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1	� Introduction

Medicine is inherently a data driven practice. 
The widespread adoption of electronic health 
record (EHR) systems in the US and Europe has 
rapidly increased the amounts of health related 
data that are electronically generated and cap-
tured during routine interactions of patients with 
the healthcare system [1]. Patient interactions 
with the healthcare system, for example an out-
patient visit or a hospital admission, generate a 
substantial amount of data and metadata. These 
data are organized, recorded and curated using 
different healthcare standards and clinical termi-
nologies. Healthcare standards enable the stor-
age and exchange of health information across 
healthcare providers while clinical terminologies 
enable the systematic and standardized record-
ing of healthcare information.

Before raw EHR data can be used as input 
features into analytical AI pipelines, a signifi-
cant amount of preprocessing and harmoniza-
tion must occur. For example, multiple EHR 
sources utilizing different clinical terminolo-
gies to record information need to be aligned to 
a common format. With unstructured data, such 
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Abstract

Electronic health records are routinely col-
lected as part of care and have variable data 
types, quality and structure. As a result, there 
is a need for standardization of clinical data 
from health records if these are to be used in 
software applications for data mining and/or 
machine learning and artificial intelligence 
approaches. Clinical terminologies and clas-
sification systems are available that can serve 
as standards to enable the harmonization of 
disparate data sources. In this chapter, we 
discuss different types of biomedical seman-
tic standards including medically-relevant 
ontologies, their uses, and their limitations. 
We also discuss the application of semantic 
standards in order to provide features for use 
in machine learning particularly with respect 
to phenotypes. Finally, we discuss potential 
areas of improvement for the future such as 
covering genotypes and steps needed.
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Standards are needed in healthcare to effec-
tively find, store and analyze data. If different 
representations are used for syntax and seman-
tics, there is no guarantee that the data used for 
analysis is complete or can be correctly com-
bined across sources. If data is not standardized, 
it can prevent information sharing and reuse of 
clinical data [7]. Often data can come from dif-
ferent systems even within the same institution 
and mappings to a common standard is needed. 
The challenge however is that there may be 
competing standards (PCORNet [8], FHIR [9], 
OMOP [10] and others).

To understand the need and application of 
standards consider the how, when and why data 
are generated during routine clinical interac-
tions. Data can be generated by physicians and 
healthcare professionals entering data directly in 
the EHR for patient care. Data can also be gen-
erated through clinical coding for billing and 
reimbursement purposes can subsequently be 
used for research FInally, data may be processed 
and curated through clinical audits for registries, 
quality of care, and planning. Each of these may 
use different systems with different representa-
tions that need to be harmonized before analy-
ses. Furthermore, different stakeholders and 
systems may attempt to record the same infor-
mation but choose different levels of granular-
ity. For example a healthcare professional might 
record detailed information on presenting signs, 
symptoms and diagnoses while a clinical coder 
might distill this information into a small num-
ber of terminology concepts. A coding system 
therefore should be able to account for these dif-
ferences and enable their harmonization.

In this section, we will provide working defi-
nitions of key concepts in data standardization to 
guide understanding of the different options and 
complexity of choosing and applying a standard. 
An excellent review of different semantic repre-
sentations is provided elsewhere [11]. Here we 
highlight commonly used and mentioned types of 
semantic standards and provide details of differ-
ent levels of standardization and what they offer.

Semantic standards can be understood 
at three levels of abstraction of increasing 

as information recorded in clinical text, Natural 
Language Processing (NLP) approaches can be 
deployed to extract clinically-meaningful mark-
ers and transform them into input features for the 
pipeline (this process is often referred as entity 
extraction). Finally, depending on the purpose of 
each dataset, different biases might exist in the 
data which need to be accounted for. For exam-
ple, administrative hospitalization EHR might be 
influenced by local coding guidelines which in 
turn affect the observed data recording patterns 
and need to be accounted for prior to analyses.

The outcome of such a data preprocessing 
pipeline would be features extracted from com-
plex, multidimensional EHR that can be used 
as input features to AI analytical approaches. 
Extracting clinically important markers from 
complex EHR (e.g. disease status, biomarkers, 
prescriptions, procedures, symptoms etc.) is 
often referred to as phenotyping [2]. The main 
objective therefore of this chapter is to provide 
a succinct overview of the main clinical termi-
nologies used to record EHR data, their char-
acteristics, and outline different approaches for 
creating and evaluating EHR-derived pheno-
types. The methods outlined here will cover a 
set of phenotyping methodologies ranging from 
rule-based deterministic algorithms, to aggre-
gated coding systems and finally to more com-
plex learnt representations).

1.1	� The Need for Standards 
and Their Application

Standards in the context of this chapter are 
defined as common representations of data. 
They may be approved by a governing body 
(e.g., ISO dates [3]) or they may simply repre-
sent established formats (Variant Call Format 
(VCF) files of genomic variants [4]). For clini-
cal terminologies, standards may be mandated 
by the government, institution (e.g., National 
Institutes of Health [5]), or professional socie-
ties. Terminologies may be developed by com-
munities adhering to common principles (e.g., 
OBO Foundry [6]).
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complexity. The first is as entities (terms) 
that make up classes (general concepts) and 
instances (individual members) of those classes. 
For example, ‘heart failure’ is a class whereas 
‘the first heart failure diagnosis of a patient’ 
is an instance of that class. Most usage of ter-
minologies and ontologies is at this first level 
where terms are used as annotations. A sec-
ond level is the organization of the entities into 
structures such as hierarchies or assertions and 
statements including axioms and logical defini-
tions. Hierarchies can be simple taxonomies 
(‘heart failure’ is-a ‘disorder of cardiac func-
tion’) or can be poly-hierarchies to accommo-
date a term having more than one parent. The 
structure of assertions/statements can be in the 
form of triples: subject-predicate-object such as: 
‘heart failure’ ‘occurs in’ ‘heart structure’. These 
structures provide the ability to connect con-
cepts in a defined manner. The third level is the 
representational model adhering to open versus 
closed worlds and languages such as Resource 
Description Framework (RDF) [12], Web 
Ontology Language (OWL), Simple Knowledge 
Organization System (SKOS) [13] and schema 
languages as part of the Semantic Web [14]. 
These can be employed in messaging sys-
tems such as FHIR and Common Data Models 
(CDM) like Observational Medical Outcomes 
Partnership (OMOP). The products of semantic 
standards can be browsed in repositories such 
as the NCBO BioPortal [15] or used in knowl-
edge bases linking classes or terms (TBox) to 
instances or assertions (ABox) about data [16].

Clinical classification systems, medical 
ontologies, and clinical terminologies make use 
of these different levels of abstraction. In this 
context, ontologies are distinguished by formal 
relations between entities and use of logical def-
initions or axioms. The W3C provides approved 
standards such as OWL and a query language 
(SPARQL) which enables ontologies based on 
these standards to be programmatically accessed 
and searched [12]. Clinically relevant ontologies 
include the Disease Ontology [17], the Drug 
Ontology [18], and the Ontology for Biomedical 
Investigations [19] which can be used to link 

to diagnoses, medications, and lab tests respec-
tively in EHR. Those ontologies, which are part 
of the OBO Foundry, not only provide hierar-
chies for capturing related data at different lev-
els of granularity but also have formal links to 
other external ontologies (e.g., for chemicals in 
CHEBI [20]) that can be used to connect them 
and build more complex knowledge structures 
(e.g., classes of drugs containing chemicals that 
are used as an antineoplastic agent).

Multiple ontologies or terminologies may 
be needed to annotate or instantiate data. When 
this is done, care should be taken to avoid con-
flicts or redundancies, i.e. the chosen terminolo-
gies should be semantically interoperable. This 
however is not guaranteed if different sources 
of terms are used as they can have different con-
texts and thus different meanings. With the OBO 
Foundry, the objective is that adhering ontolo-
gies are semantically consistent with respect to 
meaning of terms and use of relations.

2	� Controlled Clinical 
Terminologies and Clinical 
Classifications Systems

EHR provide the infrastructure for healthcare 
professionals to record information that is rel-
evant for the care of a patient. This information 
can include symptoms, medical history infor-
mation on the patient or their direct family, 
laboratory or anthropometric measurements, pre-
scriptions, diagnoses, and surgical procedures. 
The data recorded within the EHR allow health-
care professionals to assess and treat a patient 
but are also widely used for a number of other 
purposes (often referred to as secondary uses) 
such as reimbursement, planning, billing, audit-
ing and research. Although clinical terminolo-
gies and clinical classification systems are often 
used interchangeably, they serve two distinct 
purposes [21]. The former were created to ena-
ble healthcare professionals to record informa-
tion that is pertinent to clinical care. The latter 
are a tool which enables the aggregation and sta-
tistical analyses of health information (Table 1).
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Controlled clinical terminologies (also 
referred to as controlled clinical ontologies, con-
trolled medical ontologies, controlled medical 
vocabularies) are the basic building blocks used 
by healthcare professionals to record informa-
tion within an EHR system. The main purpose 
of clinical terminologies is to enable the con-
sistent and systematic recording of clinical data 
and metadata which in turn are used for direct 
patient care. As a result, controlled clinical ter-
minologies often encapsulate a wide and diverse 
set of domains and healthcare-related actions.

The US Bureau of Labor Statistics defines 
classification systems as “ways of grouping and 
organizing data so that they may be compared 
with other data” [22]. In the context of medi-
cine, clinical classification systems enable the 
aggregation and analysis of data related to health 
can healthcare on a national or international 
level. One of the most commonly used classifi-
cation systems worldwide is the ICD-10 which 
is maintained by the World Health Organization 
(WHO) [23]. Clinical classification systems are 
also used for other secondary purposes, one of 
the most common being reimbursement where 
clinical data get transformed and aggregated into 
a clinical classification system. The process by 
which raw data are transformed into ICD codes 
is defined as coding. The WHO defines coding 
as “the translation of diagnoses, procedures, 
comorbidities and complications that occur over 

the course of a patient’s encounter from medical 
terminology to an internationally coded syntax” 
[24].

2.1	� SNOMED-CT

SNOMED Clinical Terms (SNOMED-CT) is a 
controlled clinical terminology providing a set 
of hierarchically-organized, machine-readable 
codes, terms, synonyms and definitions used 
to record information related to health and 
healthcare within EHR information systems 
[25]. SNOMED-CT is maintained and distrib-
uted by the International Health Terminology 
Standards Development Organisation 
(IHTSDO). SNOMED-CT was created in 1965 
as the Systematized Nomenclature of Pathology 
(SNOP) which in turn evolved in the SNOMED 
Reference Terminology (SNOMED-RT) and 
finally merged with the NHS Clinical Terms 
Version 3 (Read codes Version 3, CTV3) [26] to 
create SNOMED-CT in 2002. Similarly to ICD, 
different countries can maintain their own ver-
sions of SNOMED-CT that are tailored to their 
local healthcare system or needs; in the UK for 
example, the National Health Service (NHS) 
maintains a UK version of SNOMED-CT [27] 
that is used.

SNOMED-CT consists of three components 
[28] which are explained below (Tables 2 and 3):

Table 1   Comparison between ICD-10 (statistical classification system) and SNOMED (clinical terminology

ICD-10 SNOMED-CT
Type Clinical classification system Controlled clinical 

terminology
N concepts 104 105

Relationships A concept has a single parent A concept can have multi-
ple hierarchical relation-
ships and multiple parents

Age related diagnoses Information on age is encapsulated within the term The term used is the same 
across all ages and the age 
of onset is derived by the 
date of diagnosis and the 
age of the patient

Fidelity Information organized in mutually exclusive categories with 
generic “not otherwise specified” or “not elsewhere classi-
fied” terms used to record information if required

NOS/NEC are not used in 
SNOMED-CT
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1.	 Concept: Every SNOMED-CT concept rep-
resents a unique clinical meaning and has a 
unique numerical identifier which is persis-
tent across the ontology and can be used to 
reference the concept. The January 2021 ver-
sion of SNOMED CT contains approximately 
350,000 concepts.

2.	 Description: Each SNOMED-CT concept 
has a unique description, the Fully Specified 
Name (FSN), which offers an unambigu-
ous description of the concept's meaning. 
Additionally, a concept can have one or more 
synonym terms (Synonyms) which are associ-
ated with the concept.

3.	 Relationship: SNOMED-CT offers several 
types of relationships between concepts in 
order to enable logical computable defini-
tions of complex concepts. The terminology 

contains approx 1.4 million relationship 
entries defining these. All concepts are organ-
ized in an acyclic hierarchy using the “is-a” 
relationship and concepts can have multiple 
parents (as opposed to most statistical clas-
sification systems that only support a sin-
gle parent child relationship). Additionally, 
SNOMED-CT offers more than 60 other rela-
tionship types for example finding site, caus-
ative agent and associate morphology.

Subsets of SNOMED-CT components (e.g. of 
concepts, their descriptions and relationships 
between concepts) can be represented using a 
standardized approach enabled by Reference 
Sets. Reference Sets are commonly used to pro-
vide a subset of the terminology that has been 
curated to serve a particular process and to ena-
ble the standardized recording of clinical data at 
the point of care (for example, in an emergency 
department [29]).

Precoordination and Postcoordination of 
Concepts
Complex clinical information can often be rep-
resented by combinations of multiple concepts 
or modifiers for example “chronic migraine”, 
“major depression with psychotic symptoms”, 
“recurrent deep vein thrombosis” or “accidental 
burning or scalding caused by boiling water”. 
The concepts can contain information on the 
chronicity, morphology, severity or other aspect 

Table 2   Example SNOMED-CT concept core 
components

Fully specified name Heart failure (disorder)
SCTID 84,114,007
Synonyms Heart failure

Myocardial failure
Weak heart
Cardiac failure
Heart failure (disorder)
HF—Heart failure
Cardiac insufficiency

Parents Disorder of cardiac function 
(disorder)

Finding site 
(relationship)

Heart structure

Table 3   Selected top level SNOMED hierarchy concepts and examples (based on the SNOMED-CT UK hierarchy 
[30])

Name Example
Body structure 83,419,000 Femoral vein structure (body structure)
Clinical finding 1,362,251,000,000,108 Recurrent bleeding from nose (finding)
Environment or geographical location 285,201,006 Hospital environment (environment)
Event 419,620,001 Death (event)
Procedure 414,089,002 Emergency percutaneous coronary intervention 

(procedure)
Qualifier value 90,734,009 Chronic (qualifier value)
Situation with explicit context 406,140,001 Discussion about care plan with family (situation)
Social concept 236,324,005 Factory worker (occupation)
Specimen 258,583,001 Bone marrow clot sample (specimen)
Staging and scales 1,077,341,000,000,105 Diagnosing Advanced Dementia Mandate 

Tool (assessment scale)
Substance 447,208,001 Alcaftadine (substance)
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of the information being recorded. Clinical ter-
minologies have traditionally tried to enable 
the recording of such information by creat-
ing and providing terms for them, a process 
often referred to as precoordination. The 
core SNOMED-CT ontology contains approx 
350.000 precoordinated concepts as they are 
available upfront for use. The use of precoor-
dinated concepts greatly improves the storage 
and manipulation of information as it effectively 
reduces the dimensionality of the data (i.e. the 
use of one concept versus the use of multiple 
concepts to record the same data point).

The approach of offering precoodinated con-
cepts for any possible combination of clinically 
meaningful concepts however does not scale 
given the complex, highly heterogeneous, and 
multidisciplinary nature of health and healthcare. 
For example, it would be unreasonable to expect 
a precoordinated term for “third degree burn of 
left index finger caused by hot water”. To enable 
the recording of complex concepts in a machine 
readable manner, SNOMED-CT offers a compo-
sitional grammar (Fig. 1) [31] that can be used 
to combine multiple concepts together into clini-
cal expressions that are more accurate as opposed 
to only using a single concept. The created con-
cepts are referred as “postcoordinated” as they 
are not available upfront in the ontology but have 
been created a posteriori. Postcoordination how-
ever introduces considerable challenges, both in 
terms of data recording by clinicians, storage and 
retrieval of information and significantly increases 
the complexity of the underlying data [32].

2.2	� International Classification 
of Disease (ICD)

The 10th edition of the International Classification 
of Disease (ICD), commonly referred to as 

ICD-10, is maintained and published by the WHO 
and is the most commonly used statistical classifi-
cation system worldwide. The 11th edition of ICD 
(ICD-11) officially came was adopted by the 72nd 
World Health Assembly in 2019 and came into 
effect on 1st January 2022 [34]. While the WHO 
maintains the core ICD system, individual coun-
tries often develop and deploy their own branches 
which are adapted to their own needs by often 
including additional terms or other changes. For 
example, secondary healthcare providers in the 
US make use of ICD-10 Clinical Modifications 
(ICD-10-CM) for discharge summaries and reim-
bursement purposes which is maintained by the 
US Centres for Disease Control and Prevention 
(CDC) [35] (Table 4).

ICD-10 is organized in 21 top level chapters 
which represent disease systems and are denoted 
by roman numerals e.g. chapter IX contains 
terms related to diseases of the circulatory sys-
tem. Terms within each chapter are often organ-
ized in one or more blocks which define a range 
of codes e.g. block I20-I25 encapsulates terms 
related to ischaemic heart disease. Individual 
ICD-10 terms can have up to seven characters. 
All ICD-10 codes always begin with a letter that 
is associated with the chapter which they belong 
to e.g. codes related to circulatory diseases 
begin with the character “I”. This is followed by 
one or two numbers which further specify the 
category of the diagnosis. The remaining char-
acters indicate the disease aetiology, anatomic 
site, severity or other relevant clinical detail. 
The first three characters are separated by the 
remaining characters by a decimal character. 
Within individual codes, the 5th or 6th charac-
ter length codes represent terms with the highest 
level of specificity. In certain disease chapters 
such as obstetrics, a 7th character can be used to 
denote the type of encounter (e.g. initial vs. sub-
sequent). Within three and four character codes, 

Fig. 1   Example of the SNOMED-CT compositional syntax used to create a postcoordinated concept which can be 
used to record a third degree burn caused by hot water of the left index finger (Source WIkipedia [33])
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a “rubric” often denotes a number of other diag-
nostic terms that are associated with that code 
such as other related syndromes, synonyms for 
the disease or common terms. Finally, when a 
conclusive diagnosis was not possible, for exam-
ple when the presenting symptoms did not meet 
the diagnostic criteria for one of the existing 
defined codes in the hierarchy, generic, broader 
“Not Otherwise Specified” codes can be used 
e.g. “I50.9 Heart failure, unspecified”.

Working Across ICD Versions
A key challenge of working with longitudinal 
data that has been recorded using ICD is deal-
ing with different versions of the same coding 
system e.g. ICD-9 and ICD-10 [36]. Major new 
versions of an ontology will, by definition, con-
tain a substantial amount of new entities that can 
be used to record information (e.g. ICD-9-CM 

contains 13,000 codes while ICD-10-CM con-
tains 68,000 codes) which will often be organ-
ized differently. As a result, there are often many 
additional codes (and often in higher fidelity 
than before) that can be used to define clinical 
concepts.

To enable this translation of data between 
ICD versions, the Centers for Medicare & 
Medicaid Services (CMS) curates and provides 
a set of General Equivalent Maps (GEMs, these 
are often referred to as crosswalks) [37]. GEMs 
can provide forward maps (e.g. ICD-9-CM to 
ICD-10-CM) and backward maps (e.g. ICD-
10-CM to ICD-9-CM). The use of GEMs how-
ever is not straightforward as newer concepts 
that exist in ICD-10-CM might not always exist 
in ICD-9-CM and some ICD-9-CM concepts 
might map to a combination of more than one 
ICD-10-CM codes. For example, the ICD-9-CM 

Table 4   Comparison of ICD-10 and ICD-10-CM terms used to record heart failure

ICD-10-CM ICD-10
I50.1 Left ventricular failure, unspecified
I50.2 Systolic (congestive) heart failure
         I50.20 Unspecified systolic (congestive) heart failure
         I50.21 Acute systolic (congestive) heart failure
         I50.22 Chronic systolic (congestive) heart failure
         I50.23 Acute on chronic systolic (congestive) heart failure
I50.3 Diastolic (congestive) heart failure
         I50.30 Unspecified diastolic (congestive) heart failure
         I50.31 Acute diastolic (congestive) heart failure
         I50.32 Chronic diastolic (congestive) heart failure
         I50.33 Acute on chronic diastolic (congestive) heart failure
I50.4 Combined systolic (congestive) and diastolic (congestive) heart failure
         I50.40 Unspecified combined systolic (congestive) and diastolic (congestive) 
heart failure
         I50.41 Acute combined systolic (congestive) and diastolic (congestive) heart 
failure
         I50.42 Chronic combined systolic (congestive) and diastolic (congestive) heart 
failure
         I50.43 Acute on chronic combined systolic (congestive) and diastolic (conges-
tive) heart failure
I50.8 Other heart failure
         I50.81 Right heart failure
         I50.810 …… unspecified
         I50.811 Acute right heart failure
         I50.812 Chronic right heart failure
         I50.813 Acute on chronic right heart failure
         I50.814 …… due to left heart failure
         I50.82 Biventricular heart failure
         I50.83 High output heart failure
         I50.84 End stage heart failure
         I50.89 Other heart failure
I50.9 Heart failure, unspecified

I50.0 Congestive heart 
failure
I50.1 Left ventricular failure
I50.9 Heart failure, 
unspecified
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code “250.10 Diabetes with ketoacidosis, type II 
or unspecified type, not stated as uncontrolled” 
can potentially map to “E11.69 Type 2 diabe-
tes mellitus with other specified complication” 
or “​​E13.10 Other specified diabetes mellitus 
with ketoacidosis without coma” ICD-10-CM 
codes. In their work, Fung et al. [38] show that 
the majority of ICD-10-CM codes are not rep-
resented in the forward map, and a significant 
portion of ICD-9-CM codes (25%) are not rep-
resented in the backward map e.g. the backward 
map provides 78,034 unique pairs of ICD-9-CM 
and ICD-10-CM codes (over three times more 
than the forward map), of which only 18,484 
pairs (23.7%) are also found in the forward map.

Other Clinical Terminologies and Ontologies
A plethora of other clinical ontologies and ter-
minologies exist that are used to record informa-
tion related to health and healthcare. Information 
on drugs and medical devices is captured by 
RxNorm [39] in the US and the Dictionary of 
Medicines and Devices (DM+D) in the UK [40]. 
Similarly, surgical procedures and interven-
tions in the US are recorded using the Current 
Procedural Terminology (CPT) [41] while in the 
UK using the Office of Population Censuses and 
Surveys Classification of Surgical Operations and 
Procedures, 4th revision (OPCS-4) classification 
which is maintained by the NHS [42]. Molecular 
pathology testing data and metadata can be 
standardized by using the LOINC (Logical 
Observation Identifier Names and Codes) ontol-
ogy [43]. Semi-structured data, such as reports 
from investigative radiology procedures, can also 
contain clinically significant information that 
can benefit from harmonization and a bespoke 
ontology, RadLex, has been created to enable the 
standardized recording of entities [44].

3	� Defining Diseases in Electronic 
Health Records

EHR data offer a rich source of information for 
research as they capture a diverse set of infor-
mation on diagnoses, laboratory measurements, 
procedures, symptoms, medication prescriptions 

alongside metadata related to healthcare delivery 
such as referrals. The process of transforming 
raw EHR data and extracting clinical informa-
tion for research is referred as phenotyping and 
involves the creation of algorithms (referred to 
as phenotyping algorithms) that can either be 
deterministic (rule based) or probabilistic [2]. 
Rule-based algorithms often combine multiple 
pieces of information, alongside logic rules, to 
identify patients with a given disease [42].

The use of EHR however for research is asso-
ciated with significant challenges as the data are 
often fragmented, recorded using different con-
trolled clinical terminologies and have variable 
data quality and completeness [45]. Importantly, 
the purpose and processes in which data are 
generated and captured varies significantly. For 
example, primary care EHR are generated by 
the clinician for direct patient care but are influ-
enced by local clinical guidelines while second-
ary care claims data are recorded by clinical 
codes which in turn operate based on a prede-
fined coding protocol. This in turn might influ-
ence how data are recorded within each source 
and how data should be merged across sources 
[46]. For example, a study comparing the 
recording of non-fatal myocardial infarctions 
(AMI) in linked data from primary care, hospi-
talization records and a myocardial ischaemia 
national audit observed that only a third of AMI 
events were recorded in all three sources [47]. 
As a result of these challenges, researchers must 
both study the underlying processes that gener-
ate the data and perform robust validation across 
multiple layers of evidence.

3.1	� The Need for Aggregated Code 
Representations

One of the many challenges of working with 
coded data is that related concepts (e.g. all mani-
festations of a particular disease) can be frag-
mented across the terminology used to record 
information. For example, tuberculosis related 
diagnoses in ICD-10 occur in four different 
ICD chapters (e.g. infections, skin diseases, dis-
eases of the genitourinary system and diseases 
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of the musculoskeletal and connective tissue). 
Furthermore, when working with longitudi-
nal data, researchers have to deal with changes 
within clinical terminologies and changes 
related to new major versions of ontologies such 
as the transition of ICD-9-CM to ICD-10-CM 
or SNOMED-CT concepts becoming inactive 
and replaced by newer alternative concepts. As 
a result, the creation of phenotyping algorithms 
to define diseases in complex EHR becomes sig-
nificantly more challenging and requires a sig-
nificant amount of resources.

To enable the scalable definition of diseases 
in EHR, using all available ICD diagnosis codes, 
a layer above source ICD codes has been devel-
oped by Bastarache et al. [48] that provides phe-
notype codes (phecodes) grouppings. Phecodes 
were originally developed in ICD-9-CM and 
derived partially from the Agency for Healthcare 
Research and Quality Clinical Classification 
Software for ICD-9-CM (CCS) [49]. Phecodes 
are manually curated, hierarchically organized 
groupings of ICD codes aiming to capture com-
mon adult diagnoses to facilitate phenome-wide 
genetic association studies (PheWAS) [50]. 
Phecodes version 1.2 condenses roughly 15,500 
ICD-9-CM codes and 90,000 ICD-10-CM 
codes into 1867 phecodes. Subsequent research 
mapped phecodes to ICD-10 and ICD-10-CM 
codes [51] and phecodes have been shown to 
produce robust genotype–phenotype associa-
tions compared with other relevant approaches 
[52].

3.2	� Bridging Molecules 
to Phenotypes

Phenotypes typically require aggregation of 
structured data fields in clinical records as 
described in the preceding section. Phenotypic 
inferences can be made based on an interpreta-
tion of lab test results, medications prescribed, 
diagnoses, and clinical notes. To make such 
inferences using a programmatic approach 
requires connecting phenotypes to structured 
representations of those clinical record elements. 
The OBO Foundry includes relevant ontologies 

for bridging molecules to phenotypes. The 
Chemical Entities of Biological Interest 
(ChEBI) ontology covers molecules and their 
roles while the Drug Ontology (DrON) cap-
tures the relationships between the molecules 
defined in ChEBI and the drugs where the mol-
ecules are active ingredients and also links to 
RxNorm terms (from the National Library of 
Medicine [39]). The human disease ontology 
(DO) has database-cross references to ICD-9 
and ICD-10 codes as well as to SNOMED. The 
Monarch Disease Ontology (MonDO [53]) con-
nects DO with additional disease resources (e.g., 
Orphanet [54], OMIM [55]). Genotyping results 
can be interpreted through the Gene Ontology 
(GO [56]) to identify the processes affected 
by mutations. The Ontology for Biomedical 
Investigations (OBI) [19] can be used to link 
lab test results with specimens and assays. 
Anatomy-based data can be interpreted through 
Uberon [57], a species neutral anatomy ontol-
ogy, or the Foundational Model of Anatomy 
(FMA [58]) which is focused on human anat-
omy. The Human Phenotype Ontology [59] pro-
vides representation of phenotypes and connects 
to many of these listed OBO Foundry ontologies 
as well as clinical terminologies.

4	� Application of Standards to Aid 
Machine Learning

Representing words as numerical vectors 
based on the contexts in which they appear has 
become the de facto method of natural lan-
guage processing approaches. A survey of word 
embeddings for clinical text provides some good 
pointers on other approaches [60].

Learnt representations of controlled clini-
cal terminologies can be used as the basis for 
features in machine learning. In order to uti-
lize the information located in free text, it has 
to be converted to structured representation. 
This transformation however needs to take into 
consideration the structure of the clinical termi-
nology itself as it provides essential contextual 
information. Artificial Intelligence approaches 
are increasingly being used to learn and predict 
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phenotypes. An example of deep learning 
applied to EHR records is BEHRT [61], a deep 
neural sequence transduction model capable 
of simultaneously predicting the likelihood of 
301 phenotypes (originally developed in the 
CALIBER resource [62]) in a patient’s future 
visits. When trained and evaluated on the data 
from nearly 1.6 million individuals, BEHRT was 
able to show a striking improvement in terms of 
average precision scores for different tasks over 
the existing state-of-the-art deep EHR models. 
In addition to its scalability and improved accu-
racy, BEHRT enables personalized interpreta-
tion of its predictions. Its flexible architecture 
enables it to incorporate multiple heterogeneous 
concepts (e.g., diagnosis, medication, measure-
ments, and more) to further improve the accu-
racy of its predictions; its (pre-)training results 
in disease and patient representations can be 
useful for future studies (i.e., transfer learning).

Tensor factorization methods such as 
Limestone and Granite have also provided phe-
notype predictions [63, 64]. EHR data do not 
always directly and reliably map to medical con-
cepts that clinical researchers need or use. Some 
recent studies have focused on EHR-derived 
phenotyping, which aims at mapping the EHR 
data to specific medical concepts; however, 
most of these approaches require labor inten-
sive supervision from experienced clinical pro-
fessionals. Furthermore, existing approaches 
are often disease-centric and specialized to the 
idiosyncrasies of the information technology 
and/or business practices of a single healthcare 
organization. Limestone [64], a nonnegative ten-
sor factorization method to derive phenotype 
candidates with virtually no human supervision. 
Limestone represents the data source interac-
tions naturally using tensors (a generalization 
of matrices) and investigates the interaction of 
diagnoses and medications. The resulting tensor 
factors are reported as phenotype candidates that 
automatically reveal patient clusters on specific 
diagnoses and medications. Using the proposed 
method, multiple phenotypes can be identified 
simultaneously from data.

Standards in the form of biomedical ontol-
ogies can be used directly for analysis of 

annotated data. The most visible form of this 
approach is in the enrichment analysis of gene 
expression data using annotations of proteins 
and genes with the Gene Ontology. Those anal-
yses while very successful do not take advan-
tage of relationships encoded in the ontologies. 
Recent work has been done however using 
ontology-based network analysis and visualiza-
tion for COVID-19 analysis [65]. In a similar 
vein, in the AI-driven cell ontology brain data 
standards project, ontologies are being used 
to capture results of analysis and learn more 
through reasoning [66].

Knowledge graphs provide the ability to con-
nect clinical terminologies and encodings in 
EHR with biomedical ontologies and standards. 
For example, a knowledge graph framework has 
been developed for COVID-19 focused around 
molecular and chemical information, enabling 
users to conduct complex queries over relevant 
biological entities as well as machine learn-
ing analyses to generate graph embeddings for 
making predictions. This framework can also 
be applied to other problems in which siloed 
biomedical data must be quickly integrated for 
different research applications, including future 
pandemics [67].

5	� Future directions

The proper use of standards is an active area of 
research. In a recent call for proposals, the issue 
of relating real-world data (RWD) (e.g., EHR, 
claims, and digital health technologies) between 
different sources was raised as not just an issue 
of mapping but also transforming the data and 
the underlying definition of its meaning as these 
can be similar but not identical. Even if stand-
ards are used, proper use of data from multiple 
sources will rely heavily on human interpreta-
tion and efforts are still needed for fully reliable 
computer-driven approaches. In this chapter, 
the emphasis has been on data for phenotyping. 
The same concerns and considerations about the 
choice and application of standards need to be 
applied for genotyping and genomics. Linkages 
of this type of data to clinical terminologies are 
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either non-existent or in their infancy. There 
are standards for file formats and some rele-
vant OBO Foundry ontologies exist (e.g., OBI, 
Sequence Ontology[68]) which should aid the 
ultimate goal of combining phenotyping and 
genotyping/genomics.

A fundamental difference between clini-
cal terminologies/coding systems such as 
SNOMED-CT and ICD with OBO Foundry 
ontologies such as the Basic Formal Ontology 
(BFO) or the Disease Ontology (DO) is the 
modeling approach. SNOMED and ICD are 
representing information collected by a health 
care worker whereas BFO and DO are represent-
ing what happened or exists in the world. The 
former fits well with data models while the lat-
ter provides a common grounding in reality. It 
remains a challenge to leverage the benefits of 
both clinical standards like SNOMED-CT and 
OBO Foundry ontologies. SNOMED has greater 
adoption in the clinical area but lacks the seman-
tic rigor and breadth (for example in genomic 
technologies) than OBO Foundry ontologies. 
The use of database cross-references in OBOF 
ontologies to SNOMED-CT does provide a 
bridge.

Resources for further reading:
We provide below several resources for further 
reading on topics covered in this chapter:

•	 Bodenreider and colleagues [69] provide an 
excellent overview and discussion of recent 
developments in SNOMED-CT, LOINC and 
RxNorm.

•	 Aspden and colleagues discuss the topic of 
healthcare data standards in depth and pro-
vide examples of their application in health-
care [7].

•	 Standards are by their nature about classes 
of concepts. However, when working with 
RWD, attention needs to be placed on their 
application to instances to establish when the 
diagnosis or even the patient being referred to 
is the same or different. This topic is covered 
in detail by Ceuster [70].

•	 Practical applications and theoretical back-
ground for applied ontology especially in the 

biomedical area can be found in Smith, Arp, 
and Spears Building Ontologies with Basic 
Formal Ontology [71].

•	 Hemingway and colleagues provide a detailed 
overview with examples on how electronic 
health records are utilized for early and late 
translational cardiovascular research [72].
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