a Raspberry Pi 4, which can run OpenCV4, and transfer the data 
over Wi-Fi. For higher resolution data streams an Ethernet connection is necessary. 
Remote control of the system is also facilitated by vision.
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Fig. 2 Illustration of the scanner movement over the observed object 

4.6 Sensing 

The complexity of the task and models meant that we had to use different scanning 
systems in our project. We did tests with Kinect, azure Kinect DK and RPLidar 
scanners. All three have different capacities and options of sensing the environment. 

4.6.1 Rotation Lidar Scanner 

Rotation lidar scanner like is measuring distance to an object at some specified angle. 
As it rotates, it can only measure in slices, meaning if we want to measure distances in 
all 3 axes, the lidar scanner has to move. In combination with a precise movement of a 
robot we can have a very effective scanner that can, in some cases, make better scans 
of areas that are obscured, deep objects or with cantilevers (Fig. 2). We connected our 
RPLidar A2M8 scanner to a Raspberry Pi 4. Together with the UR-robot, both were 
triggered by an MQTT command [3]. Scanning results grouped with the coordinates 
of the scanner positions were saved in the incoming data folder and automatically 
further processed. This data processing usually depends on the application and in 
our case it consisted of deleting the unnecessary data and transforming the rest into 
a 3D point cloud. 

4.6.2 Azure Kinect SDK Scanner 

For certain tasks, such as real-time scanning for object presence and control, a 
moving lidar is not the best solution. Therefore, a depth camera coupled with a 
RGB-camera seemed like a good option [3]. We chose an Azure Kinect SDK scanner 
that is connected to a computer with the Ubuntu OS. Even though the hardware
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and software requirements are high, the scanning process worked well because we 
needed a high level of precision without a high resolution. As the RGB-stream can be 
read separately, we use the camera also for documentation purposes. Several MQTT 
commands are running the scanner: RGB-single shot, RGB-stream, hi-resolution 
scan, low-resolution scan. The results are stored in the incoming data folder and are 
automatically processed like creating thumb views of the point clouds or detecting 
objects. 

In our case we mounted the scanner above the active zone of the robot, see Fig. 5. 
In the usage examples described later, the scanner serves for sensing the actual state 
of robot production. For this, every process step is scanned and the object scan are 
compared after the process step is finished. Before the process starts, a calibration 
scan is executed that marks the clean table and initializes the process. 

4.7 Point Cloud Processing Service 

When scan data is stored in the incoming folder, several application dependent 
processing steps are necessary. Usually object have to be detected from out of a 
messy point cloud and for this the following functions are executed: (1) the empty 
table scan detects a plane, (2) the object scan is been cleaned against this plane, 
(3) the result is clustered so some flying points eliminated, (4) the outline of the 
object is found, that all further scans can use for the eliminating unnecessary point 
data. Although this service depends on the application we wanted to develop, it as 
a module that can be reused in other applications. The algorithms are triggered by 
MQTT-commands from the dashboard. Most processing work is done in the back-
ground while the dashboard lists the objects in the browser views. Fig. 3 shows a 3D 
scanned mould after the point cloud cleaning procedures.

4.8 Grasshopper Components 

Since the wide adoption and the abilities of Rhino/Grasshopper, it was essential 
to create viable MQTT components for Grasshopper. During different development 
phases we also used GH/Python connected modules, but that was not offering enough 
scalability, since one has to install and configure a Python environment for any new 
machine. GH components are simpler to use and also better in terms of response of 
the GUI since they’re natively compiled from C# and Grasshopper is built on.NET 
technology. The components for Rhino 6 and 7 can be downloaded from GitLab [3].
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Fig. 3 Mold 3d scan  
example automatically 
subtracted from the 
surrounding environment

4.9 Path Planning Service 

The goal of the path planning service is to provide a viable adaptive trajectory over 
a given surface keeping in mind execution of additional tasks. Those tasks are the 
execution of actions or activating hardware connected to the robot depending on 
path and/or surface properties. The path planning are then combined with action 
augmentation. This means, in certain positions or areas robot activates connected 
hardware (e.g. use gripper or run the concrete pump). 

A naive path planning approach can be defined as a zig-zag pattern based on 
a given shape (Fig. 4). However, such an approach is ignoring the curvature of the 
target surface. In this case it is not adaptive, and this can cause problems with complex 
shapes and where actions require precision. We calculate simple patterns based on 
the previously mentioned outline form without any usage of additional 3D programs.

An alternative approach would be the use of ML methods with the aim to be 
adaptive to any form and be compatible with imperfections of the scanned object. 
We use a Multi-Objective Optimization (MOO) strategy in conjunction with other 
ML methods. These methods are proven to be useful as one of the tools in archi-
tectural production [14]. However, to apply those methods, the transformation of 
several stages of data is necessary. The path planning between different zones can 
be also formulated with the Travel Salesman Problem (TCP), which enables us to 
find the optimal path. To solve it, we’re using internal Grasshopper components with 
custom Python processing. Thus, we’re solving the problem of uniform distribution 
of the points over the given surface with desired in-between distance (a derivative of 
action radius and distance between TCP and surface). As a result, a waypoint graph 
with equal edge length based on the surface of any curvature is generated. Using the
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Fig. 4 Left: naive zigzag approach, right: ML approach with the determination of the working area 
for the path planning algorithm as well as for dynamic hardware control settings (e.g., we stop air & 
concrete pumps while the robot is travelling outside/between red and blue line, and enable it over 
islands/inside blue line)

previously generated graph and applying TCP guided local search algorithm, we’re 
able to find the optimal path. In our examples we are using different script gener-
ation software like RoboDK (robodk.com) and Robots (github.com/visose/Robots) 
running in Rhino/GH instances. Those are activated by MQTT commands that sends 
the number of the job so the identification of the files in the job folder is possible. 

To ensure that the robot movement is safe, the path is being simulated in a dupli-
cated virtual environment where the virtual robot and all the robotic movements are 
synchronously simulated prior to the machine execution. Thus, we’re testing that the 
given path can be executed, that all points can be reached, that there are no singu-
larities and collisions (and signaling an error over MQTT). As a final part of the 
program, the resulting script is being augmented according to the target setting for 
acceleration and speed of the robot’s linear and joint movements’ settings. 

4.9.1 Digital Twin 

During the implementation of certain use strategies we found it very useful to imple-
ment a digital twin of the URs that we use in the lab. This can help us to prevent 
singularities or collisions with itself, other robots or the environment. The difference 
between a digital twin and a simulation is that it simulates the setup in real time 
and with all possible MQTT inputs that is streamed over the Robot—IoT interface. 
Each simulation is using individual UR calibration files, so we can be sure that it’s 
1:1 to the real setup. The other benefit of using digital twins is the fact that one can 
develop programs for robots without the physical availability of the systems (e.g. 
develop robot control system not from the robot lab, but from home office). Later, 
the algorithms and models tested on digital twins can be propagated onto real hard-
ware. For implementation we are using Python for MQTT-side communication and
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control, sharing part of the codebase with a Robot—IoT interface and RoboDK, all 
running on a windows machine inside a Rhino/GH instance. The limitations lie in 
limited sensor (vision and scanning) data or the simulated production process that 
can be complex. 

5 Applications 

5.1 Adaptive Robotic Concrete Spraying 

Concrete spraying is one of the promising technologies that aim to reduce the weight 
of produced elements and increase the possible design space through its feasibility in 
producing free-form shaped parts. Even though thin-formed concrete shells produc-
tion is efficient for many situations, a variable thickness would increase applications. 
First situation is resulting from the inconsistent process of spraying. It often suffers 
from an interruption in concrete feeding that the pump is pushing through the tube. 
As these interruptions are happening during the robot movement, the applied material 
unintentionally varies in thickness. The second situation comes from the structural 
properties of the element that sometimes demands to have ticker or slimmer areas 
depending on its structural needs. 

Using ML methods this system offers different spraying strategies: Using target 
thickness or matching the target form. The spraying is done automatically using 3d 
scanning and adaptive robot path planning (Fig. 5). The software subsystem consists 
of several parts:

– Point-cloud scanning of mould and scanning the processing phases, 
– Form comparison/matching—comparison of the given form to target goals, 
– Robot path planning component—optimal robot spraying trajectory, 
– Robot—IoT interface for execution of desired spraying path, controlling pump 

and air valve. 

While there may be simple forms, the high curvature forms’ surfaces present a 
challenge. This requires a complex path plan strategy as the mechanical movements 
of the robot should not collide with the mold during the spraying process as well 
as to follow the goal parameters of the target concrete shape. The outcome of the 
research can be found [15]. 

5.2 6-Axis Milling 

Traditional CNC-milling is usually limited to milling in 3 axes. However, attaching a 
milling machine to a 6 axis robot arm allows to achieve much more versatile milling.
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Fig. 5 Hardware and software elements of a cyber-physical concrete spraying system

One of the key abilities is so-called “undercutting”, the movement when a robot drill 
goes under an already existing form without destroying it (Fig. 6). 

In our setup the robot was controlled via a Raspberry Pi with our software. The 
most challenging part of this application was the software that forms the movement 
trajectories in 6 axis movements, to check if the form is feasible to milling and the 
robot arm and milling drill will not collide with the milled model itself. Furthermore, 
there are also issues of visibility of milling paths on the target surface in case of 
sophisticated target form. Despite the proof-of-work state, developing a full-scale 
application seems challenging due to the complexity of robot path planning and 
challenges with fine milling of complex curvatures.

Fig. 6 Left: undercutting maneuver, right: resulting mold 
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Fig. 7 Left: system setup, right: milling-following-vacuuming 

5.3 Milling with Real-Time Relative Robot Movements 

Milling produces a lot of dust, which is a problem. In this instance, we are solving 
this with a robotic IoT toolset. Next to a milling instrument attached to one UR, we 
added another actor; a new UR with the vacuum nozzle that is designed to follow the 
milling TCP of the first UR robot to vacuum all dust generated during the milling 
process. 

Hardware setup consists of UR robots each connected with Raspberries. During 
the implementation of this solution we found the need to create the 1:1 digital twin 
of the acting robots in the environment due to the fact that it was more convenient to 
debug controlling algorithms in a digital way. UR1 is milling, while UR2 is following 
UR1 TCP via constant reading real-time position and axis data (Fig. 7). Using this 
data UR2 is correcting its position. 

5.4 Teaching 

Teaching digital design methods in universities often involves the use of robots. 
The robots are usually housed in cages and separated from the workshop area to 
minimize injury risks. Several groups of students can work with the robot and develop 
experimental setups. We found that the possibility to wireless control the robot over 
MQTT can help in the workflow as there is no need to always re-switch the cable to the 
robot control unit. Still, as everybody can control the robot from their computer and 
if the right MQTT topic name and the broker’s address is known, this can increase 
the risk of uncontrolled sending commands to the robot. This type of dangerous 
interference can be reduced with strict rules in robotic workshops (time-slots for 
groups) and vision-based recognition to signal, when the robot area is free of people.
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6 Results and Future Work 

In this paper we described a decentralized cyber-physical setup based on services that 
can be easily reused for various applications. As the main communication protocol is 
MQTT with good remote capabilities it can serve as a classical IoT example. Due to 
security and latency issues, the described setup has still no direct industrial potential 
but as the system is modular, elements can be evolved towards professional use cases. 
It is perfect for academic workshops where a lot of task-driven pragmatic and quick 
development is possible. 

All presented services can be improved, especially where real-time is necessary 
(i.e. controlling safety measures is high risk environments). We noticed 300–500 ms 
latency when controlling the robot with a gamepad or in the milling-following-
vacuuming application example. Also the data management can incorporate industry-
grade data handling services such as AWS S3 services, Azure or Google Cloud to 
avoid exposure of data with a safe user-management. Logging can be incorporated 
as a single central service together with a good analytic visualization. This setup was 
tested only with the UR robot family. The interaction with other robots should be 
further developed and tested. Some of the libraries and GH components are publicly 
available at GitLab [3]. 
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5. Gill, R., Kulić, D., Nielsen, C.: Path following for mobile manipulators. In: Bicchi, A., Burgard, 
W. (eds.) Robotics Research: Springer Proceedings in Advanced Robotics, vol. 2, pp. 527–544. 
Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-319-60916-4_ 
30 

6. Kaiser, B., Littfinski, D., Verl, A.: Automatic generation of digital twin models for simulation 
of reconfigurable robotic fabrication systems for timber prefabrication. In: Presented at the 38th 
International Symposium on Automation and Robotics in Construction, Dubai, UAE (2021). 
https://doi.org/10.22260/ISARC2021/0097 

7. Huang, Y., Carstensen, J., Tessmer, L., Mueller, C.: Robotic extrusion of architectural structures 
with nonstandard topology. In: Robotic Fabrication in Architecture, Art and Design 2018, 
pp. 377–389. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-3-
319-92294-2_29

https://doi.org/10.1007/978-3-319-92294-2_6
https://doi.org/10.1177/1478077120948742
https://gitlab.com/Digitales_Entwerfen/pub_repository
https://doi.org/10.22260/ISARC2020/0212
https://doi.org/10.22260/ISARC2020/0212
https://doi.org/10.1007/978-3-319-60916-4_30
https://doi.org/10.1007/978-3-319-60916-4_30
https://doi.org/10.22260/ISARC2021/0097
https://doi.org/10.1007/978-3-319-92294-2_29
https://doi.org/10.1007/978-3-319-92294-2_29


200 I. Vukorep and A. Kotov

8. Ercan Jenny, S., Lloret, E., Gramazio, F., Kohler, M.: Crafting plaster through continuous 
mobile robotic fabrication on-site. Constr. Robot. 4, 1–11 (2020). https://doi.org/10.1007/s41 
693-020-00043-8 

9. Ercan Jenny, S., Lloret-Fritschi, E., Jenny, D., Sounigo, E., Tsai, P.-H., Gramazio, F., Kohler, 
M.: Robotic plaster spraying: crafting surfaces with adaptive thin-layer printing. 3D Print. 
Addit. Manuf. 3dp.2020.0355 (2021). https://doi.org/10.1089/3dp.2020.0355 

10. Nicholas, P., Rossi, G., Williams, E., Bennett, M., Schork, T.: Integrating real-time multi-
resolution scanning and machine learning for conformal robotic 3D printing in architecture. 
Int. J. Archit. Comput. 18, 371–384 (2020). https://doi.org/10.1177/1478077120948203 

11. Ravi, K.S.D., Ng, M.S., Ibáñez, J.M., Hall, D.M.: Real-time digital twin of on-site robotic 
construction processes in mixed reality 8. (2021) 

12. Dörfler, K., Rist, F., Rust, R.: Interlacing. pp. 82–91 (2013). https://doi.org/10.1007/978-3-
7091-1465-0_7 

13. Elashry, K., Glynn, R.: An approach to automated construction using adaptive programing. 
pp. 51–66 (2014). https://doi.org/10.1007/978-3-319-04663-1_4 

14. Vukorep, I., Kotov, A.: Machine learning in architecture. In: The Routledge Companion to 
Artificial Intelligence in Architecture, pp. 93–109. Taylor & Francis, London (2021) 

15. Vukorep, I., Zimmermann, G., Sablotny, T.: Robot-controlled fabrication of sprayed concrete 
elements as a cyber-physical-system. In: Second RILEM International Conference on Concrete 
and Digital Fabrication, RILEM Bookseries, pp. 967–977. Springer International Publishing, 
Cham (2020). https://doi.org/10.1007/978-3-030-49916-7_94

https://doi.org/10.1007/s41693-020-00043-8
https://doi.org/10.1007/s41693-020-00043-8
https://doi.org/10.1089/3dp.2020.0355
https://doi.org/10.1177/1478077120948203
https://doi.org/10.1007/978-3-7091-1465-0_7
https://doi.org/10.1007/978-3-7091-1465-0_7
https://doi.org/10.1007/978-3-319-04663-1_4
https://doi.org/10.1007/978-3-030-49916-7_94

	 Quasi-Decentralized Cyber-Physical Fabrication Systems—A Practical Overview
	1 Introduction
	2 Problem Statement
	3 State-of-the-Art
	4 Components/Services
	4.1 MQTT Broker—Infrastructure Server
	4.2 Dashboard
	4.3 Robot—IoT Interface
	4.4 Data Management
	4.5 Vision
	4.6 Sensing
	4.7 Point Cloud Processing Service
	4.8 Grasshopper Components
	4.9 Path Planning Service

	5 Applications
	5.1 Adaptive Robotic Concrete Spraying
	5.2 6-Axis Milling
	5.3 Milling with Real-Time Relative Robot Movements
	5.4 Teaching

	6 Results and Future Work
	References


