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Statistical Analysis—
Measurement Error

Timo B. Brakenhoff, Maarten van Smeden  
and Daniel L. Oberski

are descriptive, explanatory or predictive. 
Validation studies can inform the estimation 
and characterization of measurement error as 
well as provide crucial information for cor-
rection methods that are available in several 
statistical programming languages such as 
SAS, R and Python.
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1  Introduction

Before applying an analytical method on data it 
is important to consider the quality of the data 
and how that quality might impact the results 
of the analysis. One important aspect of data 
quality is how variables in the data have been 
recorded or measured. There are many differ-
ent situations in which the variable(s) that are 
measured or observed are different from what 
was intended to be measured. This discrepancy 
between an observed value and the true value is 
called measurement error and can have con-
sequences for your analyses in all kinds of con-
texts (see Box 1 for two examples of the effect 
of measurement error in practice).
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Abstract

An important aspect of data quality when 
conducting clinical analyses using real-
world data is how variables in the data have 
been recorded or measured. The discrepancy 
between an observed value and the true value 
is called measurement error (also known 
as noise in the artificial intelligence and 
machine learning literature) and can have 
consequences for your analyses in all kinds 
of contexts. To properly assess the potential 
impact of measurement error it is essential to 
understand the relationship between the true 
and observed variables as well as the goal of 
the analysis and how it will be implemented 
in practice. Commonly, measurement error 
is distinguished as being classical, Berkson, 
systematic and/or differential. While it is 
clear that measurement error can have far-
reaching consequences on analyses, the effect 
can differ depending on whether analyses 

T. B. Brakenhoff (*) 
Julius Clinical, Zeist, The Netherlands
e-mail: timo.brakenhoff@juliusclinical.com

M. van Smeden · D. L. Oberski 
Julius Center for Health Sciences and Primary Care, 
UMC Utrecht, Utrecht University, Utrecht,  
The Netherlands

D. L. Oberski   
Dept. Methodology & Statistics, Utrecht University, 
Utrecht, The Netherlands

https://doi.org/10.1007/978-3-031-36678-9_6
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36678-9_6&domain=pdf


98 T. B. Brakenhoff et al.

• Computer aided diagnosis of prostate 
cancer without gold standard outcome 
labels
– Nir et al. [51] describe the automatic 

grading of prostate cancer in digitized 
histopathology images. They did this 
using various supervised machine 
and deep learning methods based on 
images labeled by pathologists. Just as 
in many medical image settings, this 
labeling is not perfect and specialists 
will not always agree when evaluating 
the same images. When these images 
act as important input for machine 
and deep learning algorithms meant 
for diagnostic or prognostic settings, 
this, often unavoidable, measurement 
error, or noise in the outcome labels 
can have significant consequences 
for the performance of the algorithms 
[35]. In the case of [51] multiple 
pathologists were asked to rate the 
same images and different methods 
were used to best account for the 
inter-observer variability in prostate 
cancer grading. While this may not 
always be possible to apply in prac-
tice, there are several other techniques 
that can help correct for measurement 
error in the outcome [35].

Where the term “measurement error” is fre-
quently used with regards to errors in the meas-
urement of continuous variables (such as an 
individual’s age or height), the term “misclas-
sification” is often used for discrete variables 
(such as an individual’s preferences of received 
treatment). In Artificial intelligence and machine 
learning literature, errors in discrete or non-
discrete variables are often called noise with 
noise existing either in the covariates (also 
known as predictors, features or attributes) or in 
the outcome(s) (also known as target variables, 
labels or classes). In this chapter, the term meas-
urement error will be used to describe all these 
phenomena unless otherwise specified.

Box 1: Examples of Measurement Error in 
Practice
• Measuring prevalence using different 

diagnostic tests
– In Montreal, Canada a screening 

and treatment program for intesti-
nal parasite infections was offered 
to newly arrived Southeast Asian 
refugees in Canada between July 
1982 and February 1983. The 162 
Cambodian refugees included in the 
sample were tested using two dif-
ferent diagnostic tests for the pres-
ence of Strongyloides Infection: 
enzyme-linked immunosorbent 
assay (immunoglobulin G) serol-
ogy and stool examination (see table 
below for the amount of refugees 
that tested positive using each diag-
nostic test) [27, 28]. The observed 
sample prevalence based solely on 
serology was 77.2 percent, while 
it was 24.7 percent using informa-
tion from stool examinations alone! 
This absolute difference of over 
50 percentage points in prevalence 
demonstrates how crucial it is to 
consider the instrument that is being 
used to measure a quantity of inter-
est, such as the prevalence. Note that 
these estimates also don’t take into 
account other sources of uncertainty 
such as sampling variability (only 
162 individuals of the whole popu-
lation of Cambodian refugees were 
included in this sample) or the per-
formance of the tests themselves (it 
is likely that several individuals may 
be false positives or false negatives 
as neither test has perfect sensitivity 
or specificity) [34].

Stool + Stool −

Serology + 38 87 125

Serology − 2 35 37

40 122 162
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Errors in measurement can be caused through 
various mechanisms including, but not limited 
to, inaccuracy and imprecision of measurement 
instruments, errors due to self-reporting, errors 
in data coding or labeling, lack of data granu-
larity, or when single measurements are taken 
of naturally fluctuating biological processes 
such as biomarkers. Common settings where 
such errors can occur include when measuring 
smoking [45], blood pressure [2, 53, 75], dietary 
intake [17, 18, 73], physical activity [16, 41], 
exposure to air pollutants [22, 69, 78], medical 
treatments received [5, 65, 71], diagnostic cod-
ing [15, 52, 77] and labels for medical images 
[12, 35, 55, 57].

All of the above mentioned measurement 
error mechanisms can lead to discrepancies 
between the sought after, perfectly measured 
and thus error-free true value of a variable and 
an imperfectly measured observed value of 
that same variable. In most cases we have not 
observed the former and we are in possession of 
the latter. This can have severe implications for 
the results of an analysis. Examples include the 
following:

• Brakenhoff et al. [7] demonstrate that even 
when the simplest form of measurement 
error, random error, is assumed when meas-
uring blood pressure in routine care, this can 
have very divergent and unexpected con-
sequences on the estimation of the effect of 
blood pressure on the possible risk of devel-
oping cardiovascular disease. The estimated 
relations can be severely biased positively or 
negatively depending on the amount of meas-
urement error present in confounders and the 
relationship of those confounders with the 
observed blood pressure variable.

• When aiming for the best possible prediction 
performance using advanced artificial intel-
ligence techniques such as deep learning for 
medical imaging, multiple authors [12, 35, 
57] identify the need for large datasets of 
trustworthy labelled medical images (which 
are used as the outcome to be predicted) 
to train the desired model. The expertise 

required for this as well as regulations in the 
medical sector make this a challenging ask 
which can severely impact the performance 
of prediction models.

To properly assess the potential impact of 
measurement error it is essential to understand 
the relationship between the true and observed 
variables as well as the goal of the analysis (i.e. 
is the purpose to describe, explain or predict?) 
(See Box 3) and how it will be implemented in 
practice. However, the fact that measurement 
error may have far-reaching consequences on 
analyses in the field of statistics, epidemiol-
ogy or artificial intelligence is nothing new 
[9, 26, 79]. Yet, despite this understanding 
and a plethora of recent literature on the sub-
ject [8, 36] there is still little attention paid to 
measurement error consequences and potential 
solutions in the medical literature [6, 67] and 
common myths [7, 74] are perpetuated. With 
the increasing availability of (big) data not 
collected for research purposes such as medi-
cal health records for explanation as well as 
the application of machine learning and deep 
learning algorithms for prediction, careful 
investigation of potential bias due to issues like 
measurement error is arguably more important 
than ever [21].

This chapter will provide an overview of the 
types of measurement error and why it is essen-
tial to keep this in consideration when conduct-
ing clinical data analysis. Subsequently the 
consequences of measurement error will be dis-
cussed and how this will differ depending on the 
goal of the analysis and the desired implementa-
tion. Lastly, an overview will be given of various 
tools for the estimation and correction of meas-
urement error.

2  Types of Measurement Error

A common taxonomy to distinguish between 
types of measurement error differentiates 
between 4 types: classical, Berkson, system-
atic and differential. Each of these types can 
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manifest differently in continuous or discrete 
data. They represent different ways in which 
true values and the observed variables relate 
to each other, which can have different conse-
quences on the analysis being performed.

When considering continuous variables, we 
can differentiate between multiple measurement 
error models. The simplest of these is called the 
classical or random measurement error model 
where the observed variable is equal to the true 
variable plus error, in this case a random varia-
ble with mean 0 which is independent of the true 
variable. This error model can be extended to 
accommodate systematic error or dependencies 
between the error and the observed variable, the 
true variable or other auxiliary variables. When 
the relations between the observed and true vari-
able are non-linear, transformations can be used 
to make it linear. In specific circumstances it is 
more appropriate to model the true variable as 
equal to the observed variable plus a random 
variable with mean 0 which is independent of 
the observed variable. This is called Berkson 
error. Lastly, depending on if the error contains 
information on the outcome variable which you 
may be interested in or not, the error is referred 
to as differential or nondifferential respectively. 
Box 2 provides technical definitions of these 
measurement error models.

For categorical variables, discrepancies 
between the true value of a variable and the 
observed value is often referred to as misclassifi-
cation. While misclassification is closely related 
to measurement error in continuous variables, 
the categorical nature of the variables means that 
misclassification is often expressed in terms of 
misclassification probabilities. For example, in 
the case of a binary observed and true variable, 
regardless of the type of measurement error 
assumed, misclassification can best be described 
in terms of sensitivity, specificity and predic-
tive values (namely positive predictive value 
and negative predictive value). Note that similar 
to measurement error models, misclassification 
can also be (non)differential and have a structure 
similar to Berkson error (while the latter is not 
often observed) [36].

Box 2: Technical Definitions of Types of 
Measurement Error in Continuous Variables
Suppose we are interested in the relation-
ship between an outcome variable Y and 
a covariate of interest X given covariates 
Z. If a variable X is measured with error, 
the observed variable is denoted by X*, 
with the true value of this variable (X) 
being unobserved. Note that notation dif-
fers across the literature and the notation 
chosen here is consistent with that of 
[36 and 68]. The following types of error 
are most commonly distinguished:

• Classical measurement error:
X*  =  X + U, where U is a random varia-
ble with mean 0 that is independent of X.

• Linear measurement error
X* = ɑ0 + ɑXX + U, where U is a ran-
dom variable with mean 0 that is inde-
pendent of X, ɑ0 is an intercept term 
and ɑX is the coefficient of X. Note that 
classical measurement error is a special 
case of linear measurement error where 
ɑ0 = 0 and ɑX = 1.

• Systematic error
X* = ɑ0 + ɑXX, where ɑ0 is an inter-
cept term and ɑX is the coefficient of X 
which each represent systematic error 
that may be dependent on X.

• Nondifferential error
The distribution of Y given (X, Z, X*) 
depends only on (X, Z)

• Berkson measurement error
X = X* + U, where U is a random variable 
with mean 0 that is independent of X*.

3  Consequences of Measurement 
Error

3.1  Goal of the Analysis

Before discussing the consequences of meas-
urement error it is important to clearly identify 
the goal of the analysis. A common framework 
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used to distinguish between the goal of statistical 
modeling is whether it is used for description, 
explanation or prediction [70] (See Box 3). 
Shmueli [70] mostly disregards descriptive mod-
elling as it is frequently used for characterization 
of the observed data structure and is not often 
used for theory building. In public health and 
healthcare research, however, descriptive mod-
elling plays a crucial role, e.g. when estimating 
incidence rates or prevalences of disease. In the 
context of measurement error and its impact, 
this section will mostly focus on the distinction 
between explanatory and predictive modelling.

Box 3: Definitions of Types of Statistical 
Modelling
• Descriptive modelling is aimed at 

summarizing or representing the data. 
E.g. calculating an incidence rate for a 
disease over a particular time period, or 
by fitting a regression model to quan-
tify the association between a covariate 
and an outcome, without causal infer-
ence or prediction intentions.

• Explanatory modelling is the applica-
tion of models to data for the purpose 
of testing and quantifying causal rela-
tions. E.g. fitting a regression model 
to estimate the causal effect of a cer-
tain factor (e..g. a medical treatment, 
registered as a dispensed drug) on the 
occurrence of a certain outcome (e.g. a 
health outcome such as (cause-specific) 
mortality or hospital admission).

• Predictive modelling the application 
of models to data for the main purpose 
of predicting new or future observa-
tions. E.g. fitting a regression model 
to predict the probability of the occur-
rence of a certain health outcome (e.g. 
5-year mortality) for future individu-
als taking into account various relevant 
covariates (e.g. medical history, demo-
graphics, laboratory tests, etcetera).

While often not clearly separated in literature, 
studies with explanation and prediction goals 
fundamentally differ due to the differences in 
aims and subsequent diverging choices at every 
step of the modelling process (designing the 
study, collecting data, preparing data, explor-
ing data, selecting variables, selecting statistical 
models, evaluating models and using models in 
practice). Note that both types of modelling can 
be used in combination, each achieving a sepa-
rate specific goal within an overarching analy-
sis that may be of an explanatory or predictive 
nature. An example of this is the application of 
prediction models (including machine learning 
models [44]) to estimate propensity scores [58] 
that are used to adjust for confounding when 
estimating causal effects.

The measurement of variables for explana-
tory modelling generally focuses on obtaining 
measurements that are as reliable and accu-
rate as possible to appropriately represent the 
underlying constructs. Conversely, for many 
predictive modelling studies priority goes 
towards reliably estimating the outcome/tar-
get variable (often called labeling [1, 19, 49, 
50]), while the measurement quality of the 
covariates necessary for making predictions 
should ideally be of a similar quality when 
the model is constructed as when the model is 
applied to new patients. So far, however, much 
of the attention in the measurement error lit-
erature [9, 37] has been specifically devoted 
to explanatory modelling. More recently, 
attention is being given to the prediction set-
ting, showing the impact of heterogeneity in 
how variables are measured in the training 
and implementation settings, also referred to 
as transportability [9], and how this impacts 
the performance of prediction models [42, 43, 
54].

The above broad differentiation in modeling 
goals and the different role of errors in meas-
urement exemplifies the importance of keeping 
in mind the goal of the analysis, how the results 
of the analysis will be generalized and in which 
settings the results will be applied.
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3.2  The Impact of Measurement 
Error in Explanatory Modelling

Much of the health science measurement error 
literature has been focussed on the consequences 
of different types of measurement error when 
engaging in explanatory modelling. Carroll et al. 
[9], describe how the consequences of meas-
urement error is a “triple whammy”: covariate-
outcome relationships can be biased, power to 
detect clinically meaningful relationships is 
diminished and important features of the data 
can be masked.

When assuming classical measurement error 
or misclassification in a single continuous or 
binary categorical covariate of interest, the esti-
mated univariable covariate-outcome relation 
will be biased towards the null (also known as 
attenuation). However, when the covariate has 
more than two categories or when considering a 
multivariable model (models with more than one 
covariate) where at least 1 confounder measured 
with classical error, the estimated covariate-out-
come relation can be biased in either direction, 
even if the covariate of interest is not measured 
with error [7]. This unpredictability of the mag-
nitude and direction of bias and precision on the 
estimated effect is compounded if error is sys-
tematic or differential. Berkson error on the other 
hand often does not lead to bias in the estimated 
covariate-outcome relation, but can diminish 
precision. Regarding measurement error in the 
outcome of an explanatory model, classical error 
will generally not lead to bias in a covariate-
outcome relation while other types of error like 
systematic or differential error can substantially 
bias estimators [46]. Table 1 of [37] provides a 
useful overview of the effects of measurement 
error according to the type of error and target of 
the analysis for explanatory modelling.

3.3  The Impact of Measurement 
Error in Predictive Modelling

Attention for the role of measurement error 
in predictive modelling is relatively recent. 
In particular, the concept of measurement 

heterogeneity, which means the covariates (pre-
dictors) are measured differently (i.e. have dif-
ferent measurement error) between training 
and external validation settings for prediction 
models, has been shown to have an important 
impact on the performance of prediction models. 
Measurement heterogeneity can, for instance, 
occur when different measurement protocols or 
different types of tests are used when developing 
a clinical prediction model as compared to the 
setting in which they are externally validated or 
applied. Various studies [42, 43, 54] have shown 
how in different measurement scenarios often 
leads to deteriorated performance of the calibra-
tion and discrimination of prediction models.

Regarding the impact of measurement error 
or noise in the development of machine learning 
or deep learning models, attribute (i.e. covariate) 
noise is often considered to have a less severe 
impact on predictive performance than label (i.e. 
outcome) noise [25, 66]. Label noise can dimin-
ish accuracy of predictions and classification 
performance as well as increase the amount of 
training samples required for model develop-
ment [19, 50]. In addition, error prone outcomes 
can lead to prediction unfairness if the error dif-
fers over subgroups of interest [4]. For an over-
view of the impact of class and attribute noise, 
see [79].

Box 4: Five Myths About Measurement Error
van Smeden et al. [74] identifies and 
debunks 5 common myths about measure-
ment error:

1. Measurement error can be compensated 
for by large numbers of observations
a. No, a large number of observations 

does not resolve the most serious 
consequences of measurement error 
in epidemiological data analyses. 
These remain regardless of the sam-
ple size.

2. The effect of a covariate of interest on 
the outcome is underestimated when 
variables are measured with error
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a. No, the effect of a covariate of inter-
est can be over- or underestimated in 
the presence of measurement error 
depending on which variables are 
affected, how measurement error 
is structured and the expression of 
other biasing and data sampling 
factors.

3. Covariate measurement error is non-
differential if measurements are taken 
without knowledge of the outcome
a. No, covariate measurement error 

can be differential even if the meas-
urement is taken without knowledge 
of the outcome.

4. Measurement error can be prevented 
but not mitigated in data analyses
a. No, statistical methods for measure-

ment error bias corrections can be 
used in the presence of measure-
ment error provided that data are 
available on the structure and mag-
nitude of measurement error from 
an internal or external source. This 
often requires planning of a meas-
urement error correction approach 
or quantitative bias analysis, which 
may require additional data to be 
collected.

5. Certain types of research are unaffected 
by measurement error
a. No, measurement error can affect all 

types of research.

4  Correction of Measurement 
Error

Several approaches have been suggested to cir-
cumvent (or at least lower) the detrimental con-
sequences of measurement error, in particular to 
reduce bias (one of the 3 whammies of measure-
ment error). To understand the possible value of 
correction, the natural first step is in identify-
ing potential error-prone variables. To quantify 
and correct for measurement error, additional 

information is required which can often be col-
lected through validation studies.

4.1  Validation Studies

Validation studies (also referred to as ancillary 
studies) on the error-prone variables can aid the 
investigation into the structure, type and amount 
of measurement error present [37]. These studies 
can also be essential for the application of sev-
eral correction methods discussed later in this 
section. Generally speaking, there are four types 
of validation studies: internal validation studies, 
calibration studies, replicates studies and exter-
nal validation studies.

In an internal validation study, both the 
error-prone observed variable as well as (a reli-
able representation of) the true variable (i.e. 
gold standard measurement) are observed in 
a subset of the data. Measurement of a gold 
standard only in a subset can be motivated by a 
measurement procedure that is time-consuming, 
expensive, invasive or even impossible to obtain 
for the whole study sample. Usually an inter-
nal validation study is assumed to contain data 
from a random subset of the study sample, but 
alternative sampling strategies are available 
depending on the type of measurement error 
and the measurement error correction method 
that can be used [47]. With a suitable internal 
validation study, the relations between the error-
prone observed variable and the true variable 
can directly be estimated, which can be used 
for measurement error correction. If the true 
variable or gold standard measurement is not 
available, but another variable (reference meas-
urement) unbiased at the individual level is, it is 
sometimes called a calibration study. This type 
of study can be used as input for the measure-
ment error correction method called regression 
calibration, if certain assumptions are met.

In a replicates study, multiple replicate 
measurements from the same instrument (e.g. 
multiple measurements of blood pressure during 
the same hospital visit) or different instruments 
that measure the same underlying construct 
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(e.g. multiple diagnostic tests for the same dis-
ease) are collected. When the variable of inter-
est contains random measurement error, having 
multiple measurements available can provide 
essential information on the amount and type of 
measurement error present.

Validation studies can also use data available 
from external sources such as similar cohorts 
from another country. For example, for separate 
individuals not included in the main study, both 
the error-prone variable as well as the true vari-
able (or gold standard measurement) and neces-
sary covariates might be available. This can then 
be used to inform measurement error correction 
methods. Note that for such external validation 
studies it is very important to assess the hetero-
geneity between the external and internal setting 
and how transportable the information is. More 
information on the design and desirable size of 
validation studies can be found in [37].

4.2  Correction Methods

Characterizing the amount and type of error is 
an important first step when applying strategies 
to correct for the measurement error. At the most 
basic level, common metrics such as the bias 
and variance or classification probabilities like 
sensitivity and specificity can be used to charac-
terize how accurate and precise observed varia-
bles are compared to the true variables. The next 
step is to identify the type of measurement error 
observed (see Sect. 2) and use those models to 
further quantify various aspects of the error. In 
general, measurement error correction methods 
use information obtained through validation 
studies to take into account measurement error 
in the analyses by estimating the research results 
in the counterfactual situation where there was 
no measurement error.

Many different approaches have been pro-
posed in the literature which characterize the 
error present as well as correct for the bias that 
may arise due to this error in the final analyses. 
Approaches include: regression calibration [11], 
simulation extrapolation [14, 37], likelihood 
methods [10], score function methods [3, 72], 

methods-of-moment correction [20], latent vari-
able analysis [32], structural equation modelling 
[4, 63], multiple imputation for measurement 
error correction [13], inverse probability weight-
ing [23], bayesian analyses [26], cluster-based 
correction [49].

More detailed information on the various 
types of error and how to correct for them can 
be found in extensive literature on the topic. 
Various measurement error text books exist, 
with [9] focussing on nonlinear models, [26] 
on Bayesian methods of adjustment and [8]) 
providing a more broad overview. Similarly, 
reviews such as the one by Guolo [24] give an 
overview of robust techniques to correct for 
measurement error in covariates. More recently, 
the STRATOS initiative wrote a two-part tuto-
rial on the basic theory of measurement error 
and simple methods of adjustment [36] as well 
as on more complex methods of adjustment 
and advanced topics [68]. Literature focused on 
the impact of measurement error (referred to as 
noise) in both covariates and outcomes in the 
field of machine learning and how to deal with it 
includes [19, 50, 64, 79].

While several methods can be easily pro-
grammed using standard functionality of dif-
ferent software tools, specific packages, macros 
or procedures are available for more complex 
measurement error correction in different pro-
gramming languages. In SAS, for example, mac-
ros include %blinplus [59], %relibpls8 [60] and 
%rrc [40] which have been developed for vari-
ous implementations of regression calibration. 
Similarly in STATA, procedures include rcal and 
eivreg for regression calibration [29], and simex 
and simexplot for simulation extrapolation [30]. 
For the R language, packages include simex [39] 
and simexaft [31] for simulation extrapolation 
approaches, lavaan [61] for latent variable anal-
ysis and structural equation modelling, as well 
as mecor [48] for measurement error correc-
tion in linear regression models. Also in Python, 
an increasing amount of relevant packages are 
being developed, such as pyEMU [76] for envi-
ronmental model uncertainty analysis and snor-
kel [56] for rapid training data creation in the 
face of potential label noise.
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An important alternative method to investi-
gate the impact of measurement error on your 
study results if no suitable additional informa-
tion is available, is to perform sensitivity analy-
ses. Various amounts of measurement error can 
be assumed in hypothetical scenarios where the 
analysis is rerun and the results are compared 
against the original results. To assess multiple 
hypothetical scenarios with various amounts of 
measurement error simultaneously, probabil-
istic sensitivity analyses can be performed (see 
Chapter 19 of [62]). A similar technique applied 
to examine the impact of measurement error 
(and correct for it) when additional information 
is lacking in both explanatory and prediction 
modelling is quantitative bias analysis [33, 38].
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