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Development of Power Flow Sensitivity Analysis for 
Experimental Data Using Virtual Point Transformation 

Jon Young and Kyle Myers 

Abstract The equations for a power flow sensitivity analysis are developed by means of describing the coupling interface 
between substructures with virtual points. This analysis describes how power flow between source and receiver structures 
changes with respect to modifications made to the real and imaginary components of the receiver impedance; termed the 
real and imaginary sensitivities, respectively. Previously developed power flow sensitivity equations have been applied to 
analytical and numerical models, but assume source and receiver interfaces have identical meshes, and both translational 
and rotational dynamics are accounted for. In an experimental setting, translational dynamics can easily be measured by use 
of accelerometers, but rotational measurements are more difficult to make as an array of accelerometers is often needed. 
However, the equations derived for numerical models are cast onto a domain in which physical and virtual coordinates 
are accounted for, where the virtual coordinates define the coupling interface with three translational and three rotational 
degrees of freedom (DOFs). It is shown that the properties of the real and imaginary sensitivity still hold after this coordinate 
transformation. Finally, retaining internal DOFs, and the need for defining a “synthetic impedance” in the derivation of the 
sensitivity equations, is discussed. 

Keywords Substructuring · Virtual point · Power flow sensitivity 

11.1 Introduction 

For the past several decades, power flow analysis has been used to quantify the vibratory response of structures. It can be 
used to determine energy transmission paths within an assembly of structures and allow for design changes to be made 
to the structure so as to reduce vibration amplitude. Several studies address calculating power flow from experimental 
measurements [1–6] or numerical data output from finite element models [7–12]. However, these studies focus on the 
calculation of power flow, not how it responds to structural modifications. Understanding how power flow changes in 
response to structural modifications is useful in the context of vibration reduction, particularly in an experimental setting 
where frequency response functions (FRFs) can readily be measured. 

Previous analyses have been proposed for calculating the sensitivity of power flow to changes made in the impedance 
matrix of a passive receiver structure [13]. This was done by considering the source and receiver as independent substructures 
that were coupled using the Lagrange multiplier frequency-based substructuring (LMFBS) method and differentiating the 
power flow equation with respect to the receiver impedance. This approach is valid for numerically modeled structures where 
the translational and rotational interface degrees of freedom (DOFs) are fully defined, and the meshes on the two interfaces 
are compatible. In the context of experimental substructuring, where measurement of the rotational DOFs can be difficult, 
they must be obtained using some approximation. The virtual point transformation (VPT) has been a topic of recent research 
in the experimental substructuring community [14–17] and will be used here to extend the general power flow sensitivity 
equations to equations that can be applied to experimental data. 

The VPT accounts for rotational DOFs on the interface of a substructure by using a first-order approximation from 
measured responses using a set of non-collinear triaxial accelerometers placed in the vicinity of the coupling interface 
[14]. The interface dynamics are determined in a least-squares sense by projecting a large number of force and response 
measurements onto a virtual point containing three translational and three rotational DOFs. Larger sets of virtual point 
coordinates can be obtained, such as shear and torsion deformations, so as to relax the condition of assuming a locally rigid 
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interface [18]. The equations presented here are not dependent on the number of virtual point coordinates that are present. 
Rather, the number of measurements required to accurately estimate those coordinates changes while the mathematics 
remains the same. 

A quick summary of the VPT is first presented with its underlying assumptions. The experimental power flow sensitivity 
equations are then derived starting from the virtual point power flow equation. Several assumptions regarding the symmetry 
of the mobility matrices are made, and the ramifications of these assumptions are discussed. Quality indicators relevant to 
the assumptions are then presented, and the validity of the sensitivity equations is demonstrated on a numerical model so as 
to be free of potential experimental measurement errors. 

11.2 Virtual Point Transformation 

A vast literature pertaining to the VPT exists, but its basic properties will be discussed here as they are required for the 
derivation of the experimental power flow sensitivity equations. Defining the interface dynamics of a substructure is difficult 
in an experimental setting because making direct measurements of rotational DOFs is either impractical or impossible. As 
such, FRFs can be measured in the vicinity of the interface of a substructure and projected onto a virtual point containing 
three translational and three rotational DOFs. The measured forces and responses used for constructing the FRF matrix do 
not need to be collocated. That is, the forces and responses do not need to be measured at the same locations or in the same 
directions near the coupling interface. In fact, to accurately model the interface dynamics using the VPT, the interface must 
only be locally rigid, and more than six responses and forces must be measured on the structure. The reason for this becomes 
apparent when looking at the projection from physical to virtual coordinates: 

.u = Ruq + μ (11.1a) 

.m = RT
f f (11.1b) 

where u and f are the physical response and force vectors, q and m are the virtual point responses and forces, Ru and Rf are 
the virtual point response and force projection matrices, and μ is a vector containing information regarding the flexibility 
of the interface. The interface is perfectly rigid when μ = 0. If  Nu responses and Nf forces are measured near the interface 
with a single virtual point containing 6 DOFs, the sizes of Ru and Rf are Nu × 6 and Nf × 6, respectively. So long as Nu 
and Nu are both greater than 6, Eqs. 11.1a and 11.1b can be solved in a least-squares sense. The transpose of the force 
projection matrix is used because the virtual point forces cannot be uniquely defined from an arbitrary set of physical forces. 
Information regarding the structure of these matrices can be found in [14]. Transforming from physical to virtual coordinates 
requires solving Eqs. 11.1a and 11.1b for q and f. Doing so results in 

.q =
(
RT
u Ru

)−1
RT
u u (11.2a) 

.f = Rf

(
RT
f Rf

)−1
m (11.2b) 

where the residual μ is no longer present because it is orthogonal to . RT
u . These matrices only act on the interface DOFs, but 

physical internal DOFs can be retained as well by augmenting the pseudo-inverses with identify matrices equal to the size of 
the number of measured internal responses and forces given by 

.Tu =
[
Iu 0

0
(
RT
u Ru

)−1
RT
u

]
(11.3a) 

.TT
f =

[
If 0

0 Rf
(
RT
f Rf

)−1

]
(11.3b)
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which can now be applied to the experimentally obtained FRF matrices. Since power is most easily calculated with the 
mobility matrix, the FRFs considered in this work are mobilities, and the terms will be used interchangeably. 

Unlike numerical data, the experimental mobility matrix is not guaranteed to be square and symmetric because it is often 
infeasible to measure forces and responses at the same locations on the structure. As such, the rectangular mobility matrix 

.Yexp =
[
Yii Yic

Yci Ycc

]
(11.4) 

is available where the subscripts i and c denote internal and coupling interface DOFs, respectively, Yii and Ycc are not 
required to be square and symmetric, and as a result .Yic �= YT

ci. The coupling interface FRFs can be made square and 
(possibly) symmetric by applying the VPT matrices 

.Y = TuYexpTT
f =

[
Yii Yiv

Yvi Yvv

]
(11.5) 

where the subscript v denotes a quantity pertaining to the virtual point coordinates. The resulting mobility matrix Y is 
still not required to be square and symmetric, but the virtual points enforce displacement compatibility between substructure 
interfaces automatically, and the coupling force can be predicted easily using the LMFBS. The LMFBS method couples FRFs 
obtained from independent structures using their respective interface FRFs. This is achieved by using a Boolean interface 
mapping matrix, which identifies the interface DOFs in the global FRF matrix, and calculates the coupling forces between 
structures explicitly. As only the coupling force is needed for the sensitivity equations, the discussion of the LMFBS will 
conclude here. However, information on this method can be found in [19, 20], and it is recommended the unfamiliar reader 
review these references before continuing. Assuming no external forces are applied to the receiver aside from those imparted 
on it by the source, the coupling force is given by 

.λv =
(
Y(s)
vv + Y(r)

vv

)−1
B(s)
u Y(s)m (11.6) 

where the superscripts (s) and (r) denote source and receiver properties, respectively, and .B(s)
u is a Boolean interface mapping 

matrix that identifies the interface (virtual) DOFs on the source based on measured internal responses. Another interface 
mapping matrix exists for forces. In an arbitrary structure, the response and force interface mapping matrices take the form 

.Bu = [0u ± I] (11.7a) 

.Bf = [
0f ±I

]
(11.7b) 

where I is the identity matrix of size 6Nv for Nv virtual points, 0u and 0f are (in general) rectangular zero matrices where 
the number of columns in each matrix is determined by the number of internally measured responses or forces, respectively. 
The positive and negative identity matrices are required to enforce compatibility at the substructure interfaces. That is, if the 
source interface mapping matrix uses I, then the receiver interface mapping matrix must use −I. 

11.3 Experimental Power Flow Sensitivity 

Using the quantities derived in the previous section, power flow through an interface whose dynamics are defined by a virtual 
point can now be calculated as 

.Q = 1

2
λH
v Y(r)

vvλv (11.8) 

The power flow sensitivity equations are derived by differentiating Eq. 11.8 with respect to the receiver impedance. This 
allows one to determine how power flow from source to receiver will change due to small modifications made to the receiver 
structure. This can be done using the chain rule
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.
∂Q

∂Z̀
(r)

= ∂Q

∂Y(r)
vv

∂Y(r)
vv

∂Z̀
(r)

(11.9a) 

.
∂Q

∂Z̀
(r)H

= ∂Q

∂Y(r)H
vv

∂Y(r)H

vv

∂Z̀
(r)H

(11.9b) 

where .Z̀
(r)

is the receiver impedance. The . ̀◦ notation is used because the actual receiver impedance is not known as it cannot 
be determined by inverting the experimentally determined mobility matrix due to the possibility of non-collocated internal 
DOF measurements Yii. It will be shown that these measurements are not actually needed in the calculation of the sensitivity 
equations, and as a result power is instead differentiated with respect to a “synthetic” impedance where internal FRFs are 
assumed to be collocated. This will become more apparent later in the derivation. First, evaluating the derivatives of power 
with respect to the virtual point mobility and its complex conjugate is done by applying the chain and product rule to Eq. 
11.8. Doing so results in 

.
∂Q

∂Y(r)
vv

= −1

2

(
I − Z(c)

vvY
(r)
vv

)
GT

λvλv
(11.10a) 

.
∂Q

∂Y(r)H
vv

= 1

2
GT

λvλv
Y(r)
vvZ

(c)H
vv (11.10b) 

where .Z(c)
vv =

(
Y(s)
vv + Y(r)

vv

)−1
is the coupling impedance, and .Gλvλv = λvλ

H
v is the one-sided coupling force cross-spectral 

density matrix. Again, it was assumed that the virtual point mobilities were symmetric in this calculation. The task at hand 
now is to calculate the second set of derivatives in Eqs. 11.9a and 11.9b. Doing so requires defining an analytical relationship 
between the interface mobility and global impedance matrix of the receiver. Fortunately, this can be done using 

.Y(r)
vv = B(r)

u Y(r)B(r)T

f (11.11) 

where the structure of the mobility matrix Y(r) is given in Eq. 11.5. The internal mobility Yii matrix has not yet been 
constrained to be square and symmetric, and as a result equating the impedance matrix to be the inverse of the mobility 
matrix cannot be done because the experimental mobility matrix could be singular. However, consider for a moment an 
experimental mobility matrix in which the interface DOFs have been projected onto virtual coordinates, and the internally 
measured FRFs were collocated, making Yii square and symmetric. To distinguish between this hypothetical set of internal 
FRFs and the actual measured ones, the following notation will be adopted: 

.Ỳ
(r) =

[
Ỳ ii Yiv

Yvi Yvv

]
(11.12) 

where . Ỳ ii is set of hypothetically collocated internal FRFs, and due to the assumed symmetry of Yvv, .Yiv = YT
vi. The  

implication of this is that (1) the force and response interface mapping matrices are identical, and (2) the mobility matrix is 
invertible – the receiver impedance matrix mathematically exists. That is, 

.B(r) = B(r)
u = B(r)

f = [
0 ±I

]
(11.13) 

and 

.Z̀
(r) = Ỳ

(r)−1

(11.14) 

is the “synthetic” impedance. From these two statements, Eq. 11.11 can be rewritten as 

.Y(r)
vv = B(r)Z̀

(r)−1

B(r)T (11.15)
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where .Z̀
(r)

exists only in a mathematical sense and is not a matrix that is obtained from experimental measurements. While 
this may seem troublesome at first, it will be shown that the internal mobility matrix does not explicitly appear in the 
sensitivity equations, and are therefore not needed. Now that a relationship between the interface mobility and impedance 
matrix of the receiver exists, differentiation gives 

.
∂Y(r)

vv

∂Z̀
(r)

= −Ỳ ⊗ Ỳ
T

(11.16a) 

.
∂Y(r)H

vv

∂Z̀
(r)H

= −Ỳ
∗ ⊗ Ỳ

H

(11.16b) 

where .Ỳ = B(r)Ỳ
(r) = [

Yvi Yvv
]
, and ⊗ is the Kronecker product. As such, Eqs. 11.16a and 11.16b are fourth-order 

tensors. The hypothetical internal FRF matrix . Ỳ ii is not present in this derivative, and therefore does not actually need to be 
measured experimentally to calculate the power flow sensitivities. The only FRFs that need to be measured are the interface 
mobilities to be projected onto a virtual point, and the mobilities that couple the internal and interface dynamics Yvi. This  
matrix is determined by applying forces to the internal DOFs and measuring the response at the interface. Alternatively, due 
to reciprocity in Eq. 11.12, Yiv can be determined by applying forces to the interface and measuring the response at several 
internal DOFs, and its transpose can be used in place of Yvi. The derivatives of power with respect to the receiver impedance 
are then written as 

.
∂Q

∂Z̀
(r)

= 1

2

(
I − Z(c)

vvY
(r)
vv

)
GT

λvλv

[
Ỳ ⊗ Ỳ

T
]

(11.17a) 

.
∂Q

∂Z̀
(r)H

= −1

2
GT

λvλv
Y(r)
vvZ

(c)
vv

[
Ỳ

∗ ⊗ Ỳ
H

]
(11.17b) 

where the derivatives of Q are given with respect to the synthetic receiver impedance .Z̀
(r)

using the LTI assumption of a 
reciprocal mobility matrix. This means that information about how power flow will change due to modifications made to the 
internal DOFs of the receiver is known, even without measuring the internal mobility matrix directly. All that is needed is 
a set of FRFs from the interface to a desired number of internal DOFs to calculate Eqs. 11.17a and 11.17b. One final step 
is needed to calculate the power flow sensitivities. As is, Eqs. 11.17a and 11.17b are complex valued matrices, which is not 
of much use when trying to determine how the real part of power flow changes with respect to the real (dissipative) and 
imaginary (elastic and inertial) components of the receiver impedance. Additionally, active power (the real component of 
power) is usually of interest because it describes the energy that is moving within the structure. Derivatives relating the real 
component of Q to the real and imaginary components of the receiver impedance can be obtained by applying the properties 
of the Wirtinger derivatives to Eqs. 11.17a and 11.17b [21]. Doing so results in 

.SR = ∂ Re {Q}
∂ Re

{
Z̀

(r)} = Re

{
∂Q

∂Z̀
(r)

}
+ Re

{
∂Q

∂Z̀
(r)H

}
(11.18a) 

.SI = ∂ Re {Q}
∂ Im

{
Z̀

(r)} = − Im

{
∂Q

∂Z̀
(r)

}
+ Im

{
∂Q

∂Z̀
(r)H

}
(11.18b) 

where Re{◦} and Im{◦} denote the real and imaginary components of the argument, respectively. The resulting matrices, 
termed the real and imaginary sensitivities, are both real valued, square, and symmetric. They describe how power flow 
changes with respect to small modifications made to the real and imaginary components of the receiver’s impedance at a 
single DOF (diagonal elements) or the coupling between two DOFs (off-diagonal elements).
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11.4 Quality Indicators 

One quality indicator will be used to determine the accuracy of the VPT. Numerical data is used here to avoid measurement 
error in the projection matrices and FRFs. Since the sensitivity equations assume a symmetric mobility matrix, particularly 
the virtual point partition of the mobility matrix, the first indicator of measurement quality is the coherence function. It is 
defined as 

.χmn = (Ymn + Ynm)
(
Y ∗
mn + Y ∗

nm

)

2
(
YmnY ∗

mn + YnmY ∗
nm

) (11.19) 

which compares how similar the FRFs Ymn and Ynm are. It outputs a real valued number χmn between 0 and 1, with 0 
indicating the two FRFs are dissimilar, and 1 indicating the two FRFs are identical. The diagonal elements of the matrix are 
guaranteed to have a value of 1. A Hermitian matrix, for example, would be the identity matrix. If the matrix of FRFs is 
symmetric, the resulting coherence matrix would be a matrix containing all ones. 

Another quality indicator to describe how well the VPT estimates the interface dynamics is passivity. Since a mobility 
matrix is being used in the sensitivity equations, the phase of the drive-point FRFs should be between ±90◦. This indicator 
is used to verify that the structure does not generate its own energy. Other quality indicators exist, such as force and response 
consistency, which describe the rigidity of the coupling interface. While it is important to calculate these quantities to ensure 
the VPT is a valid coupling procedure in a specific frequency range, it will not be further discussed here. The reason for 
this is because it has been verified in a previous study that the model considered in the case study presented here has a 
consistency of 1 over the entire frequency range tested and was verified by the authors to be passive [22]. More information 
on this quality indicator can be found in [14, 15]. 

11.5 Case Study: Complex Conjugate Impedance 

To demonstrate that the virtual point sensitivity equations are valid, and do in fact calculate the rate of change of power flow 
with respect to the receiver impedance, a source structure coupled to a receiver whose impedance is complex conjugate to 
that of the source is considered. This example was chosen because it is known that power flow is maximized when a source 
is connected to its complex conjugate [23] – the quantity being aptly named the maximum available power (MAP) in the 
literature. Therefore, given that SR and SI are derivatives of power with respect to the receiver impedance, both should be 
equal to the zero matrix at all frequencies when the receiver impedance is the complex conjugate of the source impedance. A 
simple beam structure is considered with one coupling interface, requiring a single virtual point, shown in Fig. 11.1. Several 
FRFs from the virtual point to internal DOFs are shown as well. 

Fig. 11.1 Virtual point location and measurement locations for constructing . Ỳ using internal force and response measurements, resulting in 
interface mapping matrices Bf and Bu, respectively
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Fig. 11.2 Applied forces and measured responses on interface of beam structure for (a) non-collocated force and response measurements and (b) 
collocated force and response measurements 

Figure 11.1 provides a visual intuition of how the matrix . Ỳ can be obtained based on internally measured forces or 
responses. The purpose of including internal DOFs in the analysis is to provide information to the analyst regarding which 
locations on the structure, specifically those away from the interface, to modify in an effort to reduce power flow. These 
internal DOFs can be measured by means of forces or responses, as all that is needed for the sensitivity equations are 
the transfer mobilities from the virtual point to the desired internal DOFs. Practically speaking, if the sensitivity at a few 
locations internal to the structure is of interest, measuring the response at these internal locations with accelerometers due 
to excitations at the interface is a feasible task. When a higher spatial resolution of the sensitivity on the internal DOFs is 
desired, it becomes more practical to apply forces to the DOFs of interest and measure the response at the interface. 

Analysis was performed over the range of 60–1600 Hz. The beam being analyzed was made out of aluminum with a 
modulus of elasticity of 69 GPa, density of 2700 kg/m3, and Poisson’s ratio of 0.33. It had a nominal length of 38.1 cm 
(15 in.), width of 3.81 cm (1.5 in.), and thickness of 1.9 cm (0.75 in.). The base of the beam was flanged to allow for it to be 
bolted to another structure. The depth of this flange was 3.81 cm with a thickness of 1.9 cm, and there was a bolt hole at the 
center with a diameter of 1.33 cm. This is where the virtual point was located for substructure coupling. These dimensions 
provided sufficient stiffness in the vicinity of the coupling interface (flange) to yield a consistency of 1 over the frequency 
range of interest. 

This example is not physical as coupling a source to its complex conjugate is not realizable. However, it does serve to 
demonstrate that Eqs. 11.17a and 11.17b are the analytical derivatives of power flow with respect to the receiver impedance, 
as well as the fact that they are indifferent to using internal force or response measurements. Additionally, the assumption of 
a reciprocal virtual point mobility, and its effect on the resulting sensitivities, can be examined through this demonstration. 
This was done by projecting FRFs obtained from a numerical model onto the virtual point in two ways. The first is 
more representative of an experimental setup, in which the forces applied and responses measured on the interface are 
not collocated – the forces and responses are not measured at the same location. The second guarantees symmetry of the 
virtual point mobility matrix by collocating for forces and responses on the interface, resulting in identical transformation 
matrices Tu and Tf. Non-collocated virtual point interface force and response measurements are shown in Fig. 11.2a, and 
collocated interface measurements are shown in Fig. 11.2b. 

11.6 Results 

The symmetry of the virtual point mobility for non-collocated and collocated interface measurements is first compared as the 
symmetry will affect the resulting calculation of power flow sensitivity. The frequency-averaged coherence of .Y(r)

vv is shown 
in Fig. 11.3. It is clear from the low coherence on the off-diagonal terms that the virtual point interface mobility matrix is 
not symmetric over most of the frequency range. In other words, the virtual point does not behave reciprocally as would a 
node in a typical linear finite element model. Based on the data shown in Fig. 11.3a, applying a force in the x direction and 
measuring the velocity in the θx direction is not the same applying a force in the θx direction and measuring the velocity 
in the x direction. This is an issue particularly when substituting these results into Eqs. 11.17a and 11.17b because of the
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symmetry that was assumed in deriving the equations. Symmetry of the virtual point mobility is preserved for the collocated 
interface measurements, which is indicated by a coherence of 1 for all FRFs. 

Now that it is known that the non-collocated interface measurements result in an asymmetric virtual point mobility, a 
comparison between the calculated power flow and its corresponding sensitivities is shown in Fig. 11.4. More specifically, 
the sensitivity of the z component of the virtual point mobility matrix is shown. This value describes how power flow would 
respond to the changes made to the receiver impedance in the vicinity of the coupling interface in the z direction. Knowing 
that the values of SR and SI should be zero for all frequencies in this coupling configuration, there is clearly an issue with 
the sensitivity calculated from the non-collocated interface measurements. At 60 Hz, the magnitude of the real sensitivity is 
on the order of 102 and the imaginary sensitivity is on the order of 103. As frequency increases, the values of the sensitivities 
decrease, but only to a magnitude of approximately 10−7. Lastly, there is a discrepancy between the predictions in the real 
and imaginary sensitivities using internal response and internal force measurements. This again is due to the asymmetry in 
the virtual point mobility matrix. 

The collocated interface measurements result in a real and imaginary sensitivity that are much smaller than the ones 
predicted from the non-collocated measurements. At 60 Hz, the values of the real and imaginary sensitivities are on the order 
of 10−13 and 10−9, respectively – much closer to zero than for the non-collocated measurements. Numerically, given that the 

Fig. 11.3 Frequency-averaged coherence of virtual point mobility .Y
(s)
vv for (a) non-collocated force and response measurements and (b) collocated 

force and response measurements 

Fig. 11.4 Power flow and real and imaginary sensitivities of z coordinate of virtual point with different sets of internal DOFs for (a) non-collocated 
force and response measurements, and (b) collocated force and response measurements
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Fig. 11.5 Power flow for non-collocated and collocated interface measurements for coupling case when . Z̀
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sensitivities represent the rate of change in power flow with respect to the real and imaginary impedances, these magnitudes 
are essentially zero, thus verifying Eqs. 11.17a and 11.17b are the analytical derivatives of power with respect to the receiver 
impedance. The sensitivities calculated using internal responses and internal forces are approximately identical, though given 
how close to machine precision the values are it is difficult to compare the two quantities. The spectrum appears noisy due 
to the small magnitude of the real and imaginary sensitivities. One interesting feature that appears is the apparent resonance 
at 600 Hz. This coincides with a natural frequency of the source structure when it is uncoupled from any receiver. 

One final observation from Fig. 11.4 is that power flow appears to be unaffected by the asymmetry in the virtual point 
mobility matrix as the frequency dependence of power flow is identical for the non-collocated and collocated interface 
measurement cases. This is most likely due to the type of coupling considered, where the receiver impedance is complex 
conjugate that of the source. The resulting coupling interface impedance .Z(c)

vv is purely real and does not display resonant 
behavior as a function of frequency. If a different coupling case were considered, for example, when the receiver impedance 
is equal to that of the source, the power flow spectrum for the non-collocated and collocated interface measurements should 
be different. This is shown in Fig. 11.5. 

There are some clear discrepancies between power flow calculated with non-collocated and collocated interface 
measurements when performing the VPT. Capturing resonant frequencies does not appear to be an issue. This is expected 
as the imaginary component of impedance is fairly small here and the real component dominates similar to what happens 
when calculating the MAP in Fig. 11.4. The most notable differences in the spectra occur around 200 Hz and 1100 Hz. At 
200 Hz, the non-collocated interface measurements dictate that power flow will be negative. This is physically impossible 
as the interface mobility matrix should be positive semi-definite. At 1100 Hz, the non-collocated VPT appears to create an 
additional resonant frequency of the assembled structures. This is important to note as power flow is also heavily dependent 
on the symmetry of the virtual point mobility matrix. Given that there are more matrix multiplication operations in the 
sensitivity equations, any deviations from a symmetric interface mobility matrix will be further amplified in the calculation 
of the real and imaginary sensitivities. As is, more research should be done on how to obtain a more symmetric interface 
mobility matrix so power flow, and the real and imaginary sensitivities, can be more accurately calculated for experimentally 
obtained mobility data. 

11.7 Conclusion 

The analytical derivatives of complex power flow from source to passive receiver were derived for experimental data using 
the VPT to model the dynamics of the coupling interface between substructures. It was shown that the power flow sensitivity 
can be calculated at internal DOFs using either internally measured forces or responses under the assumption that the receiver 
mobility matrix is symmetric, without actually measuring the full mobility matrix. This creates a “synthetic” impedances, 
whose power flow is differentiated with respect to. The equations were tested on a beam structure such that the source was
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coupled to a receiver whose impedance was the complex conjugate of the source’s. Due to maximum power flow occurring 
in this coupling configuration, the real and imaginary sensitivities were verified to be zero. However, both power flow and 
the sensitivities were shown to be dependent on the symmetric mobility assumption as an asymmetric virtual point mobility 
matrix can lead to spurious resonances in the power flow response and lead to further errors in the calculation of the real 
and imaginary sensitivities. Future work should apply these equations to experimental data and focus on finding methods to 
obtain a more symmetric virtual point mobility matrix. 
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