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Biomedical Big Data: 
Opportunities and Challenges 
(Overview)

Folkert W. Asselbergs, Spiros Denaxas  
and Jason H. Moore

illuminates the multifaceted journey of AI 
in healthcare, emphasizing its challenges, 
opportunities, and the pressing need for a 
rigorous, informed evaluation to ensure AI’s 
responsible and impactful integration.

Keywords

Artificial intelligence · Data science · 
Healthcare · Medicine
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Abstract

Artificial Intelligence (AI) in medicine stands 
at the cusp of revolutionizing clinician rea-
soning and decision-making. Since its foun-
dational years in the mid-20th century, the 
progression of medical AI has seen consider-
able advancements, concurrently grappling 
with various challenges. Early attempts of AI 
showcased immense potential, yet faced hur-
dles from data integration to machine-driven 
clinical decisions. Modern deep learning neu-
ral networks, particularly in image analysis, 
represent promising advancements. Ensuring 
the trustworthiness of AI systems is para-
mount for stakeholders to fully embrace its 
potential in healthcare. To safeguard patient 
care and guarantee effective outcomes, a rig-
orous evaluation of AI applications is essen-
tial before wide-scale adoption. This textbook 
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Artificial intelligence (AI) has many definitions 
and means different things to different people. 
However, a common theme is to develop com-
puter systems and software that can solve prob-
lems as well or better than humans. This is a 
good starting definition for AI in medicine as 
we strive to augment, or in some cases replace, 
clinician reasoning and decision making. The 
phrase artificial intelligence was solidified as 
a descriptor and name for the field at sum-
mer workshop held at Dartmouth College in 
the United States in 1956. Prior to that time, a 
variety of other names such as cybernetics and 
automata were inconsistently used.

The 1950s was a period of excitement for 
AI as computers and the first programming 
languages became available to implement 
some of the first AI methods. For example, the 
FORmula TRANslation (FORTRAN) and Lisp 
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programming language were developed in the 
mid-1950s and became widely used in AI pro-
gram development for decades. Prior to this 
time AI was the subject of science fiction and 
speculation by researchers. The development of 
AI in medicine paralleled the development and 
adoption of electronic health records (EHR) in 
the 1960s and beyond for storing and managing 
patient data.

One of the earliest and most notable exam-
ples of AI in medicine was the MYCIN expert 
system for prescribing antibiotics for treat-
ing intensive care unit patients presenting with 
infection [9]. Expert systems such as MYCIN 
have several key components. First, a database 
of facts about each patient is needed. Second, a 
database of knowledge about the clinical prob-
lem is needed. Third, an inference engine is 
needed to combine the facts with the knowl-
edge (often represented by rules) to arrive at a 
decision. Interestingly, the MYCIN system was 
demonstrated to be clinically effective [13]. 
However, it was never used in clinical practice 
due to data entry challenges and concerns about 
how patients and their families would react to 
the involvement of a computer in making health-
care decisions.

Early successes in AI, and the continued 
evolution of computers and programming lan-
guages, led to a lot of hype about what AI could 
do through the 1980s. Unfortunately, the tech-
nology could not keep up with the promises 
leading to what many refer to as an “AI winter” 
in the 1990s and early 2000s when both govern-
ment and industry funding for AI dried up. This 
all changed in 2011 when IBM Watson AI com-
peted on the TV quiz show Jeopardy and beat 
the top human champion. This was a monumen-
tal feat and convinced many that the AI winter 
was over. Watson used natural language process-
ing, machine learning, information retrieval, 
knowledge engineering, and high-performance 
computing to be able to rapidly formulate the 
right questions to the answers presented in real 
time on the TV show. This was truly a human-
competitive AI. The challenges faced by the 
Watson team has been previously reviewed [3].

Building on the success of Watson, IBM 
decided to enter the healthcare market with 
Watson Oncology to assist with prescribing 
chemotherapy to cancer patients. Several promi-
nent cancer centers in the United States licensed 
Watson and put it to the test. Unfortunately, 
Watson did not perform as well as oncologists 
leading to some negative headlines. The rollout, 
evaluation, and consequences of IBM Watson 
in the healthcare space has been reviewed by 
Strickland [10]. The underwhelming perfor-
mance of Watson is likely more a statement 
about the complexities associated with modeling 
and predicting health outcomes than the technol-
ogy itself. The Watson experience is important 
to understand as we continue to develop and 
deploy AI in the clinic.

AI approaches, and particularly deep learn-
ing algorithms, are particularly well suited in 
combining multiple data modalities together 
and making statistical inferences from large, 
complex, multidimensional input. In healthcare, 
when individuals interact with care providers, a 
wealth of metadata and data are generated and 
captured electronically in EHR systems. These 
systems contain pieces of information on health-
care utilization and interactions as well as clini-
cally-meaningful information such as diagnoses, 
symptoms, interventions and procedures, labora-
tory measurements, and prescriptions of medica-
tions. This rapid and increasing availability of 
data, combined with advances in AI-driven ana-
lytical methods has fueled the expectations of 
applying AI approaches in the context of health-
care, but, as illustrated by the Watson experi-
ence, challenges exist regarding accessibility, 
interoperability and information governance.

EHR data can broadly be classified in four 
categories: structured, unstructured, imaging 
and signal data. Structured data are the funda-
mental building blocks of creating a patients 
longitudinal health snapshot and are the most 
popular data modality used in healthcare at the 
moment, They are recorded using controlled 
clinical terminologies which are structured 
medical ontologies that contains terms related to 
healthcare. For example, SNOMED-CT contains 
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over 500,000 unique concepts organized in a 
hierarchy and enables healthcare profession-
als to record information about patient interac-
tions. Likewise, the International Statistical 
Classification of Diseases (ICD-10) which is 
maintained by the WHO contains approximately 
10,000 unique terms that can be used to record 
information on diagnoses, symptoms and other 
parameters of interaction with the healthcare 
system. Semi-structured information, such as 
physical examination measurements (e.g. sys-
tolic blood pressure, HbA1C values) are also 
recorded using a combination of terminologies 
and data fields.

Unstructured data capture clinical narrative 
which is often, but not always, found in medi-
cal notes or care reports. Medical notes can 
contain important information (e.g. signs or 
symptoms) that supplement the data found in 
the structured part of the record but often can 
contain information that is not coded at all. 
Text data requires the application of specialized 
methods, such as Natural Language Processing 
(NLP) approaches, for processing and extract-
ing clinically important pieces of information 
and converting the data into a machine-readable 
structure. Imaging data includes data that are 
generated for example by radiologists such as 
CT or MRI scans and which often combine both 
imaging information and unstructured data (e.g. 
a report from a radiologist that accompanies a 
MRI scan). Finally, signaling data captures elec-
trophysiological measurements such as ECGs or 
EKGs that are also often accompanied by a text 
report.

In most use cases, AI-driven algorithms are 
trained on large datasets of multimodal data. 
This wealth of information however that is cap-
tured during healthcare interactions is primarily 
collected for clinical care or billing/reimburse-
ments. As a result, the data have a number of 
challenges associated with them such as data 
quality, bias, consistency. The data itself are 
influenced by numerous factors such as clinical 
practice guidelines which could influence the 

underlying healthcare processes and pathways 
while the information systems utilized to record 
the information has also been shown to affect 
data completeness. Certain sub-populations, 
such as particular ethnical minorities or people 
experiencing homelessness, might be signifi-
cantly underrepresented in the data. Healthcare 
utilization itself is associated with socioeco-
nomic status and data might reflect this as 
recently shown in an American study that dem-
onstrated racial bias within a commercial algo-
rithm that incorrectly classified black patients 
at lower risk due to health expenditure [8]. In 
order to create accurate, safe, and fair healthcare 
analytics, these challenges have to be addressed 
prior to including the data in any AI algorithm 
for clinical use. For this purpose, a multi-disci-
plinary team of researchers, clinicians, patient 
representatives, editors, industry have devel-
oped a pragmatic framework, CODE-EHR, to 
guide researchers with step-by-step approach 
to provide clarity on how the dataset was con-
structed, the details on the used coding systems, 
analytical methods, information governance and 
patient-public involvement to have confidence in 
the reported results and enable others to validate 
and improve the findings [5].

Equally important, the standardized report-
ing of biases and the relevant features that are 
associated with them in the analyses is required 
in order to assess diversity and inclusive-
ness in AI research. Examples of standardized 
reporting is the reporting protocol Transparent 
Reporting of a multivariable prediction model 
of Individual Prognosis Or Diagnosis (TRIPOD) 
and its recent AI extension TRIPOD-AI [2]. 
Furthermore, the evaluation of AI models need 
to be robust similar to medicine approval pro-
cesses before they can be widely adopted in 
healthcare. Randomized clinical trials are still 
the gold standard and much needed in this space 
to prove the added value of AI interventions in 
comparison to current care. CONSORT-AI has 
developed a reporting guideline specifically for 
AI interventions [7].
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Despite all these challenges, progress has 
been made in the last few years. A modern 
success story of AI in medicine is deep learn-
ing neural networks for the analysis of images 
[6, 11]. Deep learning is a type of neural net-
work with a large number of inputs and hidden 
layer nodes that facilitate the processing of lots 
of data and their relationships. This approach 
has been very effective for image analysis 
through the use of ‘convolutions’ that are able 
to decompose and model images as a series of 
layers each providing different information. 
The best example of deep learning in medicine 
is the use of convolutional neural networks for 
diagnosing diabetic retinopathy from images 
of the fundus [1, 4]. In 2018, the U.S. Food 
and Drug Administration approved this deep 
learning approach for commercial use and it is 
increasingly approving novel AI and ML ena-
bled medical devices in recent years [12]. These 
applications are predominantly in imaging and 
cardiac rhythm monitoring. However, AI algo-
rithms that uses all multi-modal data within 
routine healthcare including EHR unstructured 
data, laboratory measurements, imaging, wear-
able data are still in their infancy and only avail-
able within a research setting and limited to 
specific vendors or networks. More importantly, 
no international consensus has yet been reached 
regarding the definition of trustworthy AI, 
including technical robustness, clinical utility 
and applicability, transparency and explainabil-
ity, fairness and non-discrimination, transferabil-
ity and generalizability, as well as ethical and 
legal compliance.

In this textbook, background information on 
the most commonly used AI methods will be 
discussed including its opportunities and chal-
lenges for use in routine clinical care. As novel 
AI enabled will be increasingly entering the 
clinical arena, it is of eminent importance that 
healthcare workforce and clinical researchers are 
educated and well informed to ensure respon-
sible implementation and evaluation of AI in 
healthcare to maximize its potential for patients.
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Quality Control, Data Cleaning, 
Imputation

Dawei Liu, Hanne I. Oberman, Johanna Muñoz, 
Jeroen Hoogland and Thomas P. A. Debray

informative missingness and repeated obser-
vations. Finally, we introduce alternative 
methods to address incomplete data without 
the need for imputation.

Keywords

Missing data · Imputation · Missing at 
random · Missing not at random · Missing 
completely at random · Informative 
missingness · Sporadically missing · 
Systematically missing · Joint modelling 
imputation · Conditional modelling 
imputation · Machine learning imputation · 
Nearest neighbor · Matrix completion · 
Tree-based ensembles · Support vector 
machines · Neural networks · Rubin’s rules · 
Pattern submodels · Surrogate splits · Missing 
indicator · Heckman selection model

1	� Introduction

1.1	� Quality Control

Increasingly often, researchers have access to 
data collected from the routine clinical practice 
with information on patient health or the deliv-
ery of health care from a variety of sources other 
than traditional clinical trials [1, 2]. These data 
are also known as Real World Data (RWD). 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
F. W. Asselbergs et al. (eds.), Clinical Applications of Artificial Intelligence in Real-World Data, 
https://doi.org/10.1007/978-3-031-36678-9_2

Abstract

This chapter addresses important steps during 
the quality assurance and control of RWD, 
with particular emphasis on the identifica-
tion and handling of missing values. A gentle 
introduction is provided on common statisti-
cal and machine learning methods for impu-
tation. We discuss the main strengths and 
weaknesses of each method, and compare 
their performance in a literature review. We 
motivate why the imputation of RWD may 
require additional efforts to avoid bias, and 
highlight recent advances that account for 
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strong justification to consider and select appro-
priate analytical methods for handling missing 
data.

1.2	� Data Preparation

The analysis of RWD often necessitates multiple 
preprocessing steps to create a meaningful and 
analyzable dataset from the raw data. In general, 
we can distinguish between three types of pre-
processing steps: data integration, data cleaning, 
and data transformation.

The first step is to identify and integrate rel-
evant sources of data (e.g. hospital registries, 
administrative databases) such that all informa-
tion of interest becomes available for the stud-
ied individuals. These data may, for instance, 
include information on signs and symptoms, dis-
eases, test results, diagnoses, referrals, and mor-
tality. Sometimes, it is also possible to retrieve 
information from unstructured data sources 
including texts, audio recordings, and/or images 
(Ref Chap. 8 on text mining). When multiple 
sources of data are available, it is possible to 
check for duplicate or inconsistent information 
across data sources, and thus the accuracy of the 
data can be assessed. Strategies for data integra-
tion are discussed in Ref Chap. 7 on data inte-
gration. Once all relevant data sources have been 
integrated, it is important to select those individ-
uals that are eligible for the intended analysis. 
The selection requires the identification of the 
target population, and is often based on disease 
status or combinations of information (e.g. mor-
bidity code with relevant prescription or results 
from a diagnostic test). In addition, it is help-
ful to define relevant time points, including the 
starting time (also known as index date or base-
line) and endpoint (e.g., the outcome of interest) 
of the study. Although measurements at other 
time points can be discarded from the dataset, 
this information can sometimes be used to facili-
tate risk prediction or missing data imputation 
(Sect. 6.2). When repeated measurements are 
available for one or more variables, they can 
be formatted using two approaches [13]. One 

Some examples of RWD include administrative 
databases or clinical registries with electronic 
healthcare records (EHR), which contain infor-
mation on patient characteristics, admission 
details, treatment procedures and clinical out-
comes [3].

The generation and collection of RWD is 
often pragmatic, and limited efforts are made 
to control the data collection scheme or infor-
mation flow. The quality of RWD thus can vary 
dramatically across clinical domains and indi-
vidual databases [4–8]. For example, health care 
records are often incomplete and may contain 
information that is inaccurate or even inconsist-
ent with other data sources [9, 10]. It is there-
fore imperative that studies involving RWD 
investigate the nature of recorded information 
to improve their quality, raise awareness on 
their strengths and weaknesses, and take these 
into account to facilitate valid inference on the 
research question at hand.

Although there is no formal framework to 
assess the quality of RWD, it is common to 
focus on at least three domains: accuracy, time-
liness and completeness [11]. Data accuracy 
relates to the validity of individual data entries 
[12]. It is typically assessed by examining dis-
tributional properties of the observed data (e.g., 
mean, standard deviation, range) and comparing 
this information with other sources (e.g., pre-
viously published population characteristics). 
Timeliness refers to the degree to which the 
available data represent reality from the required 
point in time. Problems can arise when recorded 
observations (e.g. taken after surgery) do not 
adequately reflect the patient’s health state at 
the intended measurement time (e.g. before sur-
gery). Finally, completeness represents the exist-
ence and amount of missing data.

In this chapter, we first briefly discuss 
important preprocessing steps in data qual-
ity assurance and quality control (QA/QC). 
Subsequently, we focus on the handling of 
missing data. As RWD is typically incomplete 
when missing values are not handled properly, 
straightforward analysis will very likely lead 
to misleading conclusions. As such, there is a 

http://dx.doi.org/10.1007/978-3-031-36678-9_7
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approach is to code observations made at differ-
ent time points as separate columns, leading to 
a so-called “wide format”. This approach works 
well when the repeated measurements occur at 
regular time intervals, which is rather uncom-
mon for RWD. A second approach is to record 
repeated information as separate rows, and to 
include a “time” variable that indicates when the 
measurements were taken. This approach is also 
known as the “long format”.

As a second step in data preprocessing, it is 
recommended to inspect the constructed dataset 
and to generate descriptive summaries such as 
the mean, standard deviation, range and amount 
of missing values for each variable [14]. This 
information can be used to assess completeness 
of the data and to identify outliers with impos-
sible or extreme values. When invalid measure-
ments or recordings are detected, corresponding 
values can be treated as missing data and subse-
quently be recovered using imputation methods. 
Alternatively, in case of extreme but valid val-
ues, the analysis may be rendered more robust 
to outliers by windsorizing (i.e., observations 
are transformed by limiting extreme values) 
or trimming (i.e., simply discarding extreme 
observations). Such methods always cause a 
loss of information, and their use should be 
guided by good reasons to reduce the influence 
of such observations. This will heavily depends 
on the analysis of interest. For instance, mean 
and variance measures are heavily affected by 
outliers, but the median is not affected at all. 
Unfortunately, it is often difficult to assess the 
validity of individual measurements. For this 
reason, researchers may sometimes consider 
analysis methods that directly account for the 
(potential) presence of measurement error in 
the entire dataset during model estimation (Ref 
Chap. 9 on measurement error).

Finally, in the last step, data transformations 
can be performed. For instance, it is sometimes 
helpful to transform continuous variables (e.g., 
in line with model assumptions or to improve 
numerical stability), to re-code categorical vari-
ables (e.g., dummy coding to allow unordered 
and non-equidistant steps between catego-
ries), or to collapse multiple variables into an 

aggregate measure (i.e., data reduction). Further, 
when the focus of a study is on the development 
of a prediction model, it is necessary to set up a 
training and validation set. Although it is com-
mon to randomly split the data into two parts, 
resampling methods have been recommended to 
make better use of the data in terms of bias and 
efficiency (Ref Chap. 15 on model evaluation).

2	� Missing Data

Pre-processing often brings to light that records 
in some data fields are missing. This requires 
careful consideration since it may indicate loss 
of information and almost surely affects the 
analysis and the subsequent interpretation of 
findings. The degree to which this is the case 
primarily relates to the type of missing data. 
Therefore, first and foremost, it is important to 
try to understand why data are missing, as this 
will guide any further processing.

2.1	� Types of Missing Data 
Mechanisms

In the broadest sense, there two large groups of 
missing data mechanisms.

The first group relates to situations where 
data cannot or should not be measured. For 
example, it is not possible to assess tumor 
characteristics or disease severity for healthy 
patients. Although the absence of any measure-
ments could here be identified and treated as a 
missing data problem, this strategy should be 
avoided because it fails to address the fact that 
no information is actually missing.

The second group arises when variables 
could have been measured but were not recorded 
(i.e., information is actually missing). It is, for 
instance, possible that observations are missing 
because no measurements were taken or because 
available measurements were considered inva-
lid or not correctly recorded. Alternatively, it 
is possible that data collection is complete for 
individual patients. However, when data are 
combined across patients or clinical centers, key 

http://dx.doi.org/10.1007/978-3-031-36678-9_9
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variables may become incomplete. When trying 
to understand the consequences of these miss-
ing data and to guide the best way forward, it is 
helpful to distinguish between three mechanisms 
by which missing data can arise [15]: Missing 
Completely At Random (MCAR), Missing At 
Random (MAR), and Missing Not At Random 
(MNAR).

Briefly, MCAR occurs when the probability 
that a certain type of measurement is missing 
does not depend on the values of either observed 
or missing data. This directly implies that miss-
ingness is not related to any of the recorded 
data and that records with missing data do not 
form any special group. As an example, physi-
cal examination records can be lost due to an 
administrative computer error. There are no 
measures, either observed or unobserved, that 
explain missingness for these particular cases: 
missingness is said to be completely at random.1

In MAR, the probability that a variable is 
missing differs across records based on the val-
ues of observed data. For example, a particular 
type of diagnostic measure may be ordered more 
often upon certain blood sample deviations. If 
these data are indeed missing at random (MAR), 
this means that the probability that a value is 
missing is again completely at random within 
subgroups with the same blood sample analy-
sis. That is, after taking observed blood sample 
measures into account, there is no further infor-
mation that predicts missingness.

Lastly, MNAR describes the situation that 
the probability that a certain type of measure-
ment is missing is associated with unobserved 
data. For instance, if certain measures are more 
often performed in those with a high suspicion 
of an unfavorable outcome, but this suspicion 
cannot be derived from other measures that 

were observed and recorded in the database. An 
important particular case is where missingness 
depends on the value of the measure being miss-
ing itself. For instance, alcoholics might be less 
likely to respond to a questionnaire on alcohol 
intake.

The distinction between these types of miss-
ing data mechanisms is helpful when think-
ing about the inferences one can make based 
on the observed data only, without modelling 
the missing data mechanism itself. As it turns 
out, several methods can obtain unbiased infer-
ence when the MAR assumption holds without 
explicitly modelling the missing data mecha-
nism2 (See Sect. 4). Although MAR is often a 
useful and sometimes convenient assumption 
from a statistical point of view, the analysis of 
incomplete data will often need to be supple-
mented by sensitivity analyses that allow for a 
more complex missingness mechanism [16]. 
Methods for this purpose are discussed in more 
detail in Sect. 6.

2.2	� Types of Missing Data Patterns

The manifestation of missing values (regard-
less of their cause) can be classified into differ-
ent patterns, each of which requires a different 
analysis approach. We here focus on common 
patterns that arise when analyzing RWD.

Real world data are often collected over a 
period of time and may therefore contain mul-
tiple observations for one or more variables. 
When data are incomplete, it is helpful to dis-
tinguish between monotone (e.g., dropout) and 
non-monotone (intermittent) patterns of miss-
ingness (Fig. 1). The dropout pattern occurs 
when a variable is observed up to a certain 

1 The notion of ‘completely at random’ is intended to 
mean: not depending on any observed or missing val-
ues out of the measures analyzed. Therefore, is does 
not have to imply that the missing data pattern is totally 
unsystematic; it may for instance relate to a measure that 
is not measured and not of interest for the final analysis. 
Therefore, the definition of MCAR (and equivalently 
MAR and MNAR) depends on the set of variables of 
interest.

2 In the likelihood and Bayesian paradigm, and when 
mild regularity conditions are satisfied, the MCAR and 
MAR mechanisms are ignorable, in the sense that infer-
ences an proceed by analyzing the observed data only, 
without explicitly addressing the missing data mecha-
nism. In this situation, MNAR mechanisms are nonignor-
able. Note that in frequentist inference the missingness is 
generally ignorable only under MCAR [92].
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time-point, and missing thereafter [17]. This 
situation may, for instance, occur when an indi-
vidual leaves the study prematurely or dies. 
More generally, a missing data pattern is said to 
be monotone if the variables can be sorted con-
veniently according to the percentage of missing 
data [18]. Univariate missing data form a special 
monotone pattern. The presence of monotone 
missingness offers important computational sav-
ings and can sometimes be addressed using like-
lihood-based methods (Sect. 5.2). Conversely, 
the intermittent pattern occurs when an observed 
value occurs after a missing value. Because 
the collection of RWD is often driven by local 
healthcare demands, measurements tend to be 
unavailable for time points that are of primary 
interest to researchers. Intermittent patterns of 
missingness are therefore relatively common for 
variables that were measured at multiple occa-
sions. In Sect. 6.2, we discuss dedicated impu-
tation methods to address these non-monotone 
patterns of missingness.

Real-world data originating from multiple 
sources (e.g., hospitals, or even countries) tend 
to be clustered, with distributions and effects 
that may differ between clusters. In this con-
text, one can distinguish between data values 
that are sporadically missing (at least some val-
ues available in each cluster) and those that are 

systematically missing (not measured at all in a 
particular cluster) [18–20]. Systematically miss-
ing data are more common when combining 
routinely collected data from multiple different 
sources, such as in claims databases. Also, in a 
pharmacoepidemiologic multi-database stud-
ies, there is a high likelihood of missing data 
because the multiple databases involved may 
record different variables [21, 22]. Sporadically 
missing values often occur and are just the 
within cluster counterpart of usual missing data. 
This also leads to the main advantage of deal-
ing with just sporadically missing data. Since 
at least some information on the joint distribu-
tion of the data is available in each cluster, regu-
lar missing data methods can be implemented 
within clusters if they have sufficient size. In 
contrast, more evolved missing data meth-
ods that accommodate the clustered nature of 
the data are necessary to handle systematically 
missing data. A detailed account of missing data 
methods designed for clustered data is available 
elsewhere [18–20].

2.3	� A Bird’s Eye View on Missing 
Data Methods

Datasets that are collected in real-world settings 
are typically large and complex. They are large 
not only in the sense of the number of individu-
als, but also in terms of the number of collected 
variables. At the same time, the structure of 
RWD also tends to be very complicated. It gen-
erally has mixed variable types, containing con-
tinuous, categorical and time-to-event variables, 
some of which could have very sophisticated 
relationships. It is also common that many varia-
bles have missing values and that some variables 
are incomplete for most individuals. Moreover, 
when missingness occurs, it is often difficult to 
determine whether the missing data mechanism 
is MCAR, MAR or MNAR. Instead, it is very 
likely that all three missing data mechanisms 
co-exist in the dataset. The validity of analy-
ses involving RWD will therefore often depend 
highly on whether missing data were handled 
appropriately.

Fig. 1   Illustration of missing data patterns in multivari-
able data. Each row represents the measurements for a 
unique patient or timepoint. Columns represent indi-
vidual variables. Missing values are displayed in red, 
observed values are displayed in blue
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Fortunately, several strategies exist to address 
the presence of missing data. In this chapter, we 
focus on imputation methods which can address 
many of the aforementioned challenges. These 
methods replace the missing values by one 
(single imputation, see Sect. 3) or more (mul-
tiple imputation, see Sect. 4) plausible values. 
Imputation avoids the need to discard patient 
records and separates the missing data problem 
from the substantive analysis problem (e.g., esti-
mation of a causal effect or predictive model). 
This implies that imputed data can be analysed 
using standard methods and software, and as 
such be directly available for inference (e.g., 
parameter estimation or hypothesis testing) and 
the generation of risk predictions. However, as 
we discuss later in this chapter, single imputa-
tion methods are best avoided in most settings 
because they are not capable of preserving 
uncertainty about the missing values and their 
imputation [23]. We therefore recommend more 
advanced approaches that are based on mul-
tiple imputation (Sect. 4) or avoid imputation 
altogether (Sect. 5). These methods can mainly 
be applied when data are MCAR or MAR. 
When the missingness mechanism is MNAR 
or unknown, additional methods need to be 
employed (Sect. 6.1).

Traditional methods for multiple imputation 
have been studied extensively in the literature, 
and are briefly summarized in Sects. 4.1 and 4.2. 
More recently, numerous imputation methods 
have also been proposed in the field of machine 
learning [24]. Although these methods tend to be 
relatively data hungry, they offer increased flex-
ibility and may therefore improve the quality of 
subsequent analyses (Sect. 4.3). To evaluate the 
potential merit of advanced imputation methods, 
we embarked on a literature review and focused 
on imputation methods that are well-suited to 
handle mixed data types, a large number of 
both cases and variables, and different types of 
missing data mechanisms. Briefly, we searched 
relevant publications on PubMed and ArXiv 
that describe quantitative evaluations of miss-
ing data methods. Initially, we identified 15 rel-
evant papers based on our own experience in the 
field. These papers compared several statistical 

and machine learning imputation techniques and 
were used to inform an active learning literature 
review. To this purpose, we used the software 
ASReview, a machine-learning framework that 
facilitates the screening of titles and abstracts 
[25, 26]. To achieve full merit of the framework, 
a ‘stopping criterion’ is required–in our case 
when the software had selected all 15 priory 
identified publications. A flow diagram of the 
review methods is presented in Fig. 2. We made 
use of the following eligibility criteria:

•	 Inclusion criteria: the paper concerns 
an evaluation of missing data methods 
through simulation; the paper matches the 
search query “(simulation[Title/Abstract]) 
AND ((missing[Title/Abstract]) OR 
(incomplete[Title/Abstract]))”; the paper is 
selected by ASReview before the stopping 
criterion is reached.

•	 Exclusion criteria during abstract screening: 
the paper does not concern an evaluation of 
missing data methods through simulation; the 
paper concerns a datatype that deviates from 
typical EHR data (e.g., imaging data, free 
text data, traffic sensor data); the paper only 
concerns (variations of) the analysis model, 
not the imputation model; the paper only con-
cerns (variations of) one missing data method.

•	 Exclusion criteria during full text screen-
ing (all of the above, plus): the paper only 
concerns two missing data methods, one of 
which is complete case analysis; the paper 
only concerns single-patient data; the paper 
only concerns a MCAR missingness mecha-
nism (equivalently, the paper does not con-
cern MAR, MNAR or empirical missingness 
mechanisms).

After omitting duplicates and removing 
papers that did not meet the eligibility cri-
teria, we obtained 67 publications. These 
are listed on zotero.org/groups/4418459/
clinical-applications-of-ai/library.

Based on the aforementioned considera-
tions, we decided to focus on five types of 
machine learning methods that can be used for 
imputation: nearest neighbour methods, matrix 

https://www.zotero.org/groups/4418459/clinical-applications-of-ai/library
https://www.zotero.org/groups/4418459/clinical-applications-of-ai/library
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completion, support vector machines, tree-based 
ensembles, and neural networks. In the follow-
ing sections, we briefly introduce each method, 
discuss its strengths and weaknesses, and pro-
vide software implementations. We summarize 
the main findings from our review in Sect. 6.3, 
offering also a list of recommendations.

2.4	� Introduction of Case Study Data 
(MIMIC-III)

The Medical Information Mart for Intensive 
Care (MIMIC)-III database contains informa-
tion on 38,597 adults and 7870 neonates that 
were admitted to critical care units at Beth Israel 
Deaconess Medical Center [27, 28]. Various 
types of patient-level data are available, includ-
ing vital signs, laboratory measurements, imag-
ing reports, received treatments, hospital length 
of stay, and survival. Although many variables 

were only measured upon admission, tempo-
ral data are also available. For instance, there 
are 753 types of laboratory measurements in 
MIMIC-III, each with on average 8.13 obser-
vations per patient. As illustrated in Fig. 3, the 
missingness rate in MIMIC-III greatly varies 
between variables and can be as high as 96%.

3	� Single Imputation Methods

A common approach to address the presence 
of missing values is to simply replace them 
by a plausible value or prediction [30]. This 
approach is adopted by many software packages 
that implement contemporary machine learning 
methods. Below, we outline and illustrate three 
single imputation methods to recover missing 
systolic blood pressure levels in MIMIC-III.

In single value imputation (SVI), it is wide-
spread to replace missing values of a variable 

Fig. 2   Flow chart of the literature review to identify quantitative evaluations of missing data methods
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by a convenient summary statistic, such as the 
mean, median, or mode of the corresponding 
variable. For example, patients without follow-
up data are sometimes assumed to be alive. 
Similarly, when blood oxygenation levels are 
incomplete, it is possible to assume that corre-
sponding patients are in perfect health and sim-
ply impute a constant that reflects this condition 
(e.g., 100%). Alternatively, when the health con-
ditions of included patients are suboptimal, it is 
possible to impute the average of the observed 
blood oxygenation levels (left graph in Fig. 4).

A more advanced approach to generate impu-
tations is to adopt multivariable (e.g., regression 
or machine learning) models that replace each 
missing value by a prediction [18]. For instance, 
it is possible to predict blood oxygenation lev-
els in the MIMIC-III database using information 
on patient age by adopting a regression model 
(middle graph in Fig. 4). As more (auxiliary) 
variables are used to predict the missing values, 
the accuracy of imputed values tends to increase 
[31].

Unfortunately, single imputation methods 
tend to distort the data distribution because 
they do not account for sampling variability and 
model uncertainty [17, 18]. Because this usu-
ally leads to biased inference, single imputation 
methods are best avoided [30]. Their implemen-
tation can, however, be acceptable in some cir-
cumstances [18]. For example, it is possible to 
add noise to imputed values in order to account 
for sampling variability (right graph in Fig. 4). 
Also, when applying a prediction model in 
clinical practice, single imputation methods can 
greatly facilitate real-time handling of missing 
values on a case-by-case basis [31, 32].

4	� Multiple Imputation Methods

In general, the preferred approach to address 
the presence of missing data is to adopt multi-
ple imputation [18, 30]. In this approach, each 
missing value in the original dataset is replaced 
by a set of m > 1 simulated values, leading to 

Fig. 3   Visualization of missing data in MIMIC-III 
[29]. Missingness rate is calculated as the proportion of 
individuals that do not have any observation for a given 
variable. Administrative variables include demographic 
data and were not much affected by missing values 
(e.g., missingness rate for date of birth = 0%). Intensive 
Care Unit (ICU) chart variables include patient moni-
toring variables. Input–output variables relate to intake 

substances (e.g., liquids, medication) and excretions 
(e.g., urine, fluid from the lungs).Finally, laboratory vari-
ables include microbiology results. * Two different criti-
cal care information systems were in place over the data 
collection period. For this reason, missingness rates for 
ICU chart and input–output variables are presented as 
separate categories
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multiple completed datasets. The entire proce-
dure is illustrated in Fig. 5.

The generation of plausible values typically 
involves modelling the observed data distribu-
tion and imposing corresponding parameters on 
the missing data. A major advantage of multiple 
imputation is that the extent to which the miss-
ing values can accurately be recovered becomes 
more transparent. The variability of imputed 
values will be large for variables that cannot 
adequately be retrieved from the observed data 

(and vice versa). For example, when tempera-
ture measurements are missing for a patient 
diagnosed with COVID-19 and having symp-
toms that often coexist with fever, imputed val-
ues will have a high probability to indicate the 
presence of fever. In contrast, fever imputations 
for a patient with a positive COVID-19 test and 
only mild disease can be expected to be more 
variable.

A key challenge in multiple imputation is to 
generate random samples that are plausible and 

Fig. 4   Illustration of imputation strategies using 100 
patients from MIMIC-III. The observed data are dis-
played in blue and represent the first available measure-
ment for systolic blood pressure after hospital admission. 

Imputed data are displayed in red, and were generated 
using mean imputation (left), regression imputation 
(middle), stochastic regression imputation (right)

Fig. 5   Scheme of main steps in multiple imputation, adapted from [18]
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exhibit an appropriate amount of variability. 
Conceptually, this can be achieved by generat-
ing imputations from a probability distribution. 
For instance, consider that some patients in 
MIMIC-III have missing values for age. A sim-
ple solution is to approximate the empirical 
(observed) age distribution, which has a mean 
value of 65.8 years and a standard deviation of 
18.5 years, with a suitable well-known distribu-
tion. New values for patient age could then be 
generated from a normal distribution with the 
aforementioned characteristics. It may be clear 
that the aforementioned (univariate) approach 
does not account for any relation with other vari-
ables in the dataset, and thus leads to imputations 
that are not very plausible. A better approach is 
to consider the entire (multivariate) distribution 
of the available data and draw imputations tai-
lored to each patient [33]. Here, we discuss two 
broad strategies to generate personalized imputa-
tions: joint modelling imputation and conditional 
modelling imputation. For the latter, both statisti-
cal and machine learning methods can be used. 
Software implementations are summarized in 
Fig. 6 (Python) and Fig. 7 (R).

4.1	� Joint Modelling Imputation

A direct approach to consider the entire data 
distribution is to explicitly specify a paramet-
ric joint model for the observed data [34]. The 
parameters of this (imputation) model are esti-
mated from the observed data, and subsequently 
used to generate imputed values. It is, for 
instance, common to assume that the observed 
patient characteristics arise from a multivari-
ate normal model. The mean and covariance 
can be estimated using Markov Chain Monte 
Carlo (MCMC) methods and directly be used to 
draw imputed values that account for individual 
patient characteristics [32]. This approach is 
also known as multivariate normal imputation 
[35]. Recent work shows that multiple impu-
tation based on more flexible joint models of 
the data (e.g. allowing for variables of differ-
ent types, hierarchical structure of the data, or 
interaction effects) can also be achieved within 
the Bayesian framework [36, 37]. Often, it is 
difficult to identify an appropriate joint model 
that describes the observed data. Many datasets 
contain a combination of binary, continuous, 

Fig. 6   Python modules for multiple imputation. If 
an analyst decides to use SVM for imputation, they 
may need to manually incorporate the algorithm into 
the imputation procedure. In Python, SVM can be 

implemented using the scikit-learn library, or using 
GitHub repositories such as SVMAlgorithm and 
SupportVectorMachine
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categorical, and other data types. These mixed 
data types usually cannot be described using a 
multivariate distribution with a well-known den-
sity. A common strategy to relax this limitation 
is to approximate the (multivariate) data distri-
bution by a series of conditional (univariate) dis-
tributions which is the focus of the next section.

4.2	� Conditional Modelling 
Imputation

Conditional modelling imputation implies that a  
separate imputation model is estimated for each  
incomplete variable [38]. For instance, a logis-
tic regression model can be used to describe  

Fig. 7   Software packages in R for multiple imputation. More detailed information for R packages is available from 
https://cran.r-project.org/web/views/MissingData.html

https://cran.r-project.org/web/views/MissingData.html
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the conditional distribution of a binary vari-
able (e.g., current smoker). Conversely, a linear  
regression model can be used to describe the  
conditional distribution of a continuous vari-
able (e.g., systolic blood pressure). As discussed  
in Sect. 4.3, it is also possible to adopt machine  
learning models to describe these conditional  
distributions. Imputed values are then generated 
by sampling successively from each of the con-
ditional models, which requires an iterative 
Monte Carlo procedure. This approach is also  
known as conditional modelling imputation  
[32], chained equations imputation [39], or fully  
conditional specification.

4.3	� Machine Learning Imputation

Multiple imputation methods often require 
explicit assumptions about the distribution(s) of 
the data, including consideration of the potential 
presence of interactive and non-linear effects. 
If the imputation model(s) are based on invalid 
distributional assumptions or fail to incorporate 
important covariate effects, subsequent analyses 
can lead to substantial bias [40]. For instance, 
consider that an interaction exists between 
the age of a patient and their blood test results 
(which contains missing values). If this inter-
action is not explicitly accommodated during 
imputation, its magnitude will be attenuated in 
the imputed data. Thus, constructing an appro-
priate imputation model requires considera-
tion of how the imputed data will eventually be 
used [23]. Unfortunately, it is often difficult to 
predetermine how data will be analyzed, espe-
cially when the available data sources were not 
designed for the intended analysis. It is there-
fore helpful for imputation models to anticipate 
certain features of the data (such as interactions, 
nonlinearities, and complex distributions) with-
out making any specific commitments. Such 
flexibility can be realized by non-parametric 
(e.g., nearest neighbor) or semi-parametric 
models (e.g., neural networks, random forests, 
or support vector machines) that avoid making 
distributional assumptions about the observed 

data. Below, we discuss a selection of common 
approaches that yield multiple imputed data-
sets. In general, machine learning methods can 
be used in two different contexts. One approach 
is to embed machine learning models in condi-
tional modelling imputation to describe the con-
ditional distribution of a certain variable. For 
example, missing blood pressure levels could 
be imputed using a random forest. A second 
approach is to generate imputed values directly 
using a dedicated machine learning method, such 
as matrix completion or adversarial networks.

4.3.1 � Nearest Neighbor Methods
Nearest neighbor (NN) methods offer a non-par-
ametric approach to generate imputations with-
out making distributional assumptions. To this 
purpose, a distance metric is used to determine 
the relatedness between any two individuals 
and to identify neighbors with complete infor-
mation for each individual with one or more 
missing values. Imputation is then achieved by 
simply copying the observed values from the 
nearest neighbor (1-NN) or by combining the 
observed values from k nearest neighbors (kNN) 
into a weighted average [41]. Since NN meth-
ods generate imputations by (re)sampling from 
observed data, no special efforts are required to 
address complex data types. Accordingly, they 
are often used with incomplete variables that are 
restricted to a certain range (e.g., due to trunca-
tion), skewed, or semi-continuous. To allow for 
multiple imputed values, NN methods typically 
determine the distance between two individuals 
using a random subset of variables, rather than 
all observed variables [42]. Although NN meth-
ods can directly be used as a non-parametric 
imputation approach, they can also serve as an 
intermediate step in semi-parametric imputation 
procedures [43]. For instance, predictive mean 
matching combines conditional modelling impu-
tation with NN methods to draw imputations 
from the observed data [44]. It has been dem-
onstrated that NN methods perform well when 
data are MCAR or MAR [45–47]. Although NN 
methods are simple and easy to implement [48], 
they strongly depend on the specification of a 
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suitable multivariate distance measure and a rea-
sonably small dimension (since there are fewer 
near neighbors in high dimensional space). 
Consequently, the performance of NN methods 
tends to suffer from high dimensionality prob-
lems [49] and declines when k is too small or 
too large. Finally, NN methods do not facilitate 
the incorporation of MNAR mechanisms, and 
therefore appear less suitable in RWD.

4.3.2 � Matrix Completion Methods
Matrix completion methods aim to recover an 
intact matrix from the dataset with incomplete 
observations. To this purpose, they decompose 
the original (high-dimensional) matrix into a 
product of lower dimensional matrices [50]. 
Missing data are then imputed by identifying an 
appropriate low-rank approximation to the origi-
nal data matrix.

For instance, singular value decomposition 
(SVD) can be used to describe a dataset X with 
n rows (e.g., patients) and k columns (e.g., vari-
ables) by a matrix product X = UDV ′. In this 
expression, D is a diagonal matrix with k singu-
lar values, U is an n× k matrix of left singular 
vectors, and V  is an k × k matrix of right singu-
lar vectors. The entries of D are used to scale U 
and V , and therefore describe how much infor-
mation each singular vector provides to the orig-
inal data matrix. Recall that the rank of a matrix 
is the maximal number of linearly independent 
column vectors or row vectors in the matrix, 
which is also equal to the number of non-zero 
singular values of the matrix. By omitting singu-
lar values that are close to 0 from D (and omit-
ting the corresponding vectors from U and V
), the rank of a matrix can be reduced without 
much loss of information. This, in turn, gives a 
lower-rank approximation to the original matrix. 
In case of missing data, the key idea is to find 
a low-rank approximation that closely fits the 
observed entries in X from a lower-rank approx-
imation, with the rank sufficiently reduced to fill 
in the missing parts of X.

Other methods that apply matrix completion 
include (robust) principle component analy-
sis (PCA) and nuclear-norm regularization [50, 

51]. In the latter, the singular values are sum-
marized into a nuclear norm that is optimized 
using expectation maximization. Matrix com-
pletion methods do not make any assumptions 
about the distribution of the observed data, and 
can handle high-dimensional data in a straight-
forward manner. Although their implementa-
tion is mainly justified when data are MCAR or 
MAR, several extensions exist for MNAR situa-
tions [52, 53]. Unfortunately, matrix completion 
is primarily used for numerical data. For cate-
gorical data, mode imputation is generally used. 
Another limitation is related to the implicit lin-
earity assumption. As rank is a concept for the 
linear relationship between rows or columns of 
a matrix, the method does not preserve nonlinear 
relationships between rows or columns.

4.3.3 � Tree-Based Ensembles
Tree-based ensemble methods estimate mul-
tiple decision trees on the available data and 
adopt boosting (e.g., XGBoost) or bagging (e.g., 
random forests) to combine their predictions. 
Tree-based ensembles can be applied to mixed 
data types, do not require distributional assump-
tions, and naturally allow for variable selection. 
Moreover, their recursive partitioning opera-
tion predisposes to capture nonlinear effects and 
interactions between variables. Several simula-
tion studies have shown that tree-based ensem-
ble methods can outperform commonly used 
multiple imputation methods [54–56]. We here 
focus on the use of random forests to generate 
imputed values, for which at least four different 
implementations are available [57]. In Sect. 5.3, 
we discuss additional approaches for developing 
random forests without the need for imputation.

The first tree-based approach to handle miss-
ing data was proposed by Breiman and is imple-
mented in the R package randomForest with the 
function “rfImpute” [58]. It relies on the con-
cept of “proximity” for missing data imputation. 
Missing values are initially replaced by a sim-
ple summary such as their mean or mode, then 
a forest is constructed and the proximity matrix 
is calculated. The proximity matrix is a square 
matrix where each row and column represents 
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a specific individual. Each matrix entry then 
quantifies the probability that the individuals 
from the corresponding row and column fall 
in the same leaf node. The missing value of a 
particular variable for a specific individual is 
imputed using an average over the non-missing 
values of the variable or the most frequent non-
missing value where the average or frequency is 
weighted by the proximities between the case 
and the non-missing value cases. The process is 
repeated for each imputed dataset [58].

A second approach termed “on-the-fly-impu-
tation method” was proposed by Ishwara et al. 
and is implemented in the R package randomFor-
estSRC [59]. In this method, only observed val-
ues are used to calculate the split-statistic when 
growing a tree. At each node of a tree, when a 
split decision needs to be made, missing val-
ues will be replaced by random observed values 
within the corresponding subtree. After each node 
split, imputed values are set back to missing and 
the process continues until no more splits can be 
made. Missing data in terminal nodes are then 
imputed using the mean or mode of out-of-bag 
non-missing terminal node data from all the trees.

A third approach was proposed by Stekhoven 
and Buehlmann and is implemented in the R 
packages MissForest and missRanger [54]. In 
this method, missing values are initially imputed 
using simple methods such as mean or mode. 
The completed data is then used to construct a 
forest, which in turn is used to predict the miss-
ing values. In contrast to the approach proposed 
by Breiman, this process of training and predict-
ing iterates until a stopping criterion is met, or 
until a maximum number of user-specified itera-
tions is reached.

Finally, a fourth approach is to use random 
forests to approximate the conditional (univari-
ate) distribution of the observed data [60]. The 
chained equations framework is then used to 
iteratively replace the missing values for each 
incomplete variable (Sect 4.2). Conditional 
modeling imputation using random forests has, 
for instance, been implemented by the func-
tion mice.impute.rf in the R package mice and 
tends to yield better performance than the three 

approaches mentioned above [55, 61]. A major 
advantage of this approach is that imputed data 
can be analyzed using any method of choice.

4.3.4 � Support Vector Machines
Support Vector Machines (SVM) were devel-
oped more than thirty years ago [62, 63] and 
have been successfully used in many real-world 
applications focusing on classification or predic-
tion. A key building block and also the driving 
force behind SVM’s success is the employment 
of a kernel function. The kernel function implic-
itly defines a high-dimensional, or even infi-
nite dimensional feature space (hyperplane), in 
which data points from different classes could 
be linearly separated or a continuous response 
variable could be linearly related to the feature 
vector. The kernel function needs to be carefully 
selected, and often takes the form of a Gaussian 
or polynomial (e.g., when the model should 
allow for non-linear relations). The most typi-
cal scenario for the application of SVM is when 
all predictors are continuous and when the out-
come is binary or continuous. When a predic-
tor variable is categorical, dummy coding needs 
to be applied. Extensions of SVM are available 
that can handle categorical or survival outcome 
data. After the completion of the training pro-
cess, an SVM generally depends only on a small 
subset of the original data points, called “sup-
port vectors”. Although SVM are very power-
ful in handling high-dimensional data, they are 
not commonly used for missing data imputation. 
Possibly, this is because SVM algorithms are 
very sensitive to noise and less suitable when the 
sample size is large. For the application of SVM 
for missing data imputation, no formal statistical 
software packages were found.

4.3.5 � Neural Networks
Neural networks are emerging methods in the 
field of machine learning and are commonly 
applied for data generation, feature extraction 
and dimension reduction. We here discuss two 
main categories of neural networks that can be 
used for missing data imputation: autoencoders 
(AEs) and generative adversarial nets (GANs).
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An AE is an artificial neural network specifi-
cally designed to learn a representation of the 
observed data. It typically contains an encoder 
and a decoder. The encoder maps the original 
input data to a lower-dimensional representa-
tion through successive hidden layers of a neu-
ral network. The final layer of an encoder is the 
output layer, which simply describes the original 
input layer in a lower dimension [64, 65]. The 
decoder then maps the output from the encoder 
to reconstruct the original input, again through 
successive hidden layers of a neural network. 
Unfortunately, standard implementations of AEs 
require data to be complete, and they may end 
up learning an identity map (hence perfectly 
reconstructing the input data when an identity 
map is used instead of successfully reducing 
the complexity). To address these problems, 
several AE variants have been proposed. One 
approach is to adopt denoising autoencoders 
(DAE) that corrupt the input data with noise 
[66]. The most common way of adding noise is 
to randomly set some of the observed input val-
ues to zero. This approach can also be applied 
to incomplete input data, by simply replacing 
missing values by zero. To facilitate multiple 
imputation, missing values can be replaced by 
random samples [67]. Further, it is also possible 
to treat missing values as an additional type of 
corrupted data, and to draw imputations from an 
AE trained to minimize the reconstruction error 
on the originally observed data. This approach 
has, for instance, been implemented by Multiple 
Imputation with Denoising Autoencoders 
(MIDAS) [68]. A second extension of AE is to 
adopt variational autoencoders (VAEs) that learn 
to encode the input using a latent vector from a 
probabilistic distribution [69–71]. The original 
data can then be imputed by sampling from the 
latent posterior distribution.

GANs are another type of neural network that 
consists of two parts; a generator and a discrimi-
nator [72]. In an adversarial process, the genera-
tor learns to generate samples that resemble the 
original data distribution, and the discriminator 
learns to distinguish whether a presented exam-
ple is original or artificial. The GAN procedure 
can be extended to allow for the imputation of 

missing data [73–75]. Generative Adversarial 
Imputation Nets (GAIN) adapt the original 
GAN architecture as follows [75]. The generator 
learns to model the distribution of the data and 
to impute missing values accurately. The dis-
criminator then learns to distinguish which val-
ues were observed or imputed. The generator’s 
input combines the original input data and a 
mask matrix that indicates the presence of miss-
ing values. Conversely, the input of the discrimi-
nator is given by the output of the generator and 
a hint matrix, which reveals partial information 
about the missingness of the original data. The 
discriminator then learns to reconstruct the mask 
matrix.

4.4	� Analyzing and Combining 
the Imputed Datasets

Once multiple imputed datasets have been gen-
erated, they can be analyzed separately using 
the procedure that would have been followed if 
all data were complete (Fig. 5). For example, 
studies aiming to evaluate a relative treatment 
effect can perform a regression analysis in the 
imputed data to estimate an odds ratio adjusted 
for confounders. From each analysis, one or 
more parameter estimates (and corresponding 
estimates of uncertainty) are then obtained and 
need to be combined. Pooling results across 
multiple imputed datasets is not trivial and typi-
cally requires to consider three sources of uncer-
tainty. In particular, there is estimation error 
within each imputed dataset (e.g., reflected by 
the estimated standard errors in each completed 
dataset), variation due to missing data (reflected 
by the between-imputation variance of param-
eter estimates), and uncertainty arising from a 
finite number of imputations. Although point 
estimates (e.g., regression coefficients) can sim-
ply be averaged across the imputed datasets, the 
pooling of standard errors requires adopting a 
series of equations that account for aforemen-
tioned sources of uncertainty. These equations 
are also known as Rubin’s rules [33, 76, 77] and 
have been implemented in most contemporary 
software packages.
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If pooling is done appropriately, multiple 
imputation methods yield valid parameter esti-
mates with appropriate confidence intervals. In 
some situations, however, the implementation of 
Rubin’s rules cannot be justified. For example, an 
exception arises when data are available for the 
entire population [78]. The application of Rubin’s 
rules also becomes more complicated when 
imputed datasets are analyzed using non-para-
metric approaches (e.g., recursive partitioning) or 
approaches that do not result in the same number 
of parameters across imputations (e.g., variable 
selection algorithms) [79–81]. In such situations, 
it may be helpful to avoid imputation altogether.

5	� Non-imputation Methods

5.1	� Complete Case Analysis

A simple approach to address missing data is 
to simply remove incomplete records from the 
dataset. This approach, also known as complete 
case analysis (CCA), is generally valid but need-
lessly inefficient under the usually unrealistic 
MCAR assumption. The adoption of CCA is 
therefore more appealing when conducting like-
lihood-based inference under MAR conditions 
or in datasets where only the outcome is missing 
(Sect. 5.2). Unfortunately, CCA does not offer 
a solution when estimated models (e.g., for risk 
prediction or classification) are applied to new 
patients with incomplete data.

5.2	� Likelihood-Based Methods

More advanced approaches to address miss-
ing values define a model for the observed 
data only. For example, survival models can be 
used to analyze binary outcome variables that 
are affected by censoring (e.g., due to drop-
out). Similarly, multilevel models can be used 
to analyze repeated outcomes that were meas-
ured at arbitrary follow-up times. A special 
situation arises when missing values only occur 
for the outcome, as multiple imputation then 
requires auxiliary variables that are not part of 

the analysis model to offer an advantage over 
likelihood-based methods. The adoption of 
likelihood-based methods is therefore particu-
larly appealing when missingness only depends 
on covariates that are included in the analysis 
model (such that missingness is ignorable) [82].

Likelihood-based methods can also be used 
to address missing covariate values, and often 
require advanced procedures for parameter esti-
mation [83, 84]. Although likelihood-based 
methods tend to be much faster and produce 
more accurate results than multiple imputation, 
their applicability is limited to very specific 
analytical scenarios. Likelihood-based methods 
may therefore have limited usefulness in RWD, 
where patterns of missingness can be very com-
plex and additional adjustments may be required 
to account for other sources of bias (e.g., time-
varying confounding).

5.3	� Pattern Submodels

A straightforward alternative to imputation 
methods is to develop separate models for each 
missingness pattern. For instance, those indi-
viduals for which c-reactive protein (CRP) has 
been observed contribute to a different model 
than those individuals for which CRP was not 
observed. This idea has also been referred to as 
a pattern submodel approach [85]. This type of 
approach is particularly helpful when the num-
ber of missingness patterns is fairly limited with 
respect to the number of observations, since 
model development occurs in partitions of the 
original data. Nonetheless, this is a setting that 
can be expected to occur quite often RWD. For 
instance, a whole array of venous blood results, 
genetics, or imaging data will often be entirely 
missing or entirely observed. Key benefits of 
patterns submodels include ease of use (both 
during development and application) and the 
fact that it does not rely on assumptions about 
the missingness pattern. Clear costs include loss 
of information due to partitioning of the data 
into missingness patterns (this can be relaxed 
to allow borrowing of information between pat-
terns, but this invokes the MAR assumption 
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across the patterns for which it is relaxed), and 
the fact that many models are developed instead 
of just one. As already noted by Mercaldo and 
Blume [85], different methods can be envisioned 
to allow borrowing of information between 
missingness patterns while retaining some of the 
robustness with respect to missing data mecha-
nisms, but this is still ongoing research.

5.4	� Surrogate Splits

Surrogate splits is a missing data method that 
is specific to tree-based methods and was pro-
posed in the context of classification and regres-
sion trees [86]. The key idea is to not only find 
the optimal split point when building a tree, 
but also find second best (or more) split points 
on variables other than the one providing the 
optimal split point. This allows using an alter-
native (surrogate) split variable when the opti-
mal variable is missing. Similar ideas have 
been proposed throughout tree-based methods 
research. For instance, instead of finding sur-
rogate splits, the popular XGBoost method [87] 
finds a default direction for each split point in 
case the variable to split on is missing. While 
these methods are easy to apply on any data set 
with missing values, they have important limita-
tions. For instance, surrogate splits are not able 
to use information from observed data to infer 
something about the missing variable. Instead, 
imputed values are generated conditionally on 
their position in the tree, which roughly corre-
spond to conditional mean imputation. A more 
robust approach would be to apply the tree-based 
methods in multiple imputed data based on flex-
ible methods that preserve more of the data com-
plexities, and subsequently bag the results.

5.5	� Missing Indicator

The indicator method replaces missing values 
by a fixed value (zero or the mean value for the 
variable) and the indicators are used as dummy 
variables in analytical models to indicate that 
a value was missing. The procedure is applied 

to each incomplete variable, and can be imple-
mented in any analysis method (e.g., regression, 
decision trees, neural network). The indica-
tor method allows for systematic differences 
between the observed and the unobserved data 
by including the response indicator, and thus 
to address MNAR. However, its implementa-
tion usually leads to biased model parameters 
and can create peculiar feedback mechanisms 
between the user of the model (e.g. a clinician) 
and the model itself [88]. For this reason, it is 
generally discouraged to adopt the missing indi-
cator method for addressing missing data.3

6	� Imputation of Real-World Data

Although the principles and methods outlined 
in Sect. 4 are primarily designed for imputing 
missing data in medical studies a clear sampling 
or data collection design (e.g., an observational 
cohort study or clinical trial), they can also be 
applied to incomplete sources of RWD that were 
not generated under a specific research design. 
In this section, we discuss two common char-
acteristics of RWD that require more advanced 
imputation methods and software packages that 
were discussed in Sect. 4. A first challenge is the 
presence of informative missingness and typi-
cally arises when missing data mechanisms are 
complex and partially unknown. A second chal-
lenge is the presence of repeated observations, 
which occurs when patients are followed for a 
period of time. Below, we discuss methods that 
are well suited to address these challenges.

6.1	� Informative Missingness

It is often difficult to determine the exact mecha-
nisms by which missing values occur in RWD. 

3 While the details are beyond the scope of this chapter, 
Mercaldo and Blume [85] describe the implementation 
of missing indicator methodology in the context of mul-
tiple imputation, which does provide unbiased inference 
and has an interesting relation to the pattern submodels 
described above.
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In fact, the distinction between MCAR, MAR 
and MNAR is a theoretical exercise and all 
these missingness mechanisms could co-exist 
in RWD. It is not uncommon that important 
causes of missingness are not recorded, and 
missingness in routine healthcare data is often 
informative [9, 21]. Unfortunately, traditional 
imputation methods are not well equipped to 
address this situation, as they do not distin-
guish between the observed and missing data 
distribution.

For example, the CRP test is often ordered 
when there is suspicion of an infection or 
an inflammation. Lab results may therefore 
be missing when elevated levels are deemed 
unlikely. Although multiple imputation could be 
used to recover these missing test results from 
information recorded in the EHR database, this 
approach is problematic when data on signs 
and symptoms are unavailable. Similar prob-
lems arise when test results are directly linked 
to their missingness. For instance, it is possible 
that some patients were referred from another 
hospital based on their lab results, and there-
fore did not undergo further testing. In gen-
eral, when missing data mechanisms depend 
on unobserved information, the presence of 
missing values becomes informative about the 
patient, their physician or even the health care 
center [89, 90].

The plausibility of the MAR assumption 
(and thus the validity of “traditional” imputation 
methods) can often be increased by implement-
ing imputation models with auxiliary variables 
that explain the reasons of missingness during 
imputation [91]. As more patient characteris-
tics are recorded, it becomes less likely that the 
presence of missing values depends on unob-
served information. For instance, when hospi-
tal registries only record information on patient 
age, sex, and blood test results, CRP levels are 
highly likely to be MNAR when unavailable. 
Conversely, when information on signs, symp-
toms, diagnostic suspicions, and other labora-
tory markers are also recorded, it becomes more 
likely that these observations explain why CRP 
is missing. At the very least, it will decrease the 
influence of MNAR mechanisms.

Unfortunately, the use of auxiliary variables 
becomes problematic when they are substan-
tially affected by missing values or when they 
do not strongly predict the presence of missing-
ness. Unfortunately, EHR databases are notori-
ously prone to prominent levels of missingness, 
often caused by complex recording processes. 
For this reason, the imputation of RWD may 
benefit from more advanced imputation meth-
ods that explicitly account for different missing 
data mechanisms [92]. When data are MNAR, 
it is necessary to model the joint distribution 
of the data and the missingness through selec-
tion, pattern-mixture or shared parameter mod-
els [93, 94]. Selection models factorize the 
joint distribution into the marginal distribu-
tion of the complete data and the distribution 
of the missingness. As an example, we discuss 
the Heckman selection model in more detail 
below [95, 96]. Conversely, pattern-mixture 
models separate the marginal distribution for 
the missingness mechanism and the data distri-
bution conditional on the type of missingness. 
Essentially, this requires to estimate separate 
(pattern sub) models for each missingness pat-
tern and to combine their inferences by means 
of integration. Finally, shared parameter models 
assume that the data distribution and the miss-
ingness indicator are conditionally independent 
after conditioning on a set of shared parame-
ters or latent variables. This type of model has 
been successfully applied in settings where the 
missingness mechanism is related to an under-
lying process that changes over time. These so-
called joint models4 combine information from 
a mixed model for a longitudinal outcome and a 
temporal event model for censoring events with 
a set of latent variables or random effects.

A common strategy for informative miss-
ingness is to directly model the relationship 
between the risk of a variable being missing and 
its unseen value [96–98]. This strategy is based 
on the Heckman selection model [95], and can 

4 In this context, ‘joint’ is used to describe models that 
share a parameter, and is not to be confused with joint 
models that fully describe a multivariate distribution.
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be used to assess and correct potential non-ran-
dom missingness of outcome data. Briefly, the 
selection model approach involves two equa-
tions to predict the missing value and their 
availability. Both equations are linked together 
through their residual error terms, which are 
modelled using a bivariate (e.g., normal) dis-
tribution. The correlation of this distribution is 
estimated from the available data and indicates 
to what extent the magnitude of the missing 
values affects their probability of missingness 
(i.e., presence of MNAR). A special situation 
arises when there is no correlation between the 
error terms, as the Heckman model then gener-
ates imputations under the MAR assumption. An 
important requirement for the implementation of 
Heckman-type imputation models is the avail-
ability of exclusion restriction variables. These 
variables are related to the probability of miss-
ingness, but not to the missing value itself. For 
example, if younger physicians are more moti-
vated to routinely record data into EHR systems, 
the age of the treating healthcare professional 
could be treated as an exclusion restriction vari-
able. Similarly, it is possible that CRP tests are 
ordered more frequently for patients with a 
certain healthcare insurance program or socio-
economic background. As discussed, informa-
tion on missingness mechanisms could also be 
addressed using traditional imputation meth-
ods that adopt auxiliary variables, especially if 
their inclusion converts MNAR situations into 
MAR. Indeed, it has been demonstrated that 
Heckman-selection models perform comparably 
to traditional imputation methods when missing 
values do not depend on unobserved informa-
tion [99]. However, Heckman-selection models 
do not require the MAR assumption and there-
fore appear more suitable when the missing 
data mechanisms are unclear. Several simula-
tion studies have demonstrated that Heckman-
selection models can greatly decrease bias, even 
when the proportion of missing data is substan-
tial [96, 98, 99].

6.2	� Longitudinal and Sequence Data

RWD are often collected over a period of time 
and may therefore contain multiple observa-
tions for one or more variables. Traditionally, 
these data are collected at frequent and regular 
time intervals. The recorded observations then 
describe a smooth trajectory that strongly resem-
bles the underlying time process. In RWD, how-
ever, there are many challenges as compared 
to traditional longitudinal data. First, a large 
number of variables in the dataset are measured 
over time. For example, the MIMIC-III dataset 
contains patient medical records from 2001 to 
2012 and includes thousands of variables with 
repeated measurements [100]. For standard 
longitudinal or sequence data, the number of 
variables is generally very small. Second, each 
variable generally has its own scheme of meas-
urement times, and the measurement interval 
can be irregular and may even vary across indi-
viduals. As illustrated in Fig. 3, many clinical 
variables in the MIMIC-III dataset are affected 
by irregular measurement times. For standard 
longitudinal data, all variables typically follow 
the same scheme of measurement schedule, and 
for time series data, the measurement interval is 
fixed and remains the same for the entire series. 
Third, complex relationships can exist between 
measurements of different variables at different 
time points. Finally, missing data can be con-
founded with the irregularity of measurement 
schedule, and when missing data do exist, they 
tend to be informative and the missing rate can 
be very high for some variables. Due to these 
challenges, RWD are highly prone to MNAR 
mechanisms and intermittent patterns of miss-
ingness (Sect. 2.2). Traditional imputation 
methods are not capable of handling missing 
data in longitudinal datasets like EHR. In this 
section, we therefore discuss advanced imputa-
tion methods that are dedicated to longitudinal 
data. These methods can be used to reconstruct 
the entire trajectory of longitudinal variables  
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for each distinct individual, but also to recover  
single observations at particular points in time  
(e.g., at the startpoint or endpoint of the study).

One approach to address the presence of 
missing values in longitudinal data is to recover 
each trajectory separately, using methods 
designed for time series (TS) reconstruction. 
Although TS methods were originally designed 
for the analysis of evenly spaced observations, 
some methods could also be used when meas-
urement times are irregular [101]. It is, for 
instance, possible to replace the missing values 
by their respective mean or mode of the repeated 
measurements. These univariate algorithms are 
best suited for stationary series (i.e., when sta-
tistical properties of the data generation process 
do not change over time) and should gener-
ally be avoided because they tend to introduce 
bias for non-stationary series. More advanced 
univariate algorithms for TS imputation may 
account for trend (i.e., the long-term direction 
of the data), seasonality (i.e., systematic pat-
terns that repeat periodically), or even certain 
irregularities (i.e., distribution of the residuals) 
of the repeated observations [102]. These algo-
rithms often rely on moving averages or inter-
polation methods, and can be satisfactory when 
the stretches of missing data are short and if the 
TS is not much affected by noise [103]. Last 
observation carried forward (LOCF) is a special 
type of interpolation, where the last observed 
value replaces the next missing observations. 
Another common example is the use of autore-
gressive integrated moving average (ARIMA) 
models, which eliminate autoregressive parts 
from the TS and can also adjust for seasonality. 
However, because their implementation can dis-
tort the data distribution and their relation with 
other variables, univariate TS algorithms should 
be used with caution. Instead, multivariate TS 
algorithms could be used to create time lagged 
and lead data, and to include smooth basis func-
tions over time in the imputation model [104]. 
Simulation studies found that this strategy tends 
to outperform simple univariate TS algorithms 
[103]. There are several R packages available for 
missing data imputation in time series. Due to 
space limitations, we will not list the packages 

individually, and refer the reader to https://
CRAN.R-project.org/view=TimeSeries.

A different class of methods allows bor-
rowing of information across individuals. 
When repeated measurements are structured 
in the wide format, time-related variables can 
be imputed using the methods discussed in 
Sect. 4 without the need for further adjustment. 
For instance, the Sequential Organ Failure 
Assessment (SOFA) score is widely employed 
in the daily monitoring of acute morbidity in 
critical care units [105]. It is calculated using 
information on the patient’s respiratory, car-
diovascular, hepatic, coagulation, renal and 
neurological systems, and prone to missing val-
ues when some test results are unavailable. For 
example, most predictors of the SOFA score 
were affected by missing values in MIMIC-III, 
with missingness rates ranging from 58.88–
99.98% (Fig. 3). When repeated measurements 
of the SOFA score are formatted into separate 
columns with daily observations, corresponding 
variables can be imputed with joint modelling 
methods such as JM-MVN [30] or with con-
ditional modelling methods such as FCS-fold 
[106]. Alternatively, recurrent neural networks 
can be used to capture long-term temporal 
dependencies without the need for distributional 
assumptions [29, 102, 107–109]. Also other 
machine learning methods have been custom-
ized to allow for imputation of longitudinal data, 
including matrix completion and nearest neigh-
bor methods [102]. Unfortunately, these meth-
ods are not well suited to recover irregularly 
spaced observations (Figs. 8 and 9).

Because RWD are rarely collected at regular 
time intervals, it is often more helpful to struc-
ture sequential observations in the long format. 
Imputation methods then need to adjust for the 
time of measurement and the non-independence 
of observations. This requires to adopt hierarchi-
cal (also known as multilevel) models that group 
related observations, which can be achieved 
using joint modelling or conditional modelling 
imputation. A detailed overview of imputation 
methods for longitudinal data is provided by 
Huque et al. [110]. When adopting multilevel 
imputation methods, the longitudinal relation 

https://CRAN.R-project.org/view=TimeSeries
https://CRAN.R-project.org/view=TimeSeries
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of repeated observations can be preserved by 
including measurement time as an explanatory 
(possibly random) variable. It is then common 
to assume a linear relationship for the effect of 
the time variable. Unfortunately, this approach 
may become problematic when there is no lin-
ear association between the incomplete variable 
and its predictors, when there is no compatibility 
between the joint distribution and the full con-
ditional model, or when there is a lack of con-
geniality between the imputation model and the 
analysis model. Therefore, it has been proposed 
to adopt Bayesian substantive-model-compatible 
methods in which the joint distribution of the 
variables in the imputation model is specified 
by a substantive analysis model and an incom-
plete explanatory variable model [36, 111, 112]. 
Alternatively, van Buuren proposed the time ras-
ter imputation method [13] to convert irregular 
observations into a set of regular measurements 
using a piecewise linear mixed model. Initially, 
the user must specify an ordered set of k break 

times. Next, a B-spline model is used to rep-
resent each subject’s time points with knots 
that are given by k. This approach then yields 
a k-column matrix X. Finally, the incomplete 
time-dependent variables are imputed using 
chained equations with a clustering method, 
using the reference variables, other time-
dependent variables and X as predictors in the 
imputation method for each incomplete variable. 
More recently, Debray et al. developed condi-
tional modelling imputation methods that adjust 
for clustering and autocorrelation. These meth-
ods were implemented using chained equations 
and can be used to recover missing observa-
tions at arbitrary time points [113]. Simulations 
showed that this approach substantially out-
performs simpler imputation methods such 
as LOCF or rounding, and can also yield valid 
inferences when longitudinal data are MNAR.

It is also possible to impute longitudinal data 
using machine learning methods such as recur-
rent neural networks (RNNs). Although RNNs 

Fig. 8   Illustration of longitudinal data for five patients from MIMIC-III. Repeated measurements are presented for 
all predictors of the SOFA score. Each point represents a contact moment between the patient and healthcare provider
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have been described since 1986 [114], they have 
rarely been used for longitudinal data analy-
sis until the past decade. Standard RNNs bear 
many similarities to traditional feedforward neu-
ral networks, and can use the output from pre-
vious time steps as input for the next time step. 
In this manner, RNNs offer the ability to han-
dle sequential or time series data. Traditional 
implementations of RNN cannot process infor-
mation across many time steps and therefore 
have a short-term memory. This limitation can 
be addressed by adopting gated architectures 
that control the flow of information in the RNN 
[115]. The long short-term memory (LSTM) 
[116] and the Gated Recurrent Unit (GRU) are 
common examples of this architecture [117].

Traditional RNNs require that all variables 
have the same measurement schedule. For this 
reason, they are not well suited for the imputa-
tion and analysis of RWD. In the past few years, 
there have been tremendous research develop-
ments to facilitate the analysis of multivariate 
sequence data collected with irregular meas-
urement schedules [102]. RNN methos can, for 
instance, be enhanced by adopting adversarial 
training, attention mechanisms, or multidirec-
tional structures. We here distinguish between 
three common types of RNN for imputation of 
longitudinal data. A first type of RNN methods 
generate multiple imputed datasets, and include 
Bidirectional Recurrent Imputation for Time 
Series [118], multi-directional recurrent neural 
networks [119], and residual neural networks 
[120]. A second, similar type of RNN meth-
ods adopt generative adversarial networks to 
learn the overall distribution of a multivariate 
time series data and to generate imputed data-
sets [121]. Finally, a third type of RNN meth-
ods do not yield imputed datasets, but offer an 
integrated solution to the analysis of incomplete 
longitudinal data. To this purpose, they adopt 
missing indicators (“masks”) and/or the time 
interval between the observed values as input 
values of the network [29, 122–124]. To increase 
the ability to capture long-term relations in the 
data, these non-imputation methods often adopt 

a GRU or LSTM architecture. Estimation of 
aforementioned RNNs is not straightforward 
and often requires dedicated software packages, 
which may not always be readily available or 
easy to use.

6.3	� Choosing an Appropriate 
Imputation Method

The selection of an appropriate imputation 
method will often depend on the ultimate goal 
of the data analysis. If the goal is to make sta-
tistical inferences, such as estimating regres-
sion parameters or testing certain hypotheses, 
it is important that the imputation method pro-
vides not only unbiased estimates of parameters 
of interest, but also unbiased estimates of their 
associated (co)variance. On the other hand, if 
the goal of data analysis is to make predictions 
or classification, a suitable imputation method 
should be able to maintain the desired prediction 
or classification accuracy.

As discussed in this chapter, multiple imputa-
tion offers a generic solution to handle the pres-
ence of missing data. Multiple imputation can be 
used in both “inference-focused” and “predic-
tion-focused” studies, and can also be used on a 
case-by-case basis (e.g., when calculating predic-
tions in clinical practice). Multiple imputation 
methods that have widely been studied approxi-
mate the observed data using a well-known mul-
tivariate probability distribution (Sect. 4.1) or 
approximate this distribution through a series of 
conditional (often regression-based) models (Sect 
4.2). Although these methods can greatly differ 
in operationalization and underlying assump-
tions, simulation studies have demonstrated that 
they generally achieve similar performance [19, 
38, 125]. Overall, (semi-)parametric imputation 
methods can reliably be used for inference and 
prediction, and tend to perform well in datasets 
with a limited number of variables. Caution is, 
however, warranted when complex relations 
exist in the data (e.g., presence of treatment-
covariate interactions), when observations are 
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not independent (e.g., presence of repeated meas-
urements) or when mechanisms of missingness 
are complex (e.g., presence of MNAR). In these 
situations, the required complexity of imputation 
methods drastically increases and manual con-
figuration is often necessary to avoid bias (e.g., 
see Sects. 6.1 and 6.2) [36, 40]. In this regard, 
non-parametric methods offer several impor-
tant advantages. First, there is no need to specify 
the functional form of the outcome relationship. 
Instead, non-linear effects and interactions are 
directly derived from the observed data. Second, 
there is no need to distinguish between different 
data types, as most machine learning methods 
can easily handle discrete, continuous and other 
data types. Third, because variable selection 

and dimensionality reduction are integrated into 
many machine learning procedures, they are well 
capable of dealing with high-dimensional data-
sets. Finally, because machine learning methods 
are extremely flexible, they are well suited to 
avoid incompatibilities between the imputation 
and substantive analysis model [40]. This is an 
important issue when pursuing statistical infer-
ence and is often overlooked. Machine learn-
ing methods are therefore particularly appealing 
when there is limited understanding about likely 
sources of variability in the data, as data-driven 
procedures are used to determine how the impu-
tations should be generated.

Results from the literature review are summa-
rized in Fig. 9. Each row in this figure represents 

Fig. 9   Comparative performance of imputation meth-
ods as identified through a literature review. The color 
indicates the fraction of simulation studies in which the 
method in the row outperforms the method in the col-
umn. Single imputation methods: SVI = single value 
imputation; EVI = expected value imputation, Multiple 
imputation methods: JMI = joint modelling imputation, 
CMI = conditional modelling imputation, NN = near-
est neighbor imputation, matrix = matrix factorization, 

tree-based = tree-based ensembles, SVM = support 
vector machine imputation, generative = neural net-
work-based imputation, Non-imputation methods: 
CCA = complete case analysis, likelihood = likelihood-
based approaches, pattern = missing data pattern meth-
ods, Imputation of MNAR: HTI = Heckman-type 
imputation, Imputation of longitudinal data: interpola-
tion = interpolation methods (incl. last observation car-
ried forward), RNN = recurrent neural networks
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one method of accommodating missing data, 
in order of appearance in this chapter. In par-
ticular, we highlight single imputation (single 
value imputation, expected value imputation), 
joint modelling imputation, conditional mod-
elling imputation, non-parametric imputation, 
non-imputation methods, and methods dedi-
cated for informative missingness and longitu-
dinal data. Each cell displays the total number 
of simulation studies in which the method in 
the row outperforms the method in the column. 
Methods that work comparatively well have a 
higher percentage of papers in which they out-
perform other methods, signified by rows with 
many green cells. Most studies evaluated perfor-
mance by quantifying the mean squared error of 
imputed values.

Our literature review confirms that miss-
ing data is an important problem in RWD and 
requires dedicated methods. In particular, it is 
rarely justifiable to delete incomplete records, 
and to perform a so-called complete case analy-
sis. Although missing values can accurately be 
recovered by adopting single imputation meth-
ods, simulation studies showed that their imple-
mentation usually leads to bias when estimating 
model parameters. For this reason, single impu-
tation methods should be reserved for situations 
where imputations are needed on a case-by-case 
basis (e.g., when implementing a prediction 
model in clinical practice). Conversely, methods 
that perform consistently well are often based 
on multiple imputation using neural networks or 
other non-parametric approaches. As discussed, 
most of these methods can address mixed data 
types under various missingness mechanisms, 
and do not require user input to inform vari-
able selection. Recurrent neural networks appear 
particularly useful because they can manage 
informative missingness and incomplete longi-
tudinal data. However, when repeated measure-
ments are relatively sparse, (semi-)parametric 
approaches that explicitly model their relat-
edness (e.g., through random effects) may be 
more suitable. Unfortunately, the implementa-
tion of multiple imputation methods can be very 

demanding w.r.t. available resources and may 
therefore not always be desirable. As discussed 
in Sect. 5, it is possible to avoid the need for 
imputation in some circumstances. For instance, 
when adopting statistical models for predic-
tion, the presence of missing data can simply be 
addressed by estimating pattern submodels [92]. 
These models require fewer assumptions about 
the missing data mechanisms, and can perform 
well even when data are MNAR.

Finally, our review highlights several gaps 
in the published literature. Methods that appear 
promising but have not extensively been studied 
are based on SVM, or parametric models that 
estimate the joint distribution of the data and the 
missingness. Further, there is little consensus on 
appropriate strategies to evaluate missing data 
methods. For example, many simulation studies 
focus on situations where data are MCAR, or 
do not consider the validity of statistical infer-
ence that is based on imputed datasets. For this 
reason, it would be helpful to develop guide-
lines for the conduct and reporting of simulation 
studies focusing on missing data imputation, to 
facilitate fair comparisons between methods. 
For reasons of brevity, our review did not dis-
tinguish between different implementations of 
similar methods, such as the tree-based meth-
ods implemented within the chained equations 
framework. Uniting statistical and machine 
learning methods holds a promise to obtain 
imputations that are both accurate and confi-
dence valid.

7	� Summary

The analysis of RWD often requires extensive 
efforts to address data quality issues. In this 
chapter, we primarily focused on the presence 
of missing data and discussed several imputation 
methods. Although these methods are no pana-
cea for poor quality RWD, their implementation 
may help address situations where RWD are 
incomplete or require recovery due to temporal-
ity or accuracy issues.



31Quality Control, Data Cleaning, Imputation

1. Assess whether missing data can be handled 
using non-imputation methods. For example, 
when the goal is to develop a prediction model, 
it is possible to avoid the need for imputation 
by adopting pattern submodels or built-in algo-
rithms for dealing with missing values
2. When pursuing imputation strategies, multi-
ple imputed values should be generated to pre-
serve uncertainty (and thus allow for inference)
3. Include the covariates and outcome from the 
substantive (analysis) model [78]
4. Include as many variables as possible, espe-
cially (auxiliary) variables that are related to the 
variables of interest or the presence of missing-
ness [24, 78]
5. Consider imputation methods that allow for 
informative missingness when missing data 
mechanisms cannot be ignored
6. Especially in very large data sets with many 
cases and variables (RWD): use flexible imputa-
tion models [24]. This can be achieved by adopt-
ing machine learning methods that have built-in 
procedures for variable selection and dimension-
ality reduction such as neural networks
7. Evaluate the quality of imputed data by 
inspecting trace plots and distribution of 
imputed values [125].
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1	� Introduction

Medicine is inherently a data driven practice. 
The widespread adoption of electronic health 
record (EHR) systems in the US and Europe has 
rapidly increased the amounts of health related 
data that are electronically generated and cap-
tured during routine interactions of patients with 
the healthcare system [1]. Patient interactions 
with the healthcare system, for example an out-
patient visit or a hospital admission, generate a 
substantial amount of data and metadata. These 
data are organized, recorded and curated using 
different healthcare standards and clinical termi-
nologies. Healthcare standards enable the stor-
age and exchange of health information across 
healthcare providers while clinical terminologies 
enable the systematic and standardized record-
ing of healthcare information.

Before raw EHR data can be used as input 
features into analytical AI pipelines, a signifi-
cant amount of preprocessing and harmoniza-
tion must occur. For example, multiple EHR 
sources utilizing different clinical terminolo-
gies to record information need to be aligned to 
a common format. With unstructured data, such 
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Abstract

Electronic health records are routinely col-
lected as part of care and have variable data 
types, quality and structure. As a result, there 
is a need for standardization of clinical data 
from health records if these are to be used in 
software applications for data mining and/or 
machine learning and artificial intelligence 
approaches. Clinical terminologies and clas-
sification systems are available that can serve 
as standards to enable the harmonization of 
disparate data sources. In this chapter, we 
discuss different types of biomedical seman-
tic standards including medically-relevant 
ontologies, their uses, and their limitations. 
We also discuss the application of semantic 
standards in order to provide features for use 
in machine learning particularly with respect 
to phenotypes. Finally, we discuss potential 
areas of improvement for the future such as 
covering genotypes and steps needed.
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Standards are needed in healthcare to effec-
tively find, store and analyze data. If different 
representations are used for syntax and seman-
tics, there is no guarantee that the data used for 
analysis is complete or can be correctly com-
bined across sources. If data is not standardized, 
it can prevent information sharing and reuse of 
clinical data [7]. Often data can come from dif-
ferent systems even within the same institution 
and mappings to a common standard is needed. 
The challenge however is that there may be 
competing standards (PCORNet [8], FHIR [9], 
OMOP [10] and others).

To understand the need and application of 
standards consider the how, when and why data 
are generated during routine clinical interac-
tions. Data can be generated by physicians and 
healthcare professionals entering data directly in 
the EHR for patient care. Data can also be gen-
erated through clinical coding for billing and 
reimbursement purposes can subsequently be 
used for research FInally, data may be processed 
and curated through clinical audits for registries, 
quality of care, and planning. Each of these may 
use different systems with different representa-
tions that need to be harmonized before analy-
ses. Furthermore, different stakeholders and 
systems may attempt to record the same infor-
mation but choose different levels of granular-
ity. For example a healthcare professional might 
record detailed information on presenting signs, 
symptoms and diagnoses while a clinical coder 
might distill this information into a small num-
ber of terminology concepts. A coding system 
therefore should be able to account for these dif-
ferences and enable their harmonization.

In this section, we will provide working defi-
nitions of key concepts in data standardization to 
guide understanding of the different options and 
complexity of choosing and applying a standard. 
An excellent review of different semantic repre-
sentations is provided elsewhere [11]. Here we 
highlight commonly used and mentioned types of 
semantic standards and provide details of differ-
ent levels of standardization and what they offer.

Semantic standards can be understood 
at three levels of abstraction of increasing 

as information recorded in clinical text, Natural 
Language Processing (NLP) approaches can be 
deployed to extract clinically-meaningful mark-
ers and transform them into input features for the 
pipeline (this process is often referred as entity 
extraction). Finally, depending on the purpose of 
each dataset, different biases might exist in the 
data which need to be accounted for. For exam-
ple, administrative hospitalization EHR might be 
influenced by local coding guidelines which in 
turn affect the observed data recording patterns 
and need to be accounted for prior to analyses.

The outcome of such a data preprocessing 
pipeline would be features extracted from com-
plex, multidimensional EHR that can be used 
as input features to AI analytical approaches. 
Extracting clinically important markers from 
complex EHR (e.g. disease status, biomarkers, 
prescriptions, procedures, symptoms etc.) is 
often referred to as phenotyping [2]. The main 
objective therefore of this chapter is to provide 
a succinct overview of the main clinical termi-
nologies used to record EHR data, their char-
acteristics, and outline different approaches for 
creating and evaluating EHR-derived pheno-
types. The methods outlined here will cover a 
set of phenotyping methodologies ranging from 
rule-based deterministic algorithms, to aggre-
gated coding systems and finally to more com-
plex learnt representations).

1.1	� The Need for Standards 
and Their Application

Standards in the context of this chapter are 
defined as common representations of data. 
They may be approved by a governing body 
(e.g., ISO dates [3]) or they may simply repre-
sent established formats (Variant Call Format 
(VCF) files of genomic variants [4]). For clini-
cal terminologies, standards may be mandated 
by the government, institution (e.g., National 
Institutes of Health [5]), or professional socie-
ties. Terminologies may be developed by com-
munities adhering to common principles (e.g., 
OBO Foundry [6]).
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complexity. The first is as entities (terms) 
that make up classes (general concepts) and 
instances (individual members) of those classes. 
For example, ‘heart failure’ is a class whereas 
‘the first heart failure diagnosis of a patient’ 
is an instance of that class. Most usage of ter-
minologies and ontologies is at this first level 
where terms are used as annotations. A sec-
ond level is the organization of the entities into 
structures such as hierarchies or assertions and 
statements including axioms and logical defini-
tions. Hierarchies can be simple taxonomies 
(‘heart failure’ is-a ‘disorder of cardiac func-
tion’) or can be poly-hierarchies to accommo-
date a term having more than one parent. The 
structure of assertions/statements can be in the 
form of triples: subject-predicate-object such as: 
‘heart failure’ ‘occurs in’ ‘heart structure’. These 
structures provide the ability to connect con-
cepts in a defined manner. The third level is the 
representational model adhering to open versus 
closed worlds and languages such as Resource 
Description Framework (RDF) [12], Web 
Ontology Language (OWL), Simple Knowledge 
Organization System (SKOS) [13] and schema 
languages as part of the Semantic Web [14]. 
These can be employed in messaging sys-
tems such as FHIR and Common Data Models 
(CDM) like Observational Medical Outcomes 
Partnership (OMOP). The products of semantic 
standards can be browsed in repositories such 
as the NCBO BioPortal [15] or used in knowl-
edge bases linking classes or terms (TBox) to 
instances or assertions (ABox) about data [16].

Clinical classification systems, medical 
ontologies, and clinical terminologies make use 
of these different levels of abstraction. In this 
context, ontologies are distinguished by formal 
relations between entities and use of logical def-
initions or axioms. The W3C provides approved 
standards such as OWL and a query language 
(SPARQL) which enables ontologies based on 
these standards to be programmatically accessed 
and searched [12]. Clinically relevant ontologies 
include the Disease Ontology [17], the Drug 
Ontology [18], and the Ontology for Biomedical 
Investigations [19] which can be used to link 

to diagnoses, medications, and lab tests respec-
tively in EHR. Those ontologies, which are part 
of the OBO Foundry, not only provide hierar-
chies for capturing related data at different lev-
els of granularity but also have formal links to 
other external ontologies (e.g., for chemicals in 
CHEBI [20]) that can be used to connect them 
and build more complex knowledge structures 
(e.g., classes of drugs containing chemicals that 
are used as an antineoplastic agent).

Multiple ontologies or terminologies may 
be needed to annotate or instantiate data. When 
this is done, care should be taken to avoid con-
flicts or redundancies, i.e. the chosen terminolo-
gies should be semantically interoperable. This 
however is not guaranteed if different sources 
of terms are used as they can have different con-
texts and thus different meanings. With the OBO 
Foundry, the objective is that adhering ontolo-
gies are semantically consistent with respect to 
meaning of terms and use of relations.

2	� Controlled Clinical 
Terminologies and Clinical 
Classifications Systems

EHR provide the infrastructure for healthcare 
professionals to record information that is rel-
evant for the care of a patient. This information 
can include symptoms, medical history infor-
mation on the patient or their direct family, 
laboratory or anthropometric measurements, pre-
scriptions, diagnoses, and surgical procedures. 
The data recorded within the EHR allow health-
care professionals to assess and treat a patient 
but are also widely used for a number of other 
purposes (often referred to as secondary uses) 
such as reimbursement, planning, billing, audit-
ing and research. Although clinical terminolo-
gies and clinical classification systems are often 
used interchangeably, they serve two distinct 
purposes [21]. The former were created to ena-
ble healthcare professionals to record informa-
tion that is pertinent to clinical care. The latter 
are a tool which enables the aggregation and sta-
tistical analyses of health information (Table 1).
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Controlled clinical terminologies (also 
referred to as controlled clinical ontologies, con-
trolled medical ontologies, controlled medical 
vocabularies) are the basic building blocks used 
by healthcare professionals to record informa-
tion within an EHR system. The main purpose 
of clinical terminologies is to enable the con-
sistent and systematic recording of clinical data 
and metadata which in turn are used for direct 
patient care. As a result, controlled clinical ter-
minologies often encapsulate a wide and diverse 
set of domains and healthcare-related actions.

The US Bureau of Labor Statistics defines 
classification systems as “ways of grouping and 
organizing data so that they may be compared 
with other data” [22]. In the context of medi-
cine, clinical classification systems enable the 
aggregation and analysis of data related to health 
can healthcare on a national or international 
level. One of the most commonly used classifi-
cation systems worldwide is the ICD-10 which 
is maintained by the World Health Organization 
(WHO) [23]. Clinical classification systems are 
also used for other secondary purposes, one of 
the most common being reimbursement where 
clinical data get transformed and aggregated into 
a clinical classification system. The process by 
which raw data are transformed into ICD codes 
is defined as coding. The WHO defines coding 
as “the translation of diagnoses, procedures, 
comorbidities and complications that occur over 

the course of a patient’s encounter from medical 
terminology to an internationally coded syntax” 
[24].

2.1	� SNOMED-CT

SNOMED Clinical Terms (SNOMED-CT) is a 
controlled clinical terminology providing a set 
of hierarchically-organized, machine-readable 
codes, terms, synonyms and definitions used 
to record information related to health and 
healthcare within EHR information systems 
[25]. SNOMED-CT is maintained and distrib-
uted by the International Health Terminology 
Standards Development Organisation 
(IHTSDO). SNOMED-CT was created in 1965 
as the Systematized Nomenclature of Pathology 
(SNOP) which in turn evolved in the SNOMED 
Reference Terminology (SNOMED-RT) and 
finally merged with the NHS Clinical Terms 
Version 3 (Read codes Version 3, CTV3) [26] to 
create SNOMED-CT in 2002. Similarly to ICD, 
different countries can maintain their own ver-
sions of SNOMED-CT that are tailored to their 
local healthcare system or needs; in the UK for 
example, the National Health Service (NHS) 
maintains a UK version of SNOMED-CT [27] 
that is used.

SNOMED-CT consists of three components 
[28] which are explained below (Tables 2 and 3):

Table 1   Comparison between ICD-10 (statistical classification system) and SNOMED (clinical terminology

ICD-10 SNOMED-CT
Type Clinical classification system Controlled clinical 

terminology
N concepts 104 105

Relationships A concept has a single parent A concept can have multi-
ple hierarchical relation-
ships and multiple parents

Age related diagnoses Information on age is encapsulated within the term The term used is the same 
across all ages and the age 
of onset is derived by the 
date of diagnosis and the 
age of the patient

Fidelity Information organized in mutually exclusive categories with 
generic “not otherwise specified” or “not elsewhere classi-
fied” terms used to record information if required

NOS/NEC are not used in 
SNOMED-CT
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1.	 Concept: Every SNOMED-CT concept rep-
resents a unique clinical meaning and has a 
unique numerical identifier which is persis-
tent across the ontology and can be used to 
reference the concept. The January 2021 ver-
sion of SNOMED CT contains approximately 
350,000 concepts.

2.	 Description: Each SNOMED-CT concept 
has a unique description, the Fully Specified 
Name (FSN), which offers an unambigu-
ous description of the concept's meaning. 
Additionally, a concept can have one or more 
synonym terms (Synonyms) which are associ-
ated with the concept.

3.	 Relationship: SNOMED-CT offers several 
types of relationships between concepts in 
order to enable logical computable defini-
tions of complex concepts. The terminology 

contains approx 1.4 million relationship 
entries defining these. All concepts are organ-
ized in an acyclic hierarchy using the “is-a” 
relationship and concepts can have multiple 
parents (as opposed to most statistical clas-
sification systems that only support a sin-
gle parent child relationship). Additionally, 
SNOMED-CT offers more than 60 other rela-
tionship types for example finding site, caus-
ative agent and associate morphology.

Subsets of SNOMED-CT components (e.g. of 
concepts, their descriptions and relationships 
between concepts) can be represented using a 
standardized approach enabled by Reference 
Sets. Reference Sets are commonly used to pro-
vide a subset of the terminology that has been 
curated to serve a particular process and to ena-
ble the standardized recording of clinical data at 
the point of care (for example, in an emergency 
department [29]).

Precoordination and Postcoordination of 
Concepts
Complex clinical information can often be rep-
resented by combinations of multiple concepts 
or modifiers for example “chronic migraine”, 
“major depression with psychotic symptoms”, 
“recurrent deep vein thrombosis” or “accidental 
burning or scalding caused by boiling water”. 
The concepts can contain information on the 
chronicity, morphology, severity or other aspect 

Table 2   Example SNOMED-CT concept core 
components

Fully specified name Heart failure (disorder)
SCTID 84,114,007
Synonyms Heart failure

Myocardial failure
Weak heart
Cardiac failure
Heart failure (disorder)
HF—Heart failure
Cardiac insufficiency

Parents Disorder of cardiac function 
(disorder)

Finding site 
(relationship)

Heart structure

Table 3   Selected top level SNOMED hierarchy concepts and examples (based on the SNOMED-CT UK hierarchy 
[30])

Name Example
Body structure 83,419,000 Femoral vein structure (body structure)
Clinical finding 1,362,251,000,000,108 Recurrent bleeding from nose (finding)
Environment or geographical location 285,201,006 Hospital environment (environment)
Event 419,620,001 Death (event)
Procedure 414,089,002 Emergency percutaneous coronary intervention 

(procedure)
Qualifier value 90,734,009 Chronic (qualifier value)
Situation with explicit context 406,140,001 Discussion about care plan with family (situation)
Social concept 236,324,005 Factory worker (occupation)
Specimen 258,583,001 Bone marrow clot sample (specimen)
Staging and scales 1,077,341,000,000,105 Diagnosing Advanced Dementia Mandate 

Tool (assessment scale)
Substance 447,208,001 Alcaftadine (substance)
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of the information being recorded. Clinical ter-
minologies have traditionally tried to enable 
the recording of such information by creat-
ing and providing terms for them, a process 
often referred to as precoordination. The 
core SNOMED-CT ontology contains approx 
350.000 precoordinated concepts as they are 
available upfront for use. The use of precoor-
dinated concepts greatly improves the storage 
and manipulation of information as it effectively 
reduces the dimensionality of the data (i.e. the 
use of one concept versus the use of multiple 
concepts to record the same data point).

The approach of offering precoodinated con-
cepts for any possible combination of clinically 
meaningful concepts however does not scale 
given the complex, highly heterogeneous, and 
multidisciplinary nature of health and healthcare. 
For example, it would be unreasonable to expect 
a precoordinated term for “third degree burn of 
left index finger caused by hot water”. To enable 
the recording of complex concepts in a machine 
readable manner, SNOMED-CT offers a compo-
sitional grammar (Fig. 1) [31] that can be used 
to combine multiple concepts together into clini-
cal expressions that are more accurate as opposed 
to only using a single concept. The created con-
cepts are referred as “postcoordinated” as they 
are not available upfront in the ontology but have 
been created a posteriori. Postcoordination how-
ever introduces considerable challenges, both in 
terms of data recording by clinicians, storage and 
retrieval of information and significantly increases 
the complexity of the underlying data [32].

2.2	� International Classification 
of Disease (ICD)

The 10th edition of the International Classification 
of Disease (ICD), commonly referred to as 

ICD-10, is maintained and published by the WHO 
and is the most commonly used statistical classifi-
cation system worldwide. The 11th edition of ICD 
(ICD-11) officially came was adopted by the 72nd 
World Health Assembly in 2019 and came into 
effect on 1st January 2022 [34]. While the WHO 
maintains the core ICD system, individual coun-
tries often develop and deploy their own branches 
which are adapted to their own needs by often 
including additional terms or other changes. For 
example, secondary healthcare providers in the 
US make use of ICD-10 Clinical Modifications 
(ICD-10-CM) for discharge summaries and reim-
bursement purposes which is maintained by the 
US Centres for Disease Control and Prevention 
(CDC) [35] (Table 4).

ICD-10 is organized in 21 top level chapters 
which represent disease systems and are denoted 
by roman numerals e.g. chapter IX contains 
terms related to diseases of the circulatory sys-
tem. Terms within each chapter are often organ-
ized in one or more blocks which define a range 
of codes e.g. block I20-I25 encapsulates terms 
related to ischaemic heart disease. Individual 
ICD-10 terms can have up to seven characters. 
All ICD-10 codes always begin with a letter that 
is associated with the chapter which they belong 
to e.g. codes related to circulatory diseases 
begin with the character “I”. This is followed by 
one or two numbers which further specify the 
category of the diagnosis. The remaining char-
acters indicate the disease aetiology, anatomic 
site, severity or other relevant clinical detail. 
The first three characters are separated by the 
remaining characters by a decimal character. 
Within individual codes, the 5th or 6th charac-
ter length codes represent terms with the highest 
level of specificity. In certain disease chapters 
such as obstetrics, a 7th character can be used to 
denote the type of encounter (e.g. initial vs. sub-
sequent). Within three and four character codes, 

Fig. 1   Example of the SNOMED-CT compositional syntax used to create a postcoordinated concept which can be 
used to record a third degree burn caused by hot water of the left index finger (Source WIkipedia [33])
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a “rubric” often denotes a number of other diag-
nostic terms that are associated with that code 
such as other related syndromes, synonyms for 
the disease or common terms. Finally, when a 
conclusive diagnosis was not possible, for exam-
ple when the presenting symptoms did not meet 
the diagnostic criteria for one of the existing 
defined codes in the hierarchy, generic, broader 
“Not Otherwise Specified” codes can be used 
e.g. “I50.9 Heart failure, unspecified”.

Working Across ICD Versions
A key challenge of working with longitudinal 
data that has been recorded using ICD is deal-
ing with different versions of the same coding 
system e.g. ICD-9 and ICD-10 [36]. Major new 
versions of an ontology will, by definition, con-
tain a substantial amount of new entities that can 
be used to record information (e.g. ICD-9-CM 

contains 13,000 codes while ICD-10-CM con-
tains 68,000 codes) which will often be organ-
ized differently. As a result, there are often many 
additional codes (and often in higher fidelity 
than before) that can be used to define clinical 
concepts.

To enable this translation of data between 
ICD versions, the Centers for Medicare & 
Medicaid Services (CMS) curates and provides 
a set of General Equivalent Maps (GEMs, these 
are often referred to as crosswalks) [37]. GEMs 
can provide forward maps (e.g. ICD-9-CM to 
ICD-10-CM) and backward maps (e.g. ICD-
10-CM to ICD-9-CM). The use of GEMs how-
ever is not straightforward as newer concepts 
that exist in ICD-10-CM might not always exist 
in ICD-9-CM and some ICD-9-CM concepts 
might map to a combination of more than one 
ICD-10-CM codes. For example, the ICD-9-CM 

Table 4   Comparison of ICD-10 and ICD-10-CM terms used to record heart failure

ICD-10-CM ICD-10
I50.1 Left ventricular failure, unspecified
I50.2 Systolic (congestive) heart failure
         I50.20 Unspecified systolic (congestive) heart failure
         I50.21 Acute systolic (congestive) heart failure
         I50.22 Chronic systolic (congestive) heart failure
         I50.23 Acute on chronic systolic (congestive) heart failure
I50.3 Diastolic (congestive) heart failure
         I50.30 Unspecified diastolic (congestive) heart failure
         I50.31 Acute diastolic (congestive) heart failure
         I50.32 Chronic diastolic (congestive) heart failure
         I50.33 Acute on chronic diastolic (congestive) heart failure
I50.4 Combined systolic (congestive) and diastolic (congestive) heart failure
         I50.40 Unspecified combined systolic (congestive) and diastolic (congestive) 
heart failure
         I50.41 Acute combined systolic (congestive) and diastolic (congestive) heart 
failure
         I50.42 Chronic combined systolic (congestive) and diastolic (congestive) heart 
failure
         I50.43 Acute on chronic combined systolic (congestive) and diastolic (conges-
tive) heart failure
I50.8 Other heart failure
         I50.81 Right heart failure
         I50.810 …… unspecified
         I50.811 Acute right heart failure
         I50.812 Chronic right heart failure
         I50.813 Acute on chronic right heart failure
         I50.814 …… due to left heart failure
         I50.82 Biventricular heart failure
         I50.83 High output heart failure
         I50.84 End stage heart failure
         I50.89 Other heart failure
I50.9 Heart failure, unspecified

I50.0 Congestive heart 
failure
I50.1 Left ventricular failure
I50.9 Heart failure, 
unspecified
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code “250.10 Diabetes with ketoacidosis, type II 
or unspecified type, not stated as uncontrolled” 
can potentially map to “E11.69 Type 2 diabe-
tes mellitus with other specified complication” 
or “​​E13.10 Other specified diabetes mellitus 
with ketoacidosis without coma” ICD-10-CM 
codes. In their work, Fung et al. [38] show that 
the majority of ICD-10-CM codes are not rep-
resented in the forward map, and a significant 
portion of ICD-9-CM codes (25%) are not rep-
resented in the backward map e.g. the backward 
map provides 78,034 unique pairs of ICD-9-CM 
and ICD-10-CM codes (over three times more 
than the forward map), of which only 18,484 
pairs (23.7%) are also found in the forward map.

Other Clinical Terminologies and Ontologies
A plethora of other clinical ontologies and ter-
minologies exist that are used to record informa-
tion related to health and healthcare. Information 
on drugs and medical devices is captured by 
RxNorm [39] in the US and the Dictionary of 
Medicines and Devices (DM+D) in the UK [40]. 
Similarly, surgical procedures and interven-
tions in the US are recorded using the Current 
Procedural Terminology (CPT) [41] while in the 
UK using the Office of Population Censuses and 
Surveys Classification of Surgical Operations and 
Procedures, 4th revision (OPCS-4) classification 
which is maintained by the NHS [42]. Molecular 
pathology testing data and metadata can be 
standardized by using the LOINC (Logical 
Observation Identifier Names and Codes) ontol-
ogy [43]. Semi-structured data, such as reports 
from investigative radiology procedures, can also 
contain clinically significant information that 
can benefit from harmonization and a bespoke 
ontology, RadLex, has been created to enable the 
standardized recording of entities [44].

3	� Defining Diseases in Electronic 
Health Records

EHR data offer a rich source of information for 
research as they capture a diverse set of infor-
mation on diagnoses, laboratory measurements, 
procedures, symptoms, medication prescriptions 

alongside metadata related to healthcare delivery 
such as referrals. The process of transforming 
raw EHR data and extracting clinical informa-
tion for research is referred as phenotyping and 
involves the creation of algorithms (referred to 
as phenotyping algorithms) that can either be 
deterministic (rule based) or probabilistic [2]. 
Rule-based algorithms often combine multiple 
pieces of information, alongside logic rules, to 
identify patients with a given disease [42].

The use of EHR however for research is asso-
ciated with significant challenges as the data are 
often fragmented, recorded using different con-
trolled clinical terminologies and have variable 
data quality and completeness [45]. Importantly, 
the purpose and processes in which data are 
generated and captured varies significantly. For 
example, primary care EHR are generated by 
the clinician for direct patient care but are influ-
enced by local clinical guidelines while second-
ary care claims data are recorded by clinical 
codes which in turn operate based on a prede-
fined coding protocol. This in turn might influ-
ence how data are recorded within each source 
and how data should be merged across sources 
[46]. For example, a study comparing the 
recording of non-fatal myocardial infarctions 
(AMI) in linked data from primary care, hospi-
talization records and a myocardial ischaemia 
national audit observed that only a third of AMI 
events were recorded in all three sources [47]. 
As a result of these challenges, researchers must 
both study the underlying processes that gener-
ate the data and perform robust validation across 
multiple layers of evidence.

3.1	� The Need for Aggregated Code 
Representations

One of the many challenges of working with 
coded data is that related concepts (e.g. all mani-
festations of a particular disease) can be frag-
mented across the terminology used to record 
information. For example, tuberculosis related 
diagnoses in ICD-10 occur in four different 
ICD chapters (e.g. infections, skin diseases, dis-
eases of the genitourinary system and diseases 



45Data Standards and Terminology Including Biomedical Ontologies

of the musculoskeletal and connective tissue). 
Furthermore, when working with longitudi-
nal data, researchers have to deal with changes 
within clinical terminologies and changes 
related to new major versions of ontologies such 
as the transition of ICD-9-CM to ICD-10-CM 
or SNOMED-CT concepts becoming inactive 
and replaced by newer alternative concepts. As 
a result, the creation of phenotyping algorithms 
to define diseases in complex EHR becomes sig-
nificantly more challenging and requires a sig-
nificant amount of resources.

To enable the scalable definition of diseases 
in EHR, using all available ICD diagnosis codes, 
a layer above source ICD codes has been devel-
oped by Bastarache et al. [48] that provides phe-
notype codes (phecodes) grouppings. Phecodes 
were originally developed in ICD-9-CM and 
derived partially from the Agency for Healthcare 
Research and Quality Clinical Classification 
Software for ICD-9-CM (CCS) [49]. Phecodes 
are manually curated, hierarchically organized 
groupings of ICD codes aiming to capture com-
mon adult diagnoses to facilitate phenome-wide 
genetic association studies (PheWAS) [50]. 
Phecodes version 1.2 condenses roughly 15,500 
ICD-9-CM codes and 90,000 ICD-10-CM 
codes into 1867 phecodes. Subsequent research 
mapped phecodes to ICD-10 and ICD-10-CM 
codes [51] and phecodes have been shown to 
produce robust genotype–phenotype associa-
tions compared with other relevant approaches 
[52].

3.2	� Bridging Molecules 
to Phenotypes

Phenotypes typically require aggregation of 
structured data fields in clinical records as 
described in the preceding section. Phenotypic 
inferences can be made based on an interpreta-
tion of lab test results, medications prescribed, 
diagnoses, and clinical notes. To make such 
inferences using a programmatic approach 
requires connecting phenotypes to structured 
representations of those clinical record elements. 
The OBO Foundry includes relevant ontologies 

for bridging molecules to phenotypes. The 
Chemical Entities of Biological Interest 
(ChEBI) ontology covers molecules and their 
roles while the Drug Ontology (DrON) cap-
tures the relationships between the molecules 
defined in ChEBI and the drugs where the mol-
ecules are active ingredients and also links to 
RxNorm terms (from the National Library of 
Medicine [39]). The human disease ontology 
(DO) has database-cross references to ICD-9 
and ICD-10 codes as well as to SNOMED. The 
Monarch Disease Ontology (MonDO [53]) con-
nects DO with additional disease resources (e.g., 
Orphanet [54], OMIM [55]). Genotyping results 
can be interpreted through the Gene Ontology 
(GO [56]) to identify the processes affected 
by mutations. The Ontology for Biomedical 
Investigations (OBI) [19] can be used to link 
lab test results with specimens and assays. 
Anatomy-based data can be interpreted through 
Uberon [57], a species neutral anatomy ontol-
ogy, or the Foundational Model of Anatomy 
(FMA [58]) which is focused on human anat-
omy. The Human Phenotype Ontology [59] pro-
vides representation of phenotypes and connects 
to many of these listed OBO Foundry ontologies 
as well as clinical terminologies.

4	� Application of Standards to Aid 
Machine Learning

Representing words as numerical vectors 
based on the contexts in which they appear has 
become the de facto method of natural lan-
guage processing approaches. A survey of word 
embeddings for clinical text provides some good 
pointers on other approaches [60].

Learnt representations of controlled clini-
cal terminologies can be used as the basis for 
features in machine learning. In order to uti-
lize the information located in free text, it has 
to be converted to structured representation. 
This transformation however needs to take into 
consideration the structure of the clinical termi-
nology itself as it provides essential contextual 
information. Artificial Intelligence approaches 
are increasingly being used to learn and predict 
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phenotypes. An example of deep learning 
applied to EHR records is BEHRT [61], a deep 
neural sequence transduction model capable 
of simultaneously predicting the likelihood of 
301 phenotypes (originally developed in the 
CALIBER resource [62]) in a patient’s future 
visits. When trained and evaluated on the data 
from nearly 1.6 million individuals, BEHRT was 
able to show a striking improvement in terms of 
average precision scores for different tasks over 
the existing state-of-the-art deep EHR models. 
In addition to its scalability and improved accu-
racy, BEHRT enables personalized interpreta-
tion of its predictions. Its flexible architecture 
enables it to incorporate multiple heterogeneous 
concepts (e.g., diagnosis, medication, measure-
ments, and more) to further improve the accu-
racy of its predictions; its (pre-)training results 
in disease and patient representations can be 
useful for future studies (i.e., transfer learning).

Tensor factorization methods such as 
Limestone and Granite have also provided phe-
notype predictions [63, 64]. EHR data do not 
always directly and reliably map to medical con-
cepts that clinical researchers need or use. Some 
recent studies have focused on EHR-derived 
phenotyping, which aims at mapping the EHR 
data to specific medical concepts; however, 
most of these approaches require labor inten-
sive supervision from experienced clinical pro-
fessionals. Furthermore, existing approaches 
are often disease-centric and specialized to the 
idiosyncrasies of the information technology 
and/or business practices of a single healthcare 
organization. Limestone [64], a nonnegative ten-
sor factorization method to derive phenotype 
candidates with virtually no human supervision. 
Limestone represents the data source interac-
tions naturally using tensors (a generalization 
of matrices) and investigates the interaction of 
diagnoses and medications. The resulting tensor 
factors are reported as phenotype candidates that 
automatically reveal patient clusters on specific 
diagnoses and medications. Using the proposed 
method, multiple phenotypes can be identified 
simultaneously from data.

Standards in the form of biomedical ontol-
ogies can be used directly for analysis of 

annotated data. The most visible form of this 
approach is in the enrichment analysis of gene 
expression data using annotations of proteins 
and genes with the Gene Ontology. Those anal-
yses while very successful do not take advan-
tage of relationships encoded in the ontologies. 
Recent work has been done however using 
ontology-based network analysis and visualiza-
tion for COVID-19 analysis [65]. In a similar 
vein, in the AI-driven cell ontology brain data 
standards project, ontologies are being used 
to capture results of analysis and learn more 
through reasoning [66].

Knowledge graphs provide the ability to con-
nect clinical terminologies and encodings in 
EHR with biomedical ontologies and standards. 
For example, a knowledge graph framework has 
been developed for COVID-19 focused around 
molecular and chemical information, enabling 
users to conduct complex queries over relevant 
biological entities as well as machine learn-
ing analyses to generate graph embeddings for 
making predictions. This framework can also 
be applied to other problems in which siloed 
biomedical data must be quickly integrated for 
different research applications, including future 
pandemics [67].

5	� Future directions

The proper use of standards is an active area of 
research. In a recent call for proposals, the issue 
of relating real-world data (RWD) (e.g., EHR, 
claims, and digital health technologies) between 
different sources was raised as not just an issue 
of mapping but also transforming the data and 
the underlying definition of its meaning as these 
can be similar but not identical. Even if stand-
ards are used, proper use of data from multiple 
sources will rely heavily on human interpreta-
tion and efforts are still needed for fully reliable 
computer-driven approaches. In this chapter, 
the emphasis has been on data for phenotyping. 
The same concerns and considerations about the 
choice and application of standards need to be 
applied for genotyping and genomics. Linkages 
of this type of data to clinical terminologies are 
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either non-existent or in their infancy. There 
are standards for file formats and some rele-
vant OBO Foundry ontologies exist (e.g., OBI, 
Sequence Ontology[68]) which should aid the 
ultimate goal of combining phenotyping and 
genotyping/genomics.

A fundamental difference between clini-
cal terminologies/coding systems such as 
SNOMED-CT and ICD with OBO Foundry 
ontologies such as the Basic Formal Ontology 
(BFO) or the Disease Ontology (DO) is the 
modeling approach. SNOMED and ICD are 
representing information collected by a health 
care worker whereas BFO and DO are represent-
ing what happened or exists in the world. The 
former fits well with data models while the lat-
ter provides a common grounding in reality. It 
remains a challenge to leverage the benefits of 
both clinical standards like SNOMED-CT and 
OBO Foundry ontologies. SNOMED has greater 
adoption in the clinical area but lacks the seman-
tic rigor and breadth (for example in genomic 
technologies) than OBO Foundry ontologies. 
The use of database cross-references in OBOF 
ontologies to SNOMED-CT does provide a 
bridge.

Resources for further reading:
We provide below several resources for further 
reading on topics covered in this chapter:

•	 Bodenreider and colleagues [69] provide an 
excellent overview and discussion of recent 
developments in SNOMED-CT, LOINC and 
RxNorm.

•	 Aspden and colleagues discuss the topic of 
healthcare data standards in depth and pro-
vide examples of their application in health-
care [7].

•	 Standards are by their nature about classes 
of concepts. However, when working with 
RWD, attention needs to be placed on their 
application to instances to establish when the 
diagnosis or even the patient being referred to 
is the same or different. This topic is covered 
in detail by Ceuster [70].

•	 Practical applications and theoretical back-
ground for applied ontology especially in the 

biomedical area can be found in Smith, Arp, 
and Spears Building Ontologies with Basic 
Formal Ontology [71].

•	 Hemingway and colleagues provide a detailed 
overview with examples on how electronic 
health records are utilized for early and late 
translational cardiovascular research [72].
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conversion. Finally, we discuss potential 
challenges of the harmonisation process and 
how to address them.
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1	� Introduction to Common Data 
Models

1.1	� Introduction

The previous chapters, especially Chap. 3—
Data standards and terminology including 
Biomedical ontologies, have introduced vari-
ous standards used in healthcare and biomedical 
research. Each standard addresses a particular 
purpose and helps organising and interpreting 
data. Although many standards are global and 
used across domains, many data use local stand-
ards, like national drug coding or customised 
EHR systems built for a hospital.

For large-scale studies, fundamental for AI, 
it is essential to integrate data from various 
sources. For example to characterise treatment 
patterns at different healthcare settings [1] or 
predicting the risk of multiple outcomes after a 
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Abstract

Data harmonisation is an essential step for 
federated research, which often involves 
heterogeneous data sources. A standard-
ised structure and terminology of the source 
allows application of standardised study pro-
tocol and analysis code. A Common Data 
Model (CDM) accompanied with standard-
ised software supports standardised feder-
ated analytics. In this chapter we demonstrate 
the benefit of Common Data Models and the 
OMOP CDM in particular. We also introduce 
a general pipeline of an Extract Transform 
Load process to transform health data to the 
OMOP CDM and provide an overview of the 
supporting tooling that ensures a high-quality 
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annotated with metadata about the terminology 
used.

All three elements are crucial for machines to 
process the data. Ideally the data is also richly 
annotated with interoperable metadata that 
describes the structure, format, and terminology 
of the data. This enables machines without any 
prior knowledge of the data to access it.

A CDM is not application specific. 
Therefore, in most cases the data is not stored 
natively in this model. Having data in a CDM 
requires extraction from the application specific 
system, applying transformations and loading it 
into the CDM.

1.3	� Common Data Models in the 
Biomedical Domain

The notion of using a CDM for biomedical data 
is not new. For many years, data from differ-
ent sources has been integrated at institutional, 
regional, and also global levels. Table 1 gives 
an overview of a selection of important open 
healthcare standards and their main purpose.

HL7 FHIR [5] and OpenEHR [6] are mod-
els that directly integrate with the systems of 
a clinical care site. Their aim is not so much 
on research, but on processing healthcare data 
for their primary purpose: patient care. These 
models are important, as they are important 
entry points for integrating with models aimed 
towards research.

The other models have their specific research 
purposes. The OMOP CDM, maintained by 
the global OHDSI open science collaborative 
[7], is the main topic of this section and will be 
addressed in detail later. The CDISC SDTM [8] 
is a well-established standard for submission of 
Clinical Trial data to regulatory bodies and is 
required by e.g., the FDA. The Sentinel CDM is 
at the basis of an FDA funded federated network 
of US claims data [4]. The i2b2 model is the 
only model that is aimed at translational medi-
cine and can be used to combine real world data 
from healthcare and research data.

COVID19 infection [2]. This enables interop-
erability and reusability of the collected infor-
mation, which are two of the FAIR principles 
emphasising machine-actionability of data [3].

One way is to harmonise the data to a 
Common Data Model (CDM). Data harmoni-
sation is not an easy task. Healthcare databases 
can consist of many tables from diverse systems, 
like inpatient, outpatient, lab, pharmacy. And the 
source model and the CDM might capture data 
at different granularities, leading either to loss of 
information or requiring to derive missing infor-
mation. The choice of data model and terminol-
ogy is important as is the support for the CDM 
of choice.

1.2	� Common Data Models

An EMA workshop report from 2017 describes 
a CDM as: “a mechanism by which raw data 
are standardised to a common structure, for-
mat and terminology independently from any 
particular study in order to allow a combined 
analysis across several databases/datasets” 
[4]. In this report three CDMs (OMOP CDM, 
Sentinel, Pcornet) were compared for use 
for pan-European observational health stud-
ies to address regulatory questions in a timely 
manner. Specifically, to use a CDM for Post 
Authorisation Safety Studies, drug utilisa-
tion and drug effectiveness studies on a wide 
population.

This definition shows the main components 
of a CDM. The first is a common structure, 
where the elements of the model are defined. 
In traditional models this is the definition of the 
tables and fields, for graph databases these will 
be the attributes of nodes and edges. The second 
is a common format, the form in which the data 
is presented. This can be flat tables, preferably 
as a relational database, or nested documents, 
like JSON. The third is a common terminol-
ogy, defining the semantics of the values in the 
model. For example, the target vocabulary used 
for diagnoses. Preferably the values are richly 
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1.4	� Benefits of Harmonisation to a 
CDM

One of the benefits of a CDM is to enable large 
scale evidence generation across a federated net-
work of data sources [9]. We assume here that 
federation means that the analysis is run locally 
and only the study results are shared back with 
the central study coordinator. The analysis, or 
study code, consists of two main pieces: pheno-
type algorithms for the target, comparator and 
outcome cohorts, and a statistical program e.g., 
written in R, SAS, or SPSS.

Let us assume we want to execute a study 
protocol across a set of similar, but structurally 
and semantically different, datasets. The proto-
col can be as simple as characterising a popu-
lation of interest or as complex as building and 
(externally) validating a predictive model. The 
study protocol describes in text all the definitions 
and analytical procedures needed to execute the 
study. This includes among other the inclusion/
exclusion criteria, the medical codes used for 
each, statistical methods, and outcome measures.

Without a CDM, the protocol has to be trans-
lated into four separate pieces of study code 
(Fig. 1, top left). This can be implemented in any 
programming language or statistical framework.

The re-implementation of the study protocol 
is not only labour intensive but will also result 
in other issues. Different interpretations of the 
protocol can result in analysis code being imple-
mented differently. If the analysis procedure 
is not identical across sources, it is difficult to 
determine if any differences observed are due 
to the data or due to the analysis. And variations 
in the output format of the study results make 
aggregation of the final results harder.

With a CDM, the protocol has to be trans-
lated to study code only once (Fig. 1, top-right) 
and the code is shared between sites. This 
ensures each site executes exactly the study defi-
nition and outputs results in the same format. 
However, there is a high upfront cost to har-
monise each data source to a CDM. Regardless 
of the choice of CDM, this is a big amount of 
effort and also variations can occur between data 
sources on the conventions used to populate the 
CDM. A common data quality assessment is key 
to spot any issues early on, which we will elabo-
rate in the section.

It might be clear that a CDM will make 
cross-institutional network studies more reli-
able. However, an observant reader might have 
noticed that with a CDM a total of five ‘trans-
lations’ are necessary (four CDM, one study 

Table 1   Standards for biomedical data and their main purpose

HL7 FHIR: Health Level Seven Fast Healthcare Interoperability Resource, OHDSI: Observational Health Data 
Sciences and Informatics, OMOP CDM: Observational Medical Outcomes Partnership Common Data Model, CDISC 
SDTM: Clinical Data Interchange Standards Consortium Standard Data Tabulation Model, i2b2: Informatics for 
Integrating Biology and the Bedside

Standard Main purpose
HL7
FHIR

Record Exchange: Connecting digital resources like 
software and devices in order to improve healthcare 
delivery

OHDSI
OMOP CDM

Observational Research: Representing clinical data 
to do reproducible large scale medical evidence 
generation

OpenEHR Archetypes Clinical Care: Collecting and organising electronic 
health records (EHR) data at the source

CDISC
SDTM

Clinical Trial: Submitting data from studies to regula-
tory bodies like the FDA

Sentinel CDM Regulatory Observational Analysis: Studies on a FDA 
network of US claims data

i2b2 model Translational Medicine: Integrating data from health-
care and research
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Fig. 1   Cross-institutional 
study of four structurally 
and semantically different 
databases (A, B, C, D). In 
the diagram on the top-left 
without a common data 
model. The protocol has 
to be ‘translated’ to study 
code for each of the data 
sources. In the diagram 
on the top-right ​​each data 
source is harmonised to 
a CDM after which the 
protocol is ‘translated’ to 
one piece of study code that 
is executed against each 
CDM. In both scenarios the 
analysis is run locally and 
only study results are shared 
back with the central study 
coordinator. In the diagram 
on the bottom, performing 
multiple cross-institutional 
studies with a common data 
model is shown. After an 
initial harmonisation to a 
CDM, multiple studies are 
executed. Each requires 
translation to study code 
once
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code) where without a CDM just four ‘transla-
tions’ are necessary (all study code). Also, har-
monising a full data source to a CDM is often 
more work than creating a piece of study code 
focussed on a specific subset of variables. Thus, 
for one particular study using a CDM might not 
be worthwhile.

The real benefit of a CDM comes when exe-
cuting a series of studies on the same network 
of data sources (Fig. 1, bottom). Without a CDM 
the number of code translations needed grows 
by multiplying the number of databases and 
studies. Executing one study across four data-
bases requires 4 interfaces, executing ten stud-
ies across ten databases requires 100 interfaces. 
Instead of having to translate each protocol four 
times to code (resulting in twelve separate trans-
lations), this only has to be done three times in 
total (plus four CDM conversions). The num-
ber of databases is a constant for translations 
needed. And this scales of course when execut-
ing more studies across the network [10].

Furthermore, this goes beyond studies. A 
CDM enables the reuse of standard tooling for 
data quality assessment, visualisations, reporting 
and analysis. The OHDSI open science collab-
orative is a good example of a community that 
has produced a large library of standard tools 
and analytical methods around a CDM.

Standard research may be more costly for 
a single researcher compared with a bespoke 
study. But standardised research scales and ben-
efits a community as a whole by enabling reuse. 
Akin ‘Tragedy of Commons’ where adding one 
cow to a field benefits a farmer, but degrades the 
field and negatively impacts the community as a 
whole [11].

Another benefit is that the conversion splits 
the path to evidence (i.e., study results) into 
two parts; the data harmonisation and the analy-
sis execution. The harmonisation can be devel-
oped and evaluated separately from the analysis 
design.

2	� The OMOP CDM

In this section we will dive deeper into one par-
ticular CDM, the OMOP CDM, which is used 
for research on real world healthcare data.

2.1	� History

The OMOP CDM was born out of the 
Observational Medical Outcomes Partnership 
(OMOP), a public–private partnership chaired 
by the US FDA. This collaboration focussed on 
active medical product safety surveillance using 
observational healthcare data. In order to run stud-
ies across a heterogeneous set of databases, the 
OMOP Common Data Model was designed. This 
included standardised vocabularies for semantic 
interoperability. The OMOP studies showed suc-
cessfully that it was possible to facilitate cross-
institutional collaboration on safety studies [12].

After the lifetime of the OMOP project, 
the journey was continued as the currently 
well-known open science collaborative named 
OHDSI (Observational Health Data Sciences 
and Informatics, pronounced ‘odyssey’). Under 
this collaboration, the use of the OMOP CDM 
was expanded to support a wide set of analyti-
cal use cases, like general comparative effec-
tiveness of medical interventions, database 
characteristics and prediction models. All work 
is done collaboratively and published in the 
open domain. This includes data standards, ETL 
(Extract Transform Load) conventions, meth-
odological research, and development of clinical 
applications.

2.2	� The OMOP CDM

The OMOP CDM [13] is a relational data-
base model consisting of 39 tables (Fig. 2), 
designed to store longitudinal health records 
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collected from routine care. These are divided 
into seven logical groups. The tables from the 
‘Standardized clinical data’ contain the main 
variables. Only the Person and Observation_
period tables are required to be populated. The 
‘Standardized health system’ tables provide 
additional context about who gave the care. The 
‘Standardized health economics’ can contain 
associated costs of procedures and drugs and 
who pays these costs. Both the health system 
and economics data is often not made available 
by the source. The ‘Standardized derived ele-
ments’ are derived from the populated clinical 
data. The ‘Standardized metadata’ can provide 
information about the name of the data source, 
date of extraction and vocabulary version.

Every clinical event is captured in one of the 
eight domains, which each are stored in a sepa-
rate table (Table 2). All clinical events, regard-
less of the domain, require at least a person_id 
(who), a fully specified date (when) and a con-
cept_id (what). The concept_id has to refer to a 
standard concept from the OMOP Standardized 
vocabularies, explained in the next section.

Here we provide a short description of the 
most important tables in the OMOP CDM:

•	 Person contains demographic information. At 
least a year of birth and gender are required.

•	 Observation Period contains the periods of 
time for which we expect clinical events to be 
recorded for each person. This is important to 
determine ‘healthy’ time.

Fig. 2   The OMOP CDM overview of tables and relations between them [13]. The Person and Observation_period 
tables are the only ones required to be populated. The coloured boxes show the logical groupings of tables

Table 2   The eight domains of the OMOP CDM

Domain Type of data
Condition occurrence Diagnoses and 

symptoms
Drug exposure Medications
Procedure occurrence Diagnostic or surgi-

cal operations
Measurement Lab results
Observation Other clinical facts
Specimen Sample, biopt
Device exposure Medical equipment, 

Implantations, 
supplies

Note Free text
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•	 Death. At least the date is required, optionally 
the cause of death.

•	 Visit Occurrence contains the health-
care encounter, which can be anything 
between a short outpatient consult to a long 
hospitalisation.

•	 Drug Era is derived by combining single 
Drug Occurrences into longer periods of use 
of a particular ingredient.

•	 CDM Source. Contains the name of the data-
set, date of extraction, link to ETL documen-
tation, date of ETL process and vocabulary 
version.

2.3	� The OMOP Standardised 
Vocabularies

“The Standard Vocabulary is a foundational 
tool initially developed by some of us at OMOP 
that enables transparent and consistent content 
across disparate observational databases, and 
serves to support the OHDSI research commu-
nity in conducting efficient and reproducible 
observational research.” [14]

The OMOP Standardised Vocabularies pro-
vide semantic interoperability. It combines over 
140 existing medical vocabularies, like ICD10, 
OPCS, SNOMED-CT, READ and RxNorm, 
into one vocabulary. See Chap. 3 for a more in-
depth description of clinical terminologies. This 
is enriched with the mappings between the terms 
from these different vocabularies. Specifically, 

for each clinical idea (e.g. Type 2 Diabetes) one 
term is assigned as a standard concept and all 
similar terms are mapped to this standard con-
cept (Fig. 3).

The latest release of the OMOP Standardised 
Vocabulary can be downloaded from Athena 
[15].

Not all medical ontologies are included in the 
OMOP Standardised Vocabularies. Especially 
local ontologies might be missing, for example 
a national medication vocabulary. In these cases 
for the mapping to the OMOP CDM, a manual 
conversion has to be created. This is explained 
in the sections below.

2.4	� Use Cases from the OHDSI 
Community

The OHDSI community has created a wide 
range of tooling based on the OMOP CDM. We 
can roughly divide these tools into three cat-
egories: tools to help convert your data to the 
OMOP CDM, tools to design studies and tools 
to execute studies.

Using the study tooling, the OHDSI com-
munity has executed a quickly growing number 
of epidemiological studies. These studies can 
be separated into three pillars: characterization 
studies, comparative effectiveness/safety studies 
and prediction studies. Below we have selected 
three exemplary studies from the OHDSI com-
munity for each of these pillars. The focus is on 

Fig. 3   The concept ‘Carcinoma of breast’ (SNOMED: 254838004) is the standard concept. Terms from other vocab-
ularies with the same clinical meaning are mapped to this standard concept
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reproducible studies, each paper building new 
open-source standardised analytics or improv-
ing on existing analytics. All studies below are 
designed using Atlas [16]: a common analysis 
tool on a common data model.

3	� General Pipeline of the Data 
Source Transformation 
to OMOP CDM Process

The ETL pipeline represents a series of steps 
which leads to a conversion of a source data 
model into a harmonised one. Whilst the desired 
goal is to automatize most steps in the pipeline, 
a manual intervention, mainly in source data 
preparation and terminology mappings, is often 
necessary.

A typical ETL pipeline consists of source 
preparation, environment setup, source data pro-
filing, syntactic mapping, semantic mapping and 
finally validation and quality assessment of the 
target dataset. Some steps are usually realised 
iteratively, like going back to the syntactic map-
ping after quality assessment (Fig. 4, [17]).

Each of the ETL pipeline steps involve par-
ticipation in one of more of the four typical 
roles. These groups are not necessarily disjunc-
tive, and one person could fulfil multiple roles.

•	 Source data expert
•	 OMOP expert
•	 Technical ETL expert
•	 Clinical expert.

3.1	� Source Preparation

By the source data we will assume a large data-
set of structured (typically tabular) electronic 
health records (EHRs). This data needs to be 
analysed and prepared to be compatible with the 
ETL input interface. Patient level EHRs usually 
have restricted access and therefore a data gov-
ernance process for corresponding roles is fun-
damental. For instance, source data experts and 
clinicians will typically have full access to the 
(pseudonymised) data, but OMOP or technical 
ETL experts might need only access to a subset 
or only a generated dataset.

Structured EHRs are usually stored in rela-
tional databases or plain text files like Comma 
Separated Values (CSV) files. In case of a plain 
text file, we need to know some basic file meta-
data: the coding set in which the files are saved, 
size of the files, container type if any (.zip 
archive,.tar.gz, etc.), presence of a table header 
row, separators between the table columns used 
(tabs, commas, semi-colons, etc.), quotation 
marks of character strings used (single or double 
quotation), end of the line characters used (linux 
based or windows based) and beginning of the 
line character used. In some cases this is well 
documented, in other cases this requires some 
investigation to get this information.

An upfront analysis of source data could help 
to estimate required computation power, storage, 
and free memory. Such information could help 
with setting up the environment to be supporting 
the ETL process.

Fig. 4   ETL Pipeline—Transformation of UK Biobank into OMOP CDM use-case [17]
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3.2	� Environment Setup

The ETL environment consists of a database 
and an environment to run data transforma-
tion scripts. This runtime environment could be 
dedicated to the ETL or an existing shared envi-
ronment could be used. Having a dedicated envi-
ronment (both physical or virtual) means that all 
software requirements can be installed in isola-
tion and hardware resources would not be shared 
with other processes. That decreases a risk of 
negative impact on a shared source data server 
as well as the ETL stability in case of a poten-
tial hardware overload or software incompat-
ibility between the source server requirements 
and ETL requirements. A drawback of a fully 
dedicated environment could be a necessity of 
source data duplication. Also, a dedicated physi-
cal environment usually requires extra hardware, 
which adds overhead cost.

A specification of the ETL runtime environ-
ment requirements should contain hardware 
resources, hosting OS, required target DB sys-
tem, required input form of source data, list 
of preinstalled tools, compilers, interpreters, 
and system and language specific libraries and 
packages. Main environmental dependency 
for OMOP CDM ETL is compatible DBMS. 
OMOP CDM v6 supports multiple DBMS 
including Oracle DB, PostgreSQL, and MS SQL 
Server. Other typical environmental require-
ments are Python 3 and R.

The minimal requirements for setting up 
an OMOP CDM and analysis environment are 
listed below:

•	 Server with about 3× the size of the source 
data (for raw source, OMOPed data, vocabu-
lary data and Data Quality results)

•	 Relational database (Oracle DB, PostgreSQL, 
MS SQL Server)

•	 The OMOP vocabulary
•	 Java (White Rabbit, Usagi)
•	 R + OHDSI R packages for DQ (Achilles, 

DataQualityDashboard)
•	 Python (optional, being used as a workflow 

wrapper)

•	 OHDSI HADES R packages (analysis)
•	 OHDSI WebApi+Atlas (analysis)
•	 Bespoke mapping tools (optional, for exam-

ple delphyne [17] or Perseus [18])

3.3	� Data Profiling

A source data profile provides essential infor-
mation required for ETL design, synthetic data 
generation (if necessary), data extraction code 
and validation test design. The data profile could 
be created using a dedicated tool like OHDSI 
WhiteRabbit [19] or by a direct query to all 
source data tables. Dedicated tools can be con-
nected to the source data, and these will provide 
the report automatically. In both cases the analy-
sis report ideally contains the following infor-
mation for all tables:

•	 Table name with a description
•	 Field or attribute names
•	 Number of rows per table
•	 Number and/or percentage of values in each 

field—total, unique and empty
•	 Field data types
•	 List of most occurring values (e.g., diagnos-

tic codes, measurement values, etc.) for each 
domain including their frequencies.

With a data profile, a data extraction and two 
types of transformation—syntactic and seman-
tic—need to be performed. With syntactic map-
ping we describe a transformation of source 
attributes onto those of OMOP CDM tables and 
source values formatting. The semantic mapping 
covers a translation of source coding systems 
into systems supported by OMOP CDM.

3.4	� Syntactic Mapping

In syntactic, or structural, mapping we define 
which source table fields/attributes map to 
which fields of the target model. This step could 
also include changes in source values structure, 
e.g., year taken from the date. An example of 
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syntax mapping of a CPRD patient table onto 
OMOP CDM person table and CPRD clinical 
table onto OMOP CDM Condition Occurrence 
table can be seen in Figs. 5 and 6 respectively. 
The figures were generated by a Rabbit in a Hat 
tool [20]. Rabbit in a Hat is a syntax mapping 
assistant for OMOP CDM ETL development. 
Its graphical user interface (GUI) allows users 
to visualise syntax mapping between source 
data structure imported via WhiteRabbit scan 
report and target version of OMOP CDM. The 
tool helps with the manual mapping design via 
graphical representation and mapping document 

generation, however, the transformation code 
itself has to be implemented manually.

Two main issues for syntactic mapping could 
occur.

•	 the source data is missing for the required 
field in the target model

•	 source data elements do not have any equiva-
lents in the target structure.

The first situation can be handled by a logic 
populating the missing and required target 
fields, e.g., a fixed value. The second situation 

Fig. 5   A Syntax mapping between the CPRD patient table and Person table of OMOP CDM. Graphical representa-
tion was generated by the Rabbit-in-a-hat tool

Fig. 6   A Syntax mapping between the CPRD clinical table and Condition Occurrence table of OMOP CDM. 
Graphical representation was generated by the Rabbit-in-a-hat tool
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may represent a challenge. A main question in 
that case should be if the data without the equiv-
alent fields in the target structure are necessary 
or if these could be omitted, e.g., administra-
tive data may not be of interest for population 
research. If the data is necessary, then the solu-
tion depends on the flexibility and robustness of 
the target data model and potential workarounds. 
OMOP CDM provides categorised, yet generic, 
elements/fields suitable for most health-related 
data to minimise a potential data loss.

3.5	� Semantic Mapping

The semantic mapping is often done in the first 
stages of the ETL development and applied at 
the same time as the syntactic mapping. i.e., 
when transforming a local source code field to 
a standard concept field, we apply the prepared 
semantic to translate one coding system into the 
other.

Electronic health data is captured using a 
variety of medical terminologies (see Chap. 3). 
These terminologies, or coding systems, allow 
us to structurally capture things like diagnosis 
codes, drug codes, measurement units, ethnic-
ity, etc. Often data sites use a mix of local and 
global terminologies. For network research, 
we need to harmonise the local coding systems 
to an agreed upon global standard. For OMOP 
specifically, we need to map source codes to the 
standard OMOP vocabulary concepts (see Sect. 
2 The OMOP CDM).

Whilst syntactic mapping is mainly manual 
work, semantic mapping could be effectively 
automated when a machine-readable validated 
dictionary lookup between source and target 
vocabularies exists. Within an OMOP vocabu-
lary, such a lookup is called concept mapping. In 
general, a concept mapping between the source 
and target terminology could have four existen-
tial forms:

1.	 Direct concept mapping between the source 
and the target vocabulary exists

2.	 Direct concept mapping between the source 
and the target vocabulary does not exist, 

however an intermediate mapping exists and 
could be used

3.	 The concept mapping does not exist
4.	 Source and target use the same vocabulary 

(e.g., SNOMED CT).

In the first situation, the concept mapping could 
be implemented directly into the ETL scripts. A 
large repository of OMOP CDM compatible dic-
tionaries could be found in the OHDSI Athena 
Repository [15]. An example of such a scenario 
could be a mapping between ICD10 terminology 
and SNOMED CT.

In the second situation, a chain of existing 
suitable concatenated mappings could substitute 
a missing direct trustworthy concept mapping. 
Such a solution is challenging and data loss risk 
increases with each additional mapping involved 
(see Sect. 4 Challenges). Figure 7 provides an 
example observed within a transformation of the 
CALIBER data source [21, 22].

Thirdly, when no direct or indirect map-
ping dictionary between the source and target 
vocabulary exists a new concept mapping needs 
to be created and reviewed by domain experts 
thoroughly. Tools designed to ease the new 
mapping development exist, like OHDSI Usagi 
[23]. Usagi provides a graphical user interface 
comparing the uploaded source terminology 
with selected standard terminologies supported 
by OMOP CDM. Within the comparison, Usagi 
calculates a match score based on a similar-
ity between the source and target terms and 
automatically matches the most likely terms. 
Each suggestion has to be reviewed by a clini-
cal expert to create a validated concept mapping. 
There can be thousands of codes that need to 
be reviewed, which is a considerable amount of 
work. We can prioritise this work by using the 
term frequency (Fig. 8).

Finally, when the source data uses a coding 
system that is already used as standard concepts 
in OMOP, only a simple lookup of the OMOP 
concept id is needed. For example, part of the 
UK data is coded at the source with SNOMED 
codes. This code is present in the OMOP vocab-
ularies and can be retrieved with a simple SQL 
query. One consideration is to check whether the 
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Fig. 7   Two examples where additional mappings 
were used. In the first case, CPRD product codes were 
translated into a gemscript terminology, then to dm+d 

terminology and finally to a target RxNorm terminology. 
In the second example, CPRD Entity types were firstly 
translated via a manual mapping file

Fig. 8   OHDSI USAGI mapping tool comparing source participant self-reported cancer-illness UK Biobank vocabu-
lary and target SNOMED vocabulary. Codes are ordered by the frequency of used terms
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code in the OMOP vocabulary is still valid. If 
not, the OMOP vocabulary provides a mapping 
to the equivalent valid concept.

3.6	� Validation

Validation starts during the ETL development 
by implementing a set of unit and/or end-to-
end tests. Unit tests are for validating particu-
lar data manipulation functions and end-to-end 
tests allow validation of the whole pipeline by 
providing a known input and the expected out-
put. The latter is especially important for vali-
dating the complete ETL pipeline. It makes it 
possible to detect any unwanted effects of code 
changes before running the ETL on actual data. 
We should note that it takes considerable effort 
to get a high coverage of tests, covering the most 
occurring scenarios.

Once the ETL is finished, a comprehensive 
validation of the target database including cor-
rectness of both semantic and syntactic map-
pings needs to be performed.

A first check on the ETL completeness is 
given by a comparison of general counts repre-
senting the dataset between the source and tar-
get databases. These counts typically include the 
number of patients, ratio between sex/ethnicity, 
average patient age, the number of events/pre-
scriptions or median follow-up. Analytic tools 
like Achilles [24], Data Quality Dashboard 
(DQD) [25] and CDM Inspection [26] help to 
easily retrieve these overall counts from the 
OMOP CDM. The DQD provides a series of 
checks resulting in a data quality score. This 
score makes heterogeneous source datasets com-
parable on the same data quality metrics.

Another tool developed by OHDSI, the 
CDM Inspection report, contains a list of most 
used mapped and unmapped terms. Thus, the 
unmapped terms could be investigated individu-
ally based on their significance.

For use-case based (non-systematic) ETL 
evaluation miscellaneous codelists/cohort defini-
tions to identify specific patient cohorts cover-
ing diverse fields of health care can be used. In 
previous research we have shown the validation 

process, comparing results on the source data 
and OMOP-transformed data for lifestyle data 
(smoking status, deprivation index), clinical 
measures (BMI, Blood pressure, haemoglobin 
concentration), clinical diagnosis (diabetes, can-
cer) or drug prescriptions (Beta blockers, loop 
diuretics) [22]. As the thorough test of all the 
used codes is time consuming, we should priori-
tise tests on the most frequently used codes and 
most needed codes according to the use case.

The OHDSI community has developed a tool, 
Cohort Diagnostics, that does something similar. 
Based on a set of phenotypes it will make sug-
gestions on what other concepts are relevant and 
produce aggregate statistics to manually inspect 
[27].

4	� Challenges of Harmonisation

Harmonisation of diverse data models into 
a common one in the health/bioinformatics 
domain is accompanied by several inevitable 
challenges.

4.1	� Data and Information Loss

One of the most crucial challenges is to pre-
vent the harmonisation from relevant data and/
or information loss. Relevance of data depends 
on the purpose of the harmonised dataset, e.g., 
administrative details or internal hospital infor-
mation would not be relevant for population-
level studies and thus could be lost with no 
harm.

While data loss is mainly (not exclusively) 
caused by the structural mapping when part of 
the source data is not transformed into a target 
model, an information loss could be given also 
by the incorrect or imprecise interpretation and 
translation of the transformed data during the 
semantic mapping.

4.1.1 � Data Loss
Data could get lost in the ETL process and/
or due to issues/inconsistencies in the original 
datasets. Source data providers may use diverse 
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recording practices (table structures, used cod-
ing systems), documentation practices, man-
agement of missing data, technicalities of data 
distribution, data cleaning processes before the 
distribution, etc. Combination of these factors 
within the same source dataset could lead to sce-
narios predisposed to data losses, e.g.:

•	 A source record does not include a data 
field which is mandatory from the perspec-
tive of CDM. This can be handled in two 
ways—making an assumption for this field or 
removing the patient during the ETL, e.g., a 
registration date may be inferred from other 
fields, however, records belonging to patients 
with missing mandatory demographic 
details like gender or year of birth would be 
removed during the ETL. These patients are 
deemed to be of too low quality for popula-
tion research.

•	 Unexpected value in a domain for a specific 
data field, e.g., values are expected to be pos-
itive only, however a negative value appears

•	 Diagnostic events happen outside the 
patient's observation period which starts with 
a patient’s registration date at GP and ends 
with the last event or the patient’s death.

•	 A broken follow up when a patient changes 
GP; the scenario could lead to a situation 
when one patient is being considered as two 
different ones.

•	 Same data field is using multiple dif-
ferent coding systems (e.g., ICD10 and 
SNOMED CT) and these are not explicitly 
distinguished.

•	 Source record contains a clinical code unrec-
ognised in a mapping dictionary / target 
vocabulary used.

•	 Inconsistent records for unvarying data fields, 
e.g., a same patient would have a different 
sex during different visits.

Some of these scenarios can be fixed during the 
ETL (e.g., handling unexpected values), but oth-
ers are inherent to incompatibilities between 
source and target data model. Therefore, a 
potential risk of data loss is inevitable.

4.1.2 � Information Loss
Despite the correct and complete syntactic 
transformation, the information derived from 
the source records may not be fully reflected in 
the target CDM. Such information loss is often 
caused by an imprecise semantic translation 
from the source to the target coding system.

A source and target terminology could 
have a different level of granularity. This gives 
problems if the source terminology contains 
terms with more detail than the target ter-
minology. Generalisation of the source term 
solves the problem at a cost of losing details. 
Incompleteness could be also found in a trans-
lation relation itself. Figure 9 shows the loss 
of information on a fragment of Chronic 
Obstructive Pulmonary Disease (COPD) pheno-
type. The loss of information of this type causes 
another secondary issue which is an incompat-
ibility of source clinically approved phenotyping 
codelists with transformed CDM as these codel-
ists cannot be precisely translated into the target 
terminology.

In the OMOP CDM, the granularity is pre-
served in the ‘source concepts’. Locally, we 
can still define phenotypes based on the origi-
nal codes. However, definitions based on 
source concepts instead of standard concepts 
are not executable at other data sites as these 
will not, very likely, share same local source 
concepts.

We can distinguish between several levels of 
equivalence of code translation (Table 3) [28]. 
The two top-levels without information loss are 
equal (exactly the same term) and equivalent 
(similar definition). Information loss occurs 
when a translation is wider (target term is more 
general), narrower (target term is more specific) 
or inexact (both source and target have mean-
ing not covered in the other). The latter three 
levels still capture a part of the information but 
can lead to issues as described in Fig. 7. Most 
information loss occurs when a source code 
is unmatched in the target coding system (or 
‘unmapped’). Unfortunately, this is often una-
voidable, and the percentage of unmapped codes 
is an important quality metric. In all cases this is 
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a subject worthy of investigation whether it can 
be improved.

A key resource when fixing above mentioned 
issues is time. While the source and target terms 
with similar descriptions could be handled auto-
matically, the others must be manually mapped 
or at least reviewed. Tools like Usagi provide 

a great help in sorting the terms by their fre-
quency in the source dataset and calculation 
of text similarity weight between source and 
mostly probable target term. This speeds up the 
review process of mostly used terms rapidly. It 
is still good to be aware that even highly similar 
terms are not necessarily synonyms diverse in a 

Fig. 9   Papez et al. [22] Example of inconsistency 
between original and converted records demonstrated 
with codelist from the Chronic Obstructive Pulmonary 
Disease (COPD) phenotype. Multiple source terminol-
ogy terms codes (Read codes in green boxes) are mapped 
onto the same OMOP CDM target concept (blue box). 
The mapped concept however includes a broader set 
of clinical diagnoses which are not part of the original 
COPD phenotype. As a result, the number of patients 

retrieved (orange boxes) in the raw data using the origi-
nal phenotype terms (243,302) is significantly lower than 
the number of patients retrieved using the OMOP CDM 
phenotype (262,703). Main result difference is caused 
by the Read code H26.0.00 Pneumonia due to unspeci-
fied organism used in more that 20,106 patients, which 
is excluded from COPD phenotype, but mapped to the 
same concept of Infective pneumonia as other Read 
codes from the phenotype

Table 3   Examples of equivalence levels

Equivalence level Description Example
Equivalent Source and target contain the same information Source—Depression Assessment Test

Target—Assessment of depressed 
mood

Wider The target is a more general concept than the 
source. In the mapping some information is lost, 
but the general information is captured

Source—Release of the median nerve 
at the carpal tunnel, by video surgery
Target—Transposition of median 
nerve at carpal tunnel

Narrower The target is a more specific concept than the 
source. In the mapping some information is 
added

Source—Corneal pachymetry
Target—Ophthalmic ultrasound, 
diagnostic; corneal pachymetry, 
unilateral or bilateral (determination 
of corneal thickness)

Inexact The target and source contain information that is 
not present in the other. In the mapping informa-
tion is both lost and added

Source—Screening tests for deafness 
before the age of 3 years old
Target—Ear disorder screening
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punctuation or case sensitivity but could differ 
in presented negation which changes their mean-
ing; on the other hand, terms with almost 0% 
similarity could be synonyms, e.g., cancer and 
malignant neoplasm. However, as the similar-
ity between terms together with their frequency 
decrease, time resource required per clinical 
record in the dataset grows massively and the 
rule of the vital few1 is applied. A review of the 
controlled terminologies and mappings is a task 
for domain experts with a corresponding exper-
tise. Such a review could increase demanded 
time resources to an unacceptable amount.

4.2	� Data Privacy and Sensitivity

Working with personal-level health data is usu-
ally accompanied with a strict policy regard-
ing data privacy and sensitivity. Usually, only a 
selected subset of people involved in the ETL 
development has an approval to access the 
health data that the ETL is being developed for. 
Also, a common practice is that the health data 
must not leave the datacenter the data is stored 
in, which in some cases differs from the centre 
where the ETL code is being developed, tested 
or even performed in case of the dedicated ETL 
environment. Therefore, the ETL development 
might have to be realised using synthetic data 
only. Despite the identical structure the synthetic 
data could have with the real data, unexpected 
differences in the value domains could appear 
(see Sect. 4.1.1 Data loss).

Usually, synthetic data are generated by 
bespoke tools designed for one specific pur-
pose like the tool Tofu [29] for UK Biobank 
data or by a generic tool for synthetic EHRs 
like Synthea [30]. A usage of a generic syn-
thetic data could lead to an additional challenge 
when the structure of the synthetic data needs to 

be transformed into a source data structure, i.e., 
additional syntactic ETL process.

Restricted patient-level data access is also 
related to derived reports. Data profiling reports 
should contain only those information which 
could be shared between all developers and test-
ers who need it, e.g., data profiling report would 
contain aggregated information only.
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Abstract

The integration of natural language processing
(NLP) and text mining techniques has emerged
as a key approach to harnessing the potential
of unstructured clinical text data. This chapter
discusses the challenges posed by clinical
narratives and explores the need to transform
them into structured formats for improved
data accessibility and analysis. The chapter
navigates through key concepts, including text
pre-processing, text classification, text cluster-
ing, topic modeling, and advances in language
models and transformers. It highlights the
dynamic interplay between these techniques
and their applications in tasks ranging from
disease classification to extraction of side
effects. In addition, the chapter acknowledges
the importance of addressing bias and ensur-
ing model explainability in the context of
clinical prediction systems. By providing a
comprehensive overview, the chapter offers
insights into the synergy of NLP and text
mining techniques in shaping the future of
biomedical AI, ultimately leading to safer,
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more efficient, and more informed healthcare
decisions.
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1 Introduction

The field of biomedical artificial intelligence (AI)
is undergoing a revolution. The widespread use of
biomedical data sources next to electronic health
records (EHR) systems provides a large amount of
data in healthcare, leading to new areas for clini-
cal research. These resources are rich in data with
the potential to leverage applications that provide
safer care, reduce medical errors, reduce health-
care expenditure, and enable providers to improve
their productivity, quality and efficiency [1, 2]. A
major portion of this data is inside free text in the
form of physicians’ notes, discharge summaries,
and radiology reports among many other types
of clinical narratives such as patient experiences.
This clinical text follows the patient through the
care procedures and documents the patient’s com-
plaints and symptoms, physical exam, diagnostic
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tests, conclusions, treatments, and outcomes of
the treatment.

Free text in the clinical domain is unstructured
information, which is difficult to process automat-
ically. Despite many attempts to encode text in the
form of structured data [3], free text continues to
be used in EHRs. Additionally, clinical texts are
packed with substantial amounts of abbreviations,
special characters, stopwords, and spelling errors.
Therefore, natural language processing (NLP) and
text mining techniques can be applied to create
a more structured representation of a text, mak-
ing its content more accessible for data science,
machine learning and statistics, and for medical
prediction models.

Awidely accepted definition of textmining has
been provided by Hearst [4], as “the discovery
by computer of new, previously unknown infor-
mation, by automatically extracting information
from different written resources”. Text mining is
about looking for patterns in text, in a similar way
that data mining can be loosely described as look-
ing for patterns in data. According to [5], NLP
is one of the most widely used big data analyt-
ical techniques in healthcare, and is defined as
“any computer-based algorithm that handles, aug-
ments, and transforms natural language so that it
can be represented for computation” [6]. There
is therefore often an overlap of the tasks, meth-
ods, and goals for text mining and NLP, and
the concepts are sometimes used interchangeably.
Fleuren andAlkema [7] describe clinical textmin-
ing as automated processing and analysis of text
in relevant textual biources. Text mining typically
involves a number of distinct phases including
information retrieval, named entity recognition,
information extraction and knowledge discovery.
The first step concerns collecting and filtering rel-
evant documents. After information retrieval, the
resulting document collection can be analyzed by
classification or clustering algorithms. As a last
step, information extraction is performed to gen-
erate structured data from unstructured text.

Text mining and NLP techniques have been
applied to numerous health applications involv-
ing text de-identification tools [8], clinical deci-

sion support systems [2], patient identification [9–
12], disease classification [13–15], disease history
[16], ICD10 classification [17], hospital readmis-
sion prediction [18], and chronic disease predic-
tion [19].

Although those systems can now achieve high
performance in various clinical prediction tasks,
they come with some limitations. A common
issue is related to whether there is any bias intro-
duced in any step involved in learning process.
This is important because we know that systems
are trained on data which contain societal stereo-
types, and can therefore learn to reproduce them in
their predictions. Another limitation is that clin-
icians are reluctant to widely use those systems
because, among other reasons, they do not under-
stand the complicated processes on which the pre-
dictions are made. Those limitations have led to
the necessity of systems that can produce expla-
nations regarding their learning mechanism and
decisions.

The successive sections of this chapter are
organised as follows: Sect. 2 provides a gentle
introduction on NLP and the common techniques
when conducting biomedical and clinical text
analysis. Subsequently, we discuss state-of-the-
art pre-trained language models in Sect. 3, and
NLP tasks and their challenges in healthcare in
Sect. 4. Finally, we overview bias and explain-
ability of NLP-based models for biomedical
and clinical text in Sects. 5 and 6, respectively.
We conclude the chapter with a summary and
recommendations.

2 What Is Natural Language
Processing

Natural language processing is an area of artifi-
cial intelligence concerned with the interactions
between computers and human languages. There
aremany applications of NLP in specific domains,
such as machine translation of legal documents,
mental disease detection, news summarization,
patent information retrieval, and so on.
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2.1 Text Preprocessing

With the advancements of NLP, it is possible
to develop methodologies and automate dif-
ferent natural language tasks. NLP tasks can
be divided in document-level tasks (Sects. 2.2
and 2.3), sequence labelling tasks (Sect. 2.4),
and sequence-to-sequence processing (not dis-
cussed in this chapter). There are two types of
document-level tasks: text classification and text
clustering. The former refers to tasks of adding
labels from a pre-defined label set to a text. In
other words, we are interested in classifying
texts into pre-defined categories. Annotating a
piece of text as expressing positive or negative
sentiment or classifying an EHR regarding the
patient’s risk of disease are two text classification
examples. Text clustering refers to automatically
group textual documents into clusters based on
their content similarity. In this case, there are
no pre-defined categories. Topic clustering of
textual documents is one example of such a task.
In sequence labelling tasks, one label is added
to each word in a text, to identify and extract
specific relevant information such as named
entities. Finally, in sequence-to-sequence tasks,
both the input and the output is text, like in
translation or summarization.

Text from natural language is often noisy
and unstructured and needs to be pre-processed
before it can be used in one of these tasks.
Pre-processing transforms text into a consistent
form that is readable from the machines. The
most common steps are sentence segmentation,
word tokenization, lowercasing, stemming or
lemmatization, stop word removal, and spelling
correction.

Here, we should note that an NLP system can
involve some or all of those steps. The steps and
the techniques that will be used depends on the
data, the task and the method used. For exam-
ple, social media posts contain special charac-
ters and emoticons and the NLP researcher can
decide how to handle them, whereas domain spe-
cific stop words may be necessary when EHRs are
analyzed. In addition, for sequence labelling it is
important to keep capitalisation, punctuation and
word order, while these aspects can be disregarded

in text classification or clustering. Below we will
briefly describe the most common steps, which
are the sentence segmentation, tokenization and
stemming/lemmatization.

Segmentation The NLP pipeline usually starts
with the sentence segmentation that refers to
divide the text into sentences. Although this looks
like a trivial task, there are some challenges. For
example, in social media texts users tend to use
emoticons that are a combination of symbols
including a period (.), question mark (?) or
exclamation mark (!). Additionally, a period is
used in many abbreviations (e.g., Mr.) that makes
the sentence segmentation more challenging.
Packages such as NLTK and Spacy can perform
sentence segmentation for a range of languages.

Tokenization Tokenization is one of the core
steps in pre-processing and refers to converting
a sentence into tokens. Traditionally, tokens are
words, punctuation marks, or numbers, but in
somecontexts subwords can be used as tokens (see
Sect. 3.3). In some tasks, we can also add tokens
that capture other type of information such asword
order or part-of-speech tags (i.e., information that
refers to the type such as noun, verb etc.).

Stemming and Lemmatization Both stemming
and lemmatization aim to normalize the tokens
that refer to the same base but appear in a dif-
ferent form in the text (e.g., disease and diseases).
Stemming is based on amore heuristic process and
cuts the ends of the words, whereas lemmatization
is based on the morphological analysis of words,
and aims to return the base of a word (known as
the lemma). For example, stemming of the verb
saw can result to no changes while lemmatization
will return the base form of the word which is see.

2.2 Text Classification

Text classification is the task of assigning one or
more predefined categories to documents based
on their contents. Given a document d and a set
of nC class labels CL ∈ {1, . . . , nC }, text clas-
sification tries to learn a classification function
f : D → CL that maps a set of documents to
labels. Text classification can be implemented as
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an automated process involving none or a small
amount of interaction with expert users [20]. A
general pipeline for a text classification system is
illustrated in Fig. 1.

In binary text classification each document is
assigned to either a specific predefined label or to
the complement of that label (e.g. relevant or non-
relevant). On the other hand, multi-class classifi-
cation refers to the situation where each document
is assigned a label from a set of n classes (where
n > 2). Multi-label text classification refers to the
case in which a document can be associated with
more than one label. Text classification contains
four different levels of scope that can be applied:
(1) Document level, (2) Paragraph level, (3) Sen-
tence level, and (4) Phrase level.

2.3 Text Clustering andTopic
Modeling

With unsupervised learning such as clustering,
there are no labeled examples to learn from,
instead the goal is to find some structure or
patterns in the input data [21]. Text clustering
is an example of unsupervised learning, which
aims to group texts or words according to some
measure of similarity [22]. The goal of clustering
is to identify the underlying structure of the
observed data, such that there are a few clusters
of points, each of which is internally coherent.
Clustering algorithms assign each data point to a
discrete cluster ci ∈ 1, 2, . . . , K .

Broadly speaking, clustering can be divided
into subgroups; hard and soft clustering. Hard
clustering groups the data in such a way that
each item is assigned to one cluster, whereas
in soft clustering one item can belong to mul-
tiple clusters. Topic modeling is a type of soft
clustering [23, 24]. Topic modeling provides a
convenient unsupervised way to analyze high-
dimensional data such as text. It is a form of text
analysis in which a collection is assumed to cover
a set of topics; a topic is defined as a probability
distribution over all words in the collection (some
words being very prominent for the topic and other
words not related to the topic) and each document
is represented by a probability distribution over

all topics (some topics being very prominent in
the document, and other topics not covered).

There have been a number of topic modeling
algorithms proposed in the literature. The most
popular topic model is the Latent Dirichlet Allo-
cation (LDA) that is a powerful generative latent
topic model [23]. It applies unsupervised learn-
ing on texts to induce sets of associated words.
LDA defines every topic as a distribution over the
words of the vocabulary, and every document as a
distribution over the topics.

LDA specifies a probabilistic procedure by
which documents can be generated. Figure2
shows a text generation process by a topic model.
Topic 1 and topic 2 shown in the figure have
different word distributions so that they can
constitute documents by choosing the words
which have different importance degree to the
topic. Document 1 and document 3 are generated
by the respective random sampling of topic 1
and topic 2. But, topic 1 and topic 2 generate
document 2 according to the mixture of their
different topic distributions. Here, the numbers
at the right side of a word are its belonging topic
numbers and, the word is obtained by the random
sampling of the numbered topic.

LDA uses a K-dimensional latent random vari-
able which obeys the Dirichlet distribution to rep-
resent the topic mixture ratio of the document,
which simulates the generation process of the doc-
ument. Let K be the multinomial topic distribu-
tions for the dataset containing V elements each,
where V is the number of terms in the dataset. Let
βi represent the multinomial for the i-th topic,
where the size of βi is V . Given these distribu-
tions, the LDA generative process is as follows:

Algorithm 1: Generative process in LDA
1 for each document do
2 (a) Randomly choose a K-dimensional multinomial distribution

over topics
3 for each word in the document do
4 (i) Probabilistically draw β j from the distribution over topics

obtained in (a)
5 (ii) Probabilistically draw one of the V words from β j

6 end

7 end
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Fig. 1 The general pipeline of a text classification system

Fig. 2 The generative
process of topic modeling
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LDA emphasizes that documents contain mul-
tiple topics. For instance, a discharge letter might
have words drawn from the topic related to the
patient’s symptoms and words drawn from the
topic related to the patient’s treatment. LDA uses
sampling from the Dirichlet distribution to gener-
ate a textwith the specific topicmultinomial distri-
bution,where the text is usually composedof some
latent topics. And then, these topics are sampled
repeatedly to generate each word for the docu-
ment. Thus, the latent topics can be seen as the
probability distribution of the words in the LDA
model. And, each document is expressed as the
random mixture of these latent topics according
to the specific proportion.

The goal of LDA is to automatically discover
the topics from a collection of documents.
Standard statistical techniques can be used
to invert the generative process of LDA, thus
inferring the set of topics that were responsible
for generating a collection of documents. The
exact inference in LDA is generally intractable,
therefore approximate inference algorithms are
needed for posterior estimation. The most com-
mon approaches that are used for approximate
inference are expectation-maximization, Gibbs
sampling and variational method [25].

LDA has been applied in the health domain
as well. Duarte et al. [26] applied LDA on a col-
lection of electronic health records and showed
that some topics occur more often in the deceased
patients, like renal diseases, and others (e.g., dia-
betes) appear more often in the discharge collec-
tion. Li et al. [27] used LDA to cluster patient
diagnostics groups from Rochester Epidemiology
Projects (REP) that contains medical records. In
their study, they identified 20 topics that could
almost be connected with some group of diseases.
However, they also observed that the same diag-
nosis code group might fall into different topics.
LDA has not only been used to extract topics, but
also as an alternative way to represent the docu-
ments [28].

LDA is accessible to work with, thanks to the
implementation of the model in packages such as
gensim.1 There are a few challenges for the user

1https://radimrehurek.com/gensim/.

though: First, the topics are unlabeled so a human
has to assign labels to the topics to make them
quickly interpretable. Second, LDA is not deter-
ministic; in multiple runs it will give multiple dif-
ferent outputs. Third, the number of topics needs
to be determined beforehand, e.g. through opti-
mizing the model for topic coherence [29].

2.4 Information Extraction

As discussed in Sect. 2.2, in text classification
tasks, labels are assigned to a text as a whole
(a whole document, paragraph, or sentence). In
information extraction tasks on the other hand,
labels are assigned to each token in the text. The
token labels identify tokens as being part of a rele-
vant term, typically an entity such as a name. The
task of identifying entities in text is called Named
Entity Recognition. Machine learning tasks that
learn to assign a label to each token are called
sequence labelling tasks.

In sequence labelling, word order is important,
because subsequent words might together form
an entity (e.g. ‘New York’, ‘breast cancer’), and
words in the context of the entity words can give
information about the presence of an entity. Take
for example the sentence “Since taking Gleevec,
the patient has peripheral edema”. Even with-
out ever having seen the word Gleevec, you can
deduce from its context that it is a medication
name. Apart fromword order and context, capital-
isation and punctuation are relevant in sequence
labelling tasks: names are often capitalised, and
punctuation such as bracketing sometimes pro-
vides information about the presence of an entity
or the relation between two entities. These char-
acteristics set information extraction tasks apart
from text classification tasks, despite both being
supervised learning tasks.

When creating labelled data for sequence
labelling, words and word groups are marked in

https://radimrehurek.com/gensim/
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Table 1 Example of IOB labelling with one medication name and one adverse drug reaction (ADR)

Since Taking Gleevec , The Patient Has Peripheral Edema

O O B-MED O O O O B-ADR I-ADR

annotation tools such as doccano2 and inception.3

These annotations are then converted to a file
format with one label per token. The common
token labelling scheme for named entity recogni-
tion is IOB labelling, in which each token gets
one of three labels: ‘I’ if the token is inside an
entity; ‘O’ if it is outside an entity; ‘B’ if it is the
first token of an entity. The B and I labels have
a suffix, indicating their type. Table1 gives an
example of IOB labelling for one sentence. Here,
B-MED indicates the first word of the medication
name, B-ADR the beginning of the adverse drug
reaction (ADR), and I-ADR the subsequent word
of a the ADR entity.

Based on token-level labelled data, sequence
labelling models can be trained that take a vec-
tor representation for each token as input and
learn the output label. For sequence labelling, we
need machine learning models that take the con-
text of tokens into account. The most commonly
used feature-based sequence labelling model is
Conditional RandomFields (CRF).4 Since around
2016, CRF was typically used on top of a neural
sequence model, Bi-LSTM [30]. LSTMs (Long
Short-Term Memory models) are recurrent neu-
ral networks. These are neural network models
that, instead of classifying each token indepen-
dently, use the learned representations of the pre-
vious words for learning the label of the current
token. Bi-LSTM-CRFswere the state of the art for
named entity recognition for some years, before
they were superseded by transformer-based mod-
els (see Sect. 3.1).

In addition to named entity recognition, rela-
tion extraction is often relevant: we not only want
to identify medications and ADRs, but also which

2https://doccano.github.io/doccano/.
3https://inception-project.github.io/.
4A tutorial with a description of features for named
entity recognition can be found on https://sklearn-crfsuite.
readthedocs.io/en/latest/tutorial.html.

ADR is related to which medication. Another
prominent relation extraction task in the biomed-
ical domain is the relation between genes, pro-
teins and diseases. Information extraction meth-
ods rely on co-occurrence of entities, both for
unsupervised or supervised labelling. In super-
vised labelling, co-occurrence is combined with
representations of the entities and their context to
decide for a pair of entities whether or not there is
a relation between them. An overview of methods
is provided by Nasar et al. [31].

2.5 Text Representations

As introduced in Sect. 2.1, the first step of theNLP
pipeline is to prepare the raw text into a repre-
sentation that can be used for further processing.
We have introduced classification, clustering and
extraction tasks. In this subsection wewill explain
commonly used text representations: how to rep-
resent texts in a form that can be used as input to
machine learning models.

2.5.1 Bag-of-WordModels
To perform text classification and after the text
pre-processing, the question is how to represent
each text document [22, 32]. A document can
be seen as an observation in the dataset, e.g.
a patient discharge letter in a collection of dis-
charge summaries, or a chest x-ray report. A com-
mon approach is to use vector models of a co-
occurrence matrix. A co-occurrence matrix is a
way of representing how often words co-occur.
An example of such co-occurrence matrices is a
document-term matrix, in which each row rep-
resents a document from the dataset and each
matrix column represents a word in the vocab-
ulary of the dataset. Table2 shows a small selec-
tion from a document-term matrix of radiology
reports showing the occurrence of seven words in
five documents.

https://doccano.github.io/doccano/
https://inception-project.github.io/
https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
https://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
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Table 2 Document-term matrix

Document Abnormalities Aortae Possible Nicotine Pain Thoracic

1 1 0 1 0 0 0

2 1 1 1 1 0 0

3 1 0 0 0 1 0

4 1 0 0 0 0 0

5 1 0 0 1 0 1

In Table2, each document is represented as a
vector of word counts. This representation is often
called a bag-of-words, because it includes only
information about the count of each word, and
not the order in which the words appear. With
the bag-of-words representation, we are ignoring
grammar and order of the words. Yet the bag-
of-words model is surprisingly effective for text
classification [22].

There are three commonly used bag-of-words
representations of text data, corresponding to
the binary, the T F , and the T FiDF model.
A binary representation model corresponds to
whether or not a word is present in the document.
In some applications, such as finding frequently
co-occurring groups of k words, it is sufficient
to use a binary representation. However, it may
lead to the loss of information because it does not
contain the frequencies of the words [32].

The most basic form of frequency-based text
feature extraction is T F . T F stands for the term
frequency. In this method, each word is mapped
to its number of occurrences in the text. However,
this approach is limited by the fact that particular
words (e.g., patient in a health application) that
are commonly used in the language may dom-
inate such representations. Most representations
of text use normalized frequencies of the words.
One approach is the T FiDF , where i DF stands
for the inverse document frequency. The mathe-
matical representation of the weight of the term t
in the document d by TFiDF is given in:

T FiDF(d, t) = T F(d, t)log

(
N

DF(t)

)
(1)

where T F(d, t) is the frequency of the term t
in document d, N is the number of documents
and DF(t) is the number of documents contain-

ing the term t . Although TFiDF tries to overcome
the problem of common words in the document, it
still suffers from the fact that it cannot account for
the order of the words and the similarity between
them in the document since each word is inde-
pendently presented. Another issue with TFiDF
is that even though it removes common words, it
might decrease the performance by increasing the
frequencies of misspellings that were not properly
handled at the pre-processing step [20, 22].

2.5.2 Word Embeddings
There is a quote by Firth [33], denoting that
“words occurring in similar contexts tend to have
similar meanings”. It outlines the idea in NLP that
a statistical approach, that considers how words
and phrases are used in text documents, might
replicate the human notions of semantic simi-
larity. This idea is known as the distributional
hypothesis.

Word embeddings are dense vector represen-
tations of words. The embeddings vector space
has much lower dimensionality than the sparse
bag-of-words vector space (100–400 as opposed
to tens of thousands). In the embeddings space,
words that aremore similar (semantically and syn-
tactically) are closer to each other than non-similar
words. In other words, embeddings are a distribu-
tional semantics representation of words. Embed-
dings can be learningwith several algorithms. The
most common algorithm is calledword2vec and is
a neural network-basedmodel.Word2vec [34, 35]
includes twomain algorithms: continuous bag-of-
words (CBOW) and skip-gram.

1. CBOW: Predicting target word from contexts.
This model tries to predict the t th word,
wt , in a sentence using a window of width
C around the word. Therefore, the context
words wt−C , wt−C+1, . . . , wt−1, wt+1, . . . ,
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wt+C−1, wt+C are at the input layer of the
neural network model to predict the target
word wt .

2. Skip-gram: Predicting contexts from target
word.
This model is the opposite of the CBOW
model. The target word is at the input layer,
and the context words are on the output layer.

Continuous Bag-of-Words The CBOWmodel is
similar to a feed-forward neural network, where
the hidden layer is removed and the projection
layer is shared for all words. The model architec-
ture is shown in Fig. 3.

The model receives as input context words and
seeks to predict the target word wt by minimizing
the CBOW loss function:

LCBOW = − 1

|C |
|C|∑
t=1

log

P(wt |wt−C , . . . , wt−1, wt+1, . . . , wt+C )

P(wt |wt−C , . . . , wt−1, wt+1, . . . , wt+C ) is com-
puted using the softmax function:

P(wt |wt−C , . . . , wt−1, wt+1, . . . , wt+C )

= exp(x̂Tt xs)∑|V |
i=1 exp(x̂

T
i xs)

where xi and x̂i are the word and context word
embeddings of word wi respectively. xs is the
sum of the word embeddings of the words
wt−C , . . . , wt−1, wt+1, . . . , wt+C , and V is the
vocabulary of the text dataset.

Mikolov et al. [34] called the CBOW model
a bag-of-words because the order of the context
words does not influence the projection. It is also
called continuous, because rather than condition-
ing on the words themselves, we condition on
a continuous vector constructed from the word
embeddings.

Skip-Gram The skip-gram model is similar to
CBOW, but instead of predicting a word based
on the context, the context is predicted from the
word. More precisely, the skip-gram architecture
can be seen as a neural network without a hidden
layer. It uses each word as input to the network

to predict words within a certain range before and
after that word (context size). This yields to the
loss function:

LSkip−Gram = − 1

|C |
|C |∑
t=1

∑
−C≤ j≤C, j �=0

log P(wt+ j |wt )

P(wt+ j |wt ) is computed using the softmax
function:

P(wt+ j |wt ) = exp(x̂Tt+ j xt )∑|V |
i=1 exp(x̂

T
i xt )

The skip-gram architecture is shown in Fig. 3.
In this architecture, each word is generated multi-
ple times; each time it is conditioned only on a sin-
gle word. Increasing the context size in the skip-
grammodel increases the computational complex-
ity, but it also improves quality of the resulting
word vectors.

By training the word2vec model on this lan-
guage modelling task (predicting words in con-
text), the weights on the nodes in the neural net-
work are continuously adapted in such a way that
more similar words have more similar vector rep-
resentations than less similar words. After train-
ing, the hidden layer of the network is stored as a
dense vector representation for each word in the
vocabulary. In the resulting vector space, close-
ness of words represents their similarity.

3 Pre-trained LanguageModels

As explained in the previous section,word embed-
dings are rich language representations: a dense
vector for each term in the vocabulary. They are
useful for word similarity applications, but if we
want to use word embeddings models for the pur-
pose of document representation instead, we need
to go from word representations to document rep-
resentations. One option is to combine the embed-
dings of all words in the document (e.g. by averag-
ing), or to use amodel such as doc2vec [36],which
adds a document indicator to an embedding vector
to learn document embeddings. Either way, these
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Fig. 3 Model architectures
for the CBOW and the
skip-gram model [34]

embeddings models are static in nature; they can
be used as the input to a predictive model but are
not updated during training.

A big leap forward in text representations
for NLP was made by the introduction of pre-
trained language models in the form of dynamic
embeddings. These embeddings models can
be directly used in supervised learning tasks
by adding a classification layer on top of the
embeddings architecture. During the supervised
learning, the full network—including the input
embeddings—is updated. This gave rise to the
potential of transfer learning for text data [37].
Transfer learning is the principle of training a
model on a large dataset and then transferring
the learned parameters and finetuning them to a
more specific, smaller dataset. Until 2018 transfer
learning was possible for image data [38], not
for text. Transfer learning is further described in
Sect. 3.2. First, the next subsection will introduce
BERT (Bidirectional Encoder Representations
from Transformers), the most popular type of
embeddings model in recent NLP.

3.1 Transformers and BERT

In 2017, a research team from Google introduced
a new, powerful architecture for sequence-
to-sequence learning: the transformer [39]. A
transformer is an encoder-decoder architecture:
in the encoder part it creates embeddings from

input text; in the decoder part it generates text
from the stored embeddings.

The core of the transformer architecture is the
self-attention mechanism [40]. Prior architectures
for sequential data (recurrent neural networks
such as LSTMs) process text as a sequence:
left-to-right and right-to-left. This makes them
inefficient because parallellization of the process
on a computer cluster is not possible. The
self-attention mechanism computes the relation
between each pair of input words, thus processing
the whole input in parallel. As a result, the
context that is taken into account by a transformer
is much larger (i.e. the complete input) than
in an LSTM (see Sect. 2.4), which has to be
trained strictly sequentially (token by token).
The longer context in transformer models makes
long-distance linguistic relationships possible.
This is necessary for language understanding
tasks. For example, in the sentence “My lectures,
taught in lecture hall 1 to computer science
master students on Wednesday mornings at
9 a.m., are about Text Mining”, the verb are
has my lectures as subject. With long-distance
attention, transformer models can process this
correctly—evidenced by the correct translation of
the sentence by Google Translate. A disadvantage
of self-attention is that it is memory-heavy: since
it computes the relation (dot-product) between
the embeddings vectors of each pair of words
in the input, the computational complexity is
quadratic to the number of tokens in the input.
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The consequence is that training transformer
models required high-memory GPUs.

A year after the introduction of the transformer,
BERT was introduced: Bidirectional Encoder
Representations from Transformers [41].5 BERT
is a transformer model with only an encoder
part. This means that it serves to convert text to
embeddings.6 BERT was designed for transfer
learning, which is further explained in the next
subsection.

3.2 Transfer Learning: Pre-training
and Fine-Tuning

BERT models are trained in two stages:
the model is pre-trained on a large—huge7—
unlabeled text collection and then fine-tuned with
a much smaller amount of labelled data to any
supervised NLP task. BERT uses almost the same
architecture for pre-training and fine-tuning:
the dynamic embeddings vectors learned during
pre-training are updated during fine-tuning.

The pre-training stage is self-supervised, fol-
lowing the same language modelling principles
as static word embeddings without any labelled
data. In BERT, two language modelling tasks are
used during pre-training:Masked LanguageMod-
elling and Sentence Prediction.Masked Language
Modelling is the task of predicting words based
on their context. A proportion (typically 15%) of
all tokens is replaced by the token [MASK] and
while processing the text collection themodel tries
to predict what the word in place of the [MASK]
token is. The second pre-training task, Sentence
Prediction, takes place in parallel with Masked
Language Modelling: based on the current sen-
tence, themodel tries to predictwhich of two alter-
natives is the next sentence. The goal is to learn
relations between sentences, which is valuable for
tasks such as question answering. Huge amounts
of text data are needed to pre-train a BERTmodel,

5The preprint was released in 2018; the paper published in
a conference in 2019.
6A text generation transformer such as GPT-2 is decoder-
only, generating text from embeddings.
7Typically, the whole wikipedia and a large book corpus.

but thanks to the developers and the research com-
munity, pre-trained BERT models are shared for
re-use by others. The largest repository of trans-
formers, Hugging Face, contains almost 100,000
models, of which almost 10,000 BERTmodels for
over 150 languages at the time of writing.8

Once pre-trained, the embeddings can be fine-
tuned using labelled data to a supervised learning
task. This can be a classification task (e.g. clini-
cal code prediction, sentiment classification) or a
sequence labelling task (e.g. named entity recog-
nition). The last layer of the model defines the
loss function and the labels that the model learns
to predict.9

3.3 BERTModels in the Health
Domain

BERT proved to be highly effective for many
NLP tasks, outperforming state-of-the-art mod-
els. BBecause of its popularity and effectiveness,
researchers have trained and released BERTmod-
els for specific domains.Generally speaking, there
are three strategies for creating a domain-specific
model: (1) pre-training a model from scratch on
domain-specific data; (2) further pre-training an
existing, generic, BERTmodel by adding domain-
specific data to it; (3) no domain-specific pre-
training, but only fine-tuning a generic model to a
domain-specific task. The first strategy requires a
huge amount of data and advanced computational
resources (high-memory GPU cores) and is not a
realistic choice for most researchers. The second
strategy is therefore more common. In both the
second and third strategy, the vocabulary of the
original model is kept, as a result of which some
of the domain-specific terms are not in themodel’s
vocabulary and will be split in sub-words by the
tokenizer.

BERT and other transformer models use
a tailored tokenization method, called Word-
Piece [42]. The principle is that the vocabulary
size (number of terms) is pre-given and fixed,

8https://huggingface.co/models?search=bert.
9Hugging Face has example code available for fine-tuning:
https://huggingface.co/docs/transformers/training.

https://huggingface.co/models?search=bert
https://huggingface.co/docs/transformers/training
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typically at 30,000. While pre-training, Word-
Piece optimizes the coverage of the vocabulary
of the collection using 30,000 terms. Words
that are relatively frequent will become a
term on their own, while words that are infre-
quent are split into more frequent subtokens.
This splitting is not necessarily linguisti-
cally motivated. The authors of the BioBERT
paper [43] give the example of Immunoglobulin
that is tokenized by WordPiece as I ##mm
##uno ##g ##lo ##bul ##in, the hashes
indicating that the tokens are subwords.

BioBERT was the first BERT model in the
biomedical domain. BioBERT was pre-trained
on PubMed Abstracts and PMC Full-text arti-
cles together with the English Wikipedia and
BooksCorpus. In the paper it was shown to be
successful on biomedical NLP tasks in 15 datasets
for three types of tasks: named entity recognition
(e.g. extracting disease names), relation extraction
(e.g. extracting the relation between genes and dis-
eases), and question answering [43]. Later, more
biomedical models followed, specifically Clinical
BERT [44], pretrained on the MIMIC-III data.

It became common in the past years to not only
release pre-trained models on Huggingface, but
also models that have been fine-tuned to a specific
task, for example named entity recognition10 or
sentiment classification11 [45]. This is valuable
for users who don’t have the computational
resources or labelled data to fine-tune a model
themselves. In addition, these models can also
serve as a starting point for more specific fine-
tuning tasks. For example, one could re-use a
BioBERT model that was fine-tuned for named
entity recognition of diseases, and use it either
as-is (‘zero-shot use’) to label an unlabelled
collection with disease names, or fine-tune it
further to another set of labelled data for disease
recognition.12

10e.g. https://huggingface.co/raynardj/ner-disease-ncbi-
bionlp-bc5cdr-pubmed.
11e.g. https://huggingface.co/raynardj/ner-disease-ncbi-
bionlp-bc5cdr-pubmed.
12It is good to be aware of the distinction between cased
and uncased models. Cased models have been pre-trained
with capitalisation preferred, while uncased models have
all capitals removed.

A challenge when extracting biomedical
entities in text (e.g. diseases, medications, side
effects), is that the extracted entities need to
be normalized for spelling errors and other
variations: there are multiple ways to refer to
the same entity, e.g. because of the difference
between specialist and layman language. The
common approach to entity normalization is
ontology linking: connecting a mention in a text
(e.g. “cannot sleep”) to a concept in a medical
term base (e.g. insomnia). Medical terminologies,
of which the most commonly used in the clinical
domain is SNOMED CT, can be huge, with
tens of thousands different labels. A model
linking entities from the text to the SNOMED
terminology needs to be able to connect terms it
has not seen during training time to labels from
this huge label space. A BERT model fine-tuned
for this particular task is SapBERT [46].

4 NLPTasks and Challenges
in Healthcare

Text data are abundant in the health and biomedi-
cal domain. There exist a large variety of text data
types from which information extraction could
be valuable, ranging from scientific literature
to health social media. In this section we will
discuss issues related to data privacy, existing
datasets and applications of NLP in the health
and biomedical domain.

4.1 Data Privacy

Healthcare information exchange can benefit both
healthcare providers and patients. Healthcare
data are universally considered sensitive data
and are subject to particularly strict rules to be
protected from unauthorized access. Because
of privacy concerns, healthcare organizations
have been extremely reluctant to allow access
to care data for researchers from outside the
associated institutions. Such restricted access to
data has hindered collaboration and information
exchange among research groups. Because of
the recent introduction of technologies such as

https://huggingface.co/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed
https://huggingface.co/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed
https://huggingface.co/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed
https://huggingface.co/raynardj/ner-disease-ncbi-bionlp-bc5cdr-pubmed
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differential privacy [47, 48], federated learning
[49], synthetic data generation [50] and text
de-identification (text anonymization) [51], we
expect the increase in data sharing, facilitating
collaboration, and external validity of analysis
using integrated data of multiple healthcare
organizations. The extent of data sharing required
for widespread adoption of data science and
specifically natural language processing tech-
nologies across health systems will require
extensive collaborative efforts.

Clinical text de-identification is one of the
easiest methods enables collaborative research
while protecting patient privacy and confidential-
ity; however, concerns persist about the reduction
in the utility of the de-identified text for infor-
mation extraction and natural language process-
ing tasks. On the other hand, growing interest in
synthetic data has stimulated development and
advancement of a large variety of deep learning-
based models for a wide range of applications
including healthcare.

Federated learning enables collaborative
model training, while training data remains
distributed over many clients, minimizing data
exposure. On the contrary, differential privacy
is a system for publicly sharing information about
a dataset by describing the patterns of groups
within the dataset while withholding information
about individuals in the dataset.

4.2 Biomedical Data Sources
andTheir Challenges

Scientific papers and patents. In their 2015
paper, Fleuren and Alkema [7] show the strong
increase of the number of scientific publications
between 1994, 2004 and 2014. We can only
imagine how much this increase has progressed
since then. Scientific papers are challenging for
NLP techniques because they are long, often
stored as PDF with headers, footers, captions,
mid-sentence line endings, potential encoding
issues, containing figures and tables, and techni-
cal language. Similarly challenging to process are
patent documents; the amount of biomedical and
biotechnical patents is large. Patents are a rich

source of information, but also long, multilingual,
and with technical and legal language [52].

Electronic Health Records (EHRs).EHRs
receive a substantial amount of research in
biomedical NLP [53]. The text data in EHRs,
consisting of doctor notes and letters, provide rich
information in addition to the structured data in
the records, and therefore are promising sources
for mining biomedical knowledge (see Sect. 4.3
for some key examples). The use of patient
health records brings challenges related to pre-
processing: doctor notes are written under time
pressure, and contain typos and doctor-specific
abbreviations. For example, the word patient is
abbreviated by one doctor to ‘pnt’, by the second
doctor to ‘pt’ and by the third even to ‘p’. Another
challenge for the use EHRs is data privacy: the
anonymization of text data is challenging [8].
Recently, some work has addressed the potential
of generating artificial EHR text for use in
benchmarking contexts [54]. This direction is
promising, and can be expanded upon in the near
future with the fast improving quality of large
generative language models such as Generative
Pre-trained Transformers (GPT) [55].

Health social media. A more freely available
source of patient experiences is health social
media [56]: information shared on general
platforms such as Twitter, and Reddit, but also
disease-specific discussion forums in patient
support groups. These data are direct personal
accounts of experiences, without filtering through
a questionnaire or interview. This makes the
data potentially rich, but also noisy—not all
information in the patient accounts is necessarily
correct and of high-quality. Like with EHRs, the
use of health social media data poses challenges
with pre-processing and normalization, such as
spelling errors and the use of medical language
by laymen [57], and with data privacy. Under
the GDPR, medical information shared online,
also on a public channel, is considered personal
information and should be handled with care.

An anonymous alternative source of patient
experiences are the patient surveys conducted by
hospitals. These surveys are not asking for specific
medical and personal information, but for cus-
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tomer satisfaction aspects: how did patients expe-
rience their stay and what can be improved [58].
These data are less privacy sensitive and therefore
easier to use, but also less rich in content and can
only be used to analyze general trends of patient
satisfaction [59].

4.3 Tasks and Applications

NLP tasks in the biomedical domain directly relate
to the data sources that are available. We will dis-
cuss tasks related to the three types of data sources
described in the previous subsection.

Scientific papers and patents. For the pur-
pose of biomedical scientific research, mining
knowledge from large bodies of biomedical
papers is relevant, because individual papers only
address one topic at the time, and the amount of
papers published is large. Fleuren and Alkema [7]
describe biomedical text mining task for scientific
publications: starting with information retrieval
to select the topically relevant papers from a large
collection, followed by named entity recognition,
relation extraction, knowledge discovery, and
visualization. The most commonly addressed
named entity recognition task is the extraction of
diseases, genes and protein names from scientific
tasks. Fleuren and Alkema [7] list benchmark
tasks that have helped advancing the methods
development for named entity recognition. The
task of gene, protein, disease extraction can
be expanded from scientific papers to patents,
thereby also expanding from English-only to
multiple languages [60].

NLP technology can also support the task of
systematic reviewing of scientific publications,
typically performed by clinical librarians or med-
ical scholars [61]. Systematic reviewing is a chal-
lenging task, even for trained users, who compose
long Boolean queries to select relevant papers to
the topic of their review [62]. Text classification
models can help the process of paper selection, but
since the task is high-recall—the user cannot miss
any relevant paper—should always be conducted
in interaction with the human expert. Techniques

such as Continuous Active Learning [63] allow
for this interaction.

Electronic Health Records (EHRs). In the past
two decades, biomedical NLP research has largely
aimed at development of predictive models for
EHRs [64]. Predictive models are classification
tasks for the purpose of predicting future events.
Past records are used as training data. Examples of
such tasks are the prediction of clinical risks [65],
the prediction of diagnosis codes based on free-
text notes [66], the prediction of a patient’s time
to death for general practitioners [67], the predic-
tion of hospital admissions in emergency depart-
ments [68], and the prediction of re-admissions
after discharge [69].

Challenges in someclinical prediction tasks are
huge label spaces: the ICD-10 coding system, used
to code a patient’s diagnosis, has tens of thou-
sands of codes.13 When training a machine learn-
ing model, the codes that are frequent in the train-
ing data will be well represented by the model and
easy to predict, while the rare diseases have not
sufficient training data to be correctly predicted in
the test data. A second challenge is bringing the
developedmodels to the clinical practice. Before a
hospital takes the step to involvemachine learning
and NLP in the clinical workflow, the developed
applications need to be evaluated in an end-to-end
settingwith user involvement. Themodels are typ-
ically aimed to not replace the human expert (the
doctor or the clinical information specialist), but
to assist them in making the right decisions. One
example application in the hospital context is to
discover misclassifications or inconsistencies in
previously coded data [70, 71]. Another applica-
tion is to use the machine learning model to make
suggestions in an interactive task context, e.g. sug-
gest the most likely diagnosis code based on the
text typed by the doctor or coder [72].

Health social media. Health social media data
can be used for the extraction of structured infor-
mation, such as side effects for medications [73,
74], but also for more social-emotional aspects
of patients’ well-being, such as patient empower-

13https://www.cdc.gov/nchs/icd/icd10.htm.

https://www.cdc.gov/nchs/icd/icd10.htm
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ment [75]. The most commonly addressed health-
related task with social media is the extraction of
adverse drug reactions (ADRs), for which high-
quality benchmarks have been developed [76].
The extraction of ADRs is defined as an informa-
tion extraction task consisting of three steps: (1)
named entity recognition to identify medications
and ADRs; (2) ontology linking to normalize the
extracted ADR string (e.g. “cannot fall asleep”)
to the correct term in a medical database (e.g.
insomnia); (3) relation extraction to identify that
the mentioned ADR is indeed connected to the
mentioned medication.

5 Bias and Fairness

In this chapter we have seen how we can apply
artificial intelligence algorithms to extract infor-
mation and insights from real-world clinical text
data. These AI algorithms draw their insights and
information by generalizing observations from
their training data to new samples. Sometimes this
generalization can be grounded on an incorrectly
assessed correlation between an input feature and
an effect. This is known as bias [77]. As an exam-
ple, consider an image classifier that is trained
to distinguish wolves from dogs. If the classifier
decides something is a wolf (rather than a dog)
based on the snow in the background [78], then
it is biased because it is not the snow that makes
a wolf a wolf. This classifier will struggle to dis-
tinguish dogs from wolves in scenarios where the
background is not visible, or if a dog happens to
be surrounded by snow.

A related but somewhat distinct concept is fair-
ness: how well people who are similar to each
other are treated similarly by an AI system [79].
To see how fairness relates to bias, consider the
following example [80]. An AI system is trained
to determine whether benzodiazepines should be
prescribed to a psychiatric patient, on the basis of
certain information about the patient. The training
data would be annotated with real prescriptions
from past data. Suppose that one of the pieces of
information available to the AI system is the bio-

logical gender of the patient, and suppose further
that there is a high correlation between biological
gender and past prescriptions [81]. The AI system
might use the correlation between gender and past
prescriptions to inform future predictions. This is
biased, because biological gender is not expected
to have any impact on whether a patient should
be prescribed benzodiazepines [82, 83]. It is also
unfair, because by discriminating on biological
gender, the system might be treating otherwise
equal patients differently. For a real-world exam-
ple, Singh et al [84] found that a predictive model
for mortality risk failed to generalize from one
hospital to another, and that this resulted in dis-
parate impact for different races.

Bias and fairness in AI have garnered attention
for several years [85, 86]. We will use the terms
bias and unfairness interchangeably to describe a
situation in which an AI system uses certain pro-
tected attributes [79] implicitly or explicitly for a
purpose that is unrelated to the value of the pro-
tected attribute. Protected attributes vary by coun-
try and by domain, but they typically include gen-
der, nationality, race, and age, among others [87].
The challenge can sometimes arise from the fact
that these attributes can be correlated with other
features in the dataset, so that removing the pro-
tected attribute from the features used in the AI
system does not remove the bias [88].

In this section we will outline some of the
causes of bias in AI applications for clinical text
analyses, as well as how to measure and miti-
gate those biases. We will also highlight some of
the challenges associated with the study of bias
given the limitations imposed by real-world clin-
ical data.

5.1 Bias in Clinical NLP

Bias can be introduced at multiple points in the AI
pipeline for clinical applications. We will intro-
duce four common ways in which bias can occur.
First, selection bias can be present in the dataset
used for training an algorithm due to a sampling
problem [89]. A notable example is healthcare
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access bias [77]: patients admitted to an institu-
tion do not necessarily represent the whole popu-
lation they are drawn from. Therefore, using data
from a single institution to draw insights about a
population might be biased.

Second, bias can be intrinsically incorporated
in the population, as in the case where more mem-
bers of a protected group have a certain charac-
teristic than non-members for historical reasons.
Take the classical example of loan approvals pre-
sented in the introduction to this section. The cor-
relation between ethnicity and postal code is due
to social or historical reasons, and is not related to
loan approval.

Third, bias can be caused by design choices
in the AI system. For example, a clinician might
decide to work on implementing a classifier to
detect a sickness that only affects a subset of
the population, while ignoring other sickness that
affect another segment of the population [90].

Fourth, bias can also happen when systems
trained on language varieties that are considered
“standard” work less well on texts written by cer-
tain sociodemographic groups [91]. In the clini-
cal practice, this could have a significant impact
when designing models trained on texts written
by patients from a given institution [92], as the
application of these models on other institutions
might lead to bias.

Bias can be dangerous for clinical NLP and
text mining applications, but before we can do
something about it, we must be able to identify
bias. This can be complicated because it is not
always clear whether bias should be removed.
As an extreme example, consider an AI system
trained to predict the probability of a (biologi-
cally) female patient becoming pregnant in the
next threemonths based on reports written by doc-
tors during general screenings. Suppose that the
doctors are instructed to never write the age of
the patient in the reports. They might, however,
write other information that correlates with age.
The AI system could then associate this informa-
tion with the pregnancy status and use it to pre-
dict pregnancy. As a result, the AI system would
“bias” its predictions against older women. As age
can be considered a protected attribute, this could
be considered unfair bias. In this case, however,

there might be a medical reason why the predic-
tion should be different for different ages.

Nevertheless, there are cases inwhich it is clear
that bias should be mitigated if possible. As an
example, consider anNLP systemdesigned to pre-
dict a diagnosis fromawritten report. Suppose this
NLP system is biased against a protected group,
and that the illness the system tries to diagnose
is potentially fatal. As a result, members of the
protected group go undetected and die more often
as a result of the sickness. This means that fewer
patients come back for further treatment, and as a
result there are fewerwritten reports about patients
from the protected group to use as training data for
newer models. This creates a feedback loop that
results in the bias becoming even larger [93].

5.2 Bias Measurement

Bias can be measured using multiple metrics,
depending on the specific details of the case. The
very definition of bias is highly contested, with a
recent review citing more than ten of them [93].
Listing all possible definitions is beyond the scope
of this chapter, but we can sketch out two of them
to give an idea of where differences in definitions
come from. For illustrative purposes, consider a
dataset containing patient records for white and
black patients.14 Suppose this dataset is anno-
tated with gold labels representing whether the
patient is diagnosed with a particular sickness or
not. We want to train a binary classifier to predict
this diagnosis in new non-annotated data: given a
new patient record, the predicted label is positive
if the model thinks the patient has the sickness, or
negative if not. The equal opportunity definition
of fairness requires that datapoints with a posi-
tive gold label have the same probability of being
assigned a positive predicted label by the model;
in other words: if we knew that a given patient
has the sickness, the model should have the same
probability of predicting true positives regardless
of the race of the patients. The equalized odds def-
inition requires exactly the same, and additionally

14In other words, we remove all records for patients who
identify as belonging to any other race from the dataset for
this example.
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that all protected groups having a negative gold
label should have the same probability of being
(incorrectly) predicted as positive [94]; in other
words: the model should have the same probabil-
ity of predicting true positives and false positives
regardless of the patient race.

Additionally, another question to be consid-
ered is whether we want individual fairness or
group fairness. Individual fairnessmeans that sim-
ilar individuals get treated similarly. In the exam-
ple above, this would mean that two patients with
similar age, socioeconomic status, health status,
etc., but of different races, should receive the same
treatment by the model. Group fairness requires
that each group gets treated similarly, so that
the performance of the model is similar for each
group. In the example above, this could mean that
the accuracy of the model is the same for black
andwhite patients. Individual fairness is very hard
to implement, given that some kind of similarity
metric needs to be defined.

Guidelines for selecting an appropriate bias
measure depend on the specific use case [95]. As
an example, suppose you are developing a system
to help clinicians diagnose a disease. We assume
that receiving a diagnosis is desirable, as it helps
speed up treatment. As such, the designer of the
system will prioritize minimizing the false nega-
tives, to ensure no sick people go undetected. In
that case, equal opportunity might be a better bias
measure than equalized odds, aswe are not so con-
cerned with bias occurring in false positives. In a
concrete example from the literature [96], a model
trained to predict depression from clinical notes
found a bias against patients of a given gender.
They quantified the bias using the False Negative
Rate Ratio (FNRR), i.e., the false negative rate
for members of that gender divided by the false
negative rate for other patients. The false negative
rate is the fraction of patients with depression that
were diagnosed by the model as not having the
condition. They found the FNRR to be different
from 1, which is the value expected if the classi-
fier were fair. In practice, it’s often not possible to
satisfy multiple fairness metrics at the same time,
therefore making it even more important to select
one based on the domain.

An important remark to bemadewhen it comes
to measuring bias in clinical NLP applications is
that clinical datasets are often heavily imbalanced.
Often clinical NLP systems aim at extracting rare
symptoms, detecting rare diseases, or predicting
rare events. This should be taken into considera-
tion when choosing a bias measure. For example,
metrics emphasizing differences in theTrueNega-
tive Rate are often inappropriate, as the True Neg-
ative Rate is usually very large due to the imbal-
anced nature of the dataset.

5.3 Bias Mitigation

Multiple bias mitigation techniques have been
proposed [87] for machine learning applica-
tions. These can be classified as pre-processing,
in-processing, or post-processing techniques.
Pre-processing mitigation techniques attempt to
debias by making modifications to the training
dataset, such as applying different weights
to sample from different protected groups.
In-processing mitigation techniques attempt to
debias by modifying the NLP and text mining
algorithms; a popular example is the prejudice
remover [97]. Finally, post-processing techniques
attempt to debias by modifying the way predic-
tions from the model are interpreted. As in the
case of measuring bias, mitigating bias is also
context-dependent, and the right tool should be
chosen based on the domain and the task.

In recent literature, one study uses data
augmentation to mitigate bias: they create new
datapoints by swapping gender pronouns in
the input documents, and find a difference in
the fairness measures [96]. A recent survey
outlines several more studies that used bias
mitigation techniques [98]. As a complementary
strategy, some argue that every dataset should
be accompanied by a data statements providing
enough information so that users can understand
what biases might be present in the dataset [99].
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6 Explainability

The advancements in AI and NLP with the
emergence of deep learning approaches have
led to systems with high predictive accuracy,
which however, are based on very complex
learning processes that are very difficult for users
and researchers to understand. The difficulty
to understand the internal logic and how those
systems are reaching predictions is known as the
Black Box problem and has led to an increasing
interest of researchers to explainable AI (XAI)
and interpretable AI.

Although the term XAI is mentioned already
in a study published in 2004 [100], there is still
no standarized technical definition. In literature,
many times transparency, explainability and
interpretability are used interchangeably [101].
Many researchers have already attempted to
give formal definitions. Gilpin et al. [102]
stated that both interpretability and fidelity are
required to achieve explainability. According to
Gilpin et al. interpretability refers to whether
the explanation is understandable by humans,
whereas fidelity refers to whether the explanation
describes the method accurately. Based on that,
Markus et al. [103] defined explainability as
follows: An AI system is explainable if the task
model is intrinsically interpretable or if the
non-interpretable task model is complemented
with an interpretable and faithful explanation.On
the other hand, transparency has been defined as
providing stakeholders with relevant information
about how the model works that can include
documentation of the training procedure and code
releases [104].

From the above definitions, it is evident that
XAI and transparency are very important for
AI and NLP systems developed for the clinical
domain. XAI models in healthcare should align
with clinicians’ expectations and acquire their
trust, increase the transparency of the system,
assure results quality, and allow addressing
fairness, and ethical concerns [105].

In this section wewill outline some of the main
methodologies that have been used for explain-
ability of AI applications for clinical text analy-
ses, and how they were evaluated. We will also

highlight some of the challenges and limitations
associated with the explainability in AI and NLP
in clinical applications.

6.1 Methods for Explainability

One of the aims of a XAI model is to produce
explanations regarding the system’s process and
outcome predictions. Those explanations can be
categorized in two groups: local and global [106].
The local explanations refer to providing expla-
nation on an individual prediction, whereas the
global refers to themodel’s prediction process as a
whole. The global explanations can either emerge
from the prediction process (self-explaining) or
after post-processing (post-hoc).

There are several well known techniques that
can have been proposed to generate explanations.
One of the most well known models is LIME
(Local Interpretable Model-Agnostic Explana-
tions) that focuses on local explanations [78].
LIME is based on surrogate models which are
trained to approximate the predictions of the
initial non-explainable model. Surrogate models
can also be learned for global explanations [107].
Although XAI methods based on surrogate
models became very popular, they have a main
drawback which is that the original model and the
learned surrogate models may have completely
different ways to reach the predictions.

SHapley Additive exPlanation (SHAP) is
another popular Explainable AI (XAI) model that
can provide model-agnostic local explainability
for different types of data [108]. SHAP is based
on Shapley values, which is a concept popularly
used in Game Theory and is applies additive
feature importance.

Many researchers also tried to derive expla-
nations using the importance scores of different
features on the output predictions. This can
be applied on manual features derived from
traditional feature engineering [109], lexical
features [66] or gradient-based methods such as
DeepLIFT [110] or Grad-CAM [111]. In partic-
ular, DeepLIFT is designed to compute feature
importance in feed-forward neural networks,
whereas Grad-CAM uses the gradients of a target



Natural Language Processing and Text Mining… 87

concept flowing into the final convolutional
layer and produces a coarse localization map
highlighting the important regions for predicting
the concept.

The extraction of weights from the attention
mechanism is also a very popular way to enable
feature-based explanations. Attention layers that
can be added tomost neural network architectures,
indicate the parts that the network focuses. The
package BERTviz15 uses this premise to visual-
ize the attention between input tokens, in partic-
ular between the [CLS] token—which has infor-
mation for the prediction itself—to each of the
input tokens. However, they have become a topic
of debate on whether they can be used as a means
of explanation or not. Jain and Wallace [112]
claimed that there is no correlation between atten-
tion scores and other feature-important measures
concluding that attention is not explanation. How-
ever, Wiegreffe and Pinter [113] proposed diag-
nostic tests to allow for meaningful interpreta-
tion of attention, but also showed that adversarial
attention distributions could not achieve the per-
formance of real model attention.

6.2 Evaluation of Explainability

One of the current challenges in XAI refers to
their proper evaluation. It is important that the
explainable models to be evaluated not only on
their performance but also on the quality of the
explanations. Taking into account that explain-
ability is a relatively new field, there is still no
agreement regarding a standarized evaluation of
the XAI models.

One approach that has been applied, is to
present an informal evaluation of the explana-
tions and high level discussions of how some
of the generated explanations agree with human
intuition. In some cases explanations are even
compared to other reference approaches [114]
such as LIME.

15https://github.com/jessevig/bertviz.

A more formal way to evaluate an XAI
approach is to use human evaluations that can
quantify a system’s performance [115]. The
collected ground truth can be then compared with
the generated explanations and state-of-the-art
performance metrics such as Precision/Recall/F1
and BLUE scores can be calculated. Instead of
collecting ground truth beforehand, an alterna-
tive evaluation approach is to ask humans to
evaluate the explanations generated by the XAI
system [66]. Although collecting human labels
is a way to quantify the performance of those
systems, they are not always of high quality.
Also, humans have many biases that can be also
reflected in the collected ground truth. Multiple
annotators of diverse backgrounds and high
inter-annotator agreement is a way to ensure the
quality of the labels.

Attention based explanations have been also
evaluated bymore specific approaches. For exam-
ple, Serrano and Smith [116] performed experi-
ments in which they repeatedly set the maximal
entry generated by the attention layer to zero.
The idea behind this mechanism is that turning
off those weights should lead to different expla-
nations in the case that they actually explain the
predictions.

One limitation of the current studies is the lim-
ited or even absent elaboration on what is being
actually evaluated. Explanations can be evaluated
from different angles such as fidelity and compre-
hensibility [117]. One exception is the study by
Lertvittayakumjorn and Toni [118] who proposed
human evaluation experiments targeting the fol-
lowing three goals:model behavior,model predic-
tions and assist humans in investigating uncertain
predictions.

6.3 Explainability in Clinical NLP
Tasks

The widespread use of AI and NLP models into
clinical practice have made transparency and
explainability of critical importance, especially
if we consider not only that practitioners usually
work with complex sources of data [119] but
also that incorrect predictions can lead to severe

https://github.com/jessevig/bertviz
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consequences [120]. In order to build trust
between clinicians and AI models, clinicians
should be able to understand the logic of the
system and detect cases in which the model gave
incorrect or unexpected predictions.

There have been several attempts for XAI
models for different prediction tasks in the
medical domain ranging in the type of data they
use [119, 121]. Some of those works focus on
XAI models for text prediction tasks in the medi-
cal domain. The easiest and most straightforward
way is to apply well knownmodels such as LIME,
SHAP and DeepLIFT to generate explanations.
For example, Uddin et al. [122] proposed an
RNN system for depression detection from text
and applied LIME to generate explanations of the
predictions. Caicedo-Torres and Gutierrez [123]
applied SHAP to generate explanations of their
proposed deep learning system that was trained
to predict patient mortality inside the ICU based
on free-medical notes. DeepLIFT that is designed
to compute feature importance in feed-forward
neural networks was used by Caicedo-Torres and
Gutierrez [123] to find word embeddings that
deemed as most important for survival and death
prediction.

Combing convolution with attention has been
proved efficient in differentNLP tasks.To this end,
Mullenbach et al. [66] applied attentional convo-
lution to highlight the most relevant parts of the
clinical text of each ICD code. Hu et al. [124]
focused also on ICD classification and proposed
SWAM which established the correspondences
between the informative snippet and convolution
filter. Blanco et al. [125] proposed a bidirec-
tionalGatedRecurrentUnits (GRU)with attention
mechanism that allowed to understandwhich frag-
ment contributed the most in the cause of death
prediction.

7 Summary
and Recommendations

7.1 Clinical Natural Language
Processing

As the amount of unstructured text narratives
that biomedical and healthcare systems produce
grows, so does the need to intelligently process it
and extract different types of knowledge from it. In
the future,with an active role of the health commu-
nity, more clinical NLP-based expert systems will
be deployed in practice to accurately recognize
the knowledge within clinical text, and feed this
knowledge automatically into patient daily care.

7.2 Transfer Learning in Health

In NLP as well as in many areas of machine learn-
ing, the standard way to train a model is to anno-
tate a number of examples that are then provided
to the model. Recent deep learning-based transfer
learning methods and pre-trained language mod-
els have achieved remarkable successes on a wide
range of NLP tasks. Given the lack of annotated
datasets for training and benchmarking in clini-
cal text mining, in the future, it is expected that
the knowledge from related tasks or domains are
combined. We also expect, for the NLP tasks in
healthcare, more effective approaches that com-
bine semi-supervised learning with transfer learn-
ing.

7.3 Bias and Fairness

Bias in NLP occurs when an algorithm or model
exploits certain properties of texts to solve a task
that is unrelated to those properties. Fairness is a
requirement that machine learning models treat
members of different protected groups equally.
For our purpose, we consider an NLP or text min-
ing model to be biased or unfair if it uses cer-
tain protected attributes implicitly or explicitly
to solve a problem unrelated to those attributes.
There are multiple definitions of bias, as well as
multiple bias metrics, such as equal opportunity
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and equalized odds. There are also several miti-
gation strategies that can be adopted to reduce the
bias. The choice of a bias definition, a bias mea-
sure, and a bias mitigation strategy is dependent
on the domain and the task, as different measures
cannot be optimized simultaneously, and different
tasks require different measures. Some work on
bias measurement and mitigation has been done
on the clinical NLP domain, but it is very much a
nascent field, and no measure or mitigation strat-
egy should be adopted without careful evaluation.

7.4 Explainability

In Sect. 6 we discussed what is XAI and the main
methodologies that exist. In medical domain, XAI
models aim to increase the trust of the practi-
tioners and patients by providing transparent sys-
tems that are understandable by humans.Develop-
ing automated systems that could potentially take
decisions for diagnosis and treatment is a mul-
tidisciplinary process. Models should be devel-
oped in collaboration with experts input from
the appropriate areas. That will allow to under-
stand domain-specific needs such as the purpose
of the system, the need and level of required trans-
parency and explainability. Additionally, the type
of explanations should be decided considering not
only the aspects of ethics and fairness, but also the
limitations of the audience [126].

Another remaining challenge is related to the
evaluation, a topic of a great discussion in the
area. The majority of studies are using subjec-
tive measurements, such as user satisfaction, and
researchers’ intuition on the explanations [126].
From the previous studies, it is evident that there
is an overall lack of validated and reliable eval-
uation metrics on which more work is needed.
Zhou et al. [127] gave a summary of quantitative
metrics for the evaluation of explainability aspects
(i.e., clarity, broadness, parsimony, completeness,
and soundness). In their study, they conclude that
the evaluation of ML explanations is a multidisci-
plinary research topic. and that It is also not pos-
sible to define an implementation of evaluation
metrics, which can be applied to all explanation
methods.
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Statistical Analysis—
Measurement Error
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are descriptive, explanatory or predictive. 
Validation studies can inform the estimation 
and characterization of measurement error as 
well as provide crucial information for cor-
rection methods that are available in several 
statistical programming languages such as 
SAS, R and Python.

Keywords

Measurement error · Misclassification · 
Noise · Correction · Bias · Modelling · 
Estimation

1	� Introduction

Before applying an analytical method on data it 
is important to consider the quality of the data 
and how that quality might impact the results 
of the analysis. One important aspect of data 
quality is how variables in the data have been 
recorded or measured. There are many differ-
ent situations in which the variable(s) that are 
measured or observed are different from what 
was intended to be measured. This discrepancy 
between an observed value and the true value is 
called measurement error and can have con-
sequences for your analyses in all kinds of con-
texts (see Box 1 for two examples of the effect 
of measurement error in practice).
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Abstract

An important aspect of data quality when 
conducting clinical analyses using real-
world data is how variables in the data have 
been recorded or measured. The discrepancy 
between an observed value and the true value 
is called measurement error (also known 
as noise in the artificial intelligence and 
machine learning literature) and can have 
consequences for your analyses in all kinds 
of contexts. To properly assess the potential 
impact of measurement error it is essential to 
understand the relationship between the true 
and observed variables as well as the goal of 
the analysis and how it will be implemented 
in practice. Commonly, measurement error 
is distinguished as being classical, Berkson, 
systematic and/or differential. While it is 
clear that measurement error can have far-
reaching consequences on analyses, the effect 
can differ depending on whether analyses 
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•	 Computer aided diagnosis of prostate 
cancer without gold standard outcome 
labels
–	 Nir et al. [51] describe the automatic 

grading of prostate cancer in digitized 
histopathology images. They did this 
using various supervised machine 
and deep learning methods based on 
images labeled by pathologists. Just as 
in many medical image settings, this 
labeling is not perfect and specialists 
will not always agree when evaluating 
the same images. When these images 
act as important input for machine 
and deep learning algorithms meant 
for diagnostic or prognostic settings, 
this, often unavoidable, measurement 
error, or noise in the outcome labels 
can have significant consequences 
for the performance of the algorithms 
[35]. In the case of [51] multiple 
pathologists were asked to rate the 
same images and different methods 
were used to best account for the 
inter-observer variability in prostate 
cancer grading. While this may not 
always be possible to apply in prac-
tice, there are several other techniques 
that can help correct for measurement 
error in the outcome [35].

Where the term “measurement error” is fre-
quently used with regards to errors in the meas-
urement of continuous variables (such as an 
individual’s age or height), the term “misclas-
sification” is often used for discrete variables 
(such as an individual’s preferences of received 
treatment). In Artificial intelligence and machine 
learning literature, errors in discrete or non-
discrete variables are often called noise with 
noise existing either in the covariates (also 
known as predictors, features or attributes) or in 
the outcome(s) (also known as target variables, 
labels or classes). In this chapter, the term meas-
urement error will be used to describe all these 
phenomena unless otherwise specified.

Box 1: Examples of Measurement Error in 
Practice
•	 Measuring prevalence using different 

diagnostic tests
–	 In Montreal, Canada a screening 

and treatment program for intesti-
nal parasite infections was offered 
to newly arrived Southeast Asian 
refugees in Canada between July 
1982 and February 1983. The 162 
Cambodian refugees included in the 
sample were tested using two dif-
ferent diagnostic tests for the pres-
ence of Strongyloides Infection: 
enzyme-linked immunosorbent 
assay (immunoglobulin G) serol-
ogy and stool examination (see table 
below for the amount of refugees 
that tested positive using each diag-
nostic test) [27, 28]. The observed 
sample prevalence based solely on 
serology was 77.2 percent, while 
it was 24.7 percent using informa-
tion from stool examinations alone! 
This absolute difference of over 
50 percentage points in prevalence 
demonstrates how crucial it is to 
consider the instrument that is being 
used to measure a quantity of inter-
est, such as the prevalence. Note that 
these estimates also don’t take into 
account other sources of uncertainty 
such as sampling variability (only 
162 individuals of the whole popu-
lation of Cambodian refugees were 
included in this sample) or the per-
formance of the tests themselves (it 
is likely that several individuals may 
be false positives or false negatives 
as neither test has perfect sensitivity 
or specificity) [34].

Stool +  Stool −

Serology +  38 87 125

Serology − 2 35 37

40 122 162
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Errors in measurement can be caused through 
various mechanisms including, but not limited 
to, inaccuracy and imprecision of measurement 
instruments, errors due to self-reporting, errors 
in data coding or labeling, lack of data granu-
larity, or when single measurements are taken 
of naturally fluctuating biological processes 
such as biomarkers. Common settings where 
such errors can occur include when measuring 
smoking [45], blood pressure [2, 53, 75], dietary 
intake [17, 18, 73], physical activity [16, 41], 
exposure to air pollutants [22, 69, 78], medical 
treatments received [5, 65, 71], diagnostic cod-
ing [15, 52, 77] and labels for medical images 
[12, 35, 55, 57].

All of the above mentioned measurement 
error mechanisms can lead to discrepancies 
between the sought after, perfectly measured 
and thus error-free true value of a variable and 
an imperfectly measured observed value of 
that same variable. In most cases we have not 
observed the former and we are in possession of 
the latter. This can have severe implications for 
the results of an analysis. Examples include the 
following:

•	 Brakenhoff et al. [7] demonstrate that even 
when the simplest form of measurement 
error, random error, is assumed when meas-
uring blood pressure in routine care, this can 
have very divergent and unexpected con-
sequences on the estimation of the effect of 
blood pressure on the possible risk of devel-
oping cardiovascular disease. The estimated 
relations can be severely biased positively or 
negatively depending on the amount of meas-
urement error present in confounders and the 
relationship of those confounders with the 
observed blood pressure variable.

•	 When aiming for the best possible prediction 
performance using advanced artificial intel-
ligence techniques such as deep learning for 
medical imaging, multiple authors [12, 35, 
57] identify the need for large datasets of 
trustworthy labelled medical images (which 
are used as the outcome to be predicted) 
to train the desired model. The expertise 

required for this as well as regulations in the 
medical sector make this a challenging ask 
which can severely impact the performance 
of prediction models.

To properly assess the potential impact of 
measurement error it is essential to understand 
the relationship between the true and observed 
variables as well as the goal of the analysis (i.e. 
is the purpose to describe, explain or predict?) 
(See Box 3) and how it will be implemented in 
practice. However, the fact that measurement 
error may have far-reaching consequences on 
analyses in the field of statistics, epidemiol-
ogy or artificial intelligence is nothing new 
[9, 26, 79]. Yet, despite this understanding 
and a plethora of recent literature on the sub-
ject [8, 36] there is still little attention paid to 
measurement error consequences and potential 
solutions in the medical literature [6, 67] and 
common myths [7, 74] are perpetuated. With 
the increasing availability of (big) data not 
collected for research purposes such as medi-
cal health records for explanation as well as 
the application of machine learning and deep 
learning algorithms for prediction, careful 
investigation of potential bias due to issues like 
measurement error is arguably more important 
than ever [21].

This chapter will provide an overview of the 
types of measurement error and why it is essen-
tial to keep this in consideration when conduct-
ing clinical data analysis. Subsequently the 
consequences of measurement error will be dis-
cussed and how this will differ depending on the 
goal of the analysis and the desired implementa-
tion. Lastly, an overview will be given of various 
tools for the estimation and correction of meas-
urement error.

2	� Types of Measurement Error

A common taxonomy to distinguish between 
types of measurement error differentiates 
between 4 types: classical, Berkson, system-
atic and differential. Each of these types can 



100 T. B. Brakenhoff et al.

manifest differently in continuous or discrete 
data. They represent different ways in which 
true values and the observed variables relate 
to each other, which can have different conse-
quences on the analysis being performed.

When considering continuous variables, we 
can differentiate between multiple measurement 
error models. The simplest of these is called the 
classical or random measurement error model 
where the observed variable is equal to the true 
variable plus error, in this case a random varia-
ble with mean 0 which is independent of the true 
variable. This error model can be extended to 
accommodate systematic error or dependencies 
between the error and the observed variable, the 
true variable or other auxiliary variables. When 
the relations between the observed and true vari-
able are non-linear, transformations can be used 
to make it linear. In specific circumstances it is 
more appropriate to model the true variable as 
equal to the observed variable plus a random 
variable with mean 0 which is independent of 
the observed variable. This is called Berkson 
error. Lastly, depending on if the error contains 
information on the outcome variable which you 
may be interested in or not, the error is referred 
to as differential or nondifferential respectively. 
Box 2 provides technical definitions of these 
measurement error models.

For categorical variables, discrepancies 
between the true value of a variable and the 
observed value is often referred to as misclassifi-
cation. While misclassification is closely related 
to measurement error in continuous variables, 
the categorical nature of the variables means that 
misclassification is often expressed in terms of 
misclassification probabilities. For example, in 
the case of a binary observed and true variable, 
regardless of the type of measurement error 
assumed, misclassification can best be described 
in terms of sensitivity, specificity and predic-
tive values (namely positive predictive value 
and negative predictive value). Note that similar 
to measurement error models, misclassification 
can also be (non)differential and have a structure 
similar to Berkson error (while the latter is not 
often observed) [36].

Box 2: Technical Definitions of Types of 
Measurement Error in Continuous Variables
Suppose we are interested in the relation-
ship between an outcome variable Y and 
a covariate of interest X given covariates 
Z. If a variable X is measured with error, 
the observed variable is denoted by X*, 
with the true value of this variable (X) 
being unobserved. Note that notation dif-
fers across the literature and the notation 
chosen here is consistent with that of 
[36 and 68]. The following types of error 
are most commonly distinguished:

•	 Classical measurement error:
X*  =  X + U, where U is a random varia-
ble with mean 0 that is independent of X.

•	 Linear measurement error
X* = ɑ0 + ɑXX + U, where U is a ran-
dom variable with mean 0 that is inde-
pendent of X, ɑ0 is an intercept term 
and ɑX is the coefficient of X. Note that 
classical measurement error is a special 
case of linear measurement error where 
ɑ0 = 0 and ɑX = 1.

•	 Systematic error
X* = ɑ0 + ɑXX, where ɑ0 is an inter-
cept term and ɑX is the coefficient of X 
which each represent systematic error 
that may be dependent on X.

•	 Nondifferential error
The distribution of Y given (X, Z, X*) 
depends only on (X, Z)

•	 Berkson measurement error
X = X* + U, where U is a random variable 
with mean 0 that is independent of X*.

3	� Consequences of Measurement 
Error

3.1	� Goal of the Analysis

Before discussing the consequences of meas-
urement error it is important to clearly identify 
the goal of the analysis. A common framework 
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used to distinguish between the goal of statistical 
modeling is whether it is used for description, 
explanation or prediction [70] (See Box 3). 
Shmueli [70] mostly disregards descriptive mod-
elling as it is frequently used for characterization 
of the observed data structure and is not often 
used for theory building. In public health and 
healthcare research, however, descriptive mod-
elling plays a crucial role, e.g. when estimating 
incidence rates or prevalences of disease. In the 
context of measurement error and its impact, 
this section will mostly focus on the distinction 
between explanatory and predictive modelling.

Box 3: Definitions of Types of Statistical 
Modelling
•	 Descriptive modelling is aimed at 

summarizing or representing the data. 
E.g. calculating an incidence rate for a 
disease over a particular time period, or 
by fitting a regression model to quan-
tify the association between a covariate 
and an outcome, without causal infer-
ence or prediction intentions.

•	 Explanatory modelling is the applica-
tion of models to data for the purpose 
of testing and quantifying causal rela-
tions. E.g. fitting a regression model 
to estimate the causal effect of a cer-
tain factor (e..g. a medical treatment, 
registered as a dispensed drug) on the 
occurrence of a certain outcome (e.g. a 
health outcome such as (cause-specific) 
mortality or hospital admission).

•	 Predictive modelling the application 
of models to data for the main purpose 
of predicting new or future observa-
tions. E.g. fitting a regression model 
to predict the probability of the occur-
rence of a certain health outcome (e.g. 
5-year mortality) for future individu-
als taking into account various relevant 
covariates (e.g. medical history, demo-
graphics, laboratory tests, etcetera).

While often not clearly separated in literature, 
studies with explanation and prediction goals 
fundamentally differ due to the differences in 
aims and subsequent diverging choices at every 
step of the modelling process (designing the 
study, collecting data, preparing data, explor-
ing data, selecting variables, selecting statistical 
models, evaluating models and using models in 
practice). Note that both types of modelling can 
be used in combination, each achieving a sepa-
rate specific goal within an overarching analy-
sis that may be of an explanatory or predictive 
nature. An example of this is the application of 
prediction models (including machine learning 
models [44]) to estimate propensity scores [58] 
that are used to adjust for confounding when 
estimating causal effects.

The measurement of variables for explana-
tory modelling generally focuses on obtaining 
measurements that are as reliable and accu-
rate as possible to appropriately represent the 
underlying constructs. Conversely, for many 
predictive modelling studies priority goes 
towards reliably estimating the outcome/tar-
get variable (often called labeling [1, 19, 49, 
50]), while the measurement quality of the 
covariates necessary for making predictions 
should ideally be of a similar quality when 
the model is constructed as when the model is 
applied to new patients. So far, however, much 
of the attention in the measurement error lit-
erature [9, 37] has been specifically devoted 
to explanatory modelling. More recently, 
attention is being given to the prediction set-
ting, showing the impact of heterogeneity in 
how variables are measured in the training 
and implementation settings, also referred to 
as transportability [9], and how this impacts 
the performance of prediction models [42, 43, 
54].

The above broad differentiation in modeling 
goals and the different role of errors in meas-
urement exemplifies the importance of keeping 
in mind the goal of the analysis, how the results 
of the analysis will be generalized and in which 
settings the results will be applied.
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3.2	� The Impact of Measurement 
Error in Explanatory Modelling

Much of the health science measurement error 
literature has been focussed on the consequences 
of different types of measurement error when 
engaging in explanatory modelling. Carroll et al. 
[9], describe how the consequences of meas-
urement error is a “triple whammy”: covariate-
outcome relationships can be biased, power to 
detect clinically meaningful relationships is 
diminished and important features of the data 
can be masked.

When assuming classical measurement error 
or misclassification in a single continuous or 
binary categorical covariate of interest, the esti-
mated univariable covariate-outcome relation 
will be biased towards the null (also known as 
attenuation). However, when the covariate has 
more than two categories or when considering a 
multivariable model (models with more than one 
covariate) where at least 1 confounder measured 
with classical error, the estimated covariate-out-
come relation can be biased in either direction, 
even if the covariate of interest is not measured 
with error [7]. This unpredictability of the mag-
nitude and direction of bias and precision on the 
estimated effect is compounded if error is sys-
tematic or differential. Berkson error on the other 
hand often does not lead to bias in the estimated 
covariate-outcome relation, but can diminish 
precision. Regarding measurement error in the 
outcome of an explanatory model, classical error 
will generally not lead to bias in a covariate-
outcome relation while other types of error like 
systematic or differential error can substantially 
bias estimators [46]. Table 1 of [37] provides a 
useful overview of the effects of measurement 
error according to the type of error and target of 
the analysis for explanatory modelling.

3.3	� The Impact of Measurement 
Error in Predictive Modelling

Attention for the role of measurement error 
in predictive modelling is relatively recent. 
In particular, the concept of measurement 

heterogeneity, which means the covariates (pre-
dictors) are measured differently (i.e. have dif-
ferent measurement error) between training 
and external validation settings for prediction 
models, has been shown to have an important 
impact on the performance of prediction models. 
Measurement heterogeneity can, for instance, 
occur when different measurement protocols or 
different types of tests are used when developing 
a clinical prediction model as compared to the 
setting in which they are externally validated or 
applied. Various studies [42, 43, 54] have shown 
how in different measurement scenarios often 
leads to deteriorated performance of the calibra-
tion and discrimination of prediction models.

Regarding the impact of measurement error 
or noise in the development of machine learning 
or deep learning models, attribute (i.e. covariate) 
noise is often considered to have a less severe 
impact on predictive performance than label (i.e. 
outcome) noise [25, 66]. Label noise can dimin-
ish accuracy of predictions and classification 
performance as well as increase the amount of 
training samples required for model develop-
ment [19, 50]. In addition, error prone outcomes 
can lead to prediction unfairness if the error dif-
fers over subgroups of interest [4]. For an over-
view of the impact of class and attribute noise, 
see [79].

Box 4: Five Myths About Measurement Error
van Smeden et al. [74] identifies and 
debunks 5 common myths about measure-
ment error:

1.	 Measurement error can be compensated 
for by large numbers of observations
a.	 No, a large number of observations 

does not resolve the most serious 
consequences of measurement error 
in epidemiological data analyses. 
These remain regardless of the sam-
ple size.

2.	 The effect of a covariate of interest on 
the outcome is underestimated when 
variables are measured with error
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a.	 No, the effect of a covariate of inter-
est can be over- or underestimated in 
the presence of measurement error 
depending on which variables are 
affected, how measurement error 
is structured and the expression of 
other biasing and data sampling 
factors.

3.	 Covariate measurement error is non-
differential if measurements are taken 
without knowledge of the outcome
a.	 No, covariate measurement error 

can be differential even if the meas-
urement is taken without knowledge 
of the outcome.

4.	 Measurement error can be prevented 
but not mitigated in data analyses
a.	 No, statistical methods for measure-

ment error bias corrections can be 
used in the presence of measure-
ment error provided that data are 
available on the structure and mag-
nitude of measurement error from 
an internal or external source. This 
often requires planning of a meas-
urement error correction approach 
or quantitative bias analysis, which 
may require additional data to be 
collected.

5.	 Certain types of research are unaffected 
by measurement error
a.	 No, measurement error can affect all 

types of research.

4	� Correction of Measurement 
Error

Several approaches have been suggested to cir-
cumvent (or at least lower) the detrimental con-
sequences of measurement error, in particular to 
reduce bias (one of the 3 whammies of measure-
ment error). To understand the possible value of 
correction, the natural first step is in identify-
ing potential error-prone variables. To quantify 
and correct for measurement error, additional 

information is required which can often be col-
lected through validation studies.

4.1	� Validation Studies

Validation studies (also referred to as ancillary 
studies) on the error-prone variables can aid the 
investigation into the structure, type and amount 
of measurement error present [37]. These studies 
can also be essential for the application of sev-
eral correction methods discussed later in this 
section. Generally speaking, there are four types 
of validation studies: internal validation studies, 
calibration studies, replicates studies and exter-
nal validation studies.

In an internal validation study, both the 
error-prone observed variable as well as (a reli-
able representation of) the true variable (i.e. 
gold standard measurement) are observed in 
a subset of the data. Measurement of a gold 
standard only in a subset can be motivated by a 
measurement procedure that is time-consuming, 
expensive, invasive or even impossible to obtain 
for the whole study sample. Usually an inter-
nal validation study is assumed to contain data 
from a random subset of the study sample, but 
alternative sampling strategies are available 
depending on the type of measurement error 
and the measurement error correction method 
that can be used [47]. With a suitable internal 
validation study, the relations between the error-
prone observed variable and the true variable 
can directly be estimated, which can be used 
for measurement error correction. If the true 
variable or gold standard measurement is not 
available, but another variable (reference meas-
urement) unbiased at the individual level is, it is 
sometimes called a calibration study. This type 
of study can be used as input for the measure-
ment error correction method called regression 
calibration, if certain assumptions are met.

In a replicates study, multiple replicate 
measurements from the same instrument (e.g. 
multiple measurements of blood pressure during 
the same hospital visit) or different instruments 
that measure the same underlying construct 
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(e.g. multiple diagnostic tests for the same dis-
ease) are collected. When the variable of inter-
est contains random measurement error, having 
multiple measurements available can provide 
essential information on the amount and type of 
measurement error present.

Validation studies can also use data available 
from external sources such as similar cohorts 
from another country. For example, for separate 
individuals not included in the main study, both 
the error-prone variable as well as the true vari-
able (or gold standard measurement) and neces-
sary covariates might be available. This can then 
be used to inform measurement error correction 
methods. Note that for such external validation 
studies it is very important to assess the hetero-
geneity between the external and internal setting 
and how transportable the information is. More 
information on the design and desirable size of 
validation studies can be found in [37].

4.2	� Correction Methods

Characterizing the amount and type of error is 
an important first step when applying strategies 
to correct for the measurement error. At the most 
basic level, common metrics such as the bias 
and variance or classification probabilities like 
sensitivity and specificity can be used to charac-
terize how accurate and precise observed varia-
bles are compared to the true variables. The next 
step is to identify the type of measurement error 
observed (see Sect. 2) and use those models to 
further quantify various aspects of the error. In 
general, measurement error correction methods 
use information obtained through validation 
studies to take into account measurement error 
in the analyses by estimating the research results 
in the counterfactual situation where there was 
no measurement error.

Many different approaches have been pro-
posed in the literature which characterize the 
error present as well as correct for the bias that 
may arise due to this error in the final analyses. 
Approaches include: regression calibration [11], 
simulation extrapolation [14, 37], likelihood 
methods [10], score function methods [3, 72], 

methods-of-moment correction [20], latent vari-
able analysis [32], structural equation modelling 
[4, 63], multiple imputation for measurement 
error correction [13], inverse probability weight-
ing [23], bayesian analyses [26], cluster-based 
correction [49].

More detailed information on the various 
types of error and how to correct for them can 
be found in extensive literature on the topic. 
Various measurement error text books exist, 
with [9] focussing on nonlinear models, [26] 
on Bayesian methods of adjustment and [8]) 
providing a more broad overview. Similarly, 
reviews such as the one by Guolo [24] give an 
overview of robust techniques to correct for 
measurement error in covariates. More recently, 
the STRATOS initiative wrote a two-part tuto-
rial on the basic theory of measurement error 
and simple methods of adjustment [36] as well 
as on more complex methods of adjustment 
and advanced topics [68]. Literature focused on 
the impact of measurement error (referred to as 
noise) in both covariates and outcomes in the 
field of machine learning and how to deal with it 
includes [19, 50, 64, 79].

While several methods can be easily pro-
grammed using standard functionality of dif-
ferent software tools, specific packages, macros 
or procedures are available for more complex 
measurement error correction in different pro-
gramming languages. In SAS, for example, mac-
ros include %blinplus [59], %relibpls8 [60] and 
%rrc [40] which have been developed for vari-
ous implementations of regression calibration. 
Similarly in STATA, procedures include rcal and 
eivreg for regression calibration [29], and simex 
and simexplot for simulation extrapolation [30]. 
For the R language, packages include simex [39] 
and simexaft [31] for simulation extrapolation 
approaches, lavaan [61] for latent variable anal-
ysis and structural equation modelling, as well 
as mecor [48] for measurement error correc-
tion in linear regression models. Also in Python, 
an increasing amount of relevant packages are 
being developed, such as pyEMU [76] for envi-
ronmental model uncertainty analysis and snor-
kel [56] for rapid training data creation in the 
face of potential label noise.
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An important alternative method to investi-
gate the impact of measurement error on your 
study results if no suitable additional informa-
tion is available, is to perform sensitivity analy-
ses. Various amounts of measurement error can 
be assumed in hypothetical scenarios where the 
analysis is rerun and the results are compared 
against the original results. To assess multiple 
hypothetical scenarios with various amounts of 
measurement error simultaneously, probabil-
istic sensitivity analyses can be performed (see 
Chapter 19 of [62]). A similar technique applied 
to examine the impact of measurement error 
(and correct for it) when additional information 
is lacking in both explanatory and prediction 
modelling is quantitative bias analysis [33, 38].
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Abstract

Traditionally, machine learning and artificial
intelligence focus on problems of diagnosis or
prognosis. Answering questions on whether a
patient might have a certain disease (diagno-
sis) or is at risk of future disease (prognosis).
In addition to these problems, one might be
interested in identifying causal factors which
can provide information on how to change
disease onset or disease progression. In this
chapter we introduce the potential outcomes
framework, which provides a structuredway of
conceptualizing questions on causality. Using
this framework we discuss how randomized
and non-randomized experiments can be con-
ducted, and analyzed, to obtain estimates of the
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likely causal effect an exposure may have on
an outcome.
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1 Causal Effects and Potential
Outcomes

Researchers often conclude that a factor X is asso-
ciated (or correlated) with an outcome Y . How-
ever, it may be of interest to be able to con-
clude that factor X causes outcome Y. Causal
inference methods aim to answer questions such
as: Do Covid masking restrictions reduce coron-
avirus rates? Does chemotherapy plus radiother-
apy increase survival in women with endometrial
cancer? Does physical therapy prevent back pain
after surgery? Commonly used analytic designs
and approaches may only allow one to conclude
that these interventions aremerely associatedwith
the outcomes. For example, say a study con-
cludes that prostatectomy (surgery to remove the
prostate) is associated with increased survival
among men over the age of 65 with stage III
prostate cancer. One interpretation would be that
elderly men who received a prostatectomy tended

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
F. W. Asselbergs et al. (eds.), Clinical Applications of Artificial Intelligence in Real-World Data,
https://doi.org/10.1007/978-3-031-36678-9_7

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36678-9_7&domain=pdf
mailto:a.f.schmidt@amsterdamumc.nl
https://doi.org/10.1007/978-3-031-36678-9_7


110 M. Katsoulis et al.

to have longer survival compared to elderly men
who did not receive a prostatectomy. On the other
hand, say a study concludes that tacrolimus (a skin
ointment) causes a reduction in skin inflammation
in patientswith atopic dermatitis. A possible inter-
pretation here would be that tacrolimus, if hypo-
thetically applied to the entire patient population,
results in a lower overall skin inflammation rate in
this patient population as compared to the hypo-
thetical setting inwhich no tacrolimuswas admin-
istered. In the former example, we are making a
comparison of outcomes on the basis of treatment
actually received. In the latter example, we are
making a comparison of two hypothetical scenar-
ios, i.e., the entire population either taking or not
taking the treatment. The latter example is what is
called a causal effect and is the focus of the field
of causal inference [1, 2].

Of note, whether association or causation is
of importance is fully dependent on the research
question at hand. For instance, in cardiovascular
research, there is an interest in investigating gen-
der differences in the occurrence of cardiovascular
disease.Thismayhave apartial causal explanation
or may reflect historical and societal disparities
in cardiovascular care between genders. Regard-
less, having knowledge on the association of gen-
der and disease outcomes can help with clinical
aspects of preventive care, diagnosis, and prog-
nosis irrespective of causality. Many researchers
feel that causal claims can only be made when the
exposure of interest can be intervened upon (e.g.
dosage of a medication) rather than inherent char-
acteristics such as race or gender. For example,
there is an ongoing discussion on whether one can
consider race to be a cause since it is not manipu-
lable [3].

Formal causal theory and methods are needed
in order to obtain a causal interpretation. Let’s first
consider a simple linear regression model:

Y = β0 + β1X + ε; ε
i id∼ N (0, σ 2)

In this model, we often interpret β1 by saying
“a one unit increase in X is expected to lead to
an increase in Y of β1 units”. In reality, we sim-
ply observe some people with X = x and other

people with X = x ′. Often we do not observe a
change from x to x ′ in any single person. This
then leads to the problem of how to infer causal-
ity. In order to define causal effects of interest there
are two important components we must spec-
ify: (1) a model for the observed data and (2)
causal assumptions (which we define in the next
section). Causal assumptions are the link between
our observed data and causal effects of interest;
however, they are often not verifiable.

Here, we introduce the potential outcomes
(counterfactual) framework first described by
Rubin [4, 5] in order to aid in defining causal
effects. We start with common notation. First,
let A denote intervention. This can be defined
as anything from a medical treatment, policy
intervention, or exposure. Note that capital A is
a random variable and lowercase a refers to a
particular realization of the random variable A.
For example, we can say A = 1 if a flu vaccine
is received and A = 0 otherwise. Ai refers to
the treatment status of subject i . Next, we let
Y denote an outcome of interest which could
be continuous (e.g. cholesterol levels), discrete
(e.g. cancer remission or not), time to event (e.g.
survival), or multidimensional (e.g. longitudinal
measures of a biomarker). For example, we can
say Y = 1 if you experience a recurrence of breast
cancer within 5 years and Y = 0 otherwise.

We can think of potential outcomes as the out-
comes we would see under each possible treat-
ment option. For now, we consider the simplest
scenario where treatments take place at one point
in time; later in the chapter we address treatments
over time. Here, Ya is the outcome that would
be observed if treatment was set to A = a. Each
person has potential outcomes {Ya; a ∈ A}. For
instance when the treatment is binary, Y 0 is the
outcome if treated and Y 1 is the outcome if not
treated.

Let’s look at an example where the outcome is
time to event. If treatment is influenza vaccine and
the outcome is the time until the individual gets
the flu, we would use the following notation:

Y 1: time until the individual would get the flu
if they received the flu vaccine,



Causal Inference and Non-randomized Experiments 111

Y 0: time until the individual would get the flu
if they did not receive the flu vaccine.

A second example, where the outcome is
binary, is as follows. If treatment is local (A = 1)
versus general (A = 0) anesthesia for hip fracture
surgery and the outcome (Y) is major pulmonary
complications we would use the notation:

Y 1: equal to 1 if major pulmonary complica-
tions and equal to 0 otherwise, if given local
anesthesia,
Y 0: equal to 1 if major pulmonary complica-
tions and equal to 0 otherwise, if given general
anesthesia.

Now, the observed outcome Y is the outcome
under the treatment that a subject actually
receives; that is, Y = Y A. In most studies,
where participants receive either an intervention
treatment or a comparator treatment, for a single
subject one can only observe Y 1 or Y 0, and the
outcome under the complimentary treatment
can be thought of as missing. Counterfactual
outcomes are ones that would have been observed
had the treatment been different. If a person’s
treatment was A = 1, then their counterfactual
outcome is Y 0. If that person’s treatment was
A = 0, then their counterfactual outcome is Y 1.

Let’s look at the influenza example again to
understand counterfactual outcomes. The causal
question we ask is “Did influenza vaccine pre-
vent me from getting the flu?”.What actually hap-
pened:

1. I got the vaccine and did not get sick.
2. My actual exposure was A = 1.
3. My observed outcome was Y = Y 1.

Whatwould have happened (contrary to fact) had I
not gotten the vaccine?Would I have gotten sick?

1. My counterfactual exposure is A = 0.
2. My counterfactual outcome is Y 0.

Before the treatment decision is made, any out-
come is a potential outcome: Y 0 and Y 1. After
the study, there is an observed outcome, Y = Y A,

and counterfactual outcomes Y 1−A. Counterfac-
tual outcomes Y 0,Y 1 are typically assumed to
be the same as potential outcomes Y 0,Y 1. Thus,
these terms are often used interchangeably.

Note that so farwehave implicitly assumed that
the treatment given to one subject does not affect
the outcome for another subject, i.e., Y

ai ,a j
i =

Y
ai ,a′

j
i . In other words, they are independent. If

this assumption holds, we can simply write the
potential outcome for subject i as only dependent
on ai (one index). However, in many situations,
this assumption could be violated such as in the
setting of infectious disease. For instance, vacci-
nating one person in a householdmight reduce risk
of disease among others in the household. This is
known as interference.

Now that we have defined potential outcomes,
we can formally define causal effects. In general,
we say that A has a causal effect on Y if Y 1 differs
fromY 0. For example, let’s sayA iswhether or not
you take a coldmedication (A=1you take it, A=0
you don’t) andY is that your sore throat goes away
after an hour (Y = 1 it goes away, Y = 0 it doesn’t).
Clearly, the statement “I took the cold medicine
and my sore throat is gone, therefore the medicine
worked” is not proper causal reasoning. This claim
is equivalent to Y 1 = 1. But what would have hap-
pened had you not taken the medicine (Y 0 =)?
There is only a causal effect if Y 1 �= Y 0. This
bring us to the “fundamental problem of causal
inference” which stems from the issue that we can
only observe one potential outcome for each per-
son. However, with certain assumptions, we can
estimate population level (average) causal effect
which we will focus on next. In other words, it is
possible to answer: What would the rate of sore
throat cure be if everyone took the cold medicine
versus if no one did?However,without very strong
assumptions, we cannot identify individual causal
effects that would allow us to answer:What would
have happened to me if I had not taken the cold
medicine?

Let’s first consider individual causal effects.
Consider a simple case of binary treatment (A =
1 if treated) and a binary outcome (Y = 1 if
died). There are four types of individual causal
effects [6].
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Causal type Y 0 Y 1 δ = Y 1 − Y 0

Treatment fatal 0 1 1
Always live 0 0 0
Always die 1 1 0
Treatment curative 1 0 −1

Now, let’s supposewe have a randomized study
(A is randomized) with n participants and there is
perfect compliance (all of the study participants
adhere to the treatment they are randomized to).
In this study, we never observe Y 0 and Y 1 for
any individual. Instead, we have a random sample
of Y 1’s and a random sample of Y 0’s. We can-
not identify δ for any individual. However, we
can identify the marginal probabilities P(Y 1 = 1)
and P(Y 0 = 1). Importantly, We can also identify
E(δ).

Consider an example where we know that
P(Y 1 = 1) = 0.1 and P(Y 0 = 1) = 0.2. In this
example, the treatment reduces risk on average
by 0.1. We can first write out these marginal
probabilities in terms of joint probabilities:

P(Y 1 = 1) = P(Y 1 = 1, Y 0 = 1) + P(Y 1 = 1, Y 0 = 0),

P(Y 0 = 1) = P(Y 1 = 1, Y 0 = 1) + P(Y 1 = 0, Y 0 = 1).

We can then write out three examples of the
potential outcomes distributions that are consis-
tent with the observed data as follows:

Causal type Ex1 Ex2 Ex3
Treatment fatal 0 0.05 0.1
Always live 0.8 0.75 0.7
Always die 0.1 0.05 0
Treatment curative 0.1 0.15 0.2

So, for instance, in Ex 1:

P(Y 1 = 1) = P(Y 1 = 1, Y 0 = 1)

+ P(Y 1 = 1, Y 0 = 0)

= 0.1(always die)

+ 0(treatment fatal) = 0.1,

P(Y 0 = 1) = P(Y 1 = 1, Y 0 = 1)

+ P(Y 1 = 0, Y 0 = 1)

= 0.1(always die)

+ 0.10 (treatment is curative) = 0.2.

The average causal effect (ACE) is one of the
most common causal targets of inference used to
compare treatments/exposures. The ACE is given
by E(Y 1 − Y 0). This is the average outcome if
everyone had been treated versus if no one had
been treated; Fig. 1. Importantly, this is typically
not equal to E(Y |A = 1) − E(Y |A = 0) which is
the average outcome in those who were treated
versus the average outcome in those who were not
treated; Fig. 2. Specifically, in non-randomized
studies, patients who receive a treatment (say
surgery) may be very different than those who do
not. For instance, thosewho are deemedfit towith-
stand surgery may be younger, more healthy, and
are less likely to smoke than those who are chosen
not to receive surgery.

Fig. 1 The average causal effect

Fig. 2 Effect of a treatment in the real world
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In addition to the ACE, E(Y 1 − Y 0), other
causal estimands of interest may include the
causal risk ratio, E(Y 1)/E(Y 0), the average
causal effect among a subgroup defined by
V, E(Y 1 − Y 0|V = v), and the average treat-
ment effect among the treated (ATT) given by
E(Y 1 − Y 0|A = 1) [2]. The ATT, for instance,
is a useful estimand when there is interest in
the effect of an intervention (say, a treatment
of hypertension) on those who received the
intervention.

2 Necessary Conditions
for Causality

2.1 Randomized Studies
with Perfect Compliance

In Sect. 1, we formulated causal effects in terms of
potential outcomes. Since potential outcomes are
not fully observed we need tomake some assump-
tions in order to be able to estimate (or identify)
causal estimands of interest from the observed
data. These are called identifying assumptions.
Let’s first consider a randomized study where
there is perfect compliance. In other words, if R is
the randomization indicator and A is an indicator
of the treatment that is actually taken, then if there
is perfect compliance in the trial, R = A. We will
again consider the potential outcomes Y 0 and Y 1.
In randomized trial with full compliance, clearly
R is independent of the potential outcomes Y 0 and
Y 1. We can express this independence in two dif-
ferent ways using the concepts of ignorability and
exchangeability [6].

Ignorability is stated as P(R = 1|Y 0,Y 1) =
P(R = 1). In other words, treatment assignment
does not depend on the potential outcomes. Say
treatment assignment depends on the flip of a
coin. Clearly the flip of the coin does not depend
on the potential outcomes. Now, if everyone has
some non-zero chance of being randomized to the
treatment arm, we achieve strong ignorability.
This assumption that 0 < P(R = 1) < 1 is called
positivity and in this case refers to the fact that we
have experimental treatment assignment. Another
way to express independence is the concept of

exchangeability. We can state exchangeability
as f (Y 0,Y 1|R = 1) = f (Y 0,Y 1|R = 0) =
f (Y 0,Y 1) (where f is the distribution of the
potential outcomes). In other words, subjects
randomized to R = 1 or R = 0 are representative
of all subjects with respect to the potential
outcomes. They are exchangeable.

Exchangeability implies that f (Y 1) =
f (Y 1|R = 1) = f (Y |R = 1) and f (Y 0) =
f (Y 0|R = 0) = f (Y |R = 0). What we mean
by this is that in a randomized trial with perfect
compliance, the observed data (the observed
outcome Y and the randomization indicator
R) are enough to identify the distributions of
the potential outcomes, allowing us to estimate
causal effects.

Often exchangeability is denoted simply as
Ya �

A, which can be generalized to include con-
ditional exchangeability Ya �

A|L , for covariate
L .

2.2 Observational Studies

Randomization allows us to assume, on aver-
age, that subjects in different treatment arms are
similar to each other on all important factors,
whether those factors are measured or not; see
Sect. 3. In observational studies, the treatment,
intervention or exposure is not controlled by the
investigator and by definition is not randomized;
although quasi-experiments may naturally occur
[7]. Hence, subjects in the treatment group may
look very different from those in the compari-
son group. For instance, men receiving surgery for
prostrate cancermay be younger, more likely to be
a nonsmoker, and have fewer comorbidities than
men who do not receive surgery. The decision,
made between the patient and physician, may be
based in part by howwell the patient is expected to
tolerate the surgery. Without accounting for these
differences in patient characteristics, the surgery
group’s survival after surgery may look better
than the control group’s merely because they were
healthier to begin with. As mentioned before, fac-
tors that affect both the treatment decision and the
outcome are called confounders.
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Confounding is an important issue that must be
addressed in the causal analysis of observational
studies. Note that there may also be confound-
ing in randomized trials where there is noncom-
pliance (i.e., R �= A) due to the fact that patients
who do not comply with their treatment assign-
ment maybe be different than those who stay on
their assigned treatment and those factors may be
related to their outcome. This is why RCTs typi-
cally do not directly assess treatment effects, but
instead estimate the “Intention to Treat” effect;
see Sect. 3. If confounders are measured, without
meaningful error, we can use standard adjustment
methods to control for confounding such as strati-
fication on the confounder, regression adjustment
or propensity score methods. Let L be a set of
baseline (pre-treatment) covariates. Ignorability
in this context means that there is no unmeasured
confounding. In other words, if we condition on
L , we can control for confounding (there’s no hid-
den bias). If there is no unmeasured confounding,
then if we, say, stratify on these covariates, within
those strata, we would essentially have a random-
ized trial. Hence, ignorability can be thought of
as conditional randomization where A is indepen-
dent of the potential outcomes (Y 0, Y 1) given L .

Let’s consider an example where treatment
assignment depends on the potential outcomes
where sicker patients are more likely to be
treated. Hence, treated patients have a higher risk
of a bad outcome. We need to account for these
pre-treatment differences in health. Suppose L
are measures of health such as family history
of disease, age, weight, smoking status, alcohol,
comorbidities, etc. Then within levels of L (i.e.,
people of the same age, with same co-morbid
conditions, of same weight, with same smoking
status, etc.), we hope that less healthy patients
are not more likely to get treatment. This is the
ignorability assumption.

The ignorability setting is comprised of the fol-
lowing three causal assumptions:

• (Condtional) exchangeability: treatment is as
if randomized conditional on covariates (e.g.
within covariate strata).

• Positivity: treatment is not assigned in a
deterministic fashion (all subjects have a

non-zero probability of being assigned to
treatment regardless of their covariates). This
can be violated when certain treatments are
simply unavailable. For example, depending
on the urgency, general anesthesia may be the
only option available for women undergoing
Cesarean section.

• Consistency: the potential outcomes are
uniquely defined by each subject’s own treat-
ment level. This can be violated in situations
such as a vaccine trial where one subject’s
vaccination status can affect another subject’s
potential outcomes. Other examples include
poorly defined exposures such changes in
BMI which may be occur due to causes such
as diet, physical activity or disease.

These identifying assumptions allow us to esti-
mate causal effects directly from the observed data
Y, A, L .

3 Randomized Controlled Trials
and Estimands of Treatment
Effect

In the preceding sections we established a
formal definition of causality, and discussed
the necessary conditions to interpret a mea-
sure of association as an estimate of a causal
effect.

Historically, discussions on causality have
focused on choices in study design, or exper-
iments, where randomized controlled trials
(RCTs) remain the unequivocal paradigm. The
developed mathematical framework allows
for a more detailed discussion of why RCTs
provide such a robust design to assess causality.
Developing the necessary algebra to describe
trial inference is important because it allows us to
consider what additional step (analytical or design
wise) are required to explore causality in non-
randomized (i.e., observational) study designs.
Before discussing these analytical methods, we
will therefore first further introduce RCTs and
touch upon some of the different estimands used
in practice (i.e., the type of effect one attempts to
estimate).
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3.1 Why Association Does Not Imply
Causation

Some key features of RCTs include (1) the pres-
ence of contemporary intervention and control
groups, (2) random allocation of subjects to these
groups, and (3) blinding of participants (and often
the treating medical professionals) to the group
allocations.

If we strip away these three features we are left
with a single arm study of subjects who received
an intervention. For example the left-panel in
Fig. 3 illustrates the results of a hypothetical
study assessing the concentration of low-density
lipoprotein cholsterol (LDL-C) before (T = 1)
and after (T = 1) subjects were offered treatment
with PCSK9monoclonal antibodies (mAb, a lipid
lowering drug [8]). A single arm study would
exclusively consider the treated group (A = 1).
In contrast a “parallel group” design would also
consider measurements in participants who did
not (decide to) receive treatment (A = 0).

An obvious aim would be to attempt to quan-
tify by how much taking PCSK9 mAb decreases
LDL-C concentrations compared to not taking
PCSK9mAb over the same period of time. A rele-
vant estimand would be the average causal effect:
E(Y 0 − Y 1) = α.

A naive estimate of the treatment lowering
effect of PCSK9 mAb would be to use the single
arm study and simply take the difference in
post- and pre-treatment LDL-C concentrations:
E(Y |A = 1, T = 1) − E(Y |A = 1, T = 0).
Given that this is a hypothetical example we can
also look at the otherwise unknown counterfactual
pre- and post-treatment LDL-C concentrations,
to clearly see that E(Y |A = 1, T = 1) −
E(Y |A = 1, T = 0) �= E(Y 0 − Y 1). Here we
reiterate that by the exchangability assumption
E(Y 0 − Y 1) = E(Y 1,t=1 − Y 1,t=0), meaning
that under exchangbility T is ignorable.

As is clear fromFig. 3 the difference in pre- and
post-treatment LDL-C concentrations (in treated
subjects) does not match the counterfactual differ-
ence. In practice this can be caused by a myriad of
reasons, often closely linked to the study design
and participant sample. In general, one would
expect post-treatment concentrations to decrease

whenever treatment initiation is (partially) based
on a biomarker measurement being elevated (e.g.,
hypercholesterolemia). Measurements are always
subject to (small) random fluctuations, as such the
high value necessary to initiate treatment most
likely reflects a degree of random upwards vari-
ation, which is unlikely to be of the same mag-
nitude in subsequent measurements, hence result-
ing in a decrease. This well known phenomenon
is often referred to as ”regression to the mean”
[13]. Furthermore, depending on the diagnosis it
is not uncommon for a clinician to initiate multi-
ple interventions at the same time. In our exam-
ple, typically a prescription of lipid lowering ther-
apy would coincide with (referral for) life-style
counseling. Similarly, the simple act of prescrib-
ing a drug, will incentivse some patients to self-
initiate life-style changes (e.g., start exercising
more) which will (on average) decrease LDL-C
independent of any effect of PCSK9 mAb.

Clearly a single arm study, comparing pre-
and post-treatment LDL-C concentrations, will
unlikely provide a good estimate of the causal
effect of PCSK9 mAb lowering. Instead we could
consider conducting a cohort study of contempo-
rary participants initiating PCSK9mAb (the treat-
ment group), compared to a control group of par-
ticipants who do not receive any treatment; Fig. 3.
Assuming for the moment that the control group
participants were “blinded” from the fact they did
not receive any treatment, the difference inLDL-C
concentration of the control group participants is
identical to that of the counterfactual (i.e, compar-
ing measurements at T = 0 to T = 1). However,
because treatment was not initiated at random, we
see that the control group measurements are sub-
stantially lower than that of the counterfactual;
simply reflecting that medical professionals treat
patients at risk. As such, despite having a control
group, the difference between the treatment and
control group will not equal our inferential target.

3.2 Treatment Estimands in Trials

While by itself inclusion of a control group does
not typically result in a causal effect estimate
of our inferential target E(Y 0 − Y 1) = α, it
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Fig. 3 Causal contrasts
in a study evaluating
changes in LDL-C
concentration. The
left-panel represents a
possible non-randomized
study, and the right-panel a
possible scenario for a
randomized study. Notice
that the x-axis values are
slightly dodged to help
identify overlapping points
and lines
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does provide a suggestion how we could further
improve our study – we could randomize treat-
ment assignment! The right-panel of Fig. 3 illus-
trates this, showing agreement between the control
groupmeasurements and the counterfactual LDL-
C measurements. In this setting we will have that
E(Y |A = 1, T = 1) − E(Y |A = 0, T = 1) =
E(Y 0 − Y 1), implying that stringently designed
RCTs provide relevant causal estimates.

If we simply focus on time T = 1 the above
estimator E(Y |A = 1) − E(Y |A = 0) is often
referred to as the “as-treated” (AT) estimator.
Interestingly, and contrary to the above deriva-
tions, the AT estimator is considered to be a
biased estimator. To see why, we will move a
way from the hypothetical trial with perfect com-
pliance (see Sect. 2.1), and expand our example
to differentiate between treatment allocation Z ,
and the actual treatment taken A. To illustrate the
difference, note that adherence is defined as

P(A = 1|Z = 1) − P(A = 1|Z = 0) = φ

where values close to 1 indicate subjects generally
took the allocated treatment, and smaller values
indicate non-adherence to treatment allocation.

In the previous subsection we thus made the
implicit and unrealistic, assumption of complete
adherence. Worse, as shown in Fig. 4, in the pres-
ence of non-adherence the association between A
and Y will be subject to confounding by common
cause(s) L , violating the exchangeability assump-
tion: Ya � �

A. Hence, in the presence of non-
adherence, the AT-estimator will never equal the
true causal treatment effect unless we are willing

to assume there are no L at all. We could of course
decide to condition on L and create a conditional
AT-estimator, however knowledge of L is typi-
cally incomplete and above all it would be difficult
to determine when such conditioning sufficiently
addressed confounding - defeating the purpose of
a trial: balancing on known as well as unknown
confounders.

Z A Y

L

Fig.4 Adirected acyclic graph representation of a ran-
domized control trial. Here Z represent treatment alloca-
tion, X treatment itself, Y the primary outcome, L mea-
sured and unmeasured common causes of X and Y . The
directed paths (i.e., arrows) represents a cause and effect
relation of unspecified magnitude which may also include
zero (i.e., when there is no path)

Due to the frailty of associating Awith Y , trials
commonly forgo this estimand entirely and per-
form an “intention to treat” (ITT) analysis, with
estimator

E(Y |Z = 1) − E(Y |Z = 0) = αφ + τ.
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Here α is the effect treatment allocation has on
the outcome mediated through A. Additionally τ

represents the possibility that treatment allocation
may affect the outcome indirectly, sidestepping A.
For example, subjects allocated to the untreated
group may decide to exercise more. Inclusion of
τ �= 0 is of course problematic because the ITT
estimator no longer solely evaluates effects medi-
ated throughA, and a trial may incorrectly suggest
treatment is beneficial.

By defining the ITT estimator as the sum of
the true causal treatment effect (α) multiplied by
adherence (φ) and the direct effect (τ ) of treat-
ment allocation, we can finally comment on the
relevance of blinding in trial design. Blinding trial
participant and staff, to knowledge of the allocated
treatment ensures that, on average, enrolled sub-
jects behave the same-way irrespective of Z , and
thus that we can assume τ = 0. The results of this
is that E(Y |Z = 1) − E(Y |Z = 0) �= 0 implies
that α �= 0, irrespective of treatment adherence.
In many ways randomization and blinding are
complementary strategies to ensure participant
groups are (on average) similar at baseline (ran-
domization) and behave similar during follow-up
(blinding).

Assuming blinding and randomization were
conducted adequately the ITT estimator thus
equals α only if participants completely adhered
to treatment allocations. In all other settings
the ITT estimator is a biased estimator of the
causal treatment effect and will not equal α.
The ITT estimator is thus a flawed estimator.
Nevertheless, it does have desirable properties,
1) when sufficiently blinded the ITT estimator
will (on average) be zero whenever α = 0, and
therefore 2) it often provides a robust indicator
of effect direction (i.e., whether treatment is
beneficial or not).

While the ITT estimator does not in general
provide an estimate of our inferential target α, we
canhowever use it to performan instrumental vari-
able (IV) analysis, which assuming τ = 0, will on
average equal our inferential target:

E(Y |Z = 1) − E(Y |Z = 0)

P(X = 1|Z = 1) − P(X = 1|Z = 0)
= αφ

φ
,

= α.

This IV estimator essentially corrects the ITT
estimate for the amount of non-adherence, and in
doing so obtains an estimate of α = E(Y 1 − Y 0).
Of course all this is under the assumption the trial
has been appropriately randomized and blinded,
which we can elegantly frame as ignorabililty.
It is important to reiterate that the ignorabililty
assumption refers to the randomized groups and
as such all the previously discussed estimands
will not generally hold for individuals, and do
not represent individual causal effects unless there
are convincing reasons to expect an absence of
between-patient treatment heterogeneity [9]. Note
Schmidt et al. 2018 [10] discusses IV analysis
in the a setting of a meta-analysis of potentially
unblinded trials, where τ �= 0.

4 Non-randomized Experiments
of Time-Fixed Exposure
and Confounders

As discussed RCTs are the gold standard to
explore causal were design steps such as ran-
domization and blinding are essential to ensure
the three critical assumptions (exchangeability,
positivity and consistency) are likely true. In
many cases onemay not be able to perform aRCT,
for example an RCT may be prohibitively costly,
or patients may be difficult to recruit. Moreover,
randomisation may not always be ethical, for
example when the comparator intervention can
cause harm (e.g., shame surgeries). Because of
these reasons only a small proportion (15–20%)
clinical practice guidelines are based on an ’A’
level of evidence (based on multiple RCTs), and
most rely on evidence from non-randomized
(observational) studies [11, 12]. It is therefore
essential to be able to identify, and conduct, high
quality analyses using non-randomised study
designs.

Non-randomised studies, in contrast to RCTs,
may be much less convincing to assess causal
inferences for treatments/interventions. As an
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example, take an observational study from
electronic health records where a researchers is
interested in evaluating the effect statin prescrip-
tion may elicit on the incidence of cardiovascular
disease. Those who initiated statins are more
likely to be in a worse health state compared
to those who did not initiate statins. In other
words, it is very likely that we have problems
due to confounding by indication. If we have suf-
ficiently detailed information from for example
EHR capturing all the confounding variables,
then there are many options to account for such
confounding bias; otherwise, our analysis will
suffer from unmeasured confounding. In the
next paragraphs, we will explain in detail how
to deal with non-randomised experiments of
time-invariant exposures.

Let’s focus on the following example: in the
Table below, we have 12 patients with measured
data on statin initiation X (0 = untreated, 1 =
treated) and whether they developed cancer after
10 years, i.e. cancer incidence Y (0 = no cancer, 1
= cancer). The question of interest is: What is the
effect of statin initiation on cancer incidence?

Participant Other comorbidities L Statin X Cancer Y
Isabella 0 0 0
Oliver 0 0 1
Rachel 0 0 0
George 0 0 1
Rebecca 0 1 0
Oscar 0 1 1
Natalie 1 0 1
Tom 1 0 0
Margaret 1 0 0
Charles 1 1 1
Olivia 1 1 0
Harry 1 1 0

From these data, we observe that statin
initiation (X ) is associated with cancer inci-
dence (Y ): the probability of developing cancer
among those who initiated statin therapy is
P(Y = 1|X = 1) = 2/5 = 0.40, while the proba-
bility of developing cancer among those who did

not initiated statin therapy is P(Y = 1|X = 0) =
3/7 = 0.43. The observed risk difference, is
P(Y = 1|X = 1) − P(Y = 1|X = 0) = −1/35.
At face value the observed difference in cancer
incidence between statin initiators might be
taken to imply statin prescription is carcinogenic.
Depending on the plausibility of the in sect.
2.2 assumptions, the observed difference may
be distinct from our inferential target estimand
P
(
Y X=1 = 1

) − P
(
Y X=0 = 1

)

Let’s assume that, in an over-simplistic sce-
nario, the two groups have the same characteris-
tics (age, sex socioeconomic status, family history
of cancer etc.), apart from other comorbidities L .
In other words, if we account for other comorbidi-
ties appropriately in this sample, we will emulate
randomisation successfully.

Under the consistency, (conditional) exchange-
ability, and positivity assumptions (see sect. 2.2),
we can estimate P

(
Y X=1 = 1

) − P
(
Y X=0 = 1

)

accounting for L , using standard regression mod-
elling, standardisation or inverse probability of
weighting.

4.1 Analytical Methods to Estimate
the Effect of Time-Fixed
Exposures

4.1.1 RegressionModelling
Standard regression modelling, in which we
include all the (likely) confounders as covariates
is a popular way of dealing with time-fixed
confounders. In the example presented above,
we could choose to create a logistic regression
model, given that the outcome is binary. In that
case, the estimand of interest would be the causal
odds ratio, i.e.

causal odds ratio =
P
(
Y X=1 = 1

)

P
(
Y X=1 = 0

)

P
(
Y X=0 = 1

)

P
(
Y X=0 = 0

)

which will be equal to the observed (conditional)
odds ratio
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observed odds ratio =
P(Y = 1|X = 1, L = l)

P(Y = 0|X = 1, L = l)
P(Y = 1|X = 0, L = l)

P(Y = 0|X = 0, L = l)

under the assumptions described in sect. 2.2.
Moreover, the observed odds ratio for X can be
easily calculated from a logistic regression where
the outcome is Y and we adjust for L , i.e.

logit(P(Y = 1|X, L)) = a0 + a1X + a2L

In the example of Fig. 5, the odds ratio OR=ea1

is equal to 1, which means that

P

(
Y X=1 = 1

)
= P

(
Y X=0 = 1

)
.

4.1.2 Standardisation—G-Formula
The G-formula provide an alternative approach to
account for possible confounding. Here we wish
to obtain an unbiased estimate of the outcome
risk under different interventions X leveraging
the fact that conditional on L , the counterfactial
outcome is independent of X , e.g. the conditional
exchangeability assumption holds: Y x �

X |L .
Specifically, the observed conditional risk under
treatment is equal to the counterfactual risks:

P(Y = 1|X = x, L = l) = P

(
Y X=x = 1|L = l

)

To calculate the P
(
Y X=x = 1

)
, we will use the

formula

P

(
Y X=x = 1

)
=

∑

l

P(Y = 1|X = x, L = l)

×P(L = l) , l ∈ {0, 1}
In other words,

P

(
Y X=1 = 1

)
= P(Y = 1|X = 1, L = 0) × P(L = 0)

+P(Y = 1|X = 1, L = 1) × P(L = 1)

and

P

(
Y X=0 = 1

)
= P(Y = 1|X = 0, L = 0) × P(L = 0)

+P(Y = 1|X = 0, L = 1) × P(L = 1)

Risk had all individuals received treatment:
P
(
Y X=1 = 1

)

We know that the risk if all individuals had been
treated is 1/2 in the 6 individuals with L = 0 and
1/3 in the 6 individuals with L = 1. Therefore, the
risk if all individuals in the population had been
treatedwill be aweighted average of 1/2 and 1/3 in
which each group receives a weight proportional
to its size. Since 50% of the individuals are in
group L = 0 and 50% of the individuals in L = 1
The weighted average will be (1/2 × 0.5) + (1/3
× 0.5) = 0.42.

Risk had no individuals received treatment:
P
(
Y X=0 = 1

)

We know that the risk if all individuals had not
been treated is 2/4 in the 6 individuals with L = 0
and 1/3 in the 6 individualswith L = 1. Therefore,
the risk if all individuals in the population had not
been treated will be a weighted average of 1/2 and
1/3 in which each group receives a weight pro-
portional to its size. Since 50% of the individuals
are in group L = 0 and 50% of the individuals in
L = 1. The weighted average will be (2/4 × 0.5)
+ (1/3 × 0.5) = 0.42.

4.1.3 Inverse Probability Weighting
Inverse probability weighting (IPW) is a further
alternative method to account for confounding,
here one creates a pseudo-population in which
treatment is independent of the covariates L .
Treated and the untreated are (unconditionally)
exchangeable in the pseudo-population because
the X is independent of L . In other words, the
arrow from the covariates L to the treatment X is
removed (see Fig. 5).

Using IPW, we weight each individual by the
inverse of the probability of receiving the treat-
ment (exposure), conditional on the confounders.

IPW = 1

P(X |L)
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X

L

Y X

L

Y

Fig. 5 Directed acyclic graphs in the population (right
panel) and the pseudo-population (left panel) creates by
inverse probability weights

In our example, the created pseudo-population
will be twice as large as the original population
(see Fig. 5 in the right). Under conditional
exchangeability Y x �

X |L in the original
population, treatment is randomized in the
pseudo-population i.e. treated and the untreated
are (unconditionally) exchangeable in the pseudo-
population because the X is independent of L
From the pseudo-population, we can calculate
P
(
Y X=1 = 1

)
and P

(
Y X=0 = 1

)
.

That is, the associational risk ratio in the
pseudo-population is equal to the causal risk ratio
in both the pseudo-population and the original
population.

In the pseudo-population (seeFig. 6weobserve
that a) among the untreated the expected num-
ber of cancer events are 5 in 12 individuals, i.e.
P
(
Y X=0 = 1

) = 5/12 = 0.42, and b) among the
treated the expected number of cancer events are
5 in 12 individuals, i.e. P

(
Y X=1 = 1

) = 5/12 =
0.42. We therefore find that there is no causal
effect of treatment X on the outcome Y, i.e.,
P
(
Y X=0 = 1

) = P
(
Y X=0 = 1

)
.

5 Non-randomized Experiments
of Time-Dependent Exposure
and Confounders

In this chapter, we will explain how to deal with
non-randomised experiments of time-dependent
exposures. We will first explain why standard
methods (e.g., outcome regression models) fail to
provide correct estimates of average causal expo-
sure effect estimate correctly the causal effect

when time-dependent confounders are affected by
exposure (treatment) history.

5.1 Why StandardMethodsMay Fail

In Fig. 7 treatment A can change with time t ∈
{0, 1}, as do the confounders L . In this example,
L1 is both a confounder (between A0 and Y ) and
a mediator (between A1 and Y ), in other words,
we should both adjust for L1 (because it is a con-
founder) andnot adjust for L1 (because it’s amedi-
ator). If we adjust for L1, we induce bias because
we block part of the effect of A0 through L1. How-
ever, if we do not adjust for L1, the estimated
effect will be biased through the back door path-
way A1 ← L1 → Y , which induces confounding
bias.

5.2 Use of G-Methods to Overcome
the Problem

Below, we will present an example we IPW is
used account for time-varying confounding with-
out removing exposure effectsmediated by L0 and
L1. IPW creates a pseudo-population in which the
arrows headed to A0 and A1 do not exist and hence
we do not need to adjust for L0 and L1 (Fig. 8).

For example, in the table below, if
we want to estimate the causal contrast
E(Y ā=(1,1)) − E(Y ā=(0,1)),when ā is the treat-
ment history, then we should estimate the associ-
ational risk difference in the pseudo-population
E(Y |A0 = 1, A1 = 1) − E(Y |A0 = 0, A1 = 1)
created by the weights

IPW = 1

P(A0|L0) × P(A1|L0, A0, L1)

= 282.5 − 281.82 = 0.68.

Please note, that we would not get the correct
answer for the causal effect of A on Y if
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Fig. 6 Calculation of inverse probability weights (IPW)

L0

A0

L1

A1 Y

Fig.7 A directed acyclic graph with time-dependent con-
founders L affected by treatment history

L0

A0

L1

A1 Y

Fig.8 A directed acyclic graph with time-dependent con-
founders L affected by treatment history in the pseudo-
population, created by IPW
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1. we do not adjust for L0 and L1, because the
associational risk difference in the actual pop-
ulation is not causal

E(Y |A0 =1, A1 =1)−E(Y |A0 =0,A1 =1)

= 297 − 288.57 = 8.43

2. we adjust for L0 and L1 (e.g. through stan-
dardisation), because the standard methods fail
in the context of time dependent confounding
affected by prior treatment.

For example, within the strata defined by L0

and L1, we have that

L0 = 0, L1 = 0 : E(Y |A0 = 1, A1 = 1)

− E(Y |A0 = 0, A1 = 1) = 280 − 250 = 30,

L0 = 0, L1 = 1 : E(Y |A0 = 1, A1 = 1)

− E(Y |A0 = 0.A1 = 1) = 240 − 300 = −60,

L0 = 1, L1 = 0 : E(Y |A0 = 1, A1 = 1)

− E(Y |A0 = 0, A1 = 1) = 280 − 300 = −20,

L0 = 1, L1 = 1 : E(Y |A0 = 1.A1 = 1)

− E(Y |A0 = 0.A1 = 1) = 340 − 280 = 60.

Accounting for L0 and L1 (e.g., through regres-
sion adjustment) would give us an estimate of

E(Y |A0 = 1, A1 = 1) − E(Y |A0 = 0, A1 = 1)

which is equal to

30 × P(L0 = 0, L1 = 0) − 60 × P(L0 = 0, L1 = 1)

−20 × P(L0 = 1, L1 = 0) + 60 × P(L0 = 1, L1 = 1)

= 30 × 5500

23000
− 60 × 5500

23000

− 20 × 6500

23000
+ 60 × 5500

23000
= −0.21,

which does not correspond to the causal risk dif-
ference.

We could also derive unbiased estimates
when dealing with time-dependent confounders,
affected by prior treatment (exposure) using the
other g-methods (i.e. g-formula, g-estimation),
however this is beyond the scope of this chapter.
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Yong Chen

in terms of data privacy, data communica-
tion efficiency, heterogeneity awareness, and 
statistical accuracy. Our goal is to provide 
researchers with the insight necessary to 
choose among the available algorithms for a 
given setting of conducting regression analy-
sis using multi-site data.

1	� Introduction

Following passage of the 21st Century Cures 
Act in 2015, the Food and Drug Administration 
(FDA) has placed additional focus on using real-
world data (RWD) to support regulatory deci-
sion-making. This has resulted in an increase in 
the number of observational studies using RWD 
conducted by researchers in the United States 
to generate real-world evidence [1, 2].Kindly 
note, in order to maintain consistency with other 
chapters in this book, Keywords are required for 
this chapter. Please provide if possible. A study 
using RWD may seek to examine the benefits or 
risks of a particular medical product or interven-
tion, such as whether patients taking a particu-
lar drug are more susceptible to serious adverse 
events than those who are not. Alternatively, 
many studies featuring RWD are epidemio-
logical, focused on identifying risk factors most 
strongly associated with an adverse outcome 
of particular interest. In many of these stud-
ies, regression analyses are often conducted to 
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Abstract

Federated learning has gained great popu-
larities in the last decade for its capability of 
collaboratively building models on data from 
multiple datasets. However, in real-world bio-
medical settings, practical challenges remain, 
including the needs to protect privacy of the 
patients, the capability of accounting for 
between-site heterogeneity in patient charac-
teristics, and, from operational point of view, 
the number of needed communications across 
data partners. In this chapter, we describe and 
provide examples of multi-database data-
sharing mechanisms in the healthcare data 
context and highlight the primary methods 
available for performing statistical regression 
analysis in each setting. For each method, 
we discuss the advantages and disadvantages 
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a cloud or at the coordinating center for the 
study. Other agreements prohibit sharing of IPD, 
instead only allow summary-level aggregate data 
(AD) to be shared by each institution. With this 
distributed or federated data sharing mecha-
nism, individual databases maintain control 
over their own data and conduct analyses locally 
before sharing results with collaborating institu-
tions. Each of these data-sharing arrangements 
permits a distinct set of methods to be used to 
conduct multi-database regression. A popu-
lar nationwide example of a centralized data 
repository is the Nationwide Inpatient Sample 
(NIS) from the Healthcare Cost and Utilization 
Project (HCUP) and a popular example of inter-
national, distributed or federated data network 
is the Observational Health Data Sciences and 
Informatics (OHDSI) network (ohdsi.org). In 
the context of COVID-19, a popular centralized 
data repository is the National COVID Cohort 
Collaborative or N3C (https://ncats.nih.gov/
n3c) and a popular distributed or federated data 
network method is the Consortium for Clinical 
Characterization of COVID-19 by EHR or 4CE 
(https://covidclinical.net/). Both networks have 
large nationwide and international collabora-
tors. N3C has 73 sites within the USA approved 
to share data centrally as of May 2021 [3] and 
4CE has 20 sites within the USA approved to 
collaborate and run similar models locally while 
pooling results for meta-analysis purposes [4]. 
The choice of data sharing mechanism, i.e. cen-
trally or distributively, is often made at the insti-
tutional level, with some institutions being risk 
averse and preferring to run models only locally. 
The potential risk of privacy leakage could hin-
der some institutions from sharing essential IPD 
data and thus limit the study to cover a broader 
population.

The purpose of this review is to describe and 
provide examples of multi-database data-sharing 
mechanisms in the healthcare data context and 
highlight the primary methods available for per-
forming statistical regression analysis in each 
setting. For each regression method, we dis-
cuss the advantages and disadvantages in terms 
of data privacy, data communication efficiency, 

investigate the question of interest. Regression 
allows for modeling an outcome as a function of 
a collection of treatments, exposures, or covari-
ates and enables quantification of associations 
between covariates and the outcome through 
estimated regression coefficients. Several types 
of regression models can be used for modeling 
a variety of health outcomes. For example, con-
tinuous outcomes such as blood pressure can 
be analyzed by linear regression, binary out-
comes such as mortality status can be analyzed 
by logistic regression, count outcomes such as 
number of hospital visits can be analyzed by 
Poisson regression, and time-to-event outcomes 
such as cancer survival time can be analyzed by 
Cox regression.

Real-world observational studies often ben-
efit from their ability to include large amounts 
of patient data from a variety of sources. 
Observational RWD, compared to patient data 
collected in clinical trials or other types of inter-
ventional studies, are relatively inexpensive 
to obtain. RWD are frequently extracted from 
patients’ electronic health records, insurance 
claims, or other written records of patient data. 
Recent improvements in techniques for data 
standardization, phenotype definition, and large-
scale data analysis have made multi-institution 
collaborations for observational studies easier 
than ever, allowing for large sample sizes from 
a variety of heterogeneous sources to generate 
robust real-world evidence and increase general-
izability of results. Studies of rare outcomes or 
exposures can also benefit from multi-institution 
collaboration, with larger collections of patient 
data resulting in increased power to detect sig-
nificant associations.

Large-scale RWD observational studies often 
require multiple institutions to contribute data 
to achieve more generalizable results. The two 
main mechanisms for 'sharing' data include cen-
tralized data repositories and distributed data-
sharing. The granularity of data shared depends 
on the data use agreements (DUA) among par-
ticipating institutions. Some DUAs allow for all 
individual patient data (IPD) to be centralized, 
resulting in a pooling of all patient data within 

https://ncats.nih.gov/n3c
https://ncats.nih.gov/n3c
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heterogeneity awareness, and statistical accu-
racy. Our goal is to provide researchers with 
the insight necessary to choose the data-shar-
ing arrangement and corresponding regression 
method most appropriate for any particular real-
world multi-database study.

2	� Data Sharing Arrangements 
in Multi-database Studies

Before data from different databases can be 
shared either with a centralized or distributed 
mechanism, they need to be standardized to 
ensure that naming conventions and coding 
systems are common across institutions. This 
data standardization or harmonization usually 
requires data to be transformed into a com-
mon data model (CDM) and a common rep-
resentation. Examples of CDMs include the 
Informatics for Integrating Biology and the 
Bedside (i2b2, https://www.i2b2.org/) developed 
by Harvard Medical School and funded by the 
National Institute of Health (NIH) in 2004, the 
Observational Medical Outcomes Partnership 
(OMOP, https://www.ohdsi.org/data-standard-
ization/the-common-data-model/) by OHDSI 
in 2007, the Sentinel CDM (https://www.sen-
tinelinitiative.org/methods-data-tools/sentinel-
common-data-model) launched by FDA in 2008, 
and the PCORnet CDM (https://pcornet.org/
data/) started by the patient Centered Outcomes 
Research Institute (PCORI) in 2014 [5]. The 
data standardization can either be done within 
each participating institution or at the coordi-
nating center, depending on the data-sharing 
mechanism.

2.1	� Centralized Data

When data within multi-database studies are 
centralized, IPD are pooled together from all 
participating institutions within some central 
entity and managed by a coordinating center. 
This type of data sharing arrangement offers 
the largest analytic flexibility, allowing for 
modeling using data at any level of granularity 

(individual- or summary-level). Due to this very 
advantage, centralized data sharing is usually 
preferred by researchers.

Several multi-database collaborations using 
centralized data currently exist. A recent exam-
ple is the N3C, a centralized enclave of IPD 
derived from the EHRs of people who tested 
positive for COVID-19 or who had related 
symptoms [6]. Currently, N3C has patient-level 
information for nearly 5 million patients con-
tributed by several participating institutions. 
The data are centralized in a cloud-based ana-
lytics platform, accessible for analysis within 
the cloud in the form of limited or de-identified 
datasets. Another example is the rise of all-
payer claims databases (APCDs), which are 
large databases in many states including medi-
cal, pharmacy, and dental claims collected from 
both public and private payers [7]. APCDs are 
designed to make de-identified patient claims 
data available for analyzing healthcare outcomes 
and costs at a large scale.

While appealing to many researchers, the 
flexibility of centralized patient data comes 
at a cost in terms of security and data privacy. 
Information shared across institutions under a 
centralized data sharing mechanism often con-
sists of large amounts of potentially identifiable 
health information, such as records indicating 
patients’ medication and diagnosis history. In 
an effort to protect sensitive patient informa-
tion, privacy regulations such as those stipu-
lated in the Health Insurance Portability and 
Accountability Act (HIPAA) or the General 
Data Protection Regulation (GDPR) prohibit 
sharing of raw patient-level data across institu-
tions [8, 9]. For example, in the USA, HIPAA 
sets 18 identifiers such as name, date of birth, 
and home address, etc. that can be used to iden-
tify a single individual. If collaborating institu-
tions agree to centralize data, these data must be 
transformed into HIPPA-approved “limited data-
sets,” which are “de-identified” by stripping off 
any of these identifiers. In de-identified datasets, 
longitudinal data are often date-shifted to further 
protect patient privacy. While less sensitive than 
raw data, limited datasets have been shown to be 
susceptible to patient reidentification, so there is 

https://www.i2b2.org/
https://www.ohdsi.org/data-standardization/the-common-data-model/
https://www.ohdsi.org/data-standardization/the-common-data-model/
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://www.sentinelinitiative.org/methods-data-tools/sentinel-common-data-model
https://pcornet.org/data/
https://pcornet.org/data/
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some degree of patient-level privacy risk associ-
ated with multi-database studies using central-
ized data [10, 11]. In addition to patient privacy, 
there are also concerns about privacy at the insti-
tution level, with some institutions concerned 
about being identified and deemed lower qual-
ity than their peer institutions as a consequence 
of sharing patient-level data [12]. Sharing of 
patient-level data also often requires contractual 
agreements among collaborating institutions and 
approval from institutional review boards, both 
of which can be time-consuming.

2.2	� Distributed Data

With a distributed data sharing mechanism, col-
laborating institutions maintain control over 
their own IPD and only share summary-level 
AD with other institutions. No central data 
repository is required; instead, IPD analysis is 
performed locally at each institution to calculate 
summary measures, which are then aggregated 
and further analyzed at a coordinating center. 
This allows for data quality checks and analysis 
via statistical programs that can be shared across 
institutions, resulting in greater protection of 
sensitive patient data relative to the centralized 
data setting.

The additional security offered by using a 
distributed data network is considered valuable 
by many stakeholders in multi-database stud-
ies, including patients, researchers, and health 
care system leaders. However, there are ques-
tions from these same stakeholders regard-
ing whether the additional privacy protection 
is worth the costs of data standardization and 
any potential analysis limitations due to reduc-
ing the granularity of data that can be shared 
across institutions [6]. While standardizing data 
at each institution can initially be time-consum-
ing, data can be updated in accordance with the 
latest uniform specifications relatively quickly. 
This also avoids having to transfer and stand-
ardize data repeatedly at a central data reposi-
tory in a centralized data setting. Additionally, 
many of the distributed regression methods 
detailed later in this review have been shown to 

produce results either closely approximating or 
identical to those obtained when one analyzes 
pooled patient-level data, suggesting a need for 
improved education for stakeholders regarding 
the utility of distributed regression methods.

There are several examples of distributed 
data networks being used to conduct multi-
database studies. One example is the OHDSI 
program, an international network of research-
ers and observational health databases which 
standardize their data in accordance with the 
OMOP CDM [13]. The OHDSI network makes 
use of 600 million unique patient records with-
out sharing any patient-level data, allowing for 
large-scale collaborative analyses to gener-
ate quality real-world evidence without risk-
ing patient privacy [14]. Another example is 
the Sentinel System, a distributed data network 
led by the FDA for post-market surveillance of 
approved drugs, vaccines, and medical devices 
[15]. The Sentinel System is made up of a col-
lection of health care organizations which ana-
lyze their own medical billing and electronic 
health records data using a common statistical 
program, sending summary-level information 
to a coordinating center for further analysis. 
Many other distributed data networks currently 
exist, including the 4CE, the PCORnet [16], 
the Vaccine Safety Datalink run by Centers 
for Disease Control and Prevention [17], and 
the Health Care Systems Research Network 
[18]. With the increasing prominence of dis-
tributed data networks comes the desire for 
more advanced distributed regression methods 
to better analyze data in these distributed data 
networks.

3	� Regression Methods for Multi-
database Studies

We next review a variety of regression methods 
that have been used in multi-database studies. 
We first describe a set of conventional methods 
which have been used frequently in practice to 
analyze data in either centralized or distributed 
data settings. We then highlight a collection of 
contemporary methods primarily designed for 
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multi-database studies with a distributed data 
sharing mechanism. The reviewed methods are 
evaluated regarding preservation of patient pri-
vacy, communication efficiency of summary-
level AD, and statistical estimation accuracy. We 
also review distributed regression methods that 
take account of heterogeneity across databases.

3.1	� Pooled Regression

When data from multiple databases are central-
ized, this allows for pooled regression to be per-
formed. We consider the outcome that is from 
the generalized linear model (GLM) family (e.g. 
continuous, binary and count) or the survival 
analysis (i.e. time-to-event), which are com-
monly seen in healthcare studies. Assume we 
have pooled IPD for N patients and denote the p
-dimensional covariate vector as xi and the out-
come as yi for the i-th patient, i = 1, . . . ,N. The 
regression coefficients (e.g. association effect 
sizes) β are estimated by minimizing the nega-
tive log-likelihood function (or loss function),

For example, if the outcome is from GLM fam-
ily, then L(β) is the negative log-likelihood 
function of GLM [19], and if the outcome is 
time-to-event, then L(β) is the negative log par-
tial likelihood of the Cox proportional hazard 
model [20].

The pooled analysis provides the most ana-
lytical flexibility and allows for finer statistical 
modeling that accounts for rare features (e.g. 
covariates or outcome), missing data, interaction 
effects estimation, and heterogeneity, etc. Pooled 
regression is frequently viewed as the gold 
standard when evaluating distributed regres-
sion methods in multi-database studies [21]. 
Estimated regression coefficients produced by 
other methods are often compared to those from 
pooled regression. We refer to the discrepancy 
as estimation bias. The best distributed meth-
ods are expected to produce accurate estimates 
with small bias, and a “lossless” estimate is one 
with zero bias. Treating pooled regression as the 

β̂ = argminβL(β).

gold standard without treating the data source as 
a fixed or random effect implicitly assumes that 
there is not substantial heterogeneity by data-
base. This assumption can be met in practice 
if a multi-database study is designed in such a 
way that minimizes any potential sources of het-
erogeneity. If treatment-effect heterogeneity by 
institution is apparent and cannot be properly 
accounted for, the validity of results produced by 
pooled analysis is more questionable.

3.2	� Meta-Analysis of Database-
Specific Regression Coefficients

If only summary-level data can be shared among 
collaborating institutions under a distributed 
data sharing agreement, a distributed regression 
method often used is the meta-analysis approach. 
We assume each of K databases holds IPD for 
nj patients, j = 1, . . . ,K, and N =

∑K
j=1nj. We 

denote the covariate vector as xij and the out-
come as yij for the i-th patient in the j-th database, 
i = 1, . . . , nj, j = 1, . . . ,K. Using the data from 

each individual database, i.e. Xj =
(
x1j, . . . , xnjj

)T
,  

and Y j =
(
y1j, . . . , ynjj

)T
, we obtain individual 

estimates from each database as

where Lj(β) is the negative log likelihood of the 
regression model using the j-th database data 
only. The variance of β̂j is also estimated as V̂j.

To conduct a meta-analysis and obtain a com-
mon estimate of the regression coefficient, each 
institution shares the coefficient estimate and its 
variance estimate with the coordinating center. 
These individual estimates, i.e. β̂j and V̂j are p
-dimensional vectors and are considered privacy-
preserving summary-level AD. The coordinat-
ing center can then perform meta-analysis using 
each institution’s estimates, e.g. inverse variance 
weighted average to produce a common estimate 
and variance for the regression coefficient,

β̂j = argminβLj(β), j = 1, . . . ,K ,

β̂M =


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where β̂M is the “meta-estimator” and V̂M is its 
variance estimate.

The above averaging approach assumes 
fixed effects, that is, for each coefficient esti-
mated by a regression model, there is one true 
effect shared by all databases included in the 
analysis. If this assumption cannot be met due 
to apparent heterogeneity in effects by data-
base, random-effects meta-analysis can instead 
be used [22]. Random-effects meta-analysis 
allows coefficients to vary by database, with 
each database’s respective coefficient assumed 
to be a random sample of some distribution of 
effects. Rather than estimating assumed under-
lying true effects, random-effects meta-analysis 
estimates the mean of each effect’s assumed 
distribution. Whether fixed- or random-effects 
meta-analysis is more appropriate in a given 
multi-database study depends on the setting. A 
study where substantial efforts are made to limit 
any database-driven heterogeneity can likely 
provide a strong case for using fixed-effects 
meta-analysis. Random-effects meta-analysis is 
a more conservative option, producing overall 
coefficient estimates with greater uncertainty. 
In the presence of database-level covariates, 
meta-regression can be used to better explain the 
between-database heterogeneity.

Several published multi-database studies have 
used meta-analysis to estimate overall regres-
sion coefficients. You et al. compared platelet 
inhibitors ticagrelor and clopidogrel in terms of 
their association with ischemic and hemorrhagic 
events in acute coronary syndrome patients 
undergoing percutaneous coronary intervention 
[23]. Suchard et al. conducted a large-scale com-
parative effectiveness and safety evaluation in 
an effort to determine the optimal monotherapy 
for hypertension among a collection of first-line 
drug classes [14]. Vashisht et al. compared a 
number of second-line treatment options for type 
2 diabetes in terms of their associations with a 
collection of adverse events [24]. All three stud-
ies calculated database-specific hazard ratios 
(HRs), aggregating them via random-effects 
meta-analysis to produce an overall HR estimate.

Meta-analysis of database-specific regres-
sion coefficients is a commonly used method 

for multi-database studies due to its convenience 
of data communication (i.e. minimum require-
ment of AD by β̂j and V̂j) and good accuracy 
(i.e. asymptotically unbiased, [25]) [26, 27]. 
However, meta-analysis has also been shown 
to result in biased estimation relative to pooled 
estimates, especially in settings with small sam-
ple sizes or rare outcomes [28, 29]. The detri-
mental bias induced by small samples may not 
be diluted by averaging in meta-analysis when 
most collaborative databases have limited size. 
In the case that the outcome or some covariates 
lack variation in certain databases, some individ-
ual estimates may be unavailable. Consequently, 
these databases must be excluded from the col-
laborative study, resulting in potential loss of 
valuable samples. Moreover, meta-analytical 
approaches, e.g. meta-regression is known to 
suffer from aggregation bias (or ecological bias) 
and hence problematic when used for studying 
treatment-covariate interaction [30–32].

3.3	� Contemporary Distributed 
Regression Methods: 
Homogeneous Data

Recent years have seen development of vari-
ous distributed regression methods for multi-
database studies without sharing IPD across 
institutions. These methods achieve a balance 
between IPD data privacy and estimation accu-
racy by requiring more AD (or a combination 
of IPD and AD) than meta-analysis (but still 
privacy-preserving) to obtain estimates closer 
to those from pooled analysis compared to 
those from meta-analysis. We now review these 
methods and evaluate their data communica-
tion efficiency (e.g. iterative or non-iterative) 
and estimation accuracy (i.e. bias to the pooled 
analysis as compared to the meta-analysis). We 
consider homogeneous databases in this section.

We start with linear regression which is used 
for continuous outcomes. The availability of the 
closed form solution (i.e. ordinary least-square 
estimation) makes divide-and-conquer a sim-
ple yet insightful idea for distributed regression 
[33]. The least square solution can be written as
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where σ̂ 2 =
(∑K

j=1
nj

)−1∑K

j {Y
T
j Yj − 2YT

j Xj β̂ + β̂TXT
j Xj β̂} 

is the estimate of the random error variance.
It is easy to see that the required AD from 

the j-th database are the p× p matrix XT
j Xj, the 

p× p matrix XT
j Xj, p-dimensional vector XT

j Yj
, and scalars YT

j Yj and nj. This divide-and-con-
quer approach reconstructs pooled regression 
estimates using summary-level AD supplied by 
each participating database and obtains loss-
less (i.e. identical) estimates relative to pooled 
regression.

Linear regression is unique among other 
types of regression in that the estimated coef-
ficients have closed-form solutions. For other 
types of regression, such as logistic regression 
for binary outcomes or Poisson regression for 
count outcomes, there are no closed-form solu-
tions for estimating coefficients. Rather, coeffi-
cients are estimated using iteratively reweighted 
least squares, an algorithm also known as the 
Newton–Raphson algorithm which requires 
repeated evaluations of derivatives at potential 
solutions until convergence is reached [34]. In 
a centralized data setting, this procedure can be 
completed relatively simply with access to all 
patient data. In a distributed data setting, this is 
no longer trivial, as derivatives need to be evalu-
ated by each participating institution using their 
respective patient-level data. Wu et al. extended 
the divide-and-conquer idea in distributed linear 
regression for performing distributed logistic 
regression, by aggregating derivative evaluations 
from each participating database at a coordinat-
ing center within each of the algorithm iterations 
[35]. Specifically, at the s-th iteration
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where π
(s)
j = eXj β̂

(s)

/(1+ eXj β̂
(s)

). The AD 
required from the j-th institute at the s-th itera-
tion is the p× p matrix XT

j diag
{
π

(s)
j

(
1− π

(s)
j

)}
X
j
 

and the p-dim vector XT
j (Yj − π

(s)
j ). Lu et al. pro-

posed a similar iterative algorithm for fitting Cox 
model for time-to-event outcomes [36]. Each of 
these iterative methods for distributed regression 
is also lossless, producing estimates that have 
been shown to be identical to those produced by 
pooled analysis if all data were centralized.

While lossless, the above iterative distributed 
regression procedures can incur significant com-
munication costs. Depending on the particular 
study, reaching convergence can require a large 
number of iterations. In the context of a multi-
database study, each iteration requires a round of 
communication between the coordinating center 
and each collaborating institution. Sharing AD 
between institutions is most often not automatic 
and can delay completion of multi-database 
studies. In recent years, communication-efficient 
alternatives to iterative algorithms have been 
proposed to address this issue. Huang and Huo 
[37] proposed a Distributed One-Step Estimator 
(denoted as DOSE in this review) to improve 
upon the basis of the meta-estimator,

Here ∇Lj

(
β̂M

)
 and ∇2Lj

(
β̂M

)
 are the first and 

second derivatives (i.e. gradient and hessian) 
of the likelihood function at the j-th database, 
evaluated at the meta-estimator β̂M. This method 
is thus a non-iterative distributed regression 
method. It requires the above derivatives (p-dim 
vector and p× p matrix) from the j-th database 
as AD, and improves the meta-estimator towards 
pooled regression. The DOSE applies to any 
regression models in the GLM family. Shu et al. 
proposed a distributed method for inverse prob-
ability weighted Cox regression model [38]. The 
method provides lossless estimation of the mar-
ginal hazard ratio, given the risk set tables from 
all databases as the summary-level AD.

In some situations, we may have IPD avail-
able from some databases and AD from others. 
Multilevel regression methods that combine 

β̂DOSE = β̂M −
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IPD and AD are potentially advantageous over 
two-stage methods [39]. This line of multilevel 
meta-analysis models has been discussed by 
several researchers but deserves more explora-
tion. Duan et al. proposed a one-shot distributed 
algorithm for performing logistic regression 
(ODAL) requiring only one round of commu-
nication among participating institutions [40]. 
The ODAL method assumes a lead institution 
and constructs a surrogate likelihood [41] that 
combines IPD from the lead institution and AD 
from other collaborative institutions. The surro-
gate likelihood serves as a good approximation 
of the pooled likelihood and thus improves the 
meta-estimator towards the pooled estimation. 
The surrogate likelihood assuming the first insti-
tute as the lead institute is constructed as

and the ODAL surrogate estimator is

Here ∇L
(
β̂M

)
= N−1

∑K
j=1nj∇Lj

(
β̂M

)
 is the 

gradient of the pooled likelihood evaluated at 
the meta-estimator β̂M. Similar surrogate like-
lihood ideas have been applied to Cox regres-
sion (ODAC, [28]), Poisson regression (ODAP, 
[42]), and hurdle regression (ODAH, [43]). 
These “ODAX” algorithms, while not lossless, 
have been shown to produce estimates nearly 
matching those produced by pooled regression, 
sacrificing an often-negligible amount of accu-
racy for a reduction in required communication 
among collaborating institutions. These methods 
are considered “one-shot” approaches for dis-
tributed regression since they only require shar-
ing of AD from each site once.

The above reviewed distributed regression 
methods are summarized in Table 1. We also 
illustrate the data communication for multi-
database logistic regression using a simulated 
data example in Fig. 1. In this example, both 
the GLORE and ODAL methods use the meta-
estimator as initial value and obtains estimates 
towards the pooled analysis. The GLORE 

L̃(β) = L1(β)+
{
∇L

(
β̂M

)
−∇L

(
β̂M

)}T

β,

β̃ = argminβ L̃(β).

method is lossless but requires communicat-
ing AD from all databases in multiple itera-
tions, while in ODAL method the lead database 
requires AD from other databases only once 
but obtains estimates very close to the pooled 
analysis. In general, all distributed methods 
are subject to the trade-off between perfor-
mance (accuracy) and operational convenience 
(communication-efficiency). This is displayed 
in Fig. 2, which also includes the distributed 
regression methods that are robust to heteroge-
neity, reviewed in the next section.

3.4	� Contemporary Distributed 
Regression Methods: 
Heterogeneous Data

A major challenge in multi-database studies is 
modeling heterogeneity, which is especially dif-
ficult in distributed regression due to the restric-
tion to the accessibility of IPD. We review some 
recently developed distributed regression meth-
ods that are heterogeneity-aware. Many of them 
have connection with the homogeneous methods 
reviewed in last section. See Table 2 for a sum-
mary of these methods and refer to the original 
papers for technical details.

For linear regression, each database may 
have its own specific effects (associations 
between covariates and outcome). The linear 
mixed-effects model (LMM) is used to model 
continuous outcomes with heterogeneous, data-
base-specific regression coefficients (including 
intercepts). LMM also does not have a closed 
form solution; however, the pooled likelihood 
can be reconstructed using the same required 
AD as in DLM, and hence a lossless one-shot 
distributed linear mixed-effects model (DLMM) 
is available [45].

For other types of outcomes in the GLM 
family, heterogeneous database-specific regres-
sion coefficients can be modeled by a general-
ized linear mixed-effects model (GLMM). Due 
to the computational complexity, few distributed 
methods exist for fitting GLMM, including the 
collaborative GLMM (cGLMM) proposed by 
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Zhu et al. [46]. The cGLMM decomposes the 
Expectation–Maximization (EM) algorithm and 
is privacy-preserving. However, it is commu-
nication-extensive due to the slow convergence 
nature of the EM algorithm. Recently, inspired 
by the DLMM, Luo et al. proposed an alterna-
tive distributed method for fitting GLMM [47]. 
It adopts the DLMM method to decompose each 
iteration of the penalized quasi-likelihood (PQL) 
estimation algorithm, and thus is called the dis-
tributed PQL (dPQL) algorithm. The PQL is a 
common and fast-converging algorithm for fit-
ting GLMM, and hence the dPQL algorithm is 
considered communication-efficient as only a 
few rounds of AD communication are required. 
For example, the dPQL algorithm achieves con-
vergence within 5 iterations in a study profiling 

929 hospitals regarding rates of COVID-19 mor-
tality or referral to hospice. Both cGLMM and 
dPQL are lossless and iterative.

There are also several heterogeneity-aware dis-
tributed methods using the surrogate likelihood 
approach. Recently, Tong et al. proposed robust-
ODAL for performing distributed logistic regres-
sion which accounts for potential heterogeneity by 
database, designed to be more robust in the event 
of any outlying collaborating institutions [48]. Luo 
et al. proposed ODACH for fitting stratified Cox 
regression where the nuisance baseline hazard 
functions at institutions are assumed heterogene-
ous [49]. Nuisance parameter heterogeneity may 
also exist in the GLM family and can be modeled 
by the proportional likelihood ratio (PLR) model 
[50]. Luo et al. adopted the surrogate likelihood 

Table 1   Comparison of available distributed regression methods for homogeneous multi-database studies

aGLM family contains continuous, binary, count and other types of outcomes. b>meta: more accurate than meta-esti-
mator (smaller bias relative to pooled regression)

Outcome type Distributed 
method

Literature Data Sharing AD 
required

Communication 
efficiency Accuracy

Continuous DLM Chen et al. [33] All AD p× p 
matrix, p
-dim vec-
tor, scalars

Non-iterative Lossless

Binary GLORE Wu et al. [35] All AD p× p 
matrix, p-
dim vector

Iterative Lossless

Time-to-event WebDISCO Lu et al. [36] All AD p× p 
matrix, p-
dim vector

Iterative Lossless

aGLM family DOSE Huang et al. [37] All AD p× p 
matrix, p-
dim vector

Non-iterative b> meta

Time-to-event D-IPW Cox Shu et al. [38] All AD Risk set 
tables

Non-iterative Lossless 
(marginal 
HR)

GLM family Multilevel 
modeling

Riley et al. [39],
Sutton et al. [44],

IPD + AD p-dim 
vectors

Non-iterative  > meta

Binary ODAL Duan et al. [28] IPD + AD p× p 
matrix, p-
dim vector

Non-iterative  > meta

Time-to-event ODAC Duan et al. [40] IPD + AD Risk set 
tables, 
p× p 
matrix, p-
dim vector

Non-iterative  > meta

Count ODAP, ODAH Edmondson et al. [42],
Edmondson et al. [43]

IPD + AD p× p 
matrix, p-
dim vector

Non-iterative  > meta
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idea and proposed a distributed PLR (DPLR) 
method for heterogeneity of nuisance parameters 
in the GLM family [53]. Similarly, Tong et al. pro-
posed a distributed conditional logistic regression 
(dCLR, [51]) algorithm accounting for baseline 
rate heterogeneity of binary outcomes across data-
bases. Another approach to account for nuisance 
parameter heterogeneity is via density ratio tilting 
(DRT) model. Duan et al. proposed a distributed 
DRT (DDRT, [52]) method which relies on the 
surrogate efficient score function for estimation. 
The non-asymptotic error bound for the proposed 
distributed estimator was established as well as its 
limiting distribution when both sample size per 
institution and the number of institutions go to 
infinity.

4	� Discussion

Real-world data analysis has gained more atten-
tion in recent years, for example, in the area of 
drug/vaccine safety surveillance, discovering 
risk factors for rare diseases, and aiding clini-
cal trial design. Integrating data from multi-
ple sources is essential for gaining statistical 
power and increasing the generalizability of 
the distilled real-world evidence. A larger and 
more diverse collection of data sources ben-
efits common knowledge discovery as well as 
understanding the heterogeneity of populations. 
Large-scale observational studies are often con-
ducted by researchers from clinical research 
networks that have the resources to bring all the 

Fig. 1   An example for multi-database logistic regres-
sion with pooled or distributed methods. The purpose of 
the regression is to identify associations of patient age, 
sex with certain disease diagnosis. The IPD data from 
three databases (hospitals) were simulated. (a) Pooled 
regression is considered the “gold-standard” but requires 
communicating sensitive IPD from all databased. (b) 
Meta-analysis aggregate individual estimates from each 
database to obtain a meta-estimator. (c) Grid Binary 
LOgistic REgression (GLORE) is a lossless (i.e. obtains 

identical result as pooled analysis) but iterative distrib-
uted logistic regression method. The coordinate center 
sends out updated estimates and require each database 
to return corresponding aggregate data (i.e. gradients 
and hessian). The number of iterations is 4. (d) One-shot 
Distributed Algorithm for Logistic regression (ODAL) 
is a non-iterative distributed method. The lead database 
combines its own IPD with aggregate data (i.e. gradients 
and hessian) from other databases to obtain almost iden-
tical estimates as the pooled analysis
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subject-level data together. Though the collabo-
ration within clinical research networks makes 
centralized data possible, the communicational 
and infrastructural burdens are often excessive. 
The meta-analysis approach only requires small 

pieces of AD, and hence is a convenient evi-
dence synthesis approach used in many multi-
database studies. Despite its communication 
efficiency, meta-analysis has shown to be subop-
timal when the outcome is rare.

Fig. 2   Multi-database regression methods: trade-off 
between performance (accuracy) and operational con-
venience (communication-efficiency). A method is con-
sidered more accurate if it produces estimates closer to 
pooled regression, and more communication efficient if 
it requires less IPD or AD and is less iterative. Pooled 
regression is considered the “gold-standard” but requires 
communicating IPD. Meta-analysis is considered the 

most communication efficient but may not be accurate 
in the case of rare outcome or heterogeneity. The details 
of the reviewed methods are in Tables 1 and 2. Methods 
in bold boxes are more robust to database heterogeneity. 
Box shape and color indicate the outcome type for the 
method, while methods in black boxes are for general 
types of outcomes (e.g. GLM family)

Table 2   Comparison of available distributed regression methods for heterogeneous multi-database studies

aGLM family contains continuous, binary, count and other types of outcomes. b> meta: more accurate than meta-esti-
mator (smaller bias relative to pooled regression)

Outcome Type Distributed 
method

Literature Data Sharing 
Arrangement

AD required Communication 
efficiency Accuracy

Continuous DLMM Luo et al. [45] All AD p× p matrix, 
p-dim vector, 
scalars

Non-iterative Lossless

aGLM family cGLMM Zhu et al. [46] All AD p× p matrix, 
p-dim vector, 
scalars

Iterative (slow  
convergence; >  
1000 iterations)

Approximately 
lossless

GLM family dPQL Luo et al. [47] All AD p× p matrix Iterative (5–10 
iterations)

Lossless

Binary Robust-ODAL Tong et al. [48] IPD + AD p× p matrix, p
-dim vector

Non-iterative b> meta

Time-to-event ODACH Luo et al. [49] IPD + AD p× p matrix, p
-dim vector

Non-iterative  > meta

GLM family dPLR Luo et al. [50] IPD + AD p× p matrix, p
-dim vector

Non-iterative  > meta

Binary dCLR Tong et al. [51] IPD + AD p× p matrix, p
-dim vector

Non-iterative  > meta

GLM family DDRT Duan et al. [52] IPD + AD p× p matrix, p
-dim vector

Non-iterative  > meta
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The distributed regression methods that are 
reviewed in this chapter are mostly developed 
within the past decade. Most of them show the 
tradeoff between operational convenience and 
performance benefit (see Fig. 2 for an illustra-
tion). A distributed regression method usually 
requires more AD and more iterations of AD 
communication to obtain an estimate that is 
closer to that from pooled analysis. Some one-
shot methods (e.g. ODAL, ODAC) could be fur-
ther improved by running more iterations (e.g. 
use the ODAL estimator as the initial estimate 
and repeat ODAL). Moreover, when heteroge-
neity is considered, the design of distributed 
regression usually becomes more difficult, as the 
pooled model also becomes increasingly com-
plicated. DLMM is perhaps an exception, which 
adds no extra operational burden (i.e. the same 
AD requirement as DLM) when heterogeneity 
(i.e. random effects) is considered.

All the reviewed distributed regression meth-
ods rely on AD for protecting data privacy. This is 
generally accepted in biomedical research; meta-
analysis, for example, requires sharing AD and 
is commonly used in practice. One advantage of 
using AD for privacy-preserving is that the ADs 
are task-specific. For example, AD for conduct-
ing distributed logistic regression cannot be used 
for conducting distributed Poisson regression, and 
AD for studying acute myocardial infarction can’t 
be used for studying stroke. This provides an 
extra layer of protection when sharing AD across 
databases. The non-iterative distributed regression 
methods (e.g. DOSE, ODAL, ODAC, DLMM) 
are appreciated as they minimize the communica-
tional and infrastructural burden.

Privacy-preserving distributed algorithms 
have also been extensively studied in domains 
other than data integration in healthcare clini-
cal research networks. The development of these 
algorithms is generally referred to as federated 
learning in machine learning research. Data pri-
vacy frameworks have been developed to rigor-
ously quantify the risk of adversarial attacks. 
The attacks, such as the membership inference 
attack (MIA [54, 55]), may cause privacy leak-
age when the data are repeatedly queried. To this 

end, the AD release mechanism in the reviewed 
distributed regression methods has not been rig-
orously studied to meet privacy-preserving cri-
teria such as k-anonymity or differential privacy 
(DP, [56, 57]). Specifically, the k-anonymity 
criterion prevents a distributed algorithm from 
the risk of re-identification, which arises from 
linking potential quasi-identifiers (e.g. combi-
nations of patient characteristics) to external 
sources [58]. The reviewed distributed regres-
sion methods can potentially meet the k-ano-
nymity requirement. Special care needs to be 
taken when communicating AD according to 
data privacy regulations and data characteristics 
(e.g. rare predictors) [59, 60].

Barriers also exist when using distributed 
regression methods for practical multi-database 
collaboration. Data standardization or harmo-
nization is essential for a high-quality multi-
database study. Open-source CDMs, such as the 
OHDSI OMOP, play an important role in har-
monizing data from various nations, institutions 
and coding systems. Secure and convenient data 
communication software and platforms are also 
essential for encouraging collaboration across 
databases. Researchers have developed software 
and platforms to promote the usage of their spe-
cific or general distributed regression methods 
[61–63]. Large clinical research networks such 
as OHDSI are also devoted to developing the 
infrastructures for more collaborative and acces-
sible distributed learning across databases.

Real-world data such as EHR and claims data 
are not collected for research purposes. The sec-
ond use of these data for real-world evidence 
thus often faces data quality problems such as 
missingness or mismeasurement and population 
heterogeneity. Besides the classical regression 
methods reviewed in this chapter, novel statis-
tical learning methods may be necessary for 
addressing these problems. Combining RWD 
with clinical trials is also a popular research area 
and requires novel method development. Finally, 
implementation of the distributed algorithms 
and embedding them with clinical research net-
works for translation to clinical practices also 
require future work.
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Abstract

Understanding how trained deep neural net-
works achieve their inferred results is challeng-
ing but important for relating how patterns in
the input data affect other patterns in the output
results. We present a visual analytics approach
to this problem that consists of two mappings.
The so-called forward mapping shows the rel-
ative impact of user-selected input patterns to
all elements of the output. The backward map-
ping shows the relative impact of all input
elements to user-selected patterns in the out-
put. Our approach is generically applicable to
any regressor mapping between two multidi-
mensional real-valued spaces (input to output),
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is simple to implement, and requires no spe-
cific knowledge of the regressor’s internals.We
demonstrate our method for two applications
using image data—a MRI T1-to-T2 generator
and a MRI-to-pseudo-CT generator.

Keywords

Explainable AI · Sensitivity analysis ·
Medical image synthesis · Image-to-image
transformation · Deep learning regression ·
Visual analytics

1 Introduction

In recent years, machine learning and in particular
deep learning methods have been used in increas-
ingly many applications. However, understand-
ing how such trained models work is challenging,
especially for the case of deep learning architec-
tures [1, 2]. In certain domains, such as medical
science, it is particularly important to gain such
understanding, both for increasing the confidence
and interpretability of the inferred results and also
for increasing their acceptance by a wider public
[3, 4].

Visual analytics (VA) tools and techniques
have emerged as one of the approaches of choice
in the field of Explainable Artificial Intelligence
(XAI) [5–7]. However, while such methods have
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proven to be effective in improving training and
explaining how deep learning architectures work,
they have addressed comparatively far less the
task of explaining how trained models achieve
their inference. Moreover, such VA tools have
mainly focused on explaining classifiers rather
than the more general regressor models.

In this paper, we aim to fill the above gaps
by proposing Instance-Based Inference Explain-
ers (IBIX). In contrast to other VA techniques,
which aim to explain how a trained model treats
an entire dataset, our method focuses on explain-
ing individual instances in such a dataset, and even
user-selected parts of such instances, such as parts
of images. To do this, IBIX offers two operation
modes that explain (a) which parts of the inferred
result (output) aremost strongly affectedby auser-
specified part of the input; and (b) which parts of
the input most strongly affect a user-selected part
of the output. IBIX operates generically, requiring
no knowledge of the architecture, hyperparame-
ters, or training of a deep learned model, can be
applied to any n-dimensional to m-dimensional
data regressor, is simple to implement and use,
and is computationally scalable. We demonstrate
the use of IBIX for twodeep learned regressors—a
MR T1-to-T2 image synthesizer and an MRI-to-
CT image synthesizer.

The structure of this paper is as follows. Section
2 discusses related work in VA techniques for
deep learning engineering explanation and posi-
tions our contribution in this domain. Section 3
explains ourmethod. Section 4 presents two appli-
cations of our method related to medical image
synthesis. Section 5 discusses our contributions.
Finally, Sect. 6 concludes the paper.

2 RelatedWork

Consider a dataset D = {(x1, y1), . . . , (xn, yn)},
where xi ∈ R

n is a sample of some high-
dimensional data, e.g., an image, text document,
or row in a data table; and yi ∈ R

m is a value
associated with xi . In supervised machine learn-
ing, one typically wants to construct a function
f : Rn → R

m so that, for a training or test set
D, f (xi ) � yi ,∀(xi , yi ) ∈ D. If we replace R

m

by a set C of categorical labels, f becomes a
classifier. In the general case, when the codomain
f is a subset of Rm , we speak of a regressor.
Deep learning (DL) is one of the (supervised)

methods aiming to build models f following
the above pattern. While deep neural networks
(DNNs) has been advancing the state-of-the-art in
a variety of domains [8–10], their nature of being
black-boxes results in a lack of interpretability
concerning their learned representations and pre-
dictions (outputs) [11]. While our methodology
for explaining inference, next presented in Sect. 3,
can be applied equally well to any regressor f ,
we limit its discussion in this paper—and thus
the discussion of related work next—to DL
applications.

Several visual analytics (VA) solutions have
been proposed [11–15] to help practitioners
understand, interpret, and improve, the working
of such a model. Following a recent survey on
VA methods for deep learning model engineering
[6], visual explanations aim to explain one
of the following parts of the common deep
learning pipeline: training, model, or inference.
We review methods in all these classes next,
observing already that most such methods have
been designed to help with classification models
[12, 14]. Using VA tools to interpret deep gen-
erative models—the proposal of this paper—has
attracted only limited attention.

2.1 Explaining Training

Using visualization during the training process
aims to explore the training data and their learned
representations, to answer questions such as
which classes did train suboptimally, how are
classes separable in the learned feature space,
and which are hard-to-process observations. We
also note that most VA work we are aware of for
explaining training focuses on classifier models.

A common visual approach to investigate a
dataset is to project its learned deep representa-
tions (feature vectors) onto two dimensions [12,
15] by a dimensionality reduction technique (e.g.,
t-SNE [16]). One can then plot all projected data
instances as points in a scatter plot and assign
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a different color for each class [17–19]. This
approach is also used to explain the trained model
(Sect. 2.2).

Rauber et al. [17] show that the visual sepa-
rability of classes in a t-SNE projection is highly
correlated with the ability of a classifier to sep-
arate classes in the original feature space. Con-
sequently, the visual inspection supports under-
standing poor predictions in two ways: (i) a pair
of classes grouped in the 2D space can indicate
class imbalance or the need for more data; and (ii)
all classes mixed can indicate that the learned rep-
resentations are not good enough for the addressed
problem. In this sense, somemethods also provide
visual tools to assign labels to new data examples
[19–21], especially in applications in which high-
quality annotated data is absent, such as medical
image analysis.

Some methods investigate the examples
that the model is most uncertain or unsure about
[20, 22, 23].When analyzing these so-called hard
examples, one can have insights on the model’s
inference (e.g., misprediction). For example, a
hard example may have been incorrectly labeled,
or it may have different patterns than others in
its class, or it may be an outlier. To improve the
model’s accuracy, one can then retrain the model,
for example, by assigning a different weight for
each training example [24].

One common approach to visually investigate
hard examples is to retrieve the original data
(e.g., images) associated to specific projected
data points in a 2D scatter plot [12, 15, 18, 25].
The user may then visually inspect the original
data of points from different classes which are
grouped in the projected space. On the other hand,
active learning (AL) strategies automatically
search for hard examples by selecting those near
the model’s decision boundaries and asking the
user for feedback (e.g., labels) to improve the
learning model [22, 23, 26]. Bernard et al. [20]
proposes a visual-interactive labeling (VIAL)
that unifies both approaches to make labeling
more efficient. VIAL uses AL-based methods
to leverage visual interactive interfaces for the
analysis, for example, presenting hard examples
to the user.

2.2 Explaining theModel

This class of visual methods enables users to
explore intrinsic characteristics of the learned
model such as its learned parameters [13, 27, 28]
and architecture [29–31]. Visualizing such infor-
mation helps model developers troubleshoot and
further improve their models [11, 13, 29, 32].
Explaining the model consists of answering
questions such as: How do the weight patterns
correlate with specific architecture layers? How
do activations (for each class) look? What types
of latent features are learned by specific model
layers?

VA solutions visualize model architectures
commonly using a computational graph in which
nodes represent neurons and weighted edges
represent connections between a pair of neurons
[29–31, 33]. One can also encode the weight
magnitude using color or link thickness [12].
This design is taken by TensorBoard [31], a
popular VA tool that visualizes learning curves
during training and displays images generated by
the trained model. Wongsuphasawat et al. [30]
present a design study of the network architec-
ture visualization from TensorBoard. Drawing
computational graphs does not scale well for
production-size architectures having millions
of links. To address this, Liu et al. [29] use a
bi-clustering-based edge bundling technique to
reduce visual clutter caused by too many links.

Visualizing the learned filters (weights) allows
investigating what a deep model has learned for a
given problem—e.g., which filters are responsible
for separating a class from others [27, 33]. SUM-
MIT [34] analyzes activation patterns by visual-
izing the interaction between the learned features
and the model’s predictions.

Other methods aim to investigate how neuron
activations respond to particular classes through-
out the network [13, 33, 35]. ActiVis [36] repre-
sents the model architecture as a graph (nodes are
operations) from which users can visualize acti-
vation patterns at each layer and for each class
by an interactive table view (columns are neu-
rons and rows are activation instances). The tool
displays also a 2D projection of instance activa-
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tions colored according to their classes. Rauber et
al. [13] also project activations to investigate the
relationships between neurons. Other techniques
map neuron activations to the input pixel space
to display patterns recognized by the deep model
[33, 35, 37].

Several techniques aim to explain what is the
role of each network layer in the model infer-
ence [14]. Using such techniques, one could find
that, in deep learning images, lower layers cre-
ate representations of simple features (e.g., edges)
while higher layers contain specific information
about classes [38–40]. Other VA tools support
finding stable layers—that learned a stable set of
patterns—and layers that do not contribute to solv-
ing a given classification problem [28].

A few VA tools have aimed to explain gen-
erative adversarial networks (GANs) by explor-
ing their internal structures. Gan Lab [41] is an
interactive tool designed for non-experts to learn
and experiment with GAN models. DGMTracker
[42] and GANViz [43] aim to explain the training
dynamics of GANs, e.g., by visualizing their neu-
ral activations, to help developers better train the
models.

2.3 Explaining the Inference

The third and final class of VA methods, to which
our proposal also belongs, aims to explain how
outputs f (x) of a trained model f depend on the
input instances x.

Saliency maps [27, 39, 44–47] are likely the
most used and best known visual tool for infer-
ence explanation. For models whose inputs x are
images, they mark each pixel p ∈ x with a value
indicating p’s contribution, or influence, to the
decision f (x).

Also for image-processing networks, Zeiler
and Fergus [27] used deconvolutional networks,
as proposed in [35], to project learned feature
activations to the input image space. This allows
users to debug the deep model by visualizing
the learned features from specific layers, with
multiple variations of the technique being pro-
posed afterwards [12]. Zhou et al. [44] propose
Class Activation Mapping (CAM), a technique

that shows the discriminative active region in
an image for a given label. Selvaraju et al. [45]
presented its relaxed generalization, Grad-CAM,
which uses label-specific gradients to calculate the
importance of spatial locations in convolutional
layers.

All methods so far presented generate visual
explanations based on components of the learned
DNNs, such as their architectures and activations.
Despite presenting impressive results for many
problems [12], these visual methods are designed
for a restricted class of DNNs. In contrast, a dif-
ferent approach, referred as reverse engineering
[48], only uses the input x and inference f (x)
of the deep model without exploiting any model
internals. For a learned deep model, this approach
applies a random perturbation to the input and
compares its inference with the unperturbed one
[48]. One can then create visual explanations, e.g.,
a heatmap, from this comparison. Note that this
approach is independent of the kind of DNN.

Bazzani et al. [49] use the reverse engineer-
ing approach for weakly supervised object detec-
tion. Given a pre-trained deep model designed
for image classification, their method analyzes the
degeneration in classification scores when artifi-
cially perturbing different regions of the image by
masking themout. Themasked regions that signif-
icantly drop the classification scores are consid-
ered as including the target objects. Other object
detection methods use a similar strategy [50, 51].

Our proposed framework follows the reverse
engineering approach when creating a heatmap
fromcomparing the original inference and the per-
turbed one. This heatmap shows which parts of
the inference—e.g., a reconstructed image by a
generative neural network—have been influenced
by input variables selected by the user and vice
versa. This allows for a fine-grained study of how
specific sets of output variables are affected by
perturbations to input variables.

A distinctive attribute of our framework is that
it enables the study of black-box models having
continuous multivariate inputs and outputs, such
as autoencoders and GANs. This is in stark con-
trast with most existing techniques described ear-
lier, that either seek to explain single-output clas-
sification models, or require the use of internal
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structures of the network to derive an explanation
of the model. This makes our framework particu-
larly suitable for understandingmodels created for
image transformation, for example, but not limited
to those. Our framework can work with different
types of models, regardless of their internal struc-
ture, as long as they have n inputs and m outputs,
both real-valued, as detailed next.

3 IBIXMethod

3.1 Definitions

Let x ∈ R
n be an input sample, such as a n-

dimensional feature vector or a grayscale image
having n pixels. Let f : Rn → R

m be the learned
model by a deep neural network. Note that the out-
put space (and its dimensionality m) need not be
identical to the input space (and its dimensionality
n). We next denote x = (x1, . . . , xn), i.e., xi ∈ R

is the i th component of the n-dimensional vec-
tor x. Similarly, if f (x) = (y1, . . . , ym), then let
fi : Rn → R, fi (x) = yi , be the i th component
of the function f . Note that fi is a real-valued
function with n variables.

Let Mx be a region in x, i.e., a subset of compo-
nents of x that we are next interested to analyze.
For example, if x is a 2D image, then Mx is a
mask that we draw on the image to select some
of its pixels. Formally, Mx can be modeled as an
indicator with ones for the selected variables (pix-
els) xi and zero elsewhere. That is, Mx ∈ {0, 1}n .
Hence, M = (Mx

1 , . . . Mx
n ) so that Mx

i = 1 if vari-
able xi is selected and zero otherwise. Similarly,
for the output, let M f be a region in f (I ). Intu-
itively, M f allows us tomark components of f (x)
that we want to ‘trace back’ to the input x. Just as
Mx, M f ∈ {0, 1}m canbemodeled as an indicator.
That is, M f = (M f

1 , . . . M f
m ) so that M f

i is one
if output component fi (x) is selected for analysis
and zero otherwise.

3.2 ForwardMapping

As outlined in Sect. 1, the first goal of out IBIX
method is to visually explain how much specific

parts of the input x—more precisely, thosemarked
by the user in a mask Mx—affect the output f (x).
We call this a forward mapping and denote it
as F(Mx). Formally put, F(Mx) = (F1, . . . , Fm)

with Fj ∈ [0, 1], 1 ≤ j ≤ m. That is, F(Mx) is
a weight vector, with one value Fj per output
dimension.

We compute F(Mx) by perturbing, or jittering,
the marked part Mx of the input sample x, pass-
ing the perturbed data through f , and seeing how
much f (x) has changed. The intuition behind this
idea is simple: If changing the marked area of x
does not affect the inferred value f (x), then the
respective input part can be seen as neglected by
the regressor. Conversely, if a small change to the
marked area strongly affects f (x), then the regres-
sor has somehow learned to be very sensitive to
the respective input part. When the two above sit-
uations occur, it is the user who has to decide if
neglect or high-sensitivity are desirable behavior
or not for the regressor, depending on the actual
location of Mx and variation of F(Mx).

Computing F(Mx) consists of two steps, as
follows.

Single perturbation: Consider a (small) jitter
value h ∈ R. Let �x = hMx, that is, a vector
which is zero outside the region Mx and equal
to h inside Mx, respectively. With it, we com-
pute f (x + �x), i.e., the model’s response to the
input x jittered by �x, normalized by the change
size. We denote this normalized change by a vec-
tor Fh(Mx) = (Fh

1 , . . . , Fh
m), where

Fh
j = f j (x + �x) − f j (x)

h
, 1 ≤ j ≤ m. (1)

If h is small, Fh
j is the sumof the components of

the forward finite-difference-approximated gradi-
ent of f j that considers only the variables selected
by Mx. This is analogous to taking the derivative
of f j in the direction given by the n-dimensional
unit vector corresponding to the ones in Mx, i.e.

Fh
j � ∂ f j

∂ Mx . (2)

As the directional derivative is linked to the gra-
dient of a function by the dot product
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∂ f j

∂ Mx = ∇ f j · Mx, (3)

it follows that

Fh
j �

∑

1≤i≤n|Mx
i =1

∂ f j

∂xi
. (4)

where
∂ f j
∂xi

is the partial derivative of f j with
respect to the variable xi .

Multiscale perturbation: To eliminate the effect
of the choice of the jitter size h, we evaluate Eq. 1
for a N zero-centered, uniformly-spaced, jitters
hk = k H/N , with −N ≤ k ≤ N , where H is an
application-dependent parameter specifying the
maximum jitter, set typically to 10 to 20% of the
norm of the input signal x. The final forward map-
ping is then computed as

F(Mx) = 1

2N

∑

−N≤k≤N

Fhk (Mx), (5)

that is, the average of the responses for all pertur-
bations hk . Note that, conceptually, Eq. 5 is equiv-
alent to computing a scale-space version of the
directional derivative in Eq. 2. Intuitively, F(Mx)

will be large for output components of f which
are strongly affected by changes in input variables
selected in Mx, and conversely.

3.3 BackwardMapping

The second goal of our IBIX method is to
visually explain how much all variables in x
affect a part of f (x) that is selected by some
mask M f . By analogy to the forward mapping
F(Mx) in Sect. 3.2, we call this the backward
mapping and denote it by B(M f ). Formally
put, B(M f ) = (B1, . . . , Bn) with B j ∈ [0, 1],
1 ≤ j ≤ n. That is, B(M f ) is a weight vector,
with one value B j per input variable.

Unlike F(Mx), we cannot compute B(M f )

directly since we do not have the inverse func-
tion f −1 of our deep learned model. Hence, we
proceed differently: We partition the input space
of n variables into a set of K block regions Dk ,
1 ≤ k ≤ K . Intuitively, if x is an image, the blocks

Dk can be seen as a tessellation of x into so-called
superpixels. Each block Dk acts as a region mask
Mx for the input x. Next, we compute for each
block Dk the forwardmapping F(Dk) usingEq. 5.
Subsequently, we define the backward mapping
from the mask M f in the output space to block
Dk in the input space, denoted as BDk , as the frac-
tion of the integral of the forward mapping F(Bk)

that falls within M f , i.e.,

BDk =
∑

1≤i≤m|M f
i =1

F(Dk)i
∑

1≤i≤m F(Dk)i
, 1 ≤ k ≤ K .

(6)
Note that, if the blocks Dk are of unit size, i.e.,

the input space is partitioned into K = n blocks,
one per input variable xk , and we consider a single
scale h in Eq. 5, then F(Dk)i = ∂ fi

∂xk
. Then, for xk ,

we get the backward mapping expression as

Bk =
∑

1≤i≤m|M f
i =1

∂ fi

∂xk
. (7)

That is, the value of the inversemapping B at input
variable k is the sum of all partial derivatives of
f with respect to xk for all components that are
marked one in the mask M f .

The forward mapping (Eq. 4) and the back-
ward mapping (Eq. 7) have similar expressions—
both are sums of partial derivatives, the difference
being the indices that vary and the ones that are
fixed. However, evaluating the backwardmapping
is more costly, since, in Eqs. 6 and 7, we sum over
all dimensions i selected in the output-mask M f .
For each such dimension, we need to evaluate the
full forward mapping F (Eq. 6) or, if we use the
notation in Eq. 7, a partial derivative. The problem
is that a typical DL model implementation does
not let one ‘selectively’ evaluate a single output
component fi ; we need to evaluate all the m out-
put components even if some fall outside themask
M f . In contrast, for the forward mapping (Eq. 4),
we sum over all input variables marked as one in
the input mask Mx. This can be done very effi-
ciently simply by changing the respective inputs
of the neural network.

Following the above, computing the backward
mapping is K times more expensive than comput-
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ing the forward mapping, where K is the number
of blocks used to represent the input space. Using
fewer blocks (low K ) accelerates computing this
mapping but creates a low resolution understand-
ing of how input variables affect the output region
M f —all variables in a block are seen as ‘act-
ing together’ to influence the output. Conversely,
using more blocks is slower, but gives a fine-
grained understanding of how output dimensions
in M f depend on input variables—in the limit, for
K = n, we see how how every single variable of x
contributes to outputs in M f . We discuss efficient
ways to trade off computational speed vs insight
resolution further in Sect. 4.1.2.

4 Explainer Applications

Our IBIX framework (Sect. 3) can be used to
explain any R

n to R
m regressor, whether imple-

mented by deep learning or not. The required
adaptations for this are (1) defining ways to select
the regions of interest Mx and M f ; (2) defining
the jitter range H (Sect. 3.2); and (3) suitably visu-
alizing the direct and inverse mappings F and B.
We next illustrate IBIX on different deep learning
applications: two image-to-image regressors for
medical data (Sects. 4.1 and 4.2).

4.1 Explaining Autoencoders

We considered the generation of MR-T2 brain
images (Fig. 1b) from MR-T1 brain images
(Fig. 1a) using convolutional autoencoders
(CAEs) [52]. This use-case is of interest when
one wants to simulate the effect of a T2 scan but
only avails of T1 scans as input data.

Figure 1a presents the CAE architecture we
used, having three 2D convolutional layers with
16, 8, and 8 filters of 3 × 3weights each, followed
by ReLU activation [53] and 2D max-pooling
in the encoder. The decoder contains the corre-
sponding reconstruction operations. The model is
trained to minimize mean squared error (MSE)
between the generated and target T2 images using
the nadam gradient optimizer [54].

We trained the CAE using the CamCan public
dataset [55], which has 653 pairs of 3D MR-T1
brain images of 3 Tesla from healthy men and
women between 18 and 88 years. For each 3D
MR-T1 image, CamCan also has a corresponding
3D MR-T2 image. To our knowledge, CamCan
is the largest public dataset with 3D images of
healthy subjects acquired from different scanners.

We applied typical MRI noise reduction and
bias field correction to all MR-T1 and MR-T2
images.Next,we registered the images to the same
MNI template [56]. Since the considered CAE
only supports 2D images, we extracted the cen-
tral 2D axial slice from all 3D images to build
our final training set (Fig. 1b, c). Each training
instance is therefore an 8-bit grayscale 2D image:
pixels’ intensities within [0, 255]. Training the
CAE reached mean squared errors around 0.0052
in the training set after 500 epochs with a batch
size of 32. The trained model and preprocessed
data are available online for replication purposes
(https://github.com/hisamuka/IBIX-CAE).

4.1.1 Visual Explanation of CAE
We next used IBIX to explain the CAE MR-
T1 to MR-T2 autoencoder. In this case, both
inputs and outputs of the CAE function f are
grayscale images, both of m = n = 232 × 200
pixels. Hence, the masks Mx and M f are binary
images of the same size. To view and manipu-
late such images, we designed the user interface
(Fig. 2)which is based on the napari image viewer
[57]. The tool allows users to select an input MR-
T1 image x, run it through the trained CAE f ,
display the output MR-T2 f (x), and, most impor-
tantly, paint regions Mx (in the input), respectively
M f (in the output), and next compute and visual-
ize the forward and backward mappings F and B
as heatmaps.

Figure 3 shows how IBIX works for the CAE
problem. Images (a1) and (a2) show an MR-T1
input x and its CAE-synthesized MR-T2 output
f (x), respectively. In (b1), the user selected a sin-
gle pixel region Mx in the input (marked red, see
also inset). Image (b2) shows the forward map-
ping F of this single pixel using a heat colormap:
Warm regions are output pixels which strongly
changeupon small changes of the (red) input pixel.

https://github.com/hisamuka/IBIX-CAE
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a)

b) c) d)

Fig. 1 a Architecture of the MR-T1 to MR-T2 convolutional autoencoder. The autoencoder is trained to generate the
target MR-T2 brain image (b) from the input MR-T1 brain image (a). Output generated MR-T2 image shown in (c). See
Sect. 4.1

Fig. 2 User interface for
the IBIX explainer with
user-marked region in red



Machine Learning—Basic Unsupervised Methods… 149

input x

output f(x)

input x

output f(x)

input x

output f(x)

output f(x)

input x

output f(x)

input x

forward F forward F backward B backward B

a1

a2

b1

b2

c1

c2

d1

d2

e1

e2

M x M x M f M f

Fig.3 Images (a1) and (a2) show an MR-T1 input and its CAE-synthesized MR-T2 output image, respectively. Images
(b–c) and (d–e) show next the CAE forward, respectively backward, mappings (Sect. 4.1.1)

We see that these are close to the location of
the red input—which is desired, since the MR-
T1 to MR-T2 mapping should be spatially coher-
ent. That is, a region x in the MR-T1 input is
supposed to influence only close regions in the
MR-T2 output. However, the forward mapping F
(image b2) shows a non-linear ‘response’ shape to
the single-selected input pixel in (b1) consisting
of roughly six closely-packed peaks. This indi-
cates some potential problems of the CAE train-
ing. Image (c1) shows amore complex input selec-
tion Mx consisting of the left ventricle. Image (c2)
shows that this input region affects mostly left-
ventricle pixels in the output, albeit with a lim-
ited ‘leak’ to the right ventricle. This is definitely
desirable, since large-scale structures such as the
ventricle are not supposed to appear fundamen-
tally differently in MR-T1 and MR-T2 images.
For both forward mapping examples, we consid-
ered 100 zero-centered, uniformly-spaced, jitters
within [−100, 100]; that is, N = H = 100 for
multiscale perturbation (Sect. 3.2).

Image (d1) shows the backward mapping:
Here, we selected a single pixel (red, M f )
in the MR-T2 output. Image (d2) shows the
regions in the corresponding MR-T1 input, as
defined by superpixels, that strongly influenced
the selected output region. As desired, these
regions are located close to and around the

selected pixel. Image (e1) extends this test by
selecting a larger output region. In image (e2)
we see that the backward mapping highlights
input pixels close to and around the selected
structure, which is desirable. In both examples,
we used the popular SLIC algorithm [58] for
superpixel segmentation due to its robustness and
simplicity. We extracted K = 500 superpixels
for evaluation with compactness value of 0.1.
These numbers guarantee reasonable small-scale
superpixels—which are desirable for a fine-
grained understanding (Sect. 3.3)—but demands
considerable processing times. We considered the
same 100 jitters used for forwarding mapping.

Summarizing the use of IBIX for this exam-
ple: Ideally, we want both the forward (F) and
backward (B) mappings to be localized, i.e., when
selecting a region in one of the (input or output)
spaces, we see that a similar-location-and-shape
region is responsible for that. If not, the CAE
would have learned to ‘couple’ anatomically unre-
lated regions, which is clearly undesirable. Still,
images (b1-b2) show that the CAE exhibits a cer-
tain amount of diffusion—small-scale structures
can have a relatively strong effect at a certain dis-
tance from them in the output.

We tested the speed of IBIX on anAMDRyzen
7 3700X 8-Core PC with 16 GB RAM with an
NVIDIA Titan XP 12 GBGPU. Performing a for-
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d)

M f

output f(x)

a) b) c) e)

coarse
superpixels mask xc

fine
superpixels

mapping
B

Fig.4 Multiscale CAE optimization. From markers (M f ) drawn on the output (a), we first perform backward mapping
on a coarse scale using just a few superpixels (b). We next locate superpixels having high B values (c) and refine the
computation by segmenting only these on a finer-scale (d). Figure (e) shows the final backward mapping

wardmapping is fast, taking about 0.33 sec regard-
less the input selection size (i.e., the number of
painted pixels in Mx). Using K = 500 superpix-
els, performing a backward mapping takes about
174 seconds, roughly 500 timesmore than forward
mapping (see also Sect. 3.3). This high processing
timemakes an interactive user experience unfeasi-
ble. When parallelizing the backward mapping—
i.e., running its K forward mappings (500 in our
case) in parallel (see Sect. 3.3)—computing is
nearly halved: 97 s. Section 4.1.2 presents another
optimization strategy to further speed up back-
ward mapping.

4.1.2 Optimizing BackwardMapping
The standard superpixel segmentation method we
use [58] allows one to control the size of superpix-
els but typically produces similar-size superpixels
for an entire image. Hence, to get a high resolu-
tion of the backwardmapping,we need to segment
the input image x in a high number of superpix-
els, e.g., K = 500, each of which is next forward-
mapped, yielding an overall slowmethod, as men-
tioned in Sect. 4.1.1. We observe that several of
these superpixels are far from the markers M f

or even out of the brain. We also observe that, in
general, the backward mapping is localized, i.e.,
B has high values over x only over small image
extents, which are also typically close to M f .

We use the above observations to accelerate the
backwardmapping B computation by amultiscale
strategy, as follows. Consider Fig. 4, where image
(a) shows the region M f marked in the output.
We first compute the backward mapping B using
a coarse segmentation of the input x into a few
superpixels Kc � K , where K is the number of

fine-scale superpixels deemed small enough by
the user for a good resolution. In our example, we
use Kc = 10 coarse-scale superpixels, shown in
Fig. 4b. We next compute B on these Ks super-
pixels as outlined in Sect. 3.3. Let xc be the subset
of the image x covered by coarse-scale superpixels
having a B value over a user-specified threshold
(Fig. 4c, red area). We next segment xc into K f

fine-scale superpixels (Fig. 4d) and use these to
compute the final backward mapping (Fig. 4e).

Several remarks are due, as follows. The
total processing time of this multiscale strategy
depends on the total superpixel count Kc + K f

used for the coarse, respective fine, scales. Note
that K f < K where K would be the number
of superpixels used by the single-scale strategy
(Sect. 3.3), since only a subset of the input x is
segmented on the fine scale—red area in Fig. 4. In
the example in Fig. 4, the fine-scale superpixels
are roughly of the same size as the K = 500
superpixels needed to cover the entire image with
the single-scale strategy. However, K f = 100
and Kc = 10, so we have only 110 superpixels to
treat instead of the 500 ones in the single-scale
strategy. Using parallelization of the forward
mapping (Sect. 3.3), the multiscale computation
scheme needs only 24 seconds instead of 174
seconds (single-scale, sequential) or 94 seconds
(single-scale, parallelized).

4.2 ExplainingMRI-to-CT Generators

Besides MR-to-MR image generators (Sect. 4.1),
medical imaging scientists have also been con-
cerned with generating synthetic CT images from
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MRI scans [59, 60]. This is useful e.g. in the con-
text of MR-guided radiotherapy where one needs
to examine the anatomy (typically best seen in a
CT scan) for online position verification and dose
planning of the radiotherapy [61]. Such applica-
tions are an important beneficiary of explainable
AI (XAI) methods such as ours [7].

For MRI-to-CT generation for pelvis scans,
Maspero et al. [62] have recently shown good
results using Generative Adversarial Networks
(GANs). GANs are a class of generative mod-
els that train by framing the problem as a super-
vised learning one with two sub-models: A gener-
ator model is trained to generate new examples;
a discriminator model tries to classify examples
as either real (from the domain) or fake (gener-
ated) ones. The two models are trained together
in a zero-sum (adversarial) game until the dis-
criminator model is fooled about half the time,
meaning that the generator model can create plau-
sible examples. For their task, Maspero et al. have
used the Pix2Pix model [63], which is a GAN
originally proposed for transferring image styles
between two different domains, e.g., real picture
to cartoons or satellite maps to blueprint maps.

In our work, we used a similar model to
Maspero et al. to synthesize CT images from the
head-and-neck and pelvis regions, as follows.
The input image x is a set of 3 transaxial 2D
image slices (4802 pixels) obtained by taking
the water, fat and in-phase images from a T2
TSE mDixon MRI sequence. Similar to [62],
we did not use the fourth channel (out-phase)
in this study. From each slice, a 2562 pixel
sub-image was extracted at a random location,
clipped to the range between 0 and the 95%
percentile, and then normalized to [−1, 1]. These
images are further used for training our network.
Figure 5a, c show two examples of such images.
The scans are registered using Elastix [64, 65]
to the ground-truth (GT), which are CT scans of
the same patients. CT values are clipped to the
[−1024, 1250] HU range and then normalized
to [−1, 1]. Figure 5b, d show two examples
corresponding to the MRI scans in images
(a,c). Two separate models are trained for the
head-and-neck (60 scans) and pelvis (13 scans)

regions, respectively. The generator model uses
a U-NET architecture [66] using, for the encoder,
8 convolutional layers with 64, 128, 256, and 512
(last 5 layers) filters, each being a 4 × 4 filter
applied with stride 2, and downsampling factor
of 2; and for the decoder 8 convolutional layers
with 512 (first 5 layers), 256, 128, and 64 filters
and corresponding upsampling parameters to
the encoder. The model is trained with L1 loss.
The discriminator uses the Markov PatchGAN
[63] that only penalizes structure at the scale of
N × N pixel patches, with N = 70 pixels. As in
Pix2Pix, the discriminator is run convolutionally
across patches over the entire image, averaging
all local responses to provide the final output, i.e.,
whether the generator creates real or fake images.
Convolutions are 4 × 4 spatial filters applied with
a stride of 2 and downsample factor of 2.

The above GAN achieves good results—a
mean average error (MAE) between the pre-
dicted and ground-truth CT of 271.22 HU for
air (< −200 HU), 56.67 HU for soft tissue
(−200 . . . + 200 HU) and 311.74 HU for bone
(> +200 HU) and a mean structural similarity
index (SSIM [67]) between the two images
of 0.89. However, subtle errors occur in the
prediction. Figure 5e, h show two ground-truth
CT scans of the head-and-neck region, with
corresponding predicted images in (f, i) and
ground-truth-vs-prediction errors color-coded
in images (g, j)—white indicates no difference;
blue indicates predicted value lower than GT
value; and red indicates predicted value higher
than GT value, respectively. Soft-tissue regions
are, overall, predicted well. Yet, we see some
‘bone loss’ (blue arrows). We also see some ‘fake
bone’ tissues being created by the prediction (red
arrow A, image (i)) as well as small-scale cavities
being filled up with tissue (other three red arrows,
image (i)). Apart from that, we see a more general
smoothing (or loss) of small-scale details.

Although we experimented with various ways
of tuning of the GAN to decrease such artifacts,
including hyperparameter grid search, we could
not consistently eliminate them. As such, obtain-
ing insights how the output (CT) structures depend
on the input ones and, more importantly, on the
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Fig. 5 Training data for
the MRI to CT generation.
a, c MRI 3-channel scans
(water, fat, in phase) coded
as RGB images; b, d CT
scans of the same patients.
e, h True CT scans with f, i
synthetic CT
reconstructions and g, j
differences between the
two (white = no difference;
blue = pseudo-CT lower
than true CT, see also blue
arrows in (e, h);
red = pseudo-CT higher
than true CT, see also red
arrows in (f, i). See
Sect. 4.2

a) b)

c) d)

e) f) g)

h) i) j)

A

actual underlying anatomical details, is an impor-
tant step to further tuning the prediction. For this,
we use IBIX (see next Fig. 6).

We proceed as follows. Since the prediction
errors are small-scale structures, we only select
a few pixels in Mx, respectively M f . Also, we
repeat the selection for close spatial locations in
the input, respectively output, e.g., images (a–c)
and (d–f). By comparing the obtained mappings
F and B, we can better understand how the model
learned the inference for such structures. For the
forward mapping F , e.g., images (a–c), we show
the region in the MRI input around the selection
Mx as a small inset top-right in the respective
images. The main image shows the output CT
scan, overlaid by F , color-codedbyaheatmap. For
clarity, we also show F in the top-left inset. For the
backward mapping, e.g., images (d–f), we use the

same selection as in the corresponding forward
mapping, i.e., M f = Mx, so we do not need to
show this selection again. The main image shows
the input MRI scan, overlaid by B, color-coded
by a blue-to-yellow colormap. For clarity, we also
show B in the top-left inset.

We next examine four different situations
observed during the CT prediction, as follows.

Well-predicted bone: For this case, we want
to understand how the model proceeded when
achieving good prediction. Images (a-c) show
three closely located selected pixel areas (yellow
in the top-right insets) inside a vertebra structure,
the latter seen as dark blue in the MR images
in the insets. This structure is quite well pre-
dicted visible as the V-shaped light-gray area in
the predicted images. The first (a) and last (c)
selected areas are smaller than the middle one
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(b). We see that the forward mappings F match
very well the expected shape of the bone—the
hot-colored areas do not ‘leak’ out of the light-
gray area, meaning that the selected bone pix-
els are used, indeed, only to predict bone in the
same structure. Also, we see that the middle map-
ping F (image (b)) has a larger hot-spot than the
other two. This is expected, since its selection—
yellow in image (b)—is larger and more intense.
If we look at the inverse mappings B for the same
selections, we see a few bright-colored (yellow)
superpixels in images (d–f). These are also quite
closely located to the selected pixels. Hence, the
predicted bone pixels are caused mainly by bone
pixels in the same structure in the input MRI. In
other words, the prediction is localized and fol-
lows the expected bone anatomy.

Poorly-predicted bone: As shown in Fig. 5e, h,
some small-scale bone structures in the GT are
missed by the model. To explain why this is the
case, we select three pixel zones close to such a
bone structure, visible as the dark ring in the MRI
insets in Fig. 6g–i. Again, the middle selection (h)
is larger than the other two. The forwardmappings
in images (g–i) show heatmaps that are located
close to the ring structure, but do not closely fol-
low its shape, being rather blurry. In all threemaps,
the region inside the ring is also marked by the
heatmaps as being predicted by the small (yel-
low) selected areas which are on the bone proper.
Hence, the model ‘blurs out’ the small-scale bone
information. As a result, the bone itself is not vis-
ible in the output CTs. Again, the mapping for the
larger selection (h) is stronger than the other two.
This is an expected effect, since a larger selected
input zone will affect a larger zone in the output.
The backward mappings (images j–l) show a sim-
ilar effect—the selected output pixels are affected
by the entire area around the selected zone—that
is, both by the elements marked dark in the MRI
insets in (g–i) but also surrounding, brighter, pix-
els. Since the bone structure there is very thin,
blurring occurs, i.e., themodel ‘averages’ the bone
with the surrounding softer tissues in its predic-
tion. In other words, both the forward and back-
wardmappings show that the trainedmodel appar-
ently understands that the pixels inside the ring
pattern belong to the same structure, but it does not

apply the same intensity value as in the well pre-
dicted bone.We conclude that the network looks at
local structure, and could be improved if it would
be trained to use information from other similar
bones in a different and/or more distant location.

Well-predicted cavities: As shown in Fig. 5e–i,
air-filled cavities inside the tissue—black in those
images—are well predicted. It is interesting to
examine this further. Images (m–o) show such a
cavity in theMRI input (insets) inwhichwe, again,
selected three pixel areas with the middle one (n)
larger than the other two. The forward mappings
show heatmaps which are very high close to the
selected pixels (central pink dot in the respective
heatmaps) but also contain a ‘ring’ of high F val-
ues close to the air-tissue interface, i.e., where
the black hole touches the surrounding gray pix-
els. This means that the model used the selected
air pixels to predict both air pixels but also the
borders of the entire air cavity. Interestingly, the
heatmaps are black (zero) in the cavity outside
the selected pixels themselves. By definition of
F (Sect. 3.2), this means that small changes in
the air values in the input MRI will not affect the
prediction of air in the output CT. This is a desir-
able result as it shows that the model is resistant
to noise present in the input in low-HU areas. In
other words, if the network had been sensitive to
small-scale variations of the acquired intensity in
low-HU areas, it would have had a hard time pre-
dicting the air cavity as all being the same tissue
type—air, that is. However, our forward mapping
show that this was not the case since the perturba-
tions IBIX applies only affect a subset of the local
pixels inside the cavity and the homogeneous HU
value of air was apparently not due to deviating
noisy pixels being constrained by the prediction
of other pixels in the cavity. The backward map-
pings (p,r) show a similar insight: In the insets, we
see a value slightly higher than the surroundings
in for the cavity, visible as the whitish-light-blue
color surrounded by dark blue. This shows (1) that
predicted CT cavity correctly only depends on the
actual cavity recorded in theMRI data and (2) this
prediction is robust to noise. Indeed, by definition
of the backward mapping (Sect. 3.3), a low value
of B indicates that the outputwill not changemuch
when the input changes slightly.
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Fig. 6 Explaining MRI-to-CT generation. Forward (a–c, g–i, m–o) and backward (d–f, j–l, p–r) mappings for a well-
predicted bone (a–f), poorly predicted bone (g–l), and well-predicted air cavity (m–r). Mappings are overlaid over the
respective input or output images. Top-right insets show the area in the input MRI with selected pixels in yellow. Top-left
insets show the mappings without overlay. See Sect. 4.2
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Fig. 6 (continued)

5 Discussion

We discuss next several aspects of our proposed
IBIX framework.

Genericity: By construction, IBIX can handle
any types of mappings f , as long as these input
and output real-valued quantities. While we
demonstrated IBIX only for regressors (which,
as explained in Sect. 2, are the more complex and
less covered case in the literature), our framework
can handle any mapping, provided that one
defines (1) ranges for the input perturbations and
(2) suitable visualizations for the induced output
changes. This is in stark contrast to most VA

methods for XAI which work only for specific
input and/or output data types [6, 48]. In the
same time, IBIX is fully black box-compatible,
needing only the ability to evaluate the model
f for some given input x, in stark contrast with
many XAI techniques that need more knowledge
over f [2, 48].

Ease of use: IBIX is fully automatic, requiring the
use only to select a region of interest in the input
(Mx) or output (M f ) to explain these. The actual
selection mechanism, of course, depends on the
kind of input (and/or output) data.

Speed: IBIX’s speed is fundamentally determined
by the speedof evaluating the underlyingmodel f .
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For the forwardmapping F , IBIX’s cost equals the
inference cost of f times the number H of jitters
(Sect. 3.2). For the backwardmapping B, this cost
increases by a factor of K , equal to the number of
blocks used to discretize the input domain. This
cost can be however spread over multiple scales
(Sect. 4.1.2) to generate high-resolutionmappings
in areas where the signal is high, thus, of interest
to the user. All in all, for typical DL pipelines,
F runs at interactive rates for inputs (and out-
puts) of dimensionality (n, respectively m) of up
to one million. Computing B takes over 20 sec-
onds for such input sizes using two scales. Using
multiple scales could further reduce such costs,
an investigation which is subject to future work.
Note also thatwe currently compute our two scales
using superpixels (Sect. 4.1.2), which only works
for image inputs. However, our multiscale idea
is generic—one can use any subdivision of the
input domain, e.g., quadtrees, octrees or any sim-
ilar multiresolution scheme.
Limitations: The arguably largest limitation of
IBIX is its parameterization. That is, one should
decide how many jitter levels N and jitter range
size H to use (Sect. 3.2). Too conservative bounds
hereof will inevitably only expose the working of
the regressor f for a small part of its dynamic
range. Setting N and H is, for now, applica-
tion dependent, based on the expected range and
dynamics of f . Separately, IBIX is designed, for
now, to explain single input samples x. This is on
purpose, since existing VA methods do not han-
dle this use-case well (Sect. 2). Extending IBIX
to aggregate its findings for entire datasets, while
maintaining its attractive speed, ease-of-use, and
genericity, is a key direction to explore next.

IBIX can explain how the input of a regres-
sor influences certain parts of its output, and
conversely. This is aimed to help model engi-
neers to spot problematic inference pertaining to
certain input and/or output structures, such as
demonstrated inSect. 4.2.However, IBIXdoes not
(aim to) solve such inference problems—it only
exposes their presence. It is, still, the task of the
model engineer to detect patterns in suchproblems
and, based on that, devise changes to the model’s
training data, hyperparameters, or architecture to
correct these.

6 Conclusion

We have presented Instance-Based Inference
Explainers (IBIX), a framework for building
visual explanations of the way multidimen-
sional regressors infer their results for particular
instances of interest. IBIX has a simple under-
lying operation, essentially measuring the rate
of change of dimensions of an output (inferred)
sample as function of change of the dimensions
of the corresponding input. By relating the two
changes, IBIX proposes a forward mapping
explanation that highlights the output dimensions
strongest affected by user-selected dimensions
in an input sample; and a backward mapping
explanation that, given user-selected dimen-
sions in an output sample, highlights the input
dimensions which strongest affect that selection.
IBIX is simple to implement, works generically
for any multidimensional regressor working on
quantitative data, needs no knowledge of the
regressor’s internals, and is easy to use.

Several extension directions are possible. We
envisage extending IBIX to explain groups of
samples rather than individual ones, thereby
lifting insights on the regressor’s operation to
a higher, more general, level. Alternatively,
we consider designing specialized classes
perturbations—generic but also application-
specific—that users can select to ‘probe’ a given
regressor’s response to obtain finer-grained
understanding of its functioning, similar to
impulse-response testing in dynamical systems
analysis. Separately, we aim to extend the bi-level
acceleration scheme for backward mapping
computation to a multilevel one, thereby bringing
its operation to (near) real time without resolution
trade-offs. Finally, as IBIX is fully generic in
terms of the explored model, we aim to apply it
to a larger class of multidimensional regressors
beyond image-to-image ones or deep-learning
models.
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Machine Learning—Automated 
Machine Learning (AutoML) 
for Disease Prediction

Jason H. Moore, Pedro H. Ribeiro,  
Nicholas Matsumoto and Anil K. Saini

1	� Introduction

Machine learning is often used for developing 
predictive models due to its ability to capture 
relationships between independent variables or 
features and dependent variables or outcomes 
that may be non-additive or heterogeneous 
between subjects. Machine learning algorithms 
adjust internal parameters and mathematical 
functions to reduce the gap between their pre-
dictions and target values. The modeling pro-
cess consists of several stages, including feature 
selection, pre-processing, and engineering, 
followed by one or more classifier or regres-
sor algorithms like decision trees or neural net-
works. The main challenge for data scientists 
is to find an optimal combination of algorithms 
and hyperparameters that strikes a balance 
between accuracy and interpretability, which can 
be a time-consuming process of trial and error. 
Automated machine learning (AutoML) aims 
to simplify this task through automation, thus 
removing some of the guesswork that goes into 
selecting and tuning algorithms. We review here 
some of the steps involved in creating a typical 
pipeline and then introduce AutoML as a pow-
erful tool to make this modeling approach more 
accessible. Figure 1 provides an overview of 
some of the steps that go into building an analyt-
ics pipeline.
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Abstract

The selection and tuning of feature selection, 
feature engineering, and classification or regres-
sion algorithms is a major challenge in machine 
learning, affecting both beginners and experts. 
Automated machine learning (AutoML) offers a 
solution by automating the creation of machine 
learning pipelines, eliminating the guesswork 
associated with a manual process. This chap-
ter reviews the challenges of building pipelines 
and introduces some of the most widely used 
AutoML methods and open-source software. 
We focus on TPOT, an AutoML method that 
utilizes genetic programming for discovery and 
optimization and represents pipelines as expres-
sion trees. We also explore TPOT extensions 
and its use in handling biomedical big data.
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by selecting a subset of features most likely to 
harbor a signal. Identifying the relevant fea-
tures can be done automatically through the use 
of algorithms that estimate feature importance 
scores. In some cases, expert knowledge of 
known interactions can be leveraged to reduce 
the search space. There are a wide variety of dif-
ferent feature selection algorithms and methods 
each with their own hyperparameters. And there-
fore, selecting the right method can be difficult.

1.3	� Engineering New Features

Feature engineering involves converting raw 
data to a different format or encoding to make 
the signal in the data more accessible to mode-
ling. Transforming the data can improve perfor-
mance, interpretability, or both. While machine 
learning algorithms can sometimes address 
these issues, they often make the models more 
complex and less interpretable. Feature engi-
neering offers a different solution, allowing the 
algorithm to concentrate on important patterns 
in the data for making predictions. Care must 
be taken, however, to avoid overfitting the data 
when using predicted outcomes to engineer 

1.1	� Cleaning Data

Machine learning can be very sensitive to prob-
lems in the data such as noise, bias, missing 
information, outliers, and imbalanced labels. 
Data cleaning and quality control aim to iden-
tify and correct these issues, which may involve 
various algorithms and statistical methods. The 
outcome of these steps greatly affects the accu-
racy of machine learning results [1].

1.2	� Feature Selection

In biomedical or clinical research studies, it is 
common to be faced with data with thousands 
or millions of features such as electronic health 
records or genomics, respectively. Applying 
machine learning algorithms to these many 
features can create several problems, includ-
ing learning noise instead of signal (i.e., over-
fitting). Overfit models are much less likely to 
generalize to new data. Additionally, processing 
large number of features can be computation-
ally expensive, which raises issues related to the 
carbon footprint of the analysis. A good machine 
learning analysis will try to balance these issues 

Fig. 1   Overview of the many decisions that need to be 
made when choosing feature selection, feature engineer-
ing, machine learning, and model evaluation algorithms. 

Also shown are the components of model explainability 
that are often necessary for clinical problem-solving and 
model deployment
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features. As an example, the average of systolic 
and diastolic blood pressure could be used as an 
engineered feature with the hope that it captures 
important information missing from each feature 
individually. Additional examples include nor-
malization of the values or encoding a continu-
ous feature into a binary one using a threshold 
from the definition of hypertension.

1.4	� Choosing Classification 
and Regression Algorithms

Selecting the right machine learning classifier 
or regressor method and setting its hyperparam-
eters to build a model is one of the biggest chal-
lenges faced by both experts and non-experts. 
There are many commonly used methods, each 
modeling the relationship between features and 
outcomes differently. For instance, some meth-
ods excel at modeling linear patterns, while 
others are better suited for nonlinear relation-
ships. Some methods result in more interpret-
able models, while others prioritize predictive 
performance since these are more computation-
ally demanding. This can be especially chal-
lenging when patterns in data are unknown until 
after thorough analysis and evaluation. To com-
plicate matters, each method often has multiple 
hyperparameters influencing how the algorithm 
operates. It is difficult to know beforehand what 
the best method is for a given dataset. This chal-
lenge has been a major motivating factor for the 
development of AutoML.

1.5	� Assessing the Quality of a Model

Appropriately assessing the quality of a machine 
learning model is essential for its success. 
Machine learning aims to make accurate predic-
tions as measured by a loss function. However, 
evaluating a model's predictive performance is 
not always straightforward. Overfitting, where 
a model memorizes the specifics of the data-
set instead of general trends, is a common 
issue leading to poor performance on new data. 

Cross-validation helps estimate out-of-sample 
error by averaging scores on k different training/
validation splits, but this metric can be overfit 
itself. The challenge for data scientists is to dis-
tinguish between underfit, good fit, and overfit 
models and choose an appropriately fit model. 
The ultimate value of a model is its ability make 
prediction in data it hasn’t previously seen.

Evaluating the quality of a machine learning 
model goes beyond just looking at its predic-
tive accuracy using a loss function. Other fac-
tors may include interpretability, usefulness, or 
interestingness. With multiple objectives, often 
there is a trade-off when optimizing towards 
the desired metrics. In particular, the trade-off 
between performance and interpretability should 
be considered when developing and evaluating 
models. There are several multi-objective meth-
ods like Pareto optimization that are designed to 
efficiently optimize towards multiple measures 
of quality.

1.6	� Explaining a Model

The field of explainable artificial intelligence 
(XAI) focuses on developing machine learn-
ing models that are accurate and transparent in 
their decision-making. While algorithms behind 
machine learning algorithms can be simple, the 
models they generate can be highly complex 
and difficult to understand. Explainable artificial 
intelligence aims to make the reasoning behind 
these predictions more accessible to humans, 
which can lead to new insights and applications 
in the specific domain. Combi et al. [2] describe 
several components of XAI, including interpret-
ability, understandability, usefulness, and utility. 
We briefly summarize each of these here.

Interpretability of machine learning models 
refers to the ability of a user to intuitively under-
stand the reasoning behind a model’s predic-
tions. It is defined by understanding the basis of 
decisions made by the model without the need to 
know the exact mathematical process. For exam-
ple, feature importance scores, either derived 
through permutation testing or the parameters of 
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the model, can provide insight into which fea-
tures the model is basing its decision on. A more 
interpretable model can lead to better insights, 
new applications, and improved decision mak-
ing. As an example, a user might learn that a 
deep learning model used for detecting cancer 
from imaging data focuses only on particular 
regions of the image which can in turn be used 
to more efficiently guide the doctor towards rel-
evant parts of the image or quickly allow them 
to fact check decisions.

The ability of a user to comprehend the inner 
workings and mathematical logic of a machine 
learning model is known as its understandability. 
A decision tree is an example of a model that is 
understandable as it is easy to read and follow its 
flow of logic. On the other hand, deep learning 
models are not as easily understood due to the 
abstract logic hidden in the matrix transforma-
tions. Understandability is crucial in the medi-
cal field, where incorrect decisions could lead to 
serious consequences. Clinicians can use their 
own expert knowledge to validate the reason-
ing of the model, providing trust in the model. 
Further, understanding the model can lead to the 
identification of new hypotheses and potential 
interventions. For example, a decision tree model 
that predicts disease risk from genetic data could 
reveal new rules that could lead to hypotheses 
about new drug targets for disease treatment.

Combi et al. [2] also touch on the concept of 
usability in machine learning, which refers to 
the practicality of implementing a solution in the 
clinic. A number of factors come into play when 
determining if a model can be practically put 
into use. These include the feasibility of collect-
ing, digitizing, and inputting the necessary data, 
the financial cost of installing, operating, and 
maintaining the solution, and the ease of train-
ing users to utilize the solution and integrate it 
into their workflow. It is important to note that 
a technology’s usefulness can vary depending 
on the context and the problems being faced, as 
well as the availability of alternatives.

The final component of XAI is usefulness. 
This refers to whether the technology would 

be used by the user if it meets their needs. In 
machine learning, this often refers to accuracy 
and actionable predictions. The usefulness of a 
model is often enhanced if it is also interpret-
able, understandable, and usable. Interpretability 
and understandability can lead to trust in the 
underlying predictions, leading to more effi-
cient evaluation and decision-making and pro-
viding insights into new directions. Usability is 
required for people to actually use the technol-
ogy in the first place. A strong usability provides 
incentives to use the technology as it can make 
workflows more efficient.

2	� Automated Machine Learning

By introducing some of the components of a 
machine learning pipeline, we have also high-
lighted the many decisions that need to be made 
to develop a good model worthy of consid-
eration for clinical application. For this reason, 
machine learning has long required computer 
or data scientists as collaborators because they 
have the knowledge and experience to make the 
many technical decisions required for predictive 
modeling. However, machine learning, like para-
metric statistical methods, should be accessible 
to all. Automated machine learning seeks to let 
the computer make the many decisions required 
to build an optimal pipeline, thus making these 
complex methods more accessible to those 
who may not be able to enlist a computational 
expert with the time and dedication to the pro-
ject. The field of AutoML started after 2010 and 
has been reviewed in a recent book [3]. Some of 
the first AuoML methods and open-source soft-
ware include Auto-WEKA [4], Auto-sklearn [5], 
and the tree-based pipeline optimization tool 
of TPOT [6, 7]. We briefly review the first two 
below and then present TPOT in more detail, 
along with some biomedical data examples. 
Commercial products such as DataRobot (www.
datarobot.com) will not be covered since they 
do not provide the transparency necessary to 
describe their underlying algorithms.

http://www.datarobot.com
http://www.datarobot.com
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2.1	� Auto-WEKA

Auto-WEKA uses a Bayesian optimization 
method to search across multiple machine learn-
ing algorithms and parameter settings to select 
the best model for a dataset [4]. It is built on top 
of the popular WEKA machine learning soft-
ware package [8]. Auto-WEKA has been used 
in the biomedical space. Examples include pre-
dicting intracerebral hemorrhage in patients with 
features derived from demographics, laboratory 
tests, and imaging [9].

2.2	� Auto-sklearn

Auto-sklearn is a popular AutoML method 
that uses Bayesian optimization to construct 
machine learning pipelines [5]. It leverages the 
scikit-learn library [10] and was one of the first 
AutoML methods to incorporate meta-learning 
and ensemble classification. The pipelines cre-
ated by Auto-sklearn consist of data pre-pro-
cessing, feature selection, and machine learning 
classifier components. The method uses analysis 
results from numerous public datasets as meta-
data to inform the optimization of its pipelines 
on new data. Auto-sklearn has proven to be 
effective for various tasks, such as prioritizing 
social media posts about suicide [11] and pre-
dicting mood and anxiety disorders [12] (Fig. 2).

2.3	� Tree-Based Pipeline 
Optimization Tool

While Auto-WEKA and Auto-sklearn use 
Bayesian optimization, the tree-based pipeline 
optimization tool (TPOT) uses genetic program-
ming (GP) to discover and optimize machine 
learning pipelines represented as expression 
trees [6, 7]. Like Auto-sklearn, TPOT also uses 
the Python-based scikit-learn machine learning 
library [10]. We review this approach in more 
detail in the next section as it has been used for 
biomedical applications more extensively than 
the other methods.

3	� The Tree-Based Pipeline 
Optimization Tool (TPOT) 
Algorithm

An important feature of TPOT is the representa-
tion of machine learning pipelines as expression 
trees. TPOT uses GP optimization algorithm 
[13] from evolutionary computation, an AI sub-
field inspired by evolution and natural selec-
tion, to evolve a population of trees towards 
the desired objectives. TPOT is built upon and 
inspired by a vast literature of GP methods and 
strategies for complex problems represented as 
expression trees. TPOT's algorithm uses a type 
of Pareto optimization, which enables pipelines 

Fig. 2   Overview of the Auto-sklearn method. The 
included meta-learning algorithm is trained on out-
side data. The meta-learner informs the Bayesian 
optimization of a machine learning pipeline with 

pre-processor, feature selector, and classifier compo-
nents, followed by the optimization of ensembles of 
built pipelines
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to be evaluated based on multiple objectives 
like accuracy and complexity. TPOT was imple-
mented using DEAP, an open-source Python 
software package for distributed evolutionary 
algorithms [14].

An overview of the TPOT algorithm is illus-
trated in Fig. 3. The algorithm starts by ran-
domly generating N expression tree-based 
pipelines from a set of scikit-learn operators 
(e.g., feature selectors, classifiers, etc.) and their 
hyperparameters. New pipelines are generated 
using variation operators that mutate pipeline 
components and recombine branches between 
pipelines. The N old and the N new pipelines 
are evaluated, and the best N are selected to 
move forward using a selection algorithm. 
The variation, evaluation, selection, and itera-
tion steps continue until a stopping criterion is 
reached. This is usually set to be G generations 

or iterations of the algorithm (e.g., G = 100 or 
1000). We introduce the components of TPOT in 
more detail below.

3.1	� Representing TPOT Pipelines

One of the key differences between TPOT and 
other methods is the representation of machine 
learning pipelines as expression trees. Tree-based 
data structures are ideal for this purpose, given the 
stepwise data processing that a pipeline performs. 
Here, the tree nodes are selected from feature 
selection, feature engineering, and machine learn-
ing algorithms from the scikit-learn library. The 
terminals of the tree represent the hyperparam-
eters of the various algorithms and the data inputs. 
A scikit-learn pipeline is constructed by initializ-
ing models with their respective hyperparameters 

Fig. 3   An overview of the TPOT algorithm. The first 
step is to represent machine learning pipelines using 
expression trees. Pipeline trees are initialized randomly, 
diversified using several variation operators, evaluated, 

and selected using quality metrics such as an error-based 
loss function and the complexity of the pipelines. This 
process is iterated until a stopping criterion is reached
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and using the feature unions to create the branch-
ing structure. To execute a tree, the data are 
passed into the leaves of the tree and propagated 
through the nodes of the tree to the root node, 
which serves as the final classifier or regressor.

3.2	� Initializing TPOT Pipelines

The first step of the TPOT algorithm involves 
initializing a set of N pipelines (e.g., N = 100 or 
1000). TPOT comes with a default set of algo-
rithms from the scikit-learn library, which can 
be customized using a configuration file. Each 
expression tree starts with a machine learning 
algorithm at the root node, ensuring the pipe-
line’s output is a set of predicted values that can 
be evaluated using a loss function. Child nodes are 
selected from a pool of allowable methods, includ-
ing feature transformation, selection, engineering, 
and machine learning algorithms, with terminals 
specifying randomly selected hyperparameters. In 
short, the initial population of N expression trees 
is generated randomly with varying layers, drawn 
from a distribution of possibilities.

3.3	� Generating TPOT Pipeline 
Variation

Each generation in TPOT starts with generat-
ing new pipelines from those in the current set 
or population. TPOT uses mutation and recom-
bination operators, inspired by similar processes 
in natural evolution, to generate variation in the 
machine learning pipelines (Fig. 4). New indi-
viduals are produced through mutation of an 
existing tree with probability M, or crossover of 
selected subtrees or hyperparameters between 
two individuals with probability R. Mutations 
can insert, remove, or replace nodes. Crossover 
involves swapping randomly selected subtrees of 
two pipelines.

3.4	� Evaluating TPOT Pipelines

The TPOT algorithm evaluates each expres-
sion tree based on two objectives. First, it uses 
a standard loss function and k-fold cross-val-
idation to measure the predictive error of the 
classifier. Second, the complexity of the tree is 

Fig. 4   Overview of the process by which variation is 
introduced into TPOT pipelines via recombination of 
subtrees (left) and mutation of nodes (right). Mutation 

and recombination occur separately on different trees in 
the same generation with some probability set by the user
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estimated by counting the number of nodes. 
Other complexity measures could be used that 
take into account the complexity of the indi-
vidual algorithms and their hyperparameters. 
For instance, machine learning methods, such 
as XGBoost that have higher complexity and 
are less interpretable than simpler methods such 
as decision trees or logistic regression, could be 
given different weights. Assessing complexity 
allows TPOT to prioritize simpler pipelines that 
are more interpretable, less prone to overfitting, 
and better suited for generalization to new data. 
TPOT can be customized for multi-objective 
optimization with the development of different 
or additional criteria.

3.5	� Selecting TPOT Pipelines

An important component of TPOT is the method 
used to pick the best trees or pipelines from the 
current population to move forward. An optimal 
model should have low complexity and high 
performance as measured by the loss function. 
In reality, there is often a compromise between 
interpretability and performance, with simpler 
models compromising some performance. Also, 
there is a trade-off between generalizability and 
overfitting, where cross-validation addresses 
this to some extent but is not foolproof. TPOT 
models can become too complex and overfit 
the cross-validation score. This is a particu-
lar concern when evaluating many pipelines. If 
unrestricted, TPOT may form overly complex 
pipelines that significantly overfit the data, and 
if too limited, TPOT might not discover better 
solutions.

To balance interpretability and performance, 
TPOT optimizes a Pareto front of non-domi-
nated models defined by both the loss function 
and pipeline complexity (usually measured by 
the number of ML operators used in the pipe-
line). During training, TPOT selects the set of 
non-dominated models from a Pareto front using 
the non-dominated sorting genetic algorithm 
II or NSGA-II [15]. These models will then be 
mutated or recombined in the next generation. 

Other methods, such as lexicase selection [16], 
may also be explored.

3.6	� Picking the Final TPOT Pipeline

There are several approaches to selecting the 
best TPOT model once the algorithm has com-
pleted its run. The simplest method is to return 
the pipeline from the final iteration with the 
best predictive accuracy determined by cross-
validation. Another approach is to identify the 
Pareto optimal models and select the one that 
balances accuracy and complexity according to 
the wishes of the user. The best approach may 
depend on the goals of the user.

4	� Scaling TPOT to Big Data

Le et al. [17] tackled the challenge of compu-
tational complexity in AutoML by making two 
key modifications to TPOT. First, they intro-
duced a template option that allows the user to 
specify a fixed linear pipeline structure. This 
feature was designed to help speed up execu-
tion time, as using a template reduces the com-
plexity of generating and evaluating pipelines. 
For example, the template option can be used to 
limit TPOT to a simple feature selector and clas-
sifier, making it run faster than more complex 
trees.

Second, the authors introduced the feature set 
selector (FSS) operator, which functions as an 
expert-knowledge-based feature selector. This 
operator uses pre-defined groupings of features 
into S subsets, allowing the user to apply their 
domain knowledge to the pipeline generation 
process. The FSS operator includes a hyperpa-
rameter that points to one of the feature subsets, 
which is then used to generate the data set to be 
used for the next step in the tree.

The combination of a simple template tree 
structure and smaller feature sets can signifi-
cantly improve the execution time of TPOT, 
making it a more efficient solution for working 
with big data. By reducing the computational 



169Machine Learning—Automated Machine Learning (AutoML) for Disease Prediction

load, TPOT can also minimize its carbon foot-
print, making it a more sustainable option for 
machine learning practitioners (Fig. 5).

5	� Using TPOT to Automate 
Neural Networks

An advantage of deep learning neural networks 
over other machine learning algorithms is that 
they can perform feature selection and feature 
engineering in the early layers of the network 
prior to classification or regression in later lay-
ers. An important question is whether AutoML 
pipelines are able to approximate the perfor-
mance of a deep learning algorithm by piecing 
together feature selection and feature engineer-
ing algorithms with simpler feed-forward neu-
ral networks. The value of this approach is 
that it might be more computationally efficient 
(i.e., greener) and yield models that are more 
explainable.

To address this question, Romano et al. [18] 
investigated the performance of TPOT, NNs, and 
TPOT with shallow NN classifiers (referred to 
as TPOT-NN) on several publicly available data 

sets (see Fig. 6 for an overview of TPOT-NN). 
The results showed that TPOT-NN performed 
better on several data sets compared to standard 
TPOT and NNs, without performing worse on 
others. The study raises the possibility of using 
TPOT-NN to approximate complex deep learn-
ing models by combining simple NN opera-
tors with feature selection and engineering 
algorithms. It will be interesting to explore the 
potential for TPOT-NN to generate high-per-
forming and easily interpretable pipelines.

6	� Biomedical Applications 
of TPOT

There have been a number of biomedical appli-
cations of TPOT with an emphasis on genetics 
and genomics [19]. These include predicting 
depression using genomic data [17], coronary 
artery disease using metabolomics data [20], 
schizophrenia using genomics data [21], pre-
dicting renal cell carcinoma grade using radio-
logic images [22], childhood dental carries using 
metabolomics data [23], and coronary artery 
disease using genetics data [24]. We focus here 

Fig. 5   Including a Feature Set Selector (FSS) allows 
TPOT to select a subset of features for analysis in a 
pipeline. In the example pipeline shown, the FSS opera-
tor has a hyperparameter set to 2, which in turn selects 

data subset 2. This subset of the data is then passed to the 
Neural Network (NN) algorithm to develop a predictive 
model
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on the latter study by Manduchi et al. that illus-
trates several of abovementioned concepts.

Manduchi et al. [24] conducted a study to 
predict the presence of coronary artery disease 
(CAD) in over 340,000 subjects using data from 
the UK Biobank resource, which included more 
than one million genetic features. This posed 
several machine learning challenges, including 
a severely imbalanced class distribution and a 
large feature set that presented computational 
difficulties for AutoML. To overcome these 
challenges, the authors randomly downsam-
pled the larger class to balance the dataset and 
used expert knowledge to focus on a smaller set 
of promising genetic features for CAD. In this 

case, features were selected based on whether 
genes were valid drug targets based on the bio-
chemistry and structure of their corresponding 
protein products [25]. The final models were 
evaluated using fivefold cross-validation and 
holdout datasets to assess their generalizability 
and predictive accuracy.

The pipeline described in Fig. 7 was gener-
ated using TPOT to predict CAD. The TPOT 
algorithm selected a pipeline of feature selec-
tion and feature engineering methods, including 
percentile feature selection, variance threshold-
ing, and a stacking estimator, with a stochastic 
gradient descent classifier. The final pipeline 
used an extra trees classifier to classify subjects 

Fig. 6   A hypothetical TPOT-NN pipeline. Here, two dif-
ferent Feature Selector operators select different subsets 
of features that are then passed to multilayer perceptron 

neural networks. The predictions made by these feed-
forward neural networks are passed to logistic regression 
that makes the final prediction

Fig. 7   A TPOT-generated machine learning pipeline for predicting risk of CAD. This pipeline contains a combina-
tion of feature selector (first, second, and fourth), feature engineering (third), and classification (fifth) algorithms
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as having or not having CAD. The pipeline was 
statistically significant and had a testing accu-
racy of 0.55, comparable to other predictive 
studies using genetic data. The use of TPOT 
allowed for the automatic identification of a 
complex pipeline, which would have been diffi-
cult for a human user to construct manually.

The study used Shapley values, a game theo-
retic approach, to interpret the predictive model. 
The results showed that different features con-
tributed differently to the prediction of different 
subsets of subjects, indicating the presence of 
genetic heterogeneity. Machine learning meth-
ods, such as the one used by TPOT, have an 
advantage over linear methods, such as regres-
sion, as they can detect and model complex 
relationships between features and outcomes, 
including this heterogeneity pattern. TPOT was 
able to automatically find a pipeline that could 
model these complex relationships.

7	� Future Directions

Automated machine learning or AutoML shows 
tremendous promise in biomedical and clinical 
research because it can reduce pipeline develop-
ment time and thus make these analytical tech-
niques much more accessible to those without 
in-depth knowledge and experience with the 
algorithms being used. This accessibility should 
accelerate their use and help users become com-
fortable with advanced machine learning meth-
ods similar to how the user-friendly statistical 
analysis software packages brought the t-test, 
analysis of variance, and linear regression to the 
masses decades ago. Before AutoML becomes 
mainstream in medicine, several challenges still 
need to be addressed.

First, it will be important to more thoroughly 
explore how to integrate existing biological and 
clinical knowledge in the processes of feature 
selection, model selection, and explainability. 
Machine learning algorithms are often agnostic 
to the problem being studied. However, biolo-
gists and clinicians sometimes have detailed 
knowledge from which the algorithm can ben-
efit. For example, expert knowledge could be 

used as a quality metric for multiobjective opti-
mization via Pareto optimization. The Manduchi 
example [24] used the druggability of genes [25] 
as a pre-processing step prior to analysis with 
TPOT. An alternative approach could have been 
to develop a druggability score for each gene 
and then add an additional objective function 
to maximize the enrichment of druggable genes 
selected by a TPOT pipeline for modeling.

Second, the potential of AutoML for democ-
ratizing machine learning is only realized when 
it is accessible to non-experts. TPOT, while 
effective in constructing pipelines, lacks a user-
friendly graphic-user interface (GUI) which 
can be a hindrance for widespread adoption. 
A GUI designed specifically for those who are 
not machine learning experts can help to reduce 
barriers and make advanced technology more 
accessible to everyone. A great example of this 
is Aliro AI, which provides a simple, intui-
tive interface for AutoML [26] and could be 
extended to support TPOT. Auto-WEKA also 
includes a GUI as part of the WEKA software 
[8].

Third, it is currently not known whether 
AutoML tools like TPOT and Auto-sklearn are 
more susceptible to issues with the fairness and 
bias of the models generated than more tradi-
tional machine learning approaches. Does opti-
mizing a complex machine learning algorithm 
amplify biases in the data that might further 
discriminate against certain classes of patients? 
Building operators and checks into AutoML 
pipelines that can detect and self-correct bias to 
yield fair models will be an important topic for 
future studies.

Fourth, natural language processing (NLP) 
is an important AI methodology for extracting 
structured data and meaning from clinical notes 
and other text-based sources. NLP has been 
used for tasks such as text classification and 
sentiment analysis. AutoML has not been fully 
explored as a tool to assist with NLP-related 
goals.

Fifth, the ease of deployment of models 
derived from AutoML will need to be explored 
and evaluated. For example, it is important 
for clinicians to trust and feel comfortable 
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with models generated by AutoML methods. 
This means that they need to understand how 
AutoML algorithms work, where the models 
come from, the biases of the models, and what 
their predictions mean.

Finally, one can imagine taking AutoML 
algorithms a step or two further to produce per-
sistent and self-updating models that receive 
feedback from users and improve over time 
in an autonomous manner. This is especially 
important for clinical applications where data 
is being continuously collected. Additionally, 
smoothly transitioning models to new data 
sources as the technology used for lab tests, 
imaging, etc. changes would allow clinicians to 
stay continuously updated rather than waiting 
for major updates which can be hard to imple-
ment. This approach might be also appealing 
for complex problems where the search space 
is effectively infinite, and best model can’t be 
found in a short period of time.

Automated machine learning is a relatively 
new field of AI. These methods show tremen-
dous promise for accelerating discovery using 
machine learning pipelines by democratizing 
access. As machine learning continues to be 
used across biomedical and clinical disciplines, 
it will be important to assess the impact of 
AutoML for moving from discovery to deploy-
ment. Do automated methods speed up the bio-
medical data science process? Do they yield 
better predictive models that generalize across 
health systems and patient populations? Are 
models generated by AutoML more explain-
able to clinicians? Are they fairer and more 
unbiased? Do they allow more clinicians with-
out specific computational training to enter the 
applied AI field? Do they yield better biological 
discoveries and clinical outcomes? As with any 
new technology, there are currently more ques-
tions than answers.
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Machine Learning—Evaluation
(Cross-validation,Metrics,
Importance Scores...)

Abdulhakim Qahtan

Abstract

The high performance of machine learning
(ML) techniques when handling different data
analytics tasks resulted in developing a large
number of models. Although these models can
provide multiple options for performing the
task at hand, selecting the right model becomes
more challenging. As the ML models perform
differently based on the nature of the data and
the application, designing a good evaluation
process would help in selecting the appropriate
ML model. Considering the nature of the ML
model and the user’s interest, different evalua-
tion experiments can be designed to get better
insights about the performance of the model.
In this chapter, we discuss different evaluation
techniques that suit both supervised and unsu-
pervisedmodels including cross-validation and
bootstrap. Moreover, we present a set of per-
formance measures that can be used as an indi-
cation on how the model would perform in real
applications. For each of the performancemea-
sures, we discuss the optimal values that can
be achieved by a given model and what should
be considered as acceptable. We also show the
relationship between the different measures,
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which can givemore insightswhen interpreting
the results of a given ML model.

Keywords

Machine learning · Training · Testing ·
Regression · Classification · Clustering

Before discussing how to evaluate the Machine
Learning (ML) models, we give a brief summary
about the different models and how they work.
Depending on the nature of the data and the task
at hand, different machine learning models can
be selected. These models are usually parame-
terized to automatically adjust their performance
according to the data and the performance criteria
through a set of tunable parameters. The values
of the different parameters are learned and auto-
matically adjusted during a training (fitting) stage
of the model development. Learning the models’
parameters can be achieved using one of three
main approaches.

• Supervised learning: When the training set
consists of labeled examples (exemplars), the
algorithms use the labeled examples to learn
how to generalize to the set of all possible
inputs. Examples of techniques that belong to
supervised learning category include logistic
regression [3], support vector machines [6],
neural networks [11] decision trees [22], ran-
dom forest [6], etc.
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• Unsupervised learning: Refers to the set of
algorithms that learn from a set of unlabeled
examples. These algorithms learn the patterns
that exist in the data according to a specific
criterion that could be statistical, geometric or
similarity criterion. Examples of unsupervised
learning include k-means clustering [5] and
kernel density estimation [17].

• Reinforcement learning: In this set of algo-
rithms, learning is achieved by iterative explor-
ing the solution space and receiving a feedback
on the quality of the solution.The exploration is
repeated until a satisfactory performance mea-
sure value is reached.

Thedecisiononusing supervised/unsupervised
learning technique will depend mainly on the
availability of the labeled examples in the training
set. In this chapter, we focus on the evaluation of
the different machine learning techniques.

1 Background

Evaluation is a key and challenging task when
selecting a Machine Learning (ML) model for a
specific problem. There are lots ofmodels that can
be used, butwhich onewill perform better than the
others. This requires a systematic way for evalu-
ating the different models. In this chapter, we will
discuss the different measures for evaluating the
MLmodels. We will restrict our discussion on the
predictivemodels that include the regressionmod-
els, the classifiers and the clustering algorithms.

Selecting the performance measure to evaluate
a MLmodel should consider the problem at hand.
Evaluating a supervised model should be based
on comparing the value of the target variable that
has been predicted by the model with the actual
value. However, evaluating the unsupervised
learning techniques is more challenging and is
based on computing a set of statistical measures
such as Silhouette score [13] in measuring the
quality of a clustering algorithm. Moreover,
in case of supervised learning, the evaluation
measures that are used to evaluate the regression
models are different from those that are used to
evaluate the classifiers. Deciding whether to use
a regression model or a classifier depends on the

target variable that should be predicted. If the
variable contains continuous values, a regression
model should be used. Otherwise (when the
variable contains a few distinct values that
represent class labels of the data records), a clas-
sifier is trained for this purpose. Evaluating the
regression models is carried out by measuring the
difference between the actual and the predicted
values. This difference is used as an indicator
of the performance of the regression model. For
classifiers, matching the predicted class label
with the actual label of the record is used as an
indicator of the performance of the classifier.

Example 1 Considering the diabetes dataset,1 a
classifier should be trained and used to predict
if a person is diabetic or not based on the exist-
ing information. However, predicting the person’s
weight based on the waist circumference, which
could be useful for validating the recorded data,
requires building a regression model.

However, the main idea of building supervised
ML models is to train the models on a training
set that contains the data records and their corre-
sponding target variable (the variable that should
be predicted for new unseen records).When using
the ML model to predict the value of the target
variable for an unseen record, we should have
a certain level of confidence on the correctness
of the predicted value. Using the proper evalu-
ation method helps in building such confidence.
Moreover, when comparing the performance of
different MLmodels, it is important to ensure that
the apparent differences in the performance is not
caused by chance.

To build a supervised ML model, a labeled set
that contains records with values for the indepen-
dent variables and their corresponding responses
(values of the target variable) is required. A typ-
ical question that could be asked is: why we do
not select the model that best fits the labeled data?
To answer this question, we extract a set of ten
values from the feature waist circumference and
their corresponding values from the weight fea-
ture for training regression models. After that, we
train three different regression models to fit the

1https://github.com/semerj/NHANES-diabetes.

https://github.com/semerj/NHANES-diabetes
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(a) (b) (c)

Fig. 1 Training three regression models a linear regression model, b polynomial regression model with degree 3 and c
polynomial regression model with degree 7. In each subfigure, the mean absolute error between the actual values and
the predicted ones is calculated and displayed in the red box inside the subfigure. Polynomial regression with degree 7
shows the smallest error

Fig.2 Testing the three regression models on unseen data samples. In each subfigure, the mean absolute error between
the actual values and the predicted ones is calculated and displayed in the red box in the subfigure. Polynomial regression
with degree 3 shows the smallest error. The red vertical lines represent the difference between the actual test value (red
circle) and the predicted values (red star on the regression curve)

training data as shown in Fig. 1. The Mean Abso-
lute Error (MAE) [16] between the actual readings
and the predicted ones is used as an indicator of
the accuracy of the different models (MAE will
be discussed later in the chapter). Comparing the
MAE values in Fig. 1 (on the training data) with
Fig. 2 (on the test data), it can be concluded that
the model, which fits the training data the best is
not necessarily the best model to be used for pre-
dicting new unseen values. This problem is awell-
known problem and is called model over-fitting.

Basedon the earlier discussion, the labeled data
should be split into two parts (sometimes three

parts) when building a supervisedMLmodel. The
first part is used for training the model and the
second part is used to evaluate the model on data
samples that have not been used during the train-
ing step. In some cases, a third subset of the data
is used for parameter tuning of the model and is
called the validation set. Evaluating the different
MLmodels on values that have not been used dur-
ing the training step is very important for com-
paring the different models and deciding which
model to use. There are a lot of techniques that
can be used to split the data into training and
testing.
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Fig. 3 Selecting random
samples for training and
testing from the labeled
data

2 Train-Test Split

In this section, we discuss the different techniques
that can be used to split the labeled data into train-
ing and testing in order to accurately estimate the
performance of the ML models. The main idea is
to split the labeled data into x% for training and
(100 − x)% for testing (usually x is taken from
the set {70, 75, 80}). The training subset is used
to train (build) theMLmodel and the test subset is
used to evaluate the performance of the model. In
order to have a good estimation of themodel’s per-
formance, this process is repeated multiple times
and the average of the performance measure esti-
mates is used as an indicator of the model’s per-
formance.

2.1 Random Split

For random sampling with x% for training and
(100 − x)% for testing, a data example (record)
from the labeled data is selected to be in the train-
ing set with probability p = x/100. Practically,
this can be achieved by generating a random per-
mutation for the index (sequence numbers of the
records) and selecting the records with the first
x% index values in the permutation. The rest of
the records are assigned to the test set.

Alternatively, a random number generator can
be used to generate random numbers between 0
and 100. For each record, the number r that is gen-
erated by the random number generator is com-
pared to x and the record is selected to be in the

training set if r < x ; otherwise, the record is added
to the test set. Figure 3, shows examples of split-
ting the labeled dataset into train and test substes
randomly.

2.2 Split with Stratification

In a set of classification problems with imbal-
anced classes, splitting the labeled dataset into
training and testing randomly may result with a
training/testing dataset that contains records from
only one class. For example, consider a data set
of X-ray images, where the records are labeled as
0 if the person does not have cancer and 1 if the
person has cancer. In such data set, the number of
records that are labeled 1 is significantly smaller
than those with label 0. If the training set contains
only records with label 0, the trained model will
not be able to recognize the records with label 1.
Moreover, if test set contains records with label 0
only, the values of performance measures will be
misleading.

To overcome such problem, train-test split with
stratification [2] is introduced. This technique rec-
ognizes the different categories in the labeled data
and generates the required ratio from each cate-
gory. For example, to split the labeled data with
x% for training, the labeled data is divided into a
number of subsets equal to the number of classes
and the records that belong to the same class fall in
the same subset. After that, for each subset, an x%
of the records in that subset are selected for train-
ing and the rest are held out to be used for testing.
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Fig. 4 Leave-one-out
cross-validation for
splitting the labeled dataset
into training and testing

Fig. 5 Three fold
cross-validation for
splitting the labeled dataset
into training and testing

2.3 Cross-validation

Cross validation [14] is one of the most popu-
lar techniques for train-test split. Such technique
is based on performing the evaluation step multi-
ple times where each single record in the labeled
data is assigned at least once to the test set. In
cross-validation, the user decides on a fixed num-
ber of folds or partitions of the data. The labeled
data is then partitioned into that number of par-
titions. For example, if the user chose five folds,
the labeled data is partitioned into five (approxi-
mately equal) partitions and each partition is used
once for testing and the rest of the partitions are
used for training. Figure 5, shows an example for

a threefold cross-validation. A stratified 10-fold
cross-validation is becoming a standard way of
train-test split of the labeled data for the purpose
of evaluating the ML models.

Another variation of the cross-validation is
called leave-one-out cross-validation [15]. This
technique is simply n-fold cross-validation when
the labeled data set has n records. In this tech-
nique, each record is left out exactly once and the
MLmodel is trained on the rest of the records. The
record that is left out is used to test the model and
the process is repeated n times to use each record
for testing the model exactly once. This technique
is preferred by the researchers, in many cases, as
it maximizes the number of records that are used
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for training themodel and the error estimation pro-
cess is deterministic. Figure 4 shows an example
of the leave-one-out cross-validation technique.

2.4 Bootstrap

Given a labeled data setwithn records (examples),
the idea of bootstrap [18] is to sample another
data set with n records from the labeled data
with replacement. That means, a record from the
labeled data can be selected more than once. The
new sampled data set is then used for training the
ML model. Since sampling the new training set
is done with replacement, a set of records will be
repeated in the training set. Consequently, there
will be a set of records in the original labeled data
that have not been selected. These records are used
for testing the model.

It can be shown that the probability of a record
in the labeled data to be picked more than once is
0.368. That means, only 0.632 of the original data
is used for training the model which is quite low
compared to the 10-fold cross-validation where
90% of the labeled data is used for training the
model. To compensate for this, aweighted average
of the error on the training and the testing sets is
used as an indicator of the model’s performance.
The final error is computed as

e = 0.632 × ete + 0.368 × etr ,

where ete is the error on the test set and etr is the
error on the training set.

3 EvaluationMeasures

As mentioned earlier, the evaluation measure that
can be used to determine the performance of a
givenMLmodel depends on the nature of the data
(labeled/unlabeled), the used ML model and the
application.When the data is labeled, a supervised
ML model can be used and the selection of the
evaluation measure will depend on the nature of
the predicted variable if it is continuous or cat-
egorical. Moreover, in many classification tasks,
we might be interested in predicting the labels of

a set of records that belong to a specific class
more than the labels of the records that belong
to the other classes. For example, predicting if a
person is going to develop cancer accurately is
more important than predicting if the person is
not going to develop cancer. In such case, the
performance measure should give more weight
for correctly predicting the labels of the records
from the desirable class. In the upcoming subsec-
tions, we will present and discuss different mea-
sures that can be used to evaluate the different ML
models.

3.1 Evaluating the Supervised
Models

In supervised learning, the ML model is trained
to predict the value of the target variable using
labeled data. We assume that the labels for the
evaluation (test) set are also available so we can
draw conclusions about the model’s performance
before using it in production applications for pre-
dicting the values of unseen examples (objects).
As mentioned earlier, the labeled data is split
into training and testing (sometime validation)
sets. Comparing the predicted value with the
actual value of the target variable is the logical
step when evaluating the supervised ML models.
Consequently, the selection of the performance
measures that can be used to evaluate the super-
vised ML model depend on the nature of the
target variable.

Evaluating the Regression Models Regression
models are used to predict the values of con-
tinuous target variables. For example, predicting
the blood pressure based on the lab results of a
patient requires using a regression model. Let us
consider that y = {y1, y2, . . . , yn} represent the
set of actual values of the target variable in the
test set and ŷ = {ŷ1, ŷ2, . . . , ŷn} represent the set
of predicted values. We compute the difference
between the actual values and their correspond-
ing predicted values ei = |yi − ŷi |, 1 ≤ i ≤ n.
We define a set of performance measures based
on the values of ei . The most common measures
are the mean absolute error (MAE), sum/mean of
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squared error (SSE/MSE), the l∞ and the coeffi-
cient of determination R2.

The mean absolute error is defined as
MAE = 1

n

∑n
i=1 |yi − ŷi |. It represents the

arithmetic average of the absolute error between
the actual and the predicted values. This measure
is usually used for computing the forecast error
in time series analysis. However, it is used in a lot
of applications as an indicator of the regression
models’ performance. The optimal value for
MAE is 0; However, when comparing different
regression models, the regression with smallest
value for the MAE is considered better than the
other models.

The sum/mean squared error are com-
puted as SSE = ∑n

i=1

(
yi − ŷi

)2 and

MSE = 1
n

∑n
i=1

(
yi − ŷi

)2. It is clear that
SSE/MSE are the arithmetic summation/average
of the squared difference (absolute error) between
the actual and the predicted values. Similar to
MAE, a value close to 0 means that the model
is accurate. However, this measure reduces the
contribution of the error values that are close to 0
and gives more weight to the error values that are
greater than 1.

In order to make sure that the regression model
provides accurate predictions for all examples in
the test set, a measure called l∞ is proposed.
The l∞ = max

1≤i≤n
|yi − ŷi | error is computed as the

maximum value of the absolute error ei , 1 ≤ i ≤
n. This measure is used to highlight the worst per-
formance of the model.

The coefficient of determination is denoted
by R2 [10] and represents the proportion of the
variance in the target variable that is predictable
from the independent (determinant or exploratory)
variables. It is a measure of how the regression
equation accounts for the variation in the depen-
dent variable. It is well-known that the closer the
regression curve to the points, the better the mod-
els fits the data. The main idea behind R2 is to
determine if a regression model can utilize the
knowledge from the independent variables to pre-
dict the dependent (target) variable accurately. To
compute the R2 value, we start by considering the
average value of the target variable as our baseline
predictor. After that, we compute the deviation of
the predicted values of the regression model from

the mean value and from the actual values, i.e, we
compute three quantities

T SS =
n∑

i=1
(yi − ȳ)2

RSS =
n∑

i=1

(
ŷi − ȳ

)2

ESS =
n∑

i=1

(
yi − ŷi

)2

(1)

where ȳ is the mean of the target variable y in the
test set, TSS refers to the sum of squared deviation
and RSS refers to the sum of squared deviation
between the predicted values using the regression
model and the mean of the target variable. More-
over, ESS is the sum of squared deviation between
the actual and the values that predicted using the
regression model. From Eq. (1), we can see that
T SS = RSS + ESS. The coefficient of determi-
nation R2 is then computed as

R2 = RSS

T SS
= T SS − ESS

T SS
= 1 − ESS

T SS
. (2)

The optimal score for R2 is 1.0, which can be
achieved when the value of the term ESS → 0.
Smaller values for R2 means that the model is not
accurate.

In Table 1, we summarize the measures that
can be used to evaluate the regression models. It
is clear that the main term in each measure is the
difference between the actual and the predicted
value. Usually, we need to compare two different
learning models to see which one performs better
on a specific problem. To have a better indication
on the performance of the different models, we
need to apply the techniques that we mentioned
earlier such as cross validation and repeat the
tests multiple times to choose the model that

Table 1 Summary of regression evaluation measures

Measure Formula

MAE 1
n

∑n
i=1 |yi − ŷi |

MSE 1
n

∑n
i=1

(
yi − ŷi

)2

SSE
∑n

i=1

(
yi − ŷi

)2

l∞ max1≤i≤n |yi − ŷi |
R2 1 −

∑n
i=1 (yi−ŷi )

2

∑n
i=1 (yi−ȳ)2
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gives the lower estimated error. However, we
need also to check if the difference in the error is
not happening by chance due to the randomness
in the process. We leave this issue as it is out of
the scope of this chapter.

Evaluating the Classifiers Classifiers predict a
categorical value for each data example that rep-
resents the class label for that example. Based on
this property, evaluating the classification models
can be done by matching the predicted class label
with the actual one and counting the number of
examples that have the same value for the pre-
dicted and the actual labels. The large number of
correct predictions indicates high performance of
the classification model.

In the case of two class problem, we can con-
sider the labels for the classes to be positive and
negative or 0 and 1. The possible outcomes for
matching a predicted class label with the actual
one can be one of the the following:

• True positive (TP): the actual and the predicted
labels are positive.

• False positive (FP): the actual label is negative
while the predicted label is positive.

• False negative (FN): the actual label is positive
while the predicted label is negative.

• True negative (TN): both (actual and predicted)
labels are negative.

These different outcomes are usually sum-
marized in matrix form, which is called the
confusion matrix [21] (see Table 2). In Table 2,
we see the confusion matrix for two classes with
entries labeled as TP, FP, FN, and TN. From the
confusion matrix, a set of performance measures
can be defined. The basic performance measure
for a classifier is its accuracy, which can be
defined as follows

Table 2 The confusion matrix

Prediction

Positive Negative

Actual Positive T P FN

Negative FP T N

Accuracy (acc) = number of correct prediction

size of the test set
(3)

In terms of the confusion matrix entries, the accu-
racy can be written as

Accuracy (acc) = T P + T N

T P + FP + FN + T N

= T P + T N

n
, (4)

where n is the number of examples in the test
set. As we can see, all misclassification errors are
given the same weight. However, optimizing the
classifiers to have better accuracy values is usually
misleading. This is a well-known problem when
the class distribution of the samples (examples) is
imbalanced [1]. By imbalanced data, we refer to
the situation when the representative samples of
the classes are unevenly distributed [19]. Let us
consider the example in [4], where a set of images
are labeled as either cancerous or noncancerous.
The annotation resulted in labeling 10,923 images
as noncancerous (majority class) and 260 as can-
cerous (minority class). When optimizing the ML
model for accuracy, the model will tend to clas-
sify more examples to be noncancerous. If theML
model classifies every sample to be from the non-
cancerous (majority) class, it will achieve 99.98
% accuracy. However, in many applications, it is
more costly to misclassify the examples from the
minority class. For this reason, a set of measures
have been proposed to tackle the imbalanced data
problem and give better indications about the clas-
sifiers’ performance.

In the information retrieval community, the
precision (P) and recall (R) [20] are used to eval-
uate the performance of the information retrieval
systems.When the user sends a query to retrieve a
set of documents that are related to a specific topic,
the precision represents the ratio of the correctly
retrieved documents that are related to the topic
in the set of the retrieved documents, whereas the
recall represents the ratio of correctly retrieved
documents in the set of he related documents in
thewhole dataset. In terms of the confusionmatrix
entries, we can consider:
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• TP = the number of relevant retrieved docu-
ments

• FP = the number of irrelevant retrieved docu-
ments

• FN = the number of relevant unretrieved doc-
uments

• TN = the number of irrelevant unretrieved doc-
uments

Using this analogy, the precision and recall can be
defined as:

Precision (P) = T P

T P + FP

Recall (R) = T P

T P + FN

Since, the precision and the recall can be
expressed in terms of the entries in the confusion
matrix, they have been used for measuring the
performance of the classifiers. Moreover, a
measure that combines the values of precision
and recall is called the F-Measure or F-Score
[7] is also used for measuring the classifiers’
performance. In its generic form, the F-Score is
defined as:

Fβ = (1 + β2)
P × R

(β2 × P) + R
,

where P, R are the precision and recall and β is
a parameter that controls the importance of the
recall compared to the precision when computing
the F-Score. When β > 1, the recall has more
weight than the precision and vice versa. The
balance between precision and recall is achieved
when β = 1. In this case, F-Score represents
the harmonic mean between P and R and is
written as:

F1 = 2
P × R

P + R
.

Usually, the discussion of the precision, recall
and F-Score focuses on measuring the perfor-
mance of the ML models with respect to the pos-
itive class (+ve). However, they can be used to
measure the performance with respect to the neg-
ative class (−ve). We can write:

P(+ve) = T P

T P + FP
and P(−ve)

= T N

T N + FN
.

Similarly:

R(+ve) = T P

T P + FN
and

R(−ve) = T N

T N + FP
.

In general, if we have k classes, we can compute
k different values for each of the precision, recall
and F-Score as they are associated with the class
labels.

In the data mining community, the R(+ve) is
also known as the sensitivity of the ML model
while the R(−ve) is known as the specificity. The
sensitivity and the specificity are used to define
another performance measure that is more suit-
able for evaluating the MLmodels on biased data,
which is called the balanced accuracy and is
defined as follows:

Balanced Accuracy (BA)

= sensitivity + specificity

2

= R(+ve) + R(−ve)

2

The balanced accuracy provides a better measure
for the performance of the ML models when the
dataset is biased (there is a significant difference
between the number of representative examples
from each class in the dataset).

Example 2 Consider the case of training an ML
model for classifying an input record to be can-
cerous or not using the dataset in [4]. We have
10,923 examples from noncancerous (U) and 260
examples from the cancerous class (C). If we split
the dataset using the 70-30 rule (70% for training
and 30% for testing) with stratification then we
will have the number of records in each subset as
in Table 3. We train an ML model (M) using the
training set and test it on the test set. We present
the output of the ML model in Table 4.
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Table 3 Train-test split of the cancer dataset with stratifi-
cation

Cancerous (C) Noncancerous (U)

Training 182 7646

Testing 78 3277

Table 4 The confusion matrix that represents the results
of testing M using the test set of the cancer dataset

Prediction

C U

Actual C 47 31

U 327 2950

Table 5 Performance measures of the ML model on the
cancer dataset

Acc. P(C) P(U ) R(C) R(U ) F1(C) F1(U ) BA

89.33 12.57 98.96 60.26 90.02 20.80 94.28 75.14

The reported values are out of 100,where 100 is the optimal
value

The values for the different performance mea-
sures that are used to evaluate the ML model (M)
are presented in Table 5. As we can see in the
results, considering the values of themeasures that
are computed for the class (C) are lower than those
for the class (U). Moreover, small changes in the
classification outcomes would lead to significant
changes in the values of the performance mea-
sures when considering the class (C) as it has a
few examples. The accuracy is an exception.To
show that, assume that your ML model is able to
classify all the examples from the class (C) cor-
rectly. In this case, the value of the accuracy will
be acc. = 90.25%whereas the balanced accuracy
will be BA = 95%. As we can see, the balanced
accuracy increased by 20% while the accuracy
increased by less than 1%. Hence, the balanced
accuracy can be considered as a better classifica-
tion performance measure when the data is biased
as it gives more weight for correctly classifying
an example from the minority class.

It is worth noting that these measures are easily
extendable for the cases when we have more than
two classes. To show that, let us consider a dataset
that contains k classes C = {C1,C2, . . . ,Ck}. In
this case, the confusion matrix can be constructed

Table 6 The confusion matrix for the case of k classes

Prediction

C1 C2 . . . C4

Actual C1 C11 C12 . . . C1k

C2 C21 C22 . . . C2k

. . . . . . . . . . . . . . .

Ck Ck1 Ck2 . . . Ckk

as in Table 6 and the accuracy can be computed as
the summation of the values in the main diagonal
over the summation of all entries in the confusion
matrix. That is

acc. =
∑k

i=1 Cii
∑k

i=1
∑k

j=1 Ci j

Moreover, the precision and recall can be
expressed as

P(Ci ) = Ci
∑k

j=1 Ci j
and R(Ci ) = Ci

∑k
j=1 C ji

,

where P(Ci ) is the precision and R(Ci ) is the
recall with respect to (w.r.t) class Ci . The other
measures can be expressed in a similar way.

3.2 Evaluating the Unsupervised
Models

In unsupervised learning, the training data is not
labeled. In this case, there is no error or reward that
can help in optimizing theMLmodel. Instead, the
ML techniques learn the patterns that exist in the
data in order to categorize the examples (objects)
according to a specific geometric or statistical cri-
teria. TheMLmodels are trained to summarize the
key features or structures of the data by optimizing
for the specified criteria. For example, clustering is
an unsupervised technique that tends to increase
the intra-cluster similarity and reduce the inter-
cluster similarity. The different clustering tech-
niques (algorithms) try to satisfy this criteria using
different optimization functions. In this sectionwe
will focus on evaluating the clustering techniques
since they are the most widely used unsupervised
learning techniques.
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As the clustering techniques tend to group
similar items (objects) together, a similarity
measure should be introduced that can determine
how two objects are similar to each other. For
numerical attributes, the Minkowski distance is
a well-known similarity measure between the
objects. The Minkowski distance is defined as

d(x, y) =
(

d∑

i=1

|xi − yi |p
)1/p

,

where d(x, y) is the distance between two objects
x, y ∈ R

d , d is the data dimensionality and R is
the set of real numbers. For categorical data, a
match/mismatch or string dissimilarity functions
can be used as dissimilarity (distance) measures.
These dissimilarity measures are also used to
define similarity measures to determine the mem-
bership level of an object to a given cluster. We
use the similarity measures to compute Silhou-
ette coefficient [13], which is used to measure the
quality of a given clustering technique.

When evaluating the different clustering
techniques, it is important to define a measure
that can check if two clustering techniques
(algorithms) produce similar groups (clusters)
of the objects in the data. For this purpose, a
measure called Rand Index is proposed in [12]. To
explain how rand index can be used to compare
two clustering algorithms, assume that we have
a set X = {x1, x2, . . . , xn} of objects (examples)
that needs to be clustered (grouped). We use two
different clustering algorithms A1,A2 to cluster
the data into A1(X) = {A11, A12, . . . , A1r } and
A2(X) = {A21, A22, . . . , A2s}. There are four
different types of relations that can be found
between any pair of elements in the set X × X
(Cartesian product of X with itself)

�1 = {(xi, xj) : (∃p, ∃q), xi, xj ∈ A1p ∧ xi, xj ∈ A2q }
�2 = {(xi, xj) : (∃p,∀q), xi, xj ∈ A1p ∧ xi, xj /∈ A2q }
�3 = {(xi, xj) : (∀p, ∃q), xi, xj /∈ A1p ∧ xi, xj ∈ A2q }
�4 = {(xi, xj) : (∀p,∀q), xi, xj /∈ A1p ∧ xi, xj /∈ A2q },

where p ∈ {1, 2, . . . , r} and q ∈ {1, 2, . . . , s}.
Let γl = |�l |, 1 ≤ l ≤ 4, then the values for
γl , 1 ≤ l ≤ 4 can be interpreted as follows:

i) γ1 represents the cardinality of the set that
contains the pairs of objects which fall in the
same cluster using both algorithmsA1,A2; ii) γ2
is the number of pairs of objects in X that are in
the same cluster according to algorithm A1, but
in different clusters according to algorithm A2;
iii) γ3 is the number of pairs of elements in X that
are in different clusters according to algorithm
A1, but in the same cluster according to algorithm
A2; and iv) γ4 is the number of pairs of objects in
X that fall in different clusters according to both
algorithmsA1 andA2. Based on these quantities,
the rand index is computed as

RI = γ1 + γ4

γ1 + γ2 + γ3 + γ4
.

The RI takes values in the interval [0, 1], where
1 represents the optimal value and means that
both algorithms divided the original dataset X
into the same set of clusters. When RI = 0, then
the two algorithms are completely different. How-
ever, when assigning the objects inX into clusters
randomly, the value of RI will not be 0, which
requires correction-for-chance that has been pro-
posed in [8] to define the adjusted random index
(ARI). The ARI can be written as [9]

ARI =
(n
2
)
(γ1 + γ3) − [

(γ1 + γ4)(γ1 + γ2) + (γ2 + γ3)(γ3 + γ4)
]

(n
2
)2 [

(γ1 + γ4)(γ2 + γ3) + (γ2 + γ3)(γ3 + γ4)
] ,

where n = |X| and (n
2

)
is the total number of pairs.

We consider that the pairs (xi, xj) and (xj, xi) are
equal so they are counted only once.

When the dataset X is labeled, we can select
algorithm A1 as the dummy clustering algorithm
that assigns each object inX to its class and creates
a number of clusters that is equivalent to the num-
ber of the classes in the dataset. In this case, the
value of RI that is used to compare a given cluster-
ing algorithmA2 with the dummy algorithmA1 is
exactly the accuracy that we discussed when eval-
uating the classification techniques earlier. Based
on this observation, the other performance mea-
sures that we defined to evaluate the classification
techniques, can be used to evaluate the clustering
algorithms when the labels of the object are avail-
able. However, the performance measures have
been given different names when they are used to
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evaluate the clustering algorithms. For example,
the precision is called purity or homogeneity, the
recall is called the completeness and the F-Score
is called the V-measure.

When the labels of the objects in the dataset
are available, we count the number of objects that
belong to each class in a given cluster and asso-
ciate that cluster with the class which includes the
majority of the objects. A cluster is said to sat-
isfy the purity (homogeneity) criterion if all the
values in that cluster belong to the same class.
Moreover, a cluster is said to satisfy the complete-
ness criterion if all examples that belong to the
class associated with that cluster are included in
the cluster. To compute the purity and complete-
ness of clusterCi , we assume thatCi is associated
with class C j .2 In this case, the purity of Ci is

defined as puri ty(Ci ) = |{x:x∈Ci∧x∈C j }|
|Ci | and the

completeness is defined as completeness(Ci ) =
|{x:x∈Ci∧x∈C j }|

|C j | . The V-measure is defined similar
to the F1-Score as follows

V-measure = 2 × puri ty × completeness

puri t y + completeness
.

The purity, completeness and V-measure take
values in the interval [0, 1] where 1 represents
the optimal outcome of the clustering algorithm.
Obviously, these measures will not take the value
of 0 in case of random clustering. Instead, their
values will increase as the number of clusters
increases, which could give misleading indication
about the goodness of the clustering algorithm.
However, this problem can be overcome when the
number of the objects in the datasetX is large and
the number of clusters is small.

Another measure that can be used to evaluate
the goodness of the clustering algorithm is the Sil-
houette coefficient [13]. This measure determines
how similar an example is to the examples in its
own cluster compared to the examples in the other
clusters without using the labels in the dataset.
To compute the Silhouette coefficient for a given
object (example xi) in the dataset, we compute two
quantities a(xi) and b(xi) as follows:

2We use the symbol C to represent a cluster while the reg-
ular C is used to represent a class.

a(xi) = 1

|Ck | − 1

∑

xj∈Ck∧xj 	=xi

d(xi, xj),

where Ck is the cluster that contains the object xi
and d(xi, xj) is a dissimilarity (distance) measure.
The quantity a(xi) represents the average distance
betweenxi and all other objects in the samecluster.
We define αim(xi,Cm) to be the average dissim-
ilarity between the object xi and all other objects
in the cluster Cm . That is

αim(xi,Cm) = 1

|Cm |
∑

xj∈Cm

d(xi, xj).

Assuming that we have λ clusters, we select b(xi)
to be the minimum value of αi t (xi,Ct ), 1 ≤ t ≤
λ ∧ t 	= k. Using the quantities a(xi) and b(xi),
we define the Silhouette coefficient for xi as:

Sil(xi) = b(xi) − a(xi)
max(b(xi), a(xi))

.

TheSilhouette coefficient takes values in the inter-
val [−1, 1], where a value of 0 means that the
object is in the border between two clusters, a neg-
ative value means that the object is more similar
to objects in the nearest cluster than the objects
in its own cluster. The average Silhouette coeffi-
cient over all objects in a given cluster determines
the goodness of the cluster where a value close
to 1 would mean a compact cluster. The average
Silhouette coefficient over all clusters defines the
quality of the clustering algorithm.

4 Conclusion

In this chapter,we provided a brief summary about
the different machine learning approaches includ-
ing the supervised, unsupervised and reinforce-
ment learning. We introduced different perfor-
mance measures that can be used to evaluate the
ML models. Our main focus was on the regres-
sion, classification and clustering as these are the
most widely usedML techniques.We showed that
the values of some measures can be misleading
when the dataset has specific characteristics. For
example, the accuracy is not a good measure for
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the classification performance when the dataset
is biased (the majority of the examples in the
dataset belong to one class). Consequently, select-
ing the performance measure should consider the
ML technique, the characteristics of the dataset
and the task at hand. A good performance mea-
sure would lead to better optimization of the ML
model to produce high quality results especially
in fields where ML models have high impact peo-
ple’s lives such as in the health domain.
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1	� Introduction

This chapter describes the field of deep learn-
ing (DL) and its application in the medical field 
for the purpose of prediction, both for diagnosis 
and prognosis. First, we will provide a theoreti-
cal overview of DL, focusing on some common 
models and their components. Furthermore, we 
will discuss the process of training these mod-
els on data, and the benefits and limitations of 
DL concerning the field of machine learning 
(ML). Second, we will describe several predic-
tion tasks that DL models perform, focusing on 
classification, regression, survival analysis, and 
segmentation. Third, we provide several exam-
ples that illustrate the potential real-world appli-
cation of DL models in healthcare and medicine, 
focusing on clinical imaging, electronic health 
records (EHRs), and genomics. Finally, we dis-
cuss the possible implications of deploying DL 
models in medicine and healthcare. We conclude 
this chapter by describing several limitations 
of DL within the medical domain, focusing on 
explainability and its necessity in DL models.
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Abstract

Deep learning is a subfield of artificial intel-
ligence (AI) that is concerned with devel-
oping large and complex neural networks 
for various tasks. As of today, there exists a 
wide variety of DL models yielding promis-
ing results in many subfields of AI, such as 
computer vision (CV) and natural language 
processing (NLP). In this chapter, we pro-
vide an overview of deep learning, elaborat-
ing on some common model architectures. 
Furthermore, we describe the advantages and 
disadvantages of deep learning compared to 
machine learning. Afterwards, we discuss the 
application of deep learning models in various 
clinical tasks, focusing on clinical imaging, 
electronic health records and genomics. We 
also provide a brief overview of prediction 
tasks in deep learning. The final section of 
this chapter discusses the limitations and chal-
lenges of deploying deep learning models in 
healthcare and medicine, focusing on the lack 
of explainability in deep learning models.
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[5], the latter of which is one of the most popu-
lar optimizers in DL. After the parameters have 
been updated, the backpropagation algorithm is 
repeated for a different batch of input data until 
all datapoints have been fed to the DL model. 
When that is the case, we say that the DL model 
has finished an epoch. Training of the DL model 
ends when it has completed a specified number 
of epochs, depending on the task of the model.

Compared to ML, one of the main advan-
tages of DL is that no feature extraction step is 
required when building a predictive model for 
a dataset (Fig. 2). Here, a feature is a property 
derived from the raw data input with the pur-
pose of providing a suitable representation [6]. 
In ML systems, such as support vector machines 
(SVMs), the raw data needs to be transformed 
into useful features before it can be fed to 
a learning algorithm for detecting patterns. 
Historically, constructing feature extractors 
required domain knowledge and human engi-
neering. Conversely, in DL the feature extraction 
is done automatically, as a DL model learns its 
own representations needed for pattern recogni-
tion. This occurs in each layer of the DL model, 
where the lower layers contain more primitive 
and data specific features, while the higher lay-
ers contain rather abstract and complex fea-
tures. This framework allows for DL models to 
directly work with the raw data and to extract 
useful features from multiple data sources [7]. 
Another advantage that DL has over ML is that 
DL models can handle noisy and unstructured 
data better than ML models, due to the afore-
mentioned automated feature learning of DL 
models [6]. Finally, DL models continue to 

2	� Deep Learning: A Theoretical 
Overview

DL is a subfield of artificial intelligence (AI) 
that is concerned with developing large and 
complex neural networks for various tasks. 
It emerged from the field of ML when more 
research was done on artificial neural networks 
(ANNs), models that have been inspired by the 
biological neural networks of animal brains [1]. 
A DL model is simply an ANN with many hid-
den layers. Each DL model is trained with the 
backpropagation algorithm [2] (Fig. 1). It con-
sists of two parts: the forward pass and the back-
ward pass. In the forward pass, the DL model is 
fed a batch of input data x, transforming it to an 
output y′. Here, a batch is simply a small sub-
set of randomly sampled datapoints from a data-
set. The size of this subset is called the batch 
size. After the forward pass, an error measure 
between the model output y′ and the ground 
truth y is calculated with a loss function, which 
depends on the task of the DL model. This error 
is then propagated through the DL model in the 
backward pass by calculating the gradient of 
each hidden layer. Finally, these gradients are 
used to update the parameters of the DL model. 
The exact method that performs this update is 
called the optimizer of the DL model. In general, 
an optimizer iteratively minimizes (or maxi-
mizes) the value of the loss function. The rate 
at which this optimization takes place is called 
the learning rate. One of the first optimizers 
used in DL is stochastic gradient descent (SGD). 
Currently, there exist many other optimizers, 
including AdaGrad [3], RMSProp [4], and Adam 

Fig. 1   Schematic overview of the backpropagation algorithm. The green solid arrows represent the forward pass, 
while the dashed red arrows represent the backward pass
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improve with more data, enabling them to out-
perform many classical ML approaches [7].

Despite the rise in popularity of DL in AI 
research, there are also disadvantages of DL 
compared to ML. One of the main disadvantages 
of DL is that most DL models are black-box 
models. This means that the decision-making 
process of DL models is not transparent. In 
other words, end users of such models have no 
indication how the input corresponded to the 
model’s output. As such, when a DL model 
makes a prediction, it may not be possible to 
explain why the model has made that predic-
tion. This lack of transparency forms one of the 
main reasons why DL models are not prevalent 
in healthcare and medicine, because many cli-
nicians feel uncomfortable to apply DL models 
in medicine, even when these models achieve 
impressive results in clinical tasks [8]. This feel-
ing of discomfort is likely due to the fact that 
healthcare and medicine contain many high-
stake scenarios (e.g., surgery, diagnosis), where 
decisions could greatly impact people’s lives. 
As such, physicians would like to explain these 
decisions to their patients [9]. Another limita-
tion is that DL models require a large amount 
of processing power and memory due to their 
complexity and size, which limits the use of DL 
models in small industries. Finally, DL models 
need a large amount of data in order to obtain 
state-of-the-art results. For some tasks, such as 
the diagnosis of rare diseases, such large data-
sets are not always available, limiting the appli-
cation of DL in certain fields. We will elaborate 

more on the shortcomings of DL in the final sec-
tion of this chapter.

3	� Deep Learning: Model 
Architectures

As of today, there exists a wide variety of DL 
models yielding promising results in many sub-
fields of AI, such as computer vision (CV) and 
natural language processing (NLP). The sim-
plest type of DL model is the multilayer per-
ceptron (MLP). MLPs are ANNs that contain 
fully connected layers, meaning that each node 
in the previous layer is connected to every other 
node in the next layer. Within a fully connected 
layer, a matrix multiplication between the input 
matrix X and a weight matrix W is performed. 
Afterwards, a bias vector b is added to the result. 
Because of the aforementioned calculation, a 
fully connected layer is also referred to as a lin-
ear layer in literature. Usually, linear layers are 
followed by an activation layer, applying an acti-
vation function f to the output of the linear layer. 
Generally, an MLP comprises of an input layer, 
followed by multiple consecutive hidden lay-
ers and ending with an output layer. The input 
layer is responsible for receiving the data. The 
hidden layers are composed of many fully con-
nected layers, extracting features from the input 
data. Finally, the output layer produces the final 
prediction result [10]. MLPs are often present 
at the end of large DL architectures, integrating 
high-level features to produce a task-dependent 

Fig. 2   Schematic overview of a ML approach (top) and 
a DL approach (bottom) for the task of peak detection 
in electrocardiograms (ECGs). In an ML approach, fea-
tures are extracted from the raw ECG signal and fed into 

a learning model. In a DL approach on the other hand, 
the raw ECG signal can be directly fed to the model, as it 
automatically learns the features from the data
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prediction. However, MLPs are mainly suited 
for processing rather simple data structures, par-
ticularly tabular data [10].

A more complex type of DL model is the 
convolutional neural network (CNN). These 
models are a very popular choice for the pro-
cessing of image data. The basic architecture of 
CNNs consists of a convolution layer, followed 
by an activation layer. The convolution layer 
extracts features from the input data by perform-
ing a convolution with a fixed size convolution 
filter, after which an activation function f is 
applied. Usually, a pooling (subsampling) layer 
follows the activation layer, performing a sub-
sampling operation in each region covered by 
the convolution filter. This extracts more repre-
sentative features and makes them more robust 
to noise [10]. Common subsampling operations 
include taking the average (i.e., mean pool-
ing) or taking the maximum (i.e., max pooling) 
in each region. If the features need to be aggre-
gated for prediction tasks, a linear layer could 
be added at the end of the CNN [10, 11]. By 

relying on local connections and weight shar-
ing, the CNN obtains translation invariant fea-
tures, making them especially suitable to encode 
spatial dependencies of the input data [11]. This 
could explain why CNNs are effective in pro-
cessing images.

A variant of the CNN that is primarily used 
in segmentation tasks is the U-Net [12] (Fig. 3). 
A U-Net contains two parts: the contractive path 
and the expansive path. The contractive path is 
the typical CNN, each step containing succes-
sive convolution layers with rectifier linear unit 
(ReLU) activation, followed by a max pooling 
operation. This decreases the spatial resolution 
of the image and increases the resolution of the 
feature map. Thus, the contractive path learns 
features at multiple resolution levels, captur-
ing context information of the image. In the 
symmetric expansive path, each step contains a 
transposed convolution as upsampling operation, 
followed by the same amount of convolution 
layers as in the contractive path. This increases 
the spatial resolution of the image at each step. 

Fig. 3   Architecture of a U-net model. The contractive 
path starts at the top left and ends at the bottom. Each 
step consists of successive convolutions with ReLU 
activation, followed by a max pooling layer, increas-
ing the resolution of the features. The expansive path of 
the U-net is symmetric to the contractive path, starting 
from the bottom and ending at the top right. Each step 

performs an upsampling operation, followed by the same 
convolutions as in the contractive path. The skip connec-
tions concatenate the high-resolution features from the 
contractive path to the expansive path. Optionally, the 
input could be subsampled in the contractive path and 
concatenated in the expansive path
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Furthermore, at each step there is a skip con-
nection that concatenates the high-resolution 
features from the contractive path to the input 
of the expansive path. Therefore, the expansive 
path combines spatial information of the image 
with high-resolution features from the contrac-
tive path, enabling precise localization of the 
segments.

Another important type of DL model is the 
recurrent neural network (RNN). RNNs are 
ANNs where nodes in the hidden layers have 
a connection with themselves. This allows the 
RNN to use the internal state (or ‘memory’) 
of the hidden layer to model sequential data of 
arbitrary length. Specifically, the output value 
of each element in the sequence of inputs is 
dependent on the calculations of previous ele-
ments [11]. This makes RNNs suitable for pro-
cessing text data and time series, as these data 
types contain sequential dependencies [10]. In 
the original formulation, RNNs could not prop-
erly process long-term dependencies within the 
input sequence due to vanishing and explod-
ing gradients [11]. The long short-term mem-
ory (LSTM) and gated recurrent unit (GRU) 
networks address this issue by modelling the 
hidden state with a gating mechanism that deter-
mines how much of the information flow is kept 
given the previous state, the current memory, 
and the input value. LSTMs and GRUs have 
been capable of capturing long-term dependen-
cies effectively, yielding impressive results in 
various NLP tasks.

4	� Prediction Tasks for Deep 
Learning in Healthcare

In the context of healthcare and medicine, the 
goal of each DL model is to improve the care 
that patients need for his/her disorder by making 
accurate predictions for the specific task that the 
model is trained for. When the DL model needs 
to predict a continuous value, then we perform a 
regression task [13]. Principally, the term regres-
sion refers to a technique where the relationship 
between independent variables and a dependant 
variable is modelled. The independent variables 

could be each dimension of the input data, while 
the dependant variable is the value of interest 
that the model needs to predict. The relation-
ship between the independent variables and the 
dependant variable is then characterized by the 
parameters of the DL model. Since ANNs are 
considered as universal function approximators 
[14], a regression task could be seen as fitting 
an extremely complex function to the input data, 
quantifying the relationship between the input 
data and the predicted output value. What the 
predicted value represents is heavily dependent 
on the prediction task. Examples include pre-
dicting the age [15] or blood pressure [16] of 
patients from electrocardiograms (ECGs), the 
absorbed dose of radiation after administering 
patients with radiopharmaceuticals [17], or the 
tolerable dose of chemotherapy [18].

For many tasks in medicine, however, a DL 
model is required to distinguish between dis-
crete categories. In this case, the model per-
forms a classification task [13]. Depending on 
the specific task, we can further distinguish clas-
sification tasks into three subtypes. When there 
are only two possible classes in the classification 
task, then the DL model performs binary clas-
sification. If there are more than two possible 
classes, and these classes are mutually exclu-
sive, then we perform multiclass classification. 
Finally, when there are more than two possible 
classes, but they are not necessarily mutually 
exclusive, then we perform multilabel classifica-
tion. In this case, a datapoint can belong to two 
or more classes. In each classification task, the 
DL model predicts the probability of a datapoint 
belonging to a particular class. For binary and 
multilabel classification, this class probability is 
calculated by applying the sigmoid function on 
the output of the final layer of the model. For 
multiclass classification, a softmax function is 
applied instead. Examples of classification tasks 
include predicting the mortality of COVID-19 
patients from ECGs [19], or performing a triage 
on 12-lead ECGs [20].

In healthcare, some tasks not only require 
DL models to predict a particular event, but also 
the time until that event occurs. In this case, 
the DL model performs a survival analysis. In 
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general, survival data are modelled with two 
probabilities. The first is the survival probabil-
ity (or survival function), conventionally denoted 
as S(t), representing the probability that an indi-
vidual survives from the time origin (e.g., the 
diagnosis of an illness) to a specified time t in 
the future. The second probability is the hazard 
probability, conventionally denoted as h(t) or �
(t), which represents the probability that an indi-
vidual observed in time t has an event at that 
time [21]. Usually, these two probabilities are 
estimated through statistical methods. As such, a 
DL model could estimate the necessary param-
eters of a survival model based on survival data. 
An example is the proportional hazards model, 
or Cox regression method [22], which estimates 
a survival curve of a patient by estimating the 
effect parameters (e.g., age, gender, disease of 
patient) of the Cox model. The effect parameters 
could then be estimated by a DL model [23]. In 
one study, Sammani et al. used a Cox regres-
sion model to predict life-threatening ventricular 
arrhythmias from 21 ECG factors [24]. These 
factors were generated by a variational autoen-
coder (VAE) that encoded the raw ECG into a 
fixed-sized vector.

When DL models are applied to clinical 
image data (e.g., ECGs or magnetic resonance 
imaging (MRI) scans), some tasks require 
the model to localize certain parts of the input 
image and distinguish those into semantic cat-
egories. In this case, the DL model performs a 
segmentation task, producing as output the input 
image with highlighted regions. As such, seg-
mentation tasks could be considered as a classi-
fication task since we are essentially classifying 
each pixel of the input image into the desired 
categories. Segmentation tasks are often used as 
intermediate steps for a subsequent classification 
or regression task, where the highlighted seg-
ments of the input data could be used as input 
for such a task. Examples of segmentation tasks 
include the segmentation of heart chambers (i.e., 
atria and ventricles) from MRI scans [25], or 
predicting the onset and offset values of P and 
T-waves and QRS-complexes from ECGs [26].

5	� Applications: Medical Imaging

Since some of the greatest opportunities for DL 
have been found in CV tasks, such as object 
detection, classification, and segmentation, 
the first applications of DL models to clinical 
data were on processing medical image data 
[11], including X-ray, computed tomography 
(CT) and MRI scans, ultrasounds, and ECGs. 
Concretely, DL models can assist physicians 
in tasks that are labour-intensive and prone to 
errors, such as analysing and processing pathol-
ogy images [7]. Furthermore, DL models per-
forming object detection and segmentation tasks 
can supplement physicians on urgent and easily 
missed cases [27]. Moreover, the patterns dis-
covered by DL models in clinical images could 
provide more information about the patient’s 
survival probability [28] or receptiveness to 
types of drugs [29].

Many studies in clinical imaging have shown 
remarkable results, sometimes achieving phy-
sician-level accuracy, in a wide variety of diag-
nostic tasks, categorizing the image into classes 
(e.g., diseases or degrees of urgency). For exam-
ple, DL models have been applied to analyse 
brain MRI scans to predict Alzheimer disease 
and its variants, outperforming state-of-the-art 
ML techniques [30]. Furthermore, CNNs have 
been used to classify skin lesions directly from 
medical images, which is impressive given the 
great variety of the appearance of skin lesions 
[31]. In other studies, CNNs have been applied 
for identifying diabetic retinopathy and cardio-
vascular risks from retinal fundus images [32, 
33], detecting breast lesions from mammograms 
[34], performing automated triage of 12-lead 
ECGs [20], analysing MRI scans of the spine 
[35], and distinguishing between benign and 
malignant breast nodules from ultrasounds [36].

Besides diagnostics, DL has also been suc-
cessfully applied in segmentation and detec-
tion tasks, identifying specific parts of the 
image that belongs to a particular object. In one 
study, a CNN has been used to segment large-
artery occlusions in the brain from computed 
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tomography angiographies (CTAs) [27]. 
Moreover, CNNs have been applied to detect 
mitotic cells and metastatic tumours in pathol-
ogy images [37, 38]. In other studies, DL mod-
els have been utilized for segmenting multiple 
sclerosis lesions in multi-channel 3D MRI scans 
[39], segmenting heart chambers from foetal 
ultrasound images [40], and segmenting waves 
and intervals of ECGs [41].

Segmentation models are not limited to 
detecting and categorizing objects from images. 
They could also be used for predicting complex 
patterns. In one study, Mahmud et al. [42] devel-
oped NABNet, a DL model that predicts arterial 
blood pressure (ABP) waveforms by segmenting 
ECG and photoplethysmogram (PPG) signals. 
The architecture of NABNet is based on a U-net 
model, with the addition of attention-guided bi-
convolutional LSTM blocks instead of direct 
skip connections between the contractive path 
and the expansive path. The final ABP estima-
tion is then obtained by linearly transforming 

the ABP prediction of NABNet with predicted 
blood pressure values. These blood pressure val-
ues were obtained with the method described in 
[16]. Figure 4 shows the results of the NABNet 
procedure.

6	� Applications: Electronic Health 
Records Data

Electronic health records (EHRs) are digi-
tal repositories of patients containing medical 
records about the patients and their treatment 
[43]. The main purpose of EHRs is to sup-
port continuing, efficient, and quality health 
care for patients. EHRs contain both structured 
and unstructured data. Structured data in EHRs 
are stored in a table, where the rows denote the 
patients while the columns represent the con-
tent of the patient’s information, such as demo-
graphics, diagnosis, vital signals, and laboratory 
results. Unstructured data on the other hand 

Fig. 4   Results of the NABNet procedure as described 
by Mahmud et al. [42] on four datapoints from the test 
set. In each subfigure, the top subplot is the PPG sig-
nal, the middle subplot is the ECG signal, and the bot-
tom subplot shows the predicted ABP waveforms 

(orange) and the ground-truth ABP waveforms (blue). 
Image obtained and modified from https://github.com/
Sakib1263/NABNet/blob/main/Documents/1-s2.0-
S1746809422007017-gr7.png in accordance with MIT 
license

https://github.com/Sakib1263/NABNet/blob/main/Documents/1-s2.0-S1746809422007017-gr7.png
https://github.com/Sakib1263/NABNet/blob/main/Documents/1-s2.0-S1746809422007017-gr7.png
https://github.com/Sakib1263/NABNet/blob/main/Documents/1-s2.0-S1746809422007017-gr7.png
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are usually text files containing clinical notes 
[10, 11]. Currently, the data contained in EHRs 
have increased considerably in volume. To illus-
trate, the EHR of a large medical organization 
contains medical records of roughly 10 million 
patients within a decade, covering a plethora 
of rare conditions and illnesses [7]. Analysing 
this vast amount of medical knowledge can sig-
nificantly benefit the efficiency and efficacy of 
healthcare. Since DL models are suitable to pro-
cess such large amounts of data, they have been 
increasingly applied to EHRs.

In most studies, DL models have been uti-
lized on structured EHR data to predict future 
medical events, regularly surpassing traditional 
ML techniques with hand-engineered features. 
For such tasks, the DL model is required to cap-
ture the temporal relationships between struc-
tural events occurring in a patient’s records. 
As such, RNNs are ubiquitous in these stud-
ies, since they are well suited for processing 
sequential data, including time series. However, 
CNNs and other DL models have been studied 
as well. In one study, a GRU model was trained 
to predict diagnoses and medications of subse-
quent visits based on patient history, achieving 
a higher recall than shallow baselines [44]. In 
another study, LSTMs were used on EHRs of 
diabetes and mental health patients to model the 
disease progression and future risk [45]. A decay 
effect was added to the LSTM model to han-
dle irregular timed events, which are common 
in longitudinal EHRs. Differently, a deep CNN 
was used to predict unplanned readmissions 
after discharge, outperforming traditional meth-
ods and detecting meaningful patterns about 
the patient’s disease and intervention records 
[46]. Other studies of DL models applied to 
structured EHR data include predicting disease 
onsets from longitudinal laboratory records [47], 
classifying 128 diagnoses from multivariate 
time series of clinical measurements [48], and 
predicting clinical interventions from EHRs of 
intensive care units [49]. On unstructured EHR 
data (e.g., clinical notes), deep language models 
have been applied to learn embedded representa-
tions of medical concepts such as diagnoses and 
medications. These embeddings could be useful 

for other analysis and prediction tasks such as 
patient summarization and cohort selection [50]. 
In another study, deep language models have 
also been used to remove protected information 
from EHRs in order to protect the confidentiality 
of patients [51].

7	� Applications: Genomics

Because of their ability to learn complex high-
end features, DL models have been increas-
ingly applied on biological data to capture their 
inner structure. DL has especially been studied 
on biological data describing genetic struc-
tures (e.g., DNA sequencing, RNA measure-
ments) [11]. Initially, DL was mainly used to 
replace conventional ML techniques with sim-
ple DL models. A feature extraction step was 
still necessary. For instance, an MLP was used 
on input features extracted from exons and 
adjacent introns to predict the splicing activity 
of individual exons, surpassing the simpler ML 
approaches [52].

With the rise in popularity of CNNs, the 
raw DNA sequence could be directly fed into 
the model. Since they are excellent at capturing 
spatial dependencies from the input data, CNNs 
could directly capture the inner structure of the 
DNA sequence, improving the detection of rel-
evant patterns compared to ML approaches and 
MLPs. This is because CNNs could process a 
larger window of DNAs, which in turn is due 
to the fact that CNNs perform convolutions on 
small windows of the input data and that the 
parameters are shared across these regions [11]. 
Therefore, CNNs form the bulk of the DL mod-
els used to extract feature from DNA sequences. 
For example, CNNs were used to predict spe-
cificities of DNA- and RNA-binding, uncov-
ering interesting patterns such as known and 
novel sequence motifs and identify functional 
single nucleotide variations (SNVs) [53]. In 
another study, CNNs were used to annotate and 
interpret the noncoding genome of eukaryote 
cells. Concretely, it was used to predict DNase 
I hypersensitivity across multiple cell types and 
to quantify the effect of SNVs on chromatin 
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accessibility [54]. In other studies, CNNs have 
been used for predicting chromatin marks from 
DNA sequences [55], predicting methylation 
states in single-cell bisulfite sequencing studies 
[56], and classifying gene expressions from his-
tone modification data [57].

8	� Shortcomings and Challenges 
of Deep Learning in Healthcare

Despite the impressive results that DL mod-
els achieve in various prediction tasks, there 
still remain some shortcomings and challenges 
that prevents DL to be widely applied in health-
care and medicine. As mentioned in the first 
paragraph, one of the main shortcomings of DL 
models is that they are black-box models. In 
this case, the DL model is considered to be not 
explainable. Before discussing the importance of 
explainable DL models in the medical field, it is 
important to define the notion of explainability. 
There exist numerous definitions of explainabil-
ity in the context of DL models. In this chapter, 
we follow the definitions from Markus et al. 
[58], stating that an AI model is explainable if 
it is intrinsically interpretable. For interpret-
ability, we will use the definition of Doshi-Velez 
and Kim [59], arguing that interpretability is the 
degree in which the inner logic of an AI model 
can be explained in human understandable terms. 
In principle, explainability requires DL mod-
els to explain how the relationships between the 
input and output are established. A consequence 
of the lack of explainability in DL models is that 
end-users do not know what parts of the input 
data contribute to the predictions of the model, 
which could have negative consequences in case 
the model makes an incorrect prediction. As 
an example, if an AI model that predicts atrial 
fibrillation (AF) from ECG data makes an incor-
rect diagnosis, cardiologists would have seri-
ous suspicions about the trustworthiness of the 
AI model, since AF can be easily detected from 
ECGs. This leads to a lack of confidence in 
applying DL models in healthcare by physicians. 
Furthermore, since diagnoses can be impactful 

events in people’s lives, physicians would like 
to explain the reason behind a (false) diagnosis 
from DL models [9]. If such an explanation could 
not be given due to the lack of explainability of 
the DL model, then physicians may lose trust in 
deploying such DL models for clinical decision 
making. Therefore, enhancing the explainabil-
ity of DL models is a necessary requirement for 
applying them in healthcare and medicine.

Possible solutions to resolve the black-box 
issue of DL models are provided by the field of 
explainable AI (XAI), which is concerned with 
highlighting the inner mechanisms of DL mod-
els. The bulk of the studies in XAI is focused on 
post-hoc explanation methods that explain pre-
trained DL models [60]. Post-hoc methods form 
a popular direction of research in XAI, because 
they can be applied on any type of DL model. 
One way in which post-hoc methods explain DL 
models is to calculate attribute scores, where 
their value indicates how much (parts of) the 
input contributed to the output. This highlights 
the importance of input features for certain pre-
dictions, indirectly explaining the DL model 
itself. This relationship can sometimes be visu-
alized more qualitatively by highlighting regions 
of the input that contributed the most to the out-
put (see Fig. 5). Although attribution scores can 
give an indication of the model’s inner logic, 
they may not always be accurate or physiologi-
cally sensible, showing that enhancing explaina-
bility remains a key challenge to overcome [61].

Instead of generating post-hoc explanations 
for a pre-trained DL model, we could also make 
use of interpretable features to enhance explain-
ability of the DL approach. One technique that 
could be used for this is called disentanglement 
learning [62]. This technique is concerned with 
learning disentangled representations, where 
each dimension or subset of dimensions stands 
for a generative factor of the input data that is 
independent of other generative factors. VAEs 
could be used for learning disentangled repre-
sentations. Here, an encoder compresses the 
input data into a fixed-sized vector. A decoder 
is then used to reconstruct the original input 
from the fixed-sized vector. After training time, 
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the disentangled representations could be used 
as input for other models to perform prediction 
tasks. By modifying and decoding the disentan-
gled representation, the influence of each factor 
on the original data could be visualised. This 
allows disentangled representations to improve 
explainability of both an individual prediction of 
the model (i.e., local explanation) and the model 
itself (i.e., global explanation) [63]. As an exam-
ple, Sammani et al. used disentangled represen-
tations and a Cox regression model to predict 
life-threatening ventricular arrhythmia (LTVA) 
[24]. The disentangled representations were gen-
erated by a VAE that encodes raw ECGs into 
fixed-sized vectors of 32 independent elements 
[64]. The collection of these vectors is called 
FactorECG. From the 32 elements 21 of those 
were identified to represent a certain generative 
factor (e.g., PR-interval, Ventricular rate) of the 
raw ECG data. As such, these were fed to the 
Cox regression model for prediction. By modi-
fying and decoding the disentangled representa-
tions, the influence of each factor on the ECG 
morphology could be visualised. This highlights 

the relationships between ECG morphology and 
the risk in LTVA found by the model on a global 
scale.

Besides the black-box problem, there are 
other technical shortcomings of DL models. One 
such shortcoming is that DL models require an 
enormous amount of data to achieve state-of-
the-art performance on their prediction task. 
The great success of DL in CV and NLP tasks 
is due to the accessibility of large volumes of 
data in those fields. However, this is not always 
the case in healthcare, as the data may not 
always be available in great quantities, or diffi-
cult to access. As such, medical data is limited 
compared to data from other domains [10, 11]. 
A related shortcoming of DL models is that they 
not only need large volumes of data, but also 
clean and well-structured data. Unfortunately, 
medical data are relatively unstructured com-
pared to other domains, being heterogeneous, 
ambiguous, incomplete, and noisy. As such, 
medical data needs to be carefully pre-processed 
before it can be fed to the DL model, unlike in 
other domains (e.g., CV) where for some tasks 

Fig. 5   Explanations of a 5 s ECG sample. These expla-
nations were obtained with four different post-hoc expla-
nation methods (columns), highlighting which time 
samples of the ECG signal contribute the most to the 
identification of human patients [65, 66]. Lighter yel-
low colours represent less relevant time samples, while 
darker purple colours represent more relevant time 

samples. The rows in this figure represents the popula-
tion size in which the human identification task is per-
formed (e.g., 100 id. means that 100 unique patients 
were used for the task). Image obtained from https://
github.com/jtrpinto/xECG/blob/master/plots/ptb_seg-
ment16_id0.pdf in accordance with MIT license

https://github.com/jtrpinto/xECG/blob/master/plots/ptb_segment16_id0.pdf
https://github.com/jtrpinto/xECG/blob/master/plots/ptb_segment16_id0.pdf
https://github.com/jtrpinto/xECG/blob/master/plots/ptb_segment16_id0.pdf
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little pre-processing is required [10, 11]. Finally, 
tasks from healthcare (e.g., modelling diseases, 
genome structure) are much more complicated 
than tasks from other domains (e.g., CV, NLP). 
This is because diseases are highly heterogene-
ous and there is still no complete knowledge 
about their cause and their progression [11]. 
As a result, much more medical data is needed 
to obtain good performance compared to tasks 
from other domains. Another reason for the com-
plexity of the medical domain is that biological 
processes change over time in a non-determin-
istic way. However, most existing DL models 
assume a static and vectorized input. Therefore, 
the temporal factor behind biological processes 
is not properly modelled by DL models [11].

In addition to technical shortcomings, the 
application of DL models in healthcare also 
brings some ethical issues. One such issue 
involves the principle of fairness, which evalu-
ates the predictions of DL models in terms of 
discrimination [60]. Generally, predictions of 
DL models are considered fair if they are not 
based on sensitive factors [67], such as race, 
gender, or the type of insurance policy. These 
sensitive factors could be present in the training 
data [60] or could be learned by the DL model 
during training time [68]. If this bias is not 
taken into account, it could lead to discrimina-
tion, lack of equity, lack of diversity inclusion 
and lack of just provision of care [68]. As a con-
sequence, it may lead to unfair care of patients 
in clinical decision making [69]. A number of 
techniques to enhance the fairness of DL models 
involves removing bias from training data [70–
72] or forcing DL models to make fair predic-
tions [73, 74].

Another ethical issue of DL models in health-
care involves the privacy of patients. The consent 
of patients to share their medical data is crucial 
for the successful application of DL models in 
healthcare [68]. Patients provide this consent 
on the condition that their privacy is protected 
by the hospital. If the privacy of the patients is 
broken, their willingness to share medical data 
would decrease considerably, hindering the pro-
gress of DL models in healthcare. Therefore, 
privacy is an important issue to address if DL 

models will be widely deployed in healthcare. In 
fact, Tramèr et al. [75] shows that model param-
eters or training data could be inferred from AI 
models deployed for commercial use, breaking 
the model and personal privacy. Solutions that 
addresses the privacy risks includes differential 
privacy methods to protect the model parameters 
[76–78] or homomorphic encryption for encrypt-
ing the model gradients [79].
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1	� Introduction

In this chapter the workings of auto-encod-
ers are explained in a way that is understandable 
for medical researchers and clinicians who have 
little or no prior training in the field of artifi-
cial intelligence (AI). For the more experienced 
reader we provide several technical intermezzos 
that contain a more in depth and mathematical 
explanation of the subject. Furthermore, we pro-
vide several examples that show potential use 
cases of auto-encoders for medical research, 
whilst also giving a broad set of guidelines 
on how auto-encoders can be implemented 
and used by other researchers in medical AI 
applications.

Auto-encoders and their variational counter-
parts form a family of (deep) neural networks 
that serve a wide range of applications in medi-
cal research and clinical practice. Auto-encoders 
were first contemplated in the late 80s, and their 
popularity grew with the increase in computing 
power [1]. Their use cases range anywhere from 
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Abstract

Auto-encoders and their variational coun-
terparts form a family of (deep) neural 
networks that serve a wide range of appli-
cations in medical research and clinical 
practice. In this chapter we provide a com-
prehensive overview of how auto-encoders 
work and how they can be used to improve 
medical research. We elaborate on various 
topics such as dimension reduction, denois-
ing auto-encoders, auto-encoders used for 
anomaly detection and the applications of 
representations of data created using auto-
encoders. Secondly, we touch upon the sub-
ject of variational auto-encoders, explaining 
their design and training process. We end the 
chapter with small scale examples of auto-
encoders applied to the MNIST dataset and a 
recent example of an application of a (disen-
tangled) variational auto-encoder applied to 
ECG-data.
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reconstructed from this compressed form. Auto-
encoders therefore aim to learn the optimal (de)
compression functions.

3	� Principal Component Analysis

The general idea of auto-encoders has been 
around for decades. Traditionally the use of 
auto-encoders has been centered around dimen-
sionality reduction and feature learning. For 
these purposes, auto-encoders are closely related 
to Principal Component Analysis (PCA), a tech-
nique commonly used in medical research. Both 
PCA and auto-encoders transform data into a 
lower dimensional representation, while retain-
ing the original information as much as possi-
ble. PCA is a purely mathematical approach to 
dimension reduction that involves calculating 
the Singular Value Decomposition (SVD), and 
is limited to linear transformations. Conversely, 
(deep) auto-encoders can learn non-linear trans-
formations. For complex data linear transfor-
mations are often insufficient for tasks such as 
classification and dimension reduction. Because 
of this (deep) auto-encoders often achieve better 
results than PCA. In fact, when an auto-encoder 
without any non-linear activations is used, the 
auto-encoder is likely to approximate PCA [5].

4	� Methodology Behind Auto-
encoders

Auto-encoders can reconstruct raw input data 
from extracted latent variables. We therefore 
make a distinction between the extraction step 
(i.e. encoding) and the reconstruction step (i.e. 
decoding). During the training of the auto-
encoder, both these steps are performed in 
sequence. First the raw data is encoded into a 
set of latent variables, and then the latent vari-
ables are decoded back into the raw data form. 
This approach is what enables the unsuper-
vised learning of auto-encoders, as the output 
of the model is effectively an approximation of 
the input. Meanwhile, the latent representation 

signal/image denoising and anomaly detection 
tasks to advanced dimension reduction and com-
plex data generation [2, 3].

Unlike most types of deep neural networks, 
auto-encoders are generally trained in an ‘unsu-
pervised’ manor, meaning that only raw data, 
without any labels, are required to train the 
models. This unsupervised nature and the broad 
set of possible applications make auto-encoders 
a popular choice in various fields of medical AI 
research.

2	� The Intuition Behind Auto-
encoders

Auto-encoders can be considered a dimension 
reduction or compression technique. Dimension 
reduction techniques aim to retain as much 
information from a raw data input as possible 
into a compressed vector representation (i.e. 
a set of numbers). The numbers in this vec-
tor, which are often referred to as ‘latent varia-
bles’, contain (as much as possible) information 
about the raw data input. If a dimension reduc-
tion technique is for example applied to images 
of written digits (e.g. the MNIST dataset), the 
reduced vector form of the images may con-
tain information about what digits the image 
contained, the orientation of the digit and the 
stroke width of the drawn digit [4]. The amount 
of reduction applied to the input data is usually 
inversely related to the amount of information 
that is retained in the compressed vector form. 
For example, if an image is reduced to only 3 
numbers, a lot of information is lost, and the 
original cannot be accurately reconstructed. 
In contrast, if an image that contained 28 × 28 
(= 784) pixels is reduced to a vector of 392 
digits, much more information is left, albeit in 
a reduced form. In this context, “information” 
is a rather abstract concept, and depends on 
the goal of the user of the dimension reduction 
technique. For auto-encoders, the main objec-
tive is typically to enable both compression and 
decompression, or in other words reduce the 
data to such a form that the original data can be 
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or compressed form of the input data, can be 
extracted from the middle of the network (after 
the encoding step). To train the model, a loss 
or error function is defined, which captures 
how well the model is doing in terms of recon-
structing the original input. The model is then 
progressively optimized to reduce this recon-
struction error.

While the exact architecture of the model 
may vary depending on the task and data at 
hand, all auto-encoder models contain a distinc-
tive ‘bottleneck’ or funnel structure. Here the 
dimensionality of the data is reduced during the 
encoding step, and increased again during the 
decoding step. This bottleneck structure ensures 
the model is unable to simply copy information 
from the input to the output. Instead it has to 
compress the data and reconstruct it. By forcing 
compression of the data through the bottleneck 
structure and optimizing the model for accurate 
reconstructions, auto-encoders learn to perform 
complex steps that allow it to create a latent 
representation of the data that contains as much 
important information as possible. We provide 
a more formal explanation of this process in the 
technical intermezzo below.

Technical Intermezzo 1
The auto-encoder neural network is 
trained to ensure that its output data are 
the same as the input data, which is done 
through a funnel represented by the latent 
space (Fig. 1). Even though an auto-
encoder is technically a single model; it 
is common to define the encoder step and 
the decoder step separately. The encoder 
E takes the raw data x as input and out-
puts a latent representation z (Eq. 1). 
Subsequently, decoder D takes the latent 
representation z as input and outputs a 
reconstruction of x, now called x̂ (Eq. 2). 
The so-called latent vector z has a lower 
dimensionality (is smaller) than the input 
x and output x̂, that both have the same 
dimensions. As per the MNIST example 

above, x and x̂ would both be of size 
28 × 28 pixels, while z is a vector of arbi-
trary size that is determined by the design 
and purpose of the auto-encoder (e.g. 
1 × 2 for compression to 2 latent variables 
per sample or 1 × 32 for 32 latent vari-
ables per sample).

Equation 1 Function that represents the 
encoder part of an auto-encoder. The 
latent vector (z) is calculated by the 
encoder (E) based on the input data x.

Equation 2 Function that represents the 
decoder part of an auto-encoder. The out-
put (x̂) is calculated by the decoder (D) 
based on the latent vector (z) that was pre-
viously calculated by the encoder.

Using this formalization, we can thus 
define the auto-encoder as two functions as 
shown above. The objective of the model 
is to output a reconstruction x̂ that is as 
similar as possible to the original input x 
while also generating a latent representa-
tion (z) of the data after the encoding step. 
To enforce this similarity, a so-called loss 
term (or error term) is used during train-
ing of the auto-encoder. This loss term is a 
measure for the difference between input x 
and output x̂. A relatively simple and com-
monly used function to calculate the loss 
is the mean squared error (MSE). The loss 
calculation of the model can then be repre-
sented by the following function:

Equation 3 Function to calculate the mean 
squared error (MSE) loss of the input data 
x and output data x̅. N = total number of 
data point in data, i = ith data point in the 
dataset.

(1)z = E(x)

(2)x̂ = D(z)

(3)Loss = MSE
(
x, x̂

)
=

1

N

N∑

i=0

(
xi − x̂i

)2
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5	� Auto-encoders for Denoising 
and Anomaly Detection

In this section we will provide some use cases 
for auto-encoders. The first example of a poten-
tial use-case is that of denoising data. In the 
field of medical imaging, the presence of noise 
in images may limit resolution or decrease 
interpretability, thereby hampering it’s use 
for evaluation or further analysis. Therefore, 
removing noise (i.e. denoising) is commonly 
performed as a first step. Conventional meth-
ods for denoising (medical) images ranges 
from spatial filters, such as Gaussian or convo-
lutional filters to wavelet based techniques [6]. 
As described before, auto-encoders can also be 
used for denoising images. Recent studies have 
shown that auto-encoder based denoising meth-
ods often outperform conventional methods. 
Gondara showed that using convolutional layers 
in an auto-encoder led to efficient denoising of 
medical images, and maybe more importantly, 
can be used on smaller datasets [7].

Auto-encoders extract information from the 
input and reconstruct the input data as good as 
possible. We can use this characteristic to create 

an auto-encoder that extracts information from 
a noisy input and reconstructs the input but 
without the noise. We do this under the assump-
tion that a noisy image is composed of a clean 
image with noise added to it. We thus want to 
train the auto-encoder such that it extracts the 
important information of the clean image but 
ignores the noise. In order to do so we start 
with a, non-noisy, input x and add some random 
noise λ to it. We thus have a new input for the 
model, which we will call x*, that is the sum of 
x and λ (e.g. x* (noisy image) = x (image) + λ 
(noise)). We pass this noisy input through the 
network and obtain x̂, the reconstructed image, 
as we did before. Meanwhile, we keep the origi-
nal MSE loss calculation fixed, so it is still the 
difference between x and x̂, however, x̂ is now 
based on the noisy input x* rather than x. The 
network will thus have to learn how to remove 
the noise from x̂ in order to make it as similar 
as possible to x.

Denoising auto-encoders can be a useful tool 
to clean data that stems from real world obser-
vations that tend to be very noisy. Lu et al., 
for example, use denoising auto-encoders to 
enhance speech recordings [8]. Jifara et al. 

Fig. 1   General schematic layout of an Auto-encoder neu-
ral network. The network input x can be any form of data 
(e.g. images, signals or other measurements). The network 

learns to reconstruct the input by minimizing the mean 
squared error (MSE) between the input and the output of 
the network
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take a slightly different approach and design 
their auto-encoder in such a way that it out-
puts the estimated noise, instead of a recon-
struction of the input image (the noise can be 
subtracted from the noisy image to create a 
clean image) [9]. They show that this approach 
improves upon standard denoising auto-encod-
ers on images obtained using chest radiography. 
Nawarathne et al. use denoising auto-encoders 
on spectral images extracted from acceleromet-
ric data measured on pregnant mothers’ abdo-
men, in order to improve the analysis of fetal 
motion during pregnancy [10].

Auto-encoders can also be used as a fully 
unsupervised method of anomaly detection. For 
these applications, it is important to understand 
that auto-encoders only learn to reconstruct data 
that they have seen during the training of the 
network. While a network may learn to handle 
slight differences, it likely performs worse on 
samples that are very different from the train-
ing data. To illustrate this using the MNIST (a 
dataset containing images of hand drawn digits) 
example; if a network is only trained on images 
of the digit 3, it will fail to properly reconstruct 
the digit 7. Interestingly, we can use this prop-
erty to detect anomalies or outliers in the data-
set, by purposefully training the network on a 
dataset of which we are certain does not con-
tain any anomalous samples. If we then apply 
the network to another dataset that does contain 
outliers, the outliers are likely to have a signifi-
cantly larger reconstruction error than the non-
anomalous samples. It must be kept in mind that 
all data that is different from that in the training 
set is considered anomalous. It may therefore 
be very hard to distinguish between expected 
anomalous data, and noise in the observations.

Shvetsova et al. show that this approach can 
be used to detect tissue with metastases in H&E-
stained lymph nodes and abnormal chest x-rays 
[11]. Wei et al. use a similar method to detect 
suspicious areas in mammograms showing how 
auto-encoders can also be used to detect the 
position of the anomaly in an image while only 
requiring a set of images obtained from healthy 
‘normal’ patients [12].

6	� Auto-encoders for Latent 
Vector and Feature Learning

Perhaps the most interesting applications of 
auto-encoders are based on the latent vector 
extracted after the encoding step. The latent vec-
tors contain a condensed form, or a summary, 
of all the important information in the input 
data. Exactly what that information is however, 
is unknown. We only know that the latent vec-
tor contains information that the decoder can 
use to reconstruct the original data. An impor-
tant aspect of auto-encoders is that they do not 
guarantee that the latent space is normally dis-
tributed. What this means is that we may get 
unexpected results when we reconstruct sam-
ples after manipulating latent representations 
or when we calculate relationships between 
latent representations of different samples. 
For instance, one might expect that two simi-
lar looking images yield similar latent vectors 
when passed through the encoder. However, it is 
entirely possible that two very different images 
have a very similar latent vector, while two very 
similar images have very different latent vectors. 
An example of this is given in Fig. 4 where we 
can see that if we look at some MNIST images 
that are similar in terms of their latent represen-
tation, that some of the original non-compressed 
images are in fact very different. The fact that 
the latent space of the auto-encoder is not nor-
mally distributed also hampers us from directly 
linking the values in the latent representations to 
underlying features of the data. In the case of the 
MNIST example we may for example observe 
an increase in line-width if we increase the first 
latent variable of a latent representation by +2 
and reconstruct the image. It is however possi-
ble that a step of +5 yields a reconstruction in 
which the digit is rotated instead of a reconstruc-
tion where the linewidth is increased further. 
Variational auto-encoders, discussed later in this 
chapter, try to enforce a normally distributed 
latent space which enables a wide range of addi-
tional applications.

While the latent representations of auto-
encoder are limited by the non-linearity of the 
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latent space they can still be used for a number 
of applications. The created latent vectors may 
for example serve as input to other models [13]. 
If a user has a very large dataset, of which only 
a small fraction is labeled, it may be beneficial 
to first train an auto-encoder on the full dataset, 
and then train a separate classifier on the latent 
representations of the previously labelled data-
set. This approach ensures that sufficient infor-
mation is extracted from the input data, with less 
risk of overfitting and unwanted biases.

It is also possible to use the latent vectors 
as input for another dimension reduction tech-
nique that is better at preserving the relationship 
between samples, but worse at handling large/
complex data [14]. It is for example not uncom-
mon to reduce image data to 32 or 64 dimen-
sions using an auto-encoder and then apply 
t-SNE (or similar dimension reduction tech-
niques) to further reduce the dimension to 2 or 
3, so that the data can easily be visualized in a 
graph [15]. This approach generally performs 
better than only using an auto-encoder or t-SNE.

7	� Variational Auto-encoders

Variational auto-encoders (VAE) are closely 
related to auto-encoders in terms of their net-
work structure and purposes [16]. The main goal 
with which they were proposed is however very 
different from the original ‘vanilla’ auto-encod-
ers. VAEs are a type of generative model, mean-
ing that they can generate (new) data, instead 
of just compressing and reconstructing existing 
data. In order to do so, VAEs attempt to learn 
the distribution (or process) that generated the 
data on which the model is trained, opposed to 
simply finding the optimal solution that mini-
mizes reconstruction loss. The latent space vari-
ables of regular auto-encoders may have large 
gaps in their distribution and may be centered 
around an arbitrary value, while those of VAEs 
are all normally distributed with a mean of 0 
and standard deviation of 1 (stochastic normal 
distribution). In the case of the latent space of 

an auto-encoder, there is little relation between 
values in the latent space and its reconstruction, 
slightly changing z might lead to completely dif-
ferent reconstructions. With the VAE, there is a 
very direct relation between the two and slightly 
changing z will slightly alter the reconstruction 
while changing z in the opposite direction will 
have the opposite result. By inserting a latent 
vector z (with values around zero, and within 
a few standard deviations) into the decoder of 
a VAE, one can create ‘new’ data that can usu-
ally be considered comparable to the data the 
VAE was trained on, where a latent vector z con-
taining all zeros approximates the mean of the 
training data. The general structure of a VAE is 
visualized in Fig. 2.

The training of VAEs is more complex than 
that of normal auto-encoders, and is described 
in more detail in the technical intermezzo. It 
is important to know that VAEs are trained 
with an additional loss term: the Kullback-
Leiber Divergence (KL Divergence). The 
KL-divergence loss term encourages the latent 
space of the VAE to have the desired properties 
described above by enforcing that each individ-
ual latent variable follows a unit normal gauss-
ian distribution (with mean = 0 and standard 
deviation = 1).

Technical Intermezzo 2
VAEs are based on the assumption that all 
data in the dataset used to train the model 
was generated from a process involving 
some unobserved random variable. The 
data generation process then consists of 2 
steps: (1) a value z is generated from some 
prior distribution Pθ (z); ; (2) a value x is 
generated from a conditional distribution 
Pθ (x|z). In this process the optimal values 
of θ(θ*) and z are unknown, and thus need 
to be calculated from the known values 
in x. VAEs aim to approximate θ∗ and z 
even if calculation of the marginal likeli-
hood and true posterior density are intrac-
table. To do so, VAEs use a recognition 
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model qϕ(z|x) that approximates the true 
posterior Pθ (x|z) and jointly learn the 
recognition parameter ϕ together with the 
generative parameter θ. Using this for-
malization, we can distinguish between 
learning a probabilistic encoder qϕ(z|x), 
from which we can sample z when given x 
and a probabilistic decoder Pθ (x|z), from 
which we can sample x when given z. In 
practice both the probabilistic encoder 
and decoder are neural networks of which 
the appropriate architecture can be picked 
based on the nature of the data in x.

The VAE training objective

To ensure that the approximate dis-
tribution qϕ(z|x), is close to the real 
distribution Pθ (x|z), , we can use the 
Kullback-Leiber Divergence (KL 
Divergence) which quantifies the def-
erence between 2 distributions. In the 
case of VAEs the goal is to minimize this 
KL Divergence which can be written as 
follows:

Equation 4. The Kullback-Leiber 
Divergence.

Equation 4 can then be rearranged to 
Eq. 5.

The left-hand side of Eq. 5 exactly fits the 
objective of the VAE: we want to maxi-
mize the probability of x from distribu-
tion pθ(x) and minimize the difference 
between the estimated distribution qϕ(z|x) 
and real distribution pθ(z|x). The negation 
of the right-hand side of the equation gives 
us the loss which we minimize to find the 
optimal values for ϕ and θ.

Equation 6. The training objective func-
tion of the variational auto-encoder.

(4)

DKL

(
qϕ(z|x), pθ (z|x)

)
= pθ (x)+ DKL(qϕ(z|x), pθ (z))

− Ez∼qϕ
(z|x) log pθ (x|z)

(5)

pθ (x)− DKL

(

qϕ(z|x), pθ (z|x)
)

= Ez∼qϕ
(z|x) log pθ (x|z)

− DKL

(

qϕ(z|x), pθ (z)
)

(6)

LVAE = Ez∼qϕ
(z|x) log pθ (x|z)+ DKL

(

qϕ(z|x), pθ (z)
)

θ∗,ϕ∗
= argminθ,ϕLVAE

Fig. 2   General schematic layout of a Variational Auto-
encoder neural network. During the training the net-
work latent vector z is sampled from a gaussian distri-
bution parameterized by the outputs of the encoder. 

These outputs are also used for the calculation of the 
KL-divergence, which is then combined with the MSE 
loss (calculated from the original input and the recon-
struction) to form the VAE loss function
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Equation 6 is known as the Evidence 
Lower Bound (ELBO) because the 
KL-divergence is always positive. This 
means that − LVAE is the lowest value pθ(x) 
can take, minimizing LVAE thus equates 
to maximizing pθ(x). Even tough Eq. 6 
gives a clear definition of a loss term, it 
cannot directly be used to train a VAE. 
The expectation term in the loss has to be 
approximated using a sampling operation, 
which prevents the flow of gradients dur-
ing training. To solve this issue, VAEs use 
the ‘reparameterization trick’ which relies 
on the assumption that p(z|x) follows 
a known distribution. This distribution 
is usually assumed to be a multivariate 
Gaussian with a diagonal covariance struc-
ture (even though the trick works for other 
distributions as well). Using the param-
eters of qϕ(x|z) and the assumption qϕ(x|z) 
is Gaussian, z can be expressed as a deter-
ministic variable that is produced by some 
function τϕ(x, ε) where ε is sampled form 
an independent unit normal Gaussian 
distribution.

Equation 7. The ‘reparameterization trick’ 
used to enable the training of variational 
auto-encoders through backpropagation.

In practice the encoder model of the 
VAE is constructed so that is outputs a 
mean (µ) and standard deviation (σ) that 
parameterize the Gaussian distribution 
qϕ(x|z). Using this set up, the reparameter-
ization trick equates to Eq. 7.

In this chapter we often refer to the embedding 
or latent representation of data which means the 
mean µ output of the encoder of the VAE was 
used and the standard deviation σ was ignored. 
This can be considered standard practice if a 
latent representation of input data is desired.

(7)z = τϕ(x, ε) = µ+ σ⊙ ε

8	� Disentanglement and Posterior 
Collapse

The latent variables of a VAE often encode 
some underlying characteristics of the data. For 
images, latent variables can for example encode 
factors such as the width, height or angle of a 
shown object [17]. However, different latent var-
iables are often entangled, meaning that multiple 
variables influence the same characteristic of the 
data. To improve the explainability of the latent 
space and better control the generative process of 
the VAE [18–21] it can be desirable to disentan-
gle the latent space. Higgins et al. proposed the 
β-VAE, which adds an additional weight β to 
the KL-term of the VAE loss, as a very simple 
but effective way to improve disentanglement 
[17]. The value of β can be picked based on the 
desired amount of disentanglement of the latent 
space. A higher β generally corresponds to bet-
ter disentanglement. There is however a trade-off 
between the amount of disentanglement and the 
reconstruction quality of the VAE, where more 
disentanglement results in worse reconstruc-
tions [22]. VAEs also suffer from a phenomenon 
called posterior collapse (or KL-vanishing), 
which causes the model to ignore a subset of the 
latent variables. Posterior collapse occurs when 
the uninformative prior distribution matches the 
variational distribution too closely for a sub-
set of latent variables. This is likely caused by 
the KL-divergence loss term which encourages 
the two distributions to be similar [23]. During 
training, posterior collapse can often be observed 
when the KL-loss term decreases to (near) zero, 
which is even more prevalent in VAE variants 
that add additional weight to the KL-term such 
as β-VAE [17]. To prevent posterior collapse 
and improve reconstruction quality of disentan-
gled VAEs, Shao et al. propose the Control-VAE 
[24]. This method requires a ‘target value’ for 
the KL-divergence and tunes the weight of the 
KL-divergence such that it stays close the target 
value during training.



211Deep Learning—Autoencoders

9	� Use Cases for VAEs and Latent 
Traversals

The generative capabilities and their (disentan-
gled) latent spaces allow for a large number of 
use-cases of VAEs. VAEs (and VAE based mod-
els) can for example be used to improve anom-
aly detection compared to normal auto-encoders, 
to create interpretable latent representations that 
can serve as input for conventional classification 
models such as logistic regressions, or to per-
form further analysis of the learned latent vari-
ables using techniques such as latent traversals 
[25, 26].

A latent traversal is a method in which we 
change one or more latent variables from a sam-
ple encoded using the encoder of a VAE, and 
reconstruct the input sample from these changed 
latent variables using the decoder. By comparing 
the original sample and the sample reconstructed 
from the changed variables one can see which 
aspects of the data are encoded by these vari-
ables. Especially when the latent space is suffi-
ciently disentangled, it is often possible to relate 
individual latent variables to underlying physi-
ological characteristics of the data.

Latent traversals can be combined with 
logistic regressions (or other classical statisti-
cal models) to infer and visualize relationships 
between latent variables and the use case (e.g. 
classification, prediction etc.). We do this by 
analyzing the weights/coefficients of the logis-
tic regression to see which latent variables 
have a positive predictive value for a certain 
class. We can then perform a latent traversal by 
increasing and decreasing these important latent 

variables and examining how the reconstructed 
sample changes. This whole process thus allows 
us to visualize which features are important for a 
class. We elaborate on this approach in a practi-
cal example applied to electrocardiogram (ECG) 
data later in this chapter.

10	� Auto-encoders Versus 
Variational Auto-encoders 
(Summary)

Now that we have discussed both auto-encoders 
and variational auto-encoders, we can summarize 
the pros and cons of both model types. An over-
view of these is given in Table 1. In general, VAEs 
provide a wider range of applications, while auto-
encoders generally produce better reconstructions. 
We have discussed a similar trade-of regarding 
the disentanglement of VAEs, where the recon-
struction quality of VAEs is inversely related to 
the amount of disentanglement. These trade-offs 
lead to the conclusion that it is desirable to use a 
(disentangled) VAE if a normal auto-encoder is 
insufficient for the desired use-case.

11	� Designing an Auto-encoder 
and Common Pitfalls

The first step in training an auto-encoder (or any 
other model) is collecting a representative data-
set that can ensure the validity of any findings or 
insights [27]. As discussed before, auto-encod-
ers only learn to reconstruct data that is similar 
to the data used during the preceding training 

Table 1   Use cases, pros and cons of using (variational) auto-encoders

Use-case Auto-encoder Variational 
quto-encoder

Denoising + +
Anomaly detection + +
Representation learning + +
Data generation − +
Latent traversals − +
Possibility to disentangle latent variables − +
Optimal reconstruction quality + −
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phase. It is thus important to collect a heteroge-
neous dataset that spans the full range of sample 
variation that will be used for further analysis. 
The actual type of data can range anywhere 
from images, to signals to any arbitrary meas-
urement. There is, to the best of our knowledge, 
no datatype that can inherently not be used to 
train an auto-encoder. It is however important to 
remember that more complex data may require 
a more complex network architecture, or more 
training data. It is also possible that the stand-
ard MSE loss term may not be adequate for cer-
tain datatypes where it is important to accurately 
reconstruct small features, because the MSE loss 
will deem large features to be more important 
than small features. An example of this is in the 
use-case of ECGs, where minor variations in the 
P-wave can be overshadowed by larger varia-
tions in the larger T-wave, and are thus not ade-
quately captured by the auto-encoder.

Both the encoder and decoder part of the 
auto-encoder consist of a more elaborate neu-
ral network. The choice for the network archi-
tecture is generally dependent on the data to 
which the auto-encoder is applied. For simpler 
data it may be sufficient to use a small number 
of fully connected linear layers, in combina-
tion with non-linear activation functions [28]. 
For more complex data, such as for example 
medical images, the encoder network is often 
composed of several convolutional layers (con-
nected by non-linear activation functions) [7, 
9–11]. Convolutions are currently the most pop-
ular architecture type because they show optimal 
performance on various types of different data. 
For signal or timeseries data, 1-dimsional con-
volutions are a popular choice; for images it is 
common to use 2-dimensional convolutions [8]. 
Depending on the number of chosen layers it 
may also be beneficial to add skip connections 
(residual connections) to improve the flow of 
gradients through the network during backprop-
agation [29]. Various regularization techniques 
like batch normalization and dropout may also 
improve performance. It is however generally 
better to first design a simple network and be 
certain that these additional tricks improve per-
formance before using them.

In essence, the decoder of the network is 
often designed to be a mirrored version of the 
encoder network. Hence, if convolutional layers 
are used in the encoder, transposed convolutions 
are used in the decoder [30]. The usage of pool-
ing layers (e.g. min/max-pool, average pool) in 
the encoder may pose a problem, as no sufficient 
inverse of these functions exist. In this case it 
is possible to simply up sample the data in the 
decoder under the assumption that the model 
will be expressive enough trough the other lay-
ers that do contain weights.

Perhaps the most important design decision is 
the size of the latent space. Smaller latent vec-
tors generally result in worse reconstructions, 
conversely larger latent vectors often lead to 
better reconstructions. The choice of the size 
of the latent space is thus very dependent on 
the use case of the auto-encoder. For denoising 
auto-encoders and anomaly detection tasks, it 
may be sufficient to reduce the size of the input 
only slightly during the encoding step. In these 
cases a very small latent vector is undesirable 
as it is likely to yield worse reconstructions. By 
contrast, if the latent representation serves as 
input for another model, picking the correct size 
is entirely dependent on the task of the other 
model. Here a more compressed representa-
tion may be desirable as it reduces the amount 
of information extraction that still must be per-
formed by the other model. If the latent repre-
sentations are used as input for conventional 
clustering techniques it is desirable to have an 
amount of latent variables that is within a rea-
sonable range (e.g. higher than 10 but below 
100, dependent on the size of the dataset). 
When auto-encoders serve as an input to another 
neural model, the optimal latent space can be 
selected based on the quality of the reconstruc-
tions (if we assume the decoder is functioning 
perfectly). Simply put, if the reconstructions 
look decent, there must be enough informa-
tion in the latent representation to be used in 
the other model, and the latent space was suffi-
ciently large.

If the goal of the auto-encoder is to create 
an interpretable latent space, the best choice is 
likely to use a variational auto-encoder.
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12	� Examples Using the MNIST 
Dataset

In this section we perform a number of small-
scale experiments to show the how the design 
of the auto-encoder influences its performance. 
For this purpose we use the MNIST dataset [4]. 
This dataset consists of 70,000 grayscale images 
of handwritten digits and is a popular choice for 
basic experiments among AI researchers.

We split the dataset into a train, validation 
and test set (80%, 10%, 10% respectively) 
and trained 9 neural networks until conver-
gence. As a comparison, we also included 3 
examples of the commonly used PCA dimen-
sion reduction technique. The tested neural 
architectures consist of a fully connected (lin-
ear) architecture without activation functions, 
a fully connected architecture with activation 
functions, and a convolutional neural net-
work. For each architecture we train the net-
work with 3 different latent space sizes (2, 4 
and 8 latent variables). We configure the PCA 
method to also reduce the data to 2, 4 and 8 
variables.

All images in the dataset consist of 28 × 28 
pixels. Depending on the model architecture we 
treat the pixel values of the image as either a 
vector or a matrix. For the fully connected archi-
tectures, as well as the commonly used PCA 
method, we flatten the input 28 × 28 image, 
resulting in a vector of 1 × 784 pixel values. For 
a convolutional architecture we keep the image 
in its original matrix form so that convolu-
tions can better capture the spatial relationships 
between the pixels in the images, in all direc-
tions (i.e. horizontal or vertical).

In Fig. 4 we show the reconstructions of a 
sample for each of the methods and each tested 
latent space size. The results clearly show that 
the reconstruction quality increases as more 
latent variables are used. We also observe 
the difference in quality between the differ-
ent architectures. The fully connected models, 
without linear activation functions, show the 

worst results, which are even worse than the 
PCA method. This is expected, as a linear net-
work is likely to only approximate PCA. The 
non-linear models, both fully connected and 
convolutional, show the best results, with the 
convolution network performing slightly bet-
ter than the fully connected network. Here the 
strength of convolutional models becomes clear, 
as the convolutional networks outperform the 
fully connected networks while having signifi-
cantly less parameters (approximately 270,000 
for the convolutional networks versus 400,000 
for the fully connected networks). We thus see 
that convolutional neural networks can outper-
form fully connected neural networks despite 
having less parameters. This difference in the 
number of parameters generally causes convo-
lutional networks to be more computationally 
efficient and converge faster. Additionally, this 
reduction in computational cost may allow us 
to further increase the depth/size of the network 
and potentially improve its performance further 
(Fig. 3).

In order to highlight the fact that auto-encod-
ers do not preserve the relationship between 
input samples in the latent space, an additional 
example is provided. We encode a sample 
image, as well as the rest of the training data-
set, to its latent representation, and look for the 
images that are closest to the sample image in 
the latent space. We plot the top 5 closest images 
in Fig. 5, and observe that images 3, 4 and 5 are 
not similar to our sample image at all (Fig. 4).

We also compare the spread of the values of 
the latent space of auto-encoders and variational 
auto-encoders (Fig. 6) to show the differences 
between both models. To do so we first construct 
a variational auto-encoder with a latent space of 
8 values that uses a similar convolutional archi-
tecture as the normal auto-encoder. We than 
encode all the entries in the training set into 
their latent representation and create a boxplot 
for each latent variable. We observe that for the 
normal auto-encoder the latent variables have 
mean values that deviate from 0, have larger 
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standard deviations, larger confidence intervals 
and that the mean value of the variables is often 
not located at the center of the confidence inter-
val. For the variational auto-encoder we observe 
that each latent variable does indeed appear to 
be normally distributed, as was enforced during 
the training of the VAE.

13	� Demonstrator Use Case of an 
VAE for the Electrocardiogram: 
The FactorECG

Many studies use deep neural networks to 
interpret electrocardiograms (ECGs) with high 
predictive performances, some focusing on 

Fig. 3   Reconstructions created using PCA or auto-encoders under different configurations

Fig. 4   Examples of digits most similar to the original sample (left) in terms of latent representation



215Deep Learning—Autoencoders

tasks known to be associated with the ECG 
(e.g., rhythm disorders) and others identifying 
completely novel use cases for the ECG (e.g., 
reduced ejection fraction) [31–34]. Most studies 
do not employ any technique to provide insight 
into the workings of the algorithm, however, the 
explainability of neural networks can be con-
sidered a essential step towards the applicabil-
ity of these techniques in clinical practice [35, 
36]. In contrast, various studies do use post-hoc 
explainability techniques, where the ‘decisions’ 
of the ‘black box’ DNN are visualized after 
training, usually using heatmaps (e.g.., using 
Grad-CAM, SHAP or LIME) [37]. In these 
studies, usually some example ECGs were hand-
picked, as these heatmap-based techniques only 
work on single ECGs. Currently employed post-
hoc explainability techniques, usually heatmap-
based, have limited explainable value as they 
merely indicate the temporal location of a spe-
cific feature in the individual ECG. Moreover, 
these techniques have been shown to be unreli-
able, poorly reproducible and suffer from confir-
mation bias [38, 39].

Variational auto-encoders can be used to 
overcome this by constructing a DNN that 
is inherently explainable (i.e. explainable by 
design, instead of investigating post-hoc). One 
example is the FactorECG, which is part of a 
pipeline that consists of three components: (1) a 
variational auto-encoder that learned to encode 
the ECG into its underlying 21 continuous 

factors of variation (the FactorECG), (2) a visu-
alization technique to provide insight into these 
ECG factors, and (3) a common interpretable 
statistical method to perform diagnosis or pre-
diction using the ECG factors [19]. Model-level 
explainability is obtained by varying the ECG 
factors (i.e. latent traversals), while generating 
and plotting ECGs, which allows for visualiza-
tion of detailed changes in morphology, that are 
associated with physiologically valid underlying 
anatomical and (patho)physiological processes. 
Moreover, individual patient-level explanations 
are also possible, as every individual ECG has 
its representative set of explainable FactorECG 
values, of which the associations with the out-
come are known. When using the explainable 
pipeline for interpretation of diagnostic ECG 
statements, detection of reduced ejection frac-
tion and prediction of one-year mortality, it 
yielded predictive performances similar to 
state-of-the-art ‘black box’ DNNs. Contrary 
to the state-of-the-art, our pipeline provided 
inherent explainability on which ECG features 
were important for prediction or diagnosis. For 
example, ST elevation was discovered to be an 
important predictor for reduced ejection frac-
tion, which is an important finding as it could 
limit the generalizability of the algorithm to 
the general population. We have also extended 
the FactorECG methodology and developed 
a technique called Query based Latent Space 
Traversals (qLST) which can be used to relate 

Fig. 5   Boxplots of each latent variable of latent representations of the MNIST dataset created using an auto-encoder 
(left) and a variational auto-encoder (right)
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multiple latent variables to a disease class at 
once or to explain existing black box classifiers 
[15].

A longstanding assumption was that the high-
dimensional and non-linear ‘black box’ nature 

of the currently applied ECG-based DNNs was 
inevitable to gain the impressive performances 
shown by these algorithms on conventional 
and novel use cases. Variational auto-encoders 
allow for reliable clinical interpretation of these 

Fig. 6   Illustration of the FactorECG explainable pipe-
line for ECG interpretation. The VAE consists of three 
parts, the encoder, the latent space (FactorECG) and the 
decoder. The model can be made explainable locally (as 
the individual values of the ECG factors for each ECG 

are known) and globally (by using factor traversals the 
influence of individual factors on the ECG morphology 
can be visualized). Usually, the factors are entered into 
simple statistical models, such as logistic regression, to 
perform the task at hand
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models without performance reduction, how-
ever, while also broadening their applicability 
to detect novel features in many other (rare) dis-
eases, as they provide significant dimensionality 
reduction. The application of such methods will 
lead to more confidence in DNN-based ECG 
analysis, which will facilitate the clinical imple-
mentation of DNNs in routine clinical practice.

Glossary

Activation function  In neural networks, (non-
linear) activation functions are used at the 
output of neurons to convert the input to an 
‘active’ or ‘not active’ state. An activation 
function can be a simple linear or sigmoid 
function or have more complex arbitrary 
forms. The Rectified Linear Unit (ReLU) 
function is currently the most popular choice.
In neural networks, (non-linear) activation 
functions are used at the output of neurons to 
convert the input to an ‘active’ or ‘not active’ 
state. An activation function can be a simple 
linear or sigmoid function or have more com-
plex arbitrary forms. The Rectified Linear 
Unit (ReLU) function is currently the most 
popular choice.

Back propagation  Is a widely used technique 
in the field of machine learning that is used 
during the training of a neural network. The 
technique is used to update the weights of the 
neural network based on the calculated loss, 
effectively allowing it to ‘learn’.Is a widely 
used technique in the field of machine learn-
ing that is used during the training of a neu-
ral network. The technique is used to update 
the weights of the neural network based on 
the calculated loss, effectively allowing it to 
‘learn’.

(mini-) Batch  A small set of data samples that 
is fed through the network at once during 
training. A too small batch size may lead to 
instability while a too large batch size may 
lead to depletion of computer resources.A 
small set of data samples that is fed through 

the network at once during training. A too 
small batch size may lead to instability while 
a too large batch size may lead to depletion 
of computer resources.

Convolution  Common building block of vari-
ous neural networks. Convolutional neural 
networks can be considered the current ‘state 
of the art’ of neural networks applied to vari-
ous data sources. Convolutional layers in a 
neural network a apply a learned filter to the 
input data which improves the ability of neu-
ral networks to comprehend spatial structures. 
Convolutions can be applied in 1 dimensional 
(signal/timeseries data) and 2 dimensional 
(images) forms.Common building block of 
various neural networks. Convolutional neural 
networks can be considered the current ‘state 
of the art’ of neural networks applied to vari-
ous data sources. Convolutional layers in a 
neural network a apply a learned filter to the 
input data which improves the ability of neu-
ral networks to comprehend spatial structures. 
Convolutions can be applied in 1 dimensional 
(signal/timeseries data) and 2 dimensional 
(images) forms.

Decoder  Part of the (variational) auto-encoder 
that decodes the given latent vector into a 
reconstruction of the original dataPart of the 
(variational) auto-encoder that decodes the 
given latent vector into a reconstruction of 
the original data

Dimension  The dimension of data is the size 
of the dataset or vector, for a grayscale 
image this is the height × the width in pix-
els (e.g. 28 × 28), for an RGB-color image, 
a third dimension of size 3 is added (e.g. 
(28 × 28 × 3)The dimension of data is the 
size of the dataset or vector, for a grayscale 
image this is the height × the width in pix-
els (e.g. 28 × 28), for an RGB-color image, 
a third dimension of size 3 is added (e.g. 
(28 × 28 × 3)

Encoder  Part of the (variational) auto-encoder 
that encodes the provided data into the latent 
vectorPart of the (variational) auto-encoder 
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that encodes the provided data into the latent 
vector

Explainability  The ability of a (trained) 
observer to interpret the inner workings of a 
model. Neural networks are generally con-
sidered to be to complex to comprehend by 
humans and are treated as an ‘unexplain-
able’ black box. The lack of explainability is 
a major issue in many of the current clinical 
applications of neural networks.The abil-
ity of a (trained) observer to interpret the 
inner workings of a model. Neural networks 
are generally considered to be to complex 
to comprehend by humans and are treated 
as an ‘unexplainable’ black box. The lack 
of explainability is a major issue in many 
of the current clinical applications of neural 
networks.

Fullyconnected or linear layer  Common 
building block of neural networks in which 
every node (or every datapoint) in the input is 
connected to every node in the output of the 
layer. Through the weights that are associated 
with each connection the layer is able per-
form linear transformations of the input data. 
Together with non-linear activation functions, 
fully connected layers make up the most 
basic forms of neural networks.Common 
building block of neural networks in which 
every node (or every datapoint) in the input is 
connected to every node in the output of the 
layer. Through the weights that are associated 
with each connection the layer is able per-
form linear transformations of the input data. 
Together with non-linear activation functions, 
fully connected layers make up the most 
basic forms of neural networks.

KL Divergence  The Kullback-Leiber 
Divergence is a measure of similarity 
between two distributions.The Kullback-
Leiber Divergence is a measure of similarity 
between two distributions.Loss function  The 
loss function of the network defines the 
training objective of the neural network. 
The loss, the output of the loss function, is 

progressively minimized through backpropa-
gation, allowing the network to learn and be 
optimized for its training objective.The loss 
function of the network defines the training 
objective of the neural network. The loss, the 
output of the loss function, is progressively 
minimized through backpropagation, allow-
ing the network to learn and be optimized for 
its training objective.

MNIST  A commonly used dataset consisting of 
image of handwritten digits. MNIST is often 
used for small scale experiments because of 
the simplistic nature of the data.A commonly 
used dataset consisting of image of handwrit-
ten digits. MNIST is often used for small 
scale experiments because of the simplistic 
nature of the data.

PCA  Principal component analysis. A tech-
nique commonly used for dimension reduc-
tion. The technique involves the calculation 
ofPrincipal component analysis. A technique 
commonly used for dimension reduction. The 
technique involves the calculation of

Posterior collapse  A phenomenon that can 
occur during the train of variational autoen-
coder through which the reconstruction accu-
racy of the network decreases dramatically 
if the KL-divergence reduces to much.A 
phenomenon that can occur during the train 
of variational autoencoder through which 
the reconstruction accuracy of the network 
decreases dramatically if the KL-divergence 
reduces to much.

Vector  A vector is a single row or column of 
numbers.A vector is a single row or column 
of numbers.

Matrix  A set consisting of multiple rows and 
columns of numbers.A set consisting of mul-
tiple rows and columns of numbers.

Convergence  A neural network has reached 
convergence when further training does no 
longer improve the model.A neural network 
has reached convergence when further train-
ing does no longer improve the model.
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MSE loss  Mean Squared Error loss, a measure 
of difference between two data instances such 
as images or timeseries. The MSE loss is a 
common loss function that is used to mini-
mize the reconstruction error in auto-encod-
ers.Mean Squared Error loss, a measure of 
difference between two data instances such as 
images or timeseries. The MSE loss is a com-
mon loss function that is used to minimize 
the reconstruction error in auto-encoders.

Latent variable  A variable that is not directly 
observed in the data but can be inferred 
through the usage of a model from other vari-
ables that are observed directly. In the case of 
auto-encoders we refer to the variables in the 
vector extracted after applying the encoder of 
the auto-encoder as latent variables.A vari-
able that is not directly observed in the data 
but can be inferred through the usage of a 
model from other variables that are observed 
directly. In the case of auto-encoders we refer 
to the variables in the vector extracted after 
applying the encoder of the auto-encoder as 
latent variables.

Disentanglement  The disentanglement of 
latent variables refers to the process of sepa-
rating the influence of each latent variable on 
the reconstructed data.The disentanglement 
of latent variables refers to the process of 
separating the influence of each latent vari-
able on the reconstructed data.
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clinical trial support. This history provides 
the reader with an “family tree” of sorts that 
shows the evolution of artificial intelligence 
through the past seven decades and its appli-
cation to medicine and public health.
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Abstract

The history of artificial intelligence is a long 
one, even going back to the ancient Greeks 
who sought to mimic human intelligence in 
a machine, the Automaton. However, much 
of what we consider to be the story of artifi-
cial intelligence encompasses only the last 
75 years, when the field of research and prac-
tice of artificial intelligence was named as 
such by the giants in the discipline at the time. 
This chapter reviews this history, focusing 
on deductive inference, rather than machine 
learning; it begins with the proposal for a 
summer institute on artificial intelligence in 
1955, through the development of deduc-
tive, rule-based approaches to machine-driven 
inference, including methods for how these 
approaches were realized on computers. These 
approaches, realized as knowledge-based sys-
tems, found their manifestation a number of 
domains, including medical decision making, 
clinical education, population health surveil-
lance, data representation and integration, and 
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The quest has been long for ways to mimic the 
way humans (and other living organisms, but 
for now we will focus only on humans) act in 
response to some environmental phenomenon. 
This quest has manifested in many ways over 
the course of history, starting with the ancient 
Greeks’ conception of the Automaton, a machine 
that acted like a human, and its extension into 
early conceptualizations of robots that persist 
to this day. It seems natural that in addition to 
human behavior, one would consider that thought 
and intention should be a part of these ideas- that 
an automaton or a robot would be able to think, 
that is, act intelligently, because after all, that 
is what humans do. However, no one can really 
argue that “intelligence” programmed into a 
machine (computer or otherwise) is not artificial, 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36678-9_14&domain=pdf
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•	 “A program designed to solve problems at a 
level comparable to that of a human expert in 
a given domain.”—Cooper [5].

Expert systems have a lengthy history back 
to 1969, starting with the work of Edward 
Feigenbaum and Bruce Buchanan with the 
DENDRAL system, developed at Stanford 
University in the Heuristic Programming 
Project. This system was designed to identify 
unknown organic molecules by analyzing their 
mass spectra and using knowledge from chem-
istry. Because of this early work, Feigenbaum is 
considered the father of expert systems. Three 
years later, De Dombal developed the first 
expert system with a medical application, the 
diagnosis of abdominal pain [6], followed by 
the work of Edward Shortliffe, Feigenbaum, and 
Buchanan with the development of MYCIN, an 
expert system for the diagnosis of a bloodborne 
infection and recommendations for appropri-
ate antibiotics to treat it [7]. MYCIN was the 
first to deal with uncertainty, and supported over 
400 rules derived from experts; it is considered 
a landmark system in the history of AI. MYCIN 
was followed in rapid succession by a number of 
expert systems for specific clinical applications. 
This history is explored further in each of the 
following sections of this chapter.

1	� The Anatomy and Physiology 
of the Generic Expert System

An expert system consists of several compo-
nents, as shown in Fig. 1. It is helpful to think 
of the system as an expert consultant that is 
available to a clinician whenever needed. The 
knowledge base contains facts, some of which 
will be obtained from an inanimate source, such 
as published literature that has undergone peer 
review or is of equal authority, or even more 
typically, from consultation with human domain 
experts during a process known as knowledge 
elicitation. This process can involve interviews, 
direct observation of experts in action, “think 
aloud protocols”, or other means borrowed from 
the social sciences. The knowledge base also 

in the sense that it is manufactured and in some 
way imitates human intelligence.

In this chapter, we acknowledge that arti-
ficial intelligence is a very broad domain, 
including rule- and knowledge-based systems 
as well as numerous species of machine learn-
ing. However, we focus on the former, as mani-
fested in the expert system. Expert systems are 
also known as “rule-based systems”, or “knowl-
edge-based systems”, or “production systems” 
(in that they systematically produce a conclu-
sion through a reasoning, typically deductive, 
process.

In 1955, John McCarthy, Marvin Minsky, 
Nathaniel Rochester, and Claude Shannon wrote 
a Proposal for the Dartmouth Summer Research 
Project on Artificial Intelligence [1]. This was a 
groundbreaking work in that it was the first time 
the term “artificial intelligence” was coined. Part 
and parcel of this was “automatic computing”, 
in retrospect a remarkable idea that would set 
the stage for work on creating computer systems 
that reason automatically, like an expert would. 
These systems would later become known as 
expert systems, in that knowledge obtained from 
a domain expert could be captured in a language 
(McCarthy’s term) that could compute- that is, 
be processed by a computer but in such a way 
that the language could support reasoning. A 
year after McCarthy’s proposal, Allen Newell 
and Herbert Simon developed a system, Logic 
Theorist, that could mimic human problem solv-
ing [2]. Since the Dartmouth Summer Research 
Project, a number of definitions of expert sys-
tems have been offered:

•	 “A computer system that emulates, or acts 
in all respects, with the decision-making 
capabilities of a human expert [in a limited 
domain].” Attributed to Feigenbaum

•	 “A computer system that operates by apply-
ing an inference mechanism to a body of spe-
cialist expertise represented in the form of 
‘knowledge’.”—Goodall [3]

•	 “A program intended to make reasoned 
judgements or give assistance in a complex 
area in which human skills are fallible or 
scarce.”—Lauritzen and Spiegelhalter [4]
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contains rules, typically expressed in IF–THEN, 
or antecedent-consequent format. This construc-
tion of rules is extremely important for the infer-
ence engine which is at the heart of the expert 
system.

Inference in an expert system is typically 
deductive, where conclusions follow from prem-
ises, and is performed by matching rules and 
facts with input from the user in the knowledge 
acquisition facility. Deductive inference fol-
lows one of two chaining paradigms. In forward 
chaining, a fact gathered from a user is matched 
with the antecedent of a rule in in the knowl-
edge base- this causes the rule to be “fired” and 
the consequent of that rule is then placed in the 
agenda. That consequent now becomes a fact, 
which itself can be used to match antecedents 
in the knowledge base and so forth, with addi-
tional input from the user, such that a chain is 
constructed with the ultimate goal of proposing 
a solution or recommendation back to the user. 
In clinical systems, just as in clinical reason-
ing, inference uses backward chaining, in that 
one starts with a hypothesis to be proven or dis-
proven, much like a “rule out” or “rule in” in 
clinical decision making. In backward chaining, 
the facts obtained from a user are matched to 
consequents (as hypotheses), and the inferential 
chain then works to prove that the antecedents 
are true (or false). In both cases, there is a work-
ing memory that manages the process, which 
rules are fired, and which facts are included 
on the agenda. After the system has offered its 

conclusion, perhaps as a diagnosis, or a recom-
mendation such as a diagnostic procedure to 
order, an expert system will provide an expla-
nation of its reasoning. MYCIN was the first 
expert system to include an explanation facility, 
and has lately been considered a model for new 
directions in explainable AI.

Creating an expert system is an exercise in 
knowledge acquisition and the verification and 
validation of that knowledge. As noted above, 
the knowledge in an expert system is mani-
fested in rules or facts, either engineered into 
the knowledge base as a result of the knowl-
edge acquisition process, or obtained from the 
user in real time, or created through inference in 
real time by the firing of rules. The process of 
acquiring knowledge from experts deserves spe-
cial mention here, and is illustrated in Fig. 2.

Acquiring knowledge from domain experts 
involves, as noted above, the use of a variety of 
tools commonly a part of the social scientist’s 
toolkit, such as one would find in ethnography. 
In addition to the ones mentioned above, these 
tools also include participant observation, where 
the person acquiring the knowledge assumes 
the role of an apprentice to an expert in order 
to learn her craft. Another tool, more common 
to the information scientist or librarian is effec-
tive searching of the literature, itself considered 
an “expert”. Acquiring knowledge also involves 
identifying rules and testing them against 
experts’ conceptions of the domain through 
“what if” scenarios. All of this is conducted by 
a specially trained knowledge engineer who not 
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only elicits knowledge from experts but develops 
computable, formalized representations of that 
knowledge as a knowledge base. The goal is to 
create an “expert in a box” that ideally would be 
undiscernible from a human expert when con-
sulting the system. The evaluation of the expert 
system, focuses on the verification of the knowl-
edge base (Are the rules in the correct form? Was 
the system built correctly?) and the validation of 
the knowledge base as well (Do the rules lead to 
a correct answer? Was the correct system built?).

It should be evident that knowledge engineer-
ing is the Achilles’ Heel of any expert system. 
A breakdown in the specification of rules, or a 
very large rulebase, can lead to “brittleness”, 
as described by John Holland, where lengthy 
inferential chains can break, leading to incor-
rect inferences with catastrophic implications, 
especially in clinical settings [8]. This is not 
to say that expert systems do not have a place 
in clinical applications. As noted below, they 
are used frequently in medicine, although as a 
broader type of rule-based system that does not 
necessarily involve lengthy inferences, is used 
as frequently in the form of alerts and remind-
ers in electronic health record systems. Broadly 
speaking, expert systems are a species of knowl-
edge-based systems, in that at their heart, expert 
systems are constructed around a knowledge 
base. In this chapter, we will use the more inclu-
sive term (abbreviated as “KBS”) to refer to any 
system that uses knowledge to reach a conclu-
sion, offer advice, or make a recommendation. A 
generic KBS is illustrated in Fig. 3.

The advantages of a KBS are several: Wide 
distribution of scarce expertise, ease of modifi-
cation and maintenance, consistency of answers, 

perpetual accessibility, preservation of expertise, 
solution of problems involving incomplete data, 
and (usually, but not always) the explanation of 
solution. However, these advantages come at 
a cost. First, they are expensive to produce and 
maintain. In addition, answers might not always 
be correct for a given clinical problem, and a 
KBS lacks “common sense”. Finally, with few 
notable exceptions, the KBS cannot learn; this 
capability is afforded only to knowledge-based 
systems that incorporate machine learning, 
which is beyond the scope of this chapter.

This chapter continues with a description of 
knowledge-based systems as they have been 
developed for specific clinical or health-related 
domains: decision support, clinical education, 
data representation and integration, and clinical 
trial support. Where appropriate, the history of 
these systems is discussed as well.

Decision support. In busy or complicated clini-
cal settings, it is often difficult to make consist-
ently accurate and appropriate decisions about 
diagnosis, treatment, and ongoing management 
of patients. For this reason, clinical decision mak-
ing has been and continues to be a target of AI 
research, application development, and imple-
mentation, and the earliest knowledge-based sys-
tems focused on diagnosis. The earliest system 
was INTERNIST-1, which was developed in 1974 
by Jack Myers in the 1970s at the University of 
Pittsburgh for the purposes of training medical 
students in clinical diagnosis [9]. INTERNIST-1 
supported a very broad knowledge base, but it 
did not find its way into clinical use. Perhaps 
the best-known early system is MYCIN, devel-
oped by Edward Shortliffe, working with Bruce 
Buchanan at Stanford University. MYCIN was a 
backward-chaining expert system that focused on 
decision support for treatment of bacterial infec-
tions by capturing information about the bacteria 
to perform classification, and then recommending 
an appropriate antibiotic to treat the infection [7].

In the 1980s, an extension and modifica-
tion to INTERNIST-1, called CADUCEUS, an 
expert system was created for treating bacterial 
infections. It was developed at the University 
of Pittsburgh by Harry Pople with an extensive 
knowledge base elicited from Jack Myers [10]. Fig. 3   A generic knowledge-based system
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Rather than being limited to blood-borne infec-
tions, as was MYCIN, CADUCEUS focused 
on a much broader domain, and supported 
diagnosis support in as many as 1000 diseases. 
INTERNIST-1 was also the foundation for 
another system, the Quick Medical Reference 
(QMR), developed in the 1980s by Randall 
Miller, also for use in medical education [11]. 
Another early system was PUFF, an expert sys-
tem designed (and put into clinical practice) to 
analyze pulmonary function tests [12].

Since these early efforts, decision support 
has been a focus of knowledge-based systems, 
with many applications in a broad spectrum 
of clinical applications. Perhaps the broadest 
use of KBS is in the electronic health record, 
which supports alerts and reminders to clini-
cians in real time as they provide care. Even 
though many such systems are not framed in the 
architecture of the typical expert system, which 
relies on chaining to arrive at conclusions (and 
hence, decisions or recommendations), they are 
still knowledge-based systems in that they rely 
on rules, derived from evidence from experts 
and other sources; they have long captured the 
attention of clinicians and informaticians, and 
the work of Safran [13] and Shellum [14] are 
two early examples. Alert and reminder systems 
are typically developed using Medical Logic 
Modules specified in the Arden Syntax [15, 16], 
which lends a high degree of expressivity to rig-
orous and specific rule specification [15, 17]. 
One example of an alert system in pediatrics is 
CHICA, which was developed to screen patients 
in while waiting to be seen by the physician so 
she can optimize her time with the patient [18]. 
Many other applications have been developed 
for specific care domains, such as pharmacy, 
drug prescribing, and adverse event monitor-
ing [19–23], psychiatry [19], infectious disease 
[20], antibiotic therapy [21–23], anesthesiol-
ogy [24], intensive care [25, 26], dermatology 
and obstetrics [27]. In addition, KBS alerts are 
finding application in remote monitoring and 
self-reporting of psychiatric symptoms [28], and 
management of heart failure [29], and diabetes 
[30]. In addition to the wide application domain 
of KBS, they have been accepted by physicians 

as usable and useful in decision support. For 
example, internal medicine residents judged 
a decision support system based on DXplain 
to offer additional or alternative diagnoses in 
response to heir inputs to the system, and they 
generally welcomed the possibility of having the 
system available in practice [31].

Clinical education. As noted above, knowl-
edge-based systems occupied pride of place in 
the early history of artificial intelligence. Jack 
Myers’ work on INTERNIST-1, CADUCEUS, 
and QMR truly laid groundwork for the numer-
ous educational and training systems [32]. For 
example, QMR was incorporated onto a clini-
cal workstation for training students; this system 
was augmented with material from Scientific 
American Medicine and anatomic and other 
images on videodisc [33]. Wolfram’s appraisal 
of INTERNIST-1 and QMR was instrumental in 
publicizing the value of the latter in undergradu-
ate medical education, even to the extent that it 
could serve as an “electronic textbook of medi-
cine” [34]. Over the past several decades, there 
have been numerous calls for incorporating KBS 
diagnostic decision support systems training in 
medical education [35], radiology [36], hepatol-
ogy [37, 38], respiratory failure [39], psychiatry 
[40], clinical case teaching [41], neonate stabili-
zation prior to transport [42, 43], physical ther-
apy [44], evaluating urinary incontinence [45], 
and diabetic patient education [46]. Especially 
with the growth of non-traditional pedagogical 
methods, such as distance learning and increas-
ing use of multimedia, there is every reason to 
believe that KBS will continue to play an impor-
tant role in clinical training.

2	� Population Health Surveillance

Public health practitioners and researchers 
have long been interested in novel ways to con-
duct disease and risk surveillance. Traditional 
methods such as manual or even computer-
ized methods of surveillance, which rely on 
time-consuming data collection, analysis, and 
dissemination, often fail in providing rapidly 
actionable information that could identify and 
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forestall emerging infectious or other diseases. 
As a result, AI, and especially KBS, has attracted 
the attention of the public health and informatics 
communities, most recently with the COVID-19 
pandemic. One notable example of an expert sys-
tem in this domain is an expert system that pro-
vides clinical guidelines for COVID-19 diagnosis 
and management, particularly in low-resource 
settings [47]. Two other expert systems devel-
oped for use during the pandemic offer promise 
for future applications, One used fuzzy logic for 
early assessment of hypoxemia in COVID-19 
[48], and another provides early detection of dis-
ease outbreaks with a system that uses a continu-
ously updating knowledge base [49].

However, the COVID-19 pandemic is just 
one example of a domain where KBS has been 
applied to population health surveillance. For 
example, Staudt, et al. developed and evaluated 
an expert system-based intervention to reduce 
alcohol use [50]. Another example is a sys-
tem that performed surveillance using the EHR 
during the 2002 Winter Olympics; the authors 
proposed this system as a path toward biosur-
veillance and improved communication between 
public health agencies [51]. More broadly, and 
particularly applicable to the increasing devel-
opment of health information networks, is a 
proposal for incorporating expert systems into 
comprehensive health surveillance networks 
[52] Finally, a very useful review of AI in global 
health proposes a conceptual framework for the 
development of strategies for global AI develop-
ment and employment [53].

Data representation and integration. 
Ontologies provide robust frameworks for the 
integration of data from multiple sources and of 
different types, not only in terms of their abil-
ity to represent concepts but enforce the rela-
tionships between those concepts through the 
use of embedded axioms, or rules. As such an 
ontology can be used as the structural frame-
work for a KBS. One example is the Unified 
Medical Language System, which supports 
domain ontologies with rules that facilitate the 
creation of knowledge bases in the UMLS that 
can be used in developing decision support sys-
tems [54]. In addition, ontologies themselves 

can be used as a knowledge base, such as has 
been accomplished by Ahmed Benyahia, et al. 
[55], where the ontology-based KBS supported 
a telemonitoring system that incorporates aus-
cultation sounds in the decisions made by the 
system. Another remote monitoring application 
using an ontology as a knowledge base focuses 
on chronic obstructive pulmonary disease and 
chronic kidney disease [56]. Other applications 
include diagnosis [57], knowledge acquisi-
tion [58, 59], clinical guideline authoring and 
retrieval [60–63], evaluation of disability [64], 
and ultrasound diagnosis in obstetrics [65].

Clinical trial support. Knowledge-based sys-
tems have been used in the design and admin-
istration of clinical trials. For example, the 
selection of a clinical trial that is appropriate 
for a patient can be difficult unless guided by 
rules that can assist with that process [66–68]. 
Two early examples of systems that assist with 
the design of trial protocols is OPAL, which is 
intended to identify errors in protocol author-
ing [69] and the Design-A-Trial system which 
generates a protocol based on an automated 
interview with the investigator [70]. Several 
investigators have created such systems to help 
clinicians identify trials by mapping patient fea-
tures to the selection criteria for breast cancer 
clinical trials [71], renal cell carcinoma [72], 
heart failure [73], and serial graded exercise 
electrocardiographs [74]. Another example of 
this application uses natural language processing 
in the evaluation of patient features to identify 
cohorts of candidate subjects for clinical tri-
als [75]. The KBS can also be a useful tool in 
designing a clinical trial where disease progres-
sion models need to be taken into account. Such 
models constitute a knowledge base that could 
be incorporated in an expert system that would 
assist a clinical trial designer [76], especially 
important in complex diseases that manifest a 
complicated progression [77]. One such example 
is provided in [78], in which there is the oppor-
tunity for community participation of experts in 
maintaining and enriching the knowledge base.

Another application of KBS is the measure-
ment of response in a multicenter clinical trial can 
be complex, especially where images are used 
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in this process: there can be considerable varia-
tion due to random measurement error, for exam-
ple. In one study, a KBS was used to guide brain 
tumor response to radiation therapy and improve 
on the assessment of that response through MRI; 
although this study involved a small sample 
of subjects, the results suggested some prom-
ise [79]. Another study using a KBS to moni-
tor progression of disease; in this case, visual 
analysis of scans for bone metastasis in prostate 
cancer showed more promise [80]. In addition 
to response to treatment, trialists are concerned 
about evaluating side effects, adverse events, and 
toxicity. A useful review looked at reviewed sev-
eral KBS that have been used to predict carcino-
genic toxicity in clinical trials [81]. Even though 
individually these systems have demonstrated 
suboptimal predictive performance, the accepted 
recommendation is to use them collectively as a 
composite model using other knowledge sources, 
including expert advice in real time.

3	� Summary

This chapter has offered a view of AI that 
focuses on knowledge-based approach, espe-
cially expert systems. Such systems are at the 
top of the “family tree” of AI, whether framed 
chronologically or in terms of scientific inquiry 
or advancement. In short, it could be argued 
that KBS are “where it all began”, but one must 
also remember that this domain is not static. 
Rather than the mere specification and storage 
of rules, a KBS includes an inference engine of 
some type- one that reasons with the knowledge 
in the system and that added to the system by a 
user in time. The earliest attempts at AI all took 
into account this requirement that systems must 
reason- like humans reason- in response to the 
demands of a current situation, be it a clinical 
encounter, or student training, or a pandemic. 
This requirement continues to dominate the 
field to this day and is manifested in the many 
machine learning approaches that have been 
developed over the past 10 years. However, it is 
good to consider the contributions that efforts 
manifested in the knowledge-based system 

branch of the AI family tree- as early as some 
of these were, continue to influence the develop-
ment of AI methods and applications.
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1	� Introduction

Few technologies have promised as transforma-
tive an impact as machine learning, or threat-
ened to deliver it as quickly. There is a pervasive 
sense that our powers are here developing faster 
than our understanding of what we should—
and should not—do with them, and that they 
will soon be great enough for public consensus 
on their application to be an urgent necessity. 
Arriving at such a consensus is obstructed by 
widespread conceptual unclarities about what 
machine learning is, what it does, and why it 
must be brought into the world. In the realm of 
practical medical applications, the problem is 
amplified by commensurate conceptual unclari-
ties about what medicine is, what it does, and 
why it needs to change. The air of mystique 
clinging to the field encourages others to multi-
ply the questions rather than to answer them, to 
expand the problems rather than to contract their 
solutions, to magnify the hypothetical risks of 
the new rather than to expose the certain failures 
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Abstract

Making clinical decisions about individual 
patients relies on intelligence drawn from 
statistical models fitted to populations. The 
approach embodied in evidence-based medi-
cine, the current gold standard, is founded 
on the application of simple, comparatively 
rigid models to coarse, low-dimensional data. 
Reflecting a blend of prior beliefs about bio-
logical form and historical limits to tractable 
model complexity, this approach is far from 
what the nature of clinical problems demands 
and what contemporary machine learning 
could conceivably deliver. Here we examine 
the fundamentals of diagnostic, prognos-
tic, and prescriptive models in medicine—
whether simple or complex—and provide 
a rationale for and an approach to introduc-
ing machine learning to real-world practice 
across medicine. We focus on conceptual and 
ethical aspects we identify as the primary 
obstacles to innovation in this rapidly emerg-
ing field.
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•	 Evaluation: The ability of a model to general-
ise to unseen instances of the data on which it 
has been trained becomes harder to determine 
the more complex it is, and the less intui-
tive its structure. This makes performance on 
unseen data the key evaluative metric.

•	 Stability: The conjunction of heavily data-
dependent specification and approximate 
solving results in greater propensity to 
change with the introduction of new data or a 
new algorithmic approach.

A machine capable of effecting a transformation 
is an agent, and its ability naturally intelligible 
as a power [12]. Further differentiation depends 
on the autonomy of acquisition and application. 
The power of a conventional machine can only 
be first-order, for it is externally prescribed; that 
of a learning machine is second-order, for it is 
autonomously acquired. Most machines exhibit 
only one-way powers—they cannot choose 
not to act—but an especially complex learning 
machine may have partial two-way power if its 
application is itself conditionally gated. Such 
a power is only partially two-way because the 
conditional gating will generally be context-spe-
cific. It is easy to see how these features bring 
machine learning systems closer to biological 
agents, where two-way, second-order powers 
are more commonly encountered. But the two 
remain distinct, and the distinction is critical to 
our applications, as we shall see.

To determine the appropriate role of machine 
learning in the clinical domain, we should con-
sider the kind of learning these tasks demand. 
Any input–output data transformation can be 
distinguished by the nature of the inputs, the 
nature of the outputs, and the criterion the trans-
formation attempts to satisfy.

2.1	� Inputs and Outputs

The natural descriptive complexity of human 
beings—across health and disease—means the 
appropriate model—at least in theory—will usu-
ally be a multivariate one, indeed constrained in 

of the old. The result is a great deal of talk, but 
very little in which decisions about action could 
be securely grounded. Rather than survey spe-
cific applications of machine learning to the 
cardinal tasks of risk prediction, diagnosis, treat-
ment selection, and prognosis—a field evolving 
so quickly a textbook falls out of date before it 
is written—here we examine the fundamental 
nature of these tasks, the rationale for applying 
machine learning to them, and the opportuni-
ties and risks new modelling technologies intro-
duce in practice, with special attention to ethical 
considerations.

2	� The Nature of Machine 
Learning

Machine learning is not sharply demarcated 
from conventional analytic methods [6, 14]. 
We should review the characteristics that are 
unique to it or specifically amplified, for the oth-
ers require no clarification. Though naturally 
mathematical in form, it is helpful to describe 
machine learning in broader terms, not merely 
to make it accessible to non-specialists but 
also more brightly to illuminate the underlying 
generalities.

A learning machine embodies a set of rules 
for transforming data, for a given purpose, to 
satisfy some criterion, yielding a representation 
or a model of the data. It departs from conven-
tional mathematical models primarily in its com-
plexity: the number of parameters and the size of 
the space from which they are drawn. Other fea-
tures follow consequentially:

•	 Data-dependence: The more complex a 
model, the more likely its parameter space 
will breach the bounds of intuitive survey-
ability. What information cannot be specified 
a priori must be drawn from the data itself.

•	 Solution: The probability of finding an ana-
lytic solution rapidly diminishes with increas-
ing model complexity, leaving approximate 
numerical, typically iterative, approaches as 
the only option.
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its dimensions more by the available data and 
compute rather than intrinsic dimensionality [18]. 
Where the inputs are many, they may correspond 
to different features of the problem—static mod-
els—or the same feature replicated over time—
dynamic models—forming time series. The 
inputs may have a superordinate structure, as in 
multi-instance learning, or each may denote an 
individual instance to be handled independently. 
The outputs are often few—one in binary classi-
fication, for example—in reflection of the relative 
poverty of the space of possible clinical actions. 
Where the outputs are many, they may corre-
spond to multiple features of the solution—multi-
label models—or the same feature replicated in 
order—sequence models. An output may be any 
kind of number or set of categories, as the target 
output space demands. Outputs may exhibit a 
structure more complex than a linear sequence: a 
hierarchy for example. The characteristics of nei-
ther side of the transformation limits the other: a 
model may instantiate any combination of inputs 
and outputs. Clinical scenarios arise across the 
full space of possibility here.

Note medicine’s preoccupation with simple, 
typically univariate, “biomarkers” as inputs to 
decision-support models reflects not biological 
reality but the exigencies of deriving and vali-
dating variables in the clinical realm and a prior 
belief in the essential simplicity of biological 
phenomena [16]. As machine learning relaxes 
the constraints arising from the former, and 
the value of greater model flexibility becomes 
apparent, belief in the latter is likely to erode. 
Equally artificial is preservation at the modelling 
stage of differences in the input modalities: there 
is no biological reason for segregating (say) 
imaging and biochemical inputs, indeed there 
may be useful interactions only a cross-modal 
model could conceivably capture [1, 4]. Again, 
practice is here coloured by historical limitations 
on model flexibility.

2.2	� Criteria

The simplest transformational criterion—faith-
ful recovery of the original input from the 

output—though at first sight trivial is, as we 
shall see, definitional of architectures destined 
to dominate the field [13]. More common is the 
fidelity of the predicted association between sets 
of variables falling into binary or multinomial 
classes (classification), or across a real number 
line (regression), or the establishment of new 
associations (reinforcement learning). In super-
vised models, the criterion seeks to impose an 
order defined by a subset of the features of the 
data, such as a particular variable, usually in 
line with a specific purpose, in unsupervised and 
semi-supervised models, the externally imposed 
order is absent or weaker respectively. The 
transformation itself may simply seek to find 
a more compact representation of the data dis-
tribution; if so, the degree of compactness will 
also be a part of the criterion [5]. Such “genera-
tive” models may seek to impose properties on 
the representation other than compactness, as 
downstream tasks demand. More commonly, 
the transformation will seek to magnify a region 
of interest in the space of data features so that a 
decision boundary may be robustly drawn. The 
transformation achieved by such “discrimina-
tive” models is kin with standard statistical clas-
sification and regression.

3	� Reasoning with Medical Data

The choice of transformation is guided by the 
intended application. In general, the aim is to 
establish a connection between one set of facts 
and another for a given purpose. The categories 
here broadly correspond with their logical coun-
terparts: deduction, induction, inference, and 
synthesis. Common use, especially of the term 
inference, is loose, but there are important dis-
tinctions here it pays to preserve [12, 23].

3.1	� Deduction

Within a closed, completely specified system 
of relations, the connection between one fact 
and another is logically prescribed. All con-
clusion is here deduction. Where the system 
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is complex—chess, for example—the space 
of possible solutions may be so large that the 
principles of modelling may resemble those 
applied to open, incompletely specified systems. 
Where the objective is to compete with another 
player—a human being, for example—the 
model may be helpfully informed by empirical 
aspects outside the system itself. But the prob-
lems here are fundamentally deductive, and 
rarely applicable to the biological systems of 
concern to us.

3.2	� Induction

Most relations of interest in the clinical realm 
arise within open, incompletely specified sys-
tems. Here the mode of connection is inductive: 
from a set of observed associations, we derive 
a regularity that might be used to describe the 
association more compactly than reciting the 
data, and to predict unseen observations, from 
the past or in the future. Since induction may 
always be altered by new observations, it is 
naturally qualified probabilistically, indexed by 
our confidence. Most models in machine learn-
ing are used inductively, indeed they are pieces 
of induction themselves. We shall see that induc-
tion is central to prognostic or risk prediction 
models in medicine.

3.3	� Inference

Though inference is often used where predic-
tion is meant, there is an important distinction 
stricter use of the term helps to preserve. To 
infer something is not merely to predict it, but 
to adopt a position that is asserted to explain it 
[23]. Both elements are essential. The element 
of adopting a position is why we may succeed 
or fail to predict something but not succeed or 
fail to infer it, and we may hesitantly or confi-
dently predict something but not hesitantly or 
confidently infer it. Inference implies a decisive 
commitment, even if the grounds for it may be 
probabilistic. The element of explanation is why 
prediction is paraphrased as what will happen or 

has happened, while inference is paraphrased 
as what must happen or must have happened. 
To put it in more mathematical terms, to pre-
dict something is to derive an expectation from 
a model, to infer something is to assert that a 
given model is the correct one, or at least has 
no superior. Prediction hopes its model is good, 
inference insists it is the best. This formulation 
places inference at the heart of diagnostic and 
prescriptive models, though not prognosis or 
risk prediction.

It should be noted that causation is typically 
something inferred, though causal relations may 
be posited within a purely inductive framework. 
Inferences to causality are no different from 
other kinds, and merely imply adopting a spe-
cific position about a set of modelled relations. 
To call a model causal is usually to imply it is 
used for inference, but inference generally need 
not be to causes.

Inference is commonly claimed in conven-
tional statistical analyses, and rarely in machine 
learning. But in the former it typically rests on 
(even if good statisticians reject the notion [11]) 
an unjustified a priori assumption that the space 
of possible models is small, and that one there-
fore only needs to reject a few models to leave a 
single one standing. Machine learning explores 
a wider space, and so its grounds for inference 
are actually stronger. We develop this point in 
the next section.

3.4	� Synthesis

A generative model may be used to synthesise 
data that resembles the input data but is identi-
cal with no instance of it. Unconditional syn-
thetics may be used in place of data limited by 
procedural circumstances such as privacy con-
straints; conditional synthesis provides a poten-
tially powerful method of dealing with data 
missingness or imbalance. But since possession 
of good generative models typically implies the 
knowledge we need imputation or rebalancing to 
acquire, we are rarely in a position to make use 
of them. Representations drawn from genera-
tive models, rather than their synthetic outputs, 
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can augment inductive or inferential tasks, either 
explicitly through structured data-driven phe-
notyping, or implicitly by augmentation of the 
models themselves, as we shall see.

4	� The Nature of Clinical Tasks

A system does not need to be very complex to 
cease to be intuitively surveyable. Indeed, it is 
simple for us to create synthetic examples, such 
as the game of Go, where the limits of intuition 
are easily reached. The complexity of the natural 
world is bound to vary, but there are no grounds 
to suppose that much of it, let alone most of 
it, should be easy to navigate. The only option 
open to a disinterested, dispassionate observer 
is to demand an exploration of the full space of 
possibilities for any system under study. Where 
this space is intuitively navigable, there is no 
need for anything other than conventional ana-
lytic methods; where it is not, we need alterna-
tive methods that do not merely test hypothetical 
models but also survey the space of hypothetical 
possibility. Only then can we have confidence in 
our chosen model.

Note that our concern is not just with the 
dimensions of the search space, but also with the 
complexity of the solution. The problem might 
be less that we are looking for a needle in a hay-
stack than that we are looking for a collection 
of many needles, intricately arranged. Simple, 
serially mechanistic causal models certainly 
explain some systems, but the general paradigm 
of causation does not limit the size of what must 
be properly seen as a causal field of many con-
tributory factors [15]. So the model itself might 
be too complex to be intelligible, even if it could 
be intuitively formulated.

Where intuition cannot penetrate the space 
of possible models or the model itself, it needs 
to be replaced by a mathematical process. 
Conversely, intuition may be discarded with-
out harm even where its guidance is adequate, 
for a well-crafted model should converge on a 
simple solution if it is what the data command. 
Its explanatory characterisation of a simple 
causal field should be as good as that of a simple 

model, but it may also apprehend a complex 
causal field opaque to human understanding. 
Machine learning, then, is not a niche, exotic 
method for modelling the world: in making 
fewer assumptions and rendering greater com-
plexity accessible it is theoretically superior to 
all others. That it might be easier to misuse in 
practice than simpler methods cannot change 
this theoretical truth. Contrary to frequently 
expressed opinion, machine learning is no more 
a transient fashion than differential calculus or 
linear algebra: it is here to stay because the criti-
cal difficulties it overcomes have no other plau-
sible solution.

While superiority in many uses is generally 
conceded, machine learning is often argued to 
be weaker in inference than conventional ana-
lytic approaches. This view is mistaken. As we 
have seen, questions of inference arise only 
once questions of prediction are satisfactorily 
answered. A poorly predictive model is even 
poorer grounds for inference, for if individual 
cases are weakly predicted it is even less likely 
the model is the correct one. Conventional anal-
ysis often tries to wriggle out of this by arguing 
that the residual uncertainty is utterly unpredict-
able, i.e. that it is “noise”. But one cannot con-
clude this without having plausibly explored the 
space of all possible models, and the assertion is 
instantly undermined by finding a single model 
with greater generalisable predictive power. So 
the argument rests on not applying the tech-
nique—machine learning—it seeks to reject out 
of hand. This is neither valid nor intellectually 
honest.

To understand why medicine needs machine 
learning, we need to remind ourselves of what 
practicing medicine entails. The marginal case 
of public health aside, the object of medicine is 
the individual patient. The primary task of the 
clinician is to predict the natural history of the 
patient’s disorder and to prescribe the best treat-
ment for it, if a treatment is indeed available and 
needed. Since patients usually present with dis-
orders that are new to them, the only available 
predictive or prescriptive intelligence is from 
other patients. For most of its history, medicine 
has drawn such intelligence informally, more 
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or less tacitly embodied in the practice of the 
clinician. Its natural form is the recognition of 
similarities and differences, along such dimen-
sions as the clinician can observe clinically or 
measure with investigations, defining clusters of 
patients with multiple kindred constitutional and 
pathological features.

The desire to formalise this process, to ren-
der it perspicuous enough to be replicated and 
standardised, has shifted contemporary medicine 
to a different model [9, 21]. Rather than rely-
ing on many clinical or investigational features, 
contemporary “evidence-based medicine” seeks 
to discard all but a few critical “biomarkers” of 
disease, defined not by local similarity but by 
the global average of a large, relatively undiffer-
entiated group. It is exemplified by conventional 
epidemiological studies, where an individual’s 
propensity to develop a disease, characterised 
by a small number of demographic and clinical 
features, is assumed to deviate randomly from 
some average value the study seeks to determine 
for the group as a whole. It is exemplified fur-
ther by the standard paradigm for interventional 
studies—the randomised controlled trial—where 
the response to an intervention is determined by 
comparing large treated and untreated groups 
again reductively characterised, and shown to be 
unbiased only with respect to the few recorded 
features.

Such formalisation can never be fully per-
spicuous or replicable until the clinician is 
removed from it altogether, and the manage-
ment of the patient is stated wholly in terms 
of features of the patient alone. Statements of 
this kind are subject to two severe constraints. 
First, for the statement to be practically useful 
it needs to be compact, and to invoke features 
that are objectively defined. It is generally no 
good to give a list of (say) 500 criterial features 
of a disorder, or to include ones whose detec-
tion presupposes skill that itself cannot be stated 
without reference to a clinician. Second, for 
the statement to be testable within conventional 
analytic techniques it needs to be aggressively 
parsimonious, for beyond a few dozen putative 
explanatory variables such techniques tend to 
fail, even with large datasets. Evidence-based 

medicine thus passes the biological world 
through an artificial filter, yielding a caricature 
shaped more by incidental practical limitations 
than by the subject matter itself.

So distorted a picture would be resisted 
were it inimical to the natural temperament of 
science. But relatively simple, serially-organ-
ised chains of causation are encountered often 
enough outside biology for the prototype rela-
tion to be reasonably assumed within it. Some 
aspects of biology are indeed mechanistically 
simple, encouraging us to think the rest should 
be construable on the same model. Nonetheless, 
the belief biology is more like horology than 
meteorology is clearly not justifiable a priori: 
it needs to be determined empirically, case-by-
case [18]. Such determination can only be done 
with the aid of analytic methods that render 
great complexity adequately surveyable. Let us 
now consider why such methods are likely to be 
needed more widely than is currently held.

5	� Model Requirements

Had evidence-based medicine been the success 
it was promised to be, hospitals would have 
fully transitioned to the production line model 
managers have sought to impose, and clini-
cians would be spending more time developing 
care algorithms than seeing patients. In reality, 
little of medicine has been rendered imperson-
ally rule-governed, nomothetic, not because the 
profession is resistant to change but because 
the management of the individual patient, out-
side niche disciplines, is not specifiable in this 
way. The actions of a contemporary physician 
are often justified by pointing to diagnostic fea-
tures, or reasoning from supposed mechanistic 
relations, but such justification rarely provides a 
recipe a non-expert could follow with compara-
ble effect.

Moreover, the fundamental nature of biologi-
cal systems makes a simplicity of organisation 
unlikely beyond marginal cases, for four inter-
related reasons:

First, the information content of the human 
genome—no more than 3 × 109 bits [20]: 
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roughly the capacity of an old-fashioned com-
pact disk—is not only shuffled by the repro-
ductive process at each generation, but also far 
too small in proportion to the complexity of the 
body to yield the comprehensive “manual” a 
uniform mechanistic description presupposes. 
External factors certain to vary widely across 
individuals will therefore determine a great deal 
of biology.

Second, that both feedback and interdepend-
ence between multiple contributory elements 
are near universal across biological mechanisms 
means there will always be multiple comparably 
good “configurations” for any pathway: this is 
an inescapable feature of any multi-parameter 
interactive optimisation problem [19]. There are 
no evolutionary drivers for mechanistic homoge-
neity across individuals, so biological solutions 
that are unique, or found only in a small minor-
ity, need not be uncommon. In short, biology is 
indifferent to “overfitting” across the species.

Third, there is evolutionary pressure to keep 
the genetic code compact because the propaga-
tion of fitness information is inversely related to 
the number of coding elements [14]. The genetic 
contribution to the final biological form must 
thus be encoded in the interactions between 
many genes rather than each gene in isolation, 
or a few in linear combination. Even where the 
causal field appears relatively restricted, the 
form of the representation is likely to require 
complex modelling.

Fourth, there is biological pressure to keep 
physiological causality compact too because the 
difficulty of optimising a system scales with the 
complexity of its specification. The causal con-
tribution of each physiological feature will tend 
to be dependent on many others, requiring mod-
elling of their high-dimensional interactions.

In sum, not only is the presumption of sim-
plicity unjustified, the fundamental constitution 
of the biological makes great complexity over-
whelmingly probable. Much of biology may 
not be knowable in the way a simple mechanis-
tic system is knowable, and what is knowable 
is likely to require high-dimensional modelling 
to predict and comprehend. We should now 
consider what this implies for predictive and 

inferential models in medicine as applied to risk 
prediction, diagnosis, treatment selection, and 
prognosis.

6	� The Optimal Model

It follows from the preceding that however they 
might be created, useful models in medicine will 
commonly exhibit the following features.

First, models with adequate individuating 
power will tend to be high-dimensional, locating 
each individual on many axes of variation. Note 
it is not merely the number of input variables 
that needs to be large, but the minimum size of 
the representation within the most compact parts 
of the model.

Second, an individual will be better informed 
by the nearest neighbourhood of patients, rather 
than a simple population mean, where the neigh-
bourhood is not known a priori, but is defined in 
the modelling process itself, and may well lie 
amongst a very rich field of different modelled 
modes.

Third, it is perfectly possible for the instan-
tiation of some biological function in any one 
individual to have no helpfully informative 
neighbours whatsoever. Even the best possible 
model will mistakenly view such instances as 
noise. When addressed to the individual, both 
inferences and deterministic predictions will 
thus always be insecure. The task of medicine is 
rarely to identify definitively the one true model, 
but rather incrementally to optimise the fidelity 
of the models it uses, updating them with each 
and every biological instance. Unsurprisingly, 
this reflects how clinical expertise is personally 
developed.

Fourth, models in medicine will nearly 
always be probabilistic, not merely in their pre-
dictions but in the handling of the causal rela-
tions that underlie them. Not only will one 
typically estimate a distribution—rather than an 
expected value—for any prediction, the factors 
invoked in explaining it will also be probabilisti-
cally defined. The classification of patients into 
either outcome or causal categories will gener-
ally be blurred, at least at the boundaries.
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Fifth, a model complex enough to absorb 
the intricacies of the underlying biology might 
not be easily intelligible. Biology is under no 
pressure to be easily intelligible: indeed, the 
opposite is true, for evolution is naturally more 
concerned with maintaining opacity to adversar-
ies than with enabling perspicuity to clinicians.

Sixth, though its placebo effects may be 
greater, inference will generally be less secure 
than prediction here, for the dimensionality of 
the space of possible models makes it difficult 
to be confident of excluding all alternatives. 
Predictive models will therefore dominate the 
field, and risk predictive and prognostic models 
will advance faster than diagnostic or prescrip-
tive tasks.

7	� Clinical Applications

The present focus of machine learning in medi-
cine is determined less by clinical need than 
by the dominant direction of technical innova-
tion. Machine vision leads the way technically; 
machine radiology is its most obvious transla-
tion clinically. But the application of machine 
learning ought to be dictated by the clinical 
problems most likely to benefit from it, and 
the size of the potential impact of solving them 
better than current methods allow. A focus so 
realigned would be guided by the following 
considerations.

First, though the space of biological prob-
lems is near-universally high-dimensional, the 
picture yielded by the investigational instru-
ment we use in a given clinical setting need not 
be. This is obvious where the result is a single 
variable, but may be obscure where the vari-
ables are many, and the signal is intrinsically 
low-dimensional either because of correlations 
between them, or because most of the variation 
is incidental to the clinical picture. The classi-
fication of mammograms, for example, though 
satisfying for the machine visionary does not 
segregate closely with the tumour genetics and 
other cellular factors on which patient survival 
ultimately depends [3]. For machine learning to 
be most useful we need the dimensionality of 

the underlying biology to be accessible through 
the investigational method and to be maximally 
material to the clinical outcome of interest.

Second, the marginal benefit of introducing 
machine learning to a clinical field depends on 
the difference between the complexity of the 
problem and the simplicity of the best current 
solution. In areas of medicine so complex that 
decision-making is left to tacit clinical experi-
ence—gait assessment in movement disorders, 
for example—the machine is compelled to 
compete with a real neural network—the clini-
cian’s brain—that will always be hard to match. 
Far greater margins are available where clinical 
practice is formalised into (usually highly reduc-
tive) algorithms of one kind or another: in short, 
where medicine is already in a sense mecha-
nised even if the algorithms are not embodied 
digitally.

Third, the advantage of machine learning also 
depends on the accessibility to a human expert 
of the biological relationships being modelled. 
A radiologist has direct, easy, immediate access 
to images, but not to the multi-modal covariance 
of multiple investigations, or conjunctions of 
imaging and complex clinical phenotypes. The 
less human-surveyable the data, the greater the 
machine’s advantage, for human experts are here 
compelled to reduce each modality, and only 
link them thereafter.

These considerations leave radiology—at 
least when treated in isolation from deeper clini-
cal management—some way behind the areas 
of greatest potential benefit. Here we give three 
general examples that ought to receive greater 
attention than they so far have.

7.1	� Disease Stratification 
and Prognosis

The statistical framework of evidence-based 
medicine has compelled a reductive specifica-
tion of the observed factors—clinical or inves-
tigational—in which the risk of disease or its 
progression are generally grounded. But if such 
models are too simple to be adequately indi-
viduating, the kind of “personalised” medicine 
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universally agreed to be desirable will need 
high-dimensional models integrating informa-
tion across a wide multiplicity of factors. Where 
the relations between the material factors are 
complex, a model’s predictions may not be intel-
ligible in the linear, threshold-defined manner 
of the “risk-factors” so commonly referred to 
in conventional medicine. Instead, the clinician 
will simply have to refer to the model itself, and 
the causal field of factors it surveys in forming 
its predictions. That it is the model, and not a 
limited set of factors, on which our confidence 
rests does not alter the fundamental measure of 
fidelity: the accuracy of predictions made on 
unseen, out-of-sample data.

7.2	� Interventional Inference 
and Prescription

The context of intervention adds to the forego-
ing case only a few more factors—how, if at all, 
the patient is treated. And here the usual reduc-
tive models should be analogously expanded to 
include all potential determinants of the clinical 
outcome. Equally, a complex model rather than 
a set of factors will now guide an individual’s 
prescription, for the demands of individuation in 
stratification and prognosis must extend to treat-
ment too. Inference to the question of whether 
or not an intervention works in general, also 
requires high-dimensional modelling, for it is 
only once individual variability is adequately 
captured that the specific effect of the treatment 
can be reliably isolated [1, 24].

7.3	� Clinical Pathways

A blend of ideology, logistics, and reproduc-
ibility compels hospitals to follow a production 
line model of operation, where patient care is 
delivered along a set of stereotyped sequen-
tial steps. Such pathways tend to be simple—a 
small set of decision variables guiding a narrow 
plurality of management options—and are rein-
forced by equally reductive sets of “key perfor-
mance indicators”. Since patients, unlike cars 

on a production line, are not identical in their 
design, the alternative of multi-dimensional 
“clinical fieldways”, guiding patient not along a 
linear path but across a multiplicity of planes of 
management, is likely to improve on the status 
quo. This evolution naturally proceeds from our 
revised notions of risk, prognosis and treatment.

8	� Ethical Aspects

Machine learning is widely held to pose unique 
ethical problems that impede its application 
to medicine, indeed may render some forms of 
it wholly unsuited to the domain [2, 17]. The 
objections are commonly taken to be self-evi-
dent, and their conceptual foundations are rarely 
examined in depth. This is a large topic, in need 
of dedicated treatment: here we may only draw 
attention to a set of important misconceptions 
relevant to our specific focus. We shall see that 
far from a threat to medical ethics, machine 
learning is an important part of its defence.

We should begin by noting that ethics is gen-
erally concerned with ends more than means. 
Since machine learning changes the intellec-
tual instruments of medicine rather than its 
objectives, its ethical implications form a com-
paratively minor part of medical ethics. Five 
comparatively neglected aspects nonetheless 
require consideration.

First, the value of a change in any clinical 
practice cannot be determined without a com-
parison between the old and the new. Concerns 
about the possible infelicities of machine learn-
ing need to be moderated by the manifest infe-
licities of medicine as it is practised now. We 
have shown contemporary medical manage-
ment to be very far from any reasonable concep-
tion of the ideal, whereas the direction of travel 
machine learning promotes is unequivocally 
towards it. From a moral perspective, at this 
foundational level, the critical question is less 
whether or not we should introduce machine 
learning in medicine but why we have not done 
it already.

Second, machine learning, in the well-
founded applications discussed above, does not 
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seek to replace tacit human expertise, but the 
crude, simple algorithms currently used to cod-
ify it. The competition here is not between man 
and machine, but between two different kinds 
of model differing in flexibility and expressiv-
ity. The models of conventional evidence-based 
medicine are no less mechanical for being 
expressible on paper: they still prescribe a rela-
tion in a form that leaves the clinician out of the 
equation [10, 21]. The critical question, then, is 
whether or not a complex model may be system-
atically worse than a simple one. Given the right 
modelling architecture, a complex model need 
not perform worse than a simple one trained on 
the same data, and where it fails it should fail 
with the same grace. If the model is capable of 
absorbing complex patterns of variation across 
the population, it may systematically perform 
better for some subpopulations over others. 
Imagined as tailoring, a simple model will cut 
everyone a universally ill-fitting, generic suit, 
whereas a complex model will cut a close-fitting 
suit for those it knows sufficiently well. But for 
no-one should the suit be any worse than the 
generic, and the variation in fit overall, across 
the entire population, both systematically and 
randomly, will naturally be smaller. From an 
ethical perspective, escalating model complexity 
has no major inevitable negative consequences, 
indeed the opposite.

Third, far from a novelty, the act of replac-
ing human decision-making by algorithms is 
widespread in medicine, indeed it is what evi-
dence-based medicine demands. That machine 
learning algorithms are generally embodied in 
machines—rather than intuitive flow diagrams—
changes no aspect of their status conceptually. 
Those in opposition to the mechanisation of 
medicine have already irretrievably lost the war, 
so waging a battle against machine learning is 
a pointless exercise. Moreover, the strongest 
criticism against conventional evidence-based 
medicine—that it is absurdly reductive—is pre-
cisely what machine learning seeks to address. 
Machine learning humanises what is already 
mechanical: it does not supplant human exper-
tise but improves what has already been ceded. 
And human experts will always retain control 

over whether or not an algorithm is applied, 
exactly as they do now. So this aspect presents 
no new ethical problems either.

Fourth, the widespread objection that com-
plex models are “black boxes” is misguided. 
The transformation effected by a deterministic 
model, however complex, is openly and unam-
biguously specified by its parameters, as is that 
effected by a stochastic model except that the 
output there is probabilistic within some known 
interval. Yes, the behaviour of a complex model 
may not be easily predictable under all possi-
ble circumstances, but that is either a property 
of the problem, not the model, or is addressable 
by the right kind of model-building and evalu-
ation. What the objectors here are insisting on 
is not really intelligibility but a particular, very 
narrow, notion of it. As we have said, nothing in 
biology compels it to be intelligible to anyone, 
so imposing an arbitrarily low barrier is wholly 
unjustified. In any event, if a well-designed 
machine learning model converges on a complex 
solution, then it is because the necessary expla-
nation is complex and the desire for easy intelli-
gibility cannot be satisfied whatever the method. 
We should, of course, recommend the use of the 
most parsimonious model to hand, but to place 
any kind of ceiling is fundamentally wrong. The 
priority here is generalizable fidelity, for the 
patient’s concern is obtaining the right treatment 
not knowing how it is done.

Those who nonetheless object to the use of 
inscrutable models need reminding that clini-
cians are often inscrutable themselves. When a 
clinician acts, the relation between the state-of-
affairs and the action is rarely causal, for some-
one else in possession of the same facts and the 
same putative rules of application may act dif-
ferently. Were it not so, all of medicine would 
by now have been reduced to simple algo-
rithms executable by agents whose only func-
tion—and expertise—is in providing the inputs. 
Rather, clinical action is normally justified by 
giving reasons, in a way that is akin to point-
ing to a complex model’s latent variables. But 
whereas we can explicitly specify the param-
eters of a model, we cannot peer inside the head 
of a clinician: we can only take his or her word 
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for it. We need not doubt the clinician’s sincer-
ity, of course, but a reason does not necessar-
ily yield an adequate explanation of what took 
place, nor need it render the action replicable on 
another occasion, for much of the knowledge 
may be tacit. So those who demand absolute 
transparency by implication condemn clinicians 
themselves.

Fifth, we should step back to reflect on the 
circumstances in which we naturally demand 
explanations for phenomena. Imagine an event 
we do not understand but know cannot recur. 
It is pointless to ask for an explanation, for it 
both has no use and cannot be tested anyway. 
We do not, for example, ask for an explanation 
of the specific circumstances leading to rain last 
Thursday, not because it will never rain again but 
because the weather is so complex the circum-
stances of that particular day are unlikely ever to 
be repeated and cannot be recreated. The notion 
of explanation comes into play only once an 
event may recur, for it is only then that general-
izability across time and kindred events matters.

Now imagine we have generalisability with-
out explanation: a wholly opaque “oracle” that 
tells us the future and how it can be altered to 
any end. Adding explanation has no material 
value here, for generalisability is what expla-
nation is supposed to buy us in the first place, 
and if we have it already there is no need to 
write the cheque. Yes, it might satisfy our curi-
osity, soothe our vanity, ease our mistrust, but 
none of these things can be a clinician’s primary 
concern. From an ethical perspective, then, the 
nature of the generalizable intelligence brought 
onto clinical problems does not matter: all we 
care about is its fidelity.

9	� Quantifying Model Equity

Indeed, careful reflection on one crucial aspect 
of medical ethics—epistemic equity: the equita-
ble distribution of the knowledge used to guide 
clinical care—shows that complex modelling is 
essential to quantifying disparities in care.

Recall that the primary focus of medi-
cine is—and always has been—the individual 

patient. Its task is to achieve the best possible 
individual outcome, through the most appro-
priate individual intervention. Equity of care 
then translates to pursuing with equal vigour 
and fidelity the optimal possible outcome for 
everyone. Equity implies neither equality of 
treatment—stroke complicated by pneumonia 
requires different treatment from stroke alone—
nor equality of outcome—stroke complicated 
by massive haemorrhage will inevitably carry 
a worse prognosis. Indeed, since each patient is 
unique—in health and disease—clinical man-
agement ought to be specifically tailored to each 
individual, with the widely pursued—if rarely 
achieved—aim of delivering personalised care.

How do we quantify equity? For each indi-
vidual, we must measure the difference between 
the achieved outcome and the individual opti-
mal possible outcome, what might be termed the 
individualised outcome loss (IOL). Medicine 
is equitable when each patient’s achieved out-
come is equally close to his or her individual 
optima, i.e. the IOL is the same across the 
population; it is inequitable when there is vari-
ation, i.e. the IOL differs across the population. 
Systematic variation related to variables of ethi-
cal concern—e.g. age and sex—then identifies 
ethically important inequity.

How do we measure the IOL? The achieved 
outcome is directly measurable, but the indi-
vidual possible must be assumed or inferred. 
Evidence-based medicine defines the current 
gold standard for doing this [21]. The ideal pos-
sible outcome is here determined by the popula-
tion average, defined by few features and drawn 
from large, presumptively homogeneous, cohorts. 
It is widely argued that the objectivity, reproduc-
ibility, the formal rigour of the approach provides 
the most unbiased guide. This view is mistaken. 
At the limit of infinite data, simple, low-dimen-
sional models can only minimize the bias in our 
estimates of the parameters of the underlying 
distribution, reductively described, not the inac-
curacy of our estimates of the individual opti-
mal [8]. Each individual estimate will be biased 
in direct proportion to the individual's distance 
from the group average, and that bias will be 
entrenched rather than reduced with further data. 
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Moreover, systematic biases affecting subpopu-
lations characterised by complex conjunctions 
of demographic and clinical characteristics can 
never be detected, for the underlying models are 
too simple to expose them. In sum, evidence-
based medicine—as currently practised and 
advocated—guarantees inequity, even at the limit 
of infinite data, and ensures that where systematic 
it remains invisible to external observers (Fig. 1).

Is there an alternative? As we have seen, 
machine learning models render tractable the 
multiplicity of clinical and physiological vari-
ables in which a patient's individuality is natu-
rally grounded. The reference for the optimal 
possible outcome can then be defined not by 
the global mean of the population, crudely 
parameterised, but by the local centroid of the 
neighbourhood (Fig. 2). This naturally reduces 
the IOL because the distance to the local cen-
troid will generally be shorter. Moreover, it 
makes care more equitable, because variations 
in the distance to a well-defined local centroid 
will generally be smaller than variations to a 
point fixed for the entire distribution. But the 

improvement can be uneven: where, for what-
ever reason, the neighbourhood is inadequately 
characterised, the reference will move either to a 
distant neighbourhood or the global mean, yield-
ing substantially worse performance than for 
those in other neighbourhoods, even if likely no 
worse than using the mean.

The introduction of machine learning can 
thus not only improve care, but also render 
it more equitable. Enhanced equitability is a 
catalyst for the adoption of machine learning 
in healthcare, not the inhibitor many believe it 
to be. But we need a principled framework for 
detecting, and quantifying the impact of any 
model—complex or simple—on the equitabil-
ity of care, so that the ethical fidelity of machine 
learning models can be evaluated and opti-
mised. Such a framework must expose the rela-
tion between the performance of a model used 
to guide care and a patient’s location on an axis 
of ethical concern, such as membership of a spe-
cific cluster of demographic features: what we 
might call ethical model calibration by analogy 
with conventional model calibration. Lack of 

Fig. 1   Simulation illustrating the individualised out-
come loss in a population described along two dimen-
sions (black points) when the average of the popula-
tion (red point) is taken as the reference for the optimal 
possible outcome within the standard evidence-based 
medicine (EBM) framework. The loss is proportional to 

a patient’s distance from the population average (right 
plot), which may systematically disadvantage those fall-
ing within distinct clusters of the population. The loss, 
quantified by the root mean squared error (RMSE) also 
varies substantially (as captured by standard deviation, σ)
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equitability in guiding care is then revealed by 
comparatively worse performance for patients 
lying on one part of the dimension of ethi-
cal interest compared with another, identify-
ing the region where adjustment to the model is 
required, and enabling comparisons between the 
ethical fidelity of rival models.

Note the descriptive landscape within which 
a subpopulation is located need be neither sim-
ple nor confined to features of recognized ethical 
concern, such as demographics. A subpopulation 
defined by the complex interaction of multiple, 
previously unknown, features such as polygenic 
risk profiles, has no weaker claim to equity than 
any other. Indeed, in the presence of disordinal 
interactions, inequity with respect to any single 
feature may be obscured. A sincere attempt at 
ethical calibration inevitably requires a segmenta-
tion of the population at the finest granularity the 
available data can sustain, supported by “inter-
sectional” interactions between multiple features. 
We have proposed such representational ethical 
model calibration as the definitive solution to 
quantifying epistemic equity in any model used 
in healthcare, whether simple or complex [8].

Note that detecting inequity is only the first 
step to eliminating it, and the optimal form of 
any remedial action is both unsettled and likely 
to vary case-by-case. In no circumstances, how-
ever, may the solution involve less detailed 
knowledge of the population than the baseline, 
for improving the outcomes for any given sub-
population could not plausibly be achieved by 
greater ignorance of it. Remediation here will 
typically take the form of seeking more data on 
the underserved group, and ensuring the model 
has sufficient flexibility to capture its distinc-
tive features: in short, more, not less, machine 
learning. Of course, remediation may also 
involve architectural adjustments to the model 
that rebalance its attention more equitably or 
otherwise modify its operation [7, 22]. Such 
redistributive modification may involve a com-
promise between equity and the performance 
of specific groups or the population as a whole 
that itself requires ethical examination and jus-
tification. But here we enter the familiar realm 
of equitable allocation in the context of limited 
resources, for which the conceptual equipment 
is well established.

Fig. 2   Simulation illustrating the individualised out-
come loss when the local centroids (red) are taken as 
references for the optimal possible outcome. The loss 
is proportional to a patient’s distance from the centroid, 

which will typically be less than to the average. Note loss 
variation is much diminished and less systematic, but 
depends on well-characterised neighbourhoods
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We should also note that ethical model cali-
bration, at least statically, cannot distinguish the 
limits to IOL imposed by knowledge from those 
imposed by biology. Further investigation that 
brings better data and/or more felicitous mod-
els is needed, and even then, any judgement will 
always be open to revision.

10	� Conclusion

Reflection on the fundamental nature of medi-
cine, and the demands on the diagnostic, prog-
nostic, and prescriptive models it implies, shows 
that machine learning provides the only plau-
sible path to achieving optimal outcomes for 
individual patients. The notion of “personalised 
care” is pleonastic: medical care has always 
been about the individual, and if it has drawn 
intelligence from crudely parameterised popula-
tions, it is only because it has lacked the empiri-
cal, conceptual, and technical equipment to do 
better. Now that the pre-requisites for deploying 
complex modelling in medicine—large scale 
data, flexible yet robust algorithms, and power-
ful compute—are in place across many clini-
cal domains, it is incumbent on us to deliver its 
potentially transformative benefits. Success here 
is increasingly impeded less by technology, 
evolving at break-neck speed, than by miscon-
ceptions about the correct approach to extract-
ing intelligence from clinical data and applying 
it to the cardinal tasks of medicine. Adopting 
what we argue is the correct perspective will be 
crucial to disseminating machine learning across 
medicine. The necessary adjustment is more 
radical than much of the current discourse—pre-
occupied with technical and narrowly conceived 
ethical considerations—suggests, and requires 
reconsideration not just of modelling but of the 
practice of medicine itself.
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value while minimizing research waste. The 
present chapter outlines the need for machine 
learning frameworks in healthcare research to 
guide efforts in reporting and evaluating clin-
ical value these novel implementations, and it 
discusses the emerging recommendations and 
guidelines in the area.
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1	� Introduction

The exponential growth in machine learning-
based research in medical sciences has cre-
ated a novel picture in the traditional horizon 
of proof-implementation-evaluation-regulation 
efforts. Given its relative novelty and trendy 
buzz words, the corpus of first-line publications 
(proof-of-concept and first performance) in this 
area has expanded beyond what can be effec-
tively covered and filtered by the average human 
observer in search for the latest developments in 
any given area of expertise. Moreover, free dis-
tribution services and an open-access archives 
housing non-peer reviewed reports further 
expand the body of potentially valuable infor-
mation available to the interested parties.
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Abstract

Machine learning research in health care lit-
erature has grown at an unprecedented pace. 
This development has generated a clear 
disparity between the number of first pub-
lications involving machine learning imple-
mentations and that of orienting guidelines 
and recommendation statements to promote 
quality and report standardization. In turn, 
this hinders the much-needed evaluation of 
the clinical value of machine learning stud-
ies and applications. This appraisal should 
constitute a continuous process that allows 
performance evaluation, facilitates repeat-
ability, leads optimization and boost clinical 
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the notion that robust structured are needed to 
inform, guide and also evaluate the incorporation 
of ML analytics in clinical research.

Several are the contributors to the landscape 
of ML clinical research such as a wide variety of 
ML algorithms, the initial lack of standards for 
conducting or reporting ML studies, and even 
absence of standard conceptualizations or terms 
in ML studies, all of which have deepened the 
clear disconnection between the two constitu-
tional areas involved in it, namely: ML research-
ers/developers and clinicians. This reflects 
consequently in the detachment from other 
health researchers, health services, research 
organisms, regulatory bodies and patients.

Furthermore, the unparalleled growth in ML 
research publications in medical science traces 
to a series of core circumstances. For example, 
there is an increasing offer of ML courses, open 
code and free resources, big datasets and appli-
cation libraries for the experimentation with and 
use of ML algorithms. Second, there are no strict 
patents for untrained models and therefore iso-
lated experimentation with optimized versions 
of a model can easily take place and become 
reported as proof-of-concept. Third, the ini-
tial lack of ML expertise of reviewers posed an 
accessible threshold for original ML publications 
with the natural interest in a novel area of devel-
opment. Finally, new journals and journal deriva-
tions have emerged with specific focus on ML 
research and its applications. Figure 1 depicts 
contrasts the proportions in the publication pro-
file of machine learning clinical research against 
that of another known area of relatively recent 
methodological developments, i.e. genetics.

Furthermore, the pace of ML-based develop-
ments poses specific challenges related to organ-
ized data storage and ownership, preprocessing, 
quality evaluation, patenting and commerciali-
zation of algorithms (for example, as medical 
devices). Virtually all ML-based studies and 
model training have been performed in current 
retrospective data, and the size of the utilized 
datasets varies widely from a few hundreds to 
millions of datapoints, which greatly influences 
the quality, replicability and therefore generaliz-
ability of reported clinical applications.

Such disparity between the number of pub-
lications involving ML analytics in clinical 
research and the number of guidelines gener-
ated to ensure quality, standardize their report 
and harmonize their interpretation is pres-
ently unique. In the last few years, a substantial 
amount of grants and initiatives have been pro-
moted to boost the development of solid, stable, 
interpretable and user-friendly implementations 
of ML in medicine, yet unifying frameworks are 
still missing. The need for a ML framework in 
healthcare research is best understood in the pre-
sent disconnection between the data science and 
the clinical medicine realms, and it presently 
represents a crucial gap in the further develop-
ment of ML-based health care. Consequently, 
roadmaps for the development of novel ML 
systems dedicated to tasks well-defined by cli-
nicians as well as mechanisms to evaluate their 
effect in the “real-world” and on accepted hard 
endpoints are strongly needed. Consequently, 
international standards and guidelines to inform, 
orient and evaluate the use and incorporation of 
ML in clinical research are beginning to emerge.

In the present chapter, we outline the need 
for ML frameworks to orient and guide efforts 
in reporting and evaluating the clinical value and 
relevance of ML-based implementation studies 
in healthcare. Thereon, we discuss the emerging 
standards to this effect and underline the neces-
sity for international guidelines that bridge the 
knowledge gaps in this relatively novel multi-
expertise area of development.

2	� The Need for Frameworks 
in Ml-Based Clinical Research

The recent interest in ML-oriented research has 
created a unique horizon of information avail-
able to researchers with massive amounts of first 
publications and only a very few “accepted” clini-
cal implementations. ML-based tools have been 
increasingly proposed to aid in clinical decision 
making through the generation of diagnostic and 
prognostic estimates. Yet, the largest proportion of 
these advances are merely theorical and the clini-
cal implementation bottleneck has strengthened 
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Hence, when considering the exponential 
growth in ML first studies with limited trans-
lation to clinical settings, the disconnection 
between developers and clinicians, the variety in 
quality and reporting techniques and the increas-
ing need for reliable and high-quality clinical 
implementations, the need for ML frameworks 
in clinical research aimed at maximizing the 
value of such analytics and reducing the waste 
in oriented research is paramount [1, 2].

Figure 2 proposes a framework for ML sys-
tems development and highlights the areas 
where the current necessity for evaluation, rec-
ommendations and guidelines emerge.

Once initial development and reporting of 
ML applications has taken place, a continuous 
process of evaluation is warranted, especially 
with highly adaptive systems such as those 
based in ML where training can be updated 
and performance improved. This monitoring 
task should couple with specific recommenda-
tions and guidelines in the form of checklists 
or standards. This in order to orient the path 
to implementation in real clinical settings and 
minimize the loss of valuable ML research 
due lack of clarity on the ulterior objective 
and applicability potential. The ML framework 
once again can link relevant efforts to the next 
step in the process and reduce the disconnec-
tion between the predominantly data science-
dependent initial developments (originating 
from lack of awareness of the clinical context) 
and the predominantly clinically oriented vision 

of the later stages in the framework (restricted 
by a lack of understanding of ML analytics and 
their potential).

3	� Evaluation and Monitoring 
in Clinical Ml Research

The known horizon of applicability of ML ana-
lytics has been suggested in several fronts con-
cerning medical sciences [3, 4]. And overall, 
evaluation remains a ubiquitous process at every 

Fig. 1   Comparative scatter graphs on the number of Medline indexed clinical publications with the term genetics vs 
machine learning since 1990. Notice the exponential increase in machine learning publications
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stages of the continuous cycle presented
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level of clinical implementation ranging from 
early disease detection to improvements in hard 
clinical endpoints. Ultimately, this will allow the 
identification of the areas in which unequivocal 
benefit can be obtained through the implementa-
tion of ML analytics. Figure 3 shows the horizon 
of applicability and some of the tentative tasks 
where ML is expected to deliver relevant gains 
in clinical research.

The evaluation of ML applications after 
initial development (and publication) should 
constitute a continuous process that allows per-
formance characterization, facilitates repeatabil-
ity, orients optimization and maximizes clinical 
value while minimizing research waste at every 
point of the applicability horizon. In this sense, 
it would be ideal for involved professionals to 
display both clinical and data science knowl-
edge, a conjunction still sparsely found in this 
developing area.

The biggest challenges with regards to ML 
research evaluation are currently found in two 
aspects, one is reporting and the other is the lack 
of clear paths to clinical translation. In the for-
mer, adequate reporting promotes verification 
ease and reproducibility. It facilitates the avoid-
ance of redundant efforts, while also maximiz-
ing the proportion of proofs-of-concept that may 
progress to full-blown clinical tools or accessi-
ble blueprints. And notably, there is some evi-
dence suggesting that the utilization of reporting 
standards can increase confidence in published 
findings and improve the adequacy of decisions 

made around evaluated interventions [5]. Novel 
reporting standards and checklists will be dis-
cussed in a later section. For the latter, emerg-
ing recommendations and toolkits to orient the 
creation of ML systems intended to ultimately 
be used as medical devices (software as medi-
cal device [SaMD]) can simultaneously facilitate 
evaluation of stablished standards. Once more, 
an ML framework is fundamental to identify 
design and delivery issues to be considered for 
evaluation and recommendation purposes in 
the route of studies that aim to advance clinical 
applications [6].

Once the robustness and validity trained ML 
models have been demonstrated. Their effects 
on the “real-world” can be explored in several 
ways. One of these, are retrospective analyses of 
the clinical consequences of the implementation 
of the model. An example of this can be found 
in the estimation of the number of advanced 
imaging studies that may be spared through 
optimized selection of patients for further diag-
nostic testing in coronary artery disease. For 
example, Overmars et al. [7] demonstrated a rate 
of nearly 50% of normal CT, CMR and SPECT 
findings in a cohort of roughly 7000 patients 
with CT and 3000 with CMR/SPECT, which 
represents a well-balanced big dataset for the 
identification of positive and negative cases with 
coronary artery disease. Of note, they achieved 
only a discrete performance able to iden-
tify < 20% of negative cases with a high prob-
ability (>90%). Another study by Benjamins 
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et al. [8] placed the scope on the identification of 
patients that demonstrate myocardial ischemia 
through PET imaging and those who ultimately 
underwent early revascularization through ML 
analysis of clinical and CT data. The subtext 
proposes that utilization of advanced imaging 
can be optimized by means of ML in order to 
spare unnecessary scans that pose a radiation 
and economic burden. In an earlier report by 
Juarez-Orozco et al. [9] this concept was also 
explored through the identification of patients 
with regional and global ischemia on PET from 
the ML analysis of simple and accessible clini-
cal variables.

Real-world evaluation therefore has renewed 
importance in the development and evaluation of 
ML applications because presently the theoreti-
cal demonstrations of performance and clinical 
value have been formulated from retrospective 
datasets due to their accessibility and size. A 
crucial interest therefore exists in organizing the 
prospective evaluation of retrospectively gener-
ated ML models and eventually of prospectively 
generated ML applications.

Varying examples of such enthusiasm have 
been the analysis by Khera et al. [10], which ret-
rospectively evaluated electronic health records 
from more that 750,000 patients from a clini-
cal data registry (Chest Pain–MI Registry of 
the National Cardiovascular Data Registry in 
the United States from the American College 
of Cardiology) through ML to discriminate in-
hospital mortality after an acute myocardial 
infarction. The modeled data included patient 
demographics, medical history, comorbidities, 
home medications, electrocardiogram findings, 
and initial medical presentation and laboratory 
values. Notably, ML modelling was compared 
to the current standard model for myocardial 
infarction mortality built within the registry 
involving 9 variables integrated through logis-
tic regression. And interestingly, ML models 
did not substantively improve discrimination of 
the outcome, although they offered a marginal 
advantage in analyzing patient at highest risk. 
Their results suggest that traditional analytics 
may be sufficient to evaluate such data deem-
ing ML likely unnecessary, while proposing that 

data from current electronic health records may 
be rather insufficient in depth or quality in order 
to extract the most benefit from complex analyt-
ics. Another example is the study by D’Ascenzo 
et al. [11], which evaluated ML in the predic-
tion of all-cause death, recurrent acute myocar-
dial infarction, and major bleeding after an acute 
coronary syndrome from a pooled dataset (com-
posed by the BleeMACS and the RENAMI reg-
istries) aggregating more than 19,000 patients. 
This study showed acceptable performance of 
four ML models and also utilized an external 
validation sample, which translates in a quality 
criterium. However, it offered no direct com-
parison to simpler analytics or other accepted 
risk models based on traditional statistics. A 
third case is found in the registry of fast myo-
cardial perfusion imaging with next generation 
single photon emission computed tomography 
SPECT (REFINE-SPECT) [12]. This registry is 
a multicenter contribution into a comprehensive 
clinical-imaging database including 290 indi-
vidual imaging variables merged with clinical 
variables from patients undergoing SPECT myo-
cardial perfusion imaging due to suspected or 
known coronary artery disease. And remarkably, 
it also includes a prognostic cohort followed for 
the occurrence of major adverse cardiac events 
and has stated the aid in the development of new 
artificial intelligence tools as one its main objec-
tives. These initiatives demonstrate the range of 
approaches to retrospective data and underline 
the need for continuous evaluation of reporting 
and quality to underpin advancements to clinical 
implementation.

In-silico experiments (simulation studies) 
represent an alternative for evaluation of pro-
posed ML applications. And although not pre-
dominant, reports have been dedicated to dissect 
and therefore balance out the working assump-
tion that ML-based implementations outperform 
traditional statistical approaches in every ana-
lytical setting. It has become increasingly clear 
that this may not be the case and that research, 
evaluation and emerging recommendations in 
this realm must contrast and specify the areas 
where the largest benefit of ML implementation 
is expected. Whether we are able to characterize 



252 L. E. Juarez-Orozco et al.

and control the tradeoff between complexity and 
interpretability will determine the place that ML 
will occupy in years to come either as a spe-
cialization within medical research or as another 
adaptable tool in our analytical arsenal.

More broadly, an exemplary structure in the 
process of clinical evaluation of a (ML) soft-
ware as medical device (SaMDs, see ahead) is 
considered by the FDA and the International 
Medical Device Regulators Forum (IMDRF). 
This process evaluates whether there is a valid 
clinical association, whether a (ML) model ade-
quately processes input into adequate output, 
and whether the model achieves the intended 
purpose in the intended target population and 
clinical context [13].

Overall, we still fundamentally lack studies 
that demonstrate how the prospective use of ML 
applications can substantially improve patient 
care, while high-quality reporting and the crea-
tion of development pathways in ML frame-
works offer the best possibilities to organize and 
deploy adequate evaluation and monitoring of 
ML applications. Emerging recommendations 
and guidelines for the conduction and reporting 
of ML clinical research will be discussed ahead.

4	� The Issue of Interpretabiliy

Interpretability or explainability in ML analytics 
remains a main area of criticism. The notion that 
every complex abstraction made by ML models 
should be not only accessible but comprehen-
sible to the user is partially justified given that 
responsibility remains deposited in the clinician. 
A lack of explainability in systems involved in 
clinical decisions places a threat to core ethical 
values (autonomy, beneficence, nonmaleficence 
and justice) in biomedicine, which in turn may 
produce negative consequences in public health 
[14]. Notably, interpretability may not represent 
a solely technological obstacle; it also it invokes 
legal, ethical, and societal queries in need of 
thorough exploration.

In other areas of medical research, struc-
tured reporting and regulations are available 
underpinning the reliability of techniques such 

as laboratory analytics or genetic studies. Such 
structures do not yet exist in ML. The need for 
interpretability in ML varies with the type of 
ML used. Deep learning models, which learn 
complex associations through 1000s of connec-
tions, are inherently hard to interpret. Less com-
plex ML models (for example decision trees or 
SVMs) are more easily understood.

Several approaches exist to establish (some 
degree of) interpretability of ML models. 
Interpretation steps can be integrated into the 
model itself, or added as a post-hoc analysis, 
and can provide understanding on a global level, 
or at the level of individual predictions or even 
individual features. A traditional method for 
model interpretation is the use of partial depend-
ence plots (PDP) [15]. PDPs plots the impact of 
a single features’ value on prediction outcomes. 
However, as the feature-size of models increased 
significantly over the last years, interpretation 
of PDPs become more challenging. Therefore, 
feature importance ranking (FIR) has become 
increasingly useful. FIR establishes the impor-
tance of each feature in the ML model on the 
global model prediction error and ranks them 
accordingly. This ranking allows to identify the 
most relevant features in predictions. Another 
approach to weight feature importance is the use 
of Shapley Values (SHAP) [16]. SHAP originates 
from game theory, and measures the contribu-
tion of each ‘player’ (feature) to the game (i.e. 
improves or deteriorates the predictions). A plot 
of all the values together subsequently visual-
izes the additive contribution of each feature 
to the prediction. A different approach to inter-
pretability is the use of global surrogates for a 
ML model [17]. After training the ML model, 
a second interpretable model (i.e. linear model 
or decision tree) is trained on the dataset and 
outcome predictions (the surrogate model). By 
design this surrogate model provides an inter-
pretation of the most relevant characteristics of 
the decisions made by the ML algorithm. Local 
surrogate (LIME) [18], is a variant to surrogate 
models. Instead of explaining the full model, 
LIME aims to explain the relative important of 
different features for the individual predicted out-
come. In image classification tasks, classification 
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activation maps (CAMs) [19] can be used. CAMs 
provide ‘attention maps’ that highlight the most 
important areas that affected model predictions. 
Uncertainty estimations can also be used to pro-
vide some intuition about model decisions [20, 
21]. While not directly introducing interpretabil-
ity, epistemic and aleatoric uncertainty measures 
can help to value the quality of predictions and 
identify potential weaknesses in model design. 
Moreover, uncertainty labels can be used to pro-
vide effective iterative sample selection in con-
tinuous learning algorithms [22].

Many more solutions are and have been 
developed to provide some degree of interpret-
ability for ML models. However, the increas-
ing complexity of developed models seems to 
make interpretation evermore challenging. Some 
researchers therefore argue to shift the use of 
ML away from ‘black box’ models, and instead 
focus on developing interpretable models [23]. 
In particular in medicine, such an approach 
could significantly reduce the significant chal-
lenges for large scale ML implementation.

5	� Reporting Statements, 
Checklists and Position Papers 
in Ml Research

Once understood the need and relevance of 
establishing ML frameworks that facilitate the 
creation, evaluation and monitoring of ML 

applications, a number of documents have 
emerged that exemplify the efforts to harmonize 
and safeguard the quality of new reports.

Some have the form of extensions of pre-
viously established quality statements and 
some represent de novo documents. Here 
we discuss some of the core characteristics 
of these statements and checklists. Table 1 
enlists statements and checklists gathered in 
the Enhancing the QUAlity and Transparency 
Of health Research (EQUATOR) network 
and dedicated to address the incorporation of 
ML-oriented research. This network represents 
a well-established global initiative with the 
aim of improving the quality of research and 
its derived publications (https://www.equator-
network.org).

5.1	� CONSORT-AI

The consolidated standard of reporting trials 
(CONSORT) represents a guideline for report-
ing randomized trials. Its current version dates 
from to 2010 and aims to ensure transparency 
in the evaluation of novel through randomizes 
study setups. Its ML extension was triggered 
by the unmet need to prospectively evalu-
ate ML applications to demonstrate their real-
world impact. Consequently, the CONSORT-AI 
focuses on the reporting of clinical trials evalu-
ating interventions with a ML-based component.

Table 1   Statements considered by the EQUATOR network for different types of research reporting and their exten-
sions for the integration of ML analytics

The asterisk marks those statements that are under development and for which a protocol for their creation has been 
published

Area of application Statement AI/ML extension
Randomized trial CONSORT CONSORT AI
Study protocols SPIRIT SPIRIT AI
Diagnostic/prognostic studies STARD

TRIPOD
STARD-AI*
TRIPOD-AI* and PROBAST-AI*

Observational studies STROBE PRIME CHECKLIST (CV 
imaging)

Systematic reviews and meta-analysis PRISMA –
ML modelling – MI-CLAIM
Biomedical image analysis challenges – BIAS
Decision support systems driven by artificial intelligence – DECIDE-AI*

https://www.equator-network.org
https://www.equator-network.org
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The original CONSORT considers 25 report-
ing items and the CONSORT-AI has selectively 
generated extensions in 14 items according to 
the needs triggered by ML implementation in 
clinical trials. In general, CONSORT-AI exten-
sions are found for the following sections:

1.	 Title and abstract. Indicate that the interven-
tion involves machine learning and specify 
the type of model.

2.	 Background and objectives. Explain the 
intended use of the ML intervention in the 
context of the clinical pathway (purpose and 
users).

3.	 Participants. Describe inclusion/exclusion 
criteria for input data.

4.	 Interventions. Describe the version of the ML 
application, how input data was acquired, 
how missing and low-quality data was han-
dled, whether human-ML interaction took 
place and level of expertise required, specify 
the output of the ML intervention and explain 
how the outputs contributed to decision-mak-
ing (clinical effect).

5.	 Harms. Describe any analysis of performance 
errors and how errors were identified.

6.	 Funding. State if the ML application can be 
accessed and its restrictions.

Notably, the CONSORT-AI was developed 
simultaneously with the SPIRIT-AI extension 
(see ahead) and as other standard of the sort it 
attempts to assist a myriad of users such as 
researchers, clinicians and editors to more easily 
understand and appraise the quality of a clinical 
trial involving ML. CONSORT-AI was simulta-
neously published in three high-impact journals 
in 2020 [24–26].

5.2	� SPIRIT-AI

The statement for standard protocol items: rec-
ommendations for interventional trials (SPIRIT) 
was published in 2013 with the objective to 
improve the completeness of clinical trial pro-
tocol reporting through recommendations for 
the minimum set of items expected. The novel 

SPIRIT-AI extension represents a guideline to 
reporting clinical trial protocols (as opposed 
to their results, which are addressed by the 
CONSORT-AI) that evaluate ML-based inter-
ventions [27].

The SPIRIT-AI extends 15 items (from the 
33 originally contemplated in SPIRIT) that 
should be reported in addition the SPIRIT com-
ponents. These items follow a similar profile as 
the one described for the CONSORT-AI.

5.3	� STARD-AI

The Standards for Reporting of Diagnostic 
Accuracy Studies (STARD) statement is a 
widely accepted set of reporting standards 
developed to improve completeness and trans-
parency in studies reporting diagnostic accu-
racy. Its most recent iteration was published in 
2015 and a protocol for its artificial intelligence 
extension is now available [28].

The STARD-artificial intelligence 
(STARD-AI) steering group has expressed there 
are unique issues arising from ML-based diag-
nostic analytics such as an unclear methodologi-
cal and therefore diagnostic interpretation (e.g. 
isolated performance, performance comparison 
against other models or humans, characteristics 
of validation datasets), a lack of a standard-
ized nomenclature (e.g. model vs. algorithm, 
vs. machine learning), and heterogeneity of 
performance parameters (e.g. AUC, F1 scores, 
predictive values). Most importantly, they have 
recognized that such issues should be sur-
mounted at the validation stage (i.e. echelon 2 
and 3 of the proposed ML framework) to allow 
for adequate downstream evaluation of real-
world benefits.

5.4	� TRIPOD-ML and PROBAST-AI

The Transparent Reporting of a multivari-
able prediction model of Individual Prognosis 
Or Diagnosis (TRIPOD) statement and the 
Prediction model Risk Of Bias ASsessment 
Tool (PROBAST) were designed to improve 
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the reporting and critical appraisal of prediction 
models for diagnostic and prognostic purposes. 
Their respective extensions to cover prediction 
model studies that applied machine learning 
analytics are being prepared through a Delphi 
procedure [29]. They will be published in two 
complementary papers one dealing with the 
statement and another dealing with the explana-
tion and elaboration details. Furthermore, they 
will feature an online tool to maximize accessi-
bility and ease of deployment.

5.5	� DECIDE-AI

The Developmental and Exploratory Clinical 
Investigation of DEcision Support systems 
driven by Artificial Intelligence (DECIDE-AI) 
project [30] will develop a new reporting guide-
line for early-stage evaluation of ML-based 
clinical decision support systems. The expected 
benefits include promotion of consistency, com-
prehensiveness and reproducibility in novel 
ML systems with clinical support applicability 
potential with emphasis in the experience of the 
human users.

The focus of the DECIDE-AI project can 
be found on initial small-scale algorithm per-
formance, its safety profile, its human-oriented 
evaluation, and the preparation for large-scale 
clinical trials.

5.6	� PRIME-Checklist

The proposed requirements for cardiovascular 
imaging-related machine learning evaluation 
(PRIME) checklist [31] is an interesting initia-
tive also considered in the EQUATOR network 
with implementation focus on cardiovascular 
imaging studies employing ML analytics given 
the success demonstrated in image processing 
solutions.

It organizes the relevant reporting compo-
nents in seven sections (Study plan design, data 
standardization, ML model selection, model 
assessment, model evaluation, model replicabil-
ity and reporting limitations) and aims to reduce 

errors and biases in ML-based image analysis 
algorithms.

Notably, it recognizes that increasing model 
complexity increases the risk for inconsistencies 
in the interpretation and reporting of ML-based 
(imaging) studies. Moreover, the authors con-
sider that the growing use of ML platforms 
increases the need to reduce such risk.

5.7	� BIAS

The transparent reporting of biomedical image 
analysis challenges (BIAS) initiative emerged 
from the increase in these organized challenges 
which have delivered interesting proofs-of-con-
cept in ML research. Moreover, these challenges 
provide an ambient of benchmarking algorithms 
on large common data sets with the noticeable 
problem that their reporting seems to hamper 
interpretation and reproducibility of the pre-
sented results.

The BIAS recommendations try to address 
the divergence between the impact of these 
novel challenges and their effective quality 
control regardless of the implementation field, 
image modality or task [32].

5.8	� MI-Claim

The minimum information about clinical artifi-
cial intelligence modeling (MI-CLAIM) check-
list [33] represents a suggested set of minimal 
requirements in reporting ML application gen-
eration, triggered by emerging interpretability 
problems and pitfalls in generalizability of ML 
research based on suboptimal documentation.

The MI-CLAIM process consists of reporting 
6 sections. These and their subcomponents are 
namely:

1.	 Study design including clinical setting, per-
formance metrics, population composition 
and current reference performance.

2.	 Data parcellation for model training and 
testing.

3.	 Optimization and final model selection.
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4.	 Performance evaluation.
5.	 Model examination.
6.	 Reproducible pipeline.

Hence, the MI-CLAIM advances the notion of 
documentation standardization that can aid clini-
cal and data science researchers in contact with 
emerging ML tools.

All the aforementioned initiatives show 
high concordance on their conceptual structure 
and their differences hinge on specific applica-
tion necessities. Overall, reporting statements, 
reporting and quality checklists and recent posi-
tion papers echo fundamentals aspects in the 
evaluation and promotion of high-quality ML 
applications. Moreover, they provide struc-
tures that can inform development pathways for 
novel ML solutions with minimization of errors 
and research waste. These fundamentals recur-
rently link to the need for clear documentation 
through explicit reporting of ML components 
and their objectives, exhaustive description 
of their data origins, broad characterization of 
their performance with consideration of the 
theoretical and clinical settings, and referral to 
the code to maximize ease of replicability and 
generalization.

Of note, all evaluation and quality initiatives 
link with the base model of scientific research 
quality and hierarchy in which the realm of ML 
should be currently inserted to facilitate their 
development and refinement over time. Also, 
this will allow the characterization of gaps in 
knowledge and tendencies in corresponding lit-
erature over time. Figure 4 proposes a schematic 
model of this integration.

As such, the number of ongoing or recently 
published initiatives to strengthen the incorpo-
ration of ML analytics through high-quality, 
extensive and clarity-oriented reporting state-
ments is increasing. One issue that cannot be 
ignored is that these statements and recommen-
dations should be prompted to the community 
of ML researchers both in the data science and 
clinical spectrum. Otherwise, there is a risk that 
these aids however comprehensive and useful 
may be only considered in isolation and that 

their sheer number will continue to increase. 
This would dilute their practical effect and 
deliver a similar situation as the one currently 
witnessed with first publications in ML research.

6	� Guidelines

The use of diagnostic and prediction tools in 
the real-world clinical setting may appear dis-
tant, yet this view emerges from the traditional 
behavior of the development of analytical tools 
seen in the past (see sections above). Emerging 
recommendations for reporting ML clinical 
research should promote the convergence of 
the clinical and computer science communities 
in order to bridge the disconnection between 
developers and clinicians. There is a clear lack 
of international guidelines for the utilization 
and implementation of ML in clinical research, 
nevertheless the need for them is evident and 
we elaborate on the expected structures and 
describe how this could be envisioned for the 
near future.

One starting point could be the consideration 
of ML as a specialization area mean to deal with 
any sort of input in different and adaptive ways. 
This would require the theoretical basis and 
applicable resources proper of an independent 
knowledge area. In this case, a unique society 
with international reach for the study and imple-
mentation of ML in medical sciences would be 
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the preference with divisions according to the 
types of models of types of input to be analyzed. 
Alternatively, ML research and implementation 
could be considered as an area of added value 
in every already existing knowledge or speciali-
zation areas. This would have the advantage of 
initiation ease and the disadvantage of effort 
fragmentation due to lack of cross talk between 
specializations. In this latter case, there could be 
extensions to existing reporting guidelines and 
recommendations in clinical and health sciences 
to integrate ML-based methods.

Notably, there seems to be efforts in both 
directions with the generation of statements 
and recommendations by established networks 
and journals (see above), and the expansion of 
ML-dedicated symposiums and congresses such 
as the European Society of Cardiology Digital 
Summit which took place for the first time in 
2019.

An international task force may be helpful 
considering authors of proof-of-concept ML 
clinical studies in several areas of medical spe-
cialty underlining imaging, pathology, cardi-
ology, genetics, public health and others. The 
intention could be to distill the concepts and 
standards grounding good practices in ML clini-
cal research with help from the aforementioned 
position statements from varying medical socie-
ties (e.g. EANM/EACVI) based on the utiliza-
tion of criteria informed by expert opinion and 
empirical data.

Thereon, it will be necessary to identify 
reports aiming to standardize the evaluation and 
quality of ML-based clinical studies such as the 
PRIME-checklist. Importantly, cross-applica-
bility to any specialty areas in medical sciences 
should be central.

Furthermore, a structural approach with ML 
dedicated committees in every area of sub-spe-
cialization subject to election and replacement 
should be considered much in the same way that 
society board leadership functions currently. An 
example of this can be found in the new journal 
European Heart Journal: Digital Health, Nature: 
Machine Intelligence.

7	� Regulatory Aspects

Regulation of ML in health-care is still in its 
infancy [34]. ML software is currently regulated 
through the medical device regulations in both 
the European Union (EU) and United States 
(US). However, the unique characteristics of 
ML algorithms, mean that these regulations do 
not suffice. For example, the existing regulatory 
frameworks for medical devices necessitate re-
authorisation for all changes in ML algorithms. 
Continuous learning, in which ML algorithms 
learn from new data and keeps improving per-
formance over time, therefore requires a rewrite 
of the regulatory rule books.

Although no concrete laws are yet in place 
to regulate ML, the EU and US have taken pro-
visional steps in developing regulatory frame-
works for (medical) AI in 2021. The European 
Commission (EC) has published the Artificial 
Intelligence Act [35]. This act creates the first 
legal framework on A and aims to “guaran-
tee the safety and fundamental rights of peo-
ple and businesses, while strengthening AI 
uptake, investment and innovation across the 
EU.” It encompasses all areas of AI, including 
healthcare AI, which it regards as a ‘high risk’ 
application. The FDA published its Artificial 
Intelligence/Machine Learning (AI-ML)-Based 
Software as a Medical Device (SaMD) Action 
Plan [13]. The FDA’s action plan aims to cre-
ate a framework to “enable to provide a reason-
able assurance of safety and effectiveness while 
embracing the iterative improvement power of 
artificial intelligence and machine learning-
based software as a medical device.”

The EU AI Act provides comprehensive, 
sector-specific and cross-sector regulations for 
implementation of AI algorithms. Instead, the 
US AI Action Plan sustains from comprehen-
sive regulation of ML, but delegates responsi-
bility of regulation to specific federal agencies, 
while providing general principles including a 
mandate to avoid overregulation. Some of the 
main areas of focus of these regulatory frame-
works are data quality and algorithmic bias, risk 
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assessment and mitigation systems, continuous 
learning and transparency.

7.1	� Data Quality and Algorithmic 
Bias

Biases exist widely in healthcare data, both in 
historical datasets, as well as current healthcare 
usage [36]. ML systems may perpetuate biases 
presented in the data, which could lead to wrong 
outcomes or systematic underperformance in 
certain population groups [37].

Both the US and European regulators 
acknowledge the importance of mitigating bias 
in medical ML. The EU AI Act requires that 
data used for ML must be subject to appropriate 
data-governance and must meet high standards 
of quality. For example, data must be relevant, 
representative, free of errors and complete, also 
with regard to all patient groups to which the 
ML is applied. Moreover, specific geographi-
cal, behavioural (socio-economic) or func-
tional characteristics need to be reflected in the 
data. As the EU encompasses multiple states 
with different ethnic representations, this might 
mean require retraining of algorithms using 
EU, or even country/region-specific, datasets. 
The FDA’s AI Action Plan is less detailed, but 
states that ML systems must be well suited for 
a racially and ethnically diverse intended patient 
population, without specifying exact regulations 
on how to ascertain such appropriateness.

7.2	� Continuous Learning and Post-
market Risk Assessment

One of the unique features of ML resides in 
the continuous or adaptive learning that can be 
exploited post-authorisation to improve future 
performance. Current regulations have not been 
designed for adaptive systems. The EU and US 
2021 AI regulation frameworks for the first time 
introduce the possibility of continuous learning 
in ML software.

The FDA proposes submission of a predeter-
mined ‘change control plan’ for ML software. 

This plan must include ‘what’ aspects might 
undergo change through learning, ‘how’ the 
algorithm will change through learning and 
‘how’ safety and effectiveness are ensured. 
The adaptivity of ML software can encompass 
changes in performance, as well as changes 
in indications of use, for example extending to 
a new patient population. Larger changes that 
involve significant deviations from original use 
or increase the power of the AI, for example 
transforming it from a low-risk application (sup-
port-algorithms) to a high-risk application (diag-
nostic algorithms) necessitate re-authorisation 
[38].

The EU regulations are again more specific 
and stipulating detailed prerequisites for con-
tinuous learning, that need to be submitted to 
the regulator prior to approval. These include 
the goals of continuous training, the technol-
ogy used and the design of a systematic post-
market monitoring system to monitor changes 
in the algorithm. This monitoring system is an 
active process that obligates manufacturers to 
collect, document and analyse data to moni-
tor performance of its ML software throughout 
its lifetime. Furthermore, the AI act states that 
ML tools will need to maintain appropriate lev-
els of accuracy and robustness with respect to 
the state-of-art of that time. These regulations 
means that manufacturers will carry greater and 
on-going responsibility for their tools to enable 
trust and mitigate potential risks early.

7.3	� Transparency

Transparency regarding ML is important to ena-
ble users to evaluate the appropriate use-case of 
the software in their clinics and mitigate risks. 
The EU AI Act provides a regulatory framework 
to assure transparency. It states that detailed 
documentation needs to be provided regard-
ing the instructions of use and characteristics 
of the AI software, including capabilities and 
limitations of performance, as well as a detailed 
description of the training, validation and test 
data, cybersecurity issues and the expected life-
time of ML.
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The FDA’s AI Action Plan, states similar reg-
ulatory requirements albeit being less specific; it 
affirms that users should be able to understand 
the benefits, risks and limitations of ML soft-
ware through reporting of issues of usability, 
trust and accountability.

Both regulatory bodies express the desire 
to provide a public registry of approvals of AI 
systems to ensure transparency, trust and facili-
tate regulatory oversight. The FDA already 
holds a public registry with statements for each 
approved medical device [35]. An EU-wide 
database for AI software is intended to be estab-
lished in the coming years.

The initial steps laid out in the EU’s AI Act 
and FDA’s AI Action give a roadmap for future 
regulations on ML. The two regulations share a 
set of core values and principles regarding imple-
mentation of AI in healthcare. The next years 
will see efforts to translate the current plans into 
laws for regulation and authorisation of fast-
evolving capacities of ML in the medical field.

8	� Conclusions

Machine learning as the base of novel artificial 
intelligence research in healthcare has grown 
dramatically but there is still limited transla-
tion to clinical settings. The current disparity 
between the number of initial publications and 
orienting guidelines hinders clinical evaluation 
in the real-world. Therefore, machine learning 
frameworks in clinical research are needed to 
maximize analytical value and reduce research 
waste. Emerging recommendations statements 
mostly constitute extensions from existing 
standards (form the EQUATOR Network) and 
regulatory initiatives aim to establish clear paths 
to clinical translation.
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leading to patient harm, risk of bias caus-
ing exacerbated health disparities, lack of 
transparency and trust, as well as suscepti-
bilities to hacking and data privacy breaches. 
Furthermore, we discuss approaches towards 
minimizing risks and developing tools that 
can be safely deployed and routinely used 
in the clinic. Moreover, we introduce a set 
of concrete recommendations aimed at miti-
gating risks and maximizing the advantages 
presented by medical AI. These recommen-
dations include fostering multi-stakeholder 
engagement throughout the AI production 
lifecycle, increased transparency and trace-
ability, exhaustive clinical validation of AI 
tools, and comprehensive AI training and 
education for both medical practitioners and 
the general public. The adoption of such poli-
cies stands to significantly influence the tra-
jectory and deployment of AI within clinical 
practice.
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Abstract

Research in medical artificial intelligence 
(AI) is experiencing an explosive growth. 
This growth highlights the potential of AI 
to significantly improve healthcare across 
a wide spectrum of applications such as 
risk stratification, diagnosis, therapeutics, 
and resource management among others. 
However, despite the great promises of medi-
cal AI and recent technological advance-
ments, a gap persists in translating and 
deploying AI solutions within clinical set-
tings. This gap is attributed to the risks and 
challenges that these promising technolo-
gies entail. To bring AI one step closer to 
the real-word clinical practice, we iden-
tify and outline the principal clinical, ethi-
cal and socio-ethical risks associated with 
AI in healthcare, unravelling their potential 
sources. These risks include potential errors 
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4.	 Lack of transparency
5.	 Privacy and security issues
6.	 Gaps in AI accountability
7.	 Barriers to implementation in real-world 

healthcare.

1.1.1 � Patient Safety Issues Due to AI 
Errors

AI is expected to improve patient safety by 
reducing human errors and enabling predic-
tion, prevention, and detection of health adverse 
events [10]. Nonetheless, at the same time, novel 
risks for patient harm can emerge due to medical 
AI failures. These include: (1) patients with life-
threatening conditions not being diagnosed lead-
ing to failure to begin treatment on-time (false 
negatives), (2) patients being incorrectly classi-
fied to the diseased population leading to unnec-
essary treatments or procedures (false positives), 
and (3) incorrect scheduling and prioritisation 
of interventions, particularly in the emergency 
departments and surgery.

The main causes for AI failures are:

•	 noise and artefacts in AI’s clinical inputs, 
measurements, and labels

•	 the distribution shift problem, i.e., shifts in 
the distribution between training and real-
world data

1	� Trustworthy and Responsible 
AI

Medical artificial intelligence (AI) holds both 
great promises and risks. In this chapter, we 
focus on the latter in an effort to unravel the 
factors that can hinder the performance and use 
of medical AI tools leading to serious compli-
cations, including patient harm and violations 
of patients’ rights. First, we describe the main 
risks and challenges associated with medical 
AI, unraveling their potential sources, and offer-
ing mitigations strategies. Subsequently, we 
shift our focus to approaches towards minimiz-
ing risks and developing tools that can be safely 
deployed and routinely used in the real-word 
clinical practice. Finally, we provide concrete 
recommendations towards achieving trustwor-
thy medical AI and bringing medical AI one step 
closer to the clinic.

1.1	� Risks in Medical AI

Despite the great promise of AI in revolution-
izing healthcare, by improving its quality and 
delivery, the adoption of AI in the clinic has 
been slow. This is mainly related to the severe 
technical and socio-ethical risks that medical AI 
has been associated with [15, 24, 35, 74, 84]. 
These risks hamper AI adoption in the clinic as 
they might cause harm to patients and citizens, 
in addition to eroding the clinicians’ and the 
general public’s trust in AI. Therefore, to ensure 
and accelerate AI use in the clinic, risk assess-
ment, classification and management of AI tools 
must be an integral part of the AI development, 
evaluation and deployment processes.

In this chapter, we focus on the main risks 
and challenges associated with medical AI. 
These can be roughly divided into seven catego-
ries (Fig. 1):

1.	 Patient safety issues due to AI errors
2.	 Misuse and abuse of medical AI tools
3.	 Risk of bias in medical AI and perpetuation 

of inequities

Fig. 1   Main risks and challenges in medical AI
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•	 the Frame Problem, i.e., inability to identify 
and handle unexpected changes in clinical 
contexts and environments.

More precisely, noisy data can greatly affect 
the performance of AI models. Both scanning 
errors, typically depending on the experience of 
the operator, the cooperation of the patient, and 
the clinical environment (e.g. emergency room) 
[93], as well as low quality data labels used 
during training can lead to inaccuracies in the 
AI results [52]. Particularly in the case of deep 
learning models, noisy labels have been reported 
as the main challenges for the subsequent AI 
adoption in the clinic [16, 60].

The second category of common AI error 
sources includes the distribution shift problem 
[112]. This term refers to incorrect results being 
produced by the AI system due to shifts between 
the distribution of the AI training and validation 
data, and that of the real-world data produced in 
the clinic. This is a well-known AI issue dem-
onstrated in different medical domains. For 
instance, in the cardiology domain, a recent 
study revealed scanner-related bias and accu-
racy drop in performance of AI models in the 
task of segmenting cardiac structures from car-
diac magnetic resonance images (CMR) when 
provided with CMR from unseen scanners [14]. 
In the area of ophthalmology, the promising AI 
system of DeepMind for automated diagnosis of 
retinal diseases from optical coherence tomog-
raphy [28] presented a highly increased diagno-
sis error rate, from 5.5 to 46%, when applied in 
data from a different device than the one used 
for training. Apart from scanner-related biases, a 
multi-center study in the United States has also 
reported potential hospital-specific biases [131]. 
The authors built a highly accurate pneumonia 
diagnosis AI system based on data from two 
hospitals. The system performed poorly when 
applied to data from a third hospital.

Moreover, the Frame Problem [76] is one of 
the major challenges for patient safety. The term 
was coined by McCarthy and Hayes in 1969 and 
refers to the difficulty in identifying and describ-
ing intuitively obvious non-effects. In the clinic, 

this can be translated in failure of the AI system 
to recognize and handle unexpected changes in 
the environment. For example, mis-classifying 
a patient as having lung cancer (false posi-
tive) because the patient, who is wearing a ring, 
places his hand on his/her chest during X-ray 
and the system is trained to recognize circular 
objects as lesions [129].

If we are to fully harness the potential of 
medical AI, these failures related to patient 
safety must be addressed. To this end, there are 
three main approaches to follow. First, standard-
ized processes for rigorous model evaluation 
are required to ensure robustness and reliability 
in novel environments, but also to evaluate data 
and labels quality. Such processes should involve 
comprehensive multi-center studies to identify 
potential instabilities and increase robustness of 
medical AI models by ensuring their capability to 
deal with both noisy data and shifts, while main-
taining their accuracy even if the data is heteroge-
neous across populations, hospitals or machines. 
Moreover, the use of large datasets with trust-
worthy labels along with strategies for handling 
noisy labels are imperative. Second, healthcare 
providers should remain part of the data process-
ing workflow and final decision making. In the 
near-term, medical AI should be designed and 
deployed as “augmented intelligence” systems, 
i.e. supportive solutions and not fully autono-
mous agents [75]. Third, mechanisms to detect 
and convey anomalies must be embedded in the 
tools, along with mechanisms for continuous 
learning and calibration. Nonetheless, the latter 
will require human feedback, and therefore, the 
cooperation of the healthcare providers who will 
evaluate and document the system’s performance 
including reporting contextual changes and 
potential errors. The balance between preserv-
ing cost and accuracy benefits, and minimizing 
patient harm is to be studied.

1.1.2 � Misuse and Abuse of Medical AI 
Tools

One main risk factor for misuse of AI tools is 
the lack of a true understanding of the medi-
cal AI technologies on the part of the end-user, 
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i.e. the healthcare providers and citizens. This 
is mainly related to the limited involvement of 
those important groups in the medical AI devel-
opment as current solutions. A recent study 
[114] evaluating twenty-four medical AI tools 
found that clinicians are usually consulted only 
at inconsistent points and, more often, at the 
later stages of the design (82%, 19/24 tools).

This fact coupled with the general lack of AI 
literacy in the society [38], but even within the 
medical community, result in increased chances 
for misuse and human errors. Recent studies in 
Australia and New Zealand [102], the United 
Kingdom [108] and the European Union [102] 
show that health care professionals receive lim-
ited, if any, training regarding AI and utilization 
of technology-based tools as part of their com-
pulsory curriculum.

Another rising problem is the prolifera-
tion of easily accessible web or mobile medi-
cal applications whose efficiency and quality 
regarding potential bias can be questioned. For 
example, in the domain of skin cancer detec-
tion, a plethora of such apps already exists (e.g. 
Skinvision, MelApp, skinScan and SpotMole 
to name a few). Nonetheless, a recent study 
[34] demonstrated efficiency and potential bias 
issues in the six mobile applications that were 
evaluated. Despite being a promising solution 
for remote diagnosis and disease monitoring, 
the widespread use of online apps may pose a 
public health risk in the same manner that the 
online pharmacies have been associated to over-
prescription [72]. Lastly, most users ignore the 
disclaimers of such tools on not being certified 
medical devices.

To reduce the risk for harmful misuse of 
medical AI tools, four main mitigation strategies 
can be followed. First, medical AI technologies 
should be designed and developed in continu-
ous interaction with the end-user to better inte-
grate end-users’ needs and feedback and, thus, 
maximize their understanding of the technology 
being developed and its limitations. Second, a 
compulsory AI curriculum for healthcare pro-
viders should be offered by faculties to ensure 
adequate understanding of the AI techniques and 
results. Moreover, easily accessible programmes 

that enhance AI literacy of the society at large 
have the potential to increase the public aware-
ness and knowledge regarding medical AI and 
its risks. Finally, there is an urgent need for strict 
regulatory mechanisms offered by governmental 
authorities for mobile and online applications to 
reduce potential misuse and abuse of such tech-
nologies by partially or misinformed end-users.

1.1.3 � Risk of Bias in Medical AI 
and Perpetuation of Inequities

In the context of healthcare, Panch et al. defined 
for the first time the algorithm bias as “the 
instances when the application of an algorithm 
compounds existing inequities in socioeconomic 
status, race, ethnic background, religion, gen-
der, disability or sexual orientation to amplify 
them and adversely impact inequities in health 
systems” [89]. To date, several studies have 
reported algorithmic bias in healthcare,against 
Black patients in the referral process for addi-
tional or specialist care [87], against young 
females, black and patients/households with low 
income [104], and against women who are being 
consistently over-diagnosed for diseases such as 
depression and under-diagnosed for others, such 
as cancer [130–71], to name a few.

The sources of bias are several. Bias most 
commonly occurs due to AI models being 
trained with biased and unbalanced data. This 
leads to a significant accuracy drop when the 
system is applied to unrepresented or underrep-
resented groups in the training set. One popu-
lar example are AI technologies for skin cancer 
detection. A study evaluated six mobile appli-
cations and found that all of them were trained 
on datasets comprising images from lighter-skin 
patients, failing to generalize to darker-skin 
patients [2]. Other examples include the 2002 
National Lung Screening Trial for early diagno-
sis of lung cancer which was trained with data 
from 53,000 smokers. Only 4% of data were 
from black individuals [29]. Without mitiga-
tion strategies, similar situations that could lead 
to amplification of healthcare inequalities can 
occur with AI tools adopted in the fight against 
Coronavirus Disease 2019 (COVID-19) [66]. 
Apart from gender and racial biases, data-related 
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bias also stems from the lack of geographical 
variation in the datasets used for training. In the 
USA, a recent review [53] revealed that 71% of 
data used to train deep learning algorithms were 
based on data only from three states, while in 
the remaining studies 34 out 50 states were not 
considered. Such bias might also originate in 
disparities in access to quality equipment and 
digital technologies.

Another important source of bias is the 
human bias. For example, in the evaluation of 
pain, it has been demonstrated by different stud-
ies that reports of pain by black [50] and female 
patients [101] are not receiving adequate atten-
tion. Moreover, women are systematically being 
diagnosed with most diseases later than males 
[121]. This issue also results in bias in data 
labels. This is a particularly important issue as 
AI models can propagate disparities present in 
the current health data registries, such as misdi-
agnosis of specific subgroups [96].

In a nutshell, bias in medical AI has severe 
implications for healthcare. Therefore, miti-
gation strategies are necessary at all stages of 
the AI system development [118]. Startegies 
include the use of balanced, representative 
datasets in terms of key attributes such as sex/
gender, age, socioeconomics, ethnicity, and geo-
graphic location. Moreover, the datasets should 
also include well-curated labels free of bias in 
annotation themselves. Beyond the generation of 
fair datasets, computational approaches such as 
generation of synthetic datasets to cover under-
represented groups or to deal with bias dur-
ing model design such as adversarial [132] or 
continuous learning [119] should be explored. 
Explainable and highly interpretable models 
are also of paramount importance to detect and 
tackle bias. But most importantly, AI develop-
ers should work closely with clinical experts and 
healthcare professionals, but also with social 
scientists, biomedical ethicists, public health 
experts, as well as patients and citizens from 
diverse backgrounds, experiences and needs 
to promote diversity in the field of medical AI. 
Lastly, the development of a standardized evalu-
ation system, consisting of a set of key perfor-
mance indicators that jointly evaluate the quality 

of the training set, accuracy and risk for bias 
proposed by a recent study [23], can aid ensure 
the fairness of medical AI.

1.1.4 � Lack of Transparency
Transparency is an essential requirement for 
the adoption of medical AI in clinical practice. 
It refers to the ability to comprehend how an AI 
tool works, reaches a decision, and adequately 
communicate these processes. Medical AI 
systems even with high accuracy, such as the 
Google algorithm for breast cancer screening 
[78], can be potentially harmful if the end-users 
cannot fully understand how they make deci-
sions [43]. Without transparency, reproducibil-
ity and independent evaluation of the systems is 
hampered. Moreover, identification of sources of 
errors and subsequent definition of responsibili-
ties are difficult to take place.

AI transparency is closely linked to two con-
cepts: traceability and explainability. The former 
refers to documenting the entire AI development 
process in a transparent manner, including track-
ing how the AI model performs in real-world 
scenarios after deployment [83]. The latter refers 
to the ability to transparently explain how the AI 
system reached a decision rather than viewing 
it as “black-box”. In this direction, Explainable 
Artificial Intelligence (XAI) has recently 
emerged as a new field focused on bringing 
transparency on AI systems by developing novel 
approaches for explaining and interpreting their 
decisions [69].

Overall, lack of transparency can hinder the 
trust in AI predictions and decisions, and there-
fore, delay their incorporation in the real-world. 
To tackle these limitations, different avenues 
exist. First, an “AI passport” that includes all 
model’s key information should be requested 
for AI medical technologies. Traceability tools 
to detect and report potential errors and model 
drift are also essential. Furthermore, to increase 
explainability, the end-users must be involved in 
the design and development process to ensure 
that explanations are clear, helpful and address 
their needs. Finally, it is essential that regula-
tory entities require traceability and explain-
ability mechanisms for the tools to provide 
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certification. Nonetheless, explainable AI should 
at no point mean more flexibility regarding the 
requirement for rigorous internal and external 
validation of the models as novel risks might 
arise [37].

1.1.5 � Privacy and Security Issues
A key concern regarding medical AI is privacy 
and security issues. More precisely, there exist 
two types of risks in this category; (1) risks 
regarding the use, sharing, and re-use or re-pur-
posing of patient data without informed consent 
or knowledge, and (2) risks related to (cyber-) 
attacks and hacking or fooling of the tools.

A popular example within the first category 
is the sharing of 1.6 million patients’ data from 
the United Kingdom without their consent from 
the Royal Free NHS Foundation Trust to the 
Google-owned AI company DeepMind for the 
development of an app for diagnosis of acute 
kidney disease [35]. In this case, there was a 
clear security bleach as patients had not pro-
vided consent, but it is becoming an increas-
ingly alarming issue that patients might provide 
consent, but not fully understand how their data 
might be shared or re-used [77]. Furthermore, 
beyond data re-use, there exists the threat of 
data repurposing for medical or non-medical 
purposes, known as “function creep” [59]. 
Hocking et al. detailed the way patient data are 
re-purposed within the healthcare domain for the 
European pharmaceutical industry [49], while 
data from the COVID-19 contact tracing appli-
cation of the government of Singapore was used 
also for criminal investigations [124].

AI systems are also vulnerable to (cyber-) 
attacks and hacking, while they can be easily 
fooled [23]. Researchers have demonstrated that 
they could remotely control AI-powered insulin 
pumps, which could potentially even lead to the 
administration of lethal overdoses [56]. Another 
example in this category is the Düsseldorf 
University Hospital cyber-attack that rendered 
the hospital’s computer system unusable and 
resulted in the death of a patient [54]. To further 
understand the vulnerability of medical AI, we 
should also consider the issue of potential adver-
sarial attacks, including “one-pixel” attacks, to 

AI systems based on medical imaging. The term 
refers to modifying the input provided to the AI 
model even slightly, for example by just rotating 
the image [32] or just changing a pixel [107], to 
intentionally make the system produce a false 
result. Given that many AI technologies offer 
binary classification, paired with the current lack 
of full explainability of deep learning models, 
these attacks represent significant hazards for 
the patients.

Due to the serious consequences that privacy 
and security issues could have, it is essential to 
adopt mitigation strategies. First, awareness and 
literacy regarding data privacy, informed consent 
and cybersecurity are essential. Regulations to 
address accountability and protect citizens and 
their rights are also needed. To further avoid 
exposure of sensitive patient data accidentally 
or intentionally, we should shift our focus from 
models that work in a centralized manner, to 
federated privacy-preserving AI solutions which 
do not require the data to ever leave the hospital. 
Lastly, mechanisms to identify attempts to inten-
tionally fool AI systems should continue to be 
developed [127] and improve.

1.1.6 � Gaps in AI Accountability
Modern medical AI systems are challenging 
the way we understand and define accountabil-
ity in the healthcare sector. First, given that AI 
systems cannot be held morally accountable or 
liable [95] and the elevated number of actors in 
the development, implementation and use of the 
solutions, ranging from AI developers to health-
care professionals [109], it is unclear who is to 
be held accountable or liable for medical AI fail-
ures and errors.

Second, the difficulty in identifying the error 
source and whether it was due to the data used, 
an algorithmic error, or due to misuse and lack 
of understanding of the tool’s results renders 
allocation of responsibility even more unclear. 
In this context, AI accountability is closely 
related to explainability and transparency, as in 
cases of errors, it is possible that the one to be 
held accountable will be the healthcare profes-
sional who used a tool but cannot explain his/her 
decision or error [73]. This is particularly true in 
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the case of assistive tools as it might be consid-
ered as consulting a colleague [44].

Third, the lack of a unified ethical and legal 
standard for AI manufacturers and indus-
tries creates further gaps in AI accountability. 
Currently, while healthcare professionals are 
usually under strict regulatory responsibilities 
that can even result in losing their license in 
cases of errors, AI developers and technologists 
generally work under ethical codes [122]. The 
latter have been criticized frequently for being 
ambiguous and challenging to implement into 
real-life cases [95].

The current lack of accountability needs to be 
addressed by novel frameworks and mechanisms 
that ensure responsibility, prevent such acts from 
being repeated, and manage reclamations, com-
pensations and sanctions [124]. More precisely, 
procedures should be put in place to define the 
roles of clinical users and AI developers when 
AI-assisted medical decisions result in patient 
harm. Additionally, regulatory entities specially 
focused on medical AI must be created. These 
entities are expected to create and implement 
regulatory frameworks to guarantee that agents 
are held accountable in cases of errors.

1.1.7 � Barriers to Implementation in Real-
World Healthcare

Despite significant advances in the development 
of medical AI technologies, their actual imple-
mentation, integration, and use remain limited 
with clinicians being characterized as the profes-
sionals that traditionally delay in the adoption 
of novel technologies [94]. The barriers in the 
realization of medical AI in the clinic are several 
[30, 86, 106]. First, one of the main obstacles is 
the high data heterogeneity across clinical sites 
and electronic health systems. More precisely, 
health data from different sites have varying 
quality [62], while a significant part, e.g. refer-
ral letters, informs, is unstructured. This leads 
to rich data remaining ¨locked¨ at individual 
institutions and becoming unexploitable by AI 
algorithms.

Second, healthcare professionals are skepti-
cal regarding the way AI medical systems might 
transform the clinician-patient relationship. 

On one hand, AI technologies are expected to 
improve the clinician-patient interaction and 
make it more patient-centered as they have the 
potential to help the clinician better engage and 
include the patient in the decision-making pro-
cess by allowing them, for example, navigate 
and discuss through their AI-proposed treat-
ment options [5]. On the other hand, there is 
the risk that trust towards the clinician might 
be questioned and shifted towards the AI tools. 
Furthermore, there exist ethical issues regarding 
the communication of AI-derived risk scores for 
high-burden diseases such as cancer or dementia 
[18, 30].

Third, the lack of integration of the novel 
AI systems with the tools that healthcare pro-
fessionals are already familiar with and use in 
their everyday work makes the adoption of such 
novel technologies more challenging. Inevitably, 
the introduction of medical AI tools into eve-
ryday practice will result in changes affect-
ing both the healthcare professionals and the 
patients. Currently, there are concerns regarding 
the systematic interoperability of AI technolo-
gies across clinical sites and health systems, and 
doubts on whether they can be easily integrated 
within existing workflows [79] without signifi-
cant changes to existing clinical practices, care 
models and training programmes.

For the successful implementation of the 
medical AI in routine clinical practice to become 
true, the aforementioned barriers must be over-
come. Towards this end, common data protocols 
must be established as well as mechanisms to 
handle heterogenous data, including unstruc-
tured data, and enhance data interoperability 
across clinical sites and different electronic 
health systems. An example in that direc-
tion is coming from Europe and is the creation 
of the so-called European Health Data Space 
(European Health Data Space 2021). Moreover, 
clinical guidelines and care models should 
be adapted to take into account the evolving 
AI-medicated relationship between patients and 
clinicians, including personal and ethical issues 
raising from the communication of AI results. 
Last, novel AI technologies should be compat-
ible with current tools used at clinical level, such 
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as genetic sequencing, electronic patient records 
and e-health consultations (Arora 2020).

1.2	� Approaches Towards 
Trustworthy and Responsible AI

To ensure the design, development and deploy-
ment of trustworthy and responsible AI solutions 
in the clinic, we need efficient risk assessment 
and risk minimization approaches. In this con-
text, hereby, we report self-assessment guide-
lines to evaluate the trustworthiness of the 
medical AI systems. Moreover, we detail the 
requirements for achieving a thorough evalu-
ation of the medical AI; a key requirement for 
identifying different types of potential risks. We 
also outline current regulatory frameworks, that 
could be used to characterise and classify the AI 
risks based on the severity, probability and harm 
that they might induce.

1.2.1 � Guidelines for Developing 
Trustworthy Medical AI

To help medical AI to evolve from the experi-
mental and development phase to the deploy-
ment phase, guidelines to assess potential 
risks (and ensure that medical AI tools are 
robust, safe, ethical and lawful), are impera-
tive. Despite remarkable efforts in the develop-
ment of guidelines for self-assessing AI, such 
as TRIPOD-AI [19], CLAIM [82], MINIMAR 
[47], CONSORT-AI [70], and recommendations 
on AI algorithm evaluation [61, 91, 92, 97], 
advancements in guidelines for deploying medi-
cal AI technology in real-life clinical practice 
have been slower.

In Europe, a first self-assessment guide, 
known as Assessment List for Trustworthy AI 
(ALTAI), was proposed as recently as 2020 by 
Europe’s High-Level Expert Group on Artificial 
Intelligence (European Commission 2020). 
ALTAI assesses seven crucial aspects to evaluate 
whether an AI system can be considered trust-
worthy: (1) human agency and oversight, (2) 
technical robustness and safety, (3) privacy and 
data governance, (4) transparency, (5) diversity, 
non-discrimination and fairness, (6) societal and 
environmental well-being, and (7) accountability. 
Despite the importance of the ALTAI guideline, it 
was derived for general AI and does not cover spe-
cific risks and challenges relevant to the healthcare 
domain. In healthcare, the first self-assessment list 
was provided by Scott et al. [103] in an effort to 
help physicians determine the readiness of algo-
rithms for use and identify cases where further 
testing and evaluation are needed. Nonetheless, 
the assessment list is not that detailed as ALTAI.

More recently, the FUTURE-AI consortium, 
comprising of a multidisciplinary international 
group of more than 80 experts from 30 countries 
around the globe, published a detailed guide-
line for designing, developing, validating and 
deploying trustworthy medical AI based on six 
principles (Fig. 2): (1) Fairness, (2) Universality, 
(3) Traceability, (4) Usability, (5) Robustness, 
and (6) Explainability [63, 64] (Fig. 2):

•	 Fairness: The principle states that tools must 
maintain accuracy across sub-populations. 
To this end, it is recommended to integrate 
approaches for identifying and correcting 
for systemic and hidden bias from the early 
stages of the medical AI lifecycle.

Fig. 2   Guiding principles for trustworthy AI according to the FUTURE-AI guideline for medical AI
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•	 Universality: The principle states that medi-
cal AI tools must be universally applicable, 
interoperable, generalizable and reproducible 
outside the controlled environment where 
they were initially developed and tested. This 
principle translates to tools that can be used 
across multiple clinical sites and countries.

•	 Traceability: The principle refers to the 
requirement of integrating mechanisms for 
documenting and monitoring the production 
and functioning of the tools in order to iden-
tify and act against potential model and data 
drifts.

•	 Usability: The principle refers to tools 
being user-friendly, effective and useful to 
real-world clinical practice. Towards this, 
a human-centered approach putting in the 
center the end-user and multi-stakeholder 
engagement throughout the AI production 
lifecycle should be followed for the develop-
ment of the tools.

•	 Robustness: The principle refers to the 
requirement that the performance of medi-
cal AI systems is not be affected by varia-
tions in equipment, contexts, operators and/or 
annotations.

•	 Explainability: The principle states that the 
AI systems should provide useful explana-
tions for the model’s automated predictions 
and decisions that will help the end-user 
understand, inspect and validate of the pro-
posed output.

To assess the AI-based tools in terms of these 
six principles, the FUTURE-AI guideline con-
sists of 28 recommendations and a self-assess-
ment list in the form of questions that address 

all currently known risks and challenges in AI 
in healthcare. FUTURE-AI is dynamic and 
intended to be constantly updated according to 
the future developments and needs of the rapidly 
evolving medical AI field.

1.2.2 � Evaluation of Medical AI 
Technologies

Another important aspect towards bringing 
medical AI in the clinic is the evaluation pro-
cess. Currently, evaluation has mainly focused 
on model performance in terms of accuracy and 
robustness. Nonetheless, there exist other impor-
tant aspects to be evaluated related to the spe-
cific risks and ethical considerations associated 
with medical AI, i.e. clinical safety and effec-
tiveness, fairness and non-discrimination, trans-
parency and traceability, as well as privacy and 
security. In this context, an increasing amount of 
research is focusing on achieving a multifaceted 
and objective evaluation of medical AI tech-
nologies [61, 91, 92, 97]. The findings of these 
studies can be roughly summarized into five 
groups of recommendations that can ensure an 
improved and thorough assessment of medical 
AI tools (Fig. 3):

1.	 Standardized and universal definition of 
clinical tasks

 The first step towards building a medical AI 
tool is the definition of the clinical task that 
the system is expected to perform. A common 
definition of the clinical tasks to be performed 
by the AI tools, such as disease diagnosis, clas-
sification or prognosis, can enhance the objec-
tive and comparative evaluation of medical AI 

Fig. 3   Approaches for improving the evaluation of medical AI
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algorithms and enable their re-usability. To this 
end, the involvement of non-conflicted entities 
responsible for defining and updating the defi-
nitions of the tasks in light of new information 
from relevant stakeholders could be particu-
larly helpful. On the contrary, discrepancies in 
the definition of the tasks to be performed by 
the medical AI, as it has occurred for COVID-
19 diagnosis and classification of its severity 
[61], makes objective comparison of differ-
ent algorithms for the same task infeasible. To 
address this challenge, medical societies, 
such as the European Society of Cardiology, 
the European Society of Radiology, or the 
European Society for Medical Oncology, could 
propose standardized definitions of diverse 
clinical tasks in their respective fields of 
expertise.

2.	 Performance evaluation beyond accuracy

 Metrics to evaluate the performance of the mod-
els beyond their accuracy are essential to avoid 
unexpected failures of highly performing mod-
els in terms of accuracy. For example, to tackle 
this limitation, Larson et al. [61] proposed an 
extended list of aspects for radiology AI mod-
els that should be evaluated, including the algo-
rithm’s response to unexpected input. The list 
included questions related to whether the model 
is reliable, applicable, deterministic, non-dis-
tractible, self-aware of limitations, fail-safe, 
auditable, able to be monitored, and whether it 
offers an intuitive user interface with transparent 
logic and a transparent degree of confidence.

Despite the importance of the work of Larson 
et al., the list fails to assess the technologies in 
terms of risks related to algorithmic bias and 
inequality. A work in this direction is that of 
Barocas et al. [9]. The authors proposed metrics 
to assess the fairness of algorithms such as sta-
tistical parity, group fairness, equalised odds and 
predictive equality. Seyyed-Kalantari et al. [104] 
used the true positive rate disparity, i.e. differ-
ence in true positive rates, to evaluate state-of-
the-art chest X-ray classifiers based on deep 

learning with respect to patient sex, age, race, 
and socioeconomic status.

Another important aspect in medical AI eval-
uation is the perceived usability by the end-user. 
Elements of interest in the evaluation of medi-
cal AI usability are (1) easiness of use without 
prior training, (2) user’s perceived level of men-
tal effort, and (3) offered improvement in clini-
cal efficiency by reducing the required time for 
information gathering and decision-making. 
Other usability aspects to be evaluated are the 
perceived quality of patient-clinician commu-
nication, and the explainability and interpret-
ability level of the AI results, among others. To 
evaluate these elements, questionnaires, such 
as the System Usability Scale (SUS), could be 
employed [67]. The SUS, first conceived in the 
‘80s and introduced formally as such in 1996 
[13], is a widely used and constantly evolving 
standardized questionnaire. Example questions 
of the SUS include how complex the system 
seemed to the user, and how often he/she would 
like to use it, among others. In the healthcare 
domain, researchers evaluated a decision support 
system powered by AI for depression using such 
a usability questionnaire [113].

Apart from reliability, robustness, fairness 
and usability, the medical AI technology should 
be evaluated in terms of its clinical utility [91]. 
Furthermore, the cost-effectiveness of medical 
AI must be evaluated case-by-case as the use 
of AI might not directly translate to improved 
or more economic treatment, as recently dem-
onstrated for decision-support systems in der-
matology, dentistry, and ophthalmology [40]. 
Towards evaluating medical AI cost-effective-
ness, decision analytic modelling [48] could be 
employed to assess important qualities such as 
Quality-Adjusted Life Years. Moreover, Wolff 
et al. suggested that the AI cost-effectiveness in 
healthcare can be improved by considering also 
initial investment and operational costs, and 
by comparing to alternative options for achiev-
ing the same impact [123]. Finally, evaluation 
frameworks should allow for continuous moni-
toring of the technologies after deployment. 
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3.	 Multistage Evaluation of Increasing 
Complexity

 A multistage evaluation process of medical AI 
technologies consisting of stages of increas-
ing complexity allows for minimizing costs 
and enhancing the quality of the final system 
deployed in the clinic. The staged process can be 
divided into four levels (Fig. 4) [61]:

1.	 Pilot assessment - Feasibility: During this 
stage the algorithm is evaluated in a con-
trolled environment consisting of small 
datasets and compared to the state-of-art to 
demonstrate its feasibility.

2.	 In silico assessment - Capability: At this 
stage the real-word performance of the algo-
rithm in terms of accuracy, reliability, and 
safety is assessed. To simulate real-world 
conditions, large-scale simulated data are 
used to evaluate but also calibrate the AI sys-
tem. The end-user should be involved to eval-
uate the simulated conditions and AI-based 
results. This stage is also known as in-silico 
validation [117] or virtual clinical trials [1],

3.	 Clinical assessment—Effectiveness: The 
effectiveness of the system is evaluated dur-
ing this stage. To this end, the algorithm’s 
performance is assessed in real-world clinical 
settings including one or multiple sites. The 
findings should be used to improve the algo-
rithm. Furthermore, it is common that local 
quality issues are revealed at this stage. These 

issues should be addressed through collabora-
tion with the local clinical sites.

4.	 Continuous assessment—Durability: This 
stage involves the inclusion of mechanisms 
for continuous monitoring and performance 
evaluation of the AI technology. Such mecha-
nisms should allow for automatically detect-
ing, reporting, and dealing with errors, and 
for gathering user feedback. In cases of 
problems or errors, the system should be 
adequately updated and tested in a controlled 
environment before being deployed again in 
the clinic.

A similar four-level evaluation process was 
proposed by Park et al. with the difference that 
a clinical setting is used in both the second 
and third level, while each evaluation level is 
focused on addressing a specific challenge or 
risk, i.e. safety, effectiveness, usability and effi-
cacy [92]. 

4.	 Promotion of external  validation using 
real-word datasets by independententities.

 External validation, as opposed to internal vali-
dation, refers to the process of evaluating an 
algorithm using independent datasets. Internal 
validation can lead to overoptimistic estima-
tions of model performance. For example, in 
the medical imaging field, a recent study on 
the evaluation of 86 image-based deep learn-
ing diagnostic AI algorithms demonstrated 
that most algorithms present a degradation in 

Fig. 4   Multistage evaluation process example [61]. Stages of increasing complexity are proposed for the evaluation 
of AI algorithms in terms of feasibility, capability, effectiveness and durability
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performance when applied to external datasets 
[130]. However, in the same field, until recently, 
only 6% of research works used an external vali-
dation cohort as revealed by a systematic review 
considering 516 studies [55]. Similar discrep-
ancies in performance were observed in other 
clinical domains. For example, the promising, 
according to internal validation, COVID-19 
mortality prediction tool proposed by Yan et al. 
[128] failed to demonstrate similar performance 
(even after re-calibration), when validated exter-
nally [8].

Therefore, validation by means of exter-
nal datasets is imperative and it has been sug-
gested as a key part of the lifecycle of medical 
AI software development [61, 91]. Datasets for 
external validation should cover geographi-
cal and population variability, while originating 
from multiple clinical sites to ensure gener-
alization and robustness to diverse acquisition 
protocols and devices across sites and coun-
tries. Given the failures of highly performing 
AI-based medical solutions, it has been argued 
that validation datasets should also include 
real-word data, as opposed to curated data for 
research purposes, and prospective data [22]. It 
should be mentioned that the US Food and Drug 
Administration (FDA) requires validation using 
prospective data for the final model evaluation.

Lastly, towards ensuring objective and high-
quality evaluation of medical AI systems, 
external validation should be performed by inde-
pendent third-party evaluators. Such third-party 
evaluators could include clinical research organ-
isations, research laboratories, or independent 
institutions. These entities will be responsible 
for developing and maintaining reference stand-
ard data sets and ensuring an AI solution is 
validated in terms of all important aspects, 
i.e. accuracy, reliability, fairness and usability, 
before deployment to the clinic. 

5.	 Compliance with standardized guidelines 
for reporting the AI evaluation

 To avoid AI failures in the clinic and their poten-
tial devastating effects, it is essential not only to 

include a thorough and independent multistage 
evaluation, but also to transparently document 
and report the developed technologies and their 
validation process. Toward this, the TRIPOD-AI 
(Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis Or 
Diagnosis—artificial intelligence) guideline is 
currently being developed by an international con-
sortium to allow assessment of potential bias and 
applicability of diagnostic and prognostic stud-
ies involving AI [19]. It is worth mentioning that 
the TRIBOD-AI is an extension of the TRIPOD 
guideline [20], consisting of 22 elements to evalu-
ate regression-based predictive models, and the 
PROBAST (Prediction model study Risk Of Bias 
Assessment Tool) [123] tool costing of 20 ques-
tions organized into four domains, participants, 
predictors, outcome, and analysis.

Another example of reporting guidelines spe-
cific for the rapidly evolving medical AI field 
is the CONSORT-AI. CONSORT-AI stands for 
Consolidated Standards of Reporting Trials–
Artificial Intelligence and, as its name implies, 
was proposed as a reporting guideline for clini-
cal trials evaluating AI-based interventions. It is 
an extension of the CONSORT 2020 guidelines 
for reporting randomized clinical trials. The 
CONSORT-AI guidelines comprises 14 items 
specific to AI, such as intended use, handling 
of inputs and outputs of the AI intervention, 
human–AI interaction, impact on clinical prac-
tice etc., to be reported along with the original 
CONSORT 2020 elements. The latter include 
elements such as title, trial design, participants, 
interventions, outcomes and sample size.

MINIMAR (MINimum Information for 
Medical AI Reporting) was proposed in 2020 
to feed into the aforementioned initiatives and 
further stimulate discussion [47]. The proposal 
involves elements to assess clinical predictive 
models in terms of (1) study population and set-
ting, (2) training data demographics, (3) model 
architecture, and (4) model evaluation, optimiza-
tion, and validation. Assessment of these aspects 
is critical towards enhancing the understanding, 
interpretation and critical appraising of AI-based 
studies.
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1.2.3 � Regulatory Aspects
The field of medical AI is growing fast, and 
the current regulatory frameworks do not suf-
ficiently account for the specific challenges of 
the healthcare domain. For example, in Europe, 
the available regulatory frameworks, such as the 
2017/745 Medical Devices Regulations (MDR) 
and the 2017/746 In Vitro Diagnostic Medical 
Devices Regulation (IVDR), were established 
in 2017 when medical AI was still very new. 
Hence, they fail to address AI-related risks 
derived from later developments, such as contin-
uous learning, or risks identified more recently, 
such as algorithmic biases.

The first proposal for medical AI risk assess-
ment was developed by the German Data Ethics 
Commission [36]. The proposal involved a “crit-
icality pyramid” comprising five levels of risks/
criticality (1: Zero or negligible potential for 
harm; 2: Some potential for harm; 3: Regular or 
significant potential for harm; 4: Serious poten-
tial for harm; 5: Untenable potential for harm) 
and suggested an adapted testing or regulatory 
system depending on the risk level.

Similarly, the European Commission (EC) 
recently proposed a three-level risk-based clas-
sification system of AI tools: (1) unacceptable 
risk, (2) high risk, and (3) low or minimal risk 
[26]. The first category comprises tools that con-
tradict the EU principles and should be prohib-
ited. In the second category belong tools that are 
high-risk but can be adopted if they comply with 
a list of requirements and obligations such as 
high-quality training/testing data, documentation 
and traceability, transparency, human oversight, 
accuracy, and robustness. Furthermore, special 
mention is made to AI systems that (1) interact 
with people, (2) involve emotional or biometric 
recognition, or (3) generate or manipulate data 
(“deep fakes”). Such tools have additional trans-
parency obligations, i.e., they must inform the 
user that is interacting with the AI system and, 
in the case of “deep fakes”, the user should be 
informed that original content has been manip-
ulated or generated by AI. The last category is 
that of low-risk tools that have no mandatory 
obligations but are encouraged to comply with 

the requirements and obligations of high-risk 
tools.

Despite the importance of the EC risk-based 
approach for AI systems evaluation, the proposal 
presents some limitations. First, the regulation is 
not focused on medical AI, but rather suggests 
that AI-based medical devices should be consid-
ered high-risk due to the associated safety and 
privacy risks. This indiscriminatory approach 
will inevitably lead to unnecessary delays in the 
adoption of systems that are actually low-risk. 
Furthermore, the proposal, as opposed to MDR 
and IVDR, does not cope with specific chal-
lenges and risk of AI in the healthcare domain. 
Lastly, it fails to address AI aspects such as con-
tinuous learning. Thus, further improvements in 
the current regulatory frameworks and a more 
staged classification of medical AI systems are 
essential.

The requests for novel regulatory frame-
works do not only originate from Europe, as 
detailed in the previous section, but are world-
wide; from United States [4, 45], Japan [17, 88] 
and China [100]. Recently, the FDA issued the 
Artificial Intelligence and Machine Learning 
(ML) Software as a Medical Device Action Plan 
[116], which advocates for patient-centered 
methods, specialized rules for medical AI, and 
appropriate machine learning techniques.

1.3	� Summary and Discussion

AI is expected to offer solutions in a wide spec-
trum of problems in the healthcare domain; risk 
prediction and disease stratification, diagnosis, 
therapeutics, patient management, follow up, 
and administration [46]. This enormous poten-
tial has led to an era of exponentially growing 
medical AI research. Nonetheless, only a lim-
ited number of medical AI solutions has reached 
the clinic. It is worth noting that between 2015 
and 2020 only a total of 222 in the USA and 240 
in Europe devices based on AI/ML technolo-
gies were approved [85]. A key obstacle in the 
deployment of medical AI in the clinic are the 
potential risks associated with AI technologies, 
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particularly in the healthcare domain. In an 
effort to help advance the field, we identified 
and, hereby, outlined the main risks and chal-
lenges associated with medical AI. Furthermore, 
we discussed mitigation strategies and generic 
approaches to overcome these issues towards 
achieving trustworthy solutions and ensuring the 
widespread use of these promising technologies 
in the clinic.

In brief, among the main reasons for limited 
trust and acceptance of AI-based solutions in 
the clinic, we identified the prospect of patient 
harm caused by failures of the AI technolo-
gies, such as those observed when a system is 
deployed in novel environments, i.e. different 
populations than those used for training, for 
example populations from different centers and/
or different geographic locations. Additional 
risks for patient harm are posed by the currently 
limited understanding of the way the AI solu-
tions work and reach a decision. Moreover, we 
identified as one of the most widely discussed 
issues associated with medical AI the potential 
security and privacy issues. These include cyber-
attacks, adversarial attacks, but also data re-pur-
posing and potential system malfunctions, such 
as digitalized systems going offline. Another 
important concern is the lack of transparency 
which is closely linked to the currently limited 
explainability and traceability of the tools. Other 
aspects that constitute major risks for medi-
cal AI are difficulties in defining accountability 
among the involved subjects. AI sex/gender/
age/geographic/racial/socieconomic bias is also 
considered a crucial risk in medical AI as it 
can exacerbate existing inequalities. Additional 
obstacles to the deployment of the AI solutions 
in the clinic include data heterogeneity across 
sites and countries, concerns regarding the 
endangerment of the clinician-patient relation-
ship, and difficulties in the integration of novel 
tools with the currently used electronic health 
systems and medical practices.

Although challenging, these risks can be 
addressed with appropriate mitigation strategies. 
In this work, we outlined approaches for each 
type of risk, such as adoption of federated solu-
tions to deal with privacy concerns, development 

of traceability tools to monitor the use of medi-
cal AI, systematic training with balanced and 
representative groups to avoid bias, to name a 
few. Furthermore, we detailed approaches to 
minimize risks and increase the overall trust-
worthiness of medical AI systems. These are 
mostly related to the evaluation process and how 
to report it, as well as the continuous monitoring 
of the tools. More precisely, we discussed cur-
rent available guidelines for self-assessing the 
trustworthiness of AI systems in a standardized 
manner. Among them, the recent FUTURE-AI 
guideline stands outs thanks to its detailed self-
assessment list that covers all major healthcare-
specific risks, and thanks to its adaptable and 
dynamic nature. Combining such guidelines 
with reporting guidelines for assessing and com-
municating the design and results from research 
studies (e.g. TRIPOD-AI, CONSORT-AI, 
MINIMAR) can further ensure the universal-
ity of the algorithms. We also hereby high-
lighted the need for standardized definition of 
the clinical tasks to be performed and for evalu-
ation processes that consist of multiple stages 
of increased complexity and are performed by 
independent parties using metrics beyond accu-
racy. Lastly, we briefly discussed the current 
gaps in regulatory frameworks, particularly in 
Europe.

The risk mitigation measures and approaches 
presented in this work comply and complement 
the recent work of a group of experts who pro-
posed seven areas for improvement to success-
fully address concerns regarding medical AI and 
promote wider clinical adoption [63, 64]. The 
areas are summarized in Fig. 5. In brief, one 
of the main areas of improvement is the exten-
sion of current regulatory frameworks and codes 
of practice to establish multi-staged, domain-
specific evaluation processes by independent 
third-party evaluators as detailed in Sect. 1.2.2. 
The evaluation process should assess the perfor-
mance of the technologies in terms of robust-
ness, fairness, clinical safety and acceptance, 
transparency, and traceability.

To account for potential risks and past 
failures of medical AI tools, a shift towards 
user-centered [31] and human-centered [126] 
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approaches for the creation of novel AI tools has 
been proposed. According to such approaches, 
the end-users should be involved throughout 
the lifecycle of the medical AI algorithms, from 
conceiving the first design to the final valida-
tion and long-term use. It should be noted that 
the user’s involvement in the creation of visual 
interfaces can further enhance the explain-
ability and acceptance of the algorithm’s out-
put [7]. Moreover, the additional engagement 
of other relevant experts, such as biomedical 
ethicists, apart from AI developers and clinical 
end-users, can further ensure the improvement 
of the offered care and patient journey [65]. 
Co-creation through continuous collaboration 
of multiple stakeholders, including real-world 
community members from underrepresented 
groups, has also the potential to reduce bias and 
relevant risks leading to more trustworthy AI 
solutions for healthcare that serve the needs of 
the clinical end-users and the society.

Another area of improvement is that of 
increasing the tools’ traceability and, therefore, 
its transparency, as discussed in Sect. 1.1.4. To 
this end, a global, standardized “AI passport” 
for all countries and healthcare organizations, 
has been proposed. The “AI passport” was sug-
gested to inform on at least five crucial aspects 
of the AI technologies: (1) model information 
(e.g. architecture, hyperparameters, objective 

functions, fairness constraints), (2) training data 
information (e.g. data origin, population, varia-
bles, pre-processing), (3) evaluation information 
(e.g. testing data, metrics, entity performing the 
evaluation, evaluation metrics and results, iden-
tified limitations), (4) usage information (e.g. 
primary use, secondary use, users, counter-indi-
cations, ethical considerations), (5) maintenance 
information (e.g. last periodic control, identified 
failures, version number). It is worth mention-
ing that the last category of information, i.e. the 
maintenance-related information, is particularly 
important as AI technologies need to be con-
stantly monitored to ensure early detection of 
potential data and model drifts [63, 64]. To facil-
itate the detection and reporting of such issues, 
the tools should include interfaces for incorpo-
rating user feedback, informing the end-user 
of potential performance drifts, and allow for 
periodic evaluations. An example “AI passport” 
according to these guidelines used to assess the 
trustworthiness of AI systems is provided in Fig. 
6.

Another important area for improvement 
towards developing trustworthy medical AI solu-
tions is the development of frameworks to hold 
accountable and liable the responsible actor(s) 
among the involved subjects in case of errors, 
patient harm or other key ethical concerns such 
as fairness. A new regulatory body focused on 
medical AI could be particularly helpful in that 
direction [57, 115]. Additionally, periodic audits 
and risk assessments in the entire lifecycle of 
the AI algorithm from design and development 
to final deployment and everyday use can help 
obtain insights into the regulatory needs [98].

Experts highlighted the growing need for 
the medical curriculum to evolve and incorpo-
rate compulsory training on AI technologies to 
equip future healthcare professionals with the 
knowledge and skills that will allow them to 
safely exploit the full potential of AI technolo-
gies. At the same time, training of the currently 
practicing medical doctors by educators from 
other disciplines, for example, through continu-
ous education programmes [90], can prepare the 
professionals of today for the changes occurring 
in clinical practice with the introduction of AI 

Fig. 5   Recommendations towards trustworthy and 
responsible AI
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and reduce the lag in the adoption of trustwor-
thy AI technologies. Apart from increasing the 
AI-literacy of the healthcare specialists, invest-
ing in programs and approaches to increase 
the AI-literacy of the general public too can 
ensure safety and optimal use of these promis-
ing technologies by increasing public awareness 
regarding the limitations and risks, particularly 
of technologies not thoroughly evaluated. This 
issue has also been discussed in Sect. 1.1.2.

It was suggested to develop common strate-
gies to allow for the development of AI across 
regions, countries and continents as, currently, 
inequalities in resources and expertise are result-
ing in AI innovation being led by high-income 
countries. This can lead to further aggravation 
of existing inequalities which, in the healthcare 
domain, translate to differences in life expec-
tancy, maternal mortality, and other indices of 
population health across countries. To tackle 
this challenge, we need investments in train-
ing and educational programmes to increase the 
knowledge, skills, and competencies of future 
healthcare professionals of emerging countries 
in the field of AI. Subsequent retention of local 
AI expertise is also crucial to boost innova-
tion in low- and middle-income countries [3]. 
Furthermore, apart from human capital, funding 

of infrastructure programmes to support coun-
tries with limited research infrastructures is 
essential. Common guidelines and regulations 
to set up inclusive data spaces, such as the long-
awaited European Health Data Space [27], can 
provide access to high quality data to countries 
with reduced data availability and, therefore, 
enhance research and innovation opportunities.

Further research for the technical improve-
ment of the solutions is also needed in terms 
of accuracy, but most importantly, in terms of 
technical robustness and ethical robustness, 
i.e. fairness of the algorithms. Towards the lat-
ter, in the machine learning field, there exists 
an increasing number of works focusing on the 
development of methods and tools to quantify 
and mitigate bias in AI algorithms [99]; IBM 
AI Fairness 360 [11]; Microsoft Fairlearn [12], 
ML Fairness Gym [110], Fairkit [51], among 
others. Nonetheless, approaches to audit and 
mitigate for hidden bias, such as bias related 
to the quality of the labels provided by the 
healthcare professionals and used to train the 
systems, remains an open field of research. 
Another direction for future research involves 
the development of approaches for enhancing 
explainability and interpretability. To this end, 
AI developers should work together with the 

Fig. 6   Example of the recently proposed AI passport that is expected to include information regarding the AI tool, 
the used model, the training and evaluation process, and related to the continuous monitoring of tool
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end-users to ensure that explanations are clear, 
useful and meaningful for the clinicians. Apart 
from explainable results, the healthcare profes-
sionals should also be informed regarding the 
level of confidence for the proposed algorithm’s 
output, a relatively new field of study known as 
uncertainty estimation [58].

Overall, these recommendations jointly with 
the risk mitigation strategies presented in this 
chapter pave the path towards addressing current 
and prospective technical, clinical and socio-eth-
ical issues that emerge from the use of medical 
AI technologies. By addressing these concerns 
with reliable solutions and global policies, we 
can ensure the development of trustworthy sys-
tems that can be safely and widely adopted in 
the daily clinical practice.
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