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Chapter 2
Why Compare Early Hominins 
to Baboons?

2.1  Introduction

The comparative approach discussed here entails three crucial questions: Why com-
pare early hominins to any living species? Why compare them to baboons in par-
ticular? Why are baboons one of the most important primates for this purpose?

Direct evidence for early hominin ecology and behavior comes from the paleo-
anthropological record that is provided by archeology and paleontology (e.g., 
Clarke et  al. 2021). This information has been augmented by reference to living 
species for several reasons (King 2001, 2022). First, because the record only 
addresses behavior that leaves physical remains, living species contribute to a more 
rounded interpretation of the past. Second, the living species suggest hypotheses 
about behavior and ecology where direct evidence is meager or lacking. Third, such 
evidence is extremely meager for millions of years of earlier hominin evolution. 
There is no archeological record from this time and the fossils are scarce, sparsely 
preserved, and highly controversial.

A variety of living species have been compared to early hominins, including 
social carnivores (Smith et al. 2012) and cetaceans (Yamagiwa and Karczmarski 
2014). These are far beyond the scope of this book. In any event our primate rela-
tives have provided most of the comparative material for early hominins, with chim-
panzees receiving the most attention (Hopper and Ross 2020; Muller et al. 2017). 
Chimpanzees (and bonobos) have a unique phylogenetic relationship to hominins 
(Chap. 1); however, the further evolution of early hominins displays many similari-
ties to the evolution of baboons. These parallels can be summed up as geographic 
distribution, environmental diversity, arboreal and terrestrial locomotion, medium 
size relative to other mammals, and sexual dimorphism in body mass.
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2.2  Environment

As early hominins and baboons evolved, they spread across most of Africa and 
encountered a wide variety of environments. Both were challenged by long-term 
aridification.

2.2.1  Environmental Diversity

“Baboons evolved and radiated in parallel with hominins within a similar landscape 
and time frame, the savannahs and woodlands of Plio-Pleistocene Africa. It is there-
fore highly likely that they experienced similar selection pressures and evolutionary 
processes as hominins” (Fischer and Zinner 2020). By the same token, hominins 
experienced selection pressures and evolutionary processes similar to those that 
affected baboons.

Throughout the early paleoecological record, hominins are found in association 
with evidence for complex habitats with diverse environmental components (Chap. 
1). There is widespread agreement among paleoanthropologists that these habitats 
can be characterized as mosaic environments. That is, they consisted of interspersed 
components that commonly included deciduous tropical woodlands and various 
more open areas, as well as a substantial body of water (lake, river, or floodplain), 
at least on a seasonal basis (Andrews 2020). This describes the habitat of Ardipithecus 
and most of the hominins that followed.

There has been some concern about the precise definition of “mosaic” (Reynolds 
et  al. 2015). Some experts have claimed that mosaics are chimeras caused by 
hydraulic mixing of evidence from different places and levels (White et al. 2009). 
However, paleoecological reconstructions continue to refer to the mosaic concept 
(Su and Haile-Selassie 2022) or some equivalent descriptor such as “patchwork” 
(Magill et al. 2016).

Hominins varied through time and space in the ways that they exploited the 
mosaics. Ardipithecus, the earliest genus generally accepted as hominin, is consid-
ered to have been basically a woodland animal despite access to some more open 
areas (Simpson et al. 2019). Australopithecus anamensis apparently continued the 
open woodland existence (Fig. 2.1). Comparison of their numbers at different sites 
indicates that they thrived in the mixed environment, as opposed to wetter and more 
enclosed habitats (Bobe et al. 2020a, b; Manthi et al. 2020). As hominins evolved, 
they extended the adaptive envelope. Some continued in mosaics like their prede-
cessors (Curran and Haile-Selassie 2016), but in varied temperature regimes (Su 
and Harrison 2015). Some, including A. afarensis and Kenyanthropus, seem to have 
ventured farther into open areas (Martin et al. 2020; Villasenor et al. 2020).

Early Homo continued the expansion into diverse environments, as demonstrated 
by two sites with archeological remains. The environment of one group, at Olduvai 
Gorge in Tanzania, dated to about 1.84 mya, was heterogeneous woodland. 
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Fig. 2.1 Contemporary woodland in a baboon habitat. (Photo by Glenn King. Manyara. Tanzania)

Biomarkers in the soil revealed a “patchwork” landscape in which hominins had 
access to woodland, spring-fed wetland, and adjacent grassland (Magill et al. 2016) 
or shrubland (Arráiz et al. 2017). A similar mixture of features, including riverine 
forest, continued down to about 1.3 mya (Dominguez-Rodrigo and Cobo-Sanchez 
2017). Roughly contemporaneous with the Olduvai site, hominins lived in open 
grassland at Kanjera in Kenya (Plummer and Bishop 2016). The soil chemistry 
associated with archaeological remains provided information about photosynthesis 
systems, distinguishing grasses from other plants. The values indicate that the plant 
cover was more than 75% grass (Plummer et al. 2009). Antelope fauna indicate that 
grassy habitats were well represented throughout the region and not just located 
around the archeological site.

Baboon occupation of mosaic environments is illustrated by Gorongosa National 
Park in West Africa, which hosts interspersed forests, woodlands, grasslands, 
swamps, rivers, and a major lake that fluctuates with seasonal cycles. The park is 
home to 219 troops that seem to be a mix of chacma baboons and yellow baboons. 
For paleoanthropologist Rene Bobe, Gorongosa “brings to mind” the vegetation 
mosaics in which Pliocene and Pleistocene hominins evolved (Bobe et al. 2020a, b).

Probably much like Ardipithecus, some baboons live in wooded areas within 
mixed habitats. In Gombe National Park of Tanzania, for example, they coexist with 
the chimpanzees made famous by Jane Goodall. The Gombe baboons described by 
Ransom (1981) lived in a habitat with an abundance of trees, high food density, and 
streams for drinking water. Baboons studied by Rowell in Uganda (1966) similarly 
spent most of their time in forest. On the other hand, the grassland habitats that 
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Fig. 2.2 Baboon troop foraging in the open. (Photo by Curt Busse. Okavango, Botswana)

hominins eventually occupied are like those in which baboons were originally stud-
ied and in which the genus has had great success (Altmann and Altmann 1970; 
DeVore and Washburn 1963; Fig. 2.2).

Baboons match all of the environments that early hominins occupied, and per-
haps more (Table 2.1). The genus has survived in virtually every kind of environ-
ment other than the central rainforest and the Sahara Desert (Altmann and Altmann 
1970). This includes semidesert habitats in northeastern and southern Africa 
(Aldrich-Blake et al. 1971; Hamilton 1985; Kummer 1968) and montane habitats 
comparable to highland sites recently documented for Australopithecus (Mbua 
et al. 2016).

2.2.2  Environmental Changes

Comparison of hominin and baboon environments is not just a matter of static dis-
tribution. Hominins underwent two kinds of major long-term changes in their envi-
ronment, giving rise to two major themes of explanation for early hominin 
adaptations: variability selection and aridification (Maslin et al. 2015). The former 
focuses on the ability to adjust to continuous or recurring changes in environmental 
conditions. The latter emphasizes the effects of hotter and drier habitats, varying 
from sparse woodlands to treeless grasslands. Variability and aridification are not 
mutually exclusive concepts, especially when applied to different time scales.

2 Why Compare Early Hominins to Baboons?
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Table 2.1 Baboon environments 

Kinda
baboons

Guinea
baboons

Hamadryas
baboons

Yellow
baboons

Chacma
baboons

Olive
baboons

Rainforest X
Guinean forest X
Dry forest X
Secondary forest X
Mangrove forest X X
Gallery forest X X X
Miombo woodland X X X X
Light woodland X X X X
Dense woodland X X X
Montane forest X X
Grass meadow X
Swamp X X
Bush X
Shrub X
Scrub X X
Savanna X X X X
Steppe X X X
Semi-desert X X X
Rocky desert X
Coastal X X X

Environments occupied by the six generally accepted baboon species, derived from descriptions in 
Mittermeier et al. (2013). Unlikely to be exhaustive

Eastern and southern Africa, the areas that have yielded the greatest quantities of 
evidence for hominin evolution, have seen “extreme” environmental variability dur-
ing the last ten million years. This was caused by global climate shifts, local effects 
such as vulcanism, and lake basin dynamics resulting from such changes (Rocatti 
and Perez 2019). Hominin evolution began and continued through a period of com-
plex environmental variation. African tropical regions alternated between  forest/
woodland habitats with high tree density and the expansion of savannas with vary-
ing degrees of tree cover. Variations occurred between regions and between 
localities.

Recognition of these changes led to an important theory of hominin evolution—
that environmental variation was more important than any particular type of habitat 
(Maslin et al. 2015). It was posited that hominins probably underwent “variability 
selection.” That is, natural selection favored the ability to respond to short-term and 
long-term environmental fluctuations, rather than adaptation to any particular envi-
ronment (Potts 2013; Potts and Faith 2015).

Though fluctuation was clearly of great importance in hominin evolution, there 
is reason to think that drying trends and their vegetational consequences played an 
important role. Early hominins underwent cyclical aridification on local and regional 
scales and general aridification on a continental scale (Rocatti and Perez 2019). This 

2.2 Environment



34

resulted in larger areas of grassland within and adjacent to hominin habitats. Genus 
Homo emerged in East Africa at about 2.8 mya during a major drying trend and 
displayed increasing association with grassland habitats (Plummer and Bishop 
2016; Robinson et al. 2017). Hominins adapted to the savannas that expanded and 
surrounded them over the course of millions of years (Plummer et al. 2009), though 
some continued to occupy woodland mosaics where such conditions were available 
(Magill et al. 2016). Hominins did not transition from woodland to savanna; they 
expanded into the savannas.

Baboons experienced the same kind of long-term Plio-Pleistocene changes as 
hominins, while taxa closely related to each of them went extinct. Extant baboons 
undergo short-term challenges comparable to those of early hominins, such as sea-
sonal stress (Chowdhury et  al. 2021; Johannes-Boyau et  al. 2019). The yellow 
baboons of Amboseli in Kenya, for example, have survived “environmental change 
of a type and magnitude typical of … East African paleoenvironments” (Alberts and 
Altmann 2007: 282).

Alberts and Altmann (2007) considered baboons in general a “good model” for 
exploring the consequences of variability selection. Baboons display the responses 
predicted by the hypotheses. They are flexible in their locomotor system and social 
systems; they have a large brain in proportion to body size; and they are like humans 
and unlike most other primates in having adapted to a wide range of environments 
with little or no seasonality in their reproductive behavior.

Comparison among baboon species and populations can suggest which hominin 
behaviors could have stayed the same over the long term, and which had to change 
as they experienced environmental fluctuations and expanded into drier and more 
open habitats. Baboons, whether we consider one or a few species or the entire 
genus, are pertinent to the behavior of early hominins in any environment that they 
encountered.

2.3  Positional Behavior

Bipedal locomotion was a crucial adaptation at the beginning of hominin evolution. 
However, hominins retained considerable ability for arboreal movement for mil-
lions of years. Even modern humans can develop great facility in climbing.

2.3.1  Bipedalism and Terrestriality

Orrorin and Sahelanthropus, early possible hominins, display some debatable evi-
dence of bipedalism (Boyle and Wood 2017). Stamos and Alemseged (2023) sup-
ported the bipedalism inference for these possible hominins, but characterized this 
aspect of their behavior as “primitive” in form and facultative in the sense that it was 
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possible but relatively rare. These authors placed the same interpretation on the 
greater amount of evidence for Ardipithecus. Casenave and Kivell (2023) saw evi-
dence for facultative bipedalism in the pelvis and legs of Ardipithecus. The rigidity 
of the midfoot and flexibility at the toes also signaled bipedalism. Prang (2019) 
viewed the Ardipithecus foot as similar to that of African apes, but considered the 
lengthened midfoot and reduced toes as indicating “propulsive capabilities associ-
ated with an early form of bipedalism.”

Kozma et al. (2018) compared motion in humans, apes, and other primates to 
assess the functions of pelvic morphology and hip movement. They concluded that 
ape pelves permit enhanced climbing capability, but limitation of hip extension 
results in a crouched gait. Human pelves permit a greater degree of hip extension, 
which greatly improves walking economy, that is, distance traveled in relation to 
energy consumed. Application of these findings to fossil pelves led to the conclu-
sion that Australopithecus afarensis and A. africanus had human-like hip extension 
and Ardipithecus was nearly human-like. They must have spent much of their time 
moving on the ground.

Since baboons are quadrupeds, the analogy with hominins in this case is primar-
ily functional/ecological rather than anatomical/behavioral. Both taxa adapted to 
extensive activity on the ground. Baboons differ from most other primates in this 
regard, although there is a parallel with chimpanzees. The behavioral implications 
are profound, including foraging patterns (Chaps. 4 and 5) and responses to preda-
tors (Chap. 6).

It may also be significant that baboons are capable of limited bipedal posture and 
locomotion (Fig. 2.3). The reasons for this behavior in baboons might be pertinent 
to the origin of bipedal evolution in hominins, during a time long before Ardipithecus. 
Baboons may stand erect to gather food (Fig. 2.4) and they may walk or run biped-
ally to carry food . Early hominins might also have used erect posture to gather food 
and might have carried food to avoid competition with each other or danger from 
predators. Increased selection pressure along these lines could have favored ana-
tomical changes.

On the premise that infant primates have a more diverse locomotor repertoire 
than adults, Druelle et al. (2017) theorized that locomotor development is a source 
of variation subject to natural selection. They observed six infant baboons at two 
different stages of development. During the same stage of development, the infants 
improved significantly in coordination between the hind limbs in spontaneous 
bipedal walking and in interlimb coordination in quadrupedal walking. The research-
ers hypothesized that neural networks underlying quadrupedal locomotion might 
also be employed to perform occasional bipedal walking. They inferred that a sec-
ondary locomotor mode experienced during infancy, as a byproduct of locomotor 
development, may lead to evolutionary innovation under appropriate selective pres-
sures. Thus, a baboon analogy suggests an evolutionary pathway from quadrupedal-
ism to bipedalism for hominins.

2.3 Positional Behavior
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Fig. 2.4 Foraging chacma baboon stands bipedally to reach for tree branch. (Photo by Glenn 
King. On the road near Mkhuzi, South Africa)

Fig. 2.3 Young chacma 
baboon in bipedal stance. 
(Photo by Curt Busse. 
Okavango, Botswana)
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2.3.2  Arboreality

While evolving bipedal capability for ground locomotion, hominins probably 
retained considerable ability for arboreal behavior. There is wide agreement on this 
point, but some debate as to what form(s) of behavior were involved. Table 2.1 sum-
marizes some of the evidence and interpretations. Two obvious categories are verti-
cal climbing and suspension. Selby and Lovejoy (2017) added the concept of 
clambering. Based on comparative evidence from gorillas and some New World 
monkeys, clambering was described as cautious movement through trees that makes 
equal use of all four limbs. All of these modes of locomotion have been attributed to 
Ardipithecus. The evidence from various species of Australopithecus suggests that 
substantial arboreal activity continued, but the balance between effective climbing 
and bipedal movement on the ground was shifting.

Some scientists have argued that arboreal traits in hominins later than Ardipithecus 
were relicts with no functional significance, because those hominins had become 
obligate or near-obligate terrestrial bipeds (e.g., Lovejoy 2009). Stamos and 
Alemseged (2023) responded that the system of postcranial traits in Australopithecus 
seems to have been relatively stable over the course of about two million years, 
contrasting with significant changes in craniodental morphology. They argued that 
the stability of climbing morphology in A. afarensis over such a long period is con-
sistent with stabilizing natural selection, which indicates that arboreal behavior con-
tributed to the fitness of these early hominins. Paradoxically, one case of individual 
fitness loss also provides evidence for arboreality in A. afarensis: perimortem frac-
tures throughout the skeleton of “Lucy” are consistent with a vertical fall from a tree 
(Kappelman et al. 2016).

After a review, Casenave and Kivell (2023) concluded that A. afarensis, A. pro-
metheus, and A. sediba present suites of anatomical features that differ from one 
another and suggest (subtly for some features and dramatically for others) that loco-
motor biomechanics were different for each taxon. Whatever the details, however, 
these and other hominins seem to have retained arboreal features for millions of 
years (although it is not clear just how frequent and significant arboreal behaviors 
were in any particular species) (Casenave and Kivell 2023).

Baboons are comparable to this varied hominin pattern of positional behavior. 
Although spending much of the day on the ground, they are agile in trees and on 
cliffs. These are the places where they find relative safety when confronted with 
predators during the day and when sleeping at night (Chap. 6). The fact that baboons 
often climb cliffs for sleeping, at least in some habitats, suggests that the term 
“arboreality” should be used loosely in relation to early hominins and perhaps 
replaced by a term such as scando-terrestrial (Chap. 1).

It is intriguing that Pavia’s (2020) reconstruction of a South African hominin 
paleoenvironment included a possible cliff at the edge of an open grassland. Baboon 
behavior suggests the speculation that this provided local early Homo with a refuge, 
especially for sleeping at night. Chacma baboons in South Africa frequently use 
such cliffs for sleep. (Table 2.2)

2.3 Positional Behavior
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Table 2.2 Arboreal features in early hominins

Ardipithecus
Anatomical features
Long forelimbs (Selby and Lovejoy 2017)
Long phalanges on hands and feet (Selby and Lovejoy 2017)
Long, curved manual and pedal phalanges (Stamos and Alemseged 2023)
Ape-like hip extension (Kozma et al. 2018)
Origin of hamstring muscles and related features of pelvis (Selby and Lovejoy 2017)
Locomotor interpretations
Suspensory behavior and vertical climbing (Prang et al. 2021)
Vertical climbing (Kozma et al. 2018)
Greater arboreal efficiency than Australopithecus (Stamos and Alemseged 2023)
Clambering (Simpson et al. 2019; Selby and Lovejoy 2017)
Australopithecus (various species)
Humerus with mixture of orangutan-like and monkey-like features:
significant amount of suspensory behavior (Arias-Martorell 2018) and climbing (Melillo et al. 
2021).
Hip extension different from Ardipithecus: reduced power in climbing (Kozma et al. 2018)
ape-like features in cochlea and semicircular canals: sense of balance needed for some 
arboreality (Beaudet et al. 2019)
Atlas bone (the first cervical vertebra) with “substantial similarities” to same feature in living 
apes.
   Consistent with greater head mobility than in modern humans
   Three-dimensional visual field adapted to arboreal behavior, especially vertical climbing.

2.4  Body Mass

Body size, usually considered in terms of weight or mass, is a basic feature of ani-
mals that affects almost every aspect of their biology, including (for example) loco-
motion, diet, energy requirements, social organization, and life history (Jungers 
et al. 2016; Grabowski and Jungers 2017). Variation in research methods has pro-
duced uncertainty as to the body mass of various early hominins (Grabowski et al. 
2015; Ruff et al. 2020; Will et al. 2017). Differing approaches use different fossil 
bones as reference points. Material from the legs is preferable because they are 
weight-bearing. Commonly used are the talus from the ankle and the head of the 
femur, but these are not always available. No matter which fossil bones are used, 
extant models are necessary to formulate equations that relate bones to the mass of 
a living body. The usual models, chimpanzees and humans, can lead to significantly 
different results. The equations themselves represent differing mathematical 
approaches that can yield significantly different results.

The weights for hominin species presented in the first chapter (Table 1.1) were 
drawn from a survey of research available to Boyle and Wood (2017), with the 
intention of providing a comprehensive result as a basis for further discussion. More 
recent studies, summarized in Table  2.3, have more limited coverage. It is 
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immediately apparent that the results from Jungers et  al. (2016) and Will et  al. 
(2017) are in close agreement with each other and with Boyle and Wood (2017). 
They suggest a range roughly 25–65 kg for early hominins. Ruff et al. (2020) pro-
duced outliers for several taxa by analyzing humeri rather than lower limb bones. 
However, the analysis of one individual by Simpson et al. (2019) obtained estimates 
ranging from about 50 to 63 kg from the femur and about 56 kg from the talus.

Recent discoveries have expanded the sample of A. anamensis to 74 individuals, 
including the first known postcranial remains of a small individual (Ward et  al. 
2020). Based on limb bones (humerus, radius, tibia, capitate, manual phalanx) and 
dental evidence, the largest individuals of this species were about the same size as 
the largest members of A. afarensis, that is, up to about 70 kg. The figures for Homo 
habilis fall within the loose parameters established for Australopithecus.

In relation to any of the varied assessments of hominin body mass, baboons are 
on the whole significantly smaller. The weight of most baboons falls into the range 
of 15–35 kilograms (Fischer et al. 2019). There is an overlap at the lower end, but 
the largest early hominins seem to have been twice the size of the largest extant 
baboons.

Aside from the overlap, there are reasons to regard early hominins and baboons 
as comparable in size. First, despite the differences between them, baboons and 
early hominins are medium-sized mammals. This makes for similar relations to 
other mammals. For two simple examples, both the hominins and the baboons were/
are capable of killing hares for food and susceptible to being killed and eaten by 
leopards (Chaps. 5 and 6). Another reason for comparison is that both the hominins 
and baboons are large enough to cope with some of the same problems, such as 
making successful defenses against leopards.

Finally, baboons are among the very few primates that approach the size of the 
hominins and also occupy a comparable range of environments. Chimpanzees and 
orangutans are better size matches for early hominins. However, orangutans live 
largely arboreal lives in the tropical forests of Southeast Asia. Chimpanzees are 

Table 2.3 Recent body mass estimates of hominin taxa 

Taxon
Jungers et al. 
(2016)

Will et al. 
(2017)

Simpson et al. 
(2019)

Ruff et al. 
(2020)*

Ardipithecus 32 (N = 1) 32 (N = 1) 50–63 50, 45 (N = 1)
A. anamensis 46 (N = 1) – – 68, 55 (N = 1)
A. afarensis 41 (25–64) 40 (25–64) – 30–75
A. africanus 31 (23–43) 31 (23–43) – 40–60
A. sediba 26 (23–29) 27 (23–30) – 40–41
H. habilis 34 (27–38) 48 (38–65) – –
H. ergaster 49 (29–64) 51 (32–68) – 52–53

These are recent estimates that were not used in Table 1.1. Fewer taxa have been reexamined. The 
results overlap with the earlier work, but provide higher figures for all taxa except Homo ergaster. 
*All studies reference lower limbs, except for the use of humeri by Ruff et al. (2020). All measure-
ments in kilograms, rounded to the nearest whole number. Mean given first, followed by range in 
parentheses, except where N = 1. Australopithecus africanus includes A. “prometheus”

2.4 Body Mass
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more like hominins and baboons in that they are largely terrestrial African primates 
that live in a wide range of environments. Nevertheless, they have not penetrated the 
full range of environments occupied by baboons and have had limited success in the 
more demanding ones. The maximum size of male mandrill monkeys is similar to 
orangutans and they are more terrestrial; however, they are largely limited to the 
tropical forests of Africa.

2.5  Sexual Dimorphism

Like most monkeys and apes, early hominins were sexually dimorphic in body 
mass. In some hominin species, the degree of sexual dimorphism in this trait may 
have approached that of baboons. Sexual dimorphism in the size of the canine teeth 
is also important in many primate species, including baboons. In contrast, sexual 
dimorphism in the canine teeth seems to have been unimportant in early hominins.

2.5.1  Sexual Dimorphism in Body Mass

Establishing the range of weight variation within a species is bound up with dis-
putes about sexual dimorphism. One way to interpret a wide range of variation 
within a group of related fossils is that males and females are significantly different 
in size (gorillas are a familiar living example of such a species). Alternatively, the 
material in question may represent more than one species; this interpretation 
requires that other markers of species distinction be present.

Sex difference in early hominin size is the subject of a long-running and intense 
debate because sexual dimorphism has important social and ecological implications 
(Cassini 2020; Plavcan 2018). One common explanation is aggressive competition 
among males for mates, which in turn has implications for social organization. An 
important alternative is niche partitioning between males and females for access to 
resources, especially food, which alleviates conflict. A long-standing hypothesis 
that combines ecological and social factors is that males defend females and young 
against predators (Washburn and DeVore 1961). Whatever hypotheses are favored, 
there is general agreement that the issue of sexual dimorphism in size is important.

There is considerable disagreement about the degree of dimorphism in early 
hominins. Some researchers have concluded that early hominins in general were 
little different from modern humans in sexual dimorphism. Reno and Lovejoy 
(2015) argued that small sample sizes had exaggerated previous results and that 
their analysis of A. afarensis fossils demonstrated moderate dimorphism on the 
order of chimpanzees and living humans (see also Reno et al. 2010). They suggested 
that other studies indicated similar results for several other early hominin species.

However, numerous studies using various criteria have concluded that sexual 
dimorphism in early hominins was significantly greater than in modern humans and 
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that our ancestors did not approach the modern condition until after the genus Homo 
had appeared. Recent discoveries of A. anamensis fossils seem to support the sexual 
dimorphism interpretation. A partial tibia, undoubtedly from an adult, is only 75% 
of the size of previously known one. Other than size, the fossils exhibit similar mor-
phology, indicating membership in the same species. A similar range of variation 
exists between some of the largest and smallest A. afarensis tibias. Together with the 
dental data, the fossil sample suggests a similarly wide range of body sizes in these 
two Australopithecus species, possibly due to similar levels of sexual dimorphism 
(Ward et al. 2020). Using fossil footprints to reconstruct foot size and comparative 
data to infer body mass, Villmoare et al. (2019) concluded that A. afarensis sexual 
dimorphism was comparable to that of gorillas, that is, males about twice the size of 
females (see also Kimbel and Delezene 2009; Masao et al. 2016).

Reconstruction of hominin sex differences in body mass by Grabowski et  al. 
(2015) suggested a steady decline in size dimorphism from A. afarensis to H. erec-
tus and ultimately to H. sapiens. In their study of fossil footprints, Villmoare et al. 
(2019) concluded that sexual dimorphism was significantly reduced in H. erectus 
compared to earlier hominins, but was still greater than in modern humans. The 
drastically changing environmental and social circumstances of early hominins may 
well have selected for a drastic reduction in sexual dimorphism. Interpretation may 
be complicated further by variation across the fossil record. Ardipithecus seems to 
show minimal size dimorphism while dimorphism in Australopithecus species var-
ies from “modest to strong” (Plavcan 2018).

Sexual dimorphism in body mass seems to have been substantial for at least 
some early hominin species. In some cases, this feature may have reached the point 
of males being twice the size of females. If this is correct, then baboons may be a 
better match for early hominins than are chimpanzees. Chimpanzee sexual dimor-
phism approximates that of modern humans while the rate of male/female mass in 
baboons varies from 1.55 to 2.20 among the six species (Fischer et al. 2019; see also 
Table 2.3). Variation among baboons is significant and seems to be related to impor-
tant aspects of behavior (Petersdorf et al. 2019). Comparison among baboons spe-
cies may contribute to an understanding of variations among hominins.

2.5.2  Sexual Dimorphism in Canine Teeth

Sexual dimorphism in the canine teeth is a vital difference between baboons and 
hominins because canine size has profound implications for ecology and social 
behavior. Suwa et al. (2021) emphasized the idea that reduction of the canine teeth 
“indicates a profound behavioral shift associated with comparatively weak levels of 
male aggression.” The phenomenon also raises questions about the ability of early 
hominins to protect themselves against predators.

In brief, a reduction in canine size can be interpreted as a reduction in fighting 
ability. However, an alternative to large canine teeth for fighting is the use of extra-
somatic (non-anatomical) weapons, that is, artifacts. This point will be explored 
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further in relation to predator defense (Chap. 6). For now, the main implication is 
that large canine teeth do not eliminate baboons from consideration as models for 
early hominin ecology and behavior.

2.6  Summary and Discussion

Paleoanthropology provides direct evidence for the ecology and behavior of early 
hominins. However, it is limited to phenomena that leave physical remains. Living 
species augment this record. They also provide hypotheses pertaining to gaps in the 
record and to the long period before hominin behavior began to provide archeologi-
cal remains.

The main rationale for comparison of early hominins with baboons is provided 
by several major functional similarities. First of all, both taxa are unusual among 
primates in their wide distribution across diverse habitats from woodlands to hot 
grasslands and cold highlands. As they spread across these habitats, both taxa 
adapted to drastic cycles of climate change with great flexibility in their physiology 
and behavior. Of very broad significance, flexibility in positional behavior allowed 
hominins and baboons to travel on the ground during most of each day while retain-
ing the ability to climb trees and cliffs when necessary, especially for safer sleeping.

Body mass is a somewhat more problematic point of comparison. Early homi-
nins were significantly larger than baboons, with a possible range of 25–75  kg. 
However, the baboon range of 15–35 kg overlaps with early hominins. Both taxa are 
medium sized compared to mammals in general and are relatively large compared 
to most other primates. Although a few other primates match the hominins in size 
more closely than do baboons, none of these species come close to occupying the 
range of environments shared by hominins and baboons. Baboons can suggest 
answers to questions about crucial features of hominin life, such as subsistence and 
danger, in any environment that the hominins encountered.

A controversial aspect of body mass is the degree of difference between males 
and females in a species. This sexual dimorphism varies across baboon species but 
is relatively large in all of them. Most analyses of early hominin fossils have con-
cluded that sexual dimorphism in body size was substantial, perhaps even as great 
as in baboons. If this is correct, then baboons may provide better perspectives on a 
variety of issues than less dimorphic species such as chimpanzees. Size dimorphism 
decreased during the course of hominin evolution. Variation among baboon species 
in this characteristic may provide clues about the social and/or ecological factors 
involved.

A crucial difference between early hominins and baboons is the size and shape 
of the canine teeth. The canines of both sexes in hominins were hardly different 
from incisors in size and shape. In baboons, the canines in both sexes are long and 
sharp and this is especially the case in males. One interpretation is that canine 
reduction in hominins accompanied a reduction in aggressive behavior. An alterna-
tive is that hominins came to rely on extrasomatic weapons at an early date.

2 Why Compare Early Hominins to Baboons?
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