
SSDL: A Domain-Specific Modeling
Language for Smart City Services

Rubén Ruiz-Torrubiano, Deepak Dhungana, Gerhard Kormann-Hainzl,
and Sarita Paudel

Abstract As software services become more and more indispensable in our daily
lives, low-code and no-code platforms are gaining significance, especially for non-
technical users. We present a novel domain-specific modeling language for the def-
inition of smart service systems in the context of smart cities, which we call Smart
Service Definition Language (SSDL). The main goal of this formal language is to
provide a basis for a low-coding software engineering approach for the design and
deployment of smart services. SSDL is based on the Smart City Ontology (SCO) to
provide syntactic and semantic elements related to the smart city environment and
aims at defining a syntax as near as possible to human language to overcome accep-
tance problems for non-technical users. The proposed language can be used by smart
system designers and other stakeholders to define the components, actors, data and
relationships between the different elements that compose smart service systems in
a formal and reproducible way, paving the way for an automatic or semi-automatic
generation of ready-to-deploy smart services as independent applications, which may
take the form of web services to be integrated in service-oriented architectures. In
this paper, we present the syntax of SSDL and provide an example use-case for its
application to the problem of designing a smart service for parking lot management.

R. Ruiz-Torrubiano (B) · D. Dhungana · G. Kormann-Hainzl · S. Paudel
IMC University of Applied Sciences Krems, 3500 Krems, Austria
e-mail: ruben.ruiz@fh-krems.ac.at

D. Dhungana
e-mail: deepak.dhungana@fh-krems.ac.at

G. Kormann-Hainzl
e-mail: gerhard.kormann@fh-krems.ac.at

S. Paudel
e-mail: sarita.paudel@fh-krems.ac.at

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J. Meierhofer et al. (eds.), Smart Services Summit, Progress in IS,
https://doi.org/10.1007/978-3-031-36698-7_12

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36698-7_12&domain=pdf
ruben.ruiz@fh-krems.ac.at
 854 48900 a 854 48900 a

deepak.dhungana@fh-krems.ac.at
 854
51778 a 854 51778 a

gerhard.kormann@fh-krems.ac.at
 854 54656 a 854 54656 a

sarita.paudel@fh-krems.ac.at
 854
57535 a 854 57535 a

https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12
https://doi.org/10.1007/978-3-031-36698-7_12

114 R. Ruiz-Torrubiano et al.

1 Introduction

Service systems can be defined as dynamic value-cocreation configurations of
resources, connected internally and externally to other service systems by value
propositions (Maglio et al., 2009). This configuration includes in general people,
organizations, shared information and technology. Service consumers and providers
interact by creating value in the form of a value proposition, which is an invitation
from actors to one another to engage in service (Chandler & Lusch, 2015). The
combination of these concepts with advances and developments in information tech-
nology (IT) results in the emergence of smart service systems (SSS), which are soft-
ware systems capable of learning, dynamic adaptation, and decision making based
upon received and transmitted data (Lim & Maglio, 2018). In general, smart service
systems are capable of monitoring, optimizing and controlling smart products and
devices to deliver value for the service participants. In the smart city context, smart
service systems enable value-cocreation for the participants of the smart city ecosys-
tem to address its main challenges (like urbanization, climate change, sustainable
transport, housing, and healthcare) by an intelligent use of information technologies
(Wolff et al., 2020). One of the main challenges to deliver these goals is an effi-
cient way of engineering smart service systems to enable the city and its citizens to
harness the large volumes of data that are produced by sensors and digital infrastruc-
ture to improve sustanability by service innovation (Dobler et al., 2021; Suzic et al.,
2022). In this paper, we address this software engineering challenge by proposing
a low-coding approach based on a domain-specific modeling language that we call
Smart Service Definition Language (SSDL). The basic goal of this language is to
provide a means of defining, sharing and deploying smart service systems in a nat-
ural way also for non-technical users, enabling the relevant stakeholders in the city
administration to autonomously define and deploy smart service systems based on
their needs and the available infrastructure. SSDL is the foundation for a low-coding
platform capable of generating applications based on a simple formal description,
largely simplifying the development of smart services in practice.

This paper is organized as follows. In Sect. 2 we begin by providing a review of
related work in the field of smart systems design with a focus on smart cities. Section
3 outlines the research and design methodology used and provides the syntax and
semantics definitions for SSDL. In Sect. 4 we describe a general software architecture
for implementing a low-coding platform for smart service systems based on SSDL.
Our approach is evaluated in Sect. 5 by applying it to an example use case. We
conclude in Sect. 6 with a summary.

2 Related work

Smart products integrate resources and activities of service providers and service
consumers, which allows them to adapt the service systems based on contextual
data (Beverungen et al., 2019a). In Beverungen et al. (2019b), the authors present

SSDL: A Domain-Specific Modeling Language for Smart City Services 115

the concept of smart services and smart service systems. As smart products are widely
used for smart sevices in smart cities the related work helps us better understand our
target domain. Jussen et al. (2019) present a service-engineering approach for smart
services and illustrates its successful application and its impact on a medium-sized
company. The study focuses on the development steps involved and the interaction
and interconnection of elements in smart services. Komninos et al. (2016) propose an
ontology for smart cities called Smart City Ontology (SCO) and present its building
blocks (e.g., technology, structure, functions, design), and properties for connecting
those blocks in the ontology. This study was enhanced in Komninos et al. (2021)
with an OWL ontology. In this work, we use this OWL-based Smart City Ontology
to provide the language with semantic and syntactic features related to smart cities,
therefore these related works help us to understand the smart city landscape, identify
its main components and the processes involved in smart city applications. In Huber
et al. (2019) the authors develop a domain-specific modeling language for smart
service systems and demonstrate it by presenting real-world scenarios. This work
focuses on concepts of domain-specific modeling and relationships in smart service
system domains, highlighting the importance of developing domain-specific mod-
eling languages for better coverage of the target domain. Similarly, guidelines for
selecting an appropriate metamodeling language are presented in Frank (2013). The
authors demonstrate a process for specifying a domain-specfic modeling language
based on requirements analysis. We considered this work as our starting point for
designing our domain-specific modeling language.

3 Smart Service Definition Language

SSDL is a text-based language. An SSDL file contains the definition of a smart ser-
vice. For the general structure, we borrowed some syntactic elements from YAML, 1

as this language provides syntactic constructions that can be regarded as near to nat-
ural language. We then enriched these constructions by defining additional seman-
tic elements from the Smart City Ontology. We followed the general methodology
for designing domain-specific modeling languages proposed in Frank (2013). This
methodology comprises the following steps: (1) clarification of scope and purpose,
(2) analysis of generic and specific requirements, (3) language specification, (4)
design of graphical notation, (5) development of a modeling tool, and (6) evaluation
and refinement.

Table 1 shows a summary of the syntax of SSDL. The preamble contains metadata,
i.e. general data about the smart service itself, mainly for documentation purposes.
Two metadata-fields are mandatory: name and version. Additional metadata-
fields can be used to define the general area that the smart service belongs to, like
environment or transportation.

1 https://yaml.org/.

https://yaml.org/
https://yaml.org/
https://yaml.org/

116 R. Ruiz-Torrubiano et al.

Table 1 Structure of the Smart Service Definition Language (SSDL)

Section Description Elements Example

Service Metadata,
documentation,
classification

name name is “Waste
Management”

version version is 1.0

domain domain is
Infrastucture

field field is Environment

Data Configuration data
sources, sensors,
gateways, formats

name name is “Waste Bins”

type type is WasteSensor

provider provider is Fiware

config config:

url is http:...

token is 0309f94...

query query:

sensor: urn:...:123

property:
capacityRemaining

property: location

property: time

format format:

capacityRemaining is
number

location is geodata

time is timestamp

Application Service definition and
data visualization

type type is
WebApplication

layout layout is SinglePage

roles roles:

administrator, user

visualization visualization:

type is LineChart

x is time

y is
capacityRemaining

Deployment Deployment profiles type type is
Docker-Compose

file file:
docker-compose.yaml

credentials credentials:

username:
admin@smart.city

password:
123adjikj!...

SSDL: A Domain-Specific Modeling Language for Smart City Services 117

The data section contains definitions regarding the data sources used, which
typically belong to the sensor infrastructure already deployed in the smart city. In this
section, one or more data sources can be defined using a YAML-like list notation.
The data sources themselves can be specified using the following properties: the
name of the data source, the type of the data source used and the name of the
Internet-of-Things (IoT) provider (e.g. Fiware 2). Compound objects are used to
specify additional details: format specifies the data returned by the data source,
including property names and types, config describes how to authenticate against
the IoT platform, and queries defines how to query specific sensors or entities.

The application section contains the declarations needed for specifying the
smart service itself. This includes properties like the type of the application and how
to display data. The properties that can be specified are: the type of the application,
which will be a web application by default, the layout (like single-page or other
types of layouts), the standard user roles, like administrator and a read-only user
type, and the data visualization used, like several types of plots or tables.

The deployment section is optional and specifies deployment environments
where the smart service will be published and made available to the end users. A
deployment environment is a runtime or framework being executed on the server that
runs the smart service system. By defining the runtime environment in the SSDL file,
the user can use tools for automating the deployment process and thus decrease time-
to-market as much as possible.

4 Architecture

In this section, we outline a general software architecture for a low-coding platform
based on SSDL. An overview of this architecture is given in Fig. 1. We begin with the
user interface (UI) component at the bottom, which enables the user to interact with
the system. The central element of the UI is a text editor featuring syntax highlighting
(rendering language keywords and symbols differently) and validation (providing
visual cues like underlining incorrect syntax and explanations in text form).

Low-coding features like pre-defined blocks of code that can be dragged directly
into the editor are also integrated in the UI. For instance the user can choose from
a sidebar between different pre-defined components like default data blocks (data
section), default application (web applications) and deployment types (container-
based deployment). The configuration of these blocks is done visually by means of
configuration dialogs that can be used to save the configuration or modify it later.

The backend is organized as a service-oriented architecture (SOA) composed of
several independent services, each providing a subset of the needed functionality.
The main services composing the backend are the ApplicationService, the
LanguageService and the DataService. The ApplicationService is
the central business logic service for the web application that communicates with

2 https://www.fiware.org/.

https://www.fiware.org/
https://www.fiware.org/
https://www.fiware.org/
https://www.fiware.org/

118 R. Ruiz-Torrubiano et al.

Fig. 1 An architectural overview for a low-code platform based on SSDL

the frontend to provide the requested functionality. Its main task is to serve as a
controller for the features supported by the UI and a proxy to the other services by
exposing the necessary APIs. The LanguageService implements a compiler for
SSDL and generates the source code of the corresponding smart service (which we
call the artifact). This service is also responsible for handling validation requests
from the UI, which are forwarded by the ApplicationService. The output
of the LanguageService is a fully fledged web application based on a general
programming language (like Java or Python). The compiler generates the code of the
application based on templates, which are in essence source files with placeholders
that are filled at compile time. These templates can be either general (concerned
with the general structure of the application and the main business logic) or IoT-
specific, providing modules implementing API clients for the target IoT platform.
For instance, if the sensor layer is based on the Fiware framework, the template
that implements the Fiware API is selected by the compiler. The implementation is
assembled in compile time with the smart service so that the service, when deployed,
can access and fetch data from the corresponding sensor layer. This encapsulates the
concrete data modeling for a specific IoT vendor and makes SSDL independent of the
specific IoT platform used. Finally, the DataService is responsible for managing
a repository of source SSDL files. These files are kept in a data store. Additionally,
this services manages all the other types of data needed by the application, like user
data.

5 Evaluation

We now present a use-case solved using the proposed domain-specific language in
the smart city context: smart parking. The problem of managing the available parking
space in modern cities has practical importance for both the drivers and the operators

SSDL: A Domain-Specific Modeling Language for Smart City Services 119

and has sustanability implications. There are several specific variants of this problem
depending on the goals and the technology used (Al-Turjman & Malekloo, 2019). In
general, smart parking services alleviate congestion in city centres and thus reduce
vacant slot search time which also results in reduced air pollution. The sensing
layer consists in sensors placed in the available parking space so that the presence or
absence of a vehicle can be measured. The sensors then transmit measurements using
the corresponding network infrastructure to the IoT middleware. In a traditional smart
service engineering approach, dedicated application development would be needed
to build a tightly coupled application that communicates with the IoT middleware to
fetch data and implement some functionality related to the data. In contrast to this
approach, we now build an SSDL smart service definition in Fig. 2. In this definition,
sensors of infrared type and four data fields of interest are specified: an identifier for
the sensor making the measurement, the timestamp of the measurement, a boolean
indicating if the parking slot is vacant or not, and the location of the parking slot.
When compiled, this section would generate an implementation of the NGSIv2 REST
API. 3 Next, the application is defined as a single-page web application with standard
administrator and user roles. The application shows the data in two ways: first, it
displays a map showing the city centre within a radius of 10 km where the data
points are defined by their GPS coordinates and the boolean indicating if the spot is
vacant or not. Additionally, it shows the data as a table. Note that all that we need is
to specify a few lines of text instead of writing a full web application from scratch.
This lowers the costs of developing such an application and at the same time serves
as an implementation guide for further smart cities interested in introducing smart
parking solutions themselves.

6 Conclusions and Future Work

In this paper, we presented a new domain-specific modeling language and a general
software architecture for implementing a low-coding approach for developing smart
services in the smart city context. The main contributions of the present study are the
following: first, a general and flexible declarative formal language for automatically
generating smart service applications was proposed. This language is designed by
using a principled methodology and resembles natural language to booster acceptance
by non-technical users. Second, SSDL represents the foundation for a low-coding
platform for engineering smart services, allowing for implementing a wide variety of
features for supporting the user (e.g. graphical modeling tools). Third, our approach
is IoT platform agnostic, which means that it can work with arbitrary data models and
middlewares. Adaptation to new platforms can be done by implementing an abstract
layer that supports the corresponding middleware API.

Current ongoing work includes the implementation of a platform prototype to
demonstrate its feasibility. Visualization features (like representing code blocks to be

3 https://fiware-orion.readthedocs.io/en/latest/.

https://fiware-orion.readthedocs.io/en/latest/
https://fiware-orion.readthedocs.io/en/latest/
https://fiware-orion.readthedocs.io/en/latest/
https://fiware-orion.readthedocs.io/en/latest/
https://fiware-orion.readthedocs.io/en/latest/
https://fiware-orion.readthedocs.io/en/latest/
https://fiware-orion.readthedocs.io/en/latest/

120 R. Ruiz-Torrubiano et al.

service :
name i s ” smart park ing ”
v e r s i on i s 1 .0
domain i s I n f r a s t r u c t u r e
f i e l d i s Transportat ion

data :
s en sor1 :
p rov ide r i s Fiware
c on f i g :

endpoint : http : / / . . .
token : 0 a f2347ed . . .

name i s ” p a r k i n g l o t ”
type i s I n f r a r ed
q u e r i e s :

e n t i t y : urn : park ing : 4 3 4
p roperty : i d
p roperty : t ime

timestamp
property : vacant

boo l
p roperty : l o c a t i o n

geodata
application :

type i s Appl i ca t ion .Web
r o l e s :

admin i s t rator , u s e r
v i s u a l i z a t i o n :

”map1 ” :
type i s Map
c en t e r i s 48 . 21 , 1 6 . 36
data :

x i s l o c a t i o n
y i s vacant ”

” t a b l e1 ” :
type i s Table
data :

id , timestamp ,
l o c a t i on , vacant

deployment :
type : Docker Compose
f i l e : ” docker compose . yaml”

Fig. 2 Example SSDL file for a smart parking service

used graphically, and using drag-and-drop for connecting these components) should
be investigated to determine their viability as well. The prototype will be further
developed to implement an example use case from end to end, providing a sample
implementation for first production usages.

References

Al-Turjman, F., & Malekloo, A. (2019). Smart parking in IoT-enabled cities: A survey. Sustainable
Cities and Society, 49, 101608.

Beverungen, D., Breidbach, C. F., Poeppelbuss, J., & Tuunainen, V. K. (2019a). Smart service
systems: An interdisciplinary perspective. Information Systems Journal, 29(6), 1201–1206. Pub-
lisher: Blackwell Publishing Ltd.

Beverungen, D., Müller, O., Matzner, M., Mendling, J., & vom Brocke, J. (2019b). Conceptualizing
smart service systems. Electronic Markets, 29(1), 7–18. Publisher: Springer Verlag.

Chandler, J. D., & Lusch, R. F. (2015). Service systems: A broadened framework and research
agenda on value propositions, engagement, and service experience. Journal of Service Research,
18(1), 6–22. Publisher: SAGE Publications Inc.

Dobler, M., Kalkhofer, H., & Schumacher, J. (2021). Smart service development in public-private
settings–assessment methodology and use-cases in the lake constance region. In S. West, J.
Meierhofer, & C. Ganz (Eds.), Smart services summit (pp. 3–13). Cham. Springer International
Publishing.

SSDL: A Domain-Specific Modeling Language for Smart City Services 121

Frank, U. (2013). Domain-specific modeling languages: requirements analysis and design guide-
lines. In Domain engineering: product lines, conceptual models, and languages (pp. 133–157).
Journal Abbreviation: Domain Engineering: Product Lines, Conceptual Models, and Languages.

Huber, R. X. R., Püschel, L. C., & Röglinger, M. (2019). Capturing smart service systems: Develop-
ment of a domain-specific modelling language. Information Systems Journal,29(6), 1207–1255.

Jussen, P., Kuntz, J., Senderek, R., & Moser, B. (2019). Smart service engineering (Vol. 83, pp.
384–388). Elsevier B.V.

Komninos, N., Bratsas, C., Kakderi, C., & Tsarchopoulos, P. (2016). Smart city ontologies: Improv-
ing the effectiveness of smart city applications. Journal of Smart Cities, 1(1).

Komninos, N., Panori, A., & Kakderi, C. (2021). The smart city ontology 2.0: Assessing the com-
ponents and interdependencies of city smartness. Publisher: Preprints.

Lim, C., & Maglio, P. P. (2018). Data-driven understanding of smart service systems through text
mining. Service Science, 10(2), 154–180. Publisher: INFORMS.

Maglio, P. P., Vargo, S. L., Caswell, N., & Spohrer, J. (2009). The service system is the basic
abstraction of service science. Information Systems and e-Business Management, 7(4), 395–406.

Suzic, B., Urban, S., Hellwig, M., & Dobler, M. (2022). Smart circular economy value drivers: The
role of the financial sector in stimulating smart regional innovation-driven growth. In S. West,
J. Meierhofer, & U. Mangla (Eds.), Smart services summit (pp. 55–64). Springer International
Publishing.

Wolff, A., Barker, M., Hudson, L., & Seffah, A. (2020). Supporting smart citizens: Design templates
for co-designing data-intensive technologies. Cities, 101, 102695.

	 SSDL: A Domain-Specific Modeling Language for Smart City Services
	1 Introduction
	2 Related work
	3 Smart Service Definition Language
	4 Architecture
	5 Evaluation
	6 Conclusions and Future Work
	References

