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Abstract

Traditionally, machine learning and artificial
intelligence focus on problems of diagnosis or
prognosis. Answering questions on whether a
patient might have a certain disease (diagno-
sis) or is at risk of future disease (prognosis).
In addition to these problems, one might be
interested in identifying causal factors which
can provide information on how to change
disease onset or disease progression. In this
chapter we introduce the potential outcomes
framework, which provides a structuredway of
conceptualizing questions on causality. Using
this framework we discuss how randomized
and non-randomized experiments can be con-
ducted, and analyzed, to obtain estimates of the
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1 Causal Effects and Potential
Outcomes

Researchers often conclude that a factor X is asso-
ciated (or correlated) with an outcome Y . How-
ever, it may be of interest to be able to con-
clude that factor X causes outcome Y. Causal
inference methods aim to answer questions such
as: Do Covid masking restrictions reduce coron-
avirus rates? Does chemotherapy plus radiother-
apy increase survival in women with endometrial
cancer? Does physical therapy prevent back pain
after surgery? Commonly used analytic designs
and approaches may only allow one to conclude
that these interventions aremerely associatedwith
the outcomes. For example, say a study con-
cludes that prostatectomy (surgery to remove the
prostate) is associated with increased survival
among men over the age of 65 with stage III
prostate cancer. One interpretation would be that
elderly men who received a prostatectomy tended
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to have longer survival compared to elderly men
who did not receive a prostatectomy. On the other
hand, say a study concludes that tacrolimus (a skin
ointment) causes a reduction in skin inflammation
in patientswith atopic dermatitis. A possible inter-
pretation here would be that tacrolimus, if hypo-
thetically applied to the entire patient population,
results in a lower overall skin inflammation rate in
this patient population as compared to the hypo-
thetical setting inwhich no tacrolimuswas admin-
istered. In the former example, we are making a
comparison of outcomes on the basis of treatment
actually received. In the latter example, we are
making a comparison of two hypothetical scenar-
ios, i.e., the entire population either taking or not
taking the treatment. The latter example is what is
called a causal effect and is the focus of the field
of causal inference [1, 2].

Of note, whether association or causation is
of importance is fully dependent on the research
question at hand. For instance, in cardiovascular
research, there is an interest in investigating gen-
der differences in the occurrence of cardiovascular
disease.Thismayhave apartial causal explanation
or may reflect historical and societal disparities
in cardiovascular care between genders. Regard-
less, having knowledge on the association of gen-
der and disease outcomes can help with clinical
aspects of preventive care, diagnosis, and prog-
nosis irrespective of causality. Many researchers
feel that causal claims can only be made when the
exposure of interest can be intervened upon (e.g.
dosage of a medication) rather than inherent char-
acteristics such as race or gender. For example,
there is an ongoing discussion on whether one can
consider race to be a cause since it is not manipu-
lable [3].

Formal causal theory and methods are needed
in order to obtain a causal interpretation. Let’s first
consider a simple linear regression model:

Y = β0 + β1X + ε; ε
i id∼ N (0, σ 2)

In this model, we often interpret β1 by saying
“a one unit increase in X is expected to lead to
an increase in Y of β1 units”. In reality, we sim-
ply observe some people with X = x and other

people with X = x ′. Often we do not observe a
change from x to x ′ in any single person. This
then leads to the problem of how to infer causal-
ity. In order to define causal effects of interest there
are two important components we must spec-
ify: (1) a model for the observed data and (2)
causal assumptions (which we define in the next
section). Causal assumptions are the link between
our observed data and causal effects of interest;
however, they are often not verifiable.

Here, we introduce the potential outcomes
(counterfactual) framework first described by
Rubin [4, 5] in order to aid in defining causal
effects. We start with common notation. First,
let A denote intervention. This can be defined
as anything from a medical treatment, policy
intervention, or exposure. Note that capital A is
a random variable and lowercase a refers to a
particular realization of the random variable A.
For example, we can say A = 1 if a flu vaccine
is received and A = 0 otherwise. Ai refers to
the treatment status of subject i . Next, we let
Y denote an outcome of interest which could
be continuous (e.g. cholesterol levels), discrete
(e.g. cancer remission or not), time to event (e.g.
survival), or multidimensional (e.g. longitudinal
measures of a biomarker). For example, we can
say Y = 1 if you experience a recurrence of breast
cancer within 5 years and Y = 0 otherwise.

We can think of potential outcomes as the out-
comes we would see under each possible treat-
ment option. For now, we consider the simplest
scenario where treatments take place at one point
in time; later in the chapter we address treatments
over time. Here, Ya is the outcome that would
be observed if treatment was set to A = a. Each
person has potential outcomes {Ya; a ∈ A}. For
instance when the treatment is binary, Y 0 is the
outcome if treated and Y 1 is the outcome if not
treated.

Let’s look at an example where the outcome is
time to event. If treatment is influenza vaccine and
the outcome is the time until the individual gets
the flu, we would use the following notation:

Y 1: time until the individual would get the flu
if they received the flu vaccine,
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Y 0: time until the individual would get the flu
if they did not receive the flu vaccine.

A second example, where the outcome is
binary, is as follows. If treatment is local (A = 1)
versus general (A = 0) anesthesia for hip fracture
surgery and the outcome (Y) is major pulmonary
complications we would use the notation:

Y 1: equal to 1 if major pulmonary complica-
tions and equal to 0 otherwise, if given local
anesthesia,
Y 0: equal to 1 if major pulmonary complica-
tions and equal to 0 otherwise, if given general
anesthesia.

Now, the observed outcome Y is the outcome
under the treatment that a subject actually
receives; that is, Y = Y A. In most studies,
where participants receive either an intervention
treatment or a comparator treatment, for a single
subject one can only observe Y 1 or Y 0, and the
outcome under the complimentary treatment
can be thought of as missing. Counterfactual
outcomes are ones that would have been observed
had the treatment been different. If a person’s
treatment was A = 1, then their counterfactual
outcome is Y 0. If that person’s treatment was
A = 0, then their counterfactual outcome is Y 1.

Let’s look at the influenza example again to
understand counterfactual outcomes. The causal
question we ask is “Did influenza vaccine pre-
vent me from getting the flu?”.What actually hap-
pened:

1. I got the vaccine and did not get sick.
2. My actual exposure was A = 1.
3. My observed outcome was Y = Y 1.

Whatwould have happened (contrary to fact) had I
not gotten the vaccine?Would I have gotten sick?

1. My counterfactual exposure is A = 0.
2. My counterfactual outcome is Y 0.

Before the treatment decision is made, any out-
come is a potential outcome: Y 0 and Y 1. After
the study, there is an observed outcome, Y = Y A,

and counterfactual outcomes Y 1−A. Counterfac-
tual outcomes Y 0,Y 1 are typically assumed to
be the same as potential outcomes Y 0,Y 1. Thus,
these terms are often used interchangeably.

Note that so farwehave implicitly assumed that
the treatment given to one subject does not affect
the outcome for another subject, i.e., Y

ai ,a j
i =

Y
ai ,a′

j
i . In other words, they are independent. If

this assumption holds, we can simply write the
potential outcome for subject i as only dependent
on ai (one index). However, in many situations,
this assumption could be violated such as in the
setting of infectious disease. For instance, vacci-
nating one person in a householdmight reduce risk
of disease among others in the household. This is
known as interference.

Now that we have defined potential outcomes,
we can formally define causal effects. In general,
we say that A has a causal effect on Y if Y 1 differs
fromY 0. For example, let’s sayA iswhether or not
you take a coldmedication (A=1you take it, A=0
you don’t) andY is that your sore throat goes away
after an hour (Y = 1 it goes away, Y = 0 it doesn’t).
Clearly, the statement “I took the cold medicine
and my sore throat is gone, therefore the medicine
worked” is not proper causal reasoning. This claim
is equivalent to Y 1 = 1. But what would have hap-
pened had you not taken the medicine (Y 0 =)?
There is only a causal effect if Y 1 �= Y 0. This
bring us to the “fundamental problem of causal
inference” which stems from the issue that we can
only observe one potential outcome for each per-
son. However, with certain assumptions, we can
estimate population level (average) causal effect
which we will focus on next. In other words, it is
possible to answer: What would the rate of sore
throat cure be if everyone took the cold medicine
versus if no one did?However,without very strong
assumptions, we cannot identify individual causal
effects that would allow us to answer:What would
have happened to me if I had not taken the cold
medicine?

Let’s first consider individual causal effects.
Consider a simple case of binary treatment (A =
1 if treated) and a binary outcome (Y = 1 if
died). There are four types of individual causal
effects [6].
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Causal type Y 0 Y 1 δ = Y 1 − Y 0

Treatment fatal 0 1 1
Always live 0 0 0
Always die 1 1 0
Treatment curative 1 0 −1

Now, let’s supposewe have a randomized study
(A is randomized) with n participants and there is
perfect compliance (all of the study participants
adhere to the treatment they are randomized to).
In this study, we never observe Y 0 and Y 1 for
any individual. Instead, we have a random sample
of Y 1’s and a random sample of Y 0’s. We can-
not identify δ for any individual. However, we
can identify the marginal probabilities P(Y 1 = 1)
and P(Y 0 = 1). Importantly, We can also identify
E(δ).

Consider an example where we know that
P(Y 1 = 1) = 0.1 and P(Y 0 = 1) = 0.2. In this
example, the treatment reduces risk on average
by 0.1. We can first write out these marginal
probabilities in terms of joint probabilities:

P(Y 1 = 1) = P(Y 1 = 1, Y 0 = 1) + P(Y 1 = 1, Y 0 = 0),

P(Y 0 = 1) = P(Y 1 = 1, Y 0 = 1) + P(Y 1 = 0, Y 0 = 1).

We can then write out three examples of the
potential outcomes distributions that are consis-
tent with the observed data as follows:

Causal type Ex1 Ex2 Ex3
Treatment fatal 0 0.05 0.1
Always live 0.8 0.75 0.7
Always die 0.1 0.05 0
Treatment curative 0.1 0.15 0.2

So, for instance, in Ex 1:

P(Y 1 = 1) = P(Y 1 = 1, Y 0 = 1)

+ P(Y 1 = 1, Y 0 = 0)

= 0.1(always die)

+ 0(treatment fatal) = 0.1,

P(Y 0 = 1) = P(Y 1 = 1, Y 0 = 1)

+ P(Y 1 = 0, Y 0 = 1)

= 0.1(always die)

+ 0.10 (treatment is curative) = 0.2.

The average causal effect (ACE) is one of the
most common causal targets of inference used to
compare treatments/exposures. The ACE is given
by E(Y 1 − Y 0). This is the average outcome if
everyone had been treated versus if no one had
been treated; Fig. 1. Importantly, this is typically
not equal to E(Y |A = 1) − E(Y |A = 0) which is
the average outcome in those who were treated
versus the average outcome in those who were not
treated; Fig. 2. Specifically, in non-randomized
studies, patients who receive a treatment (say
surgery) may be very different than those who do
not. For instance, thosewho are deemedfit towith-
stand surgery may be younger, more healthy, and
are less likely to smoke than those who are chosen
not to receive surgery.

Fig. 1 The average causal effect

Fig. 2 Effect of a treatment in the real world
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In addition to the ACE, E(Y 1 − Y 0), other
causal estimands of interest may include the
causal risk ratio, E(Y 1)/E(Y 0), the average
causal effect among a subgroup defined by
V, E(Y 1 − Y 0|V = v), and the average treat-
ment effect among the treated (ATT) given by
E(Y 1 − Y 0|A = 1) [2]. The ATT, for instance,
is a useful estimand when there is interest in
the effect of an intervention (say, a treatment
of hypertension) on those who received the
intervention.

2 Necessary Conditions
for Causality

2.1 Randomized Studies
with Perfect Compliance

In Sect. 1, we formulated causal effects in terms of
potential outcomes. Since potential outcomes are
not fully observed we need tomake some assump-
tions in order to be able to estimate (or identify)
causal estimands of interest from the observed
data. These are called identifying assumptions.
Let’s first consider a randomized study where
there is perfect compliance. In other words, if R is
the randomization indicator and A is an indicator
of the treatment that is actually taken, then if there
is perfect compliance in the trial, R = A. We will
again consider the potential outcomes Y 0 and Y 1.
In randomized trial with full compliance, clearly
R is independent of the potential outcomes Y 0 and
Y 1. We can express this independence in two dif-
ferent ways using the concepts of ignorability and
exchangeability [6].

Ignorability is stated as P(R = 1|Y 0,Y 1) =
P(R = 1). In other words, treatment assignment
does not depend on the potential outcomes. Say
treatment assignment depends on the flip of a
coin. Clearly the flip of the coin does not depend
on the potential outcomes. Now, if everyone has
some non-zero chance of being randomized to the
treatment arm, we achieve strong ignorability.
This assumption that 0 < P(R = 1) < 1 is called
positivity and in this case refers to the fact that we
have experimental treatment assignment. Another
way to express independence is the concept of

exchangeability. We can state exchangeability
as f (Y 0,Y 1|R = 1) = f (Y 0,Y 1|R = 0) =
f (Y 0,Y 1) (where f is the distribution of the
potential outcomes). In other words, subjects
randomized to R = 1 or R = 0 are representative
of all subjects with respect to the potential
outcomes. They are exchangeable.

Exchangeability implies that f (Y 1) =
f (Y 1|R = 1) = f (Y |R = 1) and f (Y 0) =
f (Y 0|R = 0) = f (Y |R = 0). What we mean
by this is that in a randomized trial with perfect
compliance, the observed data (the observed
outcome Y and the randomization indicator
R) are enough to identify the distributions of
the potential outcomes, allowing us to estimate
causal effects.

Often exchangeability is denoted simply as
Ya �

A, which can be generalized to include con-
ditional exchangeability Ya �

A|L , for covariate
L .

2.2 Observational Studies

Randomization allows us to assume, on aver-
age, that subjects in different treatment arms are
similar to each other on all important factors,
whether those factors are measured or not; see
Sect. 3. In observational studies, the treatment,
intervention or exposure is not controlled by the
investigator and by definition is not randomized;
although quasi-experiments may naturally occur
[7]. Hence, subjects in the treatment group may
look very different from those in the compari-
son group. For instance, men receiving surgery for
prostrate cancermay be younger, more likely to be
a nonsmoker, and have fewer comorbidities than
men who do not receive surgery. The decision,
made between the patient and physician, may be
based in part by howwell the patient is expected to
tolerate the surgery. Without accounting for these
differences in patient characteristics, the surgery
group’s survival after surgery may look better
than the control group’s merely because they were
healthier to begin with. As mentioned before, fac-
tors that affect both the treatment decision and the
outcome are called confounders.
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Confounding is an important issue that must be
addressed in the causal analysis of observational
studies. Note that there may also be confound-
ing in randomized trials where there is noncom-
pliance (i.e., R �= A) due to the fact that patients
who do not comply with their treatment assign-
ment maybe be different than those who stay on
their assigned treatment and those factors may be
related to their outcome. This is why RCTs typi-
cally do not directly assess treatment effects, but
instead estimate the “Intention to Treat” effect;
see Sect. 3. If confounders are measured, without
meaningful error, we can use standard adjustment
methods to control for confounding such as strati-
fication on the confounder, regression adjustment
or propensity score methods. Let L be a set of
baseline (pre-treatment) covariates. Ignorability
in this context means that there is no unmeasured
confounding. In other words, if we condition on
L , we can control for confounding (there’s no hid-
den bias). If there is no unmeasured confounding,
then if we, say, stratify on these covariates, within
those strata, we would essentially have a random-
ized trial. Hence, ignorability can be thought of
as conditional randomization where A is indepen-
dent of the potential outcomes (Y 0, Y 1) given L .

Let’s consider an example where treatment
assignment depends on the potential outcomes
where sicker patients are more likely to be
treated. Hence, treated patients have a higher risk
of a bad outcome. We need to account for these
pre-treatment differences in health. Suppose L
are measures of health such as family history
of disease, age, weight, smoking status, alcohol,
comorbidities, etc. Then within levels of L (i.e.,
people of the same age, with same co-morbid
conditions, of same weight, with same smoking
status, etc.), we hope that less healthy patients
are not more likely to get treatment. This is the
ignorability assumption.

The ignorability setting is comprised of the fol-
lowing three causal assumptions:

• (Condtional) exchangeability: treatment is as
if randomized conditional on covariates (e.g.
within covariate strata).

• Positivity: treatment is not assigned in a
deterministic fashion (all subjects have a

non-zero probability of being assigned to
treatment regardless of their covariates). This
can be violated when certain treatments are
simply unavailable. For example, depending
on the urgency, general anesthesia may be the
only option available for women undergoing
Cesarean section.

• Consistency: the potential outcomes are
uniquely defined by each subject’s own treat-
ment level. This can be violated in situations
such as a vaccine trial where one subject’s
vaccination status can affect another subject’s
potential outcomes. Other examples include
poorly defined exposures such changes in
BMI which may be occur due to causes such
as diet, physical activity or disease.

These identifying assumptions allow us to esti-
mate causal effects directly from the observed data
Y, A, L .

3 Randomized Controlled Trials
and Estimands of Treatment
Effect

In the preceding sections we established a
formal definition of causality, and discussed
the necessary conditions to interpret a mea-
sure of association as an estimate of a causal
effect.

Historically, discussions on causality have
focused on choices in study design, or exper-
iments, where randomized controlled trials
(RCTs) remain the unequivocal paradigm. The
developed mathematical framework allows
for a more detailed discussion of why RCTs
provide such a robust design to assess causality.
Developing the necessary algebra to describe
trial inference is important because it allows us to
consider what additional step (analytical or design
wise) are required to explore causality in non-
randomized (i.e., observational) study designs.
Before discussing these analytical methods, we
will therefore first further introduce RCTs and
touch upon some of the different estimands used
in practice (i.e., the type of effect one attempts to
estimate).
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3.1 Why Association Does Not Imply
Causation

Some key features of RCTs include (1) the pres-
ence of contemporary intervention and control
groups, (2) random allocation of subjects to these
groups, and (3) blinding of participants (and often
the treating medical professionals) to the group
allocations.

If we strip away these three features we are left
with a single arm study of subjects who received
an intervention. For example the left-panel in
Fig. 3 illustrates the results of a hypothetical
study assessing the concentration of low-density
lipoprotein cholsterol (LDL-C) before (T = 1)
and after (T = 1) subjects were offered treatment
with PCSK9monoclonal antibodies (mAb, a lipid
lowering drug [8]). A single arm study would
exclusively consider the treated group (A = 1).
In contrast a “parallel group” design would also
consider measurements in participants who did
not (decide to) receive treatment (A = 0).

An obvious aim would be to attempt to quan-
tify by how much taking PCSK9 mAb decreases
LDL-C concentrations compared to not taking
PCSK9mAb over the same period of time. A rele-
vant estimand would be the average causal effect:
E(Y 0 − Y 1) = α.

A naive estimate of the treatment lowering
effect of PCSK9 mAb would be to use the single
arm study and simply take the difference in
post- and pre-treatment LDL-C concentrations:
E(Y |A = 1, T = 1) − E(Y |A = 1, T = 0).
Given that this is a hypothetical example we can
also look at the otherwise unknown counterfactual
pre- and post-treatment LDL-C concentrations,
to clearly see that E(Y |A = 1, T = 1) −
E(Y |A = 1, T = 0) �= E(Y 0 − Y 1). Here we
reiterate that by the exchangability assumption
E(Y 0 − Y 1) = E(Y 1,t=1 − Y 1,t=0), meaning
that under exchangbility T is ignorable.

As is clear fromFig. 3 the difference in pre- and
post-treatment LDL-C concentrations (in treated
subjects) does not match the counterfactual differ-
ence. In practice this can be caused by a myriad of
reasons, often closely linked to the study design
and participant sample. In general, one would
expect post-treatment concentrations to decrease

whenever treatment initiation is (partially) based
on a biomarker measurement being elevated (e.g.,
hypercholesterolemia). Measurements are always
subject to (small) random fluctuations, as such the
high value necessary to initiate treatment most
likely reflects a degree of random upwards vari-
ation, which is unlikely to be of the same mag-
nitude in subsequent measurements, hence result-
ing in a decrease. This well known phenomenon
is often referred to as ”regression to the mean”
[13]. Furthermore, depending on the diagnosis it
is not uncommon for a clinician to initiate multi-
ple interventions at the same time. In our exam-
ple, typically a prescription of lipid lowering ther-
apy would coincide with (referral for) life-style
counseling. Similarly, the simple act of prescrib-
ing a drug, will incentivse some patients to self-
initiate life-style changes (e.g., start exercising
more) which will (on average) decrease LDL-C
independent of any effect of PCSK9 mAb.

Clearly a single arm study, comparing pre-
and post-treatment LDL-C concentrations, will
unlikely provide a good estimate of the causal
effect of PCSK9 mAb lowering. Instead we could
consider conducting a cohort study of contempo-
rary participants initiating PCSK9mAb (the treat-
ment group), compared to a control group of par-
ticipants who do not receive any treatment; Fig. 3.
Assuming for the moment that the control group
participants were “blinded” from the fact they did
not receive any treatment, the difference inLDL-C
concentration of the control group participants is
identical to that of the counterfactual (i.e, compar-
ing measurements at T = 0 to T = 1). However,
because treatment was not initiated at random, we
see that the control group measurements are sub-
stantially lower than that of the counterfactual;
simply reflecting that medical professionals treat
patients at risk. As such, despite having a control
group, the difference between the treatment and
control group will not equal our inferential target.

3.2 Treatment Estimands in Trials

While by itself inclusion of a control group does
not typically result in a causal effect estimate
of our inferential target E(Y 0 − Y 1) = α, it
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Fig. 3 Causal contrasts
in a study evaluating
changes in LDL-C
concentration. The
left-panel represents a
possible non-randomized
study, and the right-panel a
possible scenario for a
randomized study. Notice
that the x-axis values are
slightly dodged to help
identify overlapping points
and lines
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does provide a suggestion how we could further
improve our study – we could randomize treat-
ment assignment! The right-panel of Fig. 3 illus-
trates this, showing agreement between the control
groupmeasurements and the counterfactual LDL-
C measurements. In this setting we will have that
E(Y |A = 1, T = 1) − E(Y |A = 0, T = 1) =
E(Y 0 − Y 1), implying that stringently designed
RCTs provide relevant causal estimates.

If we simply focus on time T = 1 the above
estimator E(Y |A = 1) − E(Y |A = 0) is often
referred to as the “as-treated” (AT) estimator.
Interestingly, and contrary to the above deriva-
tions, the AT estimator is considered to be a
biased estimator. To see why, we will move a
way from the hypothetical trial with perfect com-
pliance (see Sect. 2.1), and expand our example
to differentiate between treatment allocation Z ,
and the actual treatment taken A. To illustrate the
difference, note that adherence is defined as

P(A = 1|Z = 1) − P(A = 1|Z = 0) = φ

where values close to 1 indicate subjects generally
took the allocated treatment, and smaller values
indicate non-adherence to treatment allocation.

In the previous subsection we thus made the
implicit and unrealistic, assumption of complete
adherence. Worse, as shown in Fig. 4, in the pres-
ence of non-adherence the association between A
and Y will be subject to confounding by common
cause(s) L , violating the exchangeability assump-
tion: Ya � �

A. Hence, in the presence of non-
adherence, the AT-estimator will never equal the
true causal treatment effect unless we are willing

to assume there are no L at all. We could of course
decide to condition on L and create a conditional
AT-estimator, however knowledge of L is typi-
cally incomplete and above all it would be difficult
to determine when such conditioning sufficiently
addressed confounding - defeating the purpose of
a trial: balancing on known as well as unknown
confounders.

Z A Y

L

Fig.4 Adirected acyclic graph representation of a ran-
domized control trial. Here Z represent treatment alloca-
tion, X treatment itself, Y the primary outcome, L mea-
sured and unmeasured common causes of X and Y . The
directed paths (i.e., arrows) represents a cause and effect
relation of unspecified magnitude which may also include
zero (i.e., when there is no path)

Due to the frailty of associating Awith Y , trials
commonly forgo this estimand entirely and per-
form an “intention to treat” (ITT) analysis, with
estimator

E(Y |Z = 1) − E(Y |Z = 0) = αφ + τ.
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Here α is the effect treatment allocation has on
the outcome mediated through A. Additionally τ

represents the possibility that treatment allocation
may affect the outcome indirectly, sidestepping A.
For example, subjects allocated to the untreated
group may decide to exercise more. Inclusion of
τ �= 0 is of course problematic because the ITT
estimator no longer solely evaluates effects medi-
ated throughA, and a trial may incorrectly suggest
treatment is beneficial.

By defining the ITT estimator as the sum of
the true causal treatment effect (α) multiplied by
adherence (φ) and the direct effect (τ ) of treat-
ment allocation, we can finally comment on the
relevance of blinding in trial design. Blinding trial
participant and staff, to knowledge of the allocated
treatment ensures that, on average, enrolled sub-
jects behave the same-way irrespective of Z , and
thus that we can assume τ = 0. The results of this
is that E(Y |Z = 1) − E(Y |Z = 0) �= 0 implies
that α �= 0, irrespective of treatment adherence.
In many ways randomization and blinding are
complementary strategies to ensure participant
groups are (on average) similar at baseline (ran-
domization) and behave similar during follow-up
(blinding).

Assuming blinding and randomization were
conducted adequately the ITT estimator thus
equals α only if participants completely adhered
to treatment allocations. In all other settings
the ITT estimator is a biased estimator of the
causal treatment effect and will not equal α.
The ITT estimator is thus a flawed estimator.
Nevertheless, it does have desirable properties,
1) when sufficiently blinded the ITT estimator
will (on average) be zero whenever α = 0, and
therefore 2) it often provides a robust indicator
of effect direction (i.e., whether treatment is
beneficial or not).

While the ITT estimator does not in general
provide an estimate of our inferential target α, we
canhowever use it to performan instrumental vari-
able (IV) analysis, which assuming τ = 0, will on
average equal our inferential target:

E(Y |Z = 1) − E(Y |Z = 0)

P(X = 1|Z = 1) − P(X = 1|Z = 0)
= αφ

φ
,

= α.

This IV estimator essentially corrects the ITT
estimate for the amount of non-adherence, and in
doing so obtains an estimate of α = E(Y 1 − Y 0).
Of course all this is under the assumption the trial
has been appropriately randomized and blinded,
which we can elegantly frame as ignorabililty.
It is important to reiterate that the ignorabililty
assumption refers to the randomized groups and
as such all the previously discussed estimands
will not generally hold for individuals, and do
not represent individual causal effects unless there
are convincing reasons to expect an absence of
between-patient treatment heterogeneity [9]. Note
Schmidt et al. 2018 [10] discusses IV analysis
in the a setting of a meta-analysis of potentially
unblinded trials, where τ �= 0.

4 Non-randomized Experiments
of Time-Fixed Exposure
and Confounders

As discussed RCTs are the gold standard to
explore causal were design steps such as ran-
domization and blinding are essential to ensure
the three critical assumptions (exchangeability,
positivity and consistency) are likely true. In
many cases onemay not be able to perform aRCT,
for example an RCT may be prohibitively costly,
or patients may be difficult to recruit. Moreover,
randomisation may not always be ethical, for
example when the comparator intervention can
cause harm (e.g., shame surgeries). Because of
these reasons only a small proportion (15–20%)
clinical practice guidelines are based on an ’A’
level of evidence (based on multiple RCTs), and
most rely on evidence from non-randomized
(observational) studies [11, 12]. It is therefore
essential to be able to identify, and conduct, high
quality analyses using non-randomised study
designs.

Non-randomised studies, in contrast to RCTs,
may be much less convincing to assess causal
inferences for treatments/interventions. As an



118 M. Katsoulis et al.

example, take an observational study from
electronic health records where a researchers is
interested in evaluating the effect statin prescrip-
tion may elicit on the incidence of cardiovascular
disease. Those who initiated statins are more
likely to be in a worse health state compared
to those who did not initiate statins. In other
words, it is very likely that we have problems
due to confounding by indication. If we have suf-
ficiently detailed information from for example
EHR capturing all the confounding variables,
then there are many options to account for such
confounding bias; otherwise, our analysis will
suffer from unmeasured confounding. In the
next paragraphs, we will explain in detail how
to deal with non-randomised experiments of
time-invariant exposures.

Let’s focus on the following example: in the
Table below, we have 12 patients with measured
data on statin initiation X (0 = untreated, 1 =
treated) and whether they developed cancer after
10 years, i.e. cancer incidence Y (0 = no cancer, 1
= cancer). The question of interest is: What is the
effect of statin initiation on cancer incidence?

Participant Other comorbidities L Statin X Cancer Y
Isabella 0 0 0
Oliver 0 0 1
Rachel 0 0 0
George 0 0 1
Rebecca 0 1 0
Oscar 0 1 1
Natalie 1 0 1
Tom 1 0 0
Margaret 1 0 0
Charles 1 1 1
Olivia 1 1 0
Harry 1 1 0

From these data, we observe that statin
initiation (X ) is associated with cancer inci-
dence (Y ): the probability of developing cancer
among those who initiated statin therapy is
P(Y = 1|X = 1) = 2/5 = 0.40, while the proba-
bility of developing cancer among those who did

not initiated statin therapy is P(Y = 1|X = 0) =
3/7 = 0.43. The observed risk difference, is
P(Y = 1|X = 1) − P(Y = 1|X = 0) = −1/35.
At face value the observed difference in cancer
incidence between statin initiators might be
taken to imply statin prescription is carcinogenic.
Depending on the plausibility of the in sect.
2.2 assumptions, the observed difference may
be distinct from our inferential target estimand
P
(
Y X=1 = 1

) − P
(
Y X=0 = 1

)

Let’s assume that, in an over-simplistic sce-
nario, the two groups have the same characteris-
tics (age, sex socioeconomic status, family history
of cancer etc.), apart from other comorbidities L .
In other words, if we account for other comorbidi-
ties appropriately in this sample, we will emulate
randomisation successfully.

Under the consistency, (conditional) exchange-
ability, and positivity assumptions (see sect. 2.2),
we can estimate P

(
Y X=1 = 1

) − P
(
Y X=0 = 1

)

accounting for L , using standard regression mod-
elling, standardisation or inverse probability of
weighting.

4.1 Analytical Methods to Estimate
the Effect of Time-Fixed
Exposures

4.1.1 RegressionModelling
Standard regression modelling, in which we
include all the (likely) confounders as covariates
is a popular way of dealing with time-fixed
confounders. In the example presented above,
we could choose to create a logistic regression
model, given that the outcome is binary. In that
case, the estimand of interest would be the causal
odds ratio, i.e.

causal odds ratio =
P
(
Y X=1 = 1

)

P
(
Y X=1 = 0

)

P
(
Y X=0 = 1

)

P
(
Y X=0 = 0

)

which will be equal to the observed (conditional)
odds ratio
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observed odds ratio =
P(Y = 1|X = 1, L = l)

P(Y = 0|X = 1, L = l)
P(Y = 1|X = 0, L = l)

P(Y = 0|X = 0, L = l)

under the assumptions described in sect. 2.2.
Moreover, the observed odds ratio for X can be
easily calculated from a logistic regression where
the outcome is Y and we adjust for L , i.e.

logit(P(Y = 1|X, L)) = a0 + a1X + a2L

In the example of Fig. 5, the odds ratio OR=ea1

is equal to 1, which means that

P

(
Y X=1 = 1

)
= P

(
Y X=0 = 1

)
.

4.1.2 Standardisation—G-Formula
The G-formula provide an alternative approach to
account for possible confounding. Here we wish
to obtain an unbiased estimate of the outcome
risk under different interventions X leveraging
the fact that conditional on L , the counterfactial
outcome is independent of X , e.g. the conditional
exchangeability assumption holds: Y x �

X |L .
Specifically, the observed conditional risk under
treatment is equal to the counterfactual risks:

P(Y = 1|X = x, L = l) = P

(
Y X=x = 1|L = l

)

To calculate the P
(
Y X=x = 1

)
, we will use the

formula

P

(
Y X=x = 1

)
=

∑

l

P(Y = 1|X = x, L = l)

×P(L = l) , l ∈ {0, 1}
In other words,

P

(
Y X=1 = 1

)
= P(Y = 1|X = 1, L = 0) × P(L = 0)

+P(Y = 1|X = 1, L = 1) × P(L = 1)

and

P

(
Y X=0 = 1

)
= P(Y = 1|X = 0, L = 0) × P(L = 0)

+P(Y = 1|X = 0, L = 1) × P(L = 1)

Risk had all individuals received treatment:
P
(
Y X=1 = 1

)

We know that the risk if all individuals had been
treated is 1/2 in the 6 individuals with L = 0 and
1/3 in the 6 individuals with L = 1. Therefore, the
risk if all individuals in the population had been
treatedwill be aweighted average of 1/2 and 1/3 in
which each group receives a weight proportional
to its size. Since 50% of the individuals are in
group L = 0 and 50% of the individuals in L = 1
The weighted average will be (1/2 × 0.5) + (1/3
× 0.5) = 0.42.

Risk had no individuals received treatment:
P
(
Y X=0 = 1

)

We know that the risk if all individuals had not
been treated is 2/4 in the 6 individuals with L = 0
and 1/3 in the 6 individualswith L = 1. Therefore,
the risk if all individuals in the population had not
been treated will be a weighted average of 1/2 and
1/3 in which each group receives a weight pro-
portional to its size. Since 50% of the individuals
are in group L = 0 and 50% of the individuals in
L = 1. The weighted average will be (2/4 × 0.5)
+ (1/3 × 0.5) = 0.42.

4.1.3 Inverse Probability Weighting
Inverse probability weighting (IPW) is a further
alternative method to account for confounding,
here one creates a pseudo-population in which
treatment is independent of the covariates L .
Treated and the untreated are (unconditionally)
exchangeable in the pseudo-population because
the X is independent of L . In other words, the
arrow from the covariates L to the treatment X is
removed (see Fig. 5).

Using IPW, we weight each individual by the
inverse of the probability of receiving the treat-
ment (exposure), conditional on the confounders.

IPW = 1

P(X |L)
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X

L

Y X

L

Y

Fig. 5 Directed acyclic graphs in the population (right
panel) and the pseudo-population (left panel) creates by
inverse probability weights

In our example, the created pseudo-population
will be twice as large as the original population
(see Fig. 5 in the right). Under conditional
exchangeability Y x �

X |L in the original
population, treatment is randomized in the
pseudo-population i.e. treated and the untreated
are (unconditionally) exchangeable in the pseudo-
population because the X is independent of L
From the pseudo-population, we can calculate
P
(
Y X=1 = 1

)
and P

(
Y X=0 = 1

)
.

That is, the associational risk ratio in the
pseudo-population is equal to the causal risk ratio
in both the pseudo-population and the original
population.

In the pseudo-population (seeFig. 6weobserve
that a) among the untreated the expected num-
ber of cancer events are 5 in 12 individuals, i.e.
P
(
Y X=0 = 1

) = 5/12 = 0.42, and b) among the
treated the expected number of cancer events are
5 in 12 individuals, i.e. P

(
Y X=1 = 1

) = 5/12 =
0.42. We therefore find that there is no causal
effect of treatment X on the outcome Y, i.e.,
P
(
Y X=0 = 1

) = P
(
Y X=0 = 1

)
.

5 Non-randomized Experiments
of Time-Dependent Exposure
and Confounders

In this chapter, we will explain how to deal with
non-randomised experiments of time-dependent
exposures. We will first explain why standard
methods (e.g., outcome regression models) fail to
provide correct estimates of average causal expo-
sure effect estimate correctly the causal effect

when time-dependent confounders are affected by
exposure (treatment) history.

5.1 Why StandardMethodsMay Fail

In Fig. 7 treatment A can change with time t ∈
{0, 1}, as do the confounders L . In this example,
L1 is both a confounder (between A0 and Y ) and
a mediator (between A1 and Y ), in other words,
we should both adjust for L1 (because it is a con-
founder) andnot adjust for L1 (because it’s amedi-
ator). If we adjust for L1, we induce bias because
we block part of the effect of A0 through L1. How-
ever, if we do not adjust for L1, the estimated
effect will be biased through the back door path-
way A1 ← L1 → Y , which induces confounding
bias.

5.2 Use of G-Methods to Overcome
the Problem

Below, we will present an example we IPW is
used account for time-varying confounding with-
out removing exposure effectsmediated by L0 and
L1. IPW creates a pseudo-population in which the
arrows headed to A0 and A1 do not exist and hence
we do not need to adjust for L0 and L1 (Fig. 8).

For example, in the table below, if
we want to estimate the causal contrast
E(Y ā=(1,1)) − E(Y ā=(0,1)),when ā is the treat-
ment history, then we should estimate the associ-
ational risk difference in the pseudo-population
E(Y |A0 = 1, A1 = 1) − E(Y |A0 = 0, A1 = 1)
created by the weights

IPW = 1

P(A0|L0) × P(A1|L0, A0, L1)

= 282.5 − 281.82 = 0.68.

Please note, that we would not get the correct
answer for the causal effect of A on Y if
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Fig. 6 Calculation of inverse probability weights (IPW)

L0

A0

L1

A1 Y

Fig.7 A directed acyclic graph with time-dependent con-
founders L affected by treatment history

L0

A0

L1

A1 Y

Fig.8 A directed acyclic graph with time-dependent con-
founders L affected by treatment history in the pseudo-
population, created by IPW
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1. we do not adjust for L0 and L1, because the
associational risk difference in the actual pop-
ulation is not causal

E(Y |A0 =1, A1 =1)−E(Y |A0 =0,A1 =1)

= 297 − 288.57 = 8.43

2. we adjust for L0 and L1 (e.g. through stan-
dardisation), because the standard methods fail
in the context of time dependent confounding
affected by prior treatment.

For example, within the strata defined by L0

and L1, we have that

L0 = 0, L1 = 0 : E(Y |A0 = 1, A1 = 1)

− E(Y |A0 = 0, A1 = 1) = 280 − 250 = 30,

L0 = 0, L1 = 1 : E(Y |A0 = 1, A1 = 1)

− E(Y |A0 = 0.A1 = 1) = 240 − 300 = −60,

L0 = 1, L1 = 0 : E(Y |A0 = 1, A1 = 1)

− E(Y |A0 = 0, A1 = 1) = 280 − 300 = −20,

L0 = 1, L1 = 1 : E(Y |A0 = 1.A1 = 1)

− E(Y |A0 = 0.A1 = 1) = 340 − 280 = 60.

Accounting for L0 and L1 (e.g., through regres-
sion adjustment) would give us an estimate of

E(Y |A0 = 1, A1 = 1) − E(Y |A0 = 0, A1 = 1)

which is equal to

30 × P(L0 = 0, L1 = 0) − 60 × P(L0 = 0, L1 = 1)

−20 × P(L0 = 1, L1 = 0) + 60 × P(L0 = 1, L1 = 1)

= 30 × 5500

23000
− 60 × 5500

23000

− 20 × 6500

23000
+ 60 × 5500

23000
= −0.21,

which does not correspond to the causal risk dif-
ference.

We could also derive unbiased estimates
when dealing with time-dependent confounders,
affected by prior treatment (exposure) using the
other g-methods (i.e. g-formula, g-estimation),
however this is beyond the scope of this chapter.
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