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Abstract

Drought is an intricate weather phenomenon;
it directly affects food security and agricultural
productivity. Accurate prediction of agricul-
tural drought helps to take mitigation steps for
reducing production losses. In the present
study, agricultural drought was assessed by
using the Normalized Difference Vegetation
Index (NDVI), Vegetation Condition Index
(VCI), Temperature Condition Index (TCI),
and Vegetation Health Index (VHI) based on
Landsat 8 and 9 data from 2013–2022.
The LULC maps were also prepared using
the supervised classification based on the
maximum likelihood algorithm by the
semi-automatic classification plugin (SCP) in
QGIS from Sentinel-2 images. The remote
sensing indices were calculated using a raster

calculator in ArcGIS software. The results of
VCI indicate that 2014 and 2017 years were
highly affected by drought, whereas 2016 was
the most vulnerable year according to TCI. In
2017, the entire district was badly affected by
VCI and TCI. The VHI results showed that
2015, 2016, and 2018 were the most
drought-prone years. The spatial agricultural
drought result shows that Chattna, Bankura I,
Onda, and Ranibudh were extreme drought-
affected blocks. Drought greatly impacts agri-
culture, so satellite-based drought data would
benefit the understanding of the drought of
Bankura district risk within the entire geo-
graphical area.
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4.1 Introduction

Drought is a recurrent natural hazard that
adversely affects the ecosystem, livelihoods,
cultivation, and livestock farming (Alam et al.
2023; Ayugi et al. 2022), causing huge economic
loss throughout the world (Guo et al. 2021; Zeng
et al. 2022). It grows very slowly in the begin-
ning but later it affects a large area with its
severity (Liu et al. 2021). Based on physical
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aspects, drought is classified as a meteorological,
hydrological, and agricultural drought, among
which ‘agricultural drought’ is characterized by
insufficient moisture in the soil for cultivation at
a particular time (Basak et al. 2022; Das et al.
2020). The intensity of ‘agricultural drought’
changes with space and time, and it is more
challenging than other kinds of drought because
it adversely degrades a particular region’s agri-
cultural activity. In India, especially in the
western part of West Bengal, agricultural drought
has a crucial effect on agricultural production and
productivity by disturbing the balance between
food supply and demand (Gidey et al. 2018).
Between 1900 and 2020, a drought event in India
had a significant impact on over 1.4 billion
people, resulting in a threatening situation for
water resources and food security. This event has
revealed that agricultural drought affects more
than 68% of India’s land area (Nath et al. 2017),
largely due to the rising trend of mean tempera-
ture, geo-environmental conditions, and climate
change.

Under this critical situation, appraisal of
agricultural drought could be helpful by using
different spatio-temporal data from different
sources like vegetation, hydrology, meteorology,
etc. The spatial and non-spatial datasets are used
for drought risk assessment (Apurv and Cai
2021; Hoque et al. 2021a; Kim et al., 2021).
Remote sensing techniques are used in spatial
analysis to support all the procedures (Hoque
et al. 2021b; Zeng et al. 2022). The most popular
remote sensing-based vegetation indices, such as
Normalized Difference Vegetation Index
(NDVI), Temperature Condition Index (TCI),
Vegetation Condition Index (VCI), and Vegeta-
tion Health Index (VHI) have been used for the
drought monitoring system (Hadri et al. 2021;
Kogan 1997). The VHI is the most helpful
satellite index to monitor agricultural drought
(Wang and Yu 2021; Zhang et al. 2013). The
Vegetation Health Index correlates with crop
yield, the problem of crop health, and crop
growth (Alahacoon et al. 2021; Zhao et al. 2022).

NDVI is one of the most popular vegetation
health indices that analyze activities like respi-
ration, transpiration productivity, temperature

variability, etc. (Pei et al. 2018). For instance,
Nejadrekabi et al. (2022) observed the moisture
period using NDVI in the Khuzestan province.
Vegetation growth in China from 1982 to 2010
was evaluated using NDVI (Peng & Gitelson
2011). Agricultural drought monitoring for three
months was calculated using NDVI in Raya of
northern Ethiopia (Gidey et al. 2018). This
chapter states that VCI and TCI can be used to
delineate the seasonal and inter-annual drought,
while Sultana et al. (2021) assessed agricultural
drought severity in the northwestern part of
Bangladesh from 1990 to 2018 by applying TCI,
VCI, and VHI. Zambrano et al. (2016) measured
the agricultural drought in the cropland of the
Biobio region in Chile from 2000 to 2015 by
analyzing the temporal and spatial variation of
vegetation conditions with stress due to scarcity
of rainfall with VCI.

The novelty of this current endeavor is to
identify and monitor agricultural drought in the
Bankura district of West Bengal using remote
sensing data. Evaluation of drought indices,
calculation intensity, severity, and duration of
drought are the prime concern of this chapter
which helps make a proper plan for mitigation
and irrigation practice in drought-vulnerable
areas through establishing an integrated rela-
tionship among NDVI, LST, VCI, TCI, and VHI
methods which provide a guideline for future
drought.

4.2 Study Area

Bankura is the fourth largest district of West
Bengal, located between 22°30′N to 23°30′N
latitudes and 87°00′E to 87°30′E longitudes,
having a 6,882 km2 area. The total population of
the Bankura district is 3,992,309 persons, and the
population density is 523 persons/km2 (Census
2011). Bankura is a connecting link between the
plain of West Bengal and the Plateau of
Chotanagpur. The Purulia district in the west
surrounds it, Purba Bardhhaman and Paschim
Bardhhaman districts in the north, Jhargram and
Paschim Medinipur in the south, and the Hugli
district in the southeast. Darakeswar, Damodar,
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Kangsabati, Silabati, and Gandhewari rivers
drain the district. Geomorphologically, the
Bankura district is a part of the Chotanagpur
plateau (Fig. 4.1). There are three types of
topographical terrain; i.e., the western part is a
hilly region characterized by large granite rock
covered by natural vegetation, the central part is
undulating and characterized by red lateritic, and
the eastern part is an alluvial plain covered by
loamy soil. Following the topographic terrain,
land use pattern of this area is also changing from
east to west, and the low-lying alluvial plain of
the northeast is mainly used for paddy cultiva-
tion. The western surface is undulating and
gradually rising, so most of the land is covered
by jungle. Bankura is part of Rarh, and agricul-
ture is the main economic activity of this con-
cerned study area, but it is challenged by low
water availability, climatic change, and reduced
annual rainfall. In the last few years, drought
incidents and intensity have been increasing
(Bhunia et al. 2020; Das et al. 2013). The

changing patterns of annual rainfall and 80%
rainfall received during four months result in
poor moisture in subsoil, which becomes a threat
to crops and seriously affects the yields in the
study area. The farmers of this area face some
socio-economic problems; they lose their job and
are forced to migrate. In recent times, Bankura
district has become a geographer’s attraction due
to excessive drought proneness and its relation
with the economy, poverty, mitigation, and
migration-related scenarios (Raha and Gayen
2020).

4.3 Database and Methods

4.3.1 Database

In the present study, remote sensing data has
been utilized from authenticated sources, and
therefore, various drought indices are displayed
by ESRI ArcGIS (Version 10.4.1) software.

Fig. 4.1 Location map of the study area; a India, b West Bengal, and c Bankura
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Landsat 8, Landsat 9 OLI/TIRS collection 2,
level 1 images (Path: 139, Row: 044) were used
for NDVI, VCI, LST, TCI, and VHI indices,
obtained from the USGS Earth explorer website
(https://earthexplorer.usgs.gov). The land
use/land cover maps were prepared from Sentinel
2 images downloaded from https://scihub.
copernicus.eu using a training sample and the
maximum likelihood method in a QGIS semi-
automatic classification plugin (SCP).

4.3.2 Methods

4.3.2.1 Normalized Difference
Vegetation Index (NDVI)

The Normalized Difference Vegetation Index
(NDVI) is a widely used remote sensing index to
assess vegetation density and health. NDVI
measures the difference between the reflectance
of near-infrared (NIR) and visible red (VIS) light,
which is correlated with the amount of vegetation
present in an area (Glenn and Tabb 2019). NDVI
can be used to monitor vegetation growth and
health over time, detect changes in land use, and
assess the impact of environmental factors on
vegetation. It is commonly used in agriculture to
assess crop health and yield potential and in
forestry to monitor forest health and detect
changes due to natural or man-made disturbances
(Nejadrekabi et al. 2022).

Every geographical space has some carrying
capacity (Kogan 1995). For estimating carrying
capacity, we used NDVI. The maximum NDVI
represents the highest carrying capacity, and the
minimum NDVI represents a geographical area’s
lowest carrying capacity (ecosystem potential).
NDVI also helps monitor crop yields, crop
growth conditions, the health status of vegetation,
and drought (Kogan 1995; Liu et al. 2021). The
main concept of NDVI is that the healthy green
leaves’ internal mesophyll reflects near-infrared
(NIR), whereas a large proportion of visible red
radiation (VIS) is absorbed by leaf chlorophyll
and other pigments. But in the case of water stress
and unhealthy vegetation, the internal structure
reacts reverse (Moisa et al. 2022).

NDVI ¼ NIR � REDð Þ= NIR þ REDð Þ:

NDVI is calculated between the difference
between near-infrared (NIR) and visible red
bands of the electromagnetic spectrum. The
index ranges from − 1 to + 1, with values
closer to + 1 indicating higher levels of healthy
vegetation and values closer to − 1 indicating
little to no vegetation. In tropical and temperate
rain forests, the value of NDVI ranges between
0.6 to 0.8, and in barren rock, sand, or snow area,
it is below 0.1 (Dutta et al. 2015). There are some
noise problems in NDVI. Sensor degradation,
satellite change, change of satellite orbital drift,
cloud, and aerosol are the sources of error
(Kogan 1995). These weather-related NDVI
problems must be overcome, and thus why
Kogan (1995) suggested the Vegetation Condi-
tion Index (VCI).

4.3.2.2 Vegetation Condition Index
(VCI)

The Vegetation Condition Index (VCI) is derived
from remote sensing data developed for moni-
toring drought characteristics such as duration,
intensity, spatial extent, and severity assessment.
In this present chapter, VCI was used to monitor
the Bankura district’s agricultural drought by this
equation.

VCI ¼ NDVI � NDVIMINð Þ= NDVIMAX � NDVIMINð Þ
� 100;

whereas NDVI, NDVIMIN, NDVIMAX are mul-
tiyear maximum and minimum values of NDVI.
According to Kogan (1995), the VCI value is
measured in percentile ranges from 0 to 100. The
classification of VCI is shown in Table 4.2.
When the value is near 100, it defines favorable
condition for crop, but the value 0 or near 0
indicate bad crop condition.

4.3.2.3 Land Surface Temperature (LST)
Land surface temperature (LST) was calculated
from the thermal infrared sensor (TIRS) band of
Landsat 8 and 9 images from 2013 to 2022.
The LST value ranges between 7500 and 65,535
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(Wan 2006), and it was reclosed by 0.02 to
convert into Kelvin unit. It represents the radia-
tive skin temperature of the land surface from
solar radiation. In this chapter, LST was con-
verted and rescaled into degree Celsius.

LST is gained by these equations.

LST¼ BT= 1 þ k � BT=qð Þ � Ln eð Þð Þð Þ
� 273:15;

where LST = Land surface temperature in Cel-
sius (°C).

BT = Sensor brightness temperature in (°C).
k = Wavelength of thermal band of various

Landsat satellite.
e = Emissivity of the land surface.
q ¼ h � c=rð Þð Þ, which is equal to

1.438 � 10−2 mK.
In which, r is the Boltzmann constant

(1.380649 � 10−23 J/K), h is Plank’s constant
(6.62607015 � 10−34 J.s), and c is the velocity
of light (3 � 108 m/s).

4.3.2.4 Temperature Condition Index
(TCI)

The Temperature Condition Index (TCI) is a
remote sensing index that provides an estimation
of the vegetation’s response to temperature
stress. It measures the deviation of land surface
temperature (LST) from its long-term average
value and is based on the assumption that vege-
tation is sensitive to temperature anomalies
(Swain et al. 2011). TCI is obtained by this
equation.

TCI ¼ LSTMAX � LSTð Þ= LST � LSTMINð Þ � 100;

where LST is the value of the land surface tem-
perature of a particular month, and LSTMAX and
LSTMIN is the temperature of the studying per-
iod. LST provides information about the vege-
tation of the area. If LST increases, then the
evapotranspiration of plants also increases, and
surface soil moisture also reduces, which is a
good indicator of vegetation stress (Kogan 1995;
Seiler et al. 1998). The TCI value ranges between
0 and 100. A high value of TCI indicates a
favorable condition for a crop, whereas a low
value of TCI indicates an adverse effect on
vegetation or drought conditions.

4.3.2.5 Vegetation Health Index (VHI)
Vegetation Health Index (VHI) is the outcome of
the combination of products extracted from
vegetation signals, namely NDVI. It combines
VCI and TCI (Orlovsky et al. 2011).

VHI ¼ a � VCI þ 1 � að Þ � TCI,

where VHI represents the vegetation health
index, a ¼ 0:5 similar contribution of VCI and
TCI, VCI is the vegetation condition index, and
TCI is the temperature condition index.

4.4 Results and Discussion

4.4.1 Land Use and Land Cover
(LULC) Changes

The supervised classification with maximum
algorithm method was employed to prepare land
use and land cover (LULC) maps using Sentinel
2 images in the QGIS SCP plugin (Patil et al.

Table 4.2 Detailing the
threshold value of VCI,
TCI, and VHI

Range Dryness level

0–10 Extreme drought

10–20 Severe drought

20–30 Moderate drought

30–40 Light drought

> 40 No drought
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2012). The maps were categorized into six major
types, including water body, vegetation cover,
agricultural land, build-up area, bare ground, and
range land, for the years 2018, 2019, 2020, 2021,
and 2022, as depicted in Fig. 4.2 and Table 4.3.

The areal coverage or extension and areal
changes from 2018 to 2022 have been detected
through ArcGIS software, and it has been sum-
marized in (Table 4.3). The LULC classification
in 2018 (Fig. 4.2a) depicts that the majority of
the area in Bankura district was under agricul-
tural land (64.28%), the rest 18.24, 8.04, 2.72,
and 1.10% areas are under vegetation cover,
range land, build-up area, water body, and bare
ground, respectively. Similarly, in 2019, the
greatest share of land was occupied by also
agricultural land (64.21%), and the trend of
occupancy remained the same, i.e., land under
vegetation cover (18.53%), range land (8.04%),
build-up area (5.62%), water body (2.72%), and
bare ground (1.02%) individually. Considering
the trend of extension and rate (in %) of changes
of each LULC from 2018 to 2022, vegetation
cover and build-up areas increased by 3.90%,

partly in Barjora, Sonamukhi, Taldangra, Onda,
Vishnupur, Ranibundh blocks of this district and
27.21% in some parts of blocks like Indus,
Kotalpur, Patrasayar, Jaypur, Vishnupur,
Bankura I sequentially, whereas percentage of
land occupancy in bare ground, range of land,
and water body decreased by − 32.555 and
− 19.75% partly in Mejhia, Gangajalghati,
Chhatna, and − 9.84% at Ranibundh and Hir-
bundh blocks in the same period. Taking into
consideration the overall study period, vegetation
cover and build-up areas have shown their areal
increment. In contrast, water bodies, agricultural
land, bare ground, and range land have harshly
diminished in the same period due to many
unscientific activities like unplanned settlement,
massive grazing, and resultant soil degradation.
Unlike build-up areas and vegetation cover, the
land share of water bodies, agricultural land, bare
ground, and range land has been increased. It is
also a remarkable point that build-up areas has
increased in a far larger percentage than vegeta-
tion cover, proving that most of the bare ground,
range land, water body, and agricultural land are

Fig. 4.2 Land use and land cover (LULC); a 2018, b 2019, c 2020, d 2021, and e 2022
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converted to build-up areas but rationally main-
tains the vegetation-covered area by not unsci-
entifically destruction of trees and continue the
afforestation program. Considering the overall
study period, the pattern of land use changes
demonstrates that land occupancy of water body
was increased from 2018 to 2019, then decreased
in 2020, and again increased in 2021, but a little
bit decreased in 2022. Land share of vegetation
cover increased from 2018 to 2019, then
decreased and continue to increase in 2021 which
decreased in 2022. Agricultural land area
decreased from 2018 to 2019, 2020, and 2021
but increased in 2022. In the build-up area, the
land occupancy increased from 2018 to 2021 but
decreased in 2022. The area under bare and range
land has gradually reduced from 2018 to 2019,
and so on. Generally, the result has revealed that
a series of LULC changes in the study area for
five years (2018–2022) shows the fact that build-
up areas are most dominating in this area, indi-
cating the continuous increment of human resi-
dence by maintaining green areas, whereas other
land use pattern shows declining nature.

4.4.2 Normalized Difference
Vegetation Index (NDVI)

It measures the photosynthetic activities of veg-
etation by indicating favorable vegetation con-
ditions with high value and unfavorable
vegetation conditions associated with low NDVI
value (Cunha et al 2015). Five principal changes

in vegetation (significant vegetation loss, vege-
tation loss, no vegetation change, vegetation
gain, significant vegetation gain) have been
detected from 2013 to 2022. Significant vegeta-
tion loss, which accounts for 5.42% of the total
area, has been partially detected from 2013 to
2022 in Barjora, Sonamukhi, Patrasayar, Indus,
Vishnupur, Sarenga, Raipur, Khatra blocks. The
most worrying fact is that 48.17% vegetation loss
in Mejhia, Gangajalpati, Barjora, Sonamukhi,
Patrasayar, and Indus in the northeastern part of
Bankura District, Bankura I and II, Onda in the
middle part and Ranibundh, Raipur, Serenga in
the southern part of this district is registered due
to different unscientific construction work. In the
meantime, about 12.64% area of the southwest-
ern part is marked as an unchanged vegetation-
covered area. Interestingly, 33.45% area has
gained vegetation, whereas only 0.32% area has
gained significant vegetation (Fig. 4.3 and
Table 4.4).

This chapter has monitored the agricultural
drought of the Bankura district from the year
2013 to 2022 by using the VCI technique. Fig-
ure 4.4 and Table 4.5 depict area-wise extreme,
severe, moderate, and no drought conditions for
ten years. Meanwhile, 79.65% (most of the area)
area of this district was under extreme drought
conditions in 2017 due to erratic rainfall and the
low water-holding capacity of the soil. Commu-
nity development blocks like Indus, Kotulpur,
Jaypur, and Serenga accounted for extreme
drought in 2014, 2015, and 2018. The maximum
area (14.37%) under severe drought was in 2014,

Table 4.3 Land use and
land cover (LULC) extent
and change detection
between 2018 and 2022

Sl No Land use 2018 2019 2020 2021 2022 % of
change

1 Water body 2.72 2.36 1.98 2.72 2.45 − 9.84

2 Vegetation
cover

18.24 18.53 17.22 19.64 18.95 3.90

3 Agricultural
land

64.28 64.21 63.04 59.82 64.25 − 0.04

4 Build-up
area

5.62 6.71 6.86 7.88 7.15 27.21

5 Bare ground 1.10 1.02 0.91 0.79 0.74 − 32.55

6 Range land 8.04 7.17 10.00 9.16 6.46 − 19.75
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Fig. 4.3 Normalized Difference Vegetation Index (NDVI); a 2013, b 2014, c 2015, d, 2016, e 2017, f 2018, g 2019,
h 2020, i 2021, j 2022, and k Change detection
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whereas 18.58 and 18.24% areas of the total were
affected by moderate and light drought, respec-
tively, in 2014, and a large area (95.50%) was
registered as no drought-affected area in 2019
due to a sufficient amount of rainfall.

Figure 4.5 and Table 4.6 have assessed
descriptive statistics (minimum, maximum, and
mean temperature in °C) and standard deviation
by considering ten years from 2013 to 2022 with
the association of the LST technique. It illustrates
that the lowest minimum temperature was
recorded as 4.95 °C in 2014 and 25.40 °C in
2019. On the other hand, the maximum land
surface temperature was 53.83 °C in 2018 and
35.43 °C in 2014. Low land surface temperature
indicates dense vegetation cover and a low
infiltration rate with minimum soil moisture,
whereas high land surface temperature reveals no
or thin vegetation cover with a high infiltration
rate and maximum soil moisture. The highest
mean temperature was recorded as 34.13 in 2016,
and the lowest was 22.46 in 2014, respectively.
The highest SD was recorded as 3.65 in 2014 and
1.79 in 2019, respectively. Their mean value
shows the average fluctuation of temperature
throughout ten years by calculating the average
value for each year separately, whereas standard
deviation shows the consistency among the
distribution of mean temperature delicately.

In this chapter, TCI was calculated from
Landsat 8, 9, and TIRS band 10 to categorize
agricultural drought in five categories, i.e.,

extreme, severe, moderate, light, and no drought
for the above said ten years. In 2016, 7.92% area
of Bankura district was under extreme drought,
the intensity of which reduced through rest years
and remarkably in 2017 to 0.01%. While com-
munity development blocks like Chattna,
Bankura I, and II, Taldangra, Simlapal, Khatra,
Ranibundh, etc., were affected. On the other
hand, 32.33% of the area in 2015 was identified
as a severely drought-affected area, the areal
extent of which was lowered to 0.01% in 2014.
29.65% area, including Chattna, Indpur,
Bankura I, and Onda blocks, were under mod-
erate drought-affected areas. 25.98 and 0.05%
areas were recognized as the highest and lowest
light drought-prone areas, respectively. 99.89%
area of the Bankura district was not faced with
drought in 2014, but it was reduced to 2.39% in
2017 (Fig. 4.6 and Table 4.7).

VHI, a combined indicator of vegetation
health, depicts spatio-temporal drought variation
in the Bankura district from 2013 to 2022 and is
classified into five types. Figure 4.7 and Table 4.8
demonstrate that 18.96% area, including Chattna,
Bankura I, Onda, and Ranibudh blocks, was ex-
tremely drought in 2016. This condition
improved in 2014 by showing a 0.02% area under
this adverse condition. The severe drought area
was 27.92% in 2018 and gradually reduced to
0.04% in 2014. This fact clearly shows the
improvement of drought conditions by applying
canal irrigation, drilling irrigation, submersible

Table 4.4 Vegetation
change detection between
2013 and 2022

Sl. No Level Area in sq km Area in %

1 Significant vegetation loss 373.75 5.42

2 Vegetation loss 3319.68 48.17

3 No vegetation change 871.00 12.64

4 Vegetation gain 2305.29 33.45

5 Significant vegetation gain 21.79 0.32
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Fig. 4.4 Drought monitoring using Vegetation Condition Index (VCI); a 2013, b 2014, c 2015, d 2016, e 2017, f 2018,
g 2019, h 2020, i 2021, and j 2022
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Fig. 4.5 Land surface temperature (LST); a 2013, b 2014, c 2015, d 2016, e 2017, f 2018, g 2019, h 2020, i 2021,
j 2022, k minimum temperature, and j maximum temperature
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Fig. 4.6 Drought monitoring using Temperature Condition Index (TCI); a 2013, b 2014, c 2015, d 2016, e 2017,
f 2018, g 2019, h 2020, i 2021, and j 2022
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irrigation, etc. While, 39.73% area in 2017,
including partly Indpur, Onda, Vishnupur, Tal-
dangra, Khatra, Simlapal, the northern part of
Ranibundh, Raipur blocks were recognized as the
highest percentage of moderate drought-affected
area and reduced at 0.16% in 2014. 24.84% area
and was accounted for light drought-affected area
in 2017. Most areas in this district faced no
drought in 2014, which (positively) increased
substantial water sources for agriculture.

4.5 Conclusion

In conclusion, the study presents a comprehen-
sive analysis of spatio-temporal agricultural
drought monitoring using remote sensing indices
in Bankura district of West Bengal. The results
show that severe drought conditions have affec-
ted various parts of the study area, leading to the
abandonment of agricultural lands due to water
and soil moisture scarcity. The study identifies
specific areas that require urgent attention,

including Chattna, Bankura I, Onda, Ranibudh,
Indus, Kotulpur, Jaypur, and Serenga blocks,
where water shortage is a significant concern for
sustainable agricultural practices. The findings
suggest that strengthening water resource
infrastructure, adopting agricultural water-saving
technologies, and promoting seasonal rainwater
harvesting could mitigate the impacts of drought
in the region. Moreover, the study recommends
the implementation of sustainable drought poli-
cies, including alteration of sowing and planting
times, preservation agriculture, and zero tillage,
modification of agricultural practices, to improve
resilience toward the effects of drought. The
study’s results could inform policymakers,
farmers, and other stakeholders in addressing
local and regional drought issues, and prospec-
tive researchers could use them to advance
knowledge in the field. Overall, the study pro-
vides valuable insights into the spatio-temporal
dynamics of agricultural droughts and under-
scores the need for a comprehensive approach
toward managing drought risks.

Table 4.7 Spatio-temporal drought variation using temperature condition index (TCI)

Year Extreme drought Severe drought Moderate drought Light drought No drought

Area Area Area Area Area

Sq. km (%) Sq. km (%) Sq. km (%) Sq. km (%) Sq. km (%)

2013 1070.19 15.53 1629.41 23.64 1749.54 25.39 1137.66 16.51 1304.71 18.93

2014 1.06 0.02 0.91 0.01 1.83 0.03 3.48 0.05 6884.23 99.89

2015 1363.97 19.79 2228.30 32.33 2043.04 29.65 783.74 11.37 472.47 6.86

2016 5232.01 75.92 881.13 12.79 428.21 6.21 185.25 2.69 164.90 2.39

2017 0.86 0.01 4.25 0.06 201.21 2.92 1208.40 17.53 5476.80 79.47

2018 4031.84 58.50 1462.82 21.23 699.42 10.15 317.08 4.60 380.35 5.52

2019 634.80 9.21 1515.30 21.99 1932.91 28.05 1315.07 19.08 1493.43 21.67

2020 97.43 1.41 359.93 5.22 1352.10 19.62 1790.62 25.98 3291.43 47.76

2021 709.47 10.29 1382.04 20.05 1906.45 27.66 1417.24 20.57 1476.30 21.42

2022 64.33 0.93 175.87 2.55 619.79 8.99 1502.11 21.80 4529.42 65.72
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Fig. 4.7 Drought monitoring using Vegetation Health Index (VHI) a 2013, b 2014, c 2015, d 2016, e 2017, f 2018,
g 2019, h 2020, i 2021 and j 2022
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