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1	� Introduction

In this chapter the workings of auto-encod-
ers are explained in a way that is understandable 
for medical researchers and clinicians who have 
little or no prior training in the field of artifi-
cial intelligence (AI). For the more experienced 
reader we provide several technical intermezzos 
that contain a more in depth and mathematical 
explanation of the subject. Furthermore, we pro-
vide several examples that show potential use 
cases of auto-encoders for medical research, 
whilst also giving a broad set of guidelines 
on how auto-encoders can be implemented 
and used by other researchers in medical AI 
applications.

Auto-encoders and their variational counter-
parts form a family of (deep) neural networks 
that serve a wide range of applications in medi-
cal research and clinical practice. Auto-encoders 
were first contemplated in the late 80s, and their 
popularity grew with the increase in computing 
power [1]. Their use cases range anywhere from 
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Abstract

Auto-encoders and their variational coun-
terparts form a family of (deep) neural 
networks that serve a wide range of appli-
cations in medical research and clinical 
practice. In this chapter we provide a com-
prehensive overview of how auto-encoders 
work and how they can be used to improve 
medical research. We elaborate on various 
topics such as dimension reduction, denois-
ing auto-encoders, auto-encoders used for 
anomaly detection and the applications of 
representations of data created using auto-
encoders. Secondly, we touch upon the sub-
ject of variational auto-encoders, explaining 
their design and training process. We end the 
chapter with small scale examples of auto-
encoders applied to the MNIST dataset and a 
recent example of an application of a (disen-
tangled) variational auto-encoder applied to 
ECG-data.
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reconstructed from this compressed form. Auto-
encoders therefore aim to learn the optimal (de)
compression functions.

3	� Principal Component Analysis

The general idea of auto-encoders has been 
around for decades. Traditionally the use of 
auto-encoders has been centered around dimen-
sionality reduction and feature learning. For 
these purposes, auto-encoders are closely related 
to Principal Component Analysis (PCA), a tech-
nique commonly used in medical research. Both 
PCA and auto-encoders transform data into a 
lower dimensional representation, while retain-
ing the original information as much as possi-
ble. PCA is a purely mathematical approach to 
dimension reduction that involves calculating 
the Singular Value Decomposition (SVD), and 
is limited to linear transformations. Conversely, 
(deep) auto-encoders can learn non-linear trans-
formations. For complex data linear transfor-
mations are often insufficient for tasks such as 
classification and dimension reduction. Because 
of this (deep) auto-encoders often achieve better 
results than PCA. In fact, when an auto-encoder 
without any non-linear activations is used, the 
auto-encoder is likely to approximate PCA [5].

4	� Methodology Behind Auto-
encoders

Auto-encoders can reconstruct raw input data 
from extracted latent variables. We therefore 
make a distinction between the extraction step 
(i.e. encoding) and the reconstruction step (i.e. 
decoding). During the training of the auto-
encoder, both these steps are performed in 
sequence. First the raw data is encoded into a 
set of latent variables, and then the latent vari-
ables are decoded back into the raw data form. 
This approach is what enables the unsuper-
vised learning of auto-encoders, as the output 
of the model is effectively an approximation of 
the input. Meanwhile, the latent representation 

signal/image denoising and anomaly detection 
tasks to advanced dimension reduction and com-
plex data generation [2, 3].

Unlike most types of deep neural networks, 
auto-encoders are generally trained in an ‘unsu-
pervised’ manor, meaning that only raw data, 
without any labels, are required to train the 
models. This unsupervised nature and the broad 
set of possible applications make auto-encoders 
a popular choice in various fields of medical AI 
research.

2	� The Intuition Behind Auto-
encoders

Auto-encoders can be considered a dimension 
reduction or compression technique. Dimension 
reduction techniques aim to retain as much 
information from a raw data input as possible 
into a compressed vector representation (i.e. 
a set of numbers). The numbers in this vec-
tor, which are often referred to as ‘latent varia-
bles’, contain (as much as possible) information 
about the raw data input. If a dimension reduc-
tion technique is for example applied to images 
of written digits (e.g. the MNIST dataset), the 
reduced vector form of the images may con-
tain information about what digits the image 
contained, the orientation of the digit and the 
stroke width of the drawn digit [4]. The amount 
of reduction applied to the input data is usually 
inversely related to the amount of information 
that is retained in the compressed vector form. 
For example, if an image is reduced to only 3 
numbers, a lot of information is lost, and the 
original cannot be accurately reconstructed. 
In contrast, if an image that contained 28 × 28 
(= 784) pixels is reduced to a vector of 392 
digits, much more information is left, albeit in 
a reduced form. In this context, “information” 
is a rather abstract concept, and depends on 
the goal of the user of the dimension reduction 
technique. For auto-encoders, the main objec-
tive is typically to enable both compression and 
decompression, or in other words reduce the 
data to such a form that the original data can be 
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or compressed form of the input data, can be 
extracted from the middle of the network (after 
the encoding step). To train the model, a loss 
or error function is defined, which captures 
how well the model is doing in terms of recon-
structing the original input. The model is then 
progressively optimized to reduce this recon-
struction error.

While the exact architecture of the model 
may vary depending on the task and data at 
hand, all auto-encoder models contain a distinc-
tive ‘bottleneck’ or funnel structure. Here the 
dimensionality of the data is reduced during the 
encoding step, and increased again during the 
decoding step. This bottleneck structure ensures 
the model is unable to simply copy information 
from the input to the output. Instead it has to 
compress the data and reconstruct it. By forcing 
compression of the data through the bottleneck 
structure and optimizing the model for accurate 
reconstructions, auto-encoders learn to perform 
complex steps that allow it to create a latent 
representation of the data that contains as much 
important information as possible. We provide 
a more formal explanation of this process in the 
technical intermezzo below.

Technical Intermezzo 1
The auto-encoder neural network is 
trained to ensure that its output data are 
the same as the input data, which is done 
through a funnel represented by the latent 
space (Fig. 1). Even though an auto-
encoder is technically a single model; it 
is common to define the encoder step and 
the decoder step separately. The encoder 
E takes the raw data x as input and out-
puts a latent representation z (Eq. 1). 
Subsequently, decoder D takes the latent 
representation z as input and outputs a 
reconstruction of x, now called x̂ (Eq. 2). 
The so-called latent vector z has a lower 
dimensionality (is smaller) than the input 
x and output x̂, that both have the same 
dimensions. As per the MNIST example 

above, x and x̂ would both be of size 
28 × 28 pixels, while z is a vector of arbi-
trary size that is determined by the design 
and purpose of the auto-encoder (e.g. 
1 × 2 for compression to 2 latent variables 
per sample or 1 × 32 for 32 latent vari-
ables per sample).

Equation 1 Function that represents the 
encoder part of an auto-encoder. The 
latent vector (z) is calculated by the 
encoder (E) based on the input data x.

Equation 2 Function that represents the 
decoder part of an auto-encoder. The out-
put (x̂) is calculated by the decoder (D) 
based on the latent vector (z) that was pre-
viously calculated by the encoder.

Using this formalization, we can thus 
define the auto-encoder as two functions as 
shown above. The objective of the model 
is to output a reconstruction x̂ that is as 
similar as possible to the original input x 
while also generating a latent representa-
tion (z) of the data after the encoding step. 
To enforce this similarity, a so-called loss 
term (or error term) is used during train-
ing of the auto-encoder. This loss term is a 
measure for the difference between input x 
and output x̂. A relatively simple and com-
monly used function to calculate the loss 
is the mean squared error (MSE). The loss 
calculation of the model can then be repre-
sented by the following function:

Equation 3 Function to calculate the mean 
squared error (MSE) loss of the input data 
x and output data x̅. N = total number of 
data point in data, i = ith data point in the 
dataset.

(1)z = E(x)

(2)x̂ = D(z)

(3)Loss = MSE
(

x, x̂
)

=
1

N

N
∑

i=0

(

xi − x̂i
)2
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5	� Auto-encoders for Denoising 
and Anomaly Detection

In this section we will provide some use cases 
for auto-encoders. The first example of a poten-
tial use-case is that of denoising data. In the 
field of medical imaging, the presence of noise 
in images may limit resolution or decrease 
interpretability, thereby hampering it’s use 
for evaluation or further analysis. Therefore, 
removing noise (i.e. denoising) is commonly 
performed as a first step. Conventional meth-
ods for denoising (medical) images ranges 
from spatial filters, such as Gaussian or convo-
lutional filters to wavelet based techniques [6]. 
As described before, auto-encoders can also be 
used for denoising images. Recent studies have 
shown that auto-encoder based denoising meth-
ods often outperform conventional methods. 
Gondara showed that using convolutional layers 
in an auto-encoder led to efficient denoising of 
medical images, and maybe more importantly, 
can be used on smaller datasets [7].

Auto-encoders extract information from the 
input and reconstruct the input data as good as 
possible. We can use this characteristic to create 

an auto-encoder that extracts information from 
a noisy input and reconstructs the input but 
without the noise. We do this under the assump-
tion that a noisy image is composed of a clean 
image with noise added to it. We thus want to 
train the auto-encoder such that it extracts the 
important information of the clean image but 
ignores the noise. In order to do so we start 
with a, non-noisy, input x and add some random 
noise λ to it. We thus have a new input for the 
model, which we will call x*, that is the sum of 
x and λ (e.g. x* (noisy image) = x (image) + λ 
(noise)). We pass this noisy input through the 
network and obtain x̂, the reconstructed image, 
as we did before. Meanwhile, we keep the origi-
nal MSE loss calculation fixed, so it is still the 
difference between x and x̂, however, x̂ is now 
based on the noisy input x* rather than x. The 
network will thus have to learn how to remove 
the noise from x̂ in order to make it as similar 
as possible to x.

Denoising auto-encoders can be a useful tool 
to clean data that stems from real world obser-
vations that tend to be very noisy. Lu et al., 
for example, use denoising auto-encoders to 
enhance speech recordings [8]. Jifara et al. 

Fig. 1   General schematic layout of an Auto-encoder neu-
ral network. The network input x can be any form of data 
(e.g. images, signals or other measurements). The network 

learns to reconstruct the input by minimizing the mean 
squared error (MSE) between the input and the output of 
the network
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take a slightly different approach and design 
their auto-encoder in such a way that it out-
puts the estimated noise, instead of a recon-
struction of the input image (the noise can be 
subtracted from the noisy image to create a 
clean image) [9]. They show that this approach 
improves upon standard denoising auto-encod-
ers on images obtained using chest radiography. 
Nawarathne et al. use denoising auto-encoders 
on spectral images extracted from acceleromet-
ric data measured on pregnant mothers’ abdo-
men, in order to improve the analysis of fetal 
motion during pregnancy [10].

Auto-encoders can also be used as a fully 
unsupervised method of anomaly detection. For 
these applications, it is important to understand 
that auto-encoders only learn to reconstruct data 
that they have seen during the training of the 
network. While a network may learn to handle 
slight differences, it likely performs worse on 
samples that are very different from the train-
ing data. To illustrate this using the MNIST (a 
dataset containing images of hand drawn digits) 
example; if a network is only trained on images 
of the digit 3, it will fail to properly reconstruct 
the digit 7. Interestingly, we can use this prop-
erty to detect anomalies or outliers in the data-
set, by purposefully training the network on a 
dataset of which we are certain does not con-
tain any anomalous samples. If we then apply 
the network to another dataset that does contain 
outliers, the outliers are likely to have a signifi-
cantly larger reconstruction error than the non-
anomalous samples. It must be kept in mind that 
all data that is different from that in the training 
set is considered anomalous. It may therefore 
be very hard to distinguish between expected 
anomalous data, and noise in the observations.

Shvetsova et al. show that this approach can 
be used to detect tissue with metastases in H&E-
stained lymph nodes and abnormal chest x-rays 
[11]. Wei et al. use a similar method to detect 
suspicious areas in mammograms showing how 
auto-encoders can also be used to detect the 
position of the anomaly in an image while only 
requiring a set of images obtained from healthy 
‘normal’ patients [12].

6	� Auto-encoders for Latent 
Vector and Feature Learning

Perhaps the most interesting applications of 
auto-encoders are based on the latent vector 
extracted after the encoding step. The latent vec-
tors contain a condensed form, or a summary, 
of all the important information in the input 
data. Exactly what that information is however, 
is unknown. We only know that the latent vec-
tor contains information that the decoder can 
use to reconstruct the original data. An impor-
tant aspect of auto-encoders is that they do not 
guarantee that the latent space is normally dis-
tributed. What this means is that we may get 
unexpected results when we reconstruct sam-
ples after manipulating latent representations 
or when we calculate relationships between 
latent representations of different samples. 
For instance, one might expect that two simi-
lar looking images yield similar latent vectors 
when passed through the encoder. However, it is 
entirely possible that two very different images 
have a very similar latent vector, while two very 
similar images have very different latent vectors. 
An example of this is given in Fig. 4 where we 
can see that if we look at some MNIST images 
that are similar in terms of their latent represen-
tation, that some of the original non-compressed 
images are in fact very different. The fact that 
the latent space of the auto-encoder is not nor-
mally distributed also hampers us from directly 
linking the values in the latent representations to 
underlying features of the data. In the case of the 
MNIST example we may for example observe 
an increase in line-width if we increase the first 
latent variable of a latent representation by +2 
and reconstruct the image. It is however possi-
ble that a step of +5 yields a reconstruction in 
which the digit is rotated instead of a reconstruc-
tion where the linewidth is increased further. 
Variational auto-encoders, discussed later in this 
chapter, try to enforce a normally distributed 
latent space which enables a wide range of addi-
tional applications.

While the latent representations of auto-
encoder are limited by the non-linearity of the 
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latent space they can still be used for a number 
of applications. The created latent vectors may 
for example serve as input to other models [13]. 
If a user has a very large dataset, of which only 
a small fraction is labeled, it may be beneficial 
to first train an auto-encoder on the full dataset, 
and then train a separate classifier on the latent 
representations of the previously labelled data-
set. This approach ensures that sufficient infor-
mation is extracted from the input data, with less 
risk of overfitting and unwanted biases.

It is also possible to use the latent vectors 
as input for another dimension reduction tech-
nique that is better at preserving the relationship 
between samples, but worse at handling large/
complex data [14]. It is for example not uncom-
mon to reduce image data to 32 or 64 dimen-
sions using an auto-encoder and then apply 
t-SNE (or similar dimension reduction tech-
niques) to further reduce the dimension to 2 or 
3, so that the data can easily be visualized in a 
graph [15]. This approach generally performs 
better than only using an auto-encoder or t-SNE.

7	� Variational Auto-encoders

Variational auto-encoders (VAE) are closely 
related to auto-encoders in terms of their net-
work structure and purposes [16]. The main goal 
with which they were proposed is however very 
different from the original ‘vanilla’ auto-encod-
ers. VAEs are a type of generative model, mean-
ing that they can generate (new) data, instead 
of just compressing and reconstructing existing 
data. In order to do so, VAEs attempt to learn 
the distribution (or process) that generated the 
data on which the model is trained, opposed to 
simply finding the optimal solution that mini-
mizes reconstruction loss. The latent space vari-
ables of regular auto-encoders may have large 
gaps in their distribution and may be centered 
around an arbitrary value, while those of VAEs 
are all normally distributed with a mean of 0 
and standard deviation of 1 (stochastic normal 
distribution). In the case of the latent space of 

an auto-encoder, there is little relation between 
values in the latent space and its reconstruction, 
slightly changing z might lead to completely dif-
ferent reconstructions. With the VAE, there is a 
very direct relation between the two and slightly 
changing z will slightly alter the reconstruction 
while changing z in the opposite direction will 
have the opposite result. By inserting a latent 
vector z (with values around zero, and within 
a few standard deviations) into the decoder of 
a VAE, one can create ‘new’ data that can usu-
ally be considered comparable to the data the 
VAE was trained on, where a latent vector z con-
taining all zeros approximates the mean of the 
training data. The general structure of a VAE is 
visualized in Fig. 2.

The training of VAEs is more complex than 
that of normal auto-encoders, and is described 
in more detail in the technical intermezzo. It 
is important to know that VAEs are trained 
with an additional loss term: the Kullback-
Leiber Divergence (KL Divergence). The 
KL-divergence loss term encourages the latent 
space of the VAE to have the desired properties 
described above by enforcing that each individ-
ual latent variable follows a unit normal gauss-
ian distribution (with mean = 0 and standard 
deviation = 1).

Technical Intermezzo 2
VAEs are based on the assumption that all 
data in the dataset used to train the model 
was generated from a process involving 
some unobserved random variable. The 
data generation process then consists of 2 
steps: (1) a value z is generated from some 
prior distribution Pθ (z); ; (2) a value x is 
generated from a conditional distribution 
Pθ (x|z). In this process the optimal values 
of θ(θ*) and z are unknown, and thus need 
to be calculated from the known values 
in x. VAEs aim to approximate θ∗ and z 
even if calculation of the marginal likeli-
hood and true posterior density are intrac-
table. To do so, VAEs use a recognition 
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model qϕ(z|x) that approximates the true 
posterior Pθ (x|z) and jointly learn the 
recognition parameter ϕ together with the 
generative parameter θ. Using this for-
malization, we can distinguish between 
learning a probabilistic encoder qϕ(z|x), 
from which we can sample z when given x 
and a probabilistic decoder Pθ (x|z), from 
which we can sample x when given z. In 
practice both the probabilistic encoder 
and decoder are neural networks of which 
the appropriate architecture can be picked 
based on the nature of the data in x.

The VAE training objective

To ensure that the approximate dis-
tribution qϕ(z|x), is close to the real 
distribution Pθ (x|z), , we can use the 
Kullback-Leiber Divergence (KL 
Divergence) which quantifies the def-
erence between 2 distributions. In the 
case of VAEs the goal is to minimize this 
KL Divergence which can be written as 
follows:

Equation 4. The Kullback-Leiber 
Divergence.

Equation 4 can then be rearranged to 
Eq. 5.

The left-hand side of Eq. 5 exactly fits the 
objective of the VAE: we want to maxi-
mize the probability of x from distribu-
tion pθ(x) and minimize the difference 
between the estimated distribution qϕ(z|x) 
and real distribution pθ(z|x). The negation 
of the right-hand side of the equation gives 
us the loss which we minimize to find the 
optimal values for ϕ and θ.

Equation 6. The training objective func-
tion of the variational auto-encoder.

(4)

DKL

(

qϕ(z|x), pθ (z|x)
)

= pθ (x)+ DKL(qϕ(z|x), pθ (z))

− Ez∼qϕ
(z|x) log pθ (x|z)

(5)

pθ (x)− DKL

(

qϕ(z|x), pθ (z|x)
)

= Ez∼qϕ
(z|x) log pθ (x|z)

− DKL

(

qϕ(z|x), pθ (z)
)

(6)

LVAE = Ez∼qϕ
(z|x) log pθ (x|z)+ DKL

(

qϕ(z|x), pθ (z)
)

θ∗,ϕ∗
= argminθ,ϕLVAE

Fig. 2   General schematic layout of a Variational Auto-
encoder neural network. During the training the net-
work latent vector z is sampled from a gaussian distri-
bution parameterized by the outputs of the encoder. 

These outputs are also used for the calculation of the 
KL-divergence, which is then combined with the MSE 
loss (calculated from the original input and the recon-
struction) to form the VAE loss function
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Equation 6 is known as the Evidence 
Lower Bound (ELBO) because the 
KL-divergence is always positive. This 
means that − LVAE is the lowest value pθ(x) 
can take, minimizing LVAE thus equates 
to maximizing pθ(x). Even tough Eq. 6 
gives a clear definition of a loss term, it 
cannot directly be used to train a VAE. 
The expectation term in the loss has to be 
approximated using a sampling operation, 
which prevents the flow of gradients dur-
ing training. To solve this issue, VAEs use 
the ‘reparameterization trick’ which relies 
on the assumption that p(z|x) follows 
a known distribution. This distribution 
is usually assumed to be a multivariate 
Gaussian with a diagonal covariance struc-
ture (even though the trick works for other 
distributions as well). Using the param-
eters of qϕ(x|z) and the assumption qϕ(x|z) 
is Gaussian, z can be expressed as a deter-
ministic variable that is produced by some 
function τϕ(x, ε) where ε is sampled form 
an independent unit normal Gaussian 
distribution.

Equation 7. The ‘reparameterization trick’ 
used to enable the training of variational 
auto-encoders through backpropagation.

In practice the encoder model of the 
VAE is constructed so that is outputs a 
mean (µ) and standard deviation (σ) that 
parameterize the Gaussian distribution 
qϕ(x|z). Using this set up, the reparameter-
ization trick equates to Eq. 7.

In this chapter we often refer to the embedding 
or latent representation of data which means the 
mean µ output of the encoder of the VAE was 
used and the standard deviation σ was ignored. 
This can be considered standard practice if a 
latent representation of input data is desired.

(7)z = τϕ(x, ε) = µ+ σ⊙ ε

8	� Disentanglement and Posterior 
Collapse

The latent variables of a VAE often encode 
some underlying characteristics of the data. For 
images, latent variables can for example encode 
factors such as the width, height or angle of a 
shown object [17]. However, different latent var-
iables are often entangled, meaning that multiple 
variables influence the same characteristic of the 
data. To improve the explainability of the latent 
space and better control the generative process of 
the VAE [18–21] it can be desirable to disentan-
gle the latent space. Higgins et al. proposed the 
β-VAE, which adds an additional weight β to 
the KL-term of the VAE loss, as a very simple 
but effective way to improve disentanglement 
[17]. The value of β can be picked based on the 
desired amount of disentanglement of the latent 
space. A higher β generally corresponds to bet-
ter disentanglement. There is however a trade-off 
between the amount of disentanglement and the 
reconstruction quality of the VAE, where more 
disentanglement results in worse reconstruc-
tions [22]. VAEs also suffer from a phenomenon 
called posterior collapse (or KL-vanishing), 
which causes the model to ignore a subset of the 
latent variables. Posterior collapse occurs when 
the uninformative prior distribution matches the 
variational distribution too closely for a sub-
set of latent variables. This is likely caused by 
the KL-divergence loss term which encourages 
the two distributions to be similar [23]. During 
training, posterior collapse can often be observed 
when the KL-loss term decreases to (near) zero, 
which is even more prevalent in VAE variants 
that add additional weight to the KL-term such 
as β-VAE [17]. To prevent posterior collapse 
and improve reconstruction quality of disentan-
gled VAEs, Shao et al. propose the Control-VAE 
[24]. This method requires a ‘target value’ for 
the KL-divergence and tunes the weight of the 
KL-divergence such that it stays close the target 
value during training.
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9	� Use Cases for VAEs and Latent 
Traversals

The generative capabilities and their (disentan-
gled) latent spaces allow for a large number of 
use-cases of VAEs. VAEs (and VAE based mod-
els) can for example be used to improve anom-
aly detection compared to normal auto-encoders, 
to create interpretable latent representations that 
can serve as input for conventional classification 
models such as logistic regressions, or to per-
form further analysis of the learned latent vari-
ables using techniques such as latent traversals 
[25, 26].

A latent traversal is a method in which we 
change one or more latent variables from a sam-
ple encoded using the encoder of a VAE, and 
reconstruct the input sample from these changed 
latent variables using the decoder. By comparing 
the original sample and the sample reconstructed 
from the changed variables one can see which 
aspects of the data are encoded by these vari-
ables. Especially when the latent space is suffi-
ciently disentangled, it is often possible to relate 
individual latent variables to underlying physi-
ological characteristics of the data.

Latent traversals can be combined with 
logistic regressions (or other classical statisti-
cal models) to infer and visualize relationships 
between latent variables and the use case (e.g. 
classification, prediction etc.). We do this by 
analyzing the weights/coefficients of the logis-
tic regression to see which latent variables 
have a positive predictive value for a certain 
class. We can then perform a latent traversal by 
increasing and decreasing these important latent 

variables and examining how the reconstructed 
sample changes. This whole process thus allows 
us to visualize which features are important for a 
class. We elaborate on this approach in a practi-
cal example applied to electrocardiogram (ECG) 
data later in this chapter.

10	� Auto-encoders Versus 
Variational Auto-encoders 
(Summary)

Now that we have discussed both auto-encoders 
and variational auto-encoders, we can summarize 
the pros and cons of both model types. An over-
view of these is given in Table 1. In general, VAEs 
provide a wider range of applications, while auto-
encoders generally produce better reconstructions. 
We have discussed a similar trade-of regarding 
the disentanglement of VAEs, where the recon-
struction quality of VAEs is inversely related to 
the amount of disentanglement. These trade-offs 
lead to the conclusion that it is desirable to use a 
(disentangled) VAE if a normal auto-encoder is 
insufficient for the desired use-case.

11	� Designing an Auto-encoder 
and Common Pitfalls

The first step in training an auto-encoder (or any 
other model) is collecting a representative data-
set that can ensure the validity of any findings or 
insights [27]. As discussed before, auto-encod-
ers only learn to reconstruct data that is similar 
to the data used during the preceding training 

Table 1   Use cases, pros and cons of using (variational) auto-encoders

Use-case Auto-encoder Variational 
quto-encoder

Denoising + +
Anomaly detection + +
Representation learning + +
Data generation − +
Latent traversals − +
Possibility to disentangle latent variables − +
Optimal reconstruction quality + −
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phase. It is thus important to collect a heteroge-
neous dataset that spans the full range of sample 
variation that will be used for further analysis. 
The actual type of data can range anywhere 
from images, to signals to any arbitrary meas-
urement. There is, to the best of our knowledge, 
no datatype that can inherently not be used to 
train an auto-encoder. It is however important to 
remember that more complex data may require 
a more complex network architecture, or more 
training data. It is also possible that the stand-
ard MSE loss term may not be adequate for cer-
tain datatypes where it is important to accurately 
reconstruct small features, because the MSE loss 
will deem large features to be more important 
than small features. An example of this is in the 
use-case of ECGs, where minor variations in the 
P-wave can be overshadowed by larger varia-
tions in the larger T-wave, and are thus not ade-
quately captured by the auto-encoder.

Both the encoder and decoder part of the 
auto-encoder consist of a more elaborate neu-
ral network. The choice for the network archi-
tecture is generally dependent on the data to 
which the auto-encoder is applied. For simpler 
data it may be sufficient to use a small number 
of fully connected linear layers, in combina-
tion with non-linear activation functions [28]. 
For more complex data, such as for example 
medical images, the encoder network is often 
composed of several convolutional layers (con-
nected by non-linear activation functions) [7, 
9–11]. Convolutions are currently the most pop-
ular architecture type because they show optimal 
performance on various types of different data. 
For signal or timeseries data, 1-dimsional con-
volutions are a popular choice; for images it is 
common to use 2-dimensional convolutions [8]. 
Depending on the number of chosen layers it 
may also be beneficial to add skip connections 
(residual connections) to improve the flow of 
gradients through the network during backprop-
agation [29]. Various regularization techniques 
like batch normalization and dropout may also 
improve performance. It is however generally 
better to first design a simple network and be 
certain that these additional tricks improve per-
formance before using them.

In essence, the decoder of the network is 
often designed to be a mirrored version of the 
encoder network. Hence, if convolutional layers 
are used in the encoder, transposed convolutions 
are used in the decoder [30]. The usage of pool-
ing layers (e.g. min/max-pool, average pool) in 
the encoder may pose a problem, as no sufficient 
inverse of these functions exist. In this case it 
is possible to simply up sample the data in the 
decoder under the assumption that the model 
will be expressive enough trough the other lay-
ers that do contain weights.

Perhaps the most important design decision is 
the size of the latent space. Smaller latent vec-
tors generally result in worse reconstructions, 
conversely larger latent vectors often lead to 
better reconstructions. The choice of the size 
of the latent space is thus very dependent on 
the use case of the auto-encoder. For denoising 
auto-encoders and anomaly detection tasks, it 
may be sufficient to reduce the size of the input 
only slightly during the encoding step. In these 
cases a very small latent vector is undesirable 
as it is likely to yield worse reconstructions. By 
contrast, if the latent representation serves as 
input for another model, picking the correct size 
is entirely dependent on the task of the other 
model. Here a more compressed representa-
tion may be desirable as it reduces the amount 
of information extraction that still must be per-
formed by the other model. If the latent repre-
sentations are used as input for conventional 
clustering techniques it is desirable to have an 
amount of latent variables that is within a rea-
sonable range (e.g. higher than 10 but below 
100, dependent on the size of the dataset). 
When auto-encoders serve as an input to another 
neural model, the optimal latent space can be 
selected based on the quality of the reconstruc-
tions (if we assume the decoder is functioning 
perfectly). Simply put, if the reconstructions 
look decent, there must be enough informa-
tion in the latent representation to be used in 
the other model, and the latent space was suffi-
ciently large.

If the goal of the auto-encoder is to create 
an interpretable latent space, the best choice is 
likely to use a variational auto-encoder.
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12	� Examples Using the MNIST 
Dataset

In this section we perform a number of small-
scale experiments to show the how the design 
of the auto-encoder influences its performance. 
For this purpose we use the MNIST dataset [4]. 
This dataset consists of 70,000 grayscale images 
of handwritten digits and is a popular choice for 
basic experiments among AI researchers.

We split the dataset into a train, validation 
and test set (80%, 10%, 10% respectively) 
and trained 9 neural networks until conver-
gence. As a comparison, we also included 3 
examples of the commonly used PCA dimen-
sion reduction technique. The tested neural 
architectures consist of a fully connected (lin-
ear) architecture without activation functions, 
a fully connected architecture with activation 
functions, and a convolutional neural net-
work. For each architecture we train the net-
work with 3 different latent space sizes (2, 4 
and 8 latent variables). We configure the PCA 
method to also reduce the data to 2, 4 and 8 
variables.

All images in the dataset consist of 28 × 28 
pixels. Depending on the model architecture we 
treat the pixel values of the image as either a 
vector or a matrix. For the fully connected archi-
tectures, as well as the commonly used PCA 
method, we flatten the input 28 × 28 image, 
resulting in a vector of 1 × 784 pixel values. For 
a convolutional architecture we keep the image 
in its original matrix form so that convolu-
tions can better capture the spatial relationships 
between the pixels in the images, in all direc-
tions (i.e. horizontal or vertical).

In Fig. 4 we show the reconstructions of a 
sample for each of the methods and each tested 
latent space size. The results clearly show that 
the reconstruction quality increases as more 
latent variables are used. We also observe 
the difference in quality between the differ-
ent architectures. The fully connected models, 
without linear activation functions, show the 

worst results, which are even worse than the 
PCA method. This is expected, as a linear net-
work is likely to only approximate PCA. The 
non-linear models, both fully connected and 
convolutional, show the best results, with the 
convolution network performing slightly bet-
ter than the fully connected network. Here the 
strength of convolutional models becomes clear, 
as the convolutional networks outperform the 
fully connected networks while having signifi-
cantly less parameters (approximately 270,000 
for the convolutional networks versus 400,000 
for the fully connected networks). We thus see 
that convolutional neural networks can outper-
form fully connected neural networks despite 
having less parameters. This difference in the 
number of parameters generally causes convo-
lutional networks to be more computationally 
efficient and converge faster. Additionally, this 
reduction in computational cost may allow us 
to further increase the depth/size of the network 
and potentially improve its performance further 
(Fig. 3).

In order to highlight the fact that auto-encod-
ers do not preserve the relationship between 
input samples in the latent space, an additional 
example is provided. We encode a sample 
image, as well as the rest of the training data-
set, to its latent representation, and look for the 
images that are closest to the sample image in 
the latent space. We plot the top 5 closest images 
in Fig. 5, and observe that images 3, 4 and 5 are 
not similar to our sample image at all (Fig. 4).

We also compare the spread of the values of 
the latent space of auto-encoders and variational 
auto-encoders (Fig. 6) to show the differences 
between both models. To do so we first construct 
a variational auto-encoder with a latent space of 
8 values that uses a similar convolutional archi-
tecture as the normal auto-encoder. We than 
encode all the entries in the training set into 
their latent representation and create a boxplot 
for each latent variable. We observe that for the 
normal auto-encoder the latent variables have 
mean values that deviate from 0, have larger 
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standard deviations, larger confidence intervals 
and that the mean value of the variables is often 
not located at the center of the confidence inter-
val. For the variational auto-encoder we observe 
that each latent variable does indeed appear to 
be normally distributed, as was enforced during 
the training of the VAE.

13	� Demonstrator Use Case of an 
VAE for the Electrocardiogram: 
The FactorECG

Many studies use deep neural networks to 
interpret electrocardiograms (ECGs) with high 
predictive performances, some focusing on 

Fig. 3   Reconstructions created using PCA or auto-encoders under different configurations

Fig. 4   Examples of digits most similar to the original sample (left) in terms of latent representation
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tasks known to be associated with the ECG 
(e.g., rhythm disorders) and others identifying 
completely novel use cases for the ECG (e.g., 
reduced ejection fraction) [31–34]. Most studies 
do not employ any technique to provide insight 
into the workings of the algorithm, however, the 
explainability of neural networks can be con-
sidered a essential step towards the applicabil-
ity of these techniques in clinical practice [35, 
36]. In contrast, various studies do use post-hoc 
explainability techniques, where the ‘decisions’ 
of the ‘black box’ DNN are visualized after 
training, usually using heatmaps (e.g.., using 
Grad-CAM, SHAP or LIME) [37]. In these 
studies, usually some example ECGs were hand-
picked, as these heatmap-based techniques only 
work on single ECGs. Currently employed post-
hoc explainability techniques, usually heatmap-
based, have limited explainable value as they 
merely indicate the temporal location of a spe-
cific feature in the individual ECG. Moreover, 
these techniques have been shown to be unreli-
able, poorly reproducible and suffer from confir-
mation bias [38, 39].

Variational auto-encoders can be used to 
overcome this by constructing a DNN that 
is inherently explainable (i.e. explainable by 
design, instead of investigating post-hoc). One 
example is the FactorECG, which is part of a 
pipeline that consists of three components: (1) a 
variational auto-encoder that learned to encode 
the ECG into its underlying 21 continuous 

factors of variation (the FactorECG), (2) a visu-
alization technique to provide insight into these 
ECG factors, and (3) a common interpretable 
statistical method to perform diagnosis or pre-
diction using the ECG factors [19]. Model-level 
explainability is obtained by varying the ECG 
factors (i.e. latent traversals), while generating 
and plotting ECGs, which allows for visualiza-
tion of detailed changes in morphology, that are 
associated with physiologically valid underlying 
anatomical and (patho)physiological processes. 
Moreover, individual patient-level explanations 
are also possible, as every individual ECG has 
its representative set of explainable FactorECG 
values, of which the associations with the out-
come are known. When using the explainable 
pipeline for interpretation of diagnostic ECG 
statements, detection of reduced ejection frac-
tion and prediction of one-year mortality, it 
yielded predictive performances similar to 
state-of-the-art ‘black box’ DNNs. Contrary 
to the state-of-the-art, our pipeline provided 
inherent explainability on which ECG features 
were important for prediction or diagnosis. For 
example, ST elevation was discovered to be an 
important predictor for reduced ejection frac-
tion, which is an important finding as it could 
limit the generalizability of the algorithm to 
the general population. We have also extended 
the FactorECG methodology and developed 
a technique called Query based Latent Space 
Traversals (qLST) which can be used to relate 

Fig. 5   Boxplots of each latent variable of latent representations of the MNIST dataset created using an auto-encoder 
(left) and a variational auto-encoder (right)
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multiple latent variables to a disease class at 
once or to explain existing black box classifiers 
[15].

A longstanding assumption was that the high-
dimensional and non-linear ‘black box’ nature 

of the currently applied ECG-based DNNs was 
inevitable to gain the impressive performances 
shown by these algorithms on conventional 
and novel use cases. Variational auto-encoders 
allow for reliable clinical interpretation of these 

Fig. 6   Illustration of the FactorECG explainable pipe-
line for ECG interpretation. The VAE consists of three 
parts, the encoder, the latent space (FactorECG) and the 
decoder. The model can be made explainable locally (as 
the individual values of the ECG factors for each ECG 

are known) and globally (by using factor traversals the 
influence of individual factors on the ECG morphology 
can be visualized). Usually, the factors are entered into 
simple statistical models, such as logistic regression, to 
perform the task at hand
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models without performance reduction, how-
ever, while also broadening their applicability 
to detect novel features in many other (rare) dis-
eases, as they provide significant dimensionality 
reduction. The application of such methods will 
lead to more confidence in DNN-based ECG 
analysis, which will facilitate the clinical imple-
mentation of DNNs in routine clinical practice.

Glossary

Activation function  In neural networks, (non-
linear) activation functions are used at the 
output of neurons to convert the input to an 
‘active’ or ‘not active’ state. An activation 
function can be a simple linear or sigmoid 
function or have more complex arbitrary 
forms. The Rectified Linear Unit (ReLU) 
function is currently the most popular choice.
In neural networks, (non-linear) activation 
functions are used at the output of neurons to 
convert the input to an ‘active’ or ‘not active’ 
state. An activation function can be a simple 
linear or sigmoid function or have more com-
plex arbitrary forms. The Rectified Linear 
Unit (ReLU) function is currently the most 
popular choice.

Back propagation  Is a widely used technique 
in the field of machine learning that is used 
during the training of a neural network. The 
technique is used to update the weights of the 
neural network based on the calculated loss, 
effectively allowing it to ‘learn’.Is a widely 
used technique in the field of machine learn-
ing that is used during the training of a neu-
ral network. The technique is used to update 
the weights of the neural network based on 
the calculated loss, effectively allowing it to 
‘learn’.

(mini-) Batch  A small set of data samples that 
is fed through the network at once during 
training. A too small batch size may lead to 
instability while a too large batch size may 
lead to depletion of computer resources.A 
small set of data samples that is fed through 

the network at once during training. A too 
small batch size may lead to instability while 
a too large batch size may lead to depletion 
of computer resources.

Convolution  Common building block of vari-
ous neural networks. Convolutional neural 
networks can be considered the current ‘state 
of the art’ of neural networks applied to vari-
ous data sources. Convolutional layers in a 
neural network a apply a learned filter to the 
input data which improves the ability of neu-
ral networks to comprehend spatial structures. 
Convolutions can be applied in 1 dimensional 
(signal/timeseries data) and 2 dimensional 
(images) forms.Common building block of 
various neural networks. Convolutional neural 
networks can be considered the current ‘state 
of the art’ of neural networks applied to vari-
ous data sources. Convolutional layers in a 
neural network a apply a learned filter to the 
input data which improves the ability of neu-
ral networks to comprehend spatial structures. 
Convolutions can be applied in 1 dimensional 
(signal/timeseries data) and 2 dimensional 
(images) forms.

Decoder  Part of the (variational) auto-encoder 
that decodes the given latent vector into a 
reconstruction of the original dataPart of the 
(variational) auto-encoder that decodes the 
given latent vector into a reconstruction of 
the original data

Dimension  The dimension of data is the size 
of the dataset or vector, for a grayscale 
image this is the height × the width in pix-
els (e.g. 28 × 28), for an RGB-color image, 
a third dimension of size 3 is added (e.g. 
(28 × 28 × 3)The dimension of data is the 
size of the dataset or vector, for a grayscale 
image this is the height × the width in pix-
els (e.g. 28 × 28), for an RGB-color image, 
a third dimension of size 3 is added (e.g. 
(28 × 28 × 3)

Encoder  Part of the (variational) auto-encoder 
that encodes the provided data into the latent 
vectorPart of the (variational) auto-encoder 
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that encodes the provided data into the latent 
vector

Explainability  The ability of a (trained) 
observer to interpret the inner workings of a 
model. Neural networks are generally con-
sidered to be to complex to comprehend by 
humans and are treated as an ‘unexplain-
able’ black box. The lack of explainability is 
a major issue in many of the current clinical 
applications of neural networks.The abil-
ity of a (trained) observer to interpret the 
inner workings of a model. Neural networks 
are generally considered to be to complex 
to comprehend by humans and are treated 
as an ‘unexplainable’ black box. The lack 
of explainability is a major issue in many 
of the current clinical applications of neural 
networks.

Fullyconnected or linear layer  Common 
building block of neural networks in which 
every node (or every datapoint) in the input is 
connected to every node in the output of the 
layer. Through the weights that are associated 
with each connection the layer is able per-
form linear transformations of the input data. 
Together with non-linear activation functions, 
fully connected layers make up the most 
basic forms of neural networks.Common 
building block of neural networks in which 
every node (or every datapoint) in the input is 
connected to every node in the output of the 
layer. Through the weights that are associated 
with each connection the layer is able per-
form linear transformations of the input data. 
Together with non-linear activation functions, 
fully connected layers make up the most 
basic forms of neural networks.

KL Divergence  The Kullback-Leiber 
Divergence is a measure of similarity 
between two distributions.The Kullback-
Leiber Divergence is a measure of similarity 
between two distributions.Loss function  The 
loss function of the network defines the 
training objective of the neural network. 
The loss, the output of the loss function, is 

progressively minimized through backpropa-
gation, allowing the network to learn and be 
optimized for its training objective.The loss 
function of the network defines the training 
objective of the neural network. The loss, the 
output of the loss function, is progressively 
minimized through backpropagation, allow-
ing the network to learn and be optimized for 
its training objective.

MNIST  A commonly used dataset consisting of 
image of handwritten digits. MNIST is often 
used for small scale experiments because of 
the simplistic nature of the data.A commonly 
used dataset consisting of image of handwrit-
ten digits. MNIST is often used for small 
scale experiments because of the simplistic 
nature of the data.

PCA  Principal component analysis. A tech-
nique commonly used for dimension reduc-
tion. The technique involves the calculation 
ofPrincipal component analysis. A technique 
commonly used for dimension reduction. The 
technique involves the calculation of

Posterior collapse  A phenomenon that can 
occur during the train of variational autoen-
coder through which the reconstruction accu-
racy of the network decreases dramatically 
if the KL-divergence reduces to much.A 
phenomenon that can occur during the train 
of variational autoencoder through which 
the reconstruction accuracy of the network 
decreases dramatically if the KL-divergence 
reduces to much.

Vector  A vector is a single row or column of 
numbers.A vector is a single row or column 
of numbers.

Matrix  A set consisting of multiple rows and 
columns of numbers.A set consisting of mul-
tiple rows and columns of numbers.

Convergence  A neural network has reached 
convergence when further training does no 
longer improve the model.A neural network 
has reached convergence when further train-
ing does no longer improve the model.
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MSE loss  Mean Squared Error loss, a measure 
of difference between two data instances such 
as images or timeseries. The MSE loss is a 
common loss function that is used to mini-
mize the reconstruction error in auto-encod-
ers.Mean Squared Error loss, a measure of 
difference between two data instances such as 
images or timeseries. The MSE loss is a com-
mon loss function that is used to minimize 
the reconstruction error in auto-encoders.

Latent variable  A variable that is not directly 
observed in the data but can be inferred 
through the usage of a model from other vari-
ables that are observed directly. In the case of 
auto-encoders we refer to the variables in the 
vector extracted after applying the encoder of 
the auto-encoder as latent variables.A vari-
able that is not directly observed in the data 
but can be inferred through the usage of a 
model from other variables that are observed 
directly. In the case of auto-encoders we refer 
to the variables in the vector extracted after 
applying the encoder of the auto-encoder as 
latent variables.

Disentanglement  The disentanglement of 
latent variables refers to the process of sepa-
rating the influence of each latent variable on 
the reconstructed data.The disentanglement 
of latent variables refers to the process of 
separating the influence of each latent vari-
able on the reconstructed data.
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