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Abstract The paper considers the relationship between the dynamic and static 
parameters of circular isotropic plates under various boundary conditions. The studies 
of the plates were carried out under static and dynamic loading, taking into account 
the variability of the thickness. The authors established the relationship between 
the maximum deflection and the natural frequencies of the transverse vibrations of 
the plates, and assessed the matching of the coefficient K obtained by numerical 
studies with its analytical one. The curves for the frequencies of free vibrations and 
deflections under the static load and the change in the coefficient K depending on 
the thickness of the plate and boundary conditions were plotted. Studies showed that 
the coefficient K complies within 5% of the dependence of Professor V.I. Korobko 
only when the ratio of the thickness in the center to the thickness on the support t2/ 
t1 = 60/50 < 1.2 for both support schemes. This is due to the fact that formula (16) 
was derived for isotropic plates with constant thickness and the distribution of mass 
evenly over the entire area of the plate leads to a significant error already at the stage 
of a small difference between the thicknesses at the support and in the center. With a 
thickness ratio t2/t1 = 100/50 = 2, the difference between the K coefficient and the 
analytical one is about 16%. 
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1 Introduction 

A large number of works are devoted to the calculation of solid and composite plates 
[1–9]. This article presents the study of the coefficient K, which express the relation 
between the frequencies of natural vibrations and the maximum deflections of the 
plates. 

The determination of static and dynamic characteristics leads to determining the 
deflections [10–15] and frequencies of system vibrations [16–19] in solving the 
relevant differential equations. The functional relationship between the maximum 
deflection and the frequency of the fundamental mode of free transverse vibrations 
of elastic isotropic plates was proved by V. I. Korobko [5]. 

2 Materials and Methods 

The differential equation of the plate transverse deflection has the form: 
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(1) 

With the use of biharmonic operators, the equation takes the form: 

D∇2∇2 W = 
q 

D 
. (2) 

where W = W (x, y) is the deflection function of the plate at the transverse deflec-
tion; ∇2∇2∇2∇2—is a biharmonic operator; D = EH 3 /(12

(
1 − ν2

)
) is cylindrical 

stiffness of the plate; 
q(x, y) is the law of the lateral load change. 
The differential equation of plate free vibrations: 
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where W = W (x, y, t) is the deflection function of a freely oscillating plate; m is the 
mass per unit area of the plate; E, ν are respectively the modulus of elasticity of the 
material and the Poisson’s ratio. 

If the vibrations are harmonic 

W = W (x, y) · cos(ωt), (5)
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then Eq. (1) can be transformed to the following form: 

D∇2∇2 W − mω2 W = 0 

or 

D∇2∇2 W − β2 W = 0, 

where β2 = mω2/D is the eigenvalue of the differential equation of vibrations of the 
plates. 

Let us represent the deflection function as a product of the maximum deflection 
W0 by the unit function f (x, y) and substitute it in the differential equations of 
transverse deflection and free vibrations of the plates: 

W (x, y) = W0 f (x, y) (6)

{
D∇2∇2 f − mω2 f = 0 
DW0∇2∇2 f − q(x, y) = 0 

It should be noted that the precise solution of these differential equations is valid 
only in the frequent cases of plate forms and boundary conditions. Therefore, in 
practice, approximate methods of solution are mainly used. 

If we assume that the plate is under a uniformly distributed load q, then having inte-
grated Eq. (6) over the entire area of the region, and having performed the necessary 
transformations, we will get: 

W0 = 
q 

D 

A 
˜ 

A 
∇2∇2 f d  A  

, ω2 = 
D 

m 

˜ 

A 
∇2∇2 f d  A  

˜ 

A 
f d  A  

. (7) 

The deflection function W (x, y) can approximately be put down in a one-parameter 
form in the polar coordinate system: 

W (x, y) = W0 f (x, y) = W0g

[
t 

r (φ)

]
= W0g(ρ) (8) 

where r = r(ϕ) is the equation of the contour of the plate in the polar coordinate 
system, t and ϕ are polar coordinates, ρ = t/r(ϕ) is the dimensionless polar coordinate. 

This function describes a surface which level lines are similar to the region contour 
and are similarly located. The representation of the function of deflections in this 
form is justified by the fact that through it we can write down the exact solution to 
the problem of transverse deflection of a rigidly pinched elliptical plate under the 
action of a uniformly distributed load. Since just in a single case it is possible to
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represent the real deflection function in the form of a one-parameter function (8), 
further results are of an approximate nature. 

We transform the integrals in (7), taking into account the deflection function in 
form (8). 

¨ 

A 

f d  A  = 
2π∫

0 

r∫

0 

g(ρ)tdtdφ. (9) 

Multiplying and dividing the right-hand side by r2, we get after the transforma-
tions: 

¨ 

A 

f d  A  = 2A 
1∫

0 

g(ρ)ρdρ. (10) 

Completing the transformation of the integral of the biharmonic operator 
according to, we finally write: 
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)
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where
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(12) 

The sign of the approximate equality in (11) appeared under the transformation 
of integrals by means of the Bunyakovsky inequality. We substitute integrals (9) and 
(11) into expressions (6). After the necessary transformations, we get: 
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(13) 

Since all the values of the definite integrals occurring in the expressions (13) are  
constant numbers depending on the accuracy of the choice of function g (ρ), they 
can be represented as the proportionality coefficients Kw, Kω and B. Then
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W0 = Kw 
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Kw = 1
/

�g1; Kω = 1 2�g1

/
1∫

0 
gρdρ; B = �g2

/
�g1 . (15) 

Strictly speaking, the signs of approximate equalities should be put in expressions 
(14), in view of (12) and the approximation of function g (ρ). 

Let us multiply the expressions (14) to each other: 

W0ω
2 = Kw Kω 

q 

m 
= K 

q 

m 
. (16) 

Taking into account that the coefficients Kw and Kω depend on the shape of the 
plate, the following regularity can be obtained from the expression (16): for elastic 
isotropic plates of identical shapes with homogeneous boundary conditions, the 
product of the maximum deflection W0 from the action of the uniformly distributed 
load q per square of their fundamental frequency of transverse vibrations in the 
unloaded state, ω2 with accuracy up to the dimensional factor q/m is a constant. 
Thus, it is mathematically and rigorously proved that for the whole set of plates 
with homogeneous boundary conditions the product W0·ω2 will be represented by 
a single curve. An important feature of the formulated regularity is the fact that the 
product W0·ω2, which is considered in it, does not depend on the flexural rigidity 
and dimensions of constructions. 

The design structure is a circular isotropic plate, the thickness of which varies 
in accordance with a parabola (Fig. 1). The thickness of the plate on the support is 
5 cm, the thickness in the span varies according to the parabola with maximum value 
at the middle:

t = 5 + k · x 1 2 (cm). (17) 

Numerical studies of the plates were carried out by the finite element method. The 
design schemes of composite plates are shown in Fig. 2. When calculating the plates, 
two support schemes were investigated: rigid pinching along the contour (Fig. 2a) 
and hinged support along the contour (Fig. 2b).

The plate with a diameter of 6 m is divided into 240 finite elements—24 elements 
in the annular direction and 10 finite elements in the radial direction (Fig. 1). The 
thickness of the plate on the support was taken constant 0.05 m; the thickness in the 
center was a variable parameter and varied from 0.05 m (plate of constant thickness) 
to 0.10 m with a step of 0.005 m. The plate was taken from steel of ordinary quality, 
volumetric weight 78.5 kN / m3. The modulus of elasticity is taken as E = 2.06
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Fig. 1 Circular plate with a 
linearly variable thickness 
(a—finite element scheme; 
b—plate thickness)

Fig. 2 Design diagrams of 
plates (a—with hinged 
support along the contour; 
b—with pinching along the 
contour)

·105 MPa according to the Building Code of Russian Federation SP 16.13330.2017 
“Steel structures”. All studies were carried out under the assumption of the elastic 
work of the material. Uniformly distributed load was assumed to be q = 1 kN/m2 

(Fig. 2). The support was carried out along the contour in the contour nodes of the 
plates. Two support schemes were provided—hinged support and fixing along the
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contour. To determine the natural frequencies of the transverse vibrations of the 
plates, concentrated masses from the empty weight of the plate were applied to the 
structural nodes in accordance with the load area of the nodes. 

3 Results and Discussion 

Determination of vibration and deflection frequencies was carried out using the 
SCAD software package [20]. The results of numerical studies of the plate are shown 
in Tables 1 and 2. 

According to the data of Tables 1 and 2, graphs of changes in the maximum 
deflections and vibration frequencies in the studied plates and the proportionality 
coefficient K are plotted. The deviation of the actual value of the coefficient K from 
the theoretical one was determined by the formula:

	 = 
Ktheor  − K 

Ktheor  
· 100% (18) 

Based on the results of the research, curves for the frequency of natural oscillations 
(Fig. 3), maximum deflections (Fig. 4) and the K coefficient (Fig. 5) are plotted.

Table 1 Results of numerical studies of a circular plate, the thickness of which varies in accordance 
with a parabola, D = 6 m with hinged support 

t1 (mm) t2 (mm) Circular 
frequency of 
fundamental 
tone, 
ω (s−1) 

Maximum 
deflection, 
W0 (mm) 

K = 
W0ω

2/ 
(q/m) 

K = W0w2/(q/m) 
based on analytical  
W0 and ω 

Deviation of 
K from 
Ktheor. % 

50 50 42.52237 21.8409 1.581 1.579 −0.11 

50 55 45.19654 17.9303 1.542 2.35 

50 60 47.88706 14.8697 1.507 4.58 

50 65 50.56988 12.4814 1.477 6.45 

50 70 53.25339 10.5797 1.451 8.10 

50 75 55.93603 9.0470 1.428 9.55 

50 80 58.61656 7.7981 1.408 10.84 

50 85 61.29428 6.7700 1.390 12.00 

50 90 63.96914 5.9159 1.373 13.04 

50 95 66.64001 5.2006 1.358 13.99 

50 100 69.30723 4.5969 1.345 14.84



210 A. Turkov et al.

Table 2 Results of numerical studies of a circular plate plate, the thickness of which varies in 
accordance with a parabola, d = 6 m when pinched along the contour 

t1 (mm) t2 (mm) Circular 
frequency of 
fundamental 
tone, 
ω (s−1) 

Maximum 
deflection, 
W0 (mm) 

K = 
W0ω

2/ 
(q/m) 

K = W0w2/(q/m) 
based on analytical  
W0 and ω 

Deviation of 
K from 
Ktheor. % 

50 50 89.80446 5.1396 1.658 1.629 −1.81 

50 55 93.04019 4.4117 1.608 1.30 

50 60 96.26179 3.8158 1.562 4.09 

50 65 99.4389 3.3322 1.525 6.40 

50 70 102.5884 2.9315 1.492 8.40 

50 75 105.7178 2.5957 1.464 10.15 

50 80 108.8287 2.3116 1.438 11.70 

50 85 111.9266 2.0693 1.416 13.06 

50 90 115.014 1.8609 1.396 14.29 

50 95 118.0914 1.6806 1.378 15.39 

50 100 121.1638 1.5235 1.362 16.39

Fig. 3 Change in free vibration frequencies depending on the thickness of the plate t2 in the center
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Fig. 4 Change in deflections by static load depending on the thickness of the plate t2 in the center 

Fig. 5 Change in coefficient K depending on the thickness of the plate t2 in the center 

4 Conclusion 

As a result of numerical studies, the maximum deflections and free vibration frequen-
cies were determined for circular isotropic plates with a thickness varying in accor-
dance with parabola with a thickening in the center. Studies showed that the coef-
ficient K matches within 5% of the dependence of Professor V.I. Korobko only for 
the ratio of the thickness in the center to the thickness on the support t2 / t1 = 60/50 
< 1.2 for both support schemes. This is due to the fact that formula (16) was derived 
for isotropic plates with constant thickness and the distribution of mass evenly over 
the entire area of the plate. This leads to a significant error already at the stage of 
a small difference between the thicknesses at the support and in the center. With a 
thickness ratio t2 / t1 = 100/50 = 2, the difference between the K coefficient and 
the analytical one is about 16%, and it should be expected that the difference will 
increase with increasing plate thickness in the center.
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