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informative missingness and repeated obser-
vations. Finally, we introduce alternative 
methods to address incomplete data without 
the need for imputation.
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1  Introduction

1.1  Quality Control

Increasingly often, researchers have access to 
data collected from the routine clinical practice 
with information on patient health or the deliv-
ery of health care from a variety of sources other 
than traditional clinical trials [1, 2]. These data 
are also known as Real World Data (RWD). 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
F. W. Asselbergs et al. (eds.), Clinical Applications of Artificial Intelligence in Real-World Data, 
https://doi.org/10.1007/978-3-031-36678-9_2

Abstract

This chapter addresses important steps during 
the quality assurance and control of RWD, 
with particular emphasis on the identifica-
tion and handling of missing values. A gentle 
introduction is provided on common statisti-
cal and machine learning methods for impu-
tation. We discuss the main strengths and 
weaknesses of each method, and compare 
their performance in a literature review. We 
motivate why the imputation of RWD may 
require additional efforts to avoid bias, and 
highlight recent advances that account for 
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strong justification to consider and select appro-
priate analytical methods for handling missing 
data.

1.2  Data Preparation

The analysis of RWD often necessitates multiple 
preprocessing steps to create a meaningful and 
analyzable dataset from the raw data. In general, 
we can distinguish between three types of pre-
processing steps: data integration, data cleaning, 
and data transformation.

The first step is to identify and integrate rel-
evant sources of data (e.g. hospital registries, 
administrative databases) such that all informa-
tion of interest becomes available for the stud-
ied individuals. These data may, for instance, 
include information on signs and symptoms, dis-
eases, test results, diagnoses, referrals, and mor-
tality. Sometimes, it is also possible to retrieve 
information from unstructured data sources 
including texts, audio recordings, and/or images 
(Ref Chap. 8 on text mining). When multiple 
sources of data are available, it is possible to 
check for duplicate or inconsistent information 
across data sources, and thus the accuracy of the 
data can be assessed. Strategies for data integra-
tion are discussed in Ref Chap. 7 on data inte-
gration. Once all relevant data sources have been 
integrated, it is important to select those individ-
uals that are eligible for the intended analysis. 
The selection requires the identification of the 
target population, and is often based on disease 
status or combinations of information (e.g. mor-
bidity code with relevant prescription or results 
from a diagnostic test). In addition, it is help-
ful to define relevant time points, including the 
starting time (also known as index date or base-
line) and endpoint (e.g., the outcome of interest) 
of the study. Although measurements at other 
time points can be discarded from the dataset, 
this information can sometimes be used to facili-
tate risk prediction or missing data imputation 
(Sect. 6.2). When repeated measurements are 
available for one or more variables, they can 
be formatted using two approaches [13]. One 

Some examples of RWD include administrative 
databases or clinical registries with electronic 
healthcare records (EHR), which contain infor-
mation on patient characteristics, admission 
details, treatment procedures and clinical out-
comes [3].

The generation and collection of RWD is 
often pragmatic, and limited efforts are made 
to control the data collection scheme or infor-
mation flow. The quality of RWD thus can vary 
dramatically across clinical domains and indi-
vidual databases [4–8]. For example, health care 
records are often incomplete and may contain 
information that is inaccurate or even inconsist-
ent with other data sources [9, 10]. It is there-
fore imperative that studies involving RWD 
investigate the nature of recorded information 
to improve their quality, raise awareness on 
their strengths and weaknesses, and take these 
into account to facilitate valid inference on the 
research question at hand.

Although there is no formal framework to 
assess the quality of RWD, it is common to 
focus on at least three domains: accuracy, time-
liness and completeness [11]. Data accuracy 
relates to the validity of individual data entries 
[12]. It is typically assessed by examining dis-
tributional properties of the observed data (e.g., 
mean, standard deviation, range) and comparing 
this information with other sources (e.g., pre-
viously published population characteristics). 
Timeliness refers to the degree to which the 
available data represent reality from the required 
point in time. Problems can arise when recorded 
observations (e.g. taken after surgery) do not 
adequately reflect the patient’s health state at 
the intended measurement time (e.g. before sur-
gery). Finally, completeness represents the exist-
ence and amount of missing data.

In this chapter, we first briefly discuss 
important preprocessing steps in data qual-
ity assurance and quality control (QA/QC). 
Subsequently, we focus on the handling of 
missing data. As RWD is typically incomplete 
when missing values are not handled properly, 
straightforward analysis will very likely lead 
to misleading conclusions. As such, there is a 

http://dx.doi.org/10.1007/978-3-031-36678-9_8
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approach is to code observations made at differ-
ent time points as separate columns, leading to 
a so-called “wide format”. This approach works 
well when the repeated measurements occur at 
regular time intervals, which is rather uncom-
mon for RWD. A second approach is to record 
repeated information as separate rows, and to 
include a “time” variable that indicates when the 
measurements were taken. This approach is also 
known as the “long format”.

As a second step in data preprocessing, it is 
recommended to inspect the constructed dataset 
and to generate descriptive summaries such as 
the mean, standard deviation, range and amount 
of missing values for each variable [14]. This 
information can be used to assess completeness 
of the data and to identify outliers with impos-
sible or extreme values. When invalid measure-
ments or recordings are detected, corresponding 
values can be treated as missing data and subse-
quently be recovered using imputation methods. 
Alternatively, in case of extreme but valid val-
ues, the analysis may be rendered more robust 
to outliers by windsorizing (i.e., observations 
are transformed by limiting extreme values) 
or trimming (i.e., simply discarding extreme 
observations). Such methods always cause a 
loss of information, and their use should be 
guided by good reasons to reduce the influence 
of such observations. This will heavily depends 
on the analysis of interest. For instance, mean 
and variance measures are heavily affected by 
outliers, but the median is not affected at all. 
Unfortunately, it is often difficult to assess the 
validity of individual measurements. For this 
reason, researchers may sometimes consider 
analysis methods that directly account for the 
(potential) presence of measurement error in 
the entire dataset during model estimation (Ref 
Chap. 9 on measurement error).

Finally, in the last step, data transformations 
can be performed. For instance, it is sometimes 
helpful to transform continuous variables (e.g., 
in line with model assumptions or to improve 
numerical stability), to re-code categorical vari-
ables (e.g., dummy coding to allow unordered 
and non-equidistant steps between catego-
ries), or to collapse multiple variables into an 

aggregate measure (i.e., data reduction). Further, 
when the focus of a study is on the development 
of a prediction model, it is necessary to set up a 
training and validation set. Although it is com-
mon to randomly split the data into two parts, 
resampling methods have been recommended to 
make better use of the data in terms of bias and 
efficiency (Ref Chap. 15 on model evaluation).

2  Missing Data

Pre-processing often brings to light that records 
in some data fields are missing. This requires 
careful consideration since it may indicate loss 
of information and almost surely affects the 
analysis and the subsequent interpretation of 
findings. The degree to which this is the case 
primarily relates to the type of missing data. 
Therefore, first and foremost, it is important to 
try to understand why data are missing, as this 
will guide any further processing.

2.1  Types of Missing Data 
Mechanisms

In the broadest sense, there two large groups of 
missing data mechanisms.

The first group relates to situations where 
data cannot or should not be measured. For 
example, it is not possible to assess tumor 
characteristics or disease severity for healthy 
patients. Although the absence of any measure-
ments could here be identified and treated as a 
missing data problem, this strategy should be 
avoided because it fails to address the fact that 
no information is actually missing.

The second group arises when variables 
could have been measured but were not recorded 
(i.e., information is actually missing). It is, for 
instance, possible that observations are missing 
because no measurements were taken or because 
available measurements were considered inva-
lid or not correctly recorded. Alternatively, it 
is possible that data collection is complete for 
individual patients. However, when data are 
combined across patients or clinical centers, key 

http://dx.doi.org/10.1007/978-3-031-36678-9_9
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variables may become incomplete. When trying 
to understand the consequences of these miss-
ing data and to guide the best way forward, it is 
helpful to distinguish between three mechanisms 
by which missing data can arise [15]: Missing 
Completely At Random (MCAR), Missing At 
Random (MAR), and Missing Not At Random 
(MNAR).

Briefly, MCAR occurs when the probability 
that a certain type of measurement is missing 
does not depend on the values of either observed 
or missing data. This directly implies that miss-
ingness is not related to any of the recorded 
data and that records with missing data do not 
form any special group. As an example, physi-
cal examination records can be lost due to an 
administrative computer error. There are no 
measures, either observed or unobserved, that 
explain missingness for these particular cases: 
missingness is said to be completely at random.1

In MAR, the probability that a variable is 
missing differs across records based on the val-
ues of observed data. For example, a particular 
type of diagnostic measure may be ordered more 
often upon certain blood sample deviations. If 
these data are indeed missing at random (MAR), 
this means that the probability that a value is 
missing is again completely at random within 
subgroups with the same blood sample analy-
sis. That is, after taking observed blood sample 
measures into account, there is no further infor-
mation that predicts missingness.

Lastly, MNAR describes the situation that 
the probability that a certain type of measure-
ment is missing is associated with unobserved 
data. For instance, if certain measures are more 
often performed in those with a high suspicion 
of an unfavorable outcome, but this suspicion 
cannot be derived from other measures that 

were observed and recorded in the database. An 
important particular case is where missingness 
depends on the value of the measure being miss-
ing itself. For instance, alcoholics might be less 
likely to respond to a questionnaire on alcohol 
intake.

The distinction between these types of miss-
ing data mechanisms is helpful when think-
ing about the inferences one can make based 
on the observed data only, without modelling 
the missing data mechanism itself. As it turns 
out, several methods can obtain unbiased infer-
ence when the MAR assumption holds without 
explicitly modelling the missing data mecha-
nism2 (See Sect. 4). Although MAR is often a 
useful and sometimes convenient assumption 
from a statistical point of view, the analysis of 
incomplete data will often need to be supple-
mented by sensitivity analyses that allow for a 
more complex missingness mechanism [16]. 
Methods for this purpose are discussed in more 
detail in Sect. 6.

2.2  Types of Missing Data Patterns

The manifestation of missing values (regard-
less of their cause) can be classified into differ-
ent patterns, each of which requires a different 
analysis approach. We here focus on common 
patterns that arise when analyzing RWD.

Real world data are often collected over a 
period of time and may therefore contain mul-
tiple observations for one or more variables. 
When data are incomplete, it is helpful to dis-
tinguish between monotone (e.g., dropout) and 
non-monotone (intermittent) patterns of miss-
ingness (Fig. 1). The dropout pattern occurs 
when a variable is observed up to a certain 

1 The notion of ‘completely at random’ is intended to 
mean: not depending on any observed or missing val-
ues out of the measures analyzed. Therefore, is does 
not have to imply that the missing data pattern is totally 
unsystematic; it may for instance relate to a measure that 
is not measured and not of interest for the final analysis. 
Therefore, the definition of MCAR (and equivalently 
MAR and MNAR) depends on the set of variables of 
interest.

2 In the likelihood and Bayesian paradigm, and when 
mild regularity conditions are satisfied, the MCAR and 
MAR mechanisms are ignorable, in the sense that infer-
ences an proceed by analyzing the observed data only, 
without explicitly addressing the missing data mecha-
nism. In this situation, MNAR mechanisms are nonignor-
able. Note that in frequentist inference the missingness is 
generally ignorable only under MCAR [92].
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time-point, and missing thereafter [17]. This 
situation may, for instance, occur when an indi-
vidual leaves the study prematurely or dies. 
More generally, a missing data pattern is said to 
be monotone if the variables can be sorted con-
veniently according to the percentage of missing 
data [18]. Univariate missing data form a special 
monotone pattern. The presence of monotone 
missingness offers important computational sav-
ings and can sometimes be addressed using like-
lihood-based methods (Sect. 5.2). Conversely, 
the intermittent pattern occurs when an observed 
value occurs after a missing value. Because 
the collection of RWD is often driven by local 
healthcare demands, measurements tend to be 
unavailable for time points that are of primary 
interest to researchers. Intermittent patterns of 
missingness are therefore relatively common for 
variables that were measured at multiple occa-
sions. In Sect. 6.2, we discuss dedicated impu-
tation methods to address these non-monotone 
patterns of missingness.

Real-world data originating from multiple 
sources (e.g., hospitals, or even countries) tend 
to be clustered, with distributions and effects 
that may differ between clusters. In this con-
text, one can distinguish between data values 
that are sporadically missing (at least some val-
ues available in each cluster) and those that are 

systematically missing (not measured at all in a 
particular cluster) [18–20]. Systematically miss-
ing data are more common when combining 
routinely collected data from multiple different 
sources, such as in claims databases. Also, in a 
pharmacoepidemiologic multi-database stud-
ies, there is a high likelihood of missing data 
because the multiple databases involved may 
record different variables [21, 22]. Sporadically 
missing values often occur and are just the 
within cluster counterpart of usual missing data. 
This also leads to the main advantage of deal-
ing with just sporadically missing data. Since 
at least some information on the joint distribu-
tion of the data is available in each cluster, regu-
lar missing data methods can be implemented 
within clusters if they have sufficient size. In 
contrast, more evolved missing data meth-
ods that accommodate the clustered nature of 
the data are necessary to handle systematically 
missing data. A detailed account of missing data 
methods designed for clustered data is available 
elsewhere [18–20].

2.3  A Bird’s Eye View on Missing 
Data Methods

Datasets that are collected in real-world settings 
are typically large and complex. They are large 
not only in the sense of the number of individu-
als, but also in terms of the number of collected 
variables. At the same time, the structure of 
RWD also tends to be very complicated. It gen-
erally has mixed variable types, containing con-
tinuous, categorical and time-to-event variables, 
some of which could have very sophisticated 
relationships. It is also common that many varia-
bles have missing values and that some variables 
are incomplete for most individuals. Moreover, 
when missingness occurs, it is often difficult to 
determine whether the missing data mechanism 
is MCAR, MAR or MNAR. Instead, it is very 
likely that all three missing data mechanisms 
co-exist in the dataset. The validity of analy-
ses involving RWD will therefore often depend 
highly on whether missing data were handled 
appropriately.

Fig. 1  Illustration of missing data patterns in multivari-
able data. Each row represents the measurements for a 
unique patient or timepoint. Columns represent indi-
vidual variables. Missing values are displayed in red, 
observed values are displayed in blue
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Fortunately, several strategies exist to address 
the presence of missing data. In this chapter, we 
focus on imputation methods which can address 
many of the aforementioned challenges. These 
methods replace the missing values by one 
(single imputation, see Sect. 3) or more (mul-
tiple imputation, see Sect. 4) plausible values. 
Imputation avoids the need to discard patient 
records and separates the missing data problem 
from the substantive analysis problem (e.g., esti-
mation of a causal effect or predictive model). 
This implies that imputed data can be analysed 
using standard methods and software, and as 
such be directly available for inference (e.g., 
parameter estimation or hypothesis testing) and 
the generation of risk predictions. However, as 
we discuss later in this chapter, single imputa-
tion methods are best avoided in most settings 
because they are not capable of preserving 
uncertainty about the missing values and their 
imputation [23]. We therefore recommend more 
advanced approaches that are based on mul-
tiple imputation (Sect. 4) or avoid imputation 
altogether (Sect. 5). These methods can mainly 
be applied when data are MCAR or MAR. 
When the missingness mechanism is MNAR 
or unknown, additional methods need to be 
employed (Sect. 6.1).

Traditional methods for multiple imputation 
have been studied extensively in the literature, 
and are briefly summarized in Sects. 4.1 and 4.2. 
More recently, numerous imputation methods 
have also been proposed in the field of machine 
learning [24]. Although these methods tend to be 
relatively data hungry, they offer increased flex-
ibility and may therefore improve the quality of 
subsequent analyses (Sect. 4.3). To evaluate the 
potential merit of advanced imputation methods, 
we embarked on a literature review and focused 
on imputation methods that are well-suited to 
handle mixed data types, a large number of 
both cases and variables, and different types of 
missing data mechanisms. Briefly, we searched 
relevant publications on PubMed and ArXiv 
that describe quantitative evaluations of miss-
ing data methods. Initially, we identified 15 rel-
evant papers based on our own experience in the 
field. These papers compared several statistical 

and machine learning imputation techniques and 
were used to inform an active learning literature 
review. To this purpose, we used the software 
ASReview, a machine-learning framework that 
facilitates the screening of titles and abstracts 
[25, 26]. To achieve full merit of the framework, 
a ‘stopping criterion’ is required–in our case 
when the software had selected all 15 priory 
identified publications. A flow diagram of the 
review methods is presented in Fig. 2. We made 
use of the following eligibility criteria:

• Inclusion criteria: the paper concerns 
an evaluation of missing data methods 
through simulation; the paper matches the 
search query “(simulation[Title/Abstract]) 
AND ((missing[Title/Abstract]) OR 
(incomplete[Title/Abstract]))”; the paper is 
selected by ASReview before the stopping 
criterion is reached.

• Exclusion criteria during abstract screening: 
the paper does not concern an evaluation of 
missing data methods through simulation; the 
paper concerns a datatype that deviates from 
typical EHR data (e.g., imaging data, free 
text data, traffic sensor data); the paper only 
concerns (variations of) the analysis model, 
not the imputation model; the paper only con-
cerns (variations of) one missing data method.

• Exclusion criteria during full text screen-
ing (all of the above, plus): the paper only 
concerns two missing data methods, one of 
which is complete case analysis; the paper 
only concerns single-patient data; the paper 
only concerns a MCAR missingness mecha-
nism (equivalently, the paper does not con-
cern MAR, MNAR or empirical missingness 
mechanisms).

After omitting duplicates and removing 
papers that did not meet the eligibility cri-
teria, we obtained 67 publications. These 
are listed on zotero.org/groups/4418459/
clinical-applications-of-ai/library.

Based on the aforementioned considera-
tions, we decided to focus on five types of 
machine learning methods that can be used for 
imputation: nearest neighbour methods, matrix 

https://www.zotero.org/groups/4418459/clinical-applications-of-ai/library
https://www.zotero.org/groups/4418459/clinical-applications-of-ai/library


13Quality Control, Data Cleaning, Imputation

completion, support vector machines, tree-based 
ensembles, and neural networks. In the follow-
ing sections, we briefly introduce each method, 
discuss its strengths and weaknesses, and pro-
vide software implementations. We summarize 
the main findings from our review in Sect. 6.3, 
offering also a list of recommendations.

2.4  Introduction of Case Study Data 
(MIMIC-III)

The Medical Information Mart for Intensive 
Care (MIMIC)-III database contains informa-
tion on 38,597 adults and 7870 neonates that 
were admitted to critical care units at Beth Israel 
Deaconess Medical Center [27, 28]. Various 
types of patient-level data are available, includ-
ing vital signs, laboratory measurements, imag-
ing reports, received treatments, hospital length 
of stay, and survival. Although many variables 

were only measured upon admission, tempo-
ral data are also available. For instance, there 
are 753 types of laboratory measurements in 
MIMIC-III, each with on average 8.13 obser-
vations per patient. As illustrated in Fig. 3, the 
missingness rate in MIMIC-III greatly varies 
between variables and can be as high as 96%.

3  Single Imputation Methods

A common approach to address the presence 
of missing values is to simply replace them 
by a plausible value or prediction [30]. This 
approach is adopted by many software packages 
that implement contemporary machine learning 
methods. Below, we outline and illustrate three 
single imputation methods to recover missing 
systolic blood pressure levels in MIMIC-III.

In single value imputation (SVI), it is wide-
spread to replace missing values of a variable 

Fig. 2  Flow chart of the literature review to identify quantitative evaluations of missing data methods
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by a convenient summary statistic, such as the 
mean, median, or mode of the corresponding 
variable. For example, patients without follow-
up data are sometimes assumed to be alive. 
Similarly, when blood oxygenation levels are 
incomplete, it is possible to assume that corre-
sponding patients are in perfect health and sim-
ply impute a constant that reflects this condition 
(e.g., 100%). Alternatively, when the health con-
ditions of included patients are suboptimal, it is 
possible to impute the average of the observed 
blood oxygenation levels (left graph in Fig. 4).

A more advanced approach to generate impu-
tations is to adopt multivariable (e.g., regression 
or machine learning) models that replace each 
missing value by a prediction [18]. For instance, 
it is possible to predict blood oxygenation lev-
els in the MIMIC-III database using information 
on patient age by adopting a regression model 
(middle graph in Fig. 4). As more (auxiliary) 
variables are used to predict the missing values, 
the accuracy of imputed values tends to increase 
[31].

Unfortunately, single imputation methods 
tend to distort the data distribution because 
they do not account for sampling variability and 
model uncertainty [17, 18]. Because this usu-
ally leads to biased inference, single imputation 
methods are best avoided [30]. Their implemen-
tation can, however, be acceptable in some cir-
cumstances [18]. For example, it is possible to 
add noise to imputed values in order to account 
for sampling variability (right graph in Fig. 4). 
Also, when applying a prediction model in 
clinical practice, single imputation methods can 
greatly facilitate real-time handling of missing 
values on a case-by-case basis [31, 32].

4  Multiple Imputation Methods

In general, the preferred approach to address 
the presence of missing data is to adopt multi-
ple imputation [18, 30]. In this approach, each 
missing value in the original dataset is replaced 
by a set of m > 1 simulated values, leading to 

Fig. 3  Visualization of missing data in MIMIC-III 
[29]. Missingness rate is calculated as the proportion of 
individuals that do not have any observation for a given 
variable. Administrative variables include demographic 
data and were not much affected by missing values 
(e.g., missingness rate for date of birth = 0%). Intensive 
Care Unit (ICU) chart variables include patient moni-
toring variables. Input–output variables relate to intake 

substances (e.g., liquids, medication) and excretions 
(e.g., urine, fluid from the lungs).Finally, laboratory vari-
ables include microbiology results. * Two different criti-
cal care information systems were in place over the data 
collection period. For this reason, missingness rates for 
ICU chart and input–output variables are presented as 
separate categories
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multiple completed datasets. The entire proce-
dure is illustrated in Fig. 5.

The generation of plausible values typically 
involves modelling the observed data distribu-
tion and imposing corresponding parameters on 
the missing data. A major advantage of multiple 
imputation is that the extent to which the miss-
ing values can accurately be recovered becomes 
more transparent. The variability of imputed 
values will be large for variables that cannot 
adequately be retrieved from the observed data 

(and vice versa). For example, when tempera-
ture measurements are missing for a patient 
diagnosed with COVID-19 and having symp-
toms that often coexist with fever, imputed val-
ues will have a high probability to indicate the 
presence of fever. In contrast, fever imputations 
for a patient with a positive COVID-19 test and 
only mild disease can be expected to be more 
variable.

A key challenge in multiple imputation is to 
generate random samples that are plausible and 

Fig. 4  Illustration of imputation strategies using 100 
patients from MIMIC-III. The observed data are dis-
played in blue and represent the first available measure-
ment for systolic blood pressure after hospital admission. 

Imputed data are displayed in red, and were generated 
using mean imputation (left), regression imputation 
(middle), stochastic regression imputation (right)

Fig. 5  Scheme of main steps in multiple imputation, adapted from [18]
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exhibit an appropriate amount of variability. 
Conceptually, this can be achieved by generat-
ing imputations from a probability distribution. 
For instance, consider that some patients in 
MIMIC-III have missing values for age. A sim-
ple solution is to approximate the empirical 
(observed) age distribution, which has a mean 
value of 65.8 years and a standard deviation of 
18.5 years, with a suitable well-known distribu-
tion. New values for patient age could then be 
generated from a normal distribution with the 
aforementioned characteristics. It may be clear 
that the aforementioned (univariate) approach 
does not account for any relation with other vari-
ables in the dataset, and thus leads to imputations 
that are not very plausible. A better approach is 
to consider the entire (multivariate) distribution 
of the available data and draw imputations tai-
lored to each patient [33]. Here, we discuss two 
broad strategies to generate personalized imputa-
tions: joint modelling imputation and conditional 
modelling imputation. For the latter, both statisti-
cal and machine learning methods can be used. 
Software implementations are summarized in 
Fig. 6 (Python) and Fig. 7 (R).

4.1  Joint Modelling Imputation

A direct approach to consider the entire data 
distribution is to explicitly specify a paramet-
ric joint model for the observed data [34]. The 
parameters of this (imputation) model are esti-
mated from the observed data, and subsequently 
used to generate imputed values. It is, for 
instance, common to assume that the observed 
patient characteristics arise from a multivari-
ate normal model. The mean and covariance 
can be estimated using Markov Chain Monte 
Carlo (MCMC) methods and directly be used to 
draw imputed values that account for individual 
patient characteristics [32]. This approach is 
also known as multivariate normal imputation 
[35]. Recent work shows that multiple impu-
tation based on more flexible joint models of 
the data (e.g. allowing for variables of differ-
ent types, hierarchical structure of the data, or 
interaction effects) can also be achieved within 
the Bayesian framework [36, 37]. Often, it is 
difficult to identify an appropriate joint model 
that describes the observed data. Many datasets 
contain a combination of binary, continuous, 

Fig. 6  Python modules for multiple imputation. If 
an analyst decides to use SVM for imputation, they 
may need to manually incorporate the algorithm into 
the imputation procedure. In Python, SVM can be 

implemented using the scikit-learn library, or using 
GitHub repositories such as SVMAlgorithm and 
SupportVectorMachine
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categorical, and other data types. These mixed 
data types usually cannot be described using a 
multivariate distribution with a well-known den-
sity. A common strategy to relax this limitation 
is to approximate the (multivariate) data distri-
bution by a series of conditional (univariate) dis-
tributions which is the focus of the next section.

4.2  Conditional Modelling 
Imputation

Conditional modelling imputation implies that a  
separate imputation model is estimated for each  
incomplete variable [38]. For instance, a logis-
tic regression model can be used to describe  

Fig. 7  Software packages in R for multiple imputation. More detailed information for R packages is available from 
https://cran.r-project.org/web/views/MissingData.html

https://cran.r-project.org/web/views/MissingData.html
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the conditional distribution of a binary vari-
able (e.g., current smoker). Conversely, a linear  
regression model can be used to describe the  
conditional distribution of a continuous vari-
able (e.g., systolic blood pressure). As discussed  
in Sect. 4.3, it is also possible to adopt machine  
learning models to describe these conditional  
distributions. Imputed values are then  generated 
by sampling successively from each of the con-
ditional models, which requires an iterative 
Monte Carlo procedure. This approach is also  
known as conditional modelling imputation  
[32], chained equations imputation [39], or fully  
conditional specification.

4.3  Machine Learning Imputation

Multiple imputation methods often require 
explicit assumptions about the distribution(s) of 
the data, including consideration of the potential 
presence of interactive and non-linear effects. 
If the imputation model(s) are based on invalid 
distributional assumptions or fail to incorporate 
important covariate effects, subsequent analyses 
can lead to substantial bias [40]. For instance, 
consider that an interaction exists between 
the age of a patient and their blood test results 
(which contains missing values). If this inter-
action is not explicitly accommodated during 
imputation, its magnitude will be attenuated in 
the imputed data. Thus, constructing an appro-
priate imputation model requires considera-
tion of how the imputed data will eventually be 
used [23]. Unfortunately, it is often difficult to 
predetermine how data will be analyzed, espe-
cially when the available data sources were not 
designed for the intended analysis. It is there-
fore helpful for imputation models to anticipate 
certain features of the data (such as interactions, 
nonlinearities, and complex distributions) with-
out making any specific commitments. Such 
flexibility can be realized by non-parametric 
(e.g., nearest neighbor) or semi-parametric 
models (e.g., neural networks, random forests, 
or support vector machines) that avoid making 
distributional assumptions about the observed 

data. Below, we discuss a selection of common 
approaches that yield multiple imputed data-
sets. In general, machine learning methods can 
be used in two different contexts. One approach 
is to embed machine learning models in condi-
tional modelling imputation to describe the con-
ditional distribution of a certain variable. For 
example, missing blood pressure levels could 
be imputed using a random forest. A second 
approach is to generate imputed values directly 
using a dedicated machine learning method, such 
as matrix completion or adversarial networks.

4.3.1  Nearest Neighbor Methods
Nearest neighbor (NN) methods offer a non-par-
ametric approach to generate imputations with-
out making distributional assumptions. To this 
purpose, a distance metric is used to determine 
the relatedness between any two individuals 
and to identify neighbors with complete infor-
mation for each individual with one or more 
missing values. Imputation is then achieved by 
simply copying the observed values from the 
nearest neighbor (1-NN) or by combining the 
observed values from k nearest neighbors (kNN) 
into a weighted average [41]. Since NN meth-
ods generate imputations by (re)sampling from 
observed data, no special efforts are required to 
address complex data types. Accordingly, they 
are often used with incomplete variables that are 
restricted to a certain range (e.g., due to trunca-
tion), skewed, or semi-continuous. To allow for 
multiple imputed values, NN methods typically 
determine the distance between two individuals 
using a random subset of variables, rather than 
all observed variables [42]. Although NN meth-
ods can directly be used as a non-parametric 
imputation approach, they can also serve as an 
intermediate step in semi-parametric imputation 
procedures [43]. For instance, predictive mean 
matching combines conditional modelling impu-
tation with NN methods to draw imputations 
from the observed data [44]. It has been dem-
onstrated that NN methods perform well when 
data are MCAR or MAR [45–47]. Although NN 
methods are simple and easy to implement [48], 
they strongly depend on the specification of a 
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suitable multivariate distance measure and a rea-
sonably small dimension (since there are fewer 
near neighbors in high dimensional space). 
Consequently, the performance of NN methods 
tends to suffer from high dimensionality prob-
lems [49] and declines when k is too small or 
too large. Finally, NN methods do not facilitate 
the incorporation of MNAR mechanisms, and 
therefore appear less suitable in RWD.

4.3.2  Matrix Completion Methods
Matrix completion methods aim to recover an 
intact matrix from the dataset with incomplete 
observations. To this purpose, they decompose 
the original (high-dimensional) matrix into a 
product of lower dimensional matrices [50]. 
Missing data are then imputed by identifying an 
appropriate low-rank approximation to the origi-
nal data matrix.

For instance, singular value decomposition 
(SVD) can be used to describe a dataset X with 
n rows (e.g., patients) and k columns (e.g., vari-
ables) by a matrix product X = UDV ′. In this 
expression, D is a diagonal matrix with k singu-
lar values, U is an n× k matrix of left singular 
vectors, and V  is an k × k matrix of right singu-
lar vectors. The entries of D are used to scale U 
and V , and therefore describe how much infor-
mation each singular vector provides to the orig-
inal data matrix. Recall that the rank of a matrix 
is the maximal number of linearly independent 
column vectors or row vectors in the matrix, 
which is also equal to the number of non-zero 
singular values of the matrix. By omitting singu-
lar values that are close to 0 from D (and omit-
ting the corresponding vectors from U and V
), the rank of a matrix can be reduced without 
much loss of information. This, in turn, gives a 
lower-rank approximation to the original matrix. 
In case of missing data, the key idea is to find 
a low-rank approximation that closely fits the 
observed entries in X from a lower-rank approx-
imation, with the rank sufficiently reduced to fill 
in the missing parts of X.

Other methods that apply matrix completion 
include (robust) principle component analy-
sis (PCA) and nuclear-norm regularization [50, 

51]. In the latter, the singular values are sum-
marized into a nuclear norm that is optimized 
using expectation maximization. Matrix com-
pletion methods do not make any assumptions 
about the distribution of the observed data, and 
can handle high-dimensional data in a straight-
forward manner. Although their implementa-
tion is mainly justified when data are MCAR or 
MAR, several extensions exist for MNAR situa-
tions [52, 53]. Unfortunately, matrix completion 
is primarily used for numerical data. For cate-
gorical data, mode imputation is generally used. 
Another limitation is related to the implicit lin-
earity assumption. As rank is a concept for the 
linear relationship between rows or columns of 
a matrix, the method does not preserve nonlinear 
relationships between rows or columns.

4.3.3  Tree-Based Ensembles
Tree-based ensemble methods estimate mul-
tiple decision trees on the available data and 
adopt boosting (e.g., XGBoost) or bagging (e.g., 
random forests) to combine their predictions. 
Tree-based ensembles can be applied to mixed 
data types, do not require distributional assump-
tions, and naturally allow for variable selection. 
Moreover, their recursive partitioning opera-
tion predisposes to capture nonlinear effects and 
interactions between variables. Several simula-
tion studies have shown that tree-based ensem-
ble methods can outperform commonly used 
multiple imputation methods [54–56]. We here 
focus on the use of random forests to generate 
imputed values, for which at least four different 
implementations are available [57]. In Sect. 5.3, 
we discuss additional approaches for developing 
random forests without the need for imputation.

The first tree-based approach to handle miss-
ing data was proposed by Breiman and is imple-
mented in the R package randomForest with the 
function “rfImpute” [58]. It relies on the con-
cept of “proximity” for missing data imputation. 
Missing values are initially replaced by a sim-
ple summary such as their mean or mode, then 
a forest is constructed and the proximity matrix 
is calculated. The proximity matrix is a square 
matrix where each row and column represents 
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a specific individual. Each matrix entry then 
quantifies the probability that the individuals 
from the corresponding row and column fall 
in the same leaf node. The missing value of a 
particular variable for a specific individual is 
imputed using an average over the non-missing 
values of the variable or the most frequent non-
missing value where the average or frequency is 
weighted by the proximities between the case 
and the non-missing value cases. The process is 
repeated for each imputed dataset [58].

A second approach termed “on-the-fly-impu-
tation method” was proposed by Ishwara et al. 
and is implemented in the R package randomFor-
estSRC [59]. In this method, only observed val-
ues are used to calculate the split-statistic when 
growing a tree. At each node of a tree, when a 
split decision needs to be made, missing val-
ues will be replaced by random observed values 
within the corresponding subtree. After each node 
split, imputed values are set back to missing and 
the process continues until no more splits can be 
made. Missing data in terminal nodes are then 
imputed using the mean or mode of out-of-bag 
non-missing terminal node data from all the trees.

A third approach was proposed by Stekhoven 
and Buehlmann and is implemented in the R 
packages MissForest and missRanger [54]. In 
this method, missing values are initially imputed 
using simple methods such as mean or mode. 
The completed data is then used to construct a 
forest, which in turn is used to predict the miss-
ing values. In contrast to the approach proposed 
by Breiman, this process of training and predict-
ing iterates until a stopping criterion is met, or 
until a maximum number of user-specified itera-
tions is reached.

Finally, a fourth approach is to use random 
forests to approximate the conditional (univari-
ate) distribution of the observed data [60]. The 
chained equations framework is then used to 
iteratively replace the missing values for each 
incomplete variable (Sect 4.2). Conditional 
modeling imputation using random forests has, 
for instance, been implemented by the func-
tion mice.impute.rf in the R package mice and 
tends to yield better performance than the three 

approaches mentioned above [55, 61]. A major 
advantage of this approach is that imputed data 
can be analyzed using any method of choice.

4.3.4  Support Vector Machines
Support Vector Machines (SVM) were devel-
oped more than thirty years ago [62, 63] and 
have been successfully used in many real-world 
applications focusing on classification or predic-
tion. A key building block and also the driving 
force behind SVM’s success is the employment 
of a kernel function. The kernel function implic-
itly defines a high-dimensional, or even infi-
nite dimensional feature space (hyperplane), in 
which data points from different classes could 
be linearly separated or a continuous response 
variable could be linearly related to the feature 
vector. The kernel function needs to be carefully 
selected, and often takes the form of a Gaussian 
or polynomial (e.g., when the model should 
allow for non-linear relations). The most typi-
cal scenario for the application of SVM is when 
all predictors are continuous and when the out-
come is binary or continuous. When a predic-
tor variable is categorical, dummy coding needs 
to be applied. Extensions of SVM are available 
that can handle categorical or survival outcome 
data. After the completion of the training pro-
cess, an SVM generally depends only on a small 
subset of the original data points, called “sup-
port vectors”. Although SVM are very power-
ful in handling high-dimensional data, they are 
not commonly used for missing data imputation. 
Possibly, this is because SVM algorithms are 
very sensitive to noise and less suitable when the 
sample size is large. For the application of SVM 
for missing data imputation, no formal statistical 
software packages were found.

4.3.5  Neural Networks
Neural networks are emerging methods in the 
field of machine learning and are commonly 
applied for data generation, feature extraction 
and dimension reduction. We here discuss two 
main categories of neural networks that can be 
used for missing data imputation: autoencoders 
(AEs) and generative adversarial nets (GANs).
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An AE is an artificial neural network specifi-
cally designed to learn a representation of the 
observed data. It typically contains an encoder 
and a decoder. The encoder maps the original 
input data to a lower-dimensional representa-
tion through successive hidden layers of a neu-
ral network. The final layer of an encoder is the 
output layer, which simply describes the original 
input layer in a lower dimension [64, 65]. The 
decoder then maps the output from the encoder 
to reconstruct the original input, again through 
successive hidden layers of a neural network. 
Unfortunately, standard implementations of AEs 
require data to be complete, and they may end 
up learning an identity map (hence perfectly 
reconstructing the input data when an identity 
map is used instead of successfully reducing 
the complexity). To address these problems, 
several AE variants have been proposed. One 
approach is to adopt denoising autoencoders 
(DAE) that corrupt the input data with noise 
[66]. The most common way of adding noise is 
to randomly set some of the observed input val-
ues to zero. This approach can also be applied 
to incomplete input data, by simply replacing 
missing values by zero. To facilitate multiple 
imputation, missing values can be replaced by 
random samples [67]. Further, it is also possible 
to treat missing values as an additional type of 
corrupted data, and to draw imputations from an 
AE trained to minimize the reconstruction error 
on the originally observed data. This approach 
has, for instance, been implemented by Multiple 
Imputation with Denoising Autoencoders 
(MIDAS) [68]. A second extension of AE is to 
adopt variational autoencoders (VAEs) that learn 
to encode the input using a latent vector from a 
probabilistic distribution [69–71]. The original 
data can then be imputed by sampling from the 
latent posterior distribution.

GANs are another type of neural network that 
consists of two parts; a generator and a discrimi-
nator [72]. In an adversarial process, the genera-
tor learns to generate samples that resemble the 
original data distribution, and the discriminator 
learns to distinguish whether a presented exam-
ple is original or artificial. The GAN procedure 
can be extended to allow for the imputation of 

missing data [73–75]. Generative Adversarial 
Imputation Nets (GAIN) adapt the original 
GAN architecture as follows [75]. The generator 
learns to model the distribution of the data and 
to impute missing values accurately. The dis-
criminator then learns to distinguish which val-
ues were observed or imputed. The generator’s 
input combines the original input data and a 
mask matrix that indicates the presence of miss-
ing values. Conversely, the input of the discrimi-
nator is given by the output of the generator and 
a hint matrix, which reveals partial information 
about the missingness of the original data. The 
discriminator then learns to reconstruct the mask 
matrix.

4.4  Analyzing and Combining 
the Imputed Datasets

Once multiple imputed datasets have been gen-
erated, they can be analyzed separately using 
the procedure that would have been followed if 
all data were complete (Fig. 5). For example, 
studies aiming to evaluate a relative treatment 
effect can perform a regression analysis in the 
imputed data to estimate an odds ratio adjusted 
for confounders. From each analysis, one or 
more parameter estimates (and corresponding 
estimates of uncertainty) are then obtained and 
need to be combined. Pooling results across 
multiple imputed datasets is not trivial and typi-
cally requires to consider three sources of uncer-
tainty. In particular, there is estimation error 
within each imputed dataset (e.g., reflected by 
the estimated standard errors in each completed 
dataset), variation due to missing data (reflected 
by the between-imputation variance of param-
eter estimates), and uncertainty arising from a 
finite number of imputations. Although point 
estimates (e.g., regression coefficients) can sim-
ply be averaged across the imputed datasets, the 
pooling of standard errors requires adopting a 
series of equations that account for aforemen-
tioned sources of uncertainty. These equations 
are also known as Rubin’s rules [33, 76, 77] and 
have been implemented in most contemporary 
software packages.
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If pooling is done appropriately, multiple 
imputation methods yield valid parameter esti-
mates with appropriate confidence intervals. In 
some situations, however, the implementation of 
Rubin’s rules cannot be justified. For example, an 
exception arises when data are available for the 
entire population [78]. The application of Rubin’s 
rules also becomes more complicated when 
imputed datasets are analyzed using non-para-
metric approaches (e.g., recursive partitioning) or 
approaches that do not result in the same number 
of parameters across imputations (e.g., variable 
selection algorithms) [79–81]. In such situations, 
it may be helpful to avoid imputation altogether.

5  Non-imputation Methods

5.1  Complete Case Analysis

A simple approach to address missing data is 
to simply remove incomplete records from the 
dataset. This approach, also known as complete 
case analysis (CCA), is generally valid but need-
lessly inefficient under the usually unrealistic 
MCAR assumption. The adoption of CCA is 
therefore more appealing when conducting like-
lihood-based inference under MAR conditions 
or in datasets where only the outcome is missing 
(Sect. 5.2). Unfortunately, CCA does not offer 
a solution when estimated models (e.g., for risk 
prediction or classification) are applied to new 
patients with incomplete data.

5.2  Likelihood-Based Methods

More advanced approaches to address miss-
ing values define a model for the observed 
data only. For example, survival models can be 
used to analyze binary outcome variables that 
are affected by censoring (e.g., due to drop-
out). Similarly, multilevel models can be used 
to analyze repeated outcomes that were meas-
ured at arbitrary follow-up times. A special 
situation arises when missing values only occur 
for the outcome, as multiple imputation then 
requires auxiliary variables that are not part of 

the analysis model to offer an advantage over 
likelihood-based methods. The adoption of 
likelihood-based methods is therefore particu-
larly appealing when missingness only depends 
on covariates that are included in the analysis 
model (such that missingness is ignorable) [82].

Likelihood-based methods can also be used 
to address missing covariate values, and often 
require advanced procedures for parameter esti-
mation [83, 84]. Although likelihood-based 
methods tend to be much faster and produce 
more accurate results than multiple imputation, 
their applicability is limited to very specific 
analytical scenarios. Likelihood-based methods 
may therefore have limited usefulness in RWD, 
where patterns of missingness can be very com-
plex and additional adjustments may be required 
to account for other sources of bias (e.g., time-
varying confounding).

5.3  Pattern Submodels

A straightforward alternative to imputation 
methods is to develop separate models for each 
missingness pattern. For instance, those indi-
viduals for which c-reactive protein (CRP) has 
been observed contribute to a different model 
than those individuals for which CRP was not 
observed. This idea has also been referred to as 
a pattern submodel approach [85]. This type of 
approach is particularly helpful when the num-
ber of missingness patterns is fairly limited with 
respect to the number of observations, since 
model development occurs in partitions of the 
original data. Nonetheless, this is a setting that 
can be expected to occur quite often RWD. For 
instance, a whole array of venous blood results, 
genetics, or imaging data will often be entirely 
missing or entirely observed. Key benefits of 
patterns submodels include ease of use (both 
during development and application) and the 
fact that it does not rely on assumptions about 
the missingness pattern. Clear costs include loss 
of information due to partitioning of the data 
into missingness patterns (this can be relaxed 
to allow borrowing of information between pat-
terns, but this invokes the MAR assumption 
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across the patterns for which it is relaxed), and 
the fact that many models are developed instead 
of just one. As already noted by Mercaldo and 
Blume [85], different methods can be envisioned 
to allow borrowing of information between 
missingness patterns while retaining some of the 
robustness with respect to missing data mecha-
nisms, but this is still ongoing research.

5.4  Surrogate Splits

Surrogate splits is a missing data method that 
is specific to tree-based methods and was pro-
posed in the context of classification and regres-
sion trees [86]. The key idea is to not only find 
the optimal split point when building a tree, 
but also find second best (or more) split points 
on variables other than the one providing the 
optimal split point. This allows using an alter-
native (surrogate) split variable when the opti-
mal variable is missing. Similar ideas have 
been proposed throughout tree-based methods 
research. For instance, instead of finding sur-
rogate splits, the popular XGBoost method [87] 
finds a default direction for each split point in 
case the variable to split on is missing. While 
these methods are easy to apply on any data set 
with missing values, they have important limita-
tions. For instance, surrogate splits are not able 
to use information from observed data to infer 
something about the missing variable. Instead, 
imputed values are generated conditionally on 
their position in the tree, which roughly corre-
spond to conditional mean imputation. A more 
robust approach would be to apply the tree-based 
methods in multiple imputed data based on flex-
ible methods that preserve more of the data com-
plexities, and subsequently bag the results.

5.5  Missing Indicator

The indicator method replaces missing values 
by a fixed value (zero or the mean value for the 
variable) and the indicators are used as dummy 
variables in analytical models to indicate that 
a value was missing. The procedure is applied 

to each incomplete variable, and can be imple-
mented in any analysis method (e.g., regression, 
decision trees, neural network). The indica-
tor method allows for systematic differences 
between the observed and the unobserved data 
by including the response indicator, and thus 
to address MNAR. However, its implementa-
tion usually leads to biased model parameters 
and can create peculiar feedback mechanisms 
between the user of the model (e.g. a clinician) 
and the model itself [88]. For this reason, it is 
generally discouraged to adopt the missing indi-
cator method for addressing missing data.3

6  Imputation of Real-World Data

Although the principles and methods outlined 
in Sect. 4 are primarily designed for imputing 
missing data in medical studies a clear sampling 
or data collection design (e.g., an observational 
cohort study or clinical trial), they can also be 
applied to incomplete sources of RWD that were 
not generated under a specific research design. 
In this section, we discuss two common char-
acteristics of RWD that require more advanced 
imputation methods and software packages that 
were discussed in Sect. 4. A first challenge is the 
presence of informative missingness and typi-
cally arises when missing data mechanisms are 
complex and partially unknown. A second chal-
lenge is the presence of repeated observations, 
which occurs when patients are followed for a 
period of time. Below, we discuss methods that 
are well suited to address these challenges.

6.1  Informative Missingness

It is often difficult to determine the exact mecha-
nisms by which missing values occur in RWD. 

3 While the details are beyond the scope of this chapter, 
Mercaldo and Blume [85] describe the implementation 
of missing indicator methodology in the context of mul-
tiple imputation, which does provide unbiased inference 
and has an interesting relation to the pattern submodels 
described above.
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In fact, the distinction between MCAR, MAR 
and MNAR is a theoretical exercise and all 
these missingness mechanisms could co-exist 
in RWD. It is not uncommon that important 
causes of missingness are not recorded, and 
missingness in routine healthcare data is often 
informative [9, 21]. Unfortunately, traditional 
imputation methods are not well equipped to 
address this situation, as they do not distin-
guish between the observed and missing data 
distribution.

For example, the CRP test is often ordered 
when there is suspicion of an infection or 
an inflammation. Lab results may therefore 
be missing when elevated levels are deemed 
unlikely. Although multiple imputation could be 
used to recover these missing test results from 
information recorded in the EHR database, this 
approach is problematic when data on signs 
and symptoms are unavailable. Similar prob-
lems arise when test results are directly linked 
to their missingness. For instance, it is possible 
that some patients were referred from another 
hospital based on their lab results, and there-
fore did not undergo further testing. In gen-
eral, when missing data mechanisms depend 
on unobserved information, the presence of 
missing values becomes informative about the 
patient, their physician or even the health care 
center [89, 90].

The plausibility of the MAR assumption 
(and thus the validity of “traditional” imputation 
methods) can often be increased by implement-
ing imputation models with auxiliary variables 
that explain the reasons of missingness during 
imputation [91]. As more patient characteris-
tics are recorded, it becomes less likely that the 
presence of missing values depends on unob-
served information. For instance, when hospi-
tal registries only record information on patient 
age, sex, and blood test results, CRP levels are 
highly likely to be MNAR when unavailable. 
Conversely, when information on signs, symp-
toms, diagnostic suspicions, and other labora-
tory markers are also recorded, it becomes more 
likely that these observations explain why CRP 
is missing. At the very least, it will decrease the 
influence of MNAR mechanisms.

Unfortunately, the use of auxiliary variables 
becomes problematic when they are substan-
tially affected by missing values or when they 
do not strongly predict the presence of missing-
ness. Unfortunately, EHR databases are notori-
ously prone to prominent levels of missingness, 
often caused by complex recording processes. 
For this reason, the imputation of RWD may 
benefit from more advanced imputation meth-
ods that explicitly account for different missing 
data mechanisms [92]. When data are MNAR, 
it is necessary to model the joint distribution 
of the data and the missingness through selec-
tion, pattern-mixture or shared parameter mod-
els [93, 94]. Selection models factorize the 
joint distribution into the marginal distribu-
tion of the complete data and the distribution 
of the missingness. As an example, we discuss 
the Heckman selection model in more detail 
below [95, 96]. Conversely, pattern-mixture 
models separate the marginal distribution for 
the missingness mechanism and the data distri-
bution conditional on the type of missingness. 
Essentially, this requires to estimate separate 
(pattern sub) models for each missingness pat-
tern and to combine their inferences by means 
of integration. Finally, shared parameter models 
assume that the data distribution and the miss-
ingness indicator are conditionally independent 
after conditioning on a set of shared parame-
ters or latent variables. This type of model has 
been successfully applied in settings where the 
missingness mechanism is related to an under-
lying process that changes over time. These so-
called joint models4 combine information from 
a mixed model for a longitudinal outcome and a 
temporal event model for censoring events with 
a set of latent variables or random effects.

A common strategy for informative miss-
ingness is to directly model the relationship 
between the risk of a variable being missing and 
its unseen value [96–98]. This strategy is based 
on the Heckman selection model [95], and can 

4 In this context, ‘joint’ is used to describe models that 
share a parameter, and is not to be confused with joint 
models that fully describe a multivariate distribution.
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be used to assess and correct potential non-ran-
dom missingness of outcome data. Briefly, the 
selection model approach involves two equa-
tions to predict the missing value and their 
availability. Both equations are linked together 
through their residual error terms, which are 
modelled using a bivariate (e.g., normal) dis-
tribution. The correlation of this distribution is 
estimated from the available data and indicates 
to what extent the magnitude of the missing 
values affects their probability of missingness 
(i.e., presence of MNAR). A special situation 
arises when there is no correlation between the 
error terms, as the Heckman model then gener-
ates imputations under the MAR assumption. An 
important requirement for the implementation of 
Heckman-type imputation models is the avail-
ability of exclusion restriction variables. These 
variables are related to the probability of miss-
ingness, but not to the missing value itself. For 
example, if younger physicians are more moti-
vated to routinely record data into EHR systems, 
the age of the treating healthcare professional 
could be treated as an exclusion restriction vari-
able. Similarly, it is possible that CRP tests are 
ordered more frequently for patients with a 
certain healthcare insurance program or socio-
economic background. As discussed, informa-
tion on missingness mechanisms could also be 
addressed using traditional imputation meth-
ods that adopt auxiliary variables, especially if 
their inclusion converts MNAR situations into 
MAR. Indeed, it has been demonstrated that 
Heckman-selection models perform comparably 
to traditional imputation methods when missing 
values do not depend on unobserved informa-
tion [99]. However, Heckman-selection models 
do not require the MAR assumption and there-
fore appear more suitable when the missing 
data mechanisms are unclear. Several simula-
tion studies have demonstrated that Heckman-
selection models can greatly decrease bias, even 
when the proportion of missing data is substan-
tial [96, 98, 99].

6.2  Longitudinal and Sequence Data

RWD are often collected over a period of time 
and may therefore contain multiple observa-
tions for one or more variables. Traditionally, 
these data are collected at frequent and regular 
time intervals. The recorded observations then 
describe a smooth trajectory that strongly resem-
bles the underlying time process. In RWD, how-
ever, there are many challenges as compared 
to traditional longitudinal data. First, a large 
number of variables in the dataset are measured 
over time. For example, the MIMIC-III dataset 
contains patient medical records from 2001 to 
2012 and includes thousands of variables with 
repeated measurements [100]. For standard 
longitudinal or sequence data, the number of 
variables is generally very small. Second, each 
variable generally has its own scheme of meas-
urement times, and the measurement interval 
can be irregular and may even vary across indi-
viduals. As illustrated in Fig. 3, many clinical 
variables in the MIMIC-III dataset are affected 
by irregular measurement times. For standard 
longitudinal data, all variables typically follow 
the same scheme of measurement schedule, and 
for time series data, the measurement interval is 
fixed and remains the same for the entire series. 
Third, complex relationships can exist between 
measurements of different variables at different 
time points. Finally, missing data can be con-
founded with the irregularity of measurement 
schedule, and when missing data do exist, they 
tend to be informative and the missing rate can 
be very high for some variables. Due to these 
challenges, RWD are highly prone to MNAR 
mechanisms and intermittent patterns of miss-
ingness (Sect. 2.2). Traditional imputation 
methods are not capable of handling missing 
data in longitudinal datasets like EHR. In this 
section, we therefore discuss advanced imputa-
tion methods that are dedicated to longitudinal 
data. These methods can be used to reconstruct 
the entire trajectory of longitudinal variables  
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for each distinct individual, but also to recover  
single observations at particular points in time  
(e.g., at the startpoint or endpoint of the study).

One approach to address the presence of 
missing values in longitudinal data is to recover 
each trajectory separately, using methods 
designed for time series (TS) reconstruction. 
Although TS methods were originally designed 
for the analysis of evenly spaced observations, 
some methods could also be used when meas-
urement times are irregular [101]. It is, for 
instance, possible to replace the missing values 
by their respective mean or mode of the repeated 
measurements. These univariate algorithms are 
best suited for stationary series (i.e., when sta-
tistical properties of the data generation process 
do not change over time) and should gener-
ally be avoided because they tend to introduce 
bias for non-stationary series. More advanced 
univariate algorithms for TS imputation may 
account for trend (i.e., the long-term direction 
of the data), seasonality (i.e., systematic pat-
terns that repeat periodically), or even certain 
irregularities (i.e., distribution of the residuals) 
of the repeated observations [102]. These algo-
rithms often rely on moving averages or inter-
polation methods, and can be satisfactory when 
the stretches of missing data are short and if the 
TS is not much affected by noise [103]. Last 
observation carried forward (LOCF) is a special 
type of interpolation, where the last observed 
value replaces the next missing observations. 
Another common example is the use of autore-
gressive integrated moving average (ARIMA) 
models, which eliminate autoregressive parts 
from the TS and can also adjust for seasonality. 
However, because their implementation can dis-
tort the data distribution and their relation with 
other variables, univariate TS algorithms should 
be used with caution. Instead, multivariate TS 
algorithms could be used to create time lagged 
and lead data, and to include smooth basis func-
tions over time in the imputation model [104]. 
Simulation studies found that this strategy tends 
to outperform simple univariate TS algorithms 
[103]. There are several R packages available for 
missing data imputation in time series. Due to 
space limitations, we will not list the packages 

individually, and refer the reader to https://
CRAN.R-project.org/view=TimeSeries.

A different class of methods allows bor-
rowing of information across individuals. 
When repeated measurements are structured 
in the wide format, time-related variables can 
be imputed using the methods discussed in 
Sect. 4 without the need for further adjustment. 
For instance, the Sequential Organ Failure 
Assessment (SOFA) score is widely employed 
in the daily monitoring of acute morbidity in 
critical care units [105]. It is calculated using 
information on the patient’s respiratory, car-
diovascular, hepatic, coagulation, renal and 
neurological systems, and prone to missing val-
ues when some test results are unavailable. For 
example, most predictors of the SOFA score 
were affected by missing values in MIMIC-III, 
with missingness rates ranging from 58.88–
99.98% (Fig. 3). When repeated measurements 
of the SOFA score are formatted into separate 
columns with daily observations, corresponding 
variables can be imputed with joint modelling 
methods such as JM-MVN [30] or with con-
ditional modelling methods such as FCS-fold 
[106]. Alternatively, recurrent neural networks 
can be used to capture long-term temporal 
dependencies without the need for distributional 
assumptions [29, 102, 107–109]. Also other 
machine learning methods have been custom-
ized to allow for imputation of longitudinal data, 
including matrix completion and nearest neigh-
bor methods [102]. Unfortunately, these meth-
ods are not well suited to recover irregularly 
spaced observations (Figs. 8 and 9).

Because RWD are rarely collected at regular 
time intervals, it is often more helpful to struc-
ture sequential observations in the long format. 
Imputation methods then need to adjust for the 
time of measurement and the non-independence 
of observations. This requires to adopt hierarchi-
cal (also known as multilevel) models that group 
related observations, which can be achieved 
using joint modelling or conditional modelling 
imputation. A detailed overview of imputation 
methods for longitudinal data is provided by 
Huque et al. [110]. When adopting multilevel 
imputation methods, the longitudinal relation 

https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/view=TimeSeries
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of repeated observations can be preserved by 
including measurement time as an explanatory 
(possibly random) variable. It is then common 
to assume a linear relationship for the effect of 
the time variable. Unfortunately, this approach 
may become problematic when there is no lin-
ear association between the incomplete variable 
and its predictors, when there is no compatibility 
between the joint distribution and the full con-
ditional model, or when there is a lack of con-
geniality between the imputation model and the 
analysis model. Therefore, it has been proposed 
to adopt Bayesian substantive-model-compatible 
methods in which the joint distribution of the 
variables in the imputation model is specified 
by a substantive analysis model and an incom-
plete explanatory variable model [36, 111, 112]. 
Alternatively, van Buuren proposed the time ras-
ter imputation method [13] to convert irregular 
observations into a set of regular measurements 
using a piecewise linear mixed model. Initially, 
the user must specify an ordered set of k break 

times. Next, a B-spline model is used to rep-
resent each subject’s time points with knots 
that are given by k. This approach then yields 
a k-column matrix X. Finally, the incomplete 
time-dependent variables are imputed using 
chained equations with a clustering method, 
using the reference variables, other time-
dependent variables and X as predictors in the 
imputation method for each incomplete variable. 
More recently, Debray et al. developed condi-
tional modelling imputation methods that adjust 
for clustering and autocorrelation. These meth-
ods were implemented using chained equations 
and can be used to recover missing observa-
tions at arbitrary time points [113]. Simulations 
showed that this approach substantially out-
performs simpler imputation methods such 
as LOCF or rounding, and can also yield valid 
inferences when longitudinal data are MNAR.

It is also possible to impute longitudinal data 
using machine learning methods such as recur-
rent neural networks (RNNs). Although RNNs 

Fig. 8  Illustration of longitudinal data for five patients from MIMIC-III. Repeated measurements are presented for 
all predictors of the SOFA score. Each point represents a contact moment between the patient and healthcare provider
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have been described since 1986 [114], they have 
rarely been used for longitudinal data analy-
sis until the past decade. Standard RNNs bear 
many similarities to traditional feedforward neu-
ral networks, and can use the output from pre-
vious time steps as input for the next time step. 
In this manner, RNNs offer the ability to han-
dle sequential or time series data. Traditional 
implementations of RNN cannot process infor-
mation across many time steps and therefore 
have a short-term memory. This limitation can 
be addressed by adopting gated architectures 
that control the flow of information in the RNN 
[115]. The long short-term memory (LSTM) 
[116] and the Gated Recurrent Unit (GRU) are 
common examples of this architecture [117].

Traditional RNNs require that all variables 
have the same measurement schedule. For this 
reason, they are not well suited for the imputa-
tion and analysis of RWD. In the past few years, 
there have been tremendous research develop-
ments to facilitate the analysis of multivariate 
sequence data collected with irregular meas-
urement schedules [102]. RNN methos can, for 
instance, be enhanced by adopting adversarial 
training, attention mechanisms, or multidirec-
tional structures. We here distinguish between 
three common types of RNN for imputation of 
longitudinal data. A first type of RNN methods 
generate multiple imputed datasets, and include 
Bidirectional Recurrent Imputation for Time 
Series [118], multi-directional recurrent neural 
networks [119], and residual neural networks 
[120]. A second, similar type of RNN meth-
ods adopt generative adversarial networks to 
learn the overall distribution of a multivariate 
time series data and to generate imputed data-
sets [121]. Finally, a third type of RNN meth-
ods do not yield imputed datasets, but offer an 
integrated solution to the analysis of incomplete 
longitudinal data. To this purpose, they adopt 
missing indicators (“masks”) and/or the time 
interval between the observed values as input 
values of the network [29, 122–124]. To increase 
the ability to capture long-term relations in the 
data, these non-imputation methods often adopt 

a GRU or LSTM architecture. Estimation of 
aforementioned RNNs is not straightforward 
and often requires dedicated software packages, 
which may not always be readily available or 
easy to use.

6.3  Choosing an Appropriate 
Imputation Method

The selection of an appropriate imputation 
method will often depend on the ultimate goal 
of the data analysis. If the goal is to make sta-
tistical inferences, such as estimating regres-
sion parameters or testing certain hypotheses, 
it is important that the imputation method pro-
vides not only unbiased estimates of parameters 
of interest, but also unbiased estimates of their 
associated (co)variance. On the other hand, if 
the goal of data analysis is to make predictions 
or classification, a suitable imputation method 
should be able to maintain the desired prediction 
or classification accuracy.

As discussed in this chapter, multiple imputa-
tion offers a generic solution to handle the pres-
ence of missing data. Multiple imputation can be 
used in both “inference-focused” and “predic-
tion-focused” studies, and can also be used on a 
case-by-case basis (e.g., when calculating predic-
tions in clinical practice). Multiple imputation 
methods that have widely been studied approxi-
mate the observed data using a well-known mul-
tivariate probability distribution (Sect. 4.1) or 
approximate this distribution through a series of 
conditional (often regression-based) models (Sect 
4.2). Although these methods can greatly differ 
in operationalization and underlying assump-
tions, simulation studies have demonstrated that 
they generally achieve similar performance [19, 
38, 125]. Overall, (semi-)parametric imputation 
methods can reliably be used for inference and 
prediction, and tend to perform well in datasets 
with a limited number of variables. Caution is, 
however, warranted when complex relations 
exist in the data (e.g., presence of treatment-
covariate interactions), when observations are 
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not independent (e.g., presence of repeated meas-
urements) or when mechanisms of missingness 
are complex (e.g., presence of MNAR). In these 
situations, the required complexity of imputation 
methods drastically increases and manual con-
figuration is often necessary to avoid bias (e.g., 
see Sects. 6.1 and 6.2) [36, 40]. In this regard, 
non-parametric methods offer several impor-
tant advantages. First, there is no need to specify 
the functional form of the outcome relationship. 
Instead, non-linear effects and interactions are 
directly derived from the observed data. Second, 
there is no need to distinguish between different 
data types, as most machine learning methods 
can easily handle discrete, continuous and other 
data types. Third, because variable selection 

and dimensionality reduction are integrated into 
many machine learning procedures, they are well 
capable of dealing with high-dimensional data-
sets. Finally, because machine learning methods 
are extremely flexible, they are well suited to 
avoid incompatibilities between the imputation 
and substantive analysis model [40]. This is an 
important issue when pursuing statistical infer-
ence and is often overlooked. Machine learn-
ing methods are therefore particularly appealing 
when there is limited understanding about likely 
sources of variability in the data, as data-driven 
procedures are used to determine how the impu-
tations should be generated.

Results from the literature review are summa-
rized in Fig. 9. Each row in this figure represents 

Fig. 9  Comparative performance of imputation meth-
ods as identified through a literature review. The color 
indicates the fraction of simulation studies in which the 
method in the row outperforms the method in the col-
umn. Single imputation methods: SVI = single value 
imputation; EVI = expected value imputation, Multiple 
imputation methods: JMI = joint modelling imputation, 
CMI = conditional modelling imputation, NN = near-
est neighbor imputation, matrix = matrix factorization, 

tree-based = tree-based ensembles, SVM = support 
vector machine imputation, generative = neural net-
work-based imputation, Non-imputation methods: 
CCA = complete case analysis, likelihood = likelihood-
based approaches, pattern = missing data pattern meth-
ods, Imputation of MNAR: HTI = Heckman-type 
imputation, Imputation of longitudinal data: interpola-
tion = interpolation methods (incl. last observation car-
ried forward), RNN = recurrent neural networks
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one method of accommodating missing data, 
in order of appearance in this chapter. In par-
ticular, we highlight single imputation (single 
value imputation, expected value imputation), 
joint modelling imputation, conditional mod-
elling imputation, non-parametric imputation, 
non-imputation methods, and methods dedi-
cated for informative missingness and longitu-
dinal data. Each cell displays the total number 
of simulation studies in which the method in 
the row outperforms the method in the column. 
Methods that work comparatively well have a 
higher percentage of papers in which they out-
perform other methods, signified by rows with 
many green cells. Most studies evaluated perfor-
mance by quantifying the mean squared error of 
imputed values.

Our literature review confirms that miss-
ing data is an important problem in RWD and 
requires dedicated methods. In particular, it is 
rarely justifiable to delete incomplete records, 
and to perform a so-called complete case analy-
sis. Although missing values can accurately be 
recovered by adopting single imputation meth-
ods, simulation studies showed that their imple-
mentation usually leads to bias when estimating 
model parameters. For this reason, single impu-
tation methods should be reserved for situations 
where imputations are needed on a case-by-case 
basis (e.g., when implementing a prediction 
model in clinical practice). Conversely, methods 
that perform consistently well are often based 
on multiple imputation using neural networks or 
other non-parametric approaches. As discussed, 
most of these methods can address mixed data 
types under various missingness mechanisms, 
and do not require user input to inform vari-
able selection. Recurrent neural networks appear 
particularly useful because they can manage 
informative missingness and incomplete longi-
tudinal data. However, when repeated measure-
ments are relatively sparse, (semi-)parametric 
approaches that explicitly model their relat-
edness (e.g., through random effects) may be 
more suitable. Unfortunately, the implementa-
tion of multiple imputation methods can be very 

demanding w.r.t. available resources and may 
therefore not always be desirable. As discussed 
in Sect. 5, it is possible to avoid the need for 
imputation in some circumstances. For instance, 
when adopting statistical models for predic-
tion, the presence of missing data can simply be 
addressed by estimating pattern submodels [92]. 
These models require fewer assumptions about 
the missing data mechanisms, and can perform 
well even when data are MNAR.

Finally, our review highlights several gaps 
in the published literature. Methods that appear 
promising but have not extensively been studied 
are based on SVM, or parametric models that 
estimate the joint distribution of the data and the 
missingness. Further, there is little consensus on 
appropriate strategies to evaluate missing data 
methods. For example, many simulation studies 
focus on situations where data are MCAR, or 
do not consider the validity of statistical infer-
ence that is based on imputed datasets. For this 
reason, it would be helpful to develop guide-
lines for the conduct and reporting of simulation 
studies focusing on missing data imputation, to 
facilitate fair comparisons between methods. 
For reasons of brevity, our review did not dis-
tinguish between different implementations of 
similar methods, such as the tree-based meth-
ods implemented within the chained equations 
framework. Uniting statistical and machine 
learning methods holds a promise to obtain 
imputations that are both accurate and confi-
dence valid.

7  Summary

The analysis of RWD often requires extensive 
efforts to address data quality issues. In this 
chapter, we primarily focused on the presence 
of missing data and discussed several imputation 
methods. Although these methods are no pana-
cea for poor quality RWD, their implementation 
may help address situations where RWD are 
incomplete or require recovery due to temporal-
ity or accuracy issues.
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1. Assess whether missing data can be handled 
using non-imputation methods. For example, 
when the goal is to develop a prediction model, 
it is possible to avoid the need for imputation 
by adopting pattern submodels or built-in algo-
rithms for dealing with missing values
2. When pursuing imputation strategies, multi-
ple imputed values should be generated to pre-
serve uncertainty (and thus allow for inference)
3. Include the covariates and outcome from the 
substantive (analysis) model [78]
4. Include as many variables as possible, espe-
cially (auxiliary) variables that are related to the 
variables of interest or the presence of missing-
ness [24, 78]
5. Consider imputation methods that allow for 
informative missingness when missing data 
mechanisms cannot be ignored
6. Especially in very large data sets with many 
cases and variables (RWD): use flexible imputa-
tion models [24]. This can be achieved by adopt-
ing machine learning methods that have built-in 
procedures for variable selection and dimension-
ality reduction such as neural networks
7. Evaluate the quality of imputed data by 
inspecting trace plots and distribution of 
imputed values [125].
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