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8Vegetation Indices-Based Rice
and Potato Yield Estimation Through
Sentinel 2B Satellite Imagery

Chiranjit Singha and Kishore C. Swain

Abstract

High-resolution optical remote sensing ima-
gery has sound potential for future crop yield
estimation. In precision agriculture adoption,
these systems can provide valuable informa-
tion on various factors affecting a farm’s
production. The current study used different
crop vegetation indices, such as NDVI,
NDWI, BI, DVI, SAVI, GEMI, PVI, RVI,
and LAI, for estimating rice and potato crop
yield on a microscale. Optical Sentinel-2B
images were used for rice and potato crop
estimation during 2018 and 2019 in ArcGIS
10.7 software environment for the rural
neighborhood of Tarakeswar region, Hooghly
(West Bengal, India). The geostatistical semi-
variogram analysis with the best fitting of the
exponential and spherical models determined
the degree of spatial variability of rice and
potato yield. In statistical Getis-Ord Gi*
analysis, the clusters of VIs indicated high
yield with NDVI, RVI, and SAVI surfaces,
while low vegetation indices showed low
yield. Furthermore, the support vector
machine, random forest, and logistic regres-
sion models were positively used in the spatial

assessment of rice and potato crop yield
estimation, with AUROC values of 80–90%.
However, the Naïve Bayes model was cate-
gorized as a moderate to good predictor with
an AUC value between 60 and 80%. This
chapter introduced a novel approach for crop
yield prediction and validation with optical
satellite imagery for microscale precision and
agriculture adoption, which further helps
using this method for other crops.
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8.1 Introduction

In developing countries, the population explo-
sion is the major issue for food security
achievement. The future food grain yield is
estimated using standard crop and environmental
parameters. With the predicted crop yield, the
government gets enough time to prepare itself for
alternative food sources to face the food security
threat (if arises). However, several optical
reflectance-based vegetation indices (VIs) are
very good evaluators of the local food security
scenario well in advance through the earth
observation-based remote sensing (RS) tech-
niques (Lambert et al. 2018). Singha and Swain
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(2016) described the advantages of RS tech-
niques based on multicriteria decision-making
analysis, which has greater potential for sustain-
able agricultural planning. Integrating spatial
analysis and sensor technology in the precision
agriculture study can provide valuable crop
information for field-specific management (ESA
2019). This also assists in monitoring variable
fertilizer application, irrigation scheduling, bio-
mass estimation, and harvesting at actual crop
maturity by observing various agronomic
parameters (Vallentin et al. 2021). Quick and fast
crop yield estimation at the micro- to macro-level
is very promising through remote sensing, further
assisting in sustainable agricultural planning
(Yuan et al. 2015). Assessing crop yield is one of
the major issues to enhance the farmer's socioe-
conomic development and optimize the industrial
processing demand. Earth observation-based
satellite systems could better monitor the chan-
ges in crop growth due to management practices,
climate change impact, the emergence of pests
and diseases, or water stress (ESA 2019; Yuan
et al., 2015). Remote sensing resulting in several
spectral VIs has helped monitor crop productiv-
ity at the farm level (Shammi and Meng 2020).
Machine learning (ML)-based regression models
were useful for crop yield prediction through the
in-situ filed information and RS-derived VIs in
US Corn Belt (Ji et al. 2021). The above-said
model could provide a reference for both physi-
cal and data organization. Several studies have
shown that using ML techniques to analyze the
data collected from the RS technique improves
crop yield prediction (Shammi and Meng 2020;
Guo et al. 2021). Locally field-based multi-
temporal satellite remote sensing of crop VIs has
good statistical significance with wheat grain
yield up to 2 t ha−1 (Ali et al. 2019; Panek et al.
2020). European Space Agency (ESA) provides
high-resolution Sentinel 2 (S2) data through open
access for the environmental monitoring and
assessment of agriculture, wetland vegetation,
forestry development, etc. S2 data offers a high
spatial, spectral, and temporal resolution which
can estimate individual farm-level crop health
status, soil moisture, crop stress, and crop yield
information through RGB and near-infrared-

based spectral VIs. Multiple Linear Regression
(MLR), support vector machine (SVM), extreme
gradient boosting (XGB), stochastic gradient
descent (SGD), and random forest (RF) were
employed for field scale prediction of soya yield
using cloud-free S2 multispectral images derived
from different VIs of specific growing periods
(2018, 2019, and 2020) in Upper Austria (Pejak
et al. 2022).
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The simplified S2-MSI imagery can scientifi-
cally create different vegetation biophysical
variables from the surface reflectance values such
as Normalized Differential Vegetation Index
(NDVI) (Rouse et al. 1973); Normalized Differ-
ential Water Index (NDWI) (Chandel et al.
2019); Brightness Index (BI) (Cavalaris et al.
2021), Difference Vegetation Index (DVI) (Kus-
sul et al. 2020), Soil-Adjusted Vegetation Index
(SAVI) (Nagy et al. 2021); Global Environ-
mental Monitoring Index (GEMI) (Kobayashi
et al. 2020); Perpendicular Vegetation Index
(PVI) (Lu et al. 2016); Ratio Vegetation Index
(RVI) (Quan et al. 2011); and Leaf Area Index
(LAI) (Gaso et al. 2019). Using satellite images
and VIs allows the farmers to identify different
management zones on a commercial farm
(Campillo et al. 2018). These indices were used
to estimate vegetation characteristics as they
mostly serve as indicators for crop dynamics and
overall changes in biomass quantity and proper-
ties. Moreover, some indices are used to monitor
changes in the water content of leaves, while
others can suppress the soil's influence or elimi-
nate the influence of the atmosphere.

Several kinds of literature reported that VIs-
based crop yield estimation is very popular in RS
domains for wheat (Nagy et al. 2018), corn
(Panda et al. 2010), maize (Fang et al. 2011), rice
(Son et al. 2013), sunflower (Ali et al. 2019). In
recent years, vegetation reflectance values have
been further analyzed through geostatistical and
machine learning techniques as an alternative
approach for better crop yield prediction (van
Klompenburg et al. 2020). Koutsos et al. (2021)
applied the statistical hotspot autocorrelation to
identify low-yield areas for special attention to
the better management of the agronomic inputs
as a sustainable approach. LAI and NDVI are



good predictors of crop yield through the logistic
regression model (Kunapuli et al. 2015). Marino
and Alvino (2021) stated that statistical hotspot
analysis is a sound strategy for defining the
spatial differentiation of crop yield variation on a
small scale with the help of vegetation indices.
The US and German organic agriculture used the
clustering hotspot algorithm to better support
their regional economic development (Mar-
asteanu and Jaenicke 2016). The GIS-based
interpolations techniques such as IDW, EBK,
and Kriging are the most preferred technique for
multi-crop yield mapping (McKinion et al.
2010). RF and SVM allowed predictive models
of crop yield estimation using multi-temporal
data for site-specific management in different
seasons (Shah et al. 2018; Filippi et al. 2019).
Even the logistic regression (LR) and Naïve
Bayes (NB) models correctly predicted the corn
nitrogen stress class with the help of hyperspec-
tral sensors derived VIs (Laacouri et al. 2018;
Mupangwa et al. 2020). MODIS-derived LAI
estimated rice crop yield on a near real-time basis
using gradient boosted regression in India (Aru-
mugam et al. 2021). ML models are very helpful
in predicting the number of crop yields for sup-
porting food security in Africa (Chepngetich
2020; Cedric et al. 2022). Different vegetation
indices, namely NDVI, OSAVI, RSI, MTCI, and
BOP, incorporated with BP neural network,
significantly impact the cotton yield prediction
mapping in China. Ramos et al. (2020) used
multispectral UAV-based 33 VIs to predict maize
yield through the ranking-based RF model,
where the NDVI, NDRE, and GNDVI VIs are
the most precedence indices. On the contrary,
Pham et al. (2022) showed that the ML approach
is useful for enhancing the rice crop yield
through the spatial variability of VCI/TCI data in
Vietnam. Five MLS, namely elastic net (EN),
linear regression (LR), support vector regression
(SVR), and k-nearest neighbor (k-NN) are tested
for the potato tuber quality mapping with the
NDVI value in Atlantic Canada (Abbas et al.
2020). Sharifi (2020) proposed that integrating
satellite remote sensing and ML techniques pro-
vides a powerful potential approach for a barley

yield prediction map based on seasonal pheno-
logical behavior in eastern Iran.

8 Vegetation Indices-Based Rice and Potato Yield Estimation … 115

S2 MSI data with 10 m resolution has a
greater potential to build a decision-making tool
for crop yield estimation through numerous
vegetation spectral indices. With the accessibility
of open-source Python and SNAP tools along
with Geostatistics, ML, and area under the curve
(AUC) models, we tried to integrate several
biophysical spectral indices for yield estimation
of rice and potato crops in Hooghly District
(West Bengal, India). Nine major crop biophys-
ical parameters were identified, namely NDVI,
NDWI, BI, DVI, SAVI, GEMI, PVI, RVI, and
LAI, for accurate crop yield estimation during
two crop seasons (summer, 2018, and winter,
2019).

8.2 Materials and Methods

8.2.1 Study Area

The study was carried out in the Hooghly Region
(Tarakeswar * 2,528,500 to 2,530,600 N and
604,500 to 606,500 E in UTM-WGS84 Zone
45 N India) during the 2018 and 2019 crop
seasons (Fig. 8.1). The study region experienced
rich fertile alluvial soil with high productivity of
rice and potato compared to other districts of
West Bengal (Singha et al. 2020). The densely
populated region is supported by high cropping
intensity (184%). The total study area was
around 300 ha with an average MSL of 18 m.

This area is categorized by tropical monsoon
climate with an average annual rainfall of 1200‒
1700 mm) and temperature of 15‒35 °C (Singha
et al. 2019). Rice and potato are the main crops,
along with jute and vegetables. The growing
season for Kharif rice starts with the arrival of the
monsoon in July, and crops are harvested from
October to December. In the Rabi season, the
potato crop is sown in November–December and
harvested in March next year. The potato crop
has many advantages over other local crops in
terms of high crop yield, easy market access,
short crop growth, etc.
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Fig. 8.1 Study area map

8.2.2 Satellite Image Processing

Cloud-free Sentinel-2B MSI imagery was selec-
ted for the Kharif rice (October 17, 2018) and
Rabi potato (March 6, 2019) season, with a
temporal resolution of 10 days and 290 km
swath width. The images were processed for crop
biophysical status mapping and yield estimation
of two crops. The descending node of S2B MSI
offers a 5-day temporal frequency with an orbital
overpass time of approximately 10:30 a.m.
(Drusch et al. 2012).

The Copernicus Open Access Hub data is
easily retrieved by being atmospherically and
radiometrically corrected S2B bottom of atmo-
sphere (BOA) reflectance with 10 m pixel size
imagery (https://sci-hub.copernicus.eu/). The
Sentinel Application Platform v.8.0.0 (SNAP-
ESA) was used for image pre-processing. The
orthorectified images were geo-referenced in
WGS84 UTM zone 45 N with Survey of India
(SOI) topographical maps (No. 79B/1, 1:50,000
scale). The nine ground control points (GCPs)
developed the final study area location map with
a handheld GPS receiver e-Trex 20 Garmin). The
detailed workflow of this research methodology
is presented in Fig. 8.2.

8.2.3 Vegetation Indices (VIs)

This chapter selected the spatial resolution of
10 m for different VIs as input parameters for
estimating the spatial variability of rice and
potato yield, namely slope-based- (NDVI and
RVI), distance-based—PVI, soil noise-based—
SAVI, and NDWI, BI, GEMI, LAI (Hatfield
et al. 2008). All the VIs maps were developed
through ArcGIS 10.7 software for individual
farm plots extracted from S2 images for two peak
growing seasons. VIs are developed as the
combination of numerous wavebands (red, NIR,
SWIR, green, blue) and is also related to various
canopy estimated parameters (Table 8.1).

8.2.4 Yield Estimation

During the post-harvest processing, a set of
randomly selected 70 farms plot-wise agronomic
practice details, along with crop yield informa-
tion for two crops, were collected. The crop yield
data were collected along with a handheld e-Trex
GPS receiver (Garmin Ltd., Olathe, Kansas,
USA) in October 2018 for Kharif rice and March
2019 for Rabi potato. Rice yield was estimated

https://sci-hub.copernicus.eu/
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Fig. 8.2 Detailed workflow of the research work

Table 8.1 Details of selected vegetation indices (VIs)

Indices Explanation Formula Source

NDVI Normalized
difference
vegetation index

qNIR qred=qNIR qred Vannoppen
et al. (2018)

NDWI Normalized
difference water
index

qNIR qSWIR=qNIR qSWIR Chandel
et al. (2019)

BI Brightness index qred qSWIR qNIR qblue = qred qSWIR qNIR qblue Cavalaris
et al. (2021)

DVI Difference
vegetation index

qNIR qred Kussul et al.
(2020)

SAVI Soil-adjusted
vegetation index

1:5 qNIR qred = qNIR qred 0:5 Nagy et al.
(2021)

GEMI Global
environmental
monitoring index

g l 0:25g red 0:125 = l red Kobayashi
et al. (2020)

PVI Perpendicular
vegetation index

2 2 Xue and Su
(2017)

RVI Ratio vegetation
index

qred=qNIR Quan et al.
(2011)

LAI Leaf area index 3:618 * EVI - 0:118 Gaso
et al. (2019)
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where c(h) represents semivariance, Z(xi) is the
distance between the measured sample at point
Xi, and the point Z(xi + h) is the sum of the pairs
separated by the lag h.

The semivariogram was fitted using expo-
nential, spherical, Gaussian, and linear models.
The residual sum of squares (RSS) was used to

determine the form and goodness of fit of the
model semivariogram (Eq. 8.2).

using a 10 m � 10 m square quadrant at five
places for each plot. The yield data is converted
into kg/ha. Similarly, potato yield was estimated
for five rows, and the crop row's dimensions
(length and width) were measured. The yield data
in a point vector format at a spatial resolution
were converted to raster GeoTiff at 10 � 10 m
pixel resolution corresponding to the Sentinel-2
image pixels. Then, the yield maps were devel-
oped by the Kriging interpolation technique
through ArcGIS 10.7.
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8.2.5 Statistical Analysis

Statistical analysis was carried out to validate the
relationship between the VIs, generic crop yield,
and estimate yield data for two crops. The nor-
mality of the dataset was organized by descrip-
tive statistics integrating minimum, maximum,
range, mean, standard deviation (SD), skewness,
kurtosis, and coefficient of variation. All the
statistical calculations were performed in the ‘R’
software v.4.0.5 (University of Auckland, New
Zealand) environment.

8.2.5.1 Geostatistical Analysis
ArcGIS Geostatistical Analyst tool was also uti-
lized to study the degree of spatial dependence
between Sentinel MSI-based VIs and yield data
in the ArcGIS environment. The gradation of
consistency for rice and potato yielding was
determined using the standard equation using the
geostatistical semivariogram model (Eq. 8.1)
(McKinion et al. 2010).

c hð Þ ¼ 1
2N hð Þ þ

XN hð Þ

i¼1

Z xið Þ � Z xi þ hð Þ½ 2 ð8:1Þ

RSS ¼
Xn
i¼1

yi � f xið Þð Þ2 ð8:2Þ

where yi is the ith value of the variable to be
predicted, xi is the ith value of the explanatory
variable, and f xið Þ is the predicted value of yi

The statistical cross-validation method was
used for the performance of the semivariogram
model. The prediction accuracy of crop yield and
VIs was assessed through the coefficient of
determination and root mean square error value.
The best model accuracy indicated the maximum
R2 and least RMSE value for a final agreement
between crop yield and VIs parameters.

The sill, easily-defined range explains the
exponential and spherical models for the plant
and soil variability fitting (McKinion et al. 2010).
Our study structured the three parameters when
fitting the best semivariogram model, namely
(i) Nugget C0 represents short-scale randomness,
(ii) Sill (C0 + C1) of the semivariogram is equal
to the variance of the random variable when
growing beyond a certain distance and becomes
less or steadier around an edge value, (iii) range
is defined the correlation between two properties
inclined to be equivalent to zero when the dis-
tance h becomes too large. In semivariogram
analysis, the trends of spatial dependence
(SD) are measured by the nugget/sill ratio C0/
(C0 + C1), %. It is described in terms of three
types of spatial dependency levels; (i) strong
SD < 25%; (ii) moderate SD—25‒75%;
(iii) weak SD > 75% (Singha et al. 2020). The
geostatistical kriging analysis is incorporated
with the semivariogram that estimates the known
values to unknown values for spatial judgment of
crop yield variation at a similar level of resolu-
tion (Li et al. 2016). Yield maps converted into
raster form correspond to the same spatial reso-
lution of S2 images for extracting multi-point
values. Then Pearson correlation matrix showed
the relationship between the VIs and yield for the
two crops.
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where b signifies the intercept, T signifies the
transfer matrix, and the k-dimensional coeffi-
cient, w = (w1, w2, … wk)

T, comprises the
essential parameters to be assessed. Similarly,
SVM, RF, and NB models can be estimated
using their respective standard equations.

The model’s prediction accuracy was esti-
mated at 70% for training and 30% for testing
data through the area under the AUROC curve
(Eq. 8.7) (Allen 2015).

8.2.5.2 Hotspot Analysis
Hotspot analysis is a statistical procedure that
identifies statistically significant cold and hot
spots through the Getis-Ord Gi* statistic. It uti-
lizes a set of features that are weighted to identify
these cluster areas. These statistics have three
components: Gi Z Score, Gi p-value, and Gi-Bin
values of the selected criteria. The resultant Gi Z
Score and Gi p-Value define the high or low
values of the cluster in a spatial process. A high
Z score and a small p-value indicate a significant
hot spot positively correlated with a low negative
Z score. The more intense the hotspot or coldspot
clustering, the more it is distributed using kriging
interpolation within the region. This approach
identifies high and low clusters of yield data
correspondence to VIs with similar areas. The
ArcGIS spatial statistics tools did spatial auto-
correlation of the VIs in hotspots analysis in the
mapping cluster approach. The Getis-Ord Gi*
statistic was explained in (Eqs. 8.3, 8.4, and 8.5)
(Abdulhafedh 2017).

G�
i ¼

Pn
j¼1 wi;jxj � X

Pn
j¼1 wi;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

j¼1
w2
i;j�

Pn

j¼1
wi;j

� �2
�

n�1

S

vuut
ð8:3Þ

X
* ¼

Pn
j¼1 xj

n
ð8:4Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j 1 x

2
j

s � �2
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S ¼ ¼
n

� X ð8:5Þ

where G� indicates the G statistics of i, xj is the
VIs and yield of j, wi,j describes the spatial
weight between VIs and yield of i and j, X, and
S represent mean, variance, and n indicate the
sum of the VIs and yield parameters.

When evaluating crop yield and VIs agricul-
tural data with their surrounding neighbors, the
hotspots represent positive autocorrelation with
high production, and coldspots represent
negative autocorrelation with low production in
the study area. The attempts were made to carry
out hotspot analysis for point data on a
microscale.

8.3 Validation

Validation is carried out using the survey training
dataset of rice and potato yield information col-
lected from seventy farm plots in the study area.
For validation purposes, we use the area under
the receiver operating characteristic (AUROC)
curve incorporated into the four ML techniques,
namely (i) logistic regression (LR), (ii) support
vector machine (SVM), (iii) random forest (RF),
and (iv) Naïve Bayes (NB) which measured the
consistent relationship between yield data and
VIs.

LR is a classification algorithm that calculates
a predicted probability for a dichotomous
dependent variable based on one or more inde-
pendent variables (Ahmed and Sajjad 2018).
Authentication of the LR model is regulated by
the binary composition that indicates the proba-
bility of incidence with pair sample space,
P (Eq. 8.6)

P y ¼ �1jx;wð Þ ¼ 1
1þ exp �y wTxþ bðð

ð8:6Þ

AUC ¼
P

TPþ P
TN

PþN
ð8:7Þ

where TP—true positive and TN—true negative
represents the number of farm plots correctly
predicted crop yield, P is the total number of
plots with heavy specs, and N is the total number
of plots without substantial specs.

All-model performances were optimized for
choosing the best tuning hyperparameter to
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determine the high accuracy (AUC) results
(Table 8.2). The AUROC curve was produced by
the Anaconda python Jupyter notebook v. 6.0.1.
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8.4 Results and Discussion

8.4.1 Descriptive Statistical Analysis

Descriptive statistical analysis was carried out for
all the selected VIs and crop yields (Table 8.3).
The mean rice and potato yield rate of the study
area was 7.11 and 28.04 (t/ha), respectively. The
spatial variability of crop yield and VIs data were
good estimators of the ecological vegetation
process that resulted in a standard deviation
(SD), verified a CV value of 23.25% for rice
yield and 29.88% for potato crop yield. The VIs
of NDVI, NDWI, BI, DVI, GEMI, SAVI, PVI,
RVI, and LAI had low CVs in rice crop; simi-
larly, the NDVI, DVI, SAVI, PVI, and RVI had a
moderate level of CVs for the potato
crop. The NDVI and SAVI ranged between 0.45
to 0.58 and 0.27 to 0.34 for rice crops, and
similarly for potato crops between 0.16 to 0.55
and 0.11 to 0.35. The high mean values for RVI
were around 3.33, followed by LAI (2.06),
GEMI (0.64), and NDWI (0.62) in the rice crop,
whereas the potato crop is high mean values of
RVI (2.25), followed by LAI (0.80), GEMI
(0.56), and NDVI (0.38), respectively. The

positive (1.29) and negative (− 2.08) skewness
were found with BI and NDWI for the rice
crop. However, the negative (− 0.32) skewness
found in NDVI and positive (0.44) in the LAI
was found in potato crop, creating the symmet-
rical type distribution. The kurtosis interrelated to
DVI, SAVI, and PVI showed platykurtic
behavior associated with normal distribution for
rice crops. In the case of NDWI and BI, high
kurtosis (− 0.89 and 0.27) was observed, which
may represent the leptokurtic behavior of distri-
bution for the potato crop.

Table 8.2 Optimization of
parameters for AUROC
validation

Model Tuning parameter Feature selection

RF n_estimators 10

max_features Auto

Max depth 5

Criterion ‘gini’

SVM Kernel ‘rbf’

Gamma 2

Degree 3

NB var_smoothing 1e–09

LR C 1

Solver ‘lbfgs’

Intercept 24.05

8.4.2 Relationship Between VIs
and Crop Yields

Pearson correlations matrix described the inter-
relation between the selected VIs and crop yield
for two specific crop seasons (Tables 8.4 and
8.5). Higher r2 values reported the most signifi-
cance in crop growth and yield patterns around
the experimental farm plots. Rice yield was
significant/positively correlated with NDVI, and
RVI, while a moderate correlation with SAVI,
DVI, and PVI. VIs of RVI, NDVI, SAVI, DVI,
and PVI were best positively correlated with the
actual rice yield with high r values that ranged
from 0.80 and 0.92 (Table 8.4).

Similarly, potato yield was strongly correlated
with NDVI and moderately correlated with RVI,



SAVI, DVI, PVI, and LAI of r values from 0.761
to 0.908 (Table 8.5). BI was insignificant/
negatively correlated with both the crop yield
(rice and potato) because of the variability of
canopy reflectance and light use efficiency
(LUE) with site-specific field management.
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Table 8.3 Descriptive statistical analysis of selected VIs and crop yields (tons/hector)

Crops Parameters NDVI NDWI BI DVI GEMI SAVI PVI RVI LAI Yield

Rice Min 0.45 0.42 0.08 0.14 0.55 0.27 0.10 2.64 1.26 3.40

Max 0.58 0.68 0.11 0.19 0.68 0.34 0.13 3.74 2.68 12.00

Mean 0.54 0.62 0.09 0.17 0.64 0.31 0.12 3.33 2.06 7.12

SD 0.03 0.04 0.00 0.01 0.03 0.02 0.01 0.23 0.26 2.01

Skewness − 1.19 − 2.08 1.29 − 0.33 − 1.62 − 0.55 − 0.34 − 0.77 − 0.40 0.53

Kurtosis 2.34 8.21 3.21 − 0.33 3.96 − 0.03 − 0.34 1.18 0.86 0.25

CV 4.66 7.07 4.44 6.47 3.90 5.75 6.67 6.76 12.83 28.25

Potato Min 0.16 − 0.02 0.10 0.06 0.43 0.11 0.05 1.46 0.36 9.90

Max 0.55 0.55 0.14 0.21 0.69 0.35 0.15 3.37 1.43 39.00

Mean 0.38 0.27 0.12 0.13 0.56 0.22 0.09 2.25 0.80 28.04

SD 0.09 0.16 0.01 0.04 0.06 0.06 0.03 0.49 0.29 8.38

Skewness − 0.32 − 0.25 1.14 0.19 0.08 0.03 0.20 0.31 0.44 − 0.47

Kurtosis − 0.37 − 0.90 0.26 − 0.74 − 0.34 − 0.81 − 0.73 − 0.65 − 0.39 − 0.54

CV 24.23 59.26 8.42 28.50 10.26 27.18 28.50 21.73 36.17 29.88

N.B. SD standard deviation; CV coefficient of variation; n No. of sample

Table 8.4 Pearson correlations matrix between VIs and rice yield (n = 70)

NDVI NDWI BI DVI GEMI SAVI PVI RVI LAI Rice
yield

NDVI 1.000

NDWI 0.704** 1.000

BI − 0.701** − 0.770** 1.000

DVI 0.821** 0.353* − 0.178 1.000

GEMI 0.542** 0.248 − 0.116 0.661** 1.000

SAVI 0.908** 0.470** − 0.332* 0.984** 0.645** 1.000

PVI 0.819** 0.354* − 0.175 0.999** 0.665** 0.983** 1.000

RVI 0.996** 0.688** − 0.681** 0.836** 0.565** 0.918** 0.833** 1.000

LAI 0.804** 0.850** − 0.696** 0.555** 0.615** 0.648** 0.555** 0.813** 1.000

Rice
yield

0.895** 0.551** − 0.563** 0.806** 0.582** 0.862** 0.800** 0.920** 0.746** 1.000

** Correlation is significant, 0.01 level; * Correlation is significant, 0.05 level

8.4.3 Geostatistical Analysis

Plot-based yield information and extracted VIs
datasets were analyzed using the geostatistical
semivariogram method (Table 8.6). The lag size
of both crops was between 14.90 and 64.46,



that’s were depending on the spatial variability of
the crop, VI, and soil nutrients. The high lag size
was 57.76 for rice (BI) and 64.46 for potato
(NDWI) with a spherical semivariogram. Asso-
ciating range values of rice VIs, the lowest value
was measured for GEMI (95.59 m), and the
highest value was measured at NDWI
(255.01 m). Similarly, the VIs of potato crops
varied amply between 246.46 and 349.83 m.
Nuggets were highest for PVI (5.29) and lowest
for BI, GEMI (0.0001) of rice crops, where the
potato crop has the lowest nugget for GEMI
variables. The nine VIs of the rice crop revealed
a sill size between 0.002 (BI, GEMI) and 6.42
(PVI), which stated a relatively parallel total
variance. The VIs of potato crop sill varied from
0.008 (GEMI) to 0.093 (NDVI). The ratio of
percentage between the two parts, a nugget to sill
variance, ranged noticeably between RVI
(0.039%) and PVI (82.37%), where C0 repre-
sented 0.039% and 82.37% of C0 + C with
strong spatial dependency (0.41%) for rice yield,
and the other potato crops where C0 denoted
9.87% to 60.36% of C0 + C with moderate spa-
tial dependency (34.27%) for potato yield. The
exponential and spherical models are very good
of a fit in semivariogram analysis with the lowest
RMSE value, which means they are highly

significant. Exponential models were suitable
alternatives to the experimental semivariograms
for NDVI, NDWI, DVI, SAVI, PVI, RVI, and
LAI, whereas BI and GEMI values were best
fitted with a spherical model for rice crops
(Fig. 8.3). NDVI and BI are very well-explained
by the exponential models; whereas NDWI, DVI,
GEMI, SAVI, PVI, RVI, and LAI, are the best
suited to the spherical model for potato crops
(Fig. 8.3). R2 was always > 0.75 estimated for
the crop yield, with an error of RMSE very low,
particularly concerning average VI. The best R2

values of 0.846, 0.801, and 0.743 were found for
RVI, NDVI, and SAVI, respectively, while a
weak R2 was found with NDWI and BI for rice
crops (Figs. 8.3 and 8.4). On the other hand, the
NDVI, SAVI, DVI, PVI, and RVI were associ-
ated with the highest corresponding R2 values of
0.824, 0.674, 0.653, and 0.652 for the potato
crop. The RMSE of VIs ranged between 0.004
and 0.41, concerning rice yield of 1.77 t/ha.
Similarly, the VIs of potatoes range between
0.006 and 0.29, with a potato yield of 8.4 t/ha
(Table 8.6). The maps indicated that the north-
eastern field had a lower crop yield than the
southwestern part of the field. The spatial vari-
ability of the crop was also exhibited in the
generated rice and potato yields.
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Table 8.5 Pearson correlations matrix between VIs and potato yield (n = 70)

NDVI NDWI BI DVI GEMI SAVI PVI RVI LAI Potato
yield
t/ha

NDVI 1

NDWI 0.899** 1

BI − 0.854** − 0.866** 1

DVI 0.938** 0.917** − 0.830** 1

GEMI 0.880** 0.934** − 0.738** 0.946** 1

SAVI 0.944** 0.928** − 0.862** 0.998** 0.940** 1

PVI 0.938** 0.917** − 0.830** 1.000** 0.945** 0.998** 1

RVI 0.934** 0.928** − 0.857** 0.993** 0.936** 0.994** 0.994** 1

LAI 0.909** 0.971** − 0.835** 0.943** 0.950** 0.947** 0.943** 0.961** 1

Potato
yield

0.908** 0.783** − 0.781** 0.808** 0.741** 0.821** 0.807** 0.801** 0.761** 1

** Correlation is significant, 0.01 level; * Correlation is significant, 0.05 level



8 Vegetation Indices-Based Rice and Potato Yield Estimation … 123

Table 8.6 Semivariograms model performance with the exponential and spherical models for both the crop VIs and
yields analysis

Model C0 C1 (C0 + C1) C0/
(C0 + C1)
(%)

SD a (m) Lag
size

R2 RMSE

Rice NDVI Exponential 0.001 0.002 0.003 39.604 M 250.126 20.843 0.80 0.024

NDWI Exponential 0.001 0.01 0.011 4.757 S 255.01 21.25 0.30 0.035

BI Spherical 0.0001 0.001 0.002 18.072 S 171.72 57.76 − 0.32 0.004

DVI Exponential 0.003 0.001 0.005 75.764 W 111.36 17.17 0.65 0.012

GEMI Spherical 0.0001 0.002 0.002 13.634 S 95.592 14.9 0.74 0.021

SAVI Exponential 0.002 0.001 0.004 64.12 M 266.8 22.23 0.34 0.018

PVI Exponential 5.286 1.131 6.417 82.375 W 126.35 17.175 0.64 0.008

RVI Exponential 0.0022 0.0034 0.0057 0.0392 S 240.629 20.052 0.85 0.0207

LAI Exponential 0.001 0.019 0.021 6.978 S 242.186 20.18 0.56 0.206

Rice Exponential 0.037 0.053 0.09 0.414 S 203.468 16.995 1.777

Potato NDVI Exponential 0.0092 0.084 0.0932 9.871 S 349.834 29.152 0.82 0.074

NDWI Spherical 0.0027 0.019 0.0217 12.442 S 279.85 64.464 0.61 0.0815

BI Exponential 0.005 0.008 0.013 38.462 M 361.3 30.108 − 0.61 0.0067

DVI Spherical 0.01 0.07 0.08 12.5 S 247.15 31.703 0.65 0.0232

GEMI Spherical 0.0017 0.007 0.0087 19.54 S 260.74 27.686 0.67 0.0347

SAVI Spherical 0.0104 0.0749 0.0853 12.192 S 276.062 28.779 0.55 0.0395

PVI Spherical 0.0097 0.0711 0.0808 12.005 S 246.46 31.908 0.65 0.0164

RVI Spherical 0.0067 0.033 0.0397 16.877 S 265.344 34.255 0.64 0.2968

LAI Spherical 0.0166 0.0109 0.0275 60.364 M 289.486 30.697 0.58 0.1529

Potato Exponential 0.0629 0.1206 0.1835 34.278 M 368.364 30.697 8.4

N.B. C0 Nugget; C1 Partial sill; (C0 + C1) Sill; C0/(C0 + C1) (%) Nugget/Sill; a Range (m), RMSE root mean square error

Remote sensing-based S2-derived VIs maps
and the responses crop yield maps were estab-
lished for similar spatial resolution (Figs. 8.5 and
8.6). A total of nine VIs are selected through
their associations with crop productivity. The
study region also observed a spatial pattern
consistent with crop yield distribution. High
values found in the south–southwest part of the
farm plot were associated with high crop yield
compared to the northern part of the region.

8.4.4 Hot Spots Analysis

The concept of the Z score indicates a significant
hotspot and a negative Z score indicates a sig-
nificant coldspot in Getis-Ord Gi* statistic. The
analysis data revealed that the high-yielding

areas were mainly concentrated in the RVI,
NDVI, and SAVI surfaces. This observation
explained that high-yield clusters exist in the
RVI, NDVI, and SAVI surfaces with significant
cluster distribution.

This analysis suggested that RVI, NDVI, and
SAVI indices were superior in guiding maps for
ideal demonstration of the spatial variability for
rice and potato yield patterns at small farm levels
(Figs. 8.7 and 8.8). BI values are highly signifi-
cant (hotspot) and range between 90 and 95%
confidence level in the northeastern region due to
soil humidity and pH variability with low crop
yield for both crops (Fig. 8.7). Similarly, the
other VIs (DVI, GEMI, PVI, and LAI) showed a
highly significant (90–95%) cluster with high
yield due to better crop practice management in
the southwest part of the farm areas for both the



crop (Figs. 8.7 and 8.8). In this chapter, the hot-
spot analysis described the spatial pattern of both
crop yield distribution with VIs: coldspot signif-
icance level found in the northern part of the farm

plot, and in contrary hotspot was in significance
level in the south–southwestern side of the
farming area. The significance levels of hotspot
maps presented a high number of low-distant VIs.
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Fig. 8.3 Semivariograms graph for rice crop; a NDVI, b NDWI, c BI, d DVI, e GEMI, f SAVI, g PVI, h RVI, i LAI,
and j rice yield



the spatial assessment of rice and potato crop
yield estimation with AUC accuracy values
between 80 and 90%, categorizing them as very
good predictors, while NB had an accuracy value
between 60 and 80%, categorized as a moderate
to the good predictor for both the crops. More
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Fig. 8.4 Semivariograms graph for potato crop; a NDVI, b NDWI, c BI, d DVI, e GEMI, f SAVI, g PVI, h RVI,
i LAI, and j potato yield

8.4.5 AUROC Validation

The outcomes of the validation model of AUROC
with four MLAs techniques between the yield and
VIs datasets were assessed for both crops
(Fig. 8.9). SVM, LR, and RF algorithms led to
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Fig. 8.5 Vegetation indices and yield distribution map for rice crop; a NDVI, b NDWI, c BI, d DVI, e GEMI, f SAVI,
g PVI, h RVI, i LAI, and j rice yield
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Fig. 8.6 Vegetation indices and yield distribution map for potato crop; a NDVI, b NDWI, c BI, d DVI, e GEMI,
f SAVI, g PVI, h RVI, i LAI, and j potato yield
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Fig. 8.7 Hotspot analysis for rice crop; a NDVI, b NDWI, c BI, d DVI, e GEMI, f SAVI, g PVI, h RVI, i LAI, and
j rice yield
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Fig. 8.8 Hotspot analysis for potato crop a NDVI, b NDWI, c BI, d DVI, e GEMI, f SAVI, g PVI, h RVI, i LAI, and
j potato yield



precisely, the outputs revealed that the three
MLAs techniques, SVM, LR, and RF algorithms,
produced competitively better performances than
the NBML algorithm for both the crop yield data.
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Fig. 8.9 AUROC validation between VIs and crop yield (rice and potato); a rice crop, a potato crop

8.5 Discussion

We have used different spectral vegetation indi-
ces, estimated from the Sentinel-2B satellite data,
to carry out the geostatistical-based crop yield
estimation of rice and potato crops in two dif-
ferent seasons in Tarakeswar, Hooghly region
(West Bengal). The spatial variability of crop
yielding is delineated by the climate, topography,
soil factor, water availability, and farm mecha-
nization parameters (Singha and Swain 2022).
A non-destructive yield prediction map was
developed using a multiyear dataset. The map
was developed using a geostatistical tool and an
artificial intelligence model (Panek et al. 2020).
A correlation coefficient analysis shows the
spatial pattern of the VIs and yield. The VIs of
RVI, NDVI, SAVI, DVI, and PVI were found to
be significantly positive and correlated to the rice
yield in the Kharif season.

The most commonly used VIs utilizes the
information in the red and near-infrared

(NIR) canopy reflectance or radiances. They are
combined in ratios: ratio vegetation index (RVI).
RVI is the most frequently used VI with a sig-
nificant correlation with grain yield (Pinter et al.
2003; Ali et al. 2019). The RVI, which measures
the relative importance of rice yield to the farm
plot, showed the best correlation with the actual
rice yield, followed by the NDVI > SAVI >
DVI > PVI > LAI > GEMI > NDWI > BI
(Fig. 8.4). The plant signals attained from SAVI
and NDVI had high correlation with the Sentinel-
2-measured canopy reflectance during the Kharif
rice and Rabi potato growing seasons. Similarly,
during the Rabi seasons, the R2 values of NDVI,
SAVI, DVI, PVI, RVI, NDWI, and LAI
decreased toward potato yield distribution. These
relationships showed a sound correlation coeffi-
cient ranging between, 0.761 and 0.908, with
potato crop yield.

A weak correlation was observed between the
various parameters, namely NDWI, BI of crop
concentration, and actual yield. It was attributed
to the fact that the crop's maturity caused an
increase in visible reflectance (Kumhálová and
Matˇejková 2017). RVI, NDVI, and SAVI indi-
ces were the better-controlling factors to variate
crop yield. On the other hand, for potato crops,
the NDVI, SAVI, DVI, PVI, and RVI indices



were the highest R2 values of 0.824, 0.674,
0.653, and 0.652, respectively (Table 8.6). Sea-
sonal NDVI values indicate the best yield esti-
mation factor for rice and potato crop (yield)
predictions. The maximum NDVI was retained
as the most significant variable for predicting
field-level yield. Borowik et al. (2013) reported
that the relationship between vegetation above-
ground biomass and NDVI reflects each habitat
type in seasonal variation. The selected NDVI
and RVI indices have comparatively higher cor-
relations with grain yield than SAVI (Ali et al.
2019).
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Geostatistical semivariogram analysis was
performed with best-fitting exponential and
spherical models to develop the RS-based VIs
and crop yield maps (Singha et al. 2020). VIs
maps combined with RGB and NIR bands have a
greater potentiality for plant sensitivity analysis
in different crop growing seasons (Pinter et al.
2003). The ML methods such as support vector
regression (SVR) and ensemble multilayer per-
ceptron neural networks are successfully pre-
dicting the rice yield in the Cauvery Delta Zone
(CDZ) and Gujarat India (Bhojani and Bhatt
2020; Yu et al. 2021). The chapter's contribution
is simple and efficient in providing effective
structures within appropriate site-specific agro-
nomic management. The sill variance depends on
canopy cover reflectance with the plant growth
condition assumed by the VIs semivariograms
analysis (Pradhan et al. 2014). Data of all VIs
and crop yield were signified according to the
Getis-Ord Gi* statistic for identifying the degree
of significance in the study area. In statistical
hotspot analysis, high clusters of yield were
detected in RVI, NDVI, and SAVI surfaces and
low yield while the low significant clusters
observed in RVI, NDVI, and SAVI surfaces were
superior to guide map and best alternatives for
rice and potato yield prediction in a small scale
of village level. The hotspot analysis was used to
define a cluster's higher or lower values in a
spatial process, specifying the number of clusters
to be detected (Marino and Alvino 2021). VIs
map correspondence to yield map have similar
trends in hotspot analysis. Generally, the north-
ern part of the study area has some limitations

with coldspots due to high soil pH (acidic soil),
least organic carbon, high electrical conductivity,
and low farm mechanization level. Similarly,
high yield and VIs values were found in the
northwestern region with good correlations
because there has been remarkable crop growth
represented by higher canopy biomass in agree-
ment with the final yield.

The validation process was made through the
AUROC machine learning model between VIs
and crop yield (rice and potato) for two different
seasons. SVM, LR, and RF models have good
validation results with > 83% accuracy for both
crops. Crop yield estimation can be improved
using modern advanced techniques such as
hybrid ML and deep learning, satellite data
fusion, LiDAR, UAV, IoT, SAR, and GEE cloud
with a higher number of influential factors (soil
factor, climate, topography, hydrology, AGB,
farm mechanization level, and socioeconomic
background).

8.6 Conclusion

The Sentinel-2 mission has opened up new sce-
narios for monitoring the performance of small-
holder farming systems. The various temporal
and spatial resolutions of satellite images were
possible to estimate a farm's crop yield using
crop observation VIs. Evaluation of farm deci-
sions can then be made based on the data col-
lected by observing different crop practice
parameters. High-resolution images can now
accurately classify crop biophysical data for
individual farmlands. The data collected by the
NDVI and SAVI revealed a high correlation
between the observed canopy reflectance and the
plant signals. The hotspot analysis further iden-
tified the areas with high crop yields and problem
areas with low crop yields. These signals indi-
cated that the various interventions designed to
improve smallholder farms’ productivity may not
address these communities’ diverse socioeco-
nomic conditions. The results of the crop models
may be provided to the farmer to take necessary
steps to improve crop productivity, particularly
in the northern part of the concerned study area.
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