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Society 5.0: Realizing Next-Generation 
Healthcare 

Zodwa Dlamini, Thabiso Victor Miya, Rodney Hull, Thulo Molefi, 
Richard Khanyile, and Jaira Ferreira de Vasconcellos 

Abstract The concept of a new improved society known as Society 5.0 was first 
proposed in Japan in 2016 in the Japanese government’s 5th basic plan for Science 
and Technology. This new improved smart society will rely on the use of new 
technologies such as artificial intelligence (AI), cloud computing, and the Internet of 
Things (IoT) to gather and analyze large amounts of data. This is then used to 
improve many aspects of society leading to sustainable development and the 
achievement of the United Nations (UN) sustainable development goals (SDGs). 
SDG-3 is to “Ensure healthy lives and promote well-being for all at all ages.” This 
can be achieved in healthcare in society 5.0 through the use and integration of these 
new technologies. AI, machine learning (ML), and deep learning (DL) allow the 
creation of automated systems capable of learning, identifying features in patient 
data, and making a decision regarding diagnosis, prognosis, or treatment choices. AI 
can also be used to integrate large amounts of data to create digital twins of patients 
or populations to allow for more accurate modeling in many healthcare-related 
scenarios and implement precision medicine. Much of the data required to imple-
ment these technologies can be gathered through the IoT which allows personalized 
data regarding an individual’s health, environment, and activity to be gathered by
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smart connected devices through the Internet. To be successful, this digital infor-
mation must be used in such a way as to result in the merging of cyberspace and 
physical space through the integration of cyber-physical systems. All these new 
developments will require and drive a revolutionary change in the healthcare 
ecosystem. The use of these new healthcare technologies also presents governments 
and healthcare systems with new legal issues, ethical questions, and fears surround-
ing the restructuring of the healthcare ecosystem. Additionally, the implementation 
of these new technologies is complicated by the current worldwide energy crisis. The 
solutions to these problems are already being sought. Technologies such as AI, IoT, 
and digital twins are being used to design and manage newer smarter electricity grids 
and assist in the introduction of new energy sources, while Blockchain technology 
can possibly provide a solution to issues surrounding the responsible storage and 
management of data. The use of these technologies to implement healthcare based on 
the concept of Society 5.0 promises to give individuals a healthier, longer, and more 
productive life.

2 Z. Dlamini et al.

Keywords Society 5.0 · Healthcare · UN SDG3 · AI · IoT · Cloud computing · 
Digital twins · Blockchain technology · Safety · Privacy · Energy crisis · Rights · 
Security · Ethics 

1 Introduction 

1.1 Industrial Revolution 

From the beginning of civilization, technology has been recognized by humankind 
as a tool for the advancement of society. This has been greatly accelerated since the 
First Industrial Revolution (Industry 1.0) (Mourtzis et al. 2022) (Fig. 1). The First 
Industrial Revolution began around the 1780s and comprised mechanical power 
production using fossil fuels, water, and steam. The Second Industrial Revolution 
(Industry 2.0) followed in the 1870s whereby manufacturers preferred electrical 
energy for mass production and assembly lines (Mourtzis et al. 2022). The Third 
Industrial Revolution (Industry 3.0) followed in the 1970s and was characterized by 
the integration of automation into the production industries using Information 
Technology (IT) and electronics (Fig. 1). The fourth industrial revolution (Industry 
4.0) is defined by the use of artificial intelligence (AI), cloud computing, and the 
Internet of Things (IoT) to facilitate Cyber-Physical Systems (CPS) (Fig. 1). These 
systems serve as a real-time interface between physical and virtual worlds (Mourtzis 
2016; Elmaraghy et al. 2021). Industry 4.0 signifies the rapid change in technology, 
social patterns, industries, and processes in the recent decade. Advancements of 
innovative technologies such as AI, big data analytics, and digital twins under 
Industry 4.0 framework have improved product and service quality as well as 
production efficiency (Rüßmann et al. 2015). 

However, Industry 4.0 framework has limitations because engineers mainly 
focused on technological advancements in production and manufacturing systems
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and networks (Xu et al. 2021). The engineers prioritized industrial efficiency and 
flexibility over worker welfare and industrial sustainability (Xu et al. 2021). Thus, 
the emergence of a new era of industrial transformation is soon. The new era will 
enable engineers to optimize current technologies for the benefit of humankind and 
social factories (Mourtzis et al. 2022). Countries such as Japan, the United States, 
and the European Union have already made a move toward the human-centric era of 
industrial transformation (Mourtzis et al. 2022). This new era is called Industry 5.0, 
and it also extends to Society 5.0. It is important to note that Industry 4.0 is still an 
ongoing technological transformation, and that Society 5.0 and Industry 5.0 are still 
under preparation (Mourtzis et al. 2022). This has created misconception that 
Industry 5.0 may not be recognized as an independent industrial revolution 
(Mourtzis et al. 2022).

4 Z. Dlamini et al.

1.2 What Is Society 5.0? 

The Government of Japan launched the Society 5.0 (super-smart society) concept in 
April of 2016 (Fukuda 2020). Society 5.0 can be described as a novel society in the 
fifth stage which follows the hunting society, the agrarian society, the industrial 
society, and the information society as shown in Fig. 1 above (Fukuda 2020). This 
concept is aimed at creating a human-centered society whereby services and prod-
ucts will be easily accessible. Consequently, this will reduce social and economic 
gaps so that all people can lead prosperous lives (Fukuda 2020). Society 5.0 is the 
same as Industry 4.0; however, it takes a further step by portraying a data-driven 
society (super-smart society) and economy. Furthermore, it focuses on individual 
capabilities and needs (Mavrodieva and Shaw 2020). Society 5.0 conceptualizes a 
merge between the cyberspace and the physical space (real world) to effectively 
gather more personal and precise data, thereby improving value creation and prob-
lem solving (Fukuyama 2018). In addition, large quantities of data that have been 
collected over the years require time and human resources to analyze a job that could 
be performed rapidly using AI. This data could also be transformed into easy formats 
that can be understood and used by humans in various industries and social services 
(Mavrodieva and Shaw 2020). The Society 5.0 concept became an official policy in 
Japan when it was included in their 2016 Fifth Science and Technology Basic Plan 
for the first time (Mavrodieva and Shaw 2020). Parties involved pledged that this 
concept will significantly support the United Nations Sustainable Development 
Goals (UN-SDGs) and also create a sustainable, inclusive, and human-centered 
society (Mavrodieva and Shaw 2020). A sustainable society organizes itself to better 
the autonomy and the quality of life for its citizens. It also aspires to the common 
welfare economy, and it does not compromise its future opportunities. Sustainability 
is comprised of society, environment, and economy. Society is an important base 
among the three (Fig. 2).
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Fig. 2 Three bases that form sustainability. Adapted from Aquilani et al. (2020) 

The UN-SDGs are aimed at achieving collective progress through co-operation 
between citizens and governments to eradicate social inequality (Gustiana et al. 
2019). Since the establishment of these goals, many nations have directed their 
investments and research toward these sustainability goals (Fukuda 2020; Hayashi 
et al. 2017; Záklasník and Putnová 2019). In this case, sustainable development is 
conceptualized from its planning, use of aspiring technology and infrastructure 
developments, to attain both an improved environment and efficient industrialization 
(Aquilani et al. 2020). 

Japan plans to spread the Society 5.0 concept worldwide by working with other 
nations to achieve its implementation (Mavrodieva and Shaw 2020). The Society 5.0 
concept could change the way society functions in all areas of life. This concept will 
positively impact the economy of Japan as well as other countries and also help in 
tackling numerous social challenges (Fukuyama 2018). Society 5.0 will impact all 
aspects of life, but it is mainly focused on nine social and economic sector, namely, 
healthcare, finance, energy, agriculture and food security, disaster prevention, cities 
and regions, logistics, manufacturing, and public services (Fig. 3) (Mavrodieva and 
Shaw 2020). When it comes to healthcare, Society 5.0 aims to focus on using 
AI-based medical services such as telemedicine, prevention and individualized 
healthcare services, as well as access to personalized life-stage data (Mavrodieva 
and Shaw 2020).
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Fig. 3 Smart solutions facilitated by Society 5.0. Adapted from Narvaez Rojas et al. (2021)
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2 Digital Transformation in Healthcare 

Digital transformation has revolutionized many industries, especially the healthcare 
industry (Natakusumah et al. 2022). In the healthcare industry, technology enables 
individuals to live healthier, more productive, and longer lives. For instance, tele-
medicine was accessed by over one million people in 2015. In 2021, this number 
increased to 12 million people (Natakusumah et al. 2022). Thus, technology has 
allowed patients to access quality healthcare even in remote areas (Tortorella et al. 
2022). According to Maiurova et al. (2022), Pappas et al. (2018), Ricciardi et al. 
(2019), and Natakusumah et al. (2022), several other health technologies such as 
Blockchain, IoT, robotics, and AI have been developed and applied in this industry. 
Different companies view technology as an asset and not just infrastructure. To this 
effect, data analysis can be used to improve access to quality healthcare and also 
lower healthcare costs (Natakusumah et al. 2022). Utilization of health technologies 
allows consumers (patients) to easily access information regarding diseases, treat-
ment options, and also the ability to choose healthcare facilities that aligns with their 
needs (Maiurova et al. 2022; Natakusumah et al. 2022; Pappas et al. 2018; Ricciardi 
et al. 2019). Realization of the benefits of using health technologies has led to more 
healthcare providers adopting digital transformation into their management systems 
(Natakusumah et al. 2022). In turn, this has led to provision of improved quality 
healthcare (Natakusumah et al. 2022). 

2.1 Health Technologies 

Health technologies have constantly changed since the inception of medicine. 
Furthermore, increasing knowledge and diagnosis, treatments, rehabilitations, and 
prevention possibilities have changed healthcare systems (Ricciardi et al. 2019). 
Digitalization ranging from the use of computers to remotely monitor patients, 
electronic medical devices, as well as the computer-assisted visualization and deci-
sion support systems has affected many areas of healthcare systems (Ricciardi et al. 
2019). Digital transformation involves the introduction of new digital information 
and communication technologies, as well as new corresponding processes into the 
healthcare industry. Digitalization can lead to changes and innovations in health 
technologies and delivery, thus impacting healthcare and health systems (Ricciardi 
et al. 2019). 

2.2 Artificial Intelligence (AI) 

AI and other related technologies are increasingly common in society and business 
and are now increasingly applied in the healthcare industry (Davenport and Kalakota



2019). In addition, these technologies can potentially transform multiple aspects of 
patient care as well as in the administration process within healthcare institutions and 
pharmaceutical companies (Davenport and Kalakota 2019). AI can be described as 
the intelligence of machines instead of the intelligence of humans or other living 
organisms (Minsky 1961; Weng et al. 2001). It also refers to occasions whereby 
machines can simulate human minds in learning and analysis. Thus, AI can be 
involved in problem solving, and this kind of intelligence is also called machine 
learning (ML) (Huang et al. 2015). AI technologies are relevant to the healthcare 
industry; however, their specific supported tasks and processes differ widely. For 
instance, ML is commonly applied in precision medicine whereby it is used to 
identify the correct treatment protocols to use and predict the potential successes 
of these treatments in a patient (Lee et al. 2018). Most ML and precision medicine 
applications need a training dataset with a known outcome (e.g., disease). This is 
also known as supervised learning (Davenport and Kalakota 2019). An even more 
complex form of ML exists, which is comprised of neural network. Neural networks 
are discreet organized units of algorithms that act together in a hierarchical manner to 
mimic the human brain. This technology has been available since the 1960s and is 
used for categorization applications (Sordo 2002). For example, it can be used to 
determine whether a patient will develop a certain disease over a certain period of 
time (Davenport and Kalakota 2019). Lastly, deep learning (DL) and neural network 
models (with many feature levels and variables) are the most complex ML technol-
ogies. There are potentially thousands of hidden features in these models. DL is 
commonly applied in healthcare to recognize potentially malignant lesions in radio-
logical images (Fakoor et al. 2013). Furthermore, DL is also applied in radiomics, or 
the detection of features that are clinically relevant in medical images (Vial et al. 
2018). Radiomics and DL are mostly found in oncology-related image analysis. 
Thus, integration can potentially be used to increase diagnostic accuracy compared 
to previous generations of image analysis. Image analysis can also be automated 
using computer-aided detection (CAD) tools (Davenport and Kalakota 2019). 

8 Z. Dlamini et al.

AI applications in drug discovery can increase access to medicine and improve 
the experience of patients, their families together with healthcare workers, and 
everyone involved in the healthcare system. Access to affordable safe, effective, 
and affordable medicine is a fundamental human right. To try and attain universal 
human rights and improve the lives of all the earth’s inhabitants, the UN-SDGs need 
to be achieved by the year 2030. Goal 3 talks about “Ensuring healthy lives and 
promoting well-being for all at all ages,” and particularly, Goal 3.8 seeks to 
“Achieve universal health coverage, including financial risk protection, access to 
quality essential health-care services and access to safe, effective, quality and 
affordable essential medicines and vaccines for all” (United Nations 2015). How-
ever, more than half of the people living in low- and middle-income countries 
(LMICs) do not have access to essential medicines for a variety of reasons including 
the high cost of medicines and poor healthcare infrastructure. New medicines are 
unaffordable for the majority of the population living in LMICs, while at the same 
time these countries have 75% of the world’s poor, accounting for the majority of the 
global disease burden (Stevens and Huys 2017). Therefore, leveraging the



advantages of AI, its increased speed coupled with reduced cost of drug develop-
ment, will be paramount if we are to attain Goal 3 of the UN-SDGs. 
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Although AI has a potential to transform the health industry, it has several 
technical challenges lying ahead (Yu et al. 2018). For instance, as ML-based 
algorithms rely on the presence of large amounts of high-quality training data, data 
that represent target patient population need to be cautiously compiled (Yu et al. 
2018). Furthermore, proper data curation is needed for overseeing heterogeneous 
data. In addition, acquiring patients’ gold standards requires health professionals to 
individually review clinical notes (Yu et al. 2018). This process is expensive on a 
population scale. Numerous high-performing ML models often create results that are 
hard to interpret by unassisted people. Additional AI challenges are economic, 
social, and legal (Yu et al. 2018). However, the greatest challenge to AI is ensuring 
its adoption into daily clinical practice (Davenport and Kalakota 2019). 

2.3 Digital Twins 

Digital twins are become an integral part of the digital transformation (Saracco 
2019). This transformation is facilitated by the IoT and advanced data analytics 
(Fuller et al. 2020). A digital twin can be described as a virtual representation of a 
physical entity which can be utilized in the design phase to analyze, predict, and 
simulate behavior and store evolving descriptive data (Saracco 2019). A digital twin 
environment enables fast analysis and real-time decision-making using accurate 
analytics. Digital twin technology can be applied in various industries including 
healthcare, manufacturing, smart cities, etc. (Saracco 2019). In healthcare, digital 
twins can be used to simulate the effects of certain drugs on humans. It can also be 
used in planning and performing surgery (Gahlot et al. 2018). Furthermore, a digital 
twin enables doctors, researchers, and healthcare facilities to simulate environments 
that are specific to their needs in real-time or for future developments or utilizations. 
Integration of AI algorithms into digital twin technology enables smarter decisions 
and predictions (Saracco 2019). The use of digital twins for healthcare is still in its 
initial stages, but its potential is wide, for example, in hospital management where it 
can be used to improve the assignment of beds, management of large-scale wards, 
and hospital administration. This technology can also be used for predictive main-
tenance and repair of medical equipment (Saracco 2019). Lastly, digital twin tech-
nology together with AI can be used to make life saving choices that are based on 
real-time and historical information (El Saddik 2018; Ross 2016). 

Digital twins can provide scientific data to address the current gaps in environ-
mental policies and in the long term, reach the UN-SDG-3 goals with regards to 
maternal newborn and child deaths. Evidence shows that endocrine disruptor 
chemicals (EDCs) have a substantial impact on most if not all of the omics (Bornman 
et al. 2017; Singh et al. 2021). All this information is contained within the patient’s 
digital twin (Voigt et al. 2021; Walsh et al. 2020).
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Digital twins, new knowledge, the combining of data, and AI integration are set to 
transform the healthcare industry (Kamel Boulos and Zhang 2021). However, this 
technology faces several challenges. In particular, digital twins have common issues 
and challenges with big data analytics and modern AI (Guidance 2021). These 
challenges include issues with data quality, availability, sharing, interoperability, 
and integration (Kamel Boulos and Zhang 2021). Other issues include intellectual 
property concerns, data security and privacy, reproducibility and transparency, and 
AI biasness (Kamel Boulos and Zhang 2021). 

2.4 Internet of Things (IoT) 

The convergence of medicine and information technologies has changed the 
healthcare industry into a more advanced system with efficient and accurate services 
(Bhatt et al. 2017). Such convergence is achieved through the Internet of Things 
(IoT). This technology has great impact on healthcare and medicine applications 
(Bhatt et al. 2017). IoT technology comprises of a physical devices network together 
with embedded sensors, software, devices, and network connectivity for the 
exchange of data (Zanella et al. 2014). Thus, the IoT can be described as a method 
of connecting devices/objects like sensors and smart phones to the Internet to link the 
devices together (Kortuem et al. 2009). Linking of these devices/objects enables 
novel communication forms between the devices, system components, and humans 
(Kortuem et al. 2009). IoT technology integrates common domains such as embed-
ded systems, control systems and automation, as well as wireless sensor networks for 
device-to-device communication through the Internet (Da Xu et al. 2014). The 
dependence of the healthcare industry on IoT technology is increasing healthcare 
access and quality, as well as reducing healthcare cost (Frederix 2009). Personalized 
healthcare is based on a patient’s exclusive biological, behavioral, and social 
characteristics (Bhatt et al. 2017). In turn, this leads to a reduction in healthcare 
costs. Support services can target early disease detection and result in homecare 
instead of clinical care (Bhatt et al. 2017). IoT technology can provide health 
personalization serves while also preserving digital identification of all patients 
(Bhatt et al. 2017). Categorization of IoT regarding personalized healthcare systems 
is comprised of clinical care and remote monitoring (Simonov et al. 2008). Appli-
cations of IoT technology in the healthcare industry include: 

– Heart rate monitoring, which involved independent monitoring of biometrics of 
each patient through specific threshold settings. Additionally, vital signs like 
blood pressure and weight are also remotely monitored through integrated sup-
plementary devices (Bourge et al. 2008). 

– Monitoring of aging individuals in hospitals using IoT ultrasound-based technol-
ogies as personalized home healthcare solutions tracking and locating patients’ 
activities. In addition, emergency calls can be managed in a cost actual system for 
wide area communication interface. This system can be a wearable sensor which
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is waterproof and can be programmed to send out reports including position 
signals to the ultrasound receiver (Bhatt et al. 2017). 

IoT can make significant contributions to support the implementation of the 
SDGs with regards to social and environmental aspects. Pay-as-you-go and 
low-cost IoT can be potential solutions to achieve SDGs by 2030 (López-Vargas 
et al. 2020). IoT can help achieve sustainable and stronger development, and allows 
the opportunity for economical and human development while the impact in devel-
oping countries must not be overlooked (Rahim 2017). Developing countries are 
shown to be ideal for IoT innovation, since it can support economic growth, and 
contribute to cultural, environmental, and social development (Barro et al. 2018). 
IoT development has allowed for the management and monitoring of renewable 
energy systems that improve the electrical access (Biggs et al. 2016; Ramanathan 
et al. 2017). IoT has the potential to predict and minimize the destruction caused by 
natural disasters (Pelc and Koderman 2018) like tsunamis and earthquakes (Biggs 
et al. 2016), thereby avoiding serious injuries and also saving lives. The benefits of 
IoT fall into the UN SDGs. Specifically, IoT implements SDG goals 3 (Good Health 
and Well-Being), 6 (Clean Water and Sanitation), 14 (Life Below Water), 15 (Life 
on Land), and 17 (Partnership for the Goals). Goal 3 aims for good health and well-
being. IoT allows the capturing of data on all devices and allows model predictions 
to improve health and well-being. Sensors of various devices will upload the data 
that can be analyzed. Goal 6 aims to ensure clean water and sanitation. IoT will allow 
the monitoring and management of water, sanitation, and electrical systems and 
technologies (Biggs et al. 2016; Ramanathan et al. 2017; United Nation ESCAP 
2018). IoT will allow all the data captured by sensors to be analyzed and will provide 
reliable information about the water resources state, usage, wastewater generation, 
and treatment (Krishnamurthi et al. 2020). IoT can be used to improve life on land 
and in water (Goal 14–15) by allowing predictive modeling based on the capturing 
of data by various devices. Actions can be taken to avoid catastrophic events and 
improve the health of all living organisms on land or in the water. IoT will also 
facilitate the growth of partnerships worldwide to increase the collaboration between 
people, science, and technology (Goal 17). IoT allows all data to be captured and 
stored and will be accessible across the Internet. This will allow world contribution 
based on data analysis, and the partnerships will allow improved ideas for healthcare 
and healthcare management. 

IoT services and devices will drive the healthcare industry toward novel gener-
ation of efficient services while also saving lives and time with greater accuracy in 
terms of the predictions and recommendations that can be made (Bhatt et al. 2017). 
However, IoT technology has several challenges that lie ahead. The standard web 
services are the most adopted Internet technology (Bhatt et al. 2017). Wireless 
healthcare systems need functionalities, and this is challenging in the future of the 
Internet. New technologies and standards need to address security and privacy 
features for the users, network, applications, and data in the future (Bhatt et al. 
2017). In general, the most challenging issues facing IoT technology include settling



on security, device capabilities, merging the gaps between sensors, individuals, 
safety, and fabrication (Bhatt et al. 2017). 
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2.5 Blockchain Technology 

The healthcare industry is constantly trying to keep up with modern technologies and 
apply them to improve healthcare services to patients (Dasaklis et al. 2018). In this 
regard, Blockchain technology has already been exploited in several areas of 
healthcare, including; healthcare data management, privacy, or interoperability 
(Esposito et al. 2018; Mettler 2016). Blockchain can be described as a secure digital 
ledger that records and stores transactions (Rathore et al. 2020). The ledger is kept in 
a decentralized network of nodes which are formed using cryptographic processes 
computed by all network users (Zhao et al. 2017). Blockchain ledger storage 
capacity is very dependable because it creates digital signatures and hash chains 
using consensus algorithms. To this extent, Blockchain technology offers numerous 
services such as security, traceability, integrity, and nonrepudiation. It does all this 
while also storing all the data in a public decentralized and privacy-protecting 
manner (Zhao et al. 2017). 

Since Blockchain is decentralized and constantly updated, it presents many 
opportunities for the healthcare industry (Mettler 2016). For example, Blockchain 
can be applied in medical treatment processes like in chronic diseases or elderly care 
(Mettler 2016). The following are some of the key features of Blockchain that can 
benefit the healthcare industry (Yaqoob et al. 2022): 

– Health data accuracy 
Since Blockchain maintains updated, traceable, secure records, it can be used 

to store the entire medical history of a patient (Wang et al. 2018). In turn, this 
allows healthcare workers to provide timely, efficient, and accurate treatments to 
the patient. Importantly, all data stored on the Blockchain network are transpar-
ent, immutable, traceable, and tamper-proof (Agbo et al. 2019). 

– Health data interoperability 
Interoperability can be defined as the ability to exchange data between systems 

manufactured by different companies. A lot of e-health/medical records 
(EHR/EMR) are products created from different technical specifications, func-
tional capabilities, and clinical technologies (Reisman 2017; Khan et al. 2014). 
These different systems prevent creation and sharing of data in single format. 
Thus, Blockchain can be used to store this data while also allowing it to be 
accessed and utilized by various healthcare institutions (Yaqoob et al. 2022). 

– Health data security 
A significant number of healthcare institutions still use centralized infrastruc-

tures for storing and processing digital medical records (Redka 2019). However, 
these systems are outdated and vulnerable to cyberattacks and fraud (Redka 
2019). Furthermore, these digital medical records can also be lost through events



such as natural disasters. Thus, Blockchain can be used to prevent data 
mishandling, fraud, or theft using its immutability feature (Yaqoob et al. 2022). 
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In terms of UN-SDG (Goal 3) “Good health and well-being,” Blockchain tech-
nology could facilitate change in relation to sustainability that can impact health, 
medication, and humanitarian aid supply and distribution (Hughes et al. 2019). 
Developing countries still face challenges in relation to the integrity of basic food 
products and medical supplies. Furthermore, logistical management and enforce-
ment across geographical diversity and linguistic barriers are also major challenges 
in developing counties (Hughes et al. 2019). Blockchain technology can help solve 
these challenges by enabling parties to ship and monitor the lifecycle of health 
products by using its transactional integrity and immutability features. This will in 
turn improve health and well-being of the citizens (Hughes et al. 2019). 

Other Blockchain applications in the healthcare sector include global health data 
sharing, improved healthcare data audit, improved drug traceability, clinical trials 
and precision medicine, and health insurance coverage optimization (Yaqoob et al. 
2022). Although Blockchain has numerous potential applications in the healthcare 
industry, it has challenges that still need to be addressed before it can be completely 
integrated into the healthcare system (Yaqoob et al. 2022). These challenges include 
scalability, interoperability, regulatory uncertainty, tokenization, irreversibility and 
quantum computing, and ensuring healthcare data accuracy (Yaqoob et al. 2022). 

2.6 Health Informatics 

Developing nations are facing serious challenges in delivering healthcare to their 
citizens (Norris 2002). These challenges are induced by factors such as the rising 
number of elderly citizens who need care, increasing costs of medical technologies, 
social, and economic changes that prevent governments from funding healthcare 
appropriately among others (Norris 2002). The aforementioned challenges increase 
costs and decrease equity of access to healthcare (Norris 2002). As such, govern-
ments and established healthcare organizations are increasingly interested in the 
ability of Health Informatics to save human lives, time, and money (Shukla et al. 
2014). Health Informatics can be described as the science of how health information 
is collected, analyzed, and used to improve health and healthcare (Fridsma 2018). It 
involves devices, resources, and methods needed to improve processes for acquiring, 
recovering, storing, and usage of health and biomedicine information (Oyelade et al. 
2015). Health Informatics can be applied in various areas of healthcare, including 
clinical care, health services administration, medical research and as well as training 
(Shukla et al. 2014). Health Informatics uses tools such as computers, information 
and communication systems, clinical procedures, as well as formal medical vocab-
ularies (Oyelade et al. 2015). It also facilitates storage and retrieval of health 
information in an organized and more precise manner compared to the ability of 
patients to recall details such as allergies and medications details (Oyelade et al.



2015). This is a critical issue for the patients. Inaccurate or insufficient health 
information from patients can lead to severe drug side effects (Oyelade et al. 
2015). Thus, provision of accurate health information is particularly important. 
Health Information permits joined-up care, whereby various health departments, 
e.g., surgery, radiology, laboratory, administration, or account sections, are 
interlinked (Oyelade et al. 2015). In turn, this facilitates reduction of efforts dupli-
cation and also allows processes to be much quicker (Oyelade et al. 2015). Lastly, 
computerized Health Informatics guidelines enable health professionals and patients 
to make better decisions. Thus, high-quality treatments and prescriptions can be 
sustained (Oyelade et al. 2015). 
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Advanced technology and AI-empowered tools are important in the efficient 
integration of informatics in Society 5.0. Furthermore, equitable health through 
Society 5.0 cannot be achieved without the integration of UN-SDGs. The 
UN-SDGs specific to this subsection are Goal 3 (good health and well-being of a 
society), Goal 8 (a healthy society with decent work driving economic growth), Goal 
10 (reduced inequalities in healthcare systems will have a positive impact on overall 
reduced inequalities), Goal 11 (preventative medicine through health informatics 
and exposome data can aid built sustainable cities and communities), Goal 13 (con-
sidering climate changes can aid in building sustainable development), Goal 
15 (investing in environmental health and education is key in a healthy and wealthy 
society), and Goal 17 (societies should build partnerships in achieving a smart and 
healthy society). 

Health Informatics can potentially play a key role in the management and delivery 
of healthcare services in developed and less developed nations (Oak 2007). It can 
also facilitate the evaluation of healthcare needs of citizens and also the effectiveness 
and coverage assessment of healthcare programs (Oak 2007). Like other modern and 
innovative technologies, Health Informatics faces several challenges. These chal-
lenges include confidentiality and privacy breaching caused by inadequate security 
monitoring during data transmission or storage. Another problem is the substandard 
diagnostic quality of images generated by computers e.g., dermatological or X-ray 
images. Medical errors can also be induced by insufficiently constructed computer-
ized care methods, insufficient protocols for novel computer-assisted practices, or 
unavailable or failed technology, among others. Finally, there are issues surrounding 
the privacy of electronic health records. 

2.7 Merging Cyberspace with Physical Space to Improve 
Women’s Health in Low- and Middle-Income Countries 

Cyberspace can be described as a digital space where real-world data are collected 
and analyzed by computers to create various solutions (Deguchi et al. 2020). This is 
where virtual life or events are converted into applicable information. On the other 
hand, physical space refers to the real world. Thus, merging these two entities will



permit a smooth flow from the physical world to the cyberspace and vice versa 
(Deguchi et al. 2020). We envision a society where scientific and technological 
innovations culminate into the merging of cyberspace and physical space (Deguchi 
et al. 2020). In turn, this merge can be used to improve women’s health and early 
detection of diseases where strategies and services are decentralized so that all 
women lead higher-quality lives (Deguchi et al. 2020). This would require a system 
where women’s health information is collected and processed, with the results being 
applied in a real-world setting, be that rural or urban (Adel 2022). With the current 
advancement in technology, access to smartphones and other intelligent devices, 
such ideas should have long been implemented even in low- and middle-income 
countries (LMICs). Women, in this age of advanced healthcare services, should not 
be dying from preventable diseases such as cervical cancer. Besides advancements 
in primary cervical cancer prevention strategies such as HPV vaccines, the disease 
also has premalignant lesions, which when identified early can be destroyed and 
their development into invasive cancer can be prevented. These shortcomings are 
due to failure to merge cyberspace and physical space. Applying Society 5.0 to a 
subunit of society such as a village or a suburb in a Metropolitan city can provide 
solutions in an LMIC setting (Deguchi et al. 2020). 
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In Society 5.0, healthcare social issues surrounding screening programs can be 
addressed by connecting these programs and using technology to integrate big data, 
the IoT, and AI to develop digital and physical infrastructure for services such as 
cervical cancer screening (Narvaez Rojas et al. 2021). Implementation of programs 
to improve women’s health in LMICs faces several challenges. For instance, the 
current red tape hinders progress in developing services such as building an 
intersector information integration architecture and striking a balance between the 
protection and access to personal information. Existing national and district regula-
tions need to be eased so that innovation can be successful (Deguchi et al. 2020). 
Rural areas in these LMICs currently have little identifiable data management 
systems, and these should be established. On the other hand, the urbanized part of 
the LMICs has some regions with data management administered both privately and 
publicly, and these should be consolidated and coordinated, resulting in the building 
of intersector information integration architecture (Deguchi et al. 2020). 

2.8 Integration of Cyber-Physical Systems 
in the Advancement of Society 5.0 Healthcare 
Management 

The focal point of Industry 4.0 is efficient and optimal industrial production and data 
management. It is comprised of cyber-physical systems (CPS) in which the physical 
and digital worlds are intertwined by the industrial IoT. The aim is to create smart 
machines/factories that can be utilized in various sectors including health (Adebayo 
et al. 2019; Popov et al. 2022). Future technological advancements have sparked the



idea of smart or intelligent hospitals. Integration of AI technologies for the 
processing of high volumes of patient information through big data systems to 
allow prompt decision-making is essential for the new concepts adapted to Society 
5.0 (Lindén and Björkman 2014). Most of the technologies used for monitoring 
patients’ health status rely on embedded systems. The use of glucose/heart rate/ 
blood pressure monitors, magnetic resonance imaging (MRI), computerized tomog-
raphy (CT) scans, positron emission tomography (PET) scans, etc. has advanced 
medical diagnostics and monitoring (Lindén and Björkman 2014). These systems 
permit remote monitoring of patients and facilitate prompt diagnosis and treatment 
decisions. However, future technologies continue to advance toward nano and smart 
technologies, including microchips. Society 5.0 is expected to bridge the gap 
between cyberspace and physical space. To achieve this, Society 5.0 will facilitate 
the realization of modern smart technologies through the integration of AI algo-
rithms which facilitates big data analytics, IoT, metaverse, robotics, digital twining, 
Blockchain, and networks-on-chip (NoC) for the optimization of personalized 
medicine. 
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The UN-SDG Goals 3, 9, and 10 aim to reduce premature mortality by ensuring 
good health and promoting well-being (Chotchoungchatchai et al. 2020). These can 
be achieved by the development of smart industrial innovation and infrastructure 
which will facilitate the implementation of virtual realities which will reduce the use 
of invasive health management protocols. The development and availability of 
infrastructure will reduce global inequalities and ensure global healthcare 
competitiveness. 

The ability to tailor-make healthcare management systems according to specific 
disease/personalized treatment comes with its pros and cons. Medical CPSs are 
vulnerable to cyber-attacks making cyber security a big concern. These attacks 
could be due to terrorism or organized crime. The safety of these technologies 
must be assured by the development of high confidence, authenticated software 
that can guarantee security of medical CPS. Software systems handle big data and 
also guarantee confidentiality and safe keeping of these data while providing easy 
access to the user are critical. If this data falls into the wrong hands, it could 
compromise the patient’ health, making them vulnerable to discrimination, possible 
bodily harm, and abuse. The performance of real time applications requires low fault 
latency to prevent delays that could disturb the operational cycle of medical CPS. 
This could lead to poor data sharing and consequently affect timeous patient 
diagnosis and treatment. Lastly, safety for the use of the medical CPS should be 
assured by issuing operational certificates. The process of approving and validating 
these devices should be cost-effective, thus ensuring that these devices are distrib-
uted to provide required services (Lee et al. 2011). Currently, the cost-effectiveness 
of medical CPS devices such as robotic systems is not certain as it is difficult to 
prove that the benefits of robotic surgery outweigh that of traditional open and 
laparoscopic surgery (Chiu et al. 2019).
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2.9 Society 5.0 and Quality Multidisciplinary Care 
of Malignant Solid Tumors in Low- and Middle-Income 
Settings 

Noncommunicable diseases have overtaken infections as the leading causes of 
mortality globally, including in LMICs. Noncommunicable diseases include trauma, 
cardiometabolic conditions, and cancer. The average life expectancy of adults in 
LMICs is less than 70 years, and cancer is the second most common cause of death in 
adults between the ages of 40 and 60 years. Around 70% of deaths due to cancer 
occur in LMICs. Breast, colon, prostate, gastric, cervix, uterine, ovarian, hepatocel-
lular, skin, thyroid, and adenocarcinoma of the pancreas are among the most 
commonly diagnosed malignancies in both LMICs and high-income countries 
(HICs). The majority of LMICs are not able to provide quality curative or end of 
life care in oncological services. This is due to the advanced stage of the tumor at 
initial presentation, shortage of expertise, protracted diagnostic work-up, and limited 
access to advanced imaging and treatment (Akinyemiju et al. 2022; Hunter et al. 
2022; Kenner et al. 2021; Raghupathi and Raghupathi 2020; Sharma et al. 2022). 
Among the goals contained in the Millennium Development Goals (MDG), 
UN-SDGs, and Vision 2030 include the provision of quality healthcare in all 
countries of the world (Araújo 2020; Van Tulder et al. 2021; Rahman and Qattan 
2021). UN-SDGs and Vision 2030 specifically include prevention of cancer and 
improving access to early diagnosis and effective treatment. Technological and 
computational advances introduced from Society 1.0 to Society 4.0 have led to an 
even bigger gap in the quality of oncological care between LMICs and HICs. Society 
5.0 intends to utilize modern technological development and digitalization to 
achieve borderless and classless personalized quality healthcare services. 

All 17 UN-SDGs are interlinked and support promotion of well-being and 
healthy lifestyle (Budhathoki et al. 2017; Rahman and Qattan 2021). The pillars of 
UN-SDG 3 are prevention of diseases, timeous access to quality treatment, and 
reduction of out-of-pocket expenses (Kruk et al. 2018). Preventative strategies which 
are contained in UN-SDG 3 are access to clean water, sanitation, health education, 
immunization, and screening program (Budhathoki et al. 2017). The UN-SDG 
3 envisaged that all governments in the world will provide leadership and encourage 
active participation by private companies including multinationals in programs to 
improve the health of every individual. Society 5.0, SDG, and Vision 2030 do not 
have programs which are offered based on the income level of a country. Little has 
been achieved due to lack of political will, competing needs, tough economic 
situation, and minimal involvement of the private sector. Collaboration between 
governments and the private sector would make the technological advances afford-
able and available in LMICs which would lead to an improvement in the quality of 
oncological services. Like smart cities, smart oncological services would be safe, 
convenient, and cheap. Quality multidisciplinary care of malignant solid tumors will 
allow UN-SDG 3 to be achieved by providing the needed care to improve the health 
and well-being of the patient.
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Implementation of Society 5.0 faces several challenges. It requires investment in 
the infrastructure which may not be affordable in LMICs. Available health informa-
tion system, computer network programs, and the Internet speed may not be 
adequate to support the rollout of the envisaged Society 5.0 programs. Most of the 
training, development, and testing of the program would happen in HICs which is 
different from the situation in LMICs. Society 5.0 also threatens confidentiality and 
autonomy. A fault in the settings of some of the devices may lead to complications. 
New technology, including robotic surgery or endoscopy may have a negative 
impact on the teaching and training of future generations of healthcare practitioners. 

2.10 Technological Innovations and the Advancement 
of Preventive Healthcare for Society 5.0 

The merits of preventive medicine in LMICs public health systems can never be 
overemphasized. Paradoxically, their health system capabilities are the most 
compromised and overstretched due to restricted financial and other resources in 
these regions. Technological advances that have capitalized on Industry 4.0 are 
mainly biased toward therapeutics and diagnostics where disease has already 
established itself. This approach is untenable in LMICs. Although these develop-
ments have revolutionized healthcare and dramatically improved the quality of life, 
these achievements have impacted a fraction of the population in wealthy countries. 
Therefore, there is a challenge for practical health technological solutions to prevent 
onset and progression of diseases that is inclusive of most of the poor and disad-
vantaged populations particularly in LMICs. This is in line with the core principle of 
the UN-SDGs which is premised on leaving no one behind, and the UN-SDG 3 calls 
for universal health coverage and health and well-being for all ages. As countries 
embrace this inclusive vision and collectively aspire for a better society by the year 
2030 through the 2030 global agenda, there is a great demand to ensure that 
everyone succeeds in implementing the UN-SDGs—by using new approaches and 
tools that help identify and address health inequity in all its forms (World Health 
Organization 2016). One such approach is to optimize preventive medicine through 
technology for all vulnerable populations with the additional outcome of easing the 
burden to the healthcare systems for LMICs. 

AI-based applications and sensor technologies for biomarker detection in 
biofluids face several challenges. High financial cost associated with the use of 
AI-based applications is a major challenge, which will have a negative impact on 
people from rural communities and low-income backgrounds who do not have 
medical aid insurance and do not have access to smart devices or the Internet. 
Furthermore, the majority of countries in Africa are exposed to poverty and do not 
have adequate healthcare facilities and infrastructures to support AI-based preven-
tative medicine practices. As a result, there is an urgent need for more cost-effective 
solutions to tackle this issue. Furthermore, there is also a severe lack of research



funding in Africa, which requires immediate attention from first-world research and 
innovation funding stakeholders to assist African medical doctors, scientists, and 
computer and software engineers in developing simple and cost-effective AI-based 
healthcare software. A major issue with these advancements is the huge financial 
burden associated with purchasing wearable technologies and smart clothing, which 
will negatively impact individuals from low- and middle-income households. Fur-
thermore, the majority of people from poor socioeconomic backgrounds, residing in 
rural areas do not have access to the Internet and wi-fi which is a challenge since 
wearable technology and smart clothing heavily rely on connectivity networks to 
communicate the monitored physiological parameters to the user (Ahsan et al. 2022; 
Chen et al. 2016; Ching and Singh 2016; Mokhtarian and Tang 2013). 
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2.11 Transformation of the Healthcare Ecosystem in the Era 
of Society 5.0 

The term ecosystem is often used in healthcare to refer to a community consisting of 
patient and doctor, and all satellite figures involved in the patient care in and out of 
hospital. The COVID-19 pandemic has given us new lessons and changed the 
definition of the normal worldwide. Some lessons may be temporary; however, 
groundwork changes in our approach to healthcare ecosystem design will be neces-
sary to assist in handling challenges of future catastrophes. The healthcare ecosystem 
is mainly comprised of value creation formula, customer value proposition, as well 
as partner network. These elements are driven by four business model pillars, 
namely, management, information, financing, and human resources. The use of AI 
in healthcare promises to revolutionize healthcare structural reforms in terms of 
robustness, agility, and accuracy. Digitization of healthcare systems is occurring on 
several fronts such as cloud-based technology, Blockchain technology, and medical 
IoT. Many of these health technologies offer a hope to improve access to healthcare 
to under-resourced communities as well as provide quick often real-time access to 
patient health data for quick real-time clinical decisions but are not without limita-
tions. Whereas some of these limitations are purely technical, others are born from 
the risk of compromised patient privacy. These healthcare technologies further 
improve the wave of precision medicine in the long run. The health ecosystem 
digital era requires innovations that advance diagnosis and treatment, especially in 
hospital-based patient care usually by reducing error (Wadhwa 2020). Furthermore, 
numerous innovations are also required to ensure continuous care through the 
facilitation of off-site patient management. This can be achieved through telemed-
icine by reducing waste in the delivery system (Wadhwa 2020). By partnering with 
individuals to support self-management, digital innovation will positively impact on 
the social determinants of health (Serbanati et al. 2011). 

The healthcare ecosystem transformation should be aligned to the UN-SDG 
“Good health and well-being” by working toward removing barriers of access to



healthcare using modern technology. An effective healthcare ecosystem will 
increase access to screening, early diagnosis, and improved accessibility of high-
quality medicinal treatment. It can also assist to improve the community and 
patient’s knowledge of cancer, lifestyle modifications, quality of life benefits, and 
diet. The improved healthcare ecosystem as previously mentioned, can be used to 
ensure that the patients focus on cure rather than the disease itself. At the same time, 
access without affordability will be meaningless, and thus, cost-effective funding 
strategies should also be pursued through collaborative partnerships especially 
targeting the low-income communities. 
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Digital technologies provide advantages that are associated with the possibility of 
remote access to many medical services, and in the last decade have led to the rapid 
spread of digital medicine. Furthermore, there are several negative factors that have 
emerged through the diverse use of digital technologies in medicine. These technol-
ogies may cause serious harm to the life and health of people and induce significant 
damage to the society (Mirskikh et al. 2021). 

3 Barriers to the Implementation of Society 5.0-Based 
Healthcare the Energy Crisis 

One of the greatest barriers to the implementation of the technologies required for the 
development of a new smart healthcare system is the lack of resources required to 
implement them. These include lack of storage capacity, cloud computing capacity, 
computational power, raw materials for the manufacture of the required hardware, 
expertise for the design and manufacture of both hardware and software, and perhaps 
most crucially energy. The implementation of Society 5.0 will require a reliable 
supply of energy (Kheirinejad et al. 2022). The current energy crisis was already a 
barrier back when the concept of Society 5.0 was proposed; however, recent events 
such as the COVID-19 pandemic and the Ukraine–Russia war have exacerbated the 
crisis. This crisis has important negative implication for healthcare as a whole, since 
clean, sustainable, and affordable energy plays a crucial role in advancing health 
(World Health Organization 2022). This clean energy is another SDG, SDG-7, and 
this goal is aimed at supporting sources of clean energy such as hydro solar, 
geothermal, sea waves, and wind. In this way, it hopes to decrease the generation 
of harmful by-products such as CO2, thereby helping to achieve another SDG-SDG-
13 Climate change action (Nam-Chol and Kim 2019; Zengin et al. 2021). The energy 
crisis is therefore a barrier to not only Society 5.0 but also to attaining the SDGs. 
This is in part due to an affordability crisis, where the generation of electricity is too 
expensive (Gabel 2022). This has resulted in some SDGs “going backwards” as 
families have been pushed into poverty (SDG-1) (International Energy Agency 
2023). The affordability of energy will have a direct impact on industries required 
to support healthcare such as the pharmaceutical industry. The rising cost of energy 
may force companies to increase the cost of drugs, remove cheaper generic drugs,



and limit the availability of drugs (Hawkins 2022; Stewart 2023). The effect that the 
dwindling global energy supply on the implementation and use of digital healthcare 
technologies has is vast. These technologies require a constant supply of power with 
the IoT requiring power to collect, filter, and transmit data, with some studies 
indicating that IoT devices can waste up to 30% of the energy they consume 
(Shah et al. 2022). AI obviously requires energy to run the vast cloud computing 
networks required to provide the necessary computing power. These concerns in 
powering the use of Blockchain technology require large amounts of electricity for 
the validation of all Blockchain-based transactions or records (Schinckus 2022). 
These technologies have arisen despite most of these technologies using minimal 
energy. The energy crisis has impacted the entire world; however, these effects are 
even more damaging and far reaching in LMICs, resulting in these countries not 
being able to implement these new technologies which are so badly needed in these 
countries. Even without the energy crisis, it is common in many LMICs for there to 
be no power or an unreliable or limited supply in many villages and other establish-
ments (Jamal 2015). LMCs would also suffer the most from effects such as increased 
electricity prices (Stewart 2023). 
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Many of these concerns can be partially negated by improved energy manage-
ment, the use and integration of renewable energy systems, and the cautious imple-
mentation of these new technologies, so as to not overwhelm the energy supply 
(Schinckus 2022). An addition to this, it has been shown that many of these new 
digital technologies can also provide solutions to the energy crisis. AI, the IoT, and 
digital twinning have allowed for the management, monitoring, and consumption of 
energy resources (Sifat et al. 2022; Nandury and Begum 2015). Smart grids 
(SG) would improve the flow of data and electricity within the electricity system 
networks (ESN) and allow for the replacement of conventional fossil fuel-rich grid 
with distributed energy resources (DER) (Kumar et al. 2020). These SGs can be 
designed with the aid of AI and modeled using digital twin in order to assess them 
before they are implemented (Sifat et al. 2022). IoT can also assist in the implemen-
tation of SGs, through the more efficient transfer of power to smart devices and 
buildings, thus reducing consumption (Pan et al. 2015). 

4 Ethical and Legal Challenges in Society 5.0 
Next-Generation Healthcare 

Many of these technologies that are the basis for the development of healthcare into a 
Society 5.0 are not without their own problems and issues. These issues include bias, 
ethical issues ranging from the violation of basic human rights, such as privacy and 
patient autonomy, to issues of cost and availability to issues around mistrust on the 
use of these new technologies to issues surrounding racial and cultural bias (Myers 
et al. 2008). Many of these issues stem from the basic requirement that personalized 
medicine in Society 5.0 requires vast amounts of information to be gathered about



everyone. This immediately brings the privacy of the individual into question. The 
rampant and unregulated information gathering through remote sensors, the IoT, and 
cloud computing means that information can be gathered without patient permission. 
It also means that an excess of information can be gathered, some of it with no 
bearing on patient health and well-being. This information can then be sold, known 
as data brokerage, to commercial companies. This data can also be used for purposes 
other than health, such as criminal investigations, in a process known as function 
creep (Xafis 2015). The intensive gathering and analysis of data can also lead to 
overdiagnosis. Overdiagnoses can lead to a population of hypochondriacs, unnec-
essary treatment, and unnecessary burden on a healthcare system (Kale and 
Korenstein 2018). The removal of patient autonomy is another real concern, where 
there is a fear that the use of AI will result in the patient becoming disempowered 
regarding the choices made about their own health. AI is by far the most controver-
sial of these modern technologies, with many fears surrounding how untrustworthy 
or error prone an AI can be. To concerns regarding an AI not being able to adjust its 
analysis to suit diverse cultures or being prejudiced by learning from race specific 
data. The lack of transparency when it comes to AI, leading it to be dubbed a black 
box is an issue of concern for many clinicians. This leads to them not trusting the 
treatment decisions suggested by the AI because they do not know how it has 
reached these decisions (Guo et al. 2021). AI is also influenced by the adage garbage 
in garbage out, where the AI is only as good as the data it is given, or the training data 
used to teach it. This also highlights problems with the technologies used to gather 
information in that it is not clear how accurate many of these devices are (Clayson 
et al. 2021). This coupled with software upgrades and different operating systems or 
software on different devices leading to data corruption and the extent of mistrust in 
much of this information becomes clear. Mobile or remote devices also need to be 
calibrated using an external device. In LMICS, qualified technicians and calibration 
devices may be in short supply or only available in urban centers. There is also a 
valid fear that all this information, especially omics information, can be used by AI 
and digital twin technology for nefarious purposes. These include population con-
trol, segregation, and in the most extreme cases genocide (Poghosyan 2020). This all 
leads to the requirement of new laws and regulatory bodies to control and police 
these modern technologies, although this raises the question of responsibility. When 
these technologies fail and harm is caused to a patient, who will be held responsible. 
This is especially relevant when it comes to AI as the AI itself cannot be held 
responsible. However, should the manufacturers or designers be blamed or the 
endpoint users? Additionally, what if the error was caused by what the AI had learnt 
from other data or previous use. In this case, the manufacturer or designer may not be 
to blame, while the endpoint user may not possess the knowledge to understand or 
realize the failure of the system. The best solution may be a list of responsibility for 
every step of the usage of these new technologies (Dignum 2019). Companies 
involved in the development of these innovative technologies need to adopt ethical 
culture and indorse ethical leadership. Figure 4 below shows steps that companies 
need to take in order to develop an ethical structure (Tzafestas 2018). Despite all 
these problems, the promise these modern technologies offer cannot be ignored, and
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as such, careful deliberation and planning must take place to ensure their ethical 
design and application for all stakeholders. 
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Fig. 4 Steps that regulatory bodies need to take in order to develop new ethical standards in 
healthcare. Adapted from Tzafestas (2018) 

5 Conclusion 

The implementation of healthcare in Society 5.0 aims to improve the longevity of 
individuals and allow them to exist with longer periods of good health. It will 
accomplish this by minimizing the incidence and severity of disease and optimizing 
medical expenses. Finally, this future healthcare system will provide care over the 
course of the life of all individuals without prejudice or bias. In order to accomplish 
this, it will use current and future technologies which are a defining feature of 
Society 5.0 (Fig. 5). This book will discuss the use of these technologies in the 
implantation of healthcare in Society 5.0. 

The first chapter will discuss the use of Intelligent Bioinformatics in healthcare 
and outline how it can be used to analyze data to contribute to personalized medicine 
and healthcare. The second chapter will discuss the care of patients with malignant



solid tumors in LMIC settings in Society 5.0. Specifically, it will discuss the 
implementation of multidisciplinary care in this setting and how the lives of these 
cancer patients in LMICs will be improved through the use of Society 5.0-based 
healthcare. The book will then move on to discuss the use of technology in a smart 
society to prevent diseases through the implementation of smarter knowledge-based 
screening and surveillance. It will then discuss the role played by the IoT in 
gathering the substantial amounts of personalized accurate and up-to-date data 
required for personalized healthcare. Moreover, it will discuss a specific example 
of the use of healthcare based on Society 5.0 in the screening, prevention, and 
management of cervical cancer in an LMIC healthcare setting followed by the use of 
AI in enhancing drug discovery for a human-centered health system. In addition, it 
will discuss the role played by digital twins in modeling patients, treatments, and 
public health in Society 5.0. The following chapter will discuss the implementation 
of integrated Cyber-Physical Systems in healthcare. This will be followed by a 
chapter on how the healthcare ecosystem will be revolutionized by the introduction 
of these technologies and how the interconnected roles and activities of patients, 
healthcare providers, policy makers, and administrators will be to make healthcare 
more affordable, robust, and efficient. Data security, privacy, and protection are 
major concerns for the implementation of this smart, data-driven healthcare system, 
and the next chapter will discuss the use of Blockchain technology in protecting this 
data and ensuring the continued safe development and use of large amounts of data 
to personalized medicine. Finally, this book will discuss the barriers and problems
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Fig. 5 A summary of healthcare in Society 5.0 detailing the different technologies that will 
transform healthcare and what they hope to achieve. Compiled by Rodney Hull



facing the use of these new technologies. These include legal and ethical issues, 
issues surrounding the privacy and protection of information as well as issues 
concerning the safety and trust in these new technologies. These problems can and 
must be solved for the implementation of healthcare in Society 5.0 since the 
advantages of this smart information-based, personalized healthcare system would 
outweigh any drawbacks if it is implemented responsibly.
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The digital transformation of healthcare allows for easier access to healthcare as 
well as giving patients the ability to be more in control of their own healthcare 
leading to a system that is driven by healthcare professionals and patients working 
together. It is hoped that this book will provide a comprehensive introduction to the 
various aspects of healthcare in Society 5.0 and will demonstrate the importance of 
the future implementation of Society 5.0. 

References 

Adebayo AO, Chaubey MS, Numbu LP (2019) Industry 4.0: the fourth industrial revolution and 
how it relates to the application of internet of things (IoT). J Multidiscip Eng Sci Stud 5:2477– 
2482 

Adel A (2022) Future of industry 5.0 in society: human-centric solutions, challenges and prospec-
tive research areas. J Cloud Comput 11:1–15 

Agbo CC, Mahmoud QH, Eklund JM (2019) Blockchain technology in healthcare: a systematic 
review. Healthcare 7(2):56 

Ahsan M, Teay SH, Sayem ASM, Albarbar A (2022) Smart clothing framework for health 
monitoring applications. Signals 3:113–145 

Akinyemiju T, Ogunsina K, Gupta A, Liu I, Braithwaite D, Hiatt RA (2022) A socio-ecological 
framework for cancer prevention in low and middle-income countries. Front Public Health 10: 
884678 

Aquilani B, Piccarozzi M, Abbate T, Codini A (2020) The role of open innovation and value 
co-creation in the challenging transition from industry 4.0 to society 5.0: toward a theoretical 
framework. Sustainability 12:8943 

Araújo NMF (2020) Impact of the fourth industrial revolution on the health sector: a qualitative 
study. Healthc Inform Res 26:328–334 

Barro P, Degila J, Zennaro M, Wamba S (2018) Towards smart and sustainable future cities based 
on Internet of things for developing countries: what approach for Africa? EAI Endorsed Trans 
Internet Things 4 

Bhatt C, Dey N, Ashour AS (2017) Internet of things and big data technologies for next generation 
healthcare. Springer, New York 

Biggs P, Garrity J, Lasalle C, Polomska A (2016) Harnessing the Internet of Things for global 
development 

Bornman MS, Aneck-Hahn NH, De Jager C, Wagenaar GM, Bouwman H, Barnhoorn IE, Patrick 
SM, Vandenberg LN, Kortenkamp A, Blumberg B (2017) Endocrine disruptors and health 
effects in Africa: a call for action. Environ Health Perspect 125:085005 

Bourge RC, Abraham WT, Adamson PB, Aaron MF, Aranda JM, Magalski A, Zile MR, Smith AL, 
Smart FW, O’Shaughnessy MA (2008) Randomized controlled trial of an implantable contin-
uous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J 
Am Coll Cardiol 51:1073–1079 

Budhathoki SS, Pokharel PK, Good S, Limbu S, Bhattachan M, Osborne RH (2017) The potential 
of health literacy to address the health related UN sustainable development goal 3 (SDG3) in 
Nepal: a rapid review. BMC Health Serv Res 17:1–13



26 Z. Dlamini et al.

Chen M, Ma Y, Song J, Lai C-F, Hu B (2016) Smart clothing: connecting human with clouds and 
big data for sustainable health monitoring. Mobile Netw Appl 21:825–845 

Ching KW, Singh MM (2016) Wearable technology devices security and privacy vulnerability 
analysis. Int J Netw Secur Appl 8:19–30 

Chiu C-C, Hsu W-T, Choi JJ, Galm B, Lee M-TG, Chang C-N, Liu C-YC, Lee C-C (2019) 
Comparison of outcome and cost between the open, laparoscopic, and robotic surgical treat-
ments for colon cancer: a propensity score-matched analysis using nationwide hospital record 
database. Surg Endosc 33:3757–3765 

Chotchoungchatchai S, Marshall AI, Witthayapipopsakul W, Panichkriangkrai W, 
Patcharanarumol W, Tangcharoensathien V (2020) Primary health care and sustainable devel-
opment goals. Bull World Health Organ 98:792 

Clayson PE, Brush CJ, Hajcak G (2021) Data quality and reliability metrics for event-related 
potentials (ERPs): the utility of subject-level reliability. Int J Psychophysiol 165:121–136 

Da Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inform 10: 
2233–2243 

Dasaklis TK, Casino F, Patsakis C (2018) Blockchain meets smart health: towards next generation 
healthcare services. In: 2018 9th International conference on information, intelligence, systems 
and applications (IISA). IEEE, pp 1–8 

Davenport T, Kalakota R (2019) The potential for artificial intelligence in healthcare. Future 
Healthc J 6:94 

Deguchi A, Hirai C, Matsuoka H, Nakano T, Oshima K, Tai M, Tani S (2020) What is society 5.0. 
Society 5:1–23 

Dignum V (2019) Responsible artificial intelligence: how to develop and use AI in a responsible 
way. Springer Nature 

El Saddik A (2018) Digital twins: the convergence of multimedia technologies. IEEE Multimed 25: 
87–92 

Elmaraghy H, Monostori L, Schuh G, Elmaraghy W (2021) Evolution and future of manufacturing 
systems. CIRP Ann 70:635–658 

Esposito C, De Santis A, Tortora G, Chang H, Choo K-KR (2018) Blockchain: a panacea for 
healthcare cloud-based data security and privacy? IEEE Cloud Comput 5:31–37 

Fakoor R, Ladhak F, Nazi A, Huber M (2013) Using deep learning to enhance cancer diagnosis and 
classification. In: Proceedings of the international conference on machine learning, 2013. ACM, 
New York, pp 3937–3949 

Frederix I (2009) Internet of things and radio frequency identification in care taking, facts and 
privacy challenges. In: 1st international conference on wireless communication, vehicular 
technology, information theory and Aerospace & Electronic Systems Technology, 2009. 
IEEE, pp 319–323 

Fridsma DB (2018) Health informatics: a required skill for 21st century clinicians. British Medical 
Journal Publishing Group 

Fukuda K (2020) Science, technology and innovation ecosystem transformation toward society 5.0. 
Int J Prod Econ 220:107460 

Fukuyama M (2018) Society 5.0: aiming for a new human-centered society. Japan Spotlight 27:47– 
50 

Fuller A, Fan Z, Day C, Barlow C (2020) Digital twin: enabling technologies, challenges and open 
research. IEEE Access 8:108952–108971 

Gabel E (2022) The energy crisis is reshaping power sector policies worldwide [Online]. S&P 
Global Commodity Insights. https://www.spglobal.com/commodityinsights/en/ci/research-
analysis/the-energy-crisis-is-reshaping-power-sector-policies-worldwide.html. Accessed 
25 November 2023 

Gahlot S, Reddy S, Kumar D (2018) Review of smart health monitoring approaches with survey 
analysis and proposed framework. IEEE Internet Things J 6:2116–2127 

Guidance W (2021) Ethics and governance of artificial intelligence for health. World Health 
Organization, Geneva

https://www.spglobal.com/commodityinsights/en/ci/research-analysis/the-energy-crisis-is-reshaping-power-sector-policies-worldwide.html
https://www.spglobal.com/commodityinsights/en/ci/research-analysis/the-energy-crisis-is-reshaping-power-sector-policies-worldwide.html


Society 5.0: Realizing Next-Generation Healthcare 27

Guo Z-J, Zhang Q, Liu Y, Bai Z-M, Qiang L, Li H-Y, Zhang Y-H, Chi H-W, Men M, Xu Q (2021) 
Preliminary investigation and imaging analysis of early lung cancer screening among petroleum 
workers in North China. Cancer Investig 39:321–332 

Gustiana I, Wahyuni W, Hasti N (2019) Society 5.0: optimization of socio-technical system in 
poverty reduction. In: IOP Conference Series: Materials Science and Engineering. IOP Pub-
lishing, Bristol, UK, p 022019 

Hawkins L (2022) The impact of the energy crisis on pharma [online]. Pharma iQ. https://www. 
pharma-iq.com/business-development/news/the-impact-of-the-energy-crisis-on-pharma. 
Accessed 18 January 2023 

Hayashi H, Sasajima H, Takayanagi Y, Kanamaru H (2017) International standardization for 
smarter society in the field of measurement, control and automation. In: 2017 56th Annual 
Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, Geneva, 
pp 263–266 

Huang G, Huang G-B, Song S, You K (2015) Trends in extreme learning machines: a review. 
Neural Netw 61:32–48 

Hughes L, Dwivedi YK, Misra SK, Rana NP, Raghavan V, Akella V (2019) Blockchain research, 
practice and policy: applications, benefits, limitations, emerging research themes and research 
agenda. Int J Inf Manag 49:114–129 

Hunter B, Hindocha S, Lee R (2022) The role of artificial intelligence in early cancer diagnosis. 
Cancers 14:1524. S note: MDPI stays neutral with regard to jurisdictional claims in published 
. . .  

International Energy Agency (2023) Global energy crisis [online]. International Energy Agency 
https://www.iea.org/topics/global-energy-crisis. Accessed 18 January 2023 

Jamal N (2015) Options for the supply of electricity to rural homes in South Africa. J Energy 
South Africa 26:58–65 

Kale MS, Korenstein D (2018) Overdiagnosis in primary care: framing the problem and finding 
solutions. BMJ 362:k2820 

Kamel Boulos MN, Zhang P (2021) Digital twins: from personalised medicine to precision public 
health. J Pers Med 11:745 

Kenner B, Chari ST, Kelsen D, Klimstra DS, Pandol SJ, Rosenthal M, Rustgi AK, Taylor JA, 
Yala A, Abul-Husn N (2021) Artificial intelligence and early detection of pancreatic cancer: 
2020 summative review. Pancreas 50:251 

Khan WA, Khattak AM, Hussain M, Amin MB, Afzal M, Nugent C, Lee S (2014) An adaptive 
semantic based mediation system for data interoperability among health information systems. J 
Med Syst 38:1–18 

Kheirinejad S, Bozorg-Haddad O, Singh VP, Loáiciga HA (2022) The effect of reducing per capita 
water and energy uses on renewable water resources in the water, food and energy nexus. Sci 
Rep 12:1–17 

Kortuem G, Kawsar F, Sundramoorthy V, Fitton D (2009) Smart objects as building blocks for the 
internet of things. IEEE Internet Comput 14:44–51 

Krishnamurthi R, Kumar A, Gopinathan D, Nayyar A, Qureshi B (2020) An overview of IoT sensor 
data processing, fusion, and analysis techniques. Sensors (Basel) 20(21):6076. https://doi.org/ 
10.3390/s20216076. Accessed 26 October 2020, PMID: 33114594; PMCID: PMC7663157. 

Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-Dewan S, Adeyi O, Barker P, 
Daelmans B, Doubova SV (2018) High-quality health systems in the sustainable development 
goals era: time for a revolution. Lancet Glob Health 6:e1196–e1252 

Kumar NM, Chand AA, Malvoni M, Prasad KA, Mamun KA, Islam F, Chopra SS (2020) 
Distributed energy resources and the application of AI, IoT, and blockchain in smart grids. 
Energies 13:5739 

Lee I, Sokolsky O, Chen S, Hatcliff J, Jee E, Kim B, King A, Mullen-Fortino M, Park S, Roederer A 
(2011) Challenges and research directions in medical cyber–physical systems. Proc IEEE 100: 
75–90

https://www.pharma-iq.com/business-development/news/the-impact-of-the-energy-crisis-on-pharma
https://www.pharma-iq.com/business-development/news/the-impact-of-the-energy-crisis-on-pharma
https://www.iea.org/topics/global-energy-crisis
https://doi.org/10.3390/s20216076
https://doi.org/10.3390/s20216076


28 Z. Dlamini et al.

Lee S-I, Celik S, Logsdon BA, Lundberg SM, Martins TJ, Oehler VG, Estey EH, Miller CP, 
Chien S, Dai J (2018) A machine learning approach to integrate big data for precision medicine 
in acute myeloid leukemia. Nat Commun 9:1–13 

Lindén M, Björkman M (2014) Embedded sensor systems for health-providing the tools in future 
healthcare. Stud Health Technol Inf 200:161–163 

López-Vargas A, Fuentes M, Vivar M (2020) Challenges and opportunities of the internet of things 
for global development to achieve the United Nations sustainable development goals. IEEE 
Access 8:37202–37213 

Maiurova A, Kurniawan TA, Kustikova M, Bykovskaia E, Othman MHD, Singh D, Goh HH 
(2022) Promoting digital transformation in waste collection service and waste recycling in 
Moscow (Russia): applying a circular economy paradigm to mitigate climate change impacts 
on the environment. J Clean Prod 354:131604 

Mavrodieva AV, Shaw R (2020) Disaster and climate change issues in Japan’s society 5.0—a 
discussion. Sustainability 12:1893 

Mettler M (2016) Blockchain technology in healthcare: the revolution starts here. In: 2016 IEEE 
18th international conference on e-health networking, applications and services (Healthcom). 
IEEE, New York, pp 1–3 

Minsky M (1961) Steps toward artificial intelligence. Proc IRE 49:8–30 
Mirskikh I, Mingaleva Z, Kuranov V, Dobrovlyanina O (2021) Problems and negative conse-

quences of the digitalization of medicine. In: The 2018 international conference on digital 
science. Springer, New York, pp 445–455 

Mokhtarian PL, Tang WL (2013) Trivariate Probit models of pre-purchase/purchase shopping 
channel choice: clothing purchases in northern California. Edward Elgar Publishing, 
Cheltenham, UK 

Mourtzis D (2016) Challenges and future perspectives for the life cycle of manufacturing networks 
in the mass customisation era. Logist Res 9:1–20 

Mourtzis D, Angelopoulos J, Panopoulos N (2022) A literature review of the challenges and 
opportunities of the transition from industry 4.0 to society 5.0. Energies 15:6276 

Myers J, Frieden TR, Bherwani KM, Henning KJ (2008) Ethics in public health research: privacy 
and public health at risk: public health confidentiality in the digital age. Am J Public Health 98: 
793–801 

Nam-Chol O, Kim H (2019) Towards the 2 °C goal: achieving sustainable development goal (SDG) 
7 in DPR Korea. Resour Conserv Recycl 150:104412 

Nandury SV, Begum BA (2015) Smart WSN-based ubiquitous architecture for smart cities. In: 
2015 International Conference on Advances in Computing, Communications and Informatics 
(ICACCI). IEEE, New York, pp 2366–2373 

Narvaez Rojas C, Alomia Peñafiel GA, Loaiza Buitrago DF, Tavera Romero CA (2021) Society 
5.0: a Japanese concept for a superintelligent society. Sustainability 13:6567 

Natakusumah K, Maulina E, Muftiadi A, Purnomo M (2022) Digital transformation of health 
quality services in the healthcare industry during disruption and society 5.0 era. Front Public 
Health 10 

Norris A (2002) Current trends and challenges in health informatics. Health Inform J 8:205–213 
Oak M (2007) A review on barriers to implementing health informatics in developing countries. J 

Health Inform Dev Ctries 1 
Oyelade J, Soyemi J, Isewon I, Obembe O (2015) Bioinformatics, healthcare informatics and 

analytics: an imperative for improved healthcare system. Int J Appl Inf Syst 13:1–6 
Pan J, Jain R, Paul S, Vu T, Saifullah A, Sha M (2015) An internet of things framework for smart 

energy in buildings: designs, prototype, and experiments. IEEE Internet Things J 2:527–537 
Pappas IO, Mikalef P, Giannakos MN, Krogstie J, Lekakos G (2018) Big data and business 

analytics ecosystems: paving the way towards digital transformation and sustainable societies. 
Springer 

Pelc S, Koderman M (2018) Nature, tourism and ethnicity as drivers of (de)marginalization. 
Nature 3



Society 5.0: Realizing Next-Generation Healthcare 29

Poghosyan NM (2020) The development of artificial intelligence and risks for the implementation 
of genocide and mass killings. J Genocide Res 133:119 

Popov V, Kudryavtseva E, Kumar Katiyar N, Shishkin A, Stepanov S, Goel S (2022) Industry 4.0 
and digitalisation in healthcare. Materials 15:2140. s Note: MDPI stays neutral with regard to 
jurisdictional claims in published . . .  

Raghupathi V, Raghupathi W (2020) The influence of education on health: an empirical assessment 
of OECD countries for the period 1995–2015. Arch Public Health 78:1–18 

Rahim A (2017) IoT and data analytics for developing countries from research to business 
transformation. In: International conference on the economics of grids, clouds, systems, and 
services. Springer, New York, pp 281–284 

Rahman R, Qattan A (2021) Vision 2030 and sustainable development: state capacity to revitalize 
the healthcare system in Saudi Arabia. Inquiry 58:0046958020984682 

Ramanathan T, Ramanathan N, Mohanty J, Rehman IH, Graham E, Ramanathan V (2017) Wireless 
sensors linked to climate financing for globally affordable clean cooking. Nat Clim Chang 7:44– 
47 

Rathore H, Mohamed A, Guizani M (2020) Blockchain applications for healthcare. In: Energy 
efficiency of medical devices and healthcare applications. Elsevier, New York 

Redka MB (2019) Healthcare: use cases today and opportunities for the future 
Reisman M (2017) EHRS: the challenge of making electronic data usable and interoperable. Pharm 

Therap 42:572 
Ricciardi W, Pita Barros P, Bourek A, Brouwer W, Kelsey T, Lehtonen L (2019) How to govern the 

digital transformation of health services. Eur J Pub Health 29:7–12 
Ross D (2016) Digital twinning [virtual reality avatars]. Eng Technol 11:44–45 
Rüßmann M, Lorenz M, Gerbert P, Waldner M, Justus J, Engel P, Harnisch M (2015) Industry 4.0: 

the future of productivity and growth in manufacturing industries. Boston Consulting Group 9: 
54–89 

Saracco R (2019) Digital twins: bridging physical space and cyberspace. Computer 52:58–64 
Schinckus C (2022) A nuanced perspective on blockchain technology and healthcare. Technol Soc 

71:102082 
Serbanati LD, Ricci FL, Mercurio G, Vasilateanu A (2011) Steps towards a digital health ecosys-

tem. J Biomed Inform 44:621–636 
Shah S, Jadeja A, Doshi N (2022) An analytical survey of energy efficiency in IoT paradigm. 

Procedia Comput Sci 210:283–288 
Sharma R, Nanda M, Fronterre C, Sewagudde P, Ssentongo AE, Yenney K, Arhin ND, Oh J, 

Amponsah-Manu F, Ssentongo P (2022) Mapping cancer in Africa: a comprehensive and 
comparable characterization of 34 cancer types using estimates from GLOBOCAN 2020. 
Front Public Health 10 

Shukla D, Patel SB, Sen AK (2014) A literature review in health informatics using data mining 
techniques. Int J Softw Hardw Res Eng 2:123–129 

Sifat MMH, Choudhury SM, Das SK, Ahamed MH, Muyeen S, Hasan MM, Ali MF, Tasneem Z, 
Islam MM, Islam MR (2022) Towards electric digital twin grid: technology and framework 
review. Energy AI 2022:100213 

Simonov M, Zich R, Mazzitelli F (2008) Personalized healthcare communication in internet of 
things. Proc URSI GA08 2008:7 

Singh RD, Koshta K, Tiwari R, Khan H, Sharma V, Srivastava V (2021) Developmental exposure 
to endocrine disrupting chemicals and its impact on cardio-metabolic-renal health. Front 
Toxicol 3:663372 

Sordo M (2002) Introduction to neural networks in healthcare. In: Open clinical: knowledge 
management for medical care. IGI Global, Hershey, PA 

Stevens H, Huys I (2017) Innovative approaches to increase access to medicines in developing 
countries. Front Med 4:218



30 Z. Dlamini et al.

Stewart A (2023) Winter is coming: how the energy crisis will change pharma in 2023 [online]. The 
Medicine Maker. https://themedicinemaker.com/business-regulation/how-the-energy-crisis-
will-affect-pharma-in-2023. Accessed 18 January 2023 

Tortorella GL, Fogliatto FS, Tlapa Mendoza D, Pepper M, Capurro D (2022) Digital transformation 
of health services: a value stream-oriented approach. Int J Prod Res:1–15 

Tzafestas SG (2018) Ethics and law in the internet of things world. Smart Cities 1:98–120 
United Nations (2015) Transforming our world: the 2030 agenda for sustainable development | 

department of economic and social affairs, Transforming our World: the 2030 Agenda for 
Sustainable Development. Available at: https://sdgs.un.org/publications/transforming-our-
world-2030-agenda-sustainable-development-17981. Accessed 26 January 2023 

United Nation ESCAP (2018) ESCAP multi-donor Trust Fund for Tsunami, disaster and climate 
preparedness: 2016–2017 annual report 

Van Tulder R, Rodrigues SB, Mirza H, Sexsmith K (2021) The UN’s sustainable development 
goals: can multinational enterprises lead the decade of action? Springer 

Vial A, Stirling D, Field M, Ros M, Ritz C, Carolan M, Holloway L, Miller AA (2018) The role of 
deep learning and radiomic feature extraction in cancer-specific predictive modelling: a review. 
Transl Cancer Res 7:803–816 

Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T (2021) Digital twins for multiple 
sclerosis. Front Immunol 12:669811 

Wadhwa M (2020) National eHealth authority (NeHA). ICT India Working Paper 
Walsh JR, Smith AM, Pouliot Y, Li-Bland D, Loukianov A, Fisher CK (2020) Generating digital 

twins with multiple sclerosis using probabilistic neural networks. arXiv preprint 
arXiv:2002.02779 

Wang S, Wang J, Wang X, Qiu T, Yuan Y, Ouyang L, Guo Y, Wang F-Y (2018) Blockchain-
powered parallel healthcare systems based on the ACP approach. IEEE Trans Comput Soc Syst 
5:942–950 

Weng J, Mcclelland J, Pentland A, Sporns O, Stockman I, Sur M, Thelen E (2001) Autonomous 
mental development by robots and animals. Science 291:599–600 

World Health Organization (2016) Innov8 approach for reviewing national health programmes to 
leave no one behind: technical handbook 

World Health Organization (2022) Health topics: health and energy [online]. World Health 
Organization. https://www.who.int/health-topics/energy-and-health#tab=tab_1. Accessed 
17 January 2023 

Xafis V (2015) The acceptability of conducting data linkage research without obtaining consent: lay 
people’s views and justifications. BMC Med Ethics 16:1–16 

Xu X, Lu Y, Vogel-Heuser B, Wang L (2021) Industry 4.0 and industry 5.0—inception, conception 
and perception. J Manuf Syst 61:530–535 

Yaqoob I, Salah K, Jayaraman R, Al-Hammadi Y (2022) Blockchain for healthcare data manage-
ment: opportunities, challenges, and future recommendations. Neural Comput Appl 34:11475– 
11490 

Yu K-H, Beam AL, Kohane IS (2018) Artificial intelligence in healthcare. Nat Biomed Eng 2:719– 
731 

Záklasník M, Putnová A (2019) Digital society–opportunity or threat? Case studies of Japan and 
The Czech Republic. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 
67:1085–1095 

Zanella A, Bui N, Castellani A, Vangelista L, Zorzi M (2014) Internet of things for smart cities. 
IEEE Internet Things J 1:22–32 

Zengin Y, Naktiyok S, KaygıN E, Kavak O, Topçuoğlu E (2021) An investigation upon industry 
4.0 and society 5.0 within the context of sustainable development goals. Sustainability 13:2682 

Zhao H, Zhang Y, Peng Y, Xu R (2017) Lightweight backup and efficient recovery scheme for 
health blockchain keys. In: 2017 IEEE 13th international symposium on autonomous 
decentralized system (ISADS). IEEE, New York, pp 229–234

https://themedicinemaker.com/business-regulation/how-the-energy-crisis-will-affect-pharma-in-2023
https://themedicinemaker.com/business-regulation/how-the-energy-crisis-will-affect-pharma-in-2023
https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981
https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981
https://www.who.int/health-topics/energy-and-health#tab=tab_1


Health Informatics Applications 
in Healthcare and Society 5.0 

Rahaba Marima, Nompumelelo Mtshali, Pumza Phillips, Thulo Molefi, 
Richard Khanyile, Zukile Mbita, Mandisa Mbeje, Aristotelis Chatziioannou, 
Kim R. M. Blenman, and Zodwa Dlamini 

Abstract Social determinants are fundamental factors in healthcare and are key in a 
sustainable society. Society 5.0 concept is based on a future intelligent sustainable 
society that can enable and drive economic development of its own citizens, while 
ensuring health equities, social upliftment, and equalities using modern-day tech-
nology solutions. The ability of Society 5.0 in data management and analysis renders

R. Marima (✉) · Z. Dlamini 
SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision 
Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), 
University of Pretoria, Hatfield, Pretoria, South Africa 
e-mail: rahaba.marima@up.ac.za; zodwa.dlamini@up.ac.za 

N. Mtshali 
Department of Anatomical Pathology, Faculty of Health Sciences, University of the 
Witwatersrand, Johannesburg, South Africa 

AMPATH Laboratory, Lynwood, Pretoria, South Africa 
e-mail: nompumelelo.mtshali@wits.ac.za 

P. Phillips 
Department of Anatomical Pathology, Faculty of Health Sciences, University of the 
Witwatersrand, Johannesburg, South Africa 
e-mail: pumza.magangane@wits.ac.za 

T. Molefi · R. Khanyile · M. Mbeje 
SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision 
Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), 
University of Pretoria, Hatfield, Pretoria, South Africa 

Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, 
University of Pretoria, Hatfield, Pretoria, South Africa 
e-mail: thulo.molefi@up.ac.za; richard.khanyile@up.ac.za; 20785102@tuks.co.za 

Z. Mbita 
Department of Biochemistry, Microbiology and Biochemistry, University of Limpopo, 
Sovenga, Mankweng, South Africa 
e-mail: zukile.mbita@ul.ac.za 

A. Chatziioannou 
Department of Anatomical Pathology, School of Medicine, Faculty of Health Sciences, 
University of Pretoria, Hatfield, Pretoria, South Africa 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
Z. Dlamini (ed.), Society 5.0 and Next Generation Healthcare, 
https://doi.org/10.1007/978-3-031-36461-7_2

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36461-7_2&domain=pdf
mailto:rahaba.marima@up.ac.za
mailto:zodwa.dlamini@up.ac.za
mailto:nompumelelo.mtshali@wits.ac.za
mailto:pumza.magangane@wits.ac.za
mailto:thulo.molefi@up.ac.za
mailto:richard.khanyile@up.ac.za
mailto:20785102@tuks.co.za
mailto:zukile.mbita@ul.ac.za
https://doi.org/10.1007/978-3-031-36461-7_2#DOI


health informatics a potent tool in advancing Society 5.0 and healthcare. Health 
informatics is the intersection of various “informatics” fields, including clinical 
bioinformatics, biological bioinformatics, image informatics, translational bioinfor-
matics, and public health informatics. Health informatics is key in the implementa-
tion and success of Society 5.0, thus enhancing the “health is wealth” concept. 
Society 5.0 aims at bridging inequality gaps in society through the construction of 
reliable, equitable, and optimized healthcare system that will benefit all people of its 
society. However, ethical concerns regarding patient data sharing, management, 
analysis, and security have been major obstacles in efficient applications of health 
informatics in healthcare, posing as threats of human rights and privacy invasion and 
loss of what it means to be human. This chapter will discuss the health informatics 
applications and their limitations in healthcare and Society 5.0 toward building an 
equitable super-smart healthcare system and ensuring sustainable development.
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1 Introduction 

Society 5.0 concept is based on a future intelligent sustainable society that can 
ensure health equities and drive social upliftment and equalities using modern-day 
technology solutions (Fig. 1). The ability of Society 5.0 in data management and 
analysis renders health informatics a powerful tool in advancing Society 5.0 and 
healthcare. Health informatics is the intersection of various “informatics” fields, 
including clinical bioinformatics, bioinformatics, image informatics, translational 
bioinformatics, and public health informatics (Oyelade et al. 2015; Fukuyama 2018). 
According to the US DoH, healthcare informatics can be defined as the collection, 
classification, storage, retrieval, and dissemination of recorded knowledge to pro-
mote good health and support healthcare delivery. Furthermore, health informatics 
has been reported to provide predictive, preventative, personalized, and participatory 
systems of healthcare (Saheb and Saheb 2019; United Kingdom, National Health 
Services 2002). Bioinformatics combines biology and data science, whereas health 
informatics combines healthcare and data science. Although genomics was the first
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area of biology in which bioinformatics was created/used, bioinformatics is now 
used for all omics. Different studies conducted on health informatics utilize data-
specific levels of human existence. For example, public health informatics makes use 
of population data, image informatics employs tissue level data, bioinformatics uses 
molecular data, clinical informatics utilizes patient level data, while translational 
bioinformatics applies data from various informatics levels, i.e., molecular to 
population.
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Society 1.0 
Hunting Society 

Society 2.0 
Agrarian Society  

Society 3.0 
Industrial Society 

Society 4.0 
Information Society 

Society 5.0 
Super smart 
Society 

Fig. 1 The next generation of society concept, Society 1.0–5.0. The execution of society concepts 
dates back to BC years. Information technology continues to play a significant role in the recent 
society generations 

Healthcare sector is a fundamental aspect of the economy. For a society to 
maximally reach its sustainable growth, it is imperative that its members be in 
mental and physical equilibrium. The state of health of a society’s wellbeing is 
key in its development and success; hence, health is wealth. Healthcare informatics 
emphasizes on patients’ information, patients’ knowledge about their clinical infor-
mation and health data (Oyelade et al. 2015). On the other hand, translational and 
clinical bioinformatics relate genomics data and healthcare data and are used in all 
OMICS, aiming to unearth crucial, associative links between the molecular deter-
minants and the phenotypic diversity of diseases. Healthcare data analytics’ main 
objective is to offer cutting-edge information for academic researchers, policy-
makers, and clinicians in tackling problems in healthcare organizations. Healthcare 
data analytics may be divided into predictive analytics, which mainly uses modeling 
to predict future events in healthcare, while descriptive analytics use historical 
patient data to gain insights into current trends. Prescriptive and discovery analytics 
both use Artificial Intelligence (AI) in healthcare. Prescriptive analytics depends on 
AI to recommend a strategy. Discovery learning examines clinical data using AI to



determine hidden patterns that may inform decision making. Thus, advancing IT 
tools correlates with society 1.0–5.0 concepts, illustrated in Fig. 1. 
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Due to large amounts of genomic data generated by sequencing technologies, it is 
not surprising that bioinformatics is at the core of health informatics. The bioinfor-
matics history can be traced back to 1981 when in situ hybridization was used to map 
approximately 600 human genes. This initiative was corroborated by when 
Carruthers and Hood invented an automated DNA sequencing method around the 
same period. The Human Genome Project (HGP) completion in 2003 also paved a 
way for bioinformatics where biologists, mathematicians, scientists, statisticians, 
computer scientists, engineers, etc. converged expertise. 

The need to create the bioinformatics field was necessitated by the large amounts 
of data generated from the human genome sequencing, to decipher and decode genes 
and how these genes relate to normal physiology and in pathology. Bioinformatics 
was further enhanced by the demand to produce massive databases such as EMBL 
and GenBank. These enormous databases are key in storing information and 
sequences produced from the HGP, and these sequences are thus used as a reference 
in health and medical research fields. Bioinformatics is not only constrained to 
“OMICS,” but also is inclusive of patients’ data from metabolic pathways, preclin-
ical, and clinical trials (Müller and Nicolau 2005). Modern-day main challenges with 
the available bioinformatics data are minimum to lack of inclusivity of underrepre-
sented groups such as African populations in global genomic studies, the temporal 
resolution and size of the data collections to as, assure reliable statistical represen-
tation of the real problem, as well as mitigation strategies for the inherent bias 
infiltrating in these collections, due to methodological causes. Overall, bioinformat-
ics alone is insufficient in addressing health-related problems. This chapter will 
discuss various subfields of health informatics, and how these can be applied in 
healthcare and Society 5.0. Ethical concerns in health informatics will also be 
discussed. Health informatics is a convergent concept whose applications have a 
potential to advance healthcare and Society 5.0. 

2 Informatics and Big Data in Healthcare 

2.1 Patients’ and OMICS Data in Healthcare 

Patients’ data generate large amounts of data which can be referred to as “big” data. 
Big data can be described as large amounts of data that is unmanageable by the use 
traditional software or Internet-based platforms is a concept used to describe com-
plex large volume data sets that may not be optimally processed by traditional data 
processing methods. The most common way of describing big data is with the 5Vs, 
with the recent addition of the 6th V, as described in Table 1. These are Volume, 
Value, Variety, Velocity, Veracity, and Variability. Volume refers to the amounts of 
large data used. Data amount generated is enormous compared to the conventional 
sources of data. Velocity denotes the speed of generating new data. This speed is



exceedingly fast. Variety refers to the data complexity generated by various sources 
such as people and machines. Veracity refers to the big data authentication, as it is 
produced from different sources. Value refers to the good quality of the data. 
Variability deals with data consistency over time (Ristevski and Chen 2018). 
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Table 1 The description of big data in health informatics through the lenses of 6Vs 

The 6Vs Description 

1. Volume Enormous data sets generated and used in health informatics. 

2. Value Good quality of health informatics data. 

3. Variety Complex health informatics data generated from different sources such as machines 
and humans. 

4. Velocity The high speed at which health informatics data is generated. 

5. Veracity Health informatics data authentication. 

6. 
Variability 

The consistency of health informatics data. 

In healthcare, distinct sources of big data may include patients’ medical records, 
hospital records, findings from medical examinations, and medical devices that form 
part of the Internet of medical things (IoMT) (Dash et al. 2019; Laney 2001). 
Handwritten notes and typed reports have been common practice to store patient 
medical records. This includes medical examination reports. For example, some of 
the oldest case reports on papyrus text are from Egypt, dating back to 1600 BC 
(Doyle-Lindrud 2015; Gillum 2013). However, the electronic/digital storing of 
patient clinical and medical records using computer systems has become standard 
practice. Electronic Health Records (EHRs) is a concept that was birthed by the 
Institute of Medicine in 2003. This Institute is a division of the National Academies 
of Sciences, Engineering, and Medicine. Murphy et al. define EHRs as the comput-
erized patients’ medical records which include patients’ past, present, and future. 
These records consist of physical or mental health information, stored within an 
electronic system. This information, which forms part of the big data, is used for data 
storage, transmission, and retrieval with the main purpose of improving healthcare, 
particularly through population-based or personalized healthcare (Reisman 2017). 

On the other hand, big data generated from “OMICS” studies pose a challenge to 
bioinformaticians. Vigorous algorithms are thus required to analyze such complex 
“OMICS” data, with the overall aim of converting these big data sets into informa-
tive and usable knowledge to improve patient care and outcome. Translational 
bioinformatics is applying bioinformatics approaches in the transformation of geno-
mics data to preventative and predictive health. Translational bioinformatics is key 
in data driven healthcare. Likewise, it is reported that the Human Genome Project-
based Encyclopedia of DNA Elements project intended to determine all of the 
functional elements in the human genome employing bioinformatics approaches 
(Dash et al. 2019). Nonetheless, translational bioinformatics and other single-field 
bioinformatics approaches are inadequate to address healthcare problems. They 
primarily emphasize in increasing the value of the collected data, by scrutinizing 
and restructuring them in ways that unearth fundamental, causative links with the



investigated mechanisms, enabling robust correlation with other layers of digitized 
information. The integration of various data sets which include healthcare, wellness 
biomedical, and population-scale data would aid in the stratification of patients 
toward active health management. Convergence of these data sets will also help 
differentiate clinically asymptomatic patients from healthy individuals (Shameer 
et al. 2017). 
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2.2 Bioinformatics in Healthcare: Integrating Biology 
and Bedside 

Efforts in integrating biology and bedside have been growing. Bioinformatics and 
healthcare informatics are at the forefront of this transformation. Genome- and 
phenome-wide studies use clinical data from patients’ electronic medical records 
(EMR). Such data may be available from biobanks or clinical repositories (Shameer 
et al. 2017; Gottesman et al. 2013; Kullo et al. 2010; Kohane 2011; Jensen et al. 
2012; Jouni et al. 2013; Bowton et al. 2014; Chute 2014; Jung et al. 2014; Li et al. 
2014). Ongoing developments including exposome data (discussed later) in 
healthcare are also emerging. This type of data evaluates the patient–environment 
interactions and how these interfaces may impact on patient’s health (Shameer et al. 
2017; Ashley et al. 2010; Gottesman et al. 2013; Kullo et al. 2010; Kohane 2011; 
Jensen et al. 2012; Jouni et al. 2013; Bowton et al. 2014; Chute 2014; Jung et al. 
2014; Li et al. 2014; Vrijheid et al. 2014; Rappaport et al. 2014; Wild et al. 2013; 
Martin Sanchez et al. 2014; Lewis et al. 2013; Vrijheid 2014). Clinical bioinformat-
ics (CBI) is a new term in the bioinformatics arena. CBI combines bioinformatics, 
clinical informatics (including clinical notes, physical data, clinical chemistries 
complete blood counts, etc.), information technology, medical informatics, omics, 
and mathematics, thus combining OMICS and clinical data. CBI plays important 
roles in various clinical applications such as medical omics, metabolic and signaling 
pathways, high-throughput image analysis, human tissue bank, biomarker develop-
ment and discovery, mathematical biology, and medicine. CBI aims to address 
challenges of the integration of clinical and genomic data toward precision medicine 
and targeted therapies (Xue et al. 2016). Translational bioinformatics is also 
narrowing limitations between standard clinical research studies and experimental 
biology, thus bridging the gap between basic science and clinical bioinformatics. 
Comprehending the complexity of genomic, physiological, and environmental fac-
tors in driving healthy physiological states to disease still poses as a challenge to 
basic and clinical researchers. Clinical studies usually collect data routinely after 
patients have been diagnosed with a clinically significant disease/pathological phe-
notype, leading to missed information on healthy and subclinical states, thus limiting 
chances of early diagnosis and prophylaxis (Wu et al. 2012). On the other hand, 
health informatics bridges gaps observed in single bioinformatics approaches, 
employing molecules to populations’ approaches, as illustrated in Fig. 2.
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Health Informatics 

Clinical informatics Bioinformatics Image informatics Translational 
bioinformatics 

Public health 
informatics 

Fig. 2 Subdivisions of health informatics in healthcare. Health informatics is a convergent 
all-around bioinformatics concept that includes basic bioinformatics to populations-based infor-
matics approaches and is key in advancing Society 5.0 

3 Role of Informatics in Equitable Health and Society 5.0 

Translational bioinformatics employs data from various informatics levels, molecu-
lar to population, and it is at the forefront of health informatics applications. Health 
and wellness monitoring data can be used to complement EMRs and to inform 
clinical decisions in various situations. Integration and correlation of health moni-
toring data with multiomics data can aid interpreting intrapatient variations and 
between different disease phenotypes. This type of integration holds great potential 
to studying patients’ disease evolution during wellness, disease onset, and disease 
management (Jameson and Longo 2015). Furthermore, translational bioinformatics 
applications can also be useful in predictive modeling, diagnostic alerts, and data-
driven clinical trials. 

The integration of genomic medicine into clinical practice to improve healthcare 
systems is becoming common in diseases such as cancer, cardiovascular, etc. 
(Dlamini et al. 2020; Marx 2013). One of the pioneering clinical elucidation of 
whole genome demonstrated that the index patient was at a greater risk of cardio-
vascular disease, and this was not indicative with the existing risk prediction models 
(Katz et al. 2022; Dewey et al. 2014). Bioinformatics has the ability to exploit 
multiscale biological data to reveal biological pathway dynamics prior and during 
illness (Chen et al. 2012b; Stanberry et al. 2013), aiding the efficient disease 
stratification/personalization and contributing to clinically useful diagnostic or ther-
apeutic approaches. Wearable medical devices have been implemented in health 
monitoring studies targeted at populations of patients with various illnesses which 
may include osteoarthritis, myocardial infarction, heart failure, and gait imbalance. 
Bioinformatics also aids in the integration of genomics, multiscale biological exper-
iments, and medical/ health wearable devices in monitoring health and wellness of



patients (Clifton et al. 2014). However, this may be more common in developed 
countries than in developing countries. Advanced technology and AI-empowered 
tools are important in the efficient integration of informatics in Society 5.0. Further-
more, equitable health through Society 5.0 cannot be achieved without the integra-
tion of UN Sustainable Development Goals (SDGs). UN SDG goals specific to this 
chapter are 3 (good health and wellbeing of a society), 8 (a healthy society with 
decent work driving economic growth), 10 (reduced inequalities in healthcare 
systems will have a positive impact on overall reduced inequalities), 11 (preventative 
medicine through health informatics and exposome data can aid built sustainable 
cities and communities), 13 (considering climate changes can aid in building sus-
tainable development), 15 (investing in environmental health and education is key in 
a healthy and wealthy society), and 17 (societies should build partnerships in 
achieving a smart and healthy society) (Fig. 3). 
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Fig. 3 Interplay between health informatics, Society 5.0, and SDGs. Realizing Society 5.0 is 
dependent on the integration of UN SDGs, in pursuit of equitable health and social upliftment. 
Health informatics is at the core of this tripartite relationship 

For affordable and clean energy, an SDG 7 is crucial in the successful imple-
mentation of Society 5.0. This goal is aimed at supporting energy production from 
nonharmful resources such as hydro solar, geothermal, sea waves, and wind, aiming 
at CO2 emission reduction (Zengin et al. 2021; Nam-Chol and Hun 2019). However,



sustainable development and ongoing global energy crisis particularly in low-
and-middle income countries (LMICs) is concerning. This propels health systems 
in LMICs to improve health outcomes and social value for societies toward sustain-
able development (Kruk et al. 2018). Furthermore, human right to healthcare should 
be accompanied by good quality and sustainable care. Sustainable energy supply is a 
crucial determinant of high-quality healthcare and urgent interventions are thus 
warranted to ensure sustainable development in healthcare systems. 
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4 IoMT and ML in Healthcare and Society 5.0 

The Internet of Medical Things (IoMT) also known as the Internet of Things (IoT) 
industry has advanced significantly over recent years. IoT is a collective network of 
devices that connect and exchange data over the Internet (Wilson et al. 2017). 
Similar to other data management and sharing platforms, privacy and security are 
the primary concerns of the IoMT. Both AI and Blockchain (BC) technologies have 
tremendously improved healthcare facilities and spawning a new era of Society 5.0 
in healthcare, referred to as Smart Healthcare. This AI/BC concept is quite different 
from the traditional approach, with the key objective being the identification of 
concerns early and helping circumvent long-term damage (Rehman et al. 2022). 
While Society 5.0 aims to improve the quality of life of patients, this will also be 
accompanied by significant healthcare costs reduction. Similar to robust leaner-
centered approach which fosters deep-learning in field of education, Society 5.0 in 
healthcare aims to engage patients as active participants in their healthcare journey 
by the integration of information technology and smart-interactive healthcare. 

IoMT permits the joining of various objects in collecting data that may be used to 
enhance human health, which in turn will improve productivity and effectiveness 
(Risteska Stojkoska and Trivodaliev 2017; Folianto et al. 2015; Park et al. 2019). By 
connecting to this platform of IoMT, people can attain information on their physical 
and mental health, their lifestyles, and their surroundings/environment. In this 
manner, healthcare providers can remotely and in real-time monitor people’s health. 
Simultaneously, the collected data may be used to support evidence-based interven-
tions for early detection, rehabilitation, disease modeling, etc. Climate change and 
environmental pollution are also key concerns toward sustainable healthcare. Thus, 
home-based healthcare services are proposed that patients will be allowed medical 
examinations from the comfort of their homes, unless strictly requiring exclusive 
hospital services. Smart health monitoring system is proposed to remotely monitor 
patients’ vital signs such as blood pressure, heart rate, etc., through data collection 
via a wireless connection, thus IoMT playing a fundamental role in smart health. 

However, one of the challenges in combining medical data into a solitary location 
in training a machine learning (ML) has concerns associated with ownership, 
privacy, and compliance. Contrary to ML, federated learning (FL) overcomes the 
ML challenges by using a federal aggregate server, disseminating a global learning 
model. This model allows the local participant to keep control over patient



information, thus ensuring data security and confidentiality. FL is a decentralized 
ML for IoMT and allows devices to collectively learn ML models without the actual 
exchange of their authentic data, thus enhancing the smart healthcare system without 
leaking patient information. AI-enhanced bioinformatics applications are ideal in 
ML and FL settings. BC on the other hand has been reported to have achieved great 
success as cyber-security architecture backbone, thus addressing key concerns of 
security, ethics, and privacy in a smart healthcare system (Nasonov et al. 2018). 
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Using the IoMT devices, physicians can monitor and measure different parame-
ters from their patients’ respective locations. This may create room for early inter-
vention and treatment when necessary and may therefore reduce the burden on the 
public health system, thereby reducing the costs. These IoMT devices may include 
fitness/ health tracking removable devices, vital signs monitoring devices, biosen-
sors, etc. However, the reality of the limitation of these devices includes their 
inaccuracies and the fact they cannot replace real medical devices in a clinical 
context. Large amounts of patients/ client’s health-related data may be generated 
from such devices. This sort of data has the potential predict and link patients’ 
subclinical and pathological states, when integrated with patients’ clinical data such 
as EMRs and personal health record (PHR) (Shameer et al. 2017). IoMT plays an 
essential role in the Society 5.0 concept and accessible and equitable health. 

5 Social Health in Society 5.0 

Connecting healthcare providers and patients beyond the hospital is one of the key 
aims of social health. This was evident during COVID-19 global outbreak. This sort 
of communication was expanded, involving social networks and fostering social 
interaction. This social interaction healthcare feature is reported to open new 
endeavors of patient-to-patient, patient-to-clinical team communication, as seen in 
support groups. This social integrated healthcare communication aims to break 
traditional boundaries of doctor-to-patient prototype (Andermann 2016; Ha and 
Longnecker 2010). It is also reported that about a quarter of chronic disease patients, 
including heart conditions, cancer, diabetes, mental health, and other 
noncommunicable diseases, make use of social networks to share their experiences. 
Such knowledge, information, and data-sharing platforms may be considered a 
potential source of big data. Furthermore, social apps and patients’ geolocations, 
in conjunction with their biological information, may aid in understanding patients’ 
social demographics and behaviors. However, invasion of patients’ data privacy and 
human rights may pose as limitations. While these features in the smart healthcare 
society may promote health equity and sustainability, resource-intensive studies 
which also require enormous statistical sampling may be avoided. This integrated 
healthcare model has been tried by various epidemiological studies such as antibiotic 
misuse, infectious diseases outbreaks, smoking dynamics, etc. 

In mental health management, for example, posts and text messages on social 
networks are an important source of information, utilizing social health to improve



healthcare. Furthermore, Larsen et al. (2015) demonstrated an association between 
emotional tweets, suicide, and anxiety rates. This illustration reportedly has the 
potential to offer analysis of expressed mood in real-time, compared to conventional 
methods such as surveys. Social health forms an integral part of the exposome and 
overall health informatics. Understanding the association between social, psycho-
logical, environmental, lifestyle, exposomal health, and genomics medicine is key in 
the success of Society 5.0. 
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6 Exposomics: Molecules, Lifestyle, Environment, 
and Populations Intersecting 

The exposome may be defined as the entire lifestyle and environmental exposures to 
humans, which affect our internal, genetic processes and may thus serve as disease 
susceptibility indicator (Fig. 4). Wearable fitness and health monitoring devices and 
biosensors may aid in understanding and data collection of patient–environment

Exposome 
Healthcare 

Health and population 
informatics 

Social and health informatics 
Society 5.0 

Environment 
Climate and temparature 

changes, air pollution, 

Lifestyle 
poor diet, lack of sleep, 

smoking, phychological stress, 
lack of excersing 

Fig. 4 An overview of the exposome, including environmental and lifestyle factors. Genetic and 
external factors are now considered active role players in persons’ health. Both intrinsic and 
extrinsic factors are important in patients’, populations’, and societies’ overall health



setting. These devices can help assess patients’ environmental conditions such as 
quality of air, light, ozone, climate changes, and volatile organic compounds. Even 
though these devices can provide exposomic data, they cannot replace medical 
devices in the clinical context. (Shameer et al. 2017; Alvarez and Wildsoet 2013; 
Britigan et al. 2006; Negi et al. 2011; Chen et al. 2012a; Tsow et al. 2009). 
Integrating the exposome data with EMR and PHR data sets may aid in deciphering 
how environmental factors affect the healthy and disease states of communities and 
individuals.
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Current human exposome studies focus mainly on the total environment expo-
sures throughout the entire lifespan (Fang et al. 2021). Challenges about real-life 
exposome applications are constant and accurate interaction of environmental fac-
tors together with the entire individual’s life. Although autonomy, human data 
privacy, and security should be considered, such challenges can be overcome by 
active collaboration between various experts which include clinicians, scientists, 
epidemiologists, economists, chemists, mathematicians, statistician, and sociolo-
gists. The global disease burden has estimated that 50% of mortality can be attrib-
uted to environmental factors and lifestyle (Vrijheid 2014; Lim et al. 2012). 
Simultaneously, a gap still exists in understanding the etiology of complex pathol-
ogies. For example, asthma has been reported to have underlying complex interac-
tions between lifestyle, social, and environmental factors (Vrijheid et al. 2014; 
Martinez 2007). Data collection from physical exposures, chemical exposures, and 
molecular omics generates massive, big data amounts that require storing, manage-
ment, analysis, and interpretation. 

However, unfortunately, the measurements of environmental factors have not 
been able to match accuracy in the measurement of genomic factors. This may be 
attributed to uncertainties in assessing environmental exposures, usually requiring 
data from different exposure variables. These parameters are usually measured 
through geographical mapping, questionnaires, lacking a comprehensive approach. 
Exposomics offers new innovative approaches toward understanding the complexity 
of multiple exposure factors and associated health outcomes. These new approaches 
defile one-dimensional methodologies, one risk factor, and one health outcome. 

7 Human Rights and Privacy Protection: Rising Ethical 
Concerns in Health Informatics 

The transformation of human societies is inevitable. The opportunities presented by 
smart societies are coupled with challenges presented by technological revolutions 
and growth (Aldabbas et al. 2020). These challenges are primarily centered around 
ethics in health informatics (EHI). Ethics can be defined as the moral principles 
governing people’s behaviors or activity conducting. EHI governs moral practices in 
healthcare. EHI may be derived from medical ethics, embedded within the Hippo-
cratic Oath, which relies on four pillars, autonomy, justice, beneficence, and



nonmaleficence. Data privacy, security, and confidentiality have raised concerns 
since the introduction of electronic health records (EHRs) (Séroussi et al. 2020). 
Ethics is a type of lens used to identify issues and therefore used to enforce best 
practices that will have good outcomes in the societies. Advances in science and 
technology have been reported to outpace ethics in healthcare. This simultaneously 
poses threats in protecting and advocating patient agency and consent in the 
healthcare system. While attempts to contemporary measures toward mitigating 
these challenges exist, these efforts still seem inadequate (Goodman 2020). The 
possibility of data misuse by third parties is a growing concern. Public–private 
partnerships in AI implementation have been reported to result in poor privacy 
protection. These concerns include patient data access, use, and control in private 
hands (Murdoch 2021). Giant tech corporations such as Google, Apple, Microsoft, 
and others are reportedly in their own ways preparing bids on the health future on 
different facets of the healthcare industry (Powles and Hodson 2017). These tech 
giants have in their hands a bulk part of AI-related technology, which is crucial in 
implementing and sustaining health informatics. Information sharing agreements 
between public–private institutions may be used to grant these private technology 
institutions access to patient data (Cuttler 2019). This implies that various applied 
ethics fields will have to converge with medical ethics and ethics in health informat-
ics to uphold best ethical practices in accessing, sharing, and handling of confidential 
patient health information. This reality also increases privacy protection risks, 
leveraging private AI companies to control patient data, despite proposed 
anonymity. 
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Healthcare data breaches have been reported in various developed countries such 
as the United States, European countries, and Canada (Murdoch 2021). While 
AI-algorithms may be used in advancing health informatics, their inability to protect 
patient data is also growing. For example, a study by Ji et al. (2019) demonstrated 
that anonymous health data can be reidentified and linked to real-world people, 
illustrating the susceptibility of online patient health information (Ji et al. 2020). It 
has been proposed that AI companies can make use of generative data with the 
potential to generate realistic though synthetic patient data that will minimize 
connection to real world people (Yoon et al. 2020; Baowaly et al. 2019). Addition-
ally, there is a need for technologically-enhanced intermittent informed consent for 
subsequent or new data uses. This will aid in controlling access and use of patient 
data, advocating for patient agency and privacy. Human rights, privacy, safety, 
security, and oversight are serious concerns in the successful applications of health 
informatics in healthcare and Society 5.0. These ethical concerns need to be 
addressed by collaborating with various stakeholders such as health informaticians, 
patient advocacy groups, and ethics activists.
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8 Limitations and Challenges of Health Informatics 
in Healthcare and Society 5.0 

Major concerns for the implementation of health informatics and Society 5.0 in 
healthcare include human rights, autonomy, privacy, safety, security, control, over-
sight, loss of what it means to be human, etc. The misuse of the power of knowledge 
generated and acquired also poses as a major threat. Even though some of these 
health informatics’ applications may be in use in developed countries, low-
and-middle income countries (LMICs) are still lagging, and this may be further 
exacerbated by the rising energy and resource crisis facing LMICs and threatening 
sustainable development. Furthermore, even though the intended technological 
platforms can be efficiently implemented, their use by society members may have 
unintended undesired side effects (Gladden 2019). For instance, the pervasive 
Society 5.0 systems may construct new risks of technology-related addiction similar 
to the addiction of smart phones, Internet, and video game addiction. This is a 
dangerous critical problem that currently has detrimental impacts on the lives on 
adults and children. For example, upward of 90% of US population engaging in 
these activities are obese, have attention deficit/hyperactive disorder, and/or have 
mental health issues (suicides, depression, etc.). We cannot gloss over these very 
important outcomes. Compared to the previous society 4.0, where for example 
employees of a company had to spend limited time with AI robots within a confined 
workspace, it may be overwhelming for various society members ranging from 
children, youth, adults, and the elderly people to ubiquitously incorporate such 
super-smart technologies into their every private space, especially if such devices 
will be remotely and globally controlled. 

On the other hand, the issues of integrating artificially augmented human beings 
with natural human beings in the society need to be addressed, as the extent to which 
a natural human being can be artificially augmented is unclear. Even though 
advanced technologies such as FL and BC are proposed to address data privacy-
related issues in health informatics, concerns around data accessibility and security 
are still alarming. Healthcare patients’ data is one of the most valuable information 
for both the patient and the society. Health informatics inclusive of exposomics may 
also not be accurately measured, considering all variable parameters involved. 
Health informatics and exposomics are an ideal concept in advancing the Society 
5.0 concept. However, this concept still needs great amount of work to meet 
feasibility and sustainability. 

9 Conclusions 

Health informatics holds promising potential to realizing the success of Society 5.0. 
Good health status of society members is key to sustainable economic development; 
thus, social health and social determinants should be considered as active



participants of this transformation. A healthy society is key to a wealthy and 
equitable society. Additionally, society concept particularly in healthcare is signif-
icantly reliant on the integration of the UN Sustainable Development Goals (SDGs), 
in pursuit of equitable health and social upliftment. Health informatics is at the core 
of this tripartite relationship. It is to no surprise that basic bioinformatics approaches 
are no longer adequate to addressing the preeminent healthcare issues; hence, super-
smart bioinformatics approaches are needed to be integrated to an effective and 
smart healthcare system. Furthermore, clinical and translational bioinformatics 
approaches are also disintegrated from population informatics and exposomics. 
Thus, health informatics is a promising approach toward improved informatics 
applications in healthcare and Society 5.0. Most patients present in the clinics/ 
hospitals with advanced diseases, determining that the preclinical/subclinical states 
have been challenging to the healthcare professionals. While environmental and 
lifestyle factors influence health status of society members, integrating the exposome 
into clinical practice has been challenging. Despite emerging numerous challenges, 
decentralized ML approaches such as FL also form an important part of the Society 
5.0 concept. Nonetheless, major challenges such as human rights, autonomy, pri-
vacy, safety, security, control, and oversight still exist in the successful implemen-
tation of health informatics and Society 5.0 in healthcare. Thus, counteractive 
innovative strategies are required to mitigate these challenges (Fig. 5). This chapter 
sought to discuss opportunities in various subfields of health informatics applica-
tions in healthcare and Society 5.0. It has also highlighted how the one-centered 
traditional approach in healthcare is derisive to Society 5.0. Both intrinsic (genome) 
and extrinsic (environment, lifestyle) factors play a fundamental role in the society’s 
health. A healthy society is a wealthy society. Disease development, progression, 
and management are now considered all-round phenomena which warrant active 
participation from all stakeholders, including leveraging appropriate resources such
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Health Informatics 
and Society 5.0 
• Translational 

bioinformatics

• Clinical bioinformatics

• Public health 
informatics

• Big data 

• OMICS 

Overcoming 
barriers

• Human rights

• Autonomy 

• Privacy 

• Security 

Equitable society
• Health

• Wealth

• Resources 

Fig. 5 Applications of health informatics in healthcare and Society 5.0. Barriers such as human 
rights, privacy, autonomy, safety, and security still pose as a major challenge toward effective 
applications of health informatics in Society 5.0 and healthcare. Overcoming these barriers may 
lead to efficient health informatics use and an equitable and sustainable society



as health informatics, and develop approaches that will alleviate opposing barriers 
toward the effective use of health informatics.
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Abstract The average life expectancy of adults in low- and middle-income coun-
tries (LMICs) is less than 70 years. Noncommunicable diseases which include 
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globally. Cancer is one of the two most common causes of deaths in adults between 
the age of 40 and 60 years. Around 70% of deaths due to cancer occur in LMICs. 
Cancers of the breast, colon, prostate, gastric, cervix, uterine, ovarian, hepatocellu-
lar, skin, thyroid and pancreas are among the more commonly diagnosed cancers 
worldwide. Majority of LMICs are not able to provide quality curative or end of life 
oncological care of the individuals who have cancer as they commonly present when 
the cancer is at an advanced stage, shortage of expertise and protracted diagnostic 
work-up due to limited resources including access to modern imaging and treatment. 
Millennium Development Goals (MDG) and Vision 2030 include provisioning of 
quality healthcare across all countries of the world regardless of the income status 
and include prevention of cancer and the promotion of personalized oncological care 
to all citizens of the world. The MDG emphasizes the importance of participation by 
all the countries and every capable individual in the world, and prevention of 
environmental degradation. Recent technological developments and advances in 
computing have increased the gap in the quality of oncological care between 
LMICs and high-income countries (HICs). The ability to communicate and share 
information widely is also a potential threat to independence and sovereignty of 
countries and autonomy of individuals. Advances in computing Society 5.0 is 
human-centric and promotes physical and cyber space integration in its economic 
development and innovation framework. Society 5.0 intends to promote human 
centeredness to make life better for all individuals across the world. Over 70% of 
mortalities due to cancer occur in LMICs. Quality personalized oncological care 
requires a multidisciplinary team. The chapter presents a theoretical framework of 
how the implementation of Society 5.0 would improve access to personalized quality 
oncological services in LMICs. It concludes with suggestions on how potential 
threats to the environment, sustainable energy supply, human rights including safety, 
privacy and security, autonomy of countries, communities and individuals and 
management of e-waste can be ensured.
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1 Introduction 

The rate of occurrence of cancer has increased exponentially globally and the 
outcome following treatment is influenced by the income status of a country 
(Akinyemiju et al. 2022; Bray et al. 2021; Conderino et al. 2022; Maresso et al. 
2015; Mathers and Loncar 2006; Miller et al. 2020; Sharma et al. 2022). The life 
expectancy of individuals diagnosed with cancer in low- and middle-income coun-
tries (LMICs) is lower than for those in higher income countries (HICs). The 
outcome following treatment of cancer in LMICs is worse, regardless of the stage 
(Petrova et al. 2022; Sharma et al. 2022; Fitzmaurice et al. 2018; Global Burden of 
Disease Cancer 2019). Among the factors that contribute to poorer outcomes of 
cancer in LMICs include delayed presentation, poor health infrastructure, limited 
availability of resources and traditional or religious beliefs (Akinyemiju et al. 2022; 
Hunter et al. 2022; Kenner et al. 2021; Raghupathi and Raghupathi 2020; Sharma 
et al. 2022). 

Around 50% of cancers occurring in adults are preventable. The most cost-
effective strategy in the management of cancer is primary prevention. Primary 
prevention of cancer entails measures to prevent, detect or treat the cancer early, 
when it is still localized (Akinyemiju et al. 2022; Conderino et al. 2022; Ekwueme 
et al. 2022; Maresso et al. 2015; Raghupathi and Raghupathi 2020). Majority of 
cancers would be curable if the diagnosis is made early and appropriate treatment is 
instituted timeously (Hunter et al. 2022; Kenner et al. 2021). Some of the challenges 
that militate against early diagnosis and timeous initiation of therapy in LMICs are 
high patient-to-staff ratio, inability to provide one-stop services, delayed access to 
imaging and shortage of expertise for interpretation of imaging or histopathology 
results (Hricak et al. 2021). 

Breast, colorectal, cervical, prostate, skin, stomach, esophageal, hepatocellular, 
ovarian, uterine, thyroid and pancreas cancer are among the more commonly 
diagnosed malignant tumors in adults (Maresso et al. 2015; Matulonis et al. 2016; 
Rompianesi et al. 2022; Ugare et al. 2022; Fitzmaurice et al. 2018; Global Burden of 
Disease Cancer 2019). The risk factors of the commonly diagnosed cancers in adults 
include genetics, environmental and lifestyle factors (Ekwueme et al. 2022). Major-
ity of cancers in adult are however sporadic and due to modifiable factors, such 
smoking, obesity, infections, alcohol misuse, sedentary lifestyle and exposure to 
harmful agents (Conderino et al. 2022; Ekwueme et al. 2022). Some of the harmful 
environmental factors that are risk factors for the development of cancer are exces-
sive exposure to ultraviolet light and chemicals. Obesity is prevalent in LMICs and is 
among the factors that explain the disproportionate increase in the rate of occurrence 
of cancers in LMICs when compared to the situation in HICs (Franchini et al. 2022; 
Morrione and Belfiore 2022; Park et al. 2014). Most cancers in adults would 
therefore be preventable through programs to reduce the levels of obesity and 
other modifiable risk factors. The cancer prevention strategies would also include 
a rollout of public awareness campaigns, vaccination, chemoprophylaxis and regular 
screening program for individuals at risk.
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The use of gastrointestinal endoscopy is among the effective tools in some 
countries for primary prevention of esophageal, stomach and colorectal malignan-
cies (Maresso et al. 2015). Other measures that are utilized for primary prevention of 
cancer include chemoprophylaxis such as the use of aspirin against colorectal cancer 
and estrogen receptor modulators or aromatase inhibitors for breast cancer 
(Conderino et al. 2022; Maresso et al. 2015). Individuals who are confirmed to be 
genetically predisposed to an aggressive cancer can be offered prophylactic removal 
of the organ organs that is/are most at risk (Haverkamp et al. 2015). Most of the 
screening programs including genotyping and prophylactic measures are however 
not available or affordable to the majority of the citizens in LMICs. Furthermore, 
some of the citizens of the LMICs may not even be aware of the existence of, as well 
as risk factors and preventative measures against cancers. 

The package for curative or palliative care of patients who have cancer include 
surgery, radiotherapy, chemotherapy and targeted molecular or radionuclide therapy 
(Keek et al. 2022; Liberini et al. 2022; Rompianesi et al. 2022; Russo et al. 2022). 
Clinicopathological staging, genotyping and molecular analysis should precede 
management of any cancer because cancer is a heterogeneous disease (Vietti Violi 
et al. 2022; Zhou et al. 2022). The availability of options for curative or palliative 
management of cancer in LMICs is limited mainly due to shortage of expertise and 
radiotherapy machines, as well as the currently exorbitant cost of targeted therapy 
(Hricak et al. 2021). Even where the services are available the timing, delivery and 
sequencing of neoadjuvant chemotherapy, surgery and radiotherapy is often 
disrupted leading to poorer outcome. 

Over 70% of adult patients who have premalignant and malignant solid tumors 
require surgical intervention for preventive, curative or palliative intent. Regardless 
of the intent, the phases along the continuum surgical care of an individual who has 
cancer include diagnostic evaluation, scheduling of intervention, preoperative prep-
aration, intraoperative management and immediate postoperative follow-up. Each 
phase, during the management of cancer requires good record keeping which is 
nonexistent in the majority of LMICs. Additionally, most patients in LMICS present 
when the cancer is locally advanced or metastatic requiring neoadjuvant chemother-
apy, radiotherapy, radionuclide or targeted molecular therapy or complex surgical 
resection and intensive postintervention care (Sharma et al. 2022). Often the short-
age of equipment or consumables, lack of intensive care unit (ICU) beds leads to 
postponement of cancer operations (Chang and Cameron 2012). 

Management of an individual who has cancer is intimate and life-long regardless 
of whether it is curative or for palliation. The ability to do regular or on-demand 
follow-up is absolutely necessary as patients on treatment for cancer are prone to 
complications, tumor progression or recurrence, and opportunistic infections, and 
thus require close monitoring (Matulonis et al. 2016; Russo et al. 2022). Psychoso-
cial support by the primary physicians, nurses, psychologists and peer groups needs 
to be readily available to patients who are on treatment for cancer (Hugar et al. 
2021). The ability to offer close follow-up in LMICs is limited and recurrence and/or 
cancer progression is often discovered late. Management of individuals who have



cancer should be by a multidisciplinary team (MDT) as it would be difficult to offer 
quality personalized oncological care outside an MDT. 

Society 5.0 and Quality Multidisciplinary Care of Malignant Solid. . . 55

Table 1 Factors contributing 
to low quality of oncological 
care in LMICs 

Quality dimension Challenges 

Safe Infrastructure challenges. 
Workforce shortage. 
Lack of equipment. 
Lower level of expertise. 

Timeliness Delayed presentation. 
Protracted diagnostic work-up. 
Delayed staging investigation. 
Delay in surgical treatment. 
Radiotherapy delay. 

Effectiveness Understaging. 
No access to bioinformatics. 
Reliance on TNM staging. 
Transcriptomics. 

Efficiency Poor record keeping. 
Precision medicine. 

Equitability Imaging. 
Genomics. 
Proteomics. 
ICU care. 

Patient centeredness Out of pocket expenses. 
Personalized medicine. 

Staff centeredness Low staff to patient ratio. 
Low opportunities for training. 
Poor psychosocial support. 

The MDT must include patients, families, nurses, dieticians, radiologists, pathol-
ogists, pharmacists, anesthetists, surgeons, medical oncologists, radiation oncolo-
gists, nuclear physicians, geneticists, physiotherapists, occupational therapists, 
psychologists, social workers, data specialists, palliative care specialists and peer 
support groups (Jain et al. 2021; Shao et al. 2019). Most of LMICs are not able to 
establish MDTs for cancer mainly because of limited human resource (Bukhman 
et al. 2020; Chang and Cameron 2012; Iragorri et al. 2021; Ng-Kamstra et al. 2016; 
Sharma et al. 2022). Where MDT is available, the time and attention paid to each 
patient and family is insufficient because of the high volume of patients. Table 1 
summarizes challenges that militate against the provision of quality oncological care 
in LMICs. 

The disparity in the management of cancer between LMICs and HICs is even 
greater regarding the ability to characterize the cancer and the possibility of 
micrometastasis (Visaggi et al. 2021; Zhou et al. 2022). Ideally, the volume of 
tumor must be quantified, and molecular subtype established before the initiation 
of treatment, even when the tumor is metastatic as it is likely to be heterogeneous in 
nature and prognosis. Management of cancer in LMICs solely guided by the result of 
TNM staging which incorrectly considers malignant tumors to be a homogenous 
disease amenable to standardizable treatment. Unfortunately, cancer is



heterogeneous within itself, at various stages including metastatic sites and in 
different individuals (Kann et al. 2021). Cancer treatment that is prescribed without 
knowledge of the full extent of the disease is likely to be ineffective, inefficient or 
futile (Canzoneri et al. 2019; Rompianesi et al. 2022). Palliative and hospice care in 
LMICs is usually deficient (Jain et al. 2021). Cancer-related pain, regardless of the 
stage, is managed poorly in majority of LMICs (Charumbira et al. 2022; Hugar et al. 
2021; Mushosho et al. 2021). 
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2 Technological Development and Advanced Digitalization 
and Computing Platforms for Society 5.0 

The first to fourth Industrial Revolutions (Societies), which include mechanization, 
enhanced communication and digitalization, were necessitated by the need to 
improve life and living, to sustain human life (Adel 2022; Fukuyama 2018). The 
drive behind industrial revolution is to improve productivity for sustenance and 
enhanced quality of life of humans (Adel 2022; Grabowska et al. 2022; Fukuyama 
2018; Kwon et al. 2022; Sarfraz et al. 2021). Societies 1.0 and 2.0 were hunting and 
agricultural societies, while Societies 3.0 and 4.0 were industrial and information 
societies, respectively. The technological advances and digitalization in the more 
recent societies have led to an increase in the ability to generate, store and dissem-
inate data in various industries including healthcare (Conderino et al. 2022; Ioppolo 
et al. 2020). 

Some of the advances in the healthcare industry resulting from Society 4.0 
include electronic health information system (Conderino et al. 2022; Nikiforova 
2021). Biomarker technology for analysis of malignant tumors and portable or 
wearable technologies for continuous monitoring have also been introduced 
(Hernández‐Neuta et al. 2019; Hunt et al. 2021; Kwon et al. 2022; Lu et al. 2016; 
Majumder and Deen 2019). The other innovations include Internet of Things 
(Al-Kahtani et al. 2022; Sætra and Fosch-Villaronga 2021; Sahu et al. 2021; 
Dadkhah et al. 2021), telemedicine (Hassan et al. 2022; Johnson et al. 2021; Sætra 
and Fosch-Villaronga 2021; Shaverdian et al. 2021) and robotics (Marlicz et al. 
2020). Developed communities are using the drone technology to improve the 
delivery of timeous healthcare services (Eichleay et al. 2019; Rosser et al. 2018). 
The block chain technology is useful for secure storage and transmission of confi-
dential medical records. Block chain technology can also improve efficiency during 
the performance of surgical procedures (Alsamhi et al. 2021; Carrano et al. 2022; 
Zhang et al. 2021; Hölbl et al. 2018). 

Other advances resulting from modern computing include virtual reality and 
augmented reality and 3D printing (Lam et al. 2022; Chen et al. 2021a). The 
application of personal digital twin program enables early diagnosis of cancer and 
is helpful for prediction of the response of the tumor to treatment (Gumbs et al. 2022; 
Sahal et al. 2022). The other advances the ability to mine big data (Canzoneri et al.



2019; Rompianesi et al. 2022). Stereotactic-guided adaptive radiotherapy (Keek 
et al. 2022; Kim et al. 2022), multiomics and artificial intelligence (AI)-guided 
decision-making (Barragán-Montero et al. 2021; Chen et al. 2021b; Chua et al. 
2021) and AI-assisted nanomedicine for personalized oncological care (Adir et al. 
2020; Chua et al. 2021; Chen et al. 2021b) are currently possible due to modern 
technology and computing. 
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A combination of new technologies and digitalization advancements have led to 
the development of the so-called “smart cities.” Similarly, there is an increasing 
move toward smart healthcare delivery services (Kwon et al. 2022). Quality 
healthcare is among the SDGs which were agreed by over 120 countries in 
2015 at the United Nation Assembly and is also included in Vision 2030 (Van 
Tulder et al. 2021). Unlike the Millennium Development Goals (MDGs) which 
prioritized reduction of maternal and infant mortality, and management of common 
infections, SDGs and Vision 2030 emphasize on prevention and early treatment of 
noncommunicable diseases (Bhutta 2006; Vicente et al. 2020). Among the targets 
contained in Vision 2030 is the reduction of the occurrence of cancers by at least 
30% globally and equitable access to personalized care to increase the average 
quality of life expectancy across all nations to over 100 years. 

No country among the LMICs has achieved any of the healthcare-related goals set 
in Vision 2030. Additionally, the LMICs are not able to benefit from the technolog-
ical advances and digitalization of Society 4.0 because of lack of infrastructure, 
prohibitive costs of newer technologies, competing needs, lack of political will and 
visionary leadership, and minimal involvement by academic institutions and private 
industries (Ng-Kamstra et al. 2016; Van Tulder et al. 2021). The implementation of 
Society 5.0 with greater emphasis on collaborative effort among governments, the 
private sector and academic institutions is however likely to enhance the effort to 
address the current challenges and inability to provide quality personalized onco-
logical services in LMICs (Mondejar et al. 2021; Rahman and Qattan 2021). 

Society 5.0 will most likely expedite the implementation of quality personalized 
oncological care for all citizens of the world regardless of their gender, age, religion, 
income status and the country of residence. The subsections below outline how the 
implementation of technological advancement and digitalization through Society 5.0 
would lead to an improvement in the quality of care for cancer in LMICs. Society 5.0 
will be effective if it is able to improve the quality of oncological care services across 
the entire continuum from prevention to the follow-up of every individual who is at 
risk or diagnosed with cancer. 

3 Society 5.0 and Prevention of Malignant Solid Tumors 
in Adults 

More than 80% of malignancies in adults are sporadic and are therefore preventable. 
The common predisposing factors of sporadic cancer are environmental factors that 
include smoking, infections, environmental factors, diet and obesity (Quail and



Dannenberg 2019; Wang et al. 2009). The most effective weapon against cancer is 
prevention and key preventative strategies include immunization, life-style modifi-
cation, screening and elimination of premalignant lesions (Maresso et al. 2015; 
Iyengar et al. 2016). Although much of the insight on cancer prevention relies on 
studies conducted in HICs, key strategies for the prevention of the development of 
cancer globally include awareness campaigns. 
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Among the campaigns, include programs to encourage immunization, for exam-
ple against HIV or HPV. Other activities are encouraging regular exercise, regular 
screening of common tumors in individuals who are at high risk, chemical prophy-
laxis and ablation of premalignant lesions or early cancers (Conderino et al. 2022; 
Fernández et al. 2014; Maresso et al. 2015; Raghupathi and Raghupathi 2020; 
Sharma et al. 2022; Leatherdale and Rynard 2013). Smart phones, Blockchain 
technology and Internet of Medical Things (IoMT) would be useful for awareness 
campaigns. Smart phones can assist in the detection and monitoring of precancerous 
lesions (Mungo et al. 2021; Phillips et al. 2019). Digital personal twinning and AI 
can also assist in the timeous detection of pathological changes and autonomous 
recommendation of subsequent investigation (Chua et al. 2021; Sahal et al. 2022). 
Other technological advances which are potentially helpful for early detection of 
cancer is the use of tumor markers (Kenner et al. 2021). The drone technology can 
also be used for delivery of vaccines and medicines for cancer prophylaxis to remote 
areas in LMICs (Rosser et al. 2018). 

The package of available technologies can help to stratify the level of risk and 
guide prescription of the most feasible and effective strategies to prevent the 
development of cancer. The use of telemedicine, Internet of Things, robots and 
drones can improve access to effective methods for use to prevent cancer even in 
LMICs (Hassan et al. 2022; Johnson et al. 2021; Rosser et al. 2018; Sætra and Fosch-
Villaronga 2021). Other technologies introduced recently for use to screen, diagnose 
and treat cancer timeously include liquid biopsy (Stewart and Tsui 2018), virtual 
endoscopy and chromo-endoscopy (Clarke and Feuerstein 2019). Knowledge of the 
risk factors is essential for the implementation of programs to reduce the incidence of 
cancer (Leatherdale and Rynard 2013). 

4 Society 5.0 During Diagnosis and Staging of Cancers 
in Adults 

Staging provides a format for the uniform exchange of information among clinicians 
regarding extent of the disease and is used to guide selection of appropriate treatment 
options (Hudgins and Beitler 2013). The most widely used staging system for cancer 
is the tumor node metastasis (TNM) system. The TNM system describes the 
anatomic extent of the cancer and is used before surgical resection of a tumor, i.e., 
clinical staging (cTNM) or after the removal of the cancer (pTNM). The clinical 
stage is done at presentation before treatment whereas pathologic stage is assigned



following surgery and posttherapy stage is after the first course of nonoperative 
treatment. The T part of TNM staging is divided into at least four subcategories 
(T1 to T4) based on the maximum diameter of a tumor and involvement of adjacent 
structures. Similarly, nodal and metastatic disease have subcategories. The stage of a 
cancer before treatment remains the most significant factor to determine prognosis 
and additional therapy and is used during the reporting of the overall outcome 
(Hudgins and Beitler 2013). Imaging investigations such as plain x-ray, ultrasound, 
endoscopic ultrasound, CT scan, MRI and radionuclide scan for staging of cancer are 
only useful when the size of the tumor or its metastasis is detectable (Kothari et al. 
2020; Sah et al. 2019). The TNM staging system is therefore not able to quantify the 
volume of the disease and is silent regarding the possibility of microscopic 
metastases. 
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Radiomics based on findings on CT scan, MRI or positron emission tomogram 
can assist in accurately diagnose, grade and accurately predict the existence of 
distant metastases (Kothari et al. 2020). Digital pathology and pathomics also 
allow for segmentation of the cancer tumor and precise characterization that include 
tumor grading. The presence of metastases may be predicted following AI-assisted 
pathological assessment. Recent advances in biomarker technology have led to the 
use of liquid biopsy for the detection of tumor markers such as tumor associated 
DNA and cell free DNA (Stewart and Tsui 2018; Wu et al. 2021). Atri (2006), 
Ehman et al. (2007) and Hillman (2006) reported on the usefulness of biomedical 
imaging in the staging of cancer, which continues to play an ever more important 
role during the management of patients following the diagnosis of cancer (Atri 2006; 
Ehman et al. 2007; Hillman 2006). Among the techniques which are used for 
biomedical imaging in the staging of cancer is the so called lipidomic-based mass 
spectrometry imaging (Holzlechner et al. 2019). The benefits of biomedical imaging 
and pathomics include prediction (Pinsky 2015), screening (Pinsky 2015), biopsy 
guidance for early detection (Abati et al. 2020), staging (Hudgins and Beitler 2013; 
Chang et al. 2014), prognosis (Chang et al. 2014), therapy planning (Hongo et al. 
2021; Kocher 2020), therapy guidance (Wang and Mao 2020), therapy response 
(Wang and Mao 2020), recurrence (Cairncross et al. 2020; Xu et al. 2019) and 
palliation of cancers or their metastases (Chan et al. 2021). Ample opportunities 
abound in LIMCs to explore application of AI to various imaging data for improve-
ment of oncological care and development of integrated smart health technology 
(Fig. 1). 

5 Society 5.0 and Risk Stratification for Prognostication 
of Cancer 

Cotemporary treatment of cancer emphasizes a personalized approach (precision 
oncology) regardless of whether the aim is curative or palliative. Precision oncology 
implies prescribing the most cost-effective treatment for the right patient and



considering the full extent of the disease while minimizing side effects and the risk of 
recurrence or progression. The assessment of the extent of disease in the TNM 
system includes measurement of the diameter of macroscopic disease and whether 
there are lymph nodes or distant metastases are present. Traditionally curative 
treatment was reserved for patients who had early or resectable locally advanced 
cancers. The TNM focuses on the local extent of the cancer and qualitative spread of 
the tumor and does not quantify the volume of microscopic and macroscopic disease. 
Notwithstanding, decisions regarding the need of surgical intervention, chemother-
apy, radiotherapy, targeted therapy or end of life care in majority of LMICs are based 
on the TNM which is often not helpful as it tends to under-estimate the extent of the 
cancer consequently leading to the prescription of treatment that is potentially 
adequate and ineffective. A select group of patients who have objectively quantified 
limited metastatic cancer (oligometastatic disease) can be cured (Bong et al. 2021). 
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Fig. 1 Areas of potential benefits of Society 5.0 in the management of cancers in LMICs 

Tumor differentiation, ploidy, mitotic count, Ki67 index, evidence and extent of 
tumor necrosis and immunohistochemical stains are used to risk stratify some of the 
cancer. Genomics, epigenomics, proteomics and metabolomics are also used for 
characterization of some of the cancers. Almost all cancers require a biopsy or fine 
needle aspiration cytology (FNAC) for their confirmation. Both biopsy and FNAC 
are invasive and may lead to complications such as bleeding or injury to adjacent



structures (Tselikas et al. 2019). Sampling of a cancer either during biopsy or FNAC 
is limited to a minute area in the tumor and metastatic deposits are almost never 
biopsied, excluding metastatic lymph nodes following sentinel lymph node biopsy 
or therapeutic lymphadenectomy (Falk Delgado et al. 2019). Additionally, patholo-
gists tend to sample tiny areas of the biopsy specimen despite knowing that cancer is 
heterogeneous disease (Tselikas et al. 2019). The heterogeneity of a cancer extends 
to the tumor microenvironment (TME) in the cancer, which include the different 
types of cells and the extracellular matrix (Kothari et al. 2020; Lin et al. 2020; Li  
et al. 2020). Among the cells in the TME of most cancers are the adipocytes, 
dendritic cells, endothelial cells, fibroblasts, lymphocytes, macrophages and neutro-
phils (Kothari et al. 2020; Iyengar et al. 2016). The nonmalignant cells and the 
stroma influence both the initiation, growth and spread of a cancer (Lee and Cheah 
2019; Kothari et al. 2020). The other constituents of the TME that can influence the 
behavior and outcome of a cancer include the level of expression of noncoding RNA 
such as micro-RNA (miRNA) and long noncoding RNA (lnRNA) (Lee and Cheah 
2019). 
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Cancer and its TME are genetically unstable from the moments it develops and 
therefore require frequent repeat sampling or biopsy to keep pace with metamor-
phosis of the primary tumor and its metastasis (Tselikas et al. 2019). Although liquid 
biopsy and quantitative or digital PCR and next generation sequencing are useful for 
characterization of cancers, they require invasive sampling and currently are rela-
tively expensive and not freely available for patients in LMICs (Tselikas et al. 2019; 
Chen and Zhao 2019). Advances in imaging and computing have led to the use of AI 
for virtual biopsy (Sah et al. 2019). Collation of information obtained following 
imaging with ultrasound, CT scan, MRI and PET can accurately diagnose a cancer, 
its grade, genomic landscape, molecular subtype. Radiomics is also able to predict 
the likelihood of metastases and metastatic sites, how the cancer is going to respond 
to treatment, the likely side effects, tumor recurrence and the prognosis (Sah et al. 
2019; Yu et al. 2021). Furthermore, radiomics can characterize the entire cancer, 
TME and all its metastatic deposits without the need for biopsy or histopathological 
analysis. Another benefit of radiomics and virtual biopsy is the possibility of regular 
repeat imaging to track the genetic changes. 

6 Society 5.0 Facilitation of Multidisciplinary 
Decision-Making in the Management of Cancer 

Cancer is a heterogeneous and complex disease which requires a collaborative and 
MDT approach to its management. Since its introduction in the early 1990s, the 
MDT approach in cancer care is recognized as a critical aspect in cancer care and is 
now regarded a “gold standard” in the management of cancer across the world 
including in LMICs (Hoinville et al. 2019; Selby et al. 2019). Quality personalized 
oncological care would not be possible outside and MDT. The MDT for



personalized oncological care should comprise of various specialists involved in the 
treatment of cancer. Depending on the site of the cancer, the team-members may 
vary, but must include at least surgeons, medical & radiation oncologists, radiolo-
gists, pathologists, geneticists, palliative care, specialists, social workers and psy-
chologists. To ensure effective and continuity of care, effective communication is 
essential among all team members and this can be achieved through regular, 
coordinated MDT meeting, which serves as a platform for collaborative, not com-
petitive, discussion and treatment decision-making by all team members involved in 
the care of the cancer patient (Pillay et al. 2016). Moreover, the meeting also serves 
as a teaching and learning platforms for all members, including trainee specialists. 
The MDT may in turn help improve the knowledge and work satisfaction of all team 
members and identify key research questions for translation research which will 
further enhance the quality of care offered to patients. 
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Several studies have confirmed the positive impact the MDT meetings have in the 
treatment decision-making for patients with cancer (Hoinville et al. 2019). Around 
4% to 45% more patients discussed at MDT meetings receive accurate preoperative 
staging and comprehensive cancer care than those who were not (Pillay et al. 2016). 
However, there is still conflicting evidence as to whether MDT meetings improve the 
overall and disease-free survival of patients with cancer (Hoinville et al. 2019; Pillay 
et al. 2016; Selby et al. 2019). 

The following principles are essential for the success of MDT meetings:

• The chair of the meeting should be decided on by the team and the terms of 
reference should be agreed upon by all members.

• Multidisciplinary team meetings should be held regularly, preferably on a weekly 
basis.

• All patients diagnosed with cancer must be discussed at the MDT meeting before 
any treatments can be offered. This will ensure that comprehensive diagnostic and 
staging work up, treatment plan and the follow-up thereof is discussed and 
decided on upfront.

• They should be “patient-centered” as opposed to being “disease-centered.” After 
the discussion and the treatment plan has been made, it is important that the 
patients be made aware of the stage of the cancer, the decision taken, available 
treatment options, and the predicted outcome to allow the patients to make 
informed decisions. Moreover, patients’ preferences should also be taken into 
consideration provided they are well-informed preferences.

• Prior to the meeting, all cases to be presented should be thoroughly prepared and 
shared with all team members.

• All decisions taken at the meeting should be documented.
• All team members should take responsibility for all decisions made and commit 

to implementing them.
• A follow-up meeting with team members and the patient should also be consid-

ered to monitor the response of cancer to treatment, patient’s adherence to 
treatment and tolerability to systemic therapy given (Hoinville et al. 2019; Pillay 
et al. 2016; Selby et al. 2019).
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Among the technological advances that would introduce “smart” running of 
MDT meetings and processes is the Blockchain technology for secured record 
keeping and communication between patients and healthcare practitioners or 
among staff members, teleconference and IoT. The use of digital technology 
would either reduce or eliminate the need for travelling, waiting times and poor 
record keeping. Facilitation and enabling access to MDT and adoption of artificial 
intelligence-guided decision-making would lead to an improvement in the quality of 
oncological services by every individual throughout the world. 

7 Society 5.0 and Precision Oncology in the Management 
of Cancer Including Surgical Treatment, Radiation 
Therapy, Chemotherapy, and Targeted Molecular 
and Radionuclide Therapy 

Vision 2030 for health emphasizes elimination or reduction of the known risk factors 
of cancer, early detection and waiting time for treatment (Van Tulder et al. 2021). 
The roll-out of digital surgery as part of Society 5.0 will lead to timeous, effective 
and efficient personalized oncology services. Among the technologies which would 
assist in early detection of cancer include the use of smart phones (Hernández‐Neuta 
et al. 2019; Kwon et al. 2022; Majumder and Deen 2019; Hunt et al. 2021), wearable 
monitoring devices (Lu et al. 2016), Internet of Things (Al-Kahtani et al. 2022), 
telemedicine and teleconsultation (Johnson et al. 2021) and Blockchain-enabled 
(Zhang et al. 2021), augmented or 3D-guided, video-assisted or robotic surgery 
including endoscopy (Carrano et al. 2022; Chen et al. 2021a; Kwon et al. 2022; Lam 
et al. 2022). Other technological advances in the healthcare industry include com-
puter aided autonomous action surgery (Gumbs et al. 2022), intelligent knife for 
determination of adequacy of the excision margin to reduce the rate of tumor 
recurrence (Hänel et al. 2019), computer aided virtual surgery or endoscopy (Chen 
et al. 2021a; Gumbs et al. 2022), virtual biopsy (Balana et al. 2022) and AI-guided 
decision-making including surgical treatment (Hashimoto et al. 2018). The use of AI 
may also reduce waiting by facilitating preconsultation automatic ordering and 
performance of some of the diagnostic investigations (Li et al. 2021). The 
Blockchain technology and IoT also enable safe storage and/or sharing of informa-
tion related to cancer awareness, treatment or follow-up by practitioners and patients 
(Carrano et al. 2022; Hölbl et al. 2018). Smart oncology services allow for shared 
intraspecialty services to timeously and collectively manage the load of patients 
needing imaging, evaluation of pathology slides, chemotherapy, radiotherapy, radio-
nuclide therapy or nanotechnology-based treatment (Adir et al. 2020). 

The mainstay for treatment of premalignant or early malignant tumors in adults is 
surgery. Adjuvant radiotherapy, chemotherapy or targeted therapy is added if the 
probability of local or systemic recurrence is high based on the results from 
multiomics and digital twinning. Smart technology is also helpful for scheduling



to improve for example theatre efficiency which lead to a reduction in waiting time 
and cancellation of surgical procedures (Kwon et al. 2022; Lam et al. 2022). The 
Blockchain technology platform is excellent for monitoring of equipment for 
malfunctioning and timeous replacement of equipment and consumables (Carrano 
et al. 2022). Technological advances and digitalization have led to an improvement 
in the safety, efficiency and effectiveness the intraoperative phase of surgery through 
computer aided training in for example minimal access surgery, adoption and the use 
of MAS (Humm et al. 2021). The other strategies to improve safety and efficiency of 
surgery in LMICs would be through teaching and training of video-assisted surgery, 
robotic endoscopy and surgery and block chain aided surgery (Caruso et al. 2016; 
Marlicz et al. 2020). Additional aids for efficient oncological care include fluores-
cence angiography-guided surgery, AI-assisted display virtual and/or augmented 
reality facilitated surgery and AI guided intraoperative assessment of the adequacy 
of the resection margin of a tumor (Hänel et al. 2019; Phelps et al. 2018; Santilli et al. 
2020). Some of the additional benefits of smart-driven and digitalized surgery 
include realistic scheduling of operations, reduced blood loss and therefore the 
need for blood transfusion, quicker surgery, fewer postoperative complications, 
shorter hospital stay and improved record keeping (Lam et al. 2022). The same 
components of smart healthcare services such digital twinning and AI are used to 
guide AI-enabled personalized treatment of a cancer using radiotherapy, chemother-
apy and targeted therapy (Adir et al. 2020; Keek et al. 2022). 
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8 Society 5.0 During Follow-Up After Treatment of Cancer 

The commonly used unit to measure of outcome in the management of cancer is 
5-year survival rate which is defined as: “The percentage of people in a study or 
treatment group who are alive five years after they were diagnosed with or started 
treatment for a disease, such as cancer.” Follow-up during treatment of cancer at 
appropriate interval is mandatory but is often influenced by socioeconomic circum-
stance of individuals which may affect the application of protocols and negatively 
affecting outcomes (Strasser-Weippl et al. 2015). Follow-up guidelines for malig-
nant solid tumors are curated by various international bodies, at the helm of which is 
the World Health Organization (WHO)’s cancer division. The guidelines are similar, 
influenced by geopolitical occurrences and the relevant bodies are constantly com-
municating through intercontinental periodic conferences ensuring regular updates 
and continued medical education of the treating healthcare professionals (Table 2). 

The table above only focuses on medical oncology. These have their surgical and 
gynecological counterparts internationally. The main specialties involved in the 
management of cancer are medical oncology, surgical oncology and radiation 
oncology. Pillars of follow-up are surgical, medical, radiological and psychological 
all of which are supported by medical laboratory workup. Follow-up focuses on 
relapse and remission and is further guided by whether treatment was curative or 
palliative (Galjart et al. 2022). Terminology in this field of follow-up of cancer is



either broad or very specific with “active surveillance” being reserved lingo specific 
to the field of prostate and colorectal carcinoma follow-up. The general approach to 
the follow-up of cancer includes history taking which should cover symptoms, 
previous diagnosis, clinical stage, treatment received, physical examination, labora-
tory tests and imaging. Approaches are varied and may either be symptom based or 
follow strictly protocolled intervals (Fig. 2). 
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Table 2 Nonexhaustive list of institutions providing guidelines on cancer management 

At the helm Continent Institute 

WHO USA National Institute of Health: National Cancer Institute 
American Society of Clinical Oncologists 

Europe European Society for Medical Oncology (ESMO) 

South America Latin American and Caribbean Society of Medical Oncologists 

Africa The South African Society of Clinical and Radiation Oncology 

Middle East Arab Medical Association against Cancer 

Australasia Clinical Oncology Society of Australia 
Pan Asian Guidelines Association (ESMO-PAGA) 

Canada Canadian Association of Medical Oncologists 

Follow-up is not only limited to the initially diagnosed cancer, but it also includes 
screening for secondary cancers and other adverse events resulting from cancer 
treatment. The level of surveillance is guided by the type and stage of a cancer, its 
treatment and predicted prognosis. Follow-up intervals for cancer are directly related 
to survival rates and are usually designed over a 5-year period or longer. Survival is 
measured over a 5-year period, thus 5-year survival. Factors influencing success of 
follow-up include the socioeconomic status, lifestyle, patient compliance, psycho-
logical factors and stage at presentation (Dührsen et al. 2019). At the heart of Society 
5.0’s value system is the use of modern technological development and digitalization 
to achieve borderless and classless personalized quality healthcare services. We have 
seen major roll out of 5G fiber-based Internet infrastructure in South Africa. This is 
however undermined by an unreliable national electrical grid. As the wealth gap 
grows wider, Society 5.0 ideals around societal equality will be hard to achieve, 
especially in poorly under-resourced African health sectors unless if there is an 
improvement in the collaboration between governments and private companies. This 
is further confounded by newfound reasons for war and climate change among 
others, which are already showing the extend of under-development in LMICs 
which was the onset of the severe acute respiratory coronavirus-2 (COVID-19) 
pandemic. 

Alas! There is always a light. Life always finds a way. Using what we already 
have at our disposal, African countries may create a functional version of Society 5.0 
in the context of cancer follow-up. The patient care system adapted by Lesotho, if 
well innovated, can serve African patients and elevate patient care and cancer 
follow-up on the continent as patients are taught to take full responsibility of their 
own clinical records. The average patient in Lesotho can produce such a booklet 
regardless of where they may find themselves on the continent, assisting healthcare



professionals immensely. The Society 5.0 approach would translate this simple yet 
affective approach into a mobile app that will be able to accommodate laboratory and 
imaging results, as well as any procedures and medical treatment administered with 
each visit, this information would be available on secure clouds, accessible to both 
the patient and the treating team. Collaboration with the private may also make what 
appears daunting achievable even in LMICS (Hellowell 2019). The Granted this 
would be marred by all manner of hacking and other cyber-negativities, but the value 
of such an approach would add much value in the following ways: 
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•Medical Oncology 
and 
Immunotherapy

•Related treatment 
complications 

Approach to follow-up: 
Symptomatic OR 

Chronological (protocolled 
interval based)

• Surgical Oncology
• Related treatment 

complications 

Follow-up is guided by whether 
treatment was of cura�ve or 

pallia�ve intent

•Radiation 
oncology

•Related treatment 
complications 

Factors specific to the 
cancer: Histological type, 

Stage at presentation 

Imaging support: X-ray, CT and MRI scans, 

PET scans, ultrasonography, nuclear medicine, 

vascular work-up 

Laboratory support: Exfoliative cytology, 

histopathology, blood work (hematology, 

serology, hormonal screening, biochemistry) 

Fig. 2 Key areas: follow-up of a patient during management for cancer

• Reduction and eventual elimination of duplication of expensive investigations.
• Valuable information resulting in efficient cancer follow-up such as laboratory 

and imaging results from each visit.
• Ease of evaluation of trends and availability of statistics for research.
• Shared responsibility for individuals’ health among healthcare professionals and 

patients themselves, a practice that is long overdue.
• Allowed sharing of such information would assist MDT efforts, making these 

time-consuming efforts more effective.
• Facilitation of remote consulting by well-educated healthcare professionals, at the 

patient’s fingertips. 

The one thing a patient will always have with them is their mobile phone. With 
these devices becoming more affordable, supported by strong Internet service 
provision, Society 5.0 could be just a few months away on the African continent.
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Improved quality of life and life expectancy globally 

Equitable personalized quality oncological care 

Smart healthcare services 

Enhanced  MDT Decision making 

Molucular subtyping  of tumour 

Quan�fica�on of tumour volume 

Early diagnosis 

Cancer preven�on 

Society 5.0 

Fig. 3 Potential benefits of the application of Society 5.0 in oncological care in LMIC 

Figure 3 is a summary of what would be achievable following the implementation 
of Society 5.0 during follow-up and other phases of management of individuals after 
a diagnosis of cancer. 

9 Society 5.0 for Sustainable Development Goals and Vision 
2030 in Low- and Middle-Income Countries 

Quality healthcare delivery is influenced by the economic status of a country and 
access to quality healthcare has a positive influence on the economy (Rahman and 
Qattan 2021). The main aim of the agreed 17 SDGs was to encourage countries to 
collaborate among themselves and with multinational companies to implement pro-
grams to enable UHC. The 17 SDGs are: 

(a) Measures to end poverty (SDG1). 
(b) Food security and defeating hunger (SDG2).
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(c) Good health for every individual regardless of the economic status (SDG3), 
(d) Universal high-quality education (SDG4). 
(e) Ending gender discrimination (SDG5). 
(f) Increasing access to clean water and basic sanitation (SDG6). 
(g) Affordable clean and reliable energy (SDG7). 
(h) Facilitation of economic growth and employment opportunities (SDG8). 
(i) Innovation and industrial development (SDG9). 
(j) Lowering of within-country and global inequality (SDG10). 
(k) Sustainability of communities and cities (SDG11). 
(l) Responsible production and consumption of goods (SDG12). 

(m) Reduction of the speed of climate change (SDG13). 
(n) Protection of life in water (SDG14). 
(o) Safeguarding life on land (SDG15). 
(p) Strong governance, peace and justice. 
(q) Promotion of intergovernmental partnership and collaboration between govern-

ments and multinationals (SDG17) (Mondejar et al. 2021). 

All 17 SDGs are interlinked and support promotion of well-being and healthy 
lifestyle) (Rahman and Qattan 2021; Budhathoki et al. 2017). The pillars of SDG3 
are prevention of diseases, timeous access to quality treatment and reduction of out-
of-pocket expenses (Kruk et al. 2018). Preventative strategies which are contained in 
SDG3 are access to clean water, sanitation, health education, immunization and 
screening program (Budhathoki et al. 2017). The SDG3 envisaged that all govern-
ments in the world will provide leadership and encourage active participation by 
private companies including multinationals in programs to improve the health of 
every individual. Society 5.0, SDG and Vision 2030 do not have programs that are 
offered based on the income level of a country. Little has been achieved due to lack 
of political will, competing needs, the difficult economic situation and minimal 
involvement of the private sector. Collaboration between governments and the 
private would make the technological advances affordable and available in 
LMICs, which would lead to an improvement in the quality of oncological services. 
Like smart cities, smart oncological services would be safe, convenient and cheap. 
Quality multidisciplinary care of malignant solid tumors will allow SDG3 to be 
achieved by providing the needed infrastructure to improve the health and 
well-being of individuals who either are at risk or have cancer. Society 5.0 like 
SDGs and Vision 2030 emphasizes human centeredness and universal health cov-
erage. There would not be anything that is a preserve of citizens of HICs or 
individuals who are able to access private healthcare. Society 5.0 will therefore 
increase cancer awareness, education on cancer prevention, early diagnosis, moni-
toring, timeous and cheaper access of patients to healthcare practitioners and 
multidisciplinary oncological services through platforms such telehealth, 
Blockchain technology, IoT and AI.
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10 Limitations 

Society 5.0 is reliant on solidarity and willingness to collaborate by countries and 
private companies. Implementation of Society 5.0 will require investment in the 
infrastructure the cost of which may appear prohibitive and not be affordable for 
LMICs. The available health information systems, modern computer network pro-
grams and speed of the Internet may not be adequate to support the rollout of the 
envisaged Society 5.0 programs. Most of the training, development and testing of the 
program would have happened in HICs and thus different from the situation in 
LMICs. The ethics and governance of the use of the new technologies and digita-
lization is still being debated. Society 5.0 also threatens confidentiality and auton-
omy. Some of the decisions that are guided by AI and other technologies may be 
difficult to defend (“black-box”). A fault in the setting of some of the devices may 
lead to complications. The nature or sample size used for modeling might have been 
inappropriate or inadequate, leading to faulty decisions. New technology including 
robotic surgery or endoscopy may have a negative impact on hands-on teaching and 
training of future generations of healthcare practitioners, and provision of healthcare 
in resource-scarce LMIC settings. Reliance on imported technologies associated 
with Society 5.0 developed or funded by HICs or multinational companies may 
make LMICs vulnerable to exploitation. 

The rollout of Society 5.0 may threaten the autonomy and independence of 
countries, communities and individuals. Society 5.0 relies on the ability to share 
information, which may violate confidentiality and practitioner-patient relationship. 
Implementation of Society 5.0 will require a reliable supply of energy, clean water 
and network for communication (Kheirinejad et al. 2022). The technologies which 
would facilitate the implementation of Society 5.0 were developed in HICs may not 
necessarily be compatible and effective in the LMICs. New technologies may 
produce substances which are hazardous and can lead to the degradation of the 
environment. There are not yet effective strategies developed to dispense with 
electronic waste (e-waste) (Bajpai and Srivastava 2022). 

11 Recommendation 

Governments, academics institutions and multinational companies across LMICs 
must work together to prepare the infrastructure for Society 5.0 as it is likely to assist 
in improving access to quality and patient-centered for all citizens of the world 
regardless of the economic status.
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12 Future Prospects 

Automatic referral for screening following early detection of features suggestive of 
cancer uses technology like facial recognition system, smart phones and wearable 
technology. Such features would include nonintentional reduced physical activities 
or weight loss, altered dietary habits abnormal per vaginal bleeding, skin lesions, 
anemia and jaundice. The other possibilities from technological, digital and com-
puting include smart phone-enabled virtual liquid biopsy for early detection of 
circulating tumor cells and hand-held mass spectrometry for liver or lung metastases 
in exhaled air. 

13 Conclusion 

The majority of cancers are occurring in LMICs where resources are limited. 
Cancers in LMICs are diagnosed late, and results of curative treatment are poorer 
in LMICs when compared with HICs. The most effective weapon against cancer is 
primary prevention. Primary prevention of cancer includes risk reduction, screening 
and early diagnosis followed by timeous treatment. There is minimal progress in the 
fight against cancer in LMICs despite the ambitious goals contained in the SDGs and 
Vision 2030. The chapter has covered some of the Society 5.0 strategies, which may 
be used to lower the incidence of cancer, expedite diagnosis and improve access to 
personalized quality oncological services to individuals who are diagnosed with 
cancer globally, including in LMICs. Despite the limitations of Society 5.0 such as 
the violation of human rights including security, safety and privacy, energy waste, 
etc., the benefits can outweigh the limits with proper oversights and management. 

References 

Abati S, Bramati C, Bondi S, Lissoni A, Trimarchi M (2020) Oral cancer and precancer: a narrative 
review on the relevance of early diagnosis. Int J Environ Res Public Health 17:9160 

Adel A (2022) Future of industry 5.0 in society: human-centric solutions, challenges and prospec-
tive research areas. J Cloud Comput 11:1–15 

Adir O, Poley M, Chen G, Froim S, Krinsky N, Shklover J, Shainsky-Roitman J, Lammers T, 
Schroeder A (2020) Integrating artificial intelligence and nanotechnology for precision cancer 
medicine. Adv Mater 32:1901989 

Akinyemiju T, Ogunsina K, Gupta A, Liu I, Braithwaite D, Hiatt RA (2022) A socio-ecological 
framework for cancer prevention in low and middle-income countries. Front Public Health 10 

Al-Kahtani MS, Khan F, Taekeun W (2022) Application of internet of things and sensors in 
healthcare. Sensors 22:5738 

Alsamhi SH, Lee B, Guizani M, Kumar N, Qiao Y, Liu X (2021) Blockchain for decentralized 
multi‐drone to combat COVID‐19 and future pandemics: framework and proposed solutions. 
Trans Emerg Telecommun Technol 32:e4255



Society 5.0 and Quality Multidisciplinary Care of Malignant Solid. . . 71

Bajpai S, Srivastava VC (2022) Environmental issues for sustainable development. Environ Sci 
Pollut Res 29(48):72185–72186 

Atri M (2006) New technologies and directed agents for applications of cancer imaging. J Clin 
Oncol 24:3299–3308 

Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J 
(2022) Preoperative diagnosis and molecular characterization of gliomas with liquid biopsy and 
radiogenomics. Front Neurol 1097 

Barragán-Montero A, Javaid U, Valdés G, Nguyen D, Desbordes P, Macq B, Willems S, 
Vandewinckele L, Holmström M, Löfman F (2021) Artificial intelligence and machine learning 
for medical imaging: a technology review. Phys Med 83:242–256 

Bhutta ZA (2006) The million death study in India: can it help in monitoring the millennium 
development goals? PLoS Med 3:e103 

Bong CY, Smithers BM, Chua TC (2021) Pulmonary metastasectomy in the era of targeted therapy 
and immunotherapy. J Thorac Dis 13:2618 

Bray F, Laversanne M, Cao B, Varghese C, Mikkelsen B, Weiderpass E, Soerjomataram I (2021) 
Comparing cancer and cardiovascular disease trends in 20 middle-or high-income countries 
2000–19: a pointer to national trajectories towards achieving sustainable development goal 
target 3.4. Cancer Treat Rev 100:102290 

Budhathoki SS, Pokharel PK, Good S, Limbu S, Bhattachan M, Osborne RH (2017) The potential 
of health literacy to address the health related UN sustainable development goal 3 (SDG3) in 
Nepal: a rapid review. BMC Health Serv Res 17:1–13 

Bukhman G, Mocumbi AO, Atun R, Becker AE, Bhutta Z, Binagwaho A, Clinton C, Coates MM, 
Dain K, Ezzati M (2020) The Lancet NCDI Poverty Commission: bridging a gap in universal 
health coverage for the poorest billion. Lancet 396:991–1044 

Cairncross ZF, Nelson G, Shack L, Metcalfe A (2020) Validation in Alberta of an administrative 
data algorithm to identify cancer recurrence. Curr Oncol 27:343–346 

Canzoneri R, Lacunza E, Abba MC (2019) Genomics and bioinformatics as pillars of precision 
medicine in oncology. Medicina (B Aires) 79:587–592 

Carrano FM, Sileri P, Batt S, Di Lorenzo N (2022) Blockchain in surgery: are we ready for the 
digital revolution? Updat Surg 74:3–6 

Caruso S, Patriti A, Roviello F, De Franco L, Franceschini F, Coratti A, Ceccarelli G (2016) 
Laparoscopic and robot-assisted gastrectomy for gastric cancer: current considerations. World J 
Gastroenterol 22:5694 

Chan HY-L, Chung CK-M, Tam SS-C, Chow RS-K (2021) Community palliative care services on 
addressing physical and psychosocial needs in people with advanced illness: a prospective 
cohort study. BMC Palliat Care 20:1–8 

Chang S, Cameron C (2012) Addressing the future burden of cancer and its impact on the oncology 
workforce: where is cancer prevention and control? J Cancer Educ 27:118–127 

Chang AJ, Autio KA, Roach M, Scher HI (2014) High-risk prostate cancer—classification and 
therapy. Nat Rev Clin Oncol 11:308–323 

Charumbira MY, Berner K, Louw QA (2022) Functioning problems associated with health 
conditions with greatest disease burden in South Africa: a scoping review. Int J Environ Res 
Public Health 19:15636 

Chen M, Zhao H (2019) Next-generation sequencing in liquid biopsy: cancer screening and early 
detection. Hum Genomics 13:34 

Chen Z, Zhang Y, Yan Z, Dong J, Cai W, Ma Y, Jiang J, Dai K, Liang H, He J (2021a) Artificial 
intelligence assisted display in thoracic surgery: development and possibilities. J Thorac Dis 13: 
6994 

Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y (2021b) Artificial intelligence for assisting cancer 
diagnosis and treatment in the era of precision medicine. Cancer Commun 41:1100–1115 

Chua IS, Gaziel‐Yablowitz M, Korach ZT, Kehl KL, Levitan NA, Arriaga YE, Jackson GP, Bates 
DW, Hassett M (2021) Artificial intelligence in oncology: path to implementation. Cancer Med 
10:4138–4149



72 T. E. Luvhengo et al.

Clarke WT, Feuerstein JD (2019) Colorectal cancer surveillance in inflammatory bowel disease: 
practice guidelines and recent developments. World J Gastroenterol 25:4148 

Conderino S, Bendik S, Richards TB, Pulgarin C, Chan PY, Townsend J, Lim S, Roberts TR, 
Thorpe LE (2022) The use of electronic health records to inform cancer surveillance efforts: a 
scoping review and test of indicators for public health surveillance of cancer prevention and 
control. BMC Med Inform Decis Mak 22:1–13 

Dadkhah M, Mehraeen M, Rahimnia F, Kimiafar K (2021) Use of internet of things for chronic 
disease management: an overview. J Med Signals Sens 11:138 

Dührsen U, Deppermann K-M, Pox C, Holstege A (2019) Evidence-based follow-up for adults with 
cancer. Dtsch Arztebl Int 116:663 

Ehman RL, Hendee WR, Welch MJ, Dunnick NR, Bresolin LB, Arenson RL, Baum S, Hricak H, 
Thrall JH (2007) Blueprint for imaging in biomedical research. Radiology 244:12–27 

Eichleay M, Evens E, Stankevitz K, Parker C (2019) Using the unmanned aerial vehicle delivery 
decision tool to consider transporting medical supplies via drone. Global Health Sci Pract 7: 
500–506 

Ekwueme DU, Halpern MT, Chesson HW, Ashok M, Drope J, Hong Y-R, Maciosek M, Pesko MF, 
Kenkel DS (2022) Health economics research in primary prevention of cancer: assessment, 
current challenges, and future directions. JNCI Monogr 2022:28–41 

Falk Delgado A, Zommorodi S, Falk Delgado A (2019) Sentinel lymph node biopsy and complete 
lymph node dissection for melanoma. Curr Oncol Rep 21:54 

Fernández ME, Melvin CL, Leeman J, Ribisl KM, Allen JD, Kegler MC, Bastani R, Ory MG, 
Risendal BC, Hannon PA (2014) The cancer prevention and control research network: an 
interactive systems approach to advancing cancer control implementation research and practice. 
Cancer Epidemiol Biomark Prev 23:2512–2521 

Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, 
Alvis-Guzman N, Amini E, Anderson BO (2018) Global, regional, and national cancer inci-
dence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years 
for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study. 
JAMA Oncol 4:1553–1568 

Franchini F, Palatucci G, Colao A, Ungaro P, Macchia PE, Nettore IC (2022) Obesity and thyroid 
cancer risk: An update. Int J Environ Res Public Health 19:1116 

Fukuyama M (2018) Society 5.0: aiming for a new human-centered society. Japan Spotlight 27:47– 
50 

Galjart B, Höppener DJ, Aerts JGJV, Bangma CH, Verhoef C, Grünhagen DJ (2022) Follow-up 
strategy and survival for five common cancers: a meta-analysis. Eur J Cancer 174:185–199 

Global Burden of Disease Cancer Collaboration (2019) Global, regional, and National Cancer 
Incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-
years for 29 cancer groups, 1990 to 2017: a systematic analysis for the global burden of disease 
study. JAMA Oncol 5:1749–1768 

Grabowska S, Saniuk S, Gajdzik B (2022) Industry 5.0: improving humanization and sustainability 
of Industry 4.0. Scientometrics 127:3117–3144 

Gumbs AA, Grasso V, Bourdel N, Croner R, Spolverato G, Frigerio I, Illanes A, Abu Hilal M, 
Park A, Elyan E (2022) The advances in computer vision that are enabling more autonomous 
actions in surgery: a systematic review of the literature. Sensors (Basel) 22 

Hänel L, Kwiatkowski M, Heikaus L, Schlüter H (2019) Mass spectrometry-based intraoperative 
tumor diagnostics. Future Sci OA 5:FSO373 

Hashimoto DA, Rosman G, Rus D, Meireles OR (2018) Artificial intelligence in surgery: promises 
and perils. Ann Surg 268:70–76 

Hassan AM, Chu CK, Liu J, Angove R, Rocque G, Gallagher KD, Momoh AO, Caston NE, 
Williams CP, Wheeler S, Butler CE, Offodile AC (2022) Determinants of telemedicine adoption 
among financially distressed patients with cancer during the COVID-19 pandemic: insights 
from a nationwide study. Support Care Cancer 30:7665–7678



Society 5.0 and Quality Multidisciplinary Care of Malignant Solid. . . 73

Haverkamp L, Van Der Sluis PC, Ausems M, Van Der Horst S, Siersema PD, Ruurda JP, Offerhaus 
GJA, Van Hillegersberg R (2015) Prophylactic laparoscopic total gastrectomy with jejunal 
pouch reconstruction in patients carrying a CDH1 germline mutation. J Gastrointest Surg 19: 
2120–2125 

Hellowell M (2019) Are public–private partnerships the future of healthcare delivery in 
sub-Saharan Africa? Lessons from Lesotho. BMJ Global Health 4:e001217 

Hernández‐Neuta I, Neumann F, Brightmeyer J, Ba Tis T, Madaboosi N, Wei Q, Ozcan A, Nilsson 
M (2019) Smartphone‐based clinical diagnostics: towards democratization of evidence‐based 
health care. J Intern Med 285:19–39 

Hillman BJ (2006) Introduction to the special issue on medical imaging in oncology. J Clin Oncol 
24:3223–3224 

Hoinville L, Taylor C, Zasada M, Warner R, Pottle E, Green J (2019) Improving the effectiveness of 
cancer multidisciplinary team meetings: analysis of a national survey of MDT members’ 
opinions about streamlining patient discussions. BMJ Open Qual 8:e000631 

Hölbl M, Kompara M, Kamišalić A, Nemec Zlatolas L (2018) A systematic review of the use of 
Blockchain in healthcare. Symmetry 10(10):470 

Holzlechner M, Eugenin E, Prideaux B (2019) Mass spectrometry imaging to detect lipid bio-
markers and disease signatures in cancer. Cancer Rep 2:e1229 

Hongo H, Tokuue K, Sakae T, Mase M, Omura M (2021) Robust treatment planning in 
Intrafraction motion using TomoDirect™ intensity-modulated radiotherapy for breast cancer. 
In Vivo 35:2655–2659 

Hricak H, Abdel-Wahab M, Atun R, Lette MM, Paez D, Brink JA, Donoso-Bach L, Frija G, 
Hierath M, Holmberg O (2021) Medical imaging and nuclear medicine: a Lancet Oncology 
Commission. Lancet Oncol 22:e136–e172 

Hudgins PA, Beitler JJ (2013) Introduction to the imaging and staging of cancer. Neuroimaging 
Clin N Am 23:1–7 

Hugar LA, Wulff-Burchfield EM, Winzelberg GS, Jacobs BL, Davies BJ (2021) Incorporating 
palliative care principles to improve patient care and quality of life in urologic oncology. Nat 
Rev Urol 18:623–635 

Humm G, Harries RL, Stoyanov D, Lovat LB (2021) Supporting laparoscopic general surgery 
training with digital technology: the United Kingdom and Ireland paradigm. BMC Surg 21:1–13 

Hunt B, Ruiz AJ, Pogue BW (2021) Smartphone-based imaging systems for medical applications: a 
critical review. J Biomed Opt 26:040902 

Hunter B, Hindocha S, Lee RW (2022) The role of artificial intelligence in early cancer diagnosis. 
Cancers 14:1524. s Note: MDPI stays neutral with regard to jurisdictional claims in 
published . . .  

Ioppolo G, Vazquez F, Hennerici MG, Andrès E (2020) Medicine 4.0: new technologies as tools for 
a society 5.0. J Clin Med 9(7):2198 

Iragorri N, De Oliveira C, Fitzgerald N, Essue B (2021) The out-of-pocket cost burden of cancer 
care—a systematic literature review. Curr Oncol 28:1216–1248 

Iyengar NM, Gucalp A, Dannenberg AJ, Hudis CA (2016) Obesity and cancer mechanisms: tumor 
microenvironment and inflammation. J Clin Oncol 34:4270–4276 

Jain P, Balkrishanan K, Nayak S, Gupta N, Shah S (2021) Onco-anaesthesiology and palliative 
medicine: opportunities and challenges. Indian J Anaesth 65:29 

Johnson BA, Lindgren BR, Blaes AH, Parsons HM, Larocca CJ, Farah R, Hui JYC (2021) The new 
Normal? Patient satisfaction and usability of telemedicine in breast cancer care. Ann Surg Oncol 
28:5668–5676 

Kann BH, Hosny A, Aerts HJWL (2021) Artificial intelligence for clinical oncology. Cancer Cell 
39:916–927 

Keek SA, Beuque M, Primakov S, Woodruff HC, Chatterjee A, Van Timmeren JE, Vallières M, 
Hendriks LEL, Kraft J, Andratschke N, Braunstein SE, Morin O, Lambin P (2022) Predicting 
adverse radiation effects in brain tumors after stereotactic radiotherapy with deep learning and 
handcrafted radiomics. Front Oncol 12:920393



74 T. E. Luvhengo et al.

Kenner B, Chari ST, Kelsen D, Klimstra DS, Pandol SJ, Rosenthal M, Rustgi AK, Taylor JA, 
Yala A, Abul-Husn N (2021) Artificial intelligence and early detection of pancreatic cancer: 
2020 summative review. Pancreas 50:251 

Kim M, Schiff JP, Price A, Laugeman E, Samson PP, Kim H, Badiyan SN, Henke LE (2022) The 
first reported case of a patient with pancreatic cancer treated with cone beam computed 
tomography-guided stereotactic adaptive radiotherapy (CT-STAR). Radiat Oncol 17:157 

Kheirinejad S, Bozorg-Haddad O, Singh VP, Loáiciga HA (2022) The effect of reducing per capita 
water and energy uses on renewable water resources in the water, food and energy nexus. Sci 
Rep 12(1):7582 

Kocher M (2020) Artificial intelligence and radiomics for radiation oncology. Springer 
Kothari C, Diorio C, Durocher F (2020) The importance of breast adipose tissue in breast cancer. Int 

J Mol Sci 21 
Kruk ME, Gage AD, Arsenault C, Jordan K, Leslie HH, Roder-Dewan S, Adeyi O, Barker P, 

Daelmans B, Doubova SV, English M, García-Elorrio E, Guanais F, Gureje O, Hirschhorn LR, 
Jiang L, Kelley E, Lemango ET, Liljestrand J, Malata A, Marchant T, Matsoso MP, Meara JG, 
Mohanan M, Ndiaye Y, Norheim OF, Reddy KS, Rowe AK, Salomon JA, Thapa G, Twum-
Danso NAY, Pate M (2018) High-quality health systems in the sustainable development 
goals era: time for a revolution. Lancet Glob Health 6:e1196–e1252 

Kwon H, An S, Lee H-Y, Cha WC, Kim S, Cho M, Kong H-J (2022) Review of smart hospital 
services in real healthcare environments. Healthc Inform Res 28:3–15 

Lam K, Abràmoff MD, Balibrea JM, Bishop SM, Brady RR, Callcut RA, Chand M, Collins JW, 
Diener MK, Eisenmann M, Fermont K, Neto MG, Hager GD, Hinchliffe RJ, Horgan A, 
Jannin P, Langerman A, Logishetty K, Mahadik A, Maier-Hein L, Antona EM, Mascagni P, 
Mathew RK, Müller-Stich BP, Neumuth T, Nickel F, Park A, Pellino G, Rudzicz F, Shah S, 
Slack M, Smith MJ, Soomro N, Speidel S, Stoyanov D, Tilney HS, Wagner M, Darzi A, Kinross 
JM, Purkayastha S (2022) A Delphi consensus statement for digital surgery. NPJ Digit Med 5: 
100 

Leatherdale ST, Rynard V (2013) A cross-sectional examination of modifiable risk factors for 
chronic disease among a nationally representative sample of youth: are Canadian students 
graduating high school with a failing grade for health? BMC Public Health 13:1–8 

Lee SS, Cheah YK (2019) The interplay between microRNAs and cellular components of tumour 
microenvironment (TME) on non-small-cell lung cancer (NSCLC) progression. J Immunol Res 
2019:3046379 

Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, Wong ALA (2020) Targeting metabolism in 
cancer cells and the tumour microenvironment for cancer therapy. Molecules 25 

Li X, Tian D, Li W, Dong B, Wang H, Yuan J, Li B, Shi L, Lin X, Zhao L (2021) Artificial 
intelligence-assisted reduction in patients’ waiting time for outpatient process: a retrospective 
cohort study. BMC Health Serv Res 21:1–11 

Liberini V, Laudicella R, Balma M, Nicolotti DG, Buschiazzo A, Grimaldi S, Lorenzon L, 
Bianchi A, Peano S, Bartolotta TV (2022) Radiomics and artificial intelligence in prostate 
cancer: new tools for molecular hybrid imaging and theragnostics. Eur Radiol Exp 6:1–15 

Lin B, Du L, Li H, Zhu X, Cui L, Li X (2020) Tumor-infiltrating lymphocytes: warriors fight against 
tumors powerfully. Biomed Pharmacother 132:110873 

Lu T-C, Fu C-M, Ma MH-M, Fang C-C, Turner AM (2016) Healthcare applications of smart 
watches. Appl Clin Inform 07:850–869 

Majumder S, Deen MJ (2019) Smartphone sensors for health monitoring and diagnosis. Sensors 
(Basel) 19 

Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, Hawk ET (2015) Molecular cancer 
prevention: current status and future directions. CA Cancer J Clin 65:345–383 

Marlicz W, Ren X, Robertson A, Skonieczna-Żydecka K, Łoniewski I, Dario P, Wang S, Plevris 
JN, Koulaouzidis A, Ciuti G (2020) Frontiers of robotic gastroscopy: a comprehensive review of 
robotic Gastroscopes and technologies. Cancers (Basel) 12



Society 5.0 and Quality Multidisciplinary Care of Malignant Solid. . . 75

Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 
2030. PLoS Med 3:e442 

Matulonis UA, Sood AK, Fallowfield L, Howitt BE, Sehouli J, Karlan BY (2016) Ovarian cancer. 
Nat Rev Dis Primers 2:16061 

Miller KD, Fidler-Benaoudia M, Keegan TH, Hipp HS, Jemal A, Siegel RL (2020) Cancer statistics 
for adolescents and young adults, 2020. CA Cancer J Clin 70:443–459 

Mondejar ME, Avtar R, Diaz HLB, Dubey RK, Esteban J, Gómez-Morales A, Hallam B, Mbungu 
NT, Okolo CC, Prasad KA, She Q, Garcia-Segura S (2021) Digitalization to achieve sustainable 
development goals: steps towards a smart Green planet. Sci Total Environ 794:148539 

Morrione A, Belfiore A (2022) Obesity, diabetes, and cancer: the role of the insulin/IGF axis; 
mechanisms and clinical implications. Biomolecules 12:612 

Mungo C, Osongo CO, Ambaka J, Randa MA, Samba B, Ochieng CA, Barker E, Guliam A, 
Omoto J, Cohen CR (2021) Feasibility and acceptability of smartphone-based cervical cancer 
screening among HIV-positive women in Western Kenya. JCO Glob Oncol 7:686–693 

Mushosho T, Matela M, Benvolio M, Senzo M, Refilwe M, Relebogile M, Keorapetse M, 
Nkosinathi M, Moloko M, Yanga N, Kgauhelo N, Ndumiso N, Cynthia P, Katherine T, 
Luvhengo T (2021) Post-operative analgesia: are patients receiving adequate cover? J Anest 
Inten Care Med 11(4) 

Ng-Kamstra JS, Greenberg SLM, Abdullah F, Amado V, Anderson GA, Cossa M, Costas-Chavarri-
A, Davies J, Debas HT, Dyer GSM, Erdene S, Farmer PE, Gaumnitz A, Hagander L, Haider A, 
Leather AJM, Lin Y, Marten R, Marvin JT, Mcclain CD, Meara JG, Meheš M, Mock C, 
Mukhopadhyay S, Orgoi S, Prestero T, Price RR, Raykar NP, Riesel JN, Riviello R, Rudy 
SM, Saluja S, Sullivan R, Tarpley JL, Taylor RH, Telemaque LF, Toma G, Varghese A, 
Walker M, Yamey G, Shrime MG (2016) Global surgery 2030: a roadmap for high income 
country actors. BMJ Glob Health 1:e000011 

Nikiforova A (2021) Smarter open government data for society 5.0: are your open data smart 
enough? Sensors 21(15):5204 

Park J, Morley TS, Kim M, Clegg DJ, Scherer PE (2014) Obesity and cancer—mechanisms 
underlying tumour progression and recurrence. Nat Rev Endocrinol 10:455–465 

Petrova D, Špacírová Z, Fernández-Martínez NF, Ching-López A, Garrido D, Rodríguez-
Barranco M, Pollán M, Redondo-Sánchez D, Espina C, Higueras-Callejón C, Sánchez MJ 
(2022) The patient, diagnostic, and treatment intervals in adult patients with cancer from 
high- and lower-income countries: a systematic review and meta-analysis. PLoS Med 19: 
e1004110 

Phelps DL, Balog J, Gildea LF, Bodai Z, Savage A, El-Bahrawy MA, Speller AVM, Rosini F, 
Kudo H, Mckenzie JS, Brown R, Takáts Z, Ghaem-Maghami S (2018) The surgical intelligent 
knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evap-
orative ionisation mass spectrometry (REIMS). Br J Cancer 118:1349–1358 

Phillips M, Marsden H, Jaffe W, Matin RN, Wali GN, Greenhalgh J, Mcgrath E, James R, 
Ladoyanni E, Bewley A (2019) Assessment of accuracy of an artificial intelligence algorithm 
to detect melanoma in images of skin lesions. JAMA Netw Open 2:e1913436 

Pillay B, Wootten AC, Crowe H, Corcoran N, Tran B, Bowden P, Crowe J, Costello AJ (2016) The 
impact of multidisciplinary team meetings on patient assessment, management and outcomes in 
oncology settings: a systematic review of the literature. Cancer Treat Rev 42:56–72 

Pinsky PF (2015) Principles of cancer screening. Surg Clin 95:953–966 
Quail DF, Dannenberg AJ (2019) The obese adipose tissue microenvironment in cancer develop-

ment and progression. Nat Rev Endocrinol 15:139–154 
Raghupathi V, Raghupathi W (2020) The influence of education on health: an empirical assessment 

of OECD countries for the period 1995–2015. Arch Public Health 78:20 
Rahman R, Qattan A (2021) Vision 2030 and sustainable development: state capacity to revitalize 

the healthcare system in Saudi Arabia. Inquiry 58:0046958020984682



76 T. E. Luvhengo et al.

Rompianesi G, Pegoraro F, Ceresa CD, Montalti R, Troisi RI (2022) Artificial intelligence in the 
diagnosis and management of colorectal cancer liver metastases. World J Gastroenterol 28:108– 
122 

Rosser JC Jr, Vignesh V, Terwilliger BA, Parker BC (2018) Surgical and medical applications of 
drones: a comprehensive review. JSLS 22:e2018.00018 

Russo V, Lallo E, Munnia A, Spedicato M, Messerini L, D’Aurizio R, Ceroni EG, Brunelli G, 
Galvano A, Russo A, Landini I, Nobili S, Ceppi M, Bruzzone M, Cianchi F, Staderini F, 
Roselli M, Riondino S, Ferroni P, Guadagni F, Mini E, Peluso M (2022) Artificial intelligence 
predictive models of response to cytotoxic chemotherapy alone or combined to targeted therapy 
for metastatic colorectal cancer patients: a systematic review and meta-analysis. Cancers 2022: 
14 

Sætra HS, Fosch-Villaronga E (2021) Healthcare digitalisation and the changing nature of work and 
society. Healthcare 9 

Sah B-R, Owczarczyk K, Siddique M, Cook GJR, Goh V (2019) Radiomics in esophageal and 
gastric cancer. Abdom Radiol 44:2048–2058 

Sahal R, Alsamhi SH, Brown KN (2022) Personal digital twin: a close look into the present and a 
step towards the future of personalised healthcare industry. Sensors 22:5918 

Sahu D, Pradhan B, Khasnobish A, Verma S, Kim D, Pal K (2021) The internet of things in geriatric 
healthcare. J Healthc Eng 2021:6611366 

Santilli AML, Jamzad A, Janssen NNY, Kaufmann M, Connolly L, Vanderbeck K, Wang A, 
Mckay D, Rudan JF, Fichtinger G, Mousavi P (2020) Perioperative margin detection in basal 
cell carcinoma using a deep learning framework: a feasibility study. Int J Comput Assist Radiol 
Surg 15:887–896 

Sarfraz Z, Sarfraz A, Iftikar HM, Akhund R (2021) Is COVID-19 pushing us to the fifth industrial 
revolution (society 5.0)? Pak J Med Sci 37:591 

Selby P, Popescu R, Lawler M, Butcher H, Costa A (2019) The value and future developments of 
multidisciplinary team cancer care. Am Soc Clin Oncol Educ Book 39:332–340 

Shao J, Rodrigues M, Corter AL, Baxter NN (2019) Multidisciplinary care of breast cancer patients: 
a scoping review of multidisciplinary styles, processes, and outcomes. Curr Oncol 26:385–397 

Sharma R, Aashima, Nanda M, Fronterre C, Sewagudde P, Ssentongo AE, Yenney K, Arhin ND, 
Oh J, Amponsah-Manu F, Ssentongo P (2022) Mapping cancer in Africa: a comprehensive and 
comparable characterization of 34 cancer types using estimates from GLOBOCAN 2020. Front 
Public Health 10 

Shaverdian N, Gillespie EF, Cha E, Kim SY, Benvengo S, Chino F, Kang JJ, Li Y, Atkinson TM, 
Lee N, Washington CM, Cahlon O, Gomez DR (2021) Impact of telemedicine on patient 
satisfaction and perceptions of care quality in radiation oncology. J Natl Compr Cancer Netw 
19:1174–1180 

Stewart CM, Tsui DWY (2018) Circulating cell-free DNA for non-invasive cancer management. 
Cancer Genet 228–229:169–179 

Strasser-Weippl K, Chavarri-Guerra Y, Villarreal-Garza C, Bychkovsky BL, Debiasi M, Liedke 
PE, Soto-Perez-De-Celis E, Dizon D, Cazap E, De Lima Lopes G, Touya D, Nunes JS, St 
Louis J, Vail C, Bukowski A, Ramos-Elias P, Unger-Saldaña K, Brandao DF, Ferreyra ME, 
Luciani S, Nogueira-Rodrigues A, De Carvalho Calabrich AF, Del Carmen MG, Rauh-Hain JA, 
Schmeler K, Sala R, Goss PE (2015) Progress and remaining challenges for cancer control in 
Latin America and the Caribbean. Lancet Oncol 16:1405–1438 

Tselikas L, Sun R, Ammari S, Dercle L, Yevich S, Hollebecque A, Ngo-Camus M, Nicotra C, 
Deutsch E, Deschamps F, De Baere T (2019) Role of image-guided biopsy and radiomics in the 
age of precision medicine. Chin Clin Oncol 8(6):57 

Ugare UG, Bombil I, Luvhengo TE (2022) Early-onset malignant solid tumours in young adult 
South Africans - an audit based on histopathological records of patients seen at the three 
academic hospitals in Johannesburg. S Afr J Surg 60:134–140 

Van Tulder R, Rodrigues SB, Mirza H, Sexsmith K (2021) The UN’S sustainable development 
goals: can multinational enterprises lead the decade of action? J Int Bus Policy 4:1–21



Society 5.0 and Quality Multidisciplinary Care of Malignant Solid. . . 77

Vicente AM, Ballensiefen W, Jönsson J-I (2020) How personalised medicine will transform 
healthcare by 2030: the ICPerMed vision. J Transl Med 18:180 

Vietti Violi N, Hajri R, Haefliger L, Nicod-Lalonde M, Villard N, Dromain C (2022) Imaging of 
oligometastatic disease. Cancers 14 

Visaggi P, Barberio B, Ghisa M, Ribolsi M, Savarino V, Fassan M, Valmasoni M, Marchi S, De 
Bortoli N, Savarino E (2021) Modern diagnosis of early esophageal cancer: from blood bio-
markers to advanced endoscopy and artificial intelligence. Cancers (Basel) 2021:13 

Wang H, Mao X (2020) Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer. 
Drug Des Devel Ther 14:2423 

Wang XQ, Terry PD, Yan H (2009) Review of salt consumption and stomach cancer risk: 
epidemiological and biological evidence. World J Gastroenterol 15:2204–2213 

Wu X, Zhang Y, Hu T, He X, Zou Y, Deng Q, Ke J, Lian L, He X, Zhao D, Cai X, Chen Z, Wu X, 
Fan JB, Gao F, Lan P (2021) A novel cell-free DNA methylation-based model improves the 
early detection of colorectal cancer. Mol Oncol 15:2702–2714 

Xu Y, Kong S, Cheung WY, Bouchard-Fortier A, Dort JC, Quan H, Buie EM, Mckinnon G, Quan 
ML (2019) Development and validation of case-finding algorithms for recurrence of breast 
cancer using routinely collected administrative data. BMC Cancer 19:1–10 

Yu Y, He Z, Ouyang J, Tan Y, Chen Y, Gu Y, Mao L, Ren W, Wang J, Lin L, Wu Z, Liu J, Ou Q, 
Hu Q, Li A, Chen K, Li C, Lu N, Li X, Su F, Liu Q, Xie C, Yao H (2021) Magnetic resonance 
imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical 
decisions and is associated with tumor microenvironment in invasive breast cancer: a machine 
learning, multicenter study. EBioMedicine 69:103460 

Zhang L, Li X, Ning Y, Cai Y (2021) Application of laparoscopy in comprehensive staging 
operation of ovarian cancer based on electronic medical blockchain technology. J Healthc 
Eng 2021:6649640 

Zhou J, Cao W, Wang L, Pan Z, Fu Y (2022) Application of artificial intelligence in the diagnosis 
and prognostic prediction of ovarian cancer. Comput Biol Med 146:105608



Technological Innovations 
and the Advancement of Preventive 
Healthcare for Society 5.0 

Zilungile Mkhize-Kwitshana, Pragalathan Naidoo, Leony Fourie, 
Rupert C. Ecker, and Zodwa Dlamini 

Abstract There have been significant developments in the digitization of diagnostic 
and therapeutic regimes of the healthcare sector. However, the preventative medi-
cine practice is lagging in taking full advantage of the rapidly advancing world of 
technology. This chapter summarizes the latest developments in both therapeutics 
and diagnostics in the healthcare settings, including surgical robotics, telemedicine 
and artificial intelligence. Then, we explore traditional methods of disease preven-
tion and their challenges, consider the technological developments such as advance-
ment of data analytics methods including geospatial surveillance for disease 
prevention such as heart disease, stroke and other chronic diseases, and, in
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preventive healthcare, practice and identify gaps in the latter. Challenges of big data 
related to safety, resource limitation, energy crisis, data ownership and ethics are 
highlighted. Lastly, we propose adoption of health technology advances for indi-
vidual health data integration into predictive, precision, participatory and preventive 
health medicine.
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1 Introduction 

The definition of health by the World Health Organization (WHO) refers to holistic 
wellness as “a state of complete physical, mental and social well-being and not 
merely the absence of disease or infirmity” (WHO 1946). In this context, the concept 
of prevention of disease is part of this latter description of health. The merits of 
preventive medicine in low- and middle-income countries (LMICs) public health 
systems can never be overemphasized. These countries inadvertently bear the 
heaviest burden of disease since they have highest numbers of poorer populations 
most at the risk for both communicable and noncommunicable diseases (Lopez and 
Murray 1998). Paradoxically, the health system capacities and capabilities are the 
most compromised and overstretched due to restricted financial and other resources 
in these regions (Ritchie et al. 2016). The technological advances that have capital-
ized on the fourth industrial revolution are mainly biased toward therapeutics and 
diagnostics where disease has already established. This approach is untenable in 
LMICs. In addition, although these developments have revolutionized healthcare 
and dramatically improved the quality of life (Thimbleby 2013), these achievements 
have impacted mainly a fraction of the population in wealthy countries. There is 
therefore a challenge for practical health technological solutions to prevent onset and 
progression of disease that is inclusive of the majority of the poor and disadvantaged 
populations particularly in LMICs. This is in line with the core principle of the 
Sustainable Development Goals (SDGs) which is premised on leaving no one 
behind, and the SDG 3 calls for universal health coverage and health and well-
being for all at all ages. 

As countries embrace this inclusive vision and collectively aspire for a better 
society by year 2030 through the 2030 global agenda, there is a great demand to 
ensure that everyone makes it on to the bus of the SDGs—by using new approaches 
and tools that help identify and address health inequity in all its forms (Bustreo and 
Stone 2016). One such approach is to optimize preventive medicine through tech-
nology for all vulnerable populations with the additional outcome of easing the 
burden to the healthcare systems for LMICs. The present chapter begins by sum-
marizing the sharp contrast in advances made in diagnostic and therapeutic medicine 
where diseases have already established, describes traditional approaches to disease 
prevention and then highlights technological developments in preventive medicine.



The last section explores the opportunities to exploit the exponential information and 
technological capabilities of the fourth industrial revolution (4IR) advantages for 
disease prevention in the future Society 5.0. 
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1.1 The Traditional Methods of Disease Prevention 

The natural course of disease follows five phases, namely underlying, susceptible, 
subclinical, clinical and recovery/disability/death. Likewise, the approaches for 
disease prevention are structured around these stages: primordial prevention, pri-
mary prevention, secondary prevention and tertiary prevention (Kisling and Das 
2022) with the ultimate goal of preventing disease onset as well as delaying the 
development of complications when the disease has already occurred. 

1.1.1 Primordial Prevention 

This mode of prevention assumes an epidemiological approach of preventive activ-
ities targeting whole populations who are healthy and is mostly regulated by laws 
and policies. The aim is to prevent underlying risk exposures (Kisling and Das 
2022). An example would be a policy on mandatory inclusion of sports and related 
facilities at schools to prevent childhood obesity and subsequent diabetes and 
cardiovascular disease development. 

1.1.2 Primary Prevention 

Primary prevention uses data collected from a large pool of patients, such as 
adolescents, children under 5 years, women of childbearing age, all men or all 
adults. The data is compiled for implementing interventions to prevent disease 
onset or the development of chronic disease or injury by mitigating predisposing 
risk factors (Charkawi 2019). Examples of this strategy include regular prophylactic 
vaccination throughout life; use of condoms among sexually active individuals; 
provision of health promotion and behavioral counseling for drinking or smoking 
cessation and promotion of healthy lifestyle behaviors such as good nutrition and 
activity. The Covid-19 pandemic presented a good example of the importance of 
vaccination, use of masks and border control to eliminate and curb the spread of the 
SARS-Cov-2 virus. 

1.1.3 Secondary Prevention 

This strategy encompasses screening for early detection of subclinical disease 
among symptomless individuals who exhibit pathological changes that would



otherwise be not detected without screening (Charkawi 2019). Examples include the 
Papanicolaou (Pap) smear and mammography for early detection of cervical and 
breast cancers, respectively. 
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1.1.4 Tertiary Prevention 

The tertiary prevention delays the development of complications when the disease 
has manifested, essentially to slow down disease progression and restores the 
patient’s functioning after diagnosis as exemplified by rehabilitative therapy 
(Charkawi 2019). 

1.1.5 Quaternary Prevention 

This mode of prevention refers to the prevention of iatrogenic diseases after treat-
ment of an existing condition, to protect patients from treatment/interventions likely 
to cause them more harm than good (Martins et al. 2018). 

1.2 Preventive Medicine Approaches 

Preventive medicine efforts targeting prevention and early detection of disease 
(primordial, primary and secondary) or mitigating complications of established 
disease can foster improved quality of life, longevity and reduce the cost of 
healthcare in countries that are economically disadvantaged and overburdened 
with disease challenges. 

1.2.1 Lifestyle, Food and Nutrition 

This preventive approach targets healthy individuals to forestall the development of 
disease (primary); symptomless individuals for early detection and forestalling 
disease manifestation (secondary) and also ameliorates patients’ disease progression 
(tertiary). 

1.2.2 Immune System Boost 

Vaccination is the most common and widely applied method of disease prevention 
through immune system boost. Recurrent monitoring of biomarkers such a prostate 
specific antigen are also part of primary disease prevention strategies.
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1.2.3 Policy Regulations 

Policies regulate the environment to minimize risk exposure, for example restricted 
smoking zones and increased taxes for cigarettes. This prevents disease at larger 
scale to protect populations (primordial and primary prevention). 

1.3 Challenges of the Traditional Methods of Preventive 
Medicine in LMICs 

Many aspects of this model of disease prevention rely on the individual’s and 
population’s adherence with less interaction and guidance from the healthcare pro-
fessionals. Examples include the fact that a parent may decide not to take their infant 
for vaccination; resistance to smoking cessation and the low uptake of Pap smear 
screening services that are available. These key two phases (primary and secondary) 
of prevention occur at stages where overt disease has not occurred and therefore 
requires intentional effort from the individuals to participate. Lack of knowledge 
about risk exposure, the benefits of preventive strategies and socioeconomic and 
poverty-related impediments and illiteracy are some of the main barriers to effective 
traditional preventive medicine practices that are predominantly dependent on an 
individual’s circumstances for uptake. 

The second challenge is the time-constraints on healthcare providers who are 
overstretched and therefore less able to provide preventive health promotion mes-
sages to apparently healthy individuals. In some countries, the responsibility for 
health promotion activities is outside the ambit of the healthcare providers. In 
LMICs, who have limited resources, health promotion for the healthy population 
competes for interventions prioritized for the sick patients. In addition, there is 
difficulty in getting buy-in for engagement in health matters from individuals who 
perceive themselves as healthy and have other pressing needs such as food security, 
access to energy and water. 

Thirdly, although large amounts of electronic health records (EHR) data are 
generated daily, transforming this data into useful information for disease prevention 
strategies is still lagging behind particularly in LMICs. The demand for skilled 
personnel in data mining, data analytics and big data exceeds the supply. Such 
data requires multisectoral collaboration across the health, IT and engineering 
domains for development of interoperable applications, data access and exchange. 

The major challenge for LMIC is access to technology and more importantly the 
cost of continuous maintenance and availability of experts for these technologies in a 
sustainable manner in rural and poor areas. This was illustrated by successful 
implementation of telemedicine in the rural province of Eastern Cape, 
(South Africa) which established effective network communication between outly-
ing clinics and a central regional hospital. However, this ideal development in 
medical technology later faced major challenges of connectivity, IT maintenance



and availability of IT personnel in these rural settings (Kachienga 2008). This 
highlights the plight of many rural populations in emerging economies, despite the 
major advances in information technology and state of the art medical devices. 
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2 Overview of Technological Advances in Artificial 
Intelligence-Based Therapeutics and Diagnostics 
for Preventive Medicine Practice 

Technological advancements during the (4IR such as the Internet of Things, virtual 
reality, robotics, machine learning and artificial intelligence (AI) have revolutionized 
modern medicine and healthcare practices by promoting the development of sophis-
ticated and innovative artificial intelligence (AI) systems, such as systems for 
computational pathology, surgical robots and telemedicine software applications. 

The spread of telemedicine started in the 1980s and referred to systems where 
medical data, in particular microscopic images, were shared in real-time with experts 
at a different geographical location to obtain a second opinion. An advanced version 
of telemedicine started in the early twenty-first century, where images were stored 
and could be reviewed any time later and also long-term archived in digital form. 
This technology became known under the term “digital pathology.” While digital 
pathology has become very popular and an important aspect of current health 
economy, it is still limited in that pathological examination and diagnostics are 
still based on visual analysis by a human expert (looking at a computer monitor 
rather than through the oculars of a microscope). Consequentially, the next step was 
to expand the digital workflow from scanning (digitizing samples) to analysis and 
diagnostics—the actual act of “pathology,” which is the art of recognizing diagnos-
tically relevant information in any given tissue sample. This has been referred to as 
“next-generation digital pathology” (Mungenast et al. 2021) or computational 
pathology. Automated slide scanners, tissue cytometers and image cytometry soft-
ware including machine learning and in particular deep learning algorithms for 
computer-guided recognition of individual cells in tissue context and automated 
classification of histological structures support human experts with recognition and 
understanding of complex cellular interdependencies (Shakya et al. 2020) and help 
to elucidate the multilayered nature of immune responses against cancer as well as 
pathogens (Kaneko et al. 2022). Understanding those molecular mechanisms is a 
prerequisite for the development of targeted therapies, effective drugs but also 
methods of early detection and prevention. That the new era of AI-based diagnostics 
has already started is indicated by the fact that the US Food and Drug Administration 
(FDA) has officially approved the first AI-based software-only diagnostic system, in 
this case for prostate cancer, in September 2021 (FDA 2021). 

Surgical robots have proven useful for minimally invasive surgeries, including 
transoral, knee replacement, dental and benign and brain tumor removal surgeries. 
Apart from being advantageous in offering surgeons greater visualization, precision



and accuracy during surgical procedures, surgical robots also have limitations 
including the high costs associated with purchasing them and maintenance, and 
there has been evidence of nerve damage and compression occurring in patients 
(Table 1). 
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Table 1 Summary of innovative artificial intelligence-based surgical robots used for tertiary 
prevention medicine 

Surgical robot Use Advantages Limitations References 

da Vinci 
Surgical 

Minimally 
invasive 
surgeries. 

(i) Ability to perform 
surgery through tiny 
incisions, leading to 
smaller scars and less 
trauma. 
(ii) Greater visualiza-
tion, precision and 
accuracy. 
(iii) Less pain and dis-
comfort during patient 
recovery. 
(iv) Patients have 
reduced risk of blood 
loss and infection. 
(v) Patients staying at 
hospital are reduced. 
(vi) Reduced surgeon 
fatigue. 

(i) Expensive 
(ii) Requires medical 
facilities with 
advanced technolo-
gies and highly 
trained surgeons. 
(iii) Nerve damage 
and compression can 
occur in patients 
(iv) Robotic malfunc-
tion and maintenance 

DiMaio 
et al. 
(2011) 

Flex Robotic 
System 

Minimally 
invasive 
transoral 
surgery. 

Mattheis 
et al. 
(2017) 

DLR 
MiroSurge 

Minimally 
invasive 
robotic 
telesurgery. 

Hagn et al. 
(2010) 

Mazor X Spinal 
surgery. 

Mao et al. 
(2020) 

Mako 
SmartRobotics 

Knee replace-
ment surgery. 

Grutter 
(2022) 

THINK 
Surgical 

Knee replace-
ment surgery. 

Liow et al. 
(2017) 

Yomi Robotic 
System 

Dental 
implants 
surgery. 

Dimri and 
Nautiyal 
(2020) 

CyberKnife 
System 

Radiosurgery 
to treat benign 
tumors. 

Kilby et al. 
(2020) 

Neurosurgical 
Intracranial 
Robot 

Minimally 
invasive sur-
gery for 
removal of 
brain tumors. 

Liu et al. 
(2021) 

Several AI software applications are currently available that have revolutionized 
diagnostics, drug discovery and patients’ experience in healthcare. A summary of the 
latest AI-based diagnostic software, including the Viz LVO AI, Path AI, Buoy AI, 
Enlitic AI, Freenome AI, Iterative Scopes AI, ViruSense AI/VSTAlert AI/ 
VSTBalance AI, Beth Israel Deaconess Medical Center AI and Caption AI software, 
and their use in diagnosing diseases can be found in Table 2. These AI-based 
diagnostic software have been shown to be useful in treating stroke patients, 
radiological diagnostics, detecting earliest stages of cancer and tumors, lowering 
cancer diagnostic error, treating for gastrointestinal tract infections and screening for 
bacterial infections.
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(continued)
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Table 2 Summary of innovative artificial intelligence-based software applications used for pri-
mary, secondary and tertiary prevention medicine 

Artificial intelligence 
software companies 

(i) Diagnostics (i) Data challenges: 
– Data availability is the 
first barrier. Health data 
is expensive, there is 
ingrained reluctance 
toward sharing of data 
between hospitals, and 
the availability of data 
following introduction 
of the algorithm analyz-
ing it is uncertain. 
– Data privacy and 
security are a major 
issue since patient data 
are prone to be hacked 
by cybercriminals, lead-
ing to a breach in users’ 
personal data and infor-
mation. 
– Quality of data that is 
used to train systems is 
difficult to ascertain. 
– Health data can be 
messy, inconsistent, 
inaccurate and may lack 
standardization in how it 
is formatted and stored. 
(ii) Developer chal-
lenges: 
– Biases may occur in 
collection of data used to 
train models which can 
lead to biased outcomes. 
– Overfitting may occur 
when the system studies 
the relationship between 
patient variables and 
outcomes that are irrele-
vant. This happens when 
there are too many via-
ble parameters and less 
outcome parameters, 
leading to inaccurate 
results. 
– Data leakage may 
occur, where the 

COLUBRIS Tissue 
Cytometer with AI & 
StrataQuest image 
cytometry software 
from TissueGnostics 
GmbH Austria (Ter-
tiary prevention 
medicine) 

– Tissue cytometry plat-
form with deep learning 
algorithms for precise 
recognition of individual 
cells in tissue context 
and machine learning-
based histological clas-
sifiers for detection of 
tumor areas and other 
pathologies. 
– Allows to automati-
cally determine molecu-
lar expression profiles 
and spatial distribution 
patterns of cellular sub-
populations. 
– Automated detection 
of biomarker correla-
tions in high-plex assays 
for tissue analysis. 

Meshcheryakova 
(2021) 
Mungenast et al. 
(2021) 
Aung et al. 
(2021) 

Viz LVO AI software 
app (Tertiary preven-
tion medicine) 

– Uses cutting-edge 
deep learning to send 
urgent information 
about stroke patients 
directly to a medical 
professional who can act 
and treat them. 
– Can immediately 
identify problems and 
alert care teams, 
allowing medical pro-
fessionals to evaluate 
options and make treat-
ment decisions that 
could save lives. 

Petrone (2018) 
Built In (2022) 
Aung et al. 
(2021) 

Path AI software 
(Secondary preven-
tion medicine) 

– Using machine learn-
ing technologies, 
pathologists can make 
diagnoses that are more 
precise. 
– Goals include lower-
ing cancer diagnostic 
error and creating tech-
niques for personalized 
medical care. 

Built In (2022) 
Aung et al. 
(2021)
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algorithm has extremely
high predictive accu-
racy. It is possible that a
covariate in the dataset
has inadvertently
alluded to the outcome,
negating the algorithm’s
significance in
predicting outcomes
outside of the training
dataset.
– “Black-box” problems
can occur, where algo-
rithms are unable to give
a comprehensive expla-
nation for their predic-
tions.
(iii) Challenges in clin-
ical implementation:
– Lack of empirical evi-
dence in validating the
efficacy of AI-based
healthcare software
interventions in clinical
trials.
– Challenges with
implementing and inte-
grating into physician
workflow, including
high amounts of time
and money needed to
train physicians and
healthcare workers to
use the devices.
– Lack of involvement
of multiple stakeholders
in development of AI
healthcare software to
ensure that the product
can be easily integrated
into the physician
workflow with high
throughput.
(iv) Ethical challenges:
– Data privacy and
safety:—Concerns over
ownership and
oversight—who owns
the data and has the
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Table 2 (continued)

Artificial intelligence 
software companies References 

Paige (2022) 
Aung et al. 
(2021) 

Built In (2022) 
Aung et al. 
(2021) 

Built In (2022) 
Aung et al. 
(2021) 

Built In (2022) 
Aung et al. 
(2021) 

Built In (2022) 
Aung et al. 
(2021) 

(continued) 

Paige AI software 
(Secondary preven-
tion medicine) 

– FDA approved soft-
ware application. 
– To aid pathologists in 
the detection of suspi-
cious foci, grading and 
quantification of tissue 
and indication of 
perineural invasion 
(PNI) in needle core 
biopsy samples from the 
prostate tissue. 

Buoy Health AI 
(Secondary preven-
tion medicine) 

– Computer program 
that utilizes algorithms 
to detect symptoms and 
find treatments for ill-
nesses. 
– A chatbot considers a 
patient’s symptoms and 
health concerns before 
recommending the best 
course of action based 
on its diagnosis. 

Enlitic AI (Second-
ary prevention 
medicine) 

– Creates medical deep 
learning techniques to 
speed up radiological 
diagnostics. 
– Provides doctors with 
greater understanding of 
a patient’s current needs 
by analyzing unstruc-
tured medical data, such 
as radiological images, 
electrocardiograms, 
blood tests, patient 
medical history and 
genomics. 

Freenome AI (Sec-
ondary prevention 
medicine) 

– Makes use of AI to 
discover the earliest 
stages and warning signs 
of cancer to develop 
novel treatment 
regimen. 

Iterative Scopes AI 
(Tertiary prevention 
medicine) 

– Automates the process 
of selecting patients who 
are qualified to be 
potential candidates for 
clinical trials for gastro-
intestinal tract infec-
tions, including overall oversight
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responsibility over data
control.
– Accountability:
Should the physician or
developer be held
accountable if the AI
application generates
incorrect patient health
results?
(v) Social challenge:
– Fear with regards to
job loss, thus rendering
healthcare workers
obsolete.
– Inequality and stigma-
tization.
– Misunderstanding and
mistrust of AI in its var-
ious forms.
– Misunderstanding of
AI may lead to unrealis-
tically high expectations
of its efficacy and
results.

inflammatory bowel
disease.

(continued)
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Table 2 (continued)

Artificial intelligence 
software companies References 

VirtuSense 
AI/VSTAlert 
AI/VSTBalance AI 
(Quaternary preven-
tion medicine) 

– ViruSense AI tracks a 
patient’s movements 
using AI sensors so that 
medical professionals 
and caregivers can be 
alerted to possible falls. 
– VSTAlert AI can 
foresee when a patient 
plans to stand up and 
warns the relevant med-
ical staff. 
– VSTBalance AI uses 
machine vision to esti-
mate a person’s risk of 
falling within the 
next year. 

Built In (2022) 
Aung et al. 
(2021) 

Beth Israel Deacon-
ess Medical Center 
AI devices (Second-
ary prevention 
medicine) 

– For early detection of 
potentially fatal blood 
diseases. 
– AI-enhanced micro-
scopes can screen blood 
samples for harmful 
pathogens like E. coli 
and staphylococcus 
faster compared to man-
ual screening, with a 
95% accuracy level. 

Built In (2022) 
Aung et al. 
(2021) 

Caption Health AI 
(Secondary preven-
tion medicine) 

– Uses both AI and 
ultrasound technology to 
detect diseases at early 
stages. 
– Produces high 
diagnostic-quality 
images which are then 
interpreted and assessed 
by the software. 

Built In (2022) 
Aung et al. 
(2021) 

(ii) Drug discovery 
BioXcel therapeutics 
AI (Secondary and 
tertiary prevention 
medicine) 

– Uses AI for the identi-
fication and develop-
ment of new medicines 
within the field of neu-
roscience and immuno-
oncology. 

Built In (2022) 
Aung et al. 
(2021)
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Table 2 (continued)

Artificial intelligence 
software companies 

BERG AI (Primary 
prevention medicine) 

– Creates disease maps 
to expedite the discov-
ery and development of 
ground-breaking medi-
cations. 
– Employs an “interrog-
ative biology” approach 
with conventional 
research and develop-
ment to produce product 
candidates to combat 
rare diseases. 

Built In (2022) 
Aung et al. 
(2021) 

XtalPi AI (Primary 
and Secondary pre-
vention medicine) 

– Uses a crystal structure 
prediction technology to 
identify the chemical 
and pharmaceutical 
properties of candidate 
molecules for drug 
design and development 

Built In (2022) 
Aung et al. 
(2021) 

Atomwise AI (Ter-
tiary prevention 
medicine) 

– A convolutional neural 
network-based discov-
ery engine powered by 
machine learning that 
searches through large 
chemical libraries to find 
novel small molecule 
drugs and to predict their 
bioactivity. 
– Used to combat seri-
ous diseases, including 
multiple sclerosis and 
Ebola. 
– Between 10 and 
20 million genetic mol-
ecules can be screened 
daily and provides 
results 100 times faster 
than conventional phar-
maceutical companies. 

Built In (2022) 
Aung et al. 
(2021) 

Deep Genomics AI 
(Secondary preven-
tion medicine) 

– Used to identify can-
didates for developmen-
tal drugs related to 
neurodegenerative and 
neuromuscular 
disorders. 

Built In (2022) 
Aung et al. 
(2021)
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AI-based software, including BioXcel therapeutics AI, BERG AI, XtalPi AI, 
Atomwise AI and Deep Genomics AI, have played a pivotal role in the discovery 
and development of drugs and medications, and in scrutinizing currently available 
drugs to enhance its therapeutic potency. These software have been proven to be 
useful in finding medications to treat neurodegenerative and neuromuscular disor-
ders and cancer, and in employing an “Integrative Biology” approach to develop 
products to combat rare and serious diseases such as multiple sclerosis and Ebola 
(Table 2). 

As part of tertiary preventive strategies, AI-based telemedicine software, includ-
ing the Kaia Health AI, Spring Health AI, Twin Health AI, Baylon AI and One Drop 
AI, have also played a pivotal role in transforming patient experience in healthcare. 
For example, the Kaia Health AI software uses live physical therapists on a live 
digital platform to offer exercise routines, case reviews, learning resources and 
relaxation activities for patients with chronic back pain and chronic obstructive 
pulmonary disease. The Twin Health AI software uses a variety of AI, internet of 
things (IoT), data science and medical science to treat and possibly reverse chronic 
illnesses such as diabetes by offering patients with personalized physical activity and 
nutrition to suit their individual needs. Another software, the One Drop AI, also 
offers an innovative solution to control body weight and chronic illnesses such as 
high blood pressure and diabetes. This innovative software offers patients with 
predictive glucose readings that are generated by data science and AI by considering 
lifestyle and nutritional changes and daily glucose monitoring by using the One 
Drop’s Bluetooth-enabled blood glucose reader (Table 3). 

3 Application of Geospatial Technologies for Disease 
Control and Prevention 

The birth of the Geographical Information System (GIS) in the 1960s laid the 
foundation for the use of technology to strengthen capabilities of visualizing, 
analyzing and detecting disease patterns. This was building on earlier versions of 
this geospatial tracking of disease such as during the London cholera outbreak and 
the 1918 influenza (Faruque and Finley 2016). This epidemiology method of using 
associations between disease location, the environment and human behavior has 
seen dramatic leaps during the Covid pandemic through the power of big data 
analytics coupled with advanced technology and molecular biology. Novel use of 
spatial big data from smartphones, social media and personal wearable devices to 
locate individuals’ addresses and associate them with epidemiology, genetics, social 
and behavioral traits to map infectious diseases was aptly illustrated during the 
pandemic, to trace contacts, undertake variant genotyping and disease spreading 
patterns. Such an approach can be easily adapted for prediction and control of 
noncommunicable diseases.
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(continued)
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Table 3 Summary of innovative artificial intelligence-based telemedicine software applications for 
secondary and tertiary prevention medicine 

Artificial 
intelligence 
software 
companies 

Kaia Health 
(Tertiary pre-
vention 
medicine) 

– Employs live physical thera-
pists on a live digital therapeu-
tics platform to offer therapy to 
patients around their schedules. 
– Includes personalized pro-
grams with exercise routines, 
case reviews, learning 
resources and relaxation activ-
ities for treating chronic 
obstructive pulmonary disease 
and severe back pain. 

(i) Expensive. 
(ii) Requires mobile devices 
with advanced software tech-
nology and strong internet sig-
nals. 
(iii) Lack of infrastructure for 
telehealth sustenance, espe-
cially in undeveloped and 
developing countries. 
(iv) Data privacy and security 
is a major issue since patient 
data are prone to be hacked by 
cybercriminals, leading to a 
breach in users’ personal data 
and information. 
(v) Patients and health 
worker’s bias toward 
telehealth. 
(vi) Patients’ unwillingness to 
pay for services. 
(vii) Challenges peculiar to 
each country such as gender 
inequality, insecurity, stigmati-
zation and civil unrest. 

Built In 
(2022) 
Babalola 
et al. 
(2021) 

Spring Health 
(Secondary 
prevention 
medicine) 

– A clinically-validated digital 
examination that provides par-
ticipants with a clear picture of 
their current mental situation 
while screening for more than 
10 mental health disorders. 
– Matches patients, by using a 
machine learning methodol-
ogy, with the appropriate spe-
cialist for in-person care or 
telemedicine appointments. 

Built In 
(2022) 
Babalola 
et al. 
(2021) 

Twin Health 
(Tertiary pre-
vention 
medicine) 

– Uses a combination of AI, 
IoT technology, medical sci-
ence, data science and 
healthcare to address and 
maybe reverse chronic illnesses 
like type 2 diabetes. 
– The whole-body digital twin 
software provides a digital 
overview of human metabolic 
function constructed around 
thousands of health data points, 
personal preference and daily 
activities. 
– Offers personalized nutrition, 
sleep, physical activity and 
breathing guidance to 
members. 

Built In 
(2022) 
Babalola 
et al. 
(2021) 

Baylon (Sec-
ondary pre-
vention 
medicine) 

– AI software developed by 
deep learning scientists and 
doctors that acts as an interac-
tive symptom checker, by 
using known risk factors and 
symptoms to give a 

Built In 
(2022) 
Babalola 
et al. 
(2021)
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comprehensive and up-to-date
medical report to patients.

92 Z. Mkhize-Kwitshana et al.

Table 3 (continued)

Artificial 
intelligence 
software 
companies References 

One Drop 
(Secondary 
prevention 
medicine) 

– Provides a discrete solution 
for controlling body weight as 
well as chronic illnesses like 
high blood pressure and diabe-
tes. 
– Provides interactive coaching 
from live health professionals, 
learning resources, predictive 
glucose readings generated by 
data science and AI, and daily 
tracking of glucose by using 
one Drop’s Bluetooth-enabled 
blood glucose reader. 

Built In 
(2022) 
Babalola 
et al. 
(2021) 

To take full advantage of the 4IR in its entirety, including wearable technologies 
for lifestyle, environmental exposure risk and biomarker monitoring, machine learn-
ing and big data analytics for analyzing large amounts of unstructured, heteroge-
neous, nonstandardized and incomplete data can assist in risk and disease 
susceptibility, discovery of communicable and noncommunicable disease patterns, 
biomarker changes and convert this information into valuable predictive and pre-
ventive medicine practices. This requires concerted, transdisciplinary collaboration 
efforts between biology, computational technology and the healthcare system for 
scientific analysis, interpretation and collation of health, lifestyle and environmental 
exposure information using mathematical epidemiological and geo-statistical 
approaches to predict and prevent diseases. 

While the disease mapping, GIS, remote sensing, epidemiological and mathe-
matical modeling have had more predilection toward infectious diseases such as 
malaria remote sensing application (Roberts and Rodriguez 1994) and the recent 
SARS-Cov-2 epidemiological tracking, recent developments have also exploited the 
availability of large amounts of real time, real world geospatial health-related data, 
the computational power and big data analytics to direct efforts toward prevention of 
non communicable diseases (NCD) to mitigate the spiraling epidemic of NCD 
modifiable risks (Canfell et al. 2022a, b). The precision public health model is 
emerging, marrying data that is continuously updated with digital technology ana-
lytics. The main focus is to improve preventive decisions and care for future 
consumers, populations and the public to prevent NCDs at scale (Canfell et al. 
2022a, b). 

The use of geospatial technologies has always had the advantage of targeting 
large populations, as shown in Table 4, which gives examples of how both historic



Intervention Prevention outcome References

and modern applications of this preventive approach have a wide-scale reach, thus 
impacting larger populations (Table 4). 
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Table 4 Traditional and modern geospatial technologies for large-scale preventive medicine 

Geospatial 
technology: 

Malaria Combined remotely sensed 
data and GIS application to 
identify villages with high 
vector-human contact risk. 

Identify villages with high risk 
for malaria to target interven-
tions for entire villages 

Beck et al. 
(1994) 

Earth 
observations 

Real-time surveillance to track 
air pollutants. 

Avert 2–4 million deaths asso-
ciated with air pollutant 
exposure 

Apte et al. 
(2015) 

Covid-19 AI, cloud-based screening for 
Covid-19 infection using a 
smartphone app (AI4 covid) 
engine to distinguish covid-19 
cough sounds. 

Large-scale reduction of the 
misdiagnosis risk-
population wide. 

Imran 
et al. 
(2020) 

Riskscape 
(USA, 
Massachusetts) 

Collates monthly HER real 
time data on chronic conditions 
and infectious diseases for 
mapping and trend analysis. 

Risk monitoring and plan 
interventions for chronic 
noncommunicable and com-
municable diseases in approxi-
mately 20% of the population 

Cocoros 
et al. 
(2021) 

PopHQ 
(Australia) 

Pilot to test aggregating real 
time obesity data. 

Monitoring and prevention of 
obesity among approximately 
1 million population 

Canfell 
et al. 
(2022b) 

Some of the challenges with the use of these technologies include stigmatization 
of communities by linking diseases to specific locations, for example use of GIS for 
mapping HIV testing revealed that women moved to other subdistricts of India to 
avoid being tested in their neighborhoods (Kandwal et al. 2010). Other concerns 
include protection of individual privacy where possible negligent handling of health 
data may compromise this privacy, breach ethics and compromise human rights 
(Thomas and McNabb 2019). 

4 Technological Advances in Preventative Medicine 

4.1 Leveraging the Adoption and Use of Digital Technology 
for Dissemination of Preventive Medicine Information 

At the very least, opportunities provided by the increase in use of digital communi-
cation platforms such as local radio and television, the internet, mobile devices and 
social media should be optimally used for health education and promotion for wide-
scale reach, including low-income households. The communication platforms offer 
the opportunity to reach the unreachable in the language they understand. These



communication technologies, albeit being low hanging fruits, are currently 
underutilized with regards to health promotion and prevention messages. A survey 
of 11 emerging economies in four regions of the world showed that between 70% 
and 97% (median 89%) own a mobile device, and in seven of these countries, more 
than 50% own smartphones with access to Internet and mobile apps (Silver et al. 
2019). This provides a great opportunity to take advantage of this growing access to 
information by populations in these emerging economies. 

94 Z. Mkhize-Kwitshana et al.

4.2 Use of Technologies for Treatment Adherence 
(Secondary Prevention) 

As a form of secondary disease prevention, collection of vital information, such as 
blood pressure, cholesterol measurement, fasting plasma glucose is recorded elec-
tronically, collated and analyzed for automatic risk prediction. In this respect, the 
exponential growth of cellular networks provides opportunity for continuous contact 
with patients. 

Risk reduction through reminder-based applications such as text messages for 
supporting diabetic patients to modify their self-management behaviors and better 
control of disease is another example of secondary disease prevention. Other modes 
used for disease risk-reduction include emails, calls, social media and wearable 
devices to effect reminder-based disease prevention or risk reduction (Razzak 
et al. 2019). 

4.3 Sensor Technologies for the Detection of Biomarkers 
in Body Fluids for Preventative Medicine 

Several sensor technologies have been developed for the detection of nonvolatile 
and volatile biomarkers in body fluids that are associated with a broad spectrum of 
bacterial and viral infections and diseases. Lately, the development of miniaturized 
sensor technologies, wearable technologies and big data analysis have opened new 
avenues for improving healthcare quality while lowering costs through early detec-
tion and prevention of fatal and chronic diseases (Tricoli et al. 2017). There are 
several types of technologies that have been developed or currently in developmental 
phases for the measurement of key biomarkers without the use of invasive pro-
cedures. These technologies can be used through contact (tear fluid, saliva, sweat 
and digestive system analysis) or contactless (breath and perspiration analysis, and 
optical sensors) approaches in the human body (Tricoli et al. 2017).
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4.4 Sensor Technologies for Nonvolatile Biomarkers 

4.4.1 Tear Sensors 

Human tears contain over 1500 proteins which can be used as biomarkers for a broad 
spectrum of viral and bacterial infections and diseases (Tricoli et al. 2017). It can be 
used to detect glucose levels with a limit of detection (LOD) of 1.5 × 10-6 M in  
individuals displaying symptoms of diabetes using amperometric glucose biosensor/ 
capillary tube configuration sensing technology (Yan et al. 2011). Theranostic 
contact lens have a dual-functional hybrid surface to modulate and detect a patho-
genic attack, and studies have found them useful in detecting interleukin-1α levels, a 
biomarker for detecting pathogenic infections, with an LOD of 1.43 pg/ml (Mak 
et al. 2015). Lactoferrin, a biomarker for Sjögren’s syndrome, can also be detected 
using an alkaline microfluidic homogeneous immunoassay, with an LOD of 3 × 10-
9 M (Karns and Herr 2011). 

4.4.2 Saliva Sensors 

The CD59 glycoprotein, also known as MAC-inhibitory protein (MAC-IP), mem-
brane inhibitor of reactive lysis (MIRL) or protectin is a useful biomarker for oral 
cancer diagnosis. CD59 can be detected in saliva using the CD 59 targeted 
ultrasensitive electrochemical immunosensor, with an LOD of 0.38 fg/ml 
(Choudhary et al. 2016). Cytokeratin 19 fragment (CYRFA 21–1) can also be 
used as a biomarker for oral cancer diagnosis and can be detected in saliva using a 
nanostructured zirconia decorated reduced graphene oxide-based efficient 
biosensing platform. The LOD for CYRFA 21–1 using this sensing technology is 
0.122 ng/ml (Kumar et al. 2016). Diabetic kidney disease can also be detected by 
monitoring salivary chloride levels using the Sudoscan®, a device that uses electro-
chemical skin conductance to measure sweat gland dysfunction, and 
chronoamperometry. The LOD for chloride using this technology is 300 mg/g 
(Freedman et al. 2015). Salivary glucose levels can be detected as well using 
electrochemical biosensor based on bioenzyme and carbon nanotubes incorporated 
into an osmium-complex thin film with an LOD of 0.003 mM (Liu et al. 2016), 
electrochemical nanostructured biosensors (constructed by layering single-walled 
carbon nanotubes, gold, chitosan nanoparticles and glucose oxidase onto a screen-
printed platinum electrode) with an LOD of 1.1 mg/dl (Du et al. 2016), and a novel 
disposable enzymatic electrochemiluminescent biosensor based on the sensitization 
from Au/TiO2 nanocomposite with an LOD of 0.22 μM (Yu et al. 2016).
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4.4.3 Sweat Sensors 

A study found human sweat samples can be used to detect 
l-3,4-dihydroxyphenylalanine (levodopa or L-dopa), a medication used for the 
treatment of Parkinson’s disease. Using a monolithic silica disk-packed spin column 
and the high-performance liquid chromatography-electrochemical detection system, 
the authors were able to detect L-dopa levels as low as 5 nmol/l. This sensing 
technology has proven to be useful in understanding the metabolism of L-dopa 
(Tsunoda et al. 2015). Glucose can also be detected in sweat using an artificial neural 
network trained by the Levenberg–Marquardt algorithm (glucose LOD is 83 mg/dl) 
(Saraoğlu and Koçan 2010) and a dual-enzyme biosensor composed of glucose 
oxidase and pistol-like DNAzyme (glucose LOD is 720 μM) (Liu et al. 2015). 

4.5 Sensor Technologies for Volatile Biomarkers 

4.5.1 Breath Sensors 

Acetone is a diabetes-specific breath marker that may aid in the monitoring of 
hyperglycemia-related metabolic disorders. Silicon-doped tungsten oxide nanopar-
ticle films were shown to have the potential of being good portable acetone detectors, 
with LOD of 30 ppb (Righettoni and Tricoli 2011). Ammonia, a biomarker of liver 
failure, can be detected using chemoresistive nanometal oxide semiconductors 
(MOx) (ammonia LOD is 50 ppb) (Gouma et al. 2009) and the p–n oxide semicon-
ductor heterostructure (n-type In2O3 and p-type NiO) (ammonia LOD is 10 ppb) 
(Sun and Dutta 2016). Helicobacter pylori infections are the cause of gastritis or a 
peptic ulcer and can be detected by the presence of n-butanone in the breath. 
Chemoresistive graphene and ZnO nanorod electrodes can diagnose H. pylori by 
detecting n-butanone, with LOD of 500 ppb (Weng et al. 2016). Hydrogen sulfide 
(H2S) and nitric oxide (NO) are biomarkers for asthma and lung injury, respectively 
and can be detected using a high performance chemiresistive electronic nose based 
on an array of metal-catalyzed thin films, metal oxide thin films and nanostructured 
thin films (H2S LOD is 534 ppt and NO LOD is 206 ppt) (Moon et al. 2016). 
Trimethylamine is a biomarker for chronic kidney disease and can be detected using 
gas chromatography with mass-spectral detection coupled with thermal desorption 
method, with LOD of 1.76 ppb (Grabowska-Polanowska et al. 2013). Diagnosis of 
ovarian carcinoma can be done using a chemoresistive flexible gold nanoparticle-
based sensor array that detects biomarkers of ovarian cancer, including 
cyclooctatetraene, hexamethylacetone, 2-ethylhexanol, 2-heptanone, menthol and 
hexadecane, with LOD of 400 ppb (Kahn et al. 2015).
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4.5.2 Skin Perspiration Sensors 

Glucose and acetone, biomarkers for diabetes, can also be detected in skin perspi-
ration using mid-infrared pulsed photoacoustic spectroscopy (glucose LOD is 
50 mg/dl) (Pleitez et al. 2013) and chemoresistive metal oxide semiconductors 
(MOx) with zeolite concentrators (acetone LOD is 10 ppb) (Yamada et al. 2015), 
respectively. Optical coherence tomography can be used to detect carbon dioxide, a 
biomarker for respiratory monitoring, with LOD of 60 ppb (Chatterjee et al. 2015). 

4.5.3 Digestive System Sensors 

Lactic acid and pyruvic acid are biomarkers for gastric cancer and can be detected 
using an electrochemical L-lactic acid sensor based on immobilized ZnO nanorods 
with lactate oxidase, with LOD of 0.1 μM (Ibupoto et al. 2012). Esophageal cancer 
(malonic acid and L-serine), gastric cancer (3-hydroxypropionic acid and pyruvic 
acid) and colorectal cancer (L-alanine, glucuronic lactone and L-glutamine) bio-
markers were detected in serum samples using gas chromatography and mass 
spectrometry, with LOD of 50 μM (Ikeda et al. 2012). Amperometric biosensor 
based on nanoporous nickel/boron-doped diamond film technology is also used for 
the detection of L-alanine, a biomarker for colorectal cancer, with LOD of 0.01 μM 
(Dai et al. 2014). 

4.6 Wearable Technology and Smart Clothing 

Smart wearables, including smart watches and fitness bands, and sensor-integrated 
smart clothing have rapidly gained popularity, particularly in the sectors of person-
alized healthcare, fitness and sports (Ahsan et al. 2022). There are several types of 
wearable technologies that can be used to monitor different body parameters and 
biosignals such as smart jewelry, smart watches, fitness trackers, brain activity 
tracker, smart belt, smart shoes, smart socks, smart baby garment, smart T-shirt 
and smart leggings (Ahsan et al. 2022). The different bio-signals in the human body 
that can be detected using smart wearables can be classified as bioelectrical (elec-
trocardiogram (ECG), electroglottograph (EGG), electroencephalograph (EEG) and 
electromyograph (EMG)), biochemical (glucose, lactate metabolites, etc.), bioacous-
tics (phonocardiogram), biothermal (surface temperature), biomagnetic (magneto-
encephalography, magnetogastrography, magnetoneurography and 
magnetocardiogram), biomechanical (blood pressure and murmurs, rubs and gal-
lops) and bio-optical (optical parametric generation) (Ahsan et al. 2022; Muhammad 
Sayem et al. 2020). 

Several smart clothing has been developed that has sensors and signals attached 
to them, including ECG, EMG, EEG, triaxle accelerometer and gyroscope, and



acromion sensor that monitors burn rate, energy, sweat, temperature, breathing 
patterns and physical stress levels (Meyer et al. 2010), heart rate variability and 
mental stress (Joshi et al. 2016; Zaffalon Júnior et al. 2018), sleep disorders (Liang 
and Nishimura 2017), respiration rate and blood pressure (Abtahi et al. 2015; Brady 
et al. 2005), rehabilitating shoulders (Wang et al. 2017) and rehabilitation process of 
osteoarthritis patients (Spulber et al. 2015). Ambient, physiological and motion 
sensors and signals are also found in smart T-shirts to detect inactive lifestyle 
using machine learn (Kańtoch 2018). 
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Smart T-shirt garments, consisting of knitted sensors, and shimmer sensors to 
detect ECG and accelerometer data, have also been developed specifically for the 
elderly to monitor heart rate, heart attack and stroke symptoms (Burns et al. 2012; 
Frydrysiak and Tesiorowski 2016). Smart socks contain Lilypad Arduino sensors 
that can monitor temperature, oxygen saturation, heart rate and heart rate variation 
(García et al. 2018). Wearable computers and smart clothing are also equipped with 
textrodes and motion sensors to monitor physiological and neuropsychological 
conditions and musculoskeletal fatigue limits (Scataglini et al. 2015; Friedl 2018). 

5 Technological Advances for the Preventive Medicine 
and Healthcare Practice for Future Smart Society 5.0 

For the fact that the recent Covid pandemic contact-tracing activities enabled health 
personnel to reach normally hard-to-reach populations, it gives promise that the 
political will to commit the right resources can help to predict or identify where the 
disease risks are and what health prevention interventions are needed to respond to 
mitigate the risk for preventive medicine even for the poorly, disadvantaged com-
munities. The latter require all possible strategies and interventions for disease 
prevention. 

5.1 Use of Technology for Continuous Contact Between 
Individuals and Healthcare Providers for Preventive 
Medicine 

One of the pitfalls of (traditional) effective preventive medicine is its dependency on 
the uptake, responsibility and ownership by individuals, at preclinical and subclin-
ical phases where individuals presume a state of well-being and therefore do not feel 
the need to engage in health-check activities. Of importance in this is the level of 
literacy in general and health-illiteracy. To bridge this gap, technologies that will 
enable continuous communication loops between an individual and the healthcare 
system, big data analysis application from sources such as wearable technologies 
that monitor health indicators (Fig. 1) such as blood pressure, cholesterol and



biomarker levels can be used. For super Society 5.0, early inception of data collec-
tion (from birth), exploiting the power of technological and computational advances, 
information explosion and big data analytics can provide opportunities for early 
warning signs in disease prevention and the feedback loop from healthcare provider 
will ensure that the individual receives relevant information for corrective prevention 
behavior change wherever they are, at all levels of literacy. 
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Finally, integration of data collected from birth to death, that includes personal 
genomic profile, EHR, daily monitoring data from wearable technologies including 
lifestyle and environmental pollutant exposure and sociodemographic data to for-
mulate P4 medicine (personalized, predictive, preventive and participatory) medi-
cine (Hood 2013). This approach for the smart society (Society 5.0) will enable 
prediction of disease susceptibly, early detection of pathological changes for early 
treatment and the appropriate implementation of primary and secondary prevention 
of disease. Regular interval feedback interactions between individuals and 
healthcare providers, facilitated through an electronic feedback application for 
interpretation of data analyzed through machine learning will ensure that all indi-
viduals are constantly updated about their health status as interpreted and warned by 
the healthcare providers. It is assumed that as more individuals engage in disease 
prevention activities and take responsibility for their overall well-being, the health 
system and healthcare personnel will no longer be overburdened. Subsequently more 
time and effort can be spent in P4 activities (Fig. 1). 

At population level, the data can be collated for population public health for both 
communicable and noncommunicable diseases to achieve maximal benefits, wide 
coverage and hence higher impact to prevent both communicable and 
noncommunicable diseases (Canfell et al. 2022a). 

6 Limitations and Challenges 

6.1 Adverse Effects of Excessive Technology Use 

One of the drawbacks of the 4IR advances is technology addiction. This has been 
linked with a variety of negative outcomes ranging from eyestrain associated with 
head and neck pains, mental disorders such as impaired brain and cognitive devel-
opment, impaired emotional and social intelligence, attention deficit hyperactive 
disorder, depression and anxiety, social isolation (Small et al. 2020). In young 
children, poor language development has been reported (Duch et al. 2013). Other 
challenges are associated with prolonged sedentary lifestyle due to long hours on the 
internet and smartphones with consequent diseases of lifestyle such as obesity 
(Aghasi et al. 2020). This suggests a double-edge sword where on the one hand 
the technology advancements may provide improvements in disease prevention and 
quality healthcare; on the other hand, unintended adverse effects result in more 
negative health outcomes.
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Fig. 1 Schematic presentation of the tenets of preventive medicine approaches for Society 5.0 

6.2 AI-Based Applications, Including Surgical Robots, 
Preventative Health Software Applications (Diagnostic, 
Drug Discover and Telemedicine) and Sensor 
Technologies for Biomarker Detection in Biofluids 

The high financial cost associated with the use of AI-based applications (surgical 
robots, biomarker sensor technologies, and diagnostic, drug discovery and telemed-
icine software applications) is a major challenge, which will have a negative impact 
on people from rural communities and low-income backgrounds who do not have 
medical aid insurance and do not have access to a suitable smartphone, cellphone,



tablet, internet or Wi-Fi to purchase and download these healthcare software. 
Furthermore, the majority of underdeveloped and developing countries are exposed 
to poverty and do not have adequate healthcare facilities and infrastructures to 
support the growth of technologically advanced AI-based preventative medicine 
practices which is a serious concern. As a result, there is an urgent need for more 
cost-effective solutions to tackle this issue. There is also a severe lack of research 
funding in underdeveloped and developing countries, which requires immediate 
attention from first-world research and innovation funding stakeholders to assist 
LMICs medical doctors, scientists and computer and software engineers and pro-
grammers in developing simple and cost-effective AI-based healthcare software’s. 
Another issue is that almost all AI-based healthcare software developed to date has 
been transcribed into English which prompts the need for these software to be 
translated into all languages spoken globally. 
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6.3 Limitations and Adverse Impact on Biology and Human 
Behavior for Wearable Technologies 

The neurological negative effects of technology gadgets causing brain and behav-
ioral disorders (Small et al. 2020) raise concerns for wearable technologies. To date, 
little is known about how these smart wearables and other similar direct human 
contact technologies affect human biology and behavioral patterns. The majority of 
smart wearable devices communicate via Wi-Fi or Bluetooth which can be a health 
hazard. These devices transmit data via wireless technologies, which generate radio 
waves. The radio waves, however, can be hazardous to the users and those around 
them (Excellent Webworld 2022). Exposure to extremely high radiofrequency 
radiation intensities can cause biological tissue heating and an increase in body 
temperature. Tissue damage in humans could occur as a result of the body’s inability 
to deal with or dissipate the excessive heat that could be generated (Federal Com-
munications Commission 2022). Radiofrequency radiation emitted from mobile 
phones and computers was significantly associated with breast cancer development 
(RR = 2.057; 95% CI = 1.272–3.327) (Shih et al. 2021). Wearable technologies can 
also have a negative impact on human behavior by producing attention deficit and 
aggressive individuals who are overly reliant on social notifications and nudges to 
execute daily tasks and activities (Ranchordás 2020). 

There are also several challenges and limitations associated with wearable tech-
nology and smart clothing that need to be addressed and improved on as follows: 

6.3.1 Technical Issues 

Noisy physiological signals from sensors due to motion artifacts can lead to inac-
curate predictions of health status. Discontinuous sensor signals can also occur due



to malfunctioning of sensors and inappropriate attachment of sensors to clothing. 
Sensors in smart clothing lack flexibility, foldability and adjustability, which could 
lead to inaccurate physiological data collection. Wearable devices lack self-
powering and utilize several technologies, wireless networks and GPS which 
makes them more prone to shorter battery life and power failure. Smart clothing 
lacks a suitable user interface and universal operating system software which pose a 
challenge in presenting the monitored physiological parameters to the end-users. 
Security and privacy of big data is another concern since wearable technology are 
prone to be hacked by cybercriminals, leading to a breach in users personal data and 
information (Ahsan et al. 2022; Fernández-Caramés and Fraga-Lamas 2018; Chen 
et al. 2017; Brioude et al. 2007; Fernández-Caramés et al. 2018; Bove 2019; Carpi 
and De Rossi 2005; Chen et al. 2016). 
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6.3.2 Durability 

Smart clothing is particularly susceptible to frequent failure due to complex 
processing techniques used in sensor development and embedding, which raises 
concerns about its dependability in use. They also have a shorter lifetime in the 
market due to the short lifespan and durability of most sensors and materials used to 
manufacture them, and are difficult to maintain since human sweat and thermal 
regulation, and washing with water can damage the embedded electronics (Ahsan 
et al. 2022; Fernández-Caramés and Fraga-Lamas 2018; Chen et al. 2017; Muham-
mad Sayem et al. 2020; Paul et al. 2014; Chen et al. 2016). 

6.3.3 Social Acceptability, Especially for Low-Income Individuals 

A major issue with these advancements is the huge financial burden associated with 
purchasing wearable technologies and smart clothing, which will negatively impact 
individuals from low- and middle-income households. Furthermore, the majority of 
people from poor socioeconomic backgrounds and residing in rural areas do not 
have access to the internet and Wi-Fi which is a challenge since wearable technology 
and smart clothing heavily rely on connectivity networks to communicate the 
monitored physiological parameters to the user. Another challenge is the lack of 
awareness about the latest technological developments in preventative medicine, the 
high cost associated with purchasing smart fabric and the need for smart clothing to 
be fashionably trendy to appeal to the younger generation, as well as to suit different 
cultures, ethnicities or dress codes (Mokhtarian and Tang 2013; Ching and Singh 
2016; Chen et al. 2016; Ahsan et al. 2022). 

The current global energy crisis, caused by energy supply underinvestment, 
Russian-Ukraine conflict and weather extremes, have led to “affordability crisis” 
caused by record high energy bills and “energy supply crisis” owing to lack of fuels 
and power (S&P Global 2022). Higher energy prices have contributed to excruciat-
ingly high inflation, pushed families into poverty, forced some factories to reduce



output or even shut down, and slowed economic growth to the point where some 
countries are on the verge of a severe recession (International Energy Agency 2022). 
The dwindling global energy supply will adversely impact the 4IR’s Big data and 
AI, advancements for the Precision Public Health and faster attainment of SDGs. 
Also, AI-based healthcare software and Wi-Fi heavily rely on constant power to 
function which is a serious concern and issue to address. 
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Furthermore, the advantages and convenience brought in by technological 
advances, big data and AI also bring about a myriad of challenges that are not yet 
fully understood by medics and academics and clarified by lawmakers. One such 
issue is lack of clarity on who owns the patient health records data, how and when 
can it be used, should it be governed by propriety law or ethics bodies, particularly 
when there are issues of tech companies commercializing healthcare data (Liddell 
et al. 2021). The blurred legal framework on patients’ rights and ownership, ethics of 
data usage and commercialization is also getting out of control with resultant class 
action, such as that between Google and University of Chicago where patient data 
was shared without adequately complying with the ethics of privacy (protection of 
patient data) (Wakabayashi 2020). 

In summary, the overall limitations for taking full advantage of the 4IR’s Big data 
and AI, advancements for the Precision Public Health and faster attainment of SDGs 
(a better Society 5.0 for all at all ages) particularly for LMICs are the prohibitive cost 
of resourcing this noble initiative, advanced data storage/cloud space infrastructures 
required to safely and securely store Big data generated from AI-based software and 
poverty. Another limitation is health illiteracy. People with limited health literacy are 
more likely to have chronic medical conditions and challenges in managing them, 
tend to avoid vital medical tests, less likely to follow treatment regimes, have a 
higher rate of hospital and emergency room stays and have higher mortality rates 
(Liu et al. 2020). Based on human rights, particularly the right to access to health, if 
all governments were to approach preventive medicine exclusively by 4IR and AI, 
under the current inequities, those who need these health interventions most, would 
be inadvertently excluded. 

7 Concluding Remarks 

The current cost of 4IR technological advances makes them exclusive for the rich 
populations. They are financially prohibitive, unscalable and therefore unsustainable 
particularly in LMIC where they are most needed. If governments in these countries 
make collective and conscientious efforts to invest more in preventive medicine 
exploiting the power of modern technology, AI and big data analytics, the long-term 
return on these investments outweighs current financial burden of disease treatment 
risks. Through very early detection, control and prevention of disease, healthcare 
costs will be kept at minimum. Important innovative actions are required, in the 
contexts of the inclusivity principle of SDGs plus literacy levels and economic 
challenges of LMICs. With appropriate level of commitment and careful budget



planning, the full potential of opportunities offered by the 4IR, CPS and big data 
analytics can achieve unmeasurable long-term benefits in prevention of disease and 
reduction of healthcare costs for LMICs. This can be achieved through application of 
smart society principles both at individual (personalized, predictive, preventive and 
participatory medicine (Hood 2013) as well as precision public medicine (Canfell 
et al. 2022a, b). While this ideal is pursued, careful consideration for issues of human 
rights and privacy, security, safety, oversight, resource allocation and energy crisis 
must be attended to. 
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Internet of Things in Society 5.0 
and the Democratization of Healthcare 

Demetra Demetriou, Kgomotso Mathabe, Georgios Lolas, 
and Zodwa Dlamini 

Abstract The application of the fourth industrial revolution will create a new 
society known as Society 5.0. This revolution will raise our standard of living and 
will solve many challenges currently faced. It will allow people to have access to 
medical advancements at a low cost. Innovations in medical science and technology 
allow patients to communicate with doctors anytime and anywhere. Simulators, such 
as virtual reality (VR) surgical simulators, will enable more advanced examinations 
and diagnoses. The knowledge and data can be combined into a sharable database 
improving medical technology and healthcare. Internet of Things (IoT) is a wireless, 
connected and intercalated system of devices that can send, store and collect data. 
IoT with the use of artificial intelligence (AI) will improve diagnostic accuracy. 
Through these technologies, healthcare and patient care can be improved. Medicine 
will become more precise, patients will become empowered, the value of medicine 
and medical care will shape delivery and digitalization will transform healthcare. 
Digitalization will allow patients to have a customized computational model of
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themselves that will allow doctors to anticipate illness, guide therapy and improve 
diagnosis and prognosis. Expanding precision medicine will enable doctors to make 
highly specific diagnoses. Healthcare will be anticipatory in Society 5.0 and will be 
available anytime transforming care delivery. In this regard, the lay public will be 
able to have access to medical information that is evidence-based, personalized via 
AI algorithms and often outside the control of the healthcare system, representing the 
“democratization of healthcare.” The challenge faced with using IoT is accessibility 
of data that can be misused to violate human rights and values such as privacy, 
security and safety in many countries especially those countries with low resources. 
There is also a major energy and resource crisis, especially in South Africa, that can 
lower the sustainability and use of IoT.
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1 Introduction 

Evolution is a natural process of the world and leads to the improvement of life and 
technologies. The progression of information and communications technology (ICT) 
is leading to major changes in industry and society (Fukuyama 2018). The history of 
each Society and the available healthcare has guided the way forward. Each Society 
strives to be better than the previous offering improved healthcare and survival in the 
medical field. Society 1.0 is known as the hunting society. People hunt and gather 
and coexist with nature. This was the birth of human beings. Society 2.0 is known as 
the agrarian society. These groups are based on nation-building, increasing organi-
zation and agricultural cultivation. It was also the start and development of irrigation 
techniques and the establishment of settlements. Society 3.0 is the industrial society 
that promotes industrialization through the industrial revolution. This Society pro-
vided the invention of steam locomotives and mass production. Society 4.0 is an 
information society that includes the use of AI and big data. This Society provided 
the invention of computers and the start of information distribution. Society 5.0 is a 
super smart society using advanced AI and robotics to improve living (Fig. 1). 
Developed countries are already implementing Society 5.0 technologies (UNESCO 
2019) whereas developing countries still need to acquire the technology for Society 
5.0 devices (de Hoyos Guevara et al. 2020). The progression of Society 5.0 is not 
synchronized and there is no linear progression of all at once. 

Society 5.0 is a Japanese concept of a technology-based, human-centered society. 
Society 5.0 is an upgrade on the existing society that will better human existence 
through technology. It will rise from the fourth industrial revolution and show 
humans and machines coexisting together. Although Industrial Revolution 4.0 and 
Society 5.0 show a relationship, they address different issues. In Industry 4.0 (4IR), 
intelligence and knowledge are achieved by humans with the support of technology. 
In Society 5.0, intelligence and knowledge will come from machines at the service of



people. Technology such as AI will infuse all areas of life including science, 
healthcare, law, environment and ethics (Sharp 2020). Society 5.0 is known as the 
Super Smart Society and this is already seen in the use of Smart Watches that 
monitor heart rate, sleep and blood oxygen levels. Innovations in medical science 
have been transforming society to allow people to live longer and healthier lives; for 
example, biometric data are gathered continuously every day through devices such 
as smart watches that can alert the user of an illness before there is any outward sign. 
This can enable them to receive prompt medical attention. 
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Fig. 1 The evolution of Society. Society 1.0 is known as the hunting society. People hunt and 
gather and coexist with nature. Society 2.0 is known as the agrarian society. These groups are based 
on nation-building, increasing organization and agricultural cultivation. Society 3.0 is the industrial 
society that promotes industrialization through industrial revolution. Society 4.0 is the information 
society that includes the use of AI and big data. Society 5.0 is the super smart society using 
advanced AI and robotics to improve living 

A major catalyst in the progression toward Society 5.0 is the Coronavirus 
(COVID-19) pandemic. During this pandemic, several aspects of life relied on 
technology. Formal educational classes from primary school to university and 
work were traditionally held on physical premises. During Covid 19, educational 
classes and work were done online and changed the way we communicated (Sarfraz 
et al. 2021). Other technologies in addition to AI that will be included in Society 5.0 
are big data, Internet of Things (IoT), sharing economy, digital platforms, virtual 
reality and the robots (Sharp 2020; Sarfraz et al. 2021). The data collected will be 
converted to a modern type of intelligence through AI and improve human lives and 
sustainability. Japan is the lead runner in Society 5.0 due to its technological and 
innovative advancements and designs. Medical diagnostics and AI are used for



contact tracing and data collection as seen with Covid-19. Current digital tools have 
shown favorable results in managing outbreaks of infectious diseases (Kostkova 
et al. 2021; Verma and Mishra 2020). Enhanced human application through society 
5.0 can improve the management of the scope, speed and impact of disease out-
breaks (Sarfraz et al. 2021). Multidisciplinary collaboration will improve patient care 
and patient experience. This will allow the patient to become more empowered by 
having physical and virtual care when needed. This will also allow doctors and other 
healthcare providers to increase the value that improves healthcare. 
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1.1 Internet of Things in Society 5.0 and Healthcare 

Internet of Things (IoT) is a connected, wireless and intercalated system of devices 
that can store, send and collect data over a network that avoids computer-to-human 
involvement or human-to-human (Kelly et al. 2020). IoT influences our lifestyle 
from the way we behave and react. IoT is adapted in many applications and the 
importance is growing in our daily lives for example we can control air conditioners 
with our smartphones. In simple terms, IoT is a giant network of connected devices. 
These devices collect and share data about how they are used and the environment. 
They work using sensors that are embedded in every device. The sensors emit data 
about the status of the device. IoT is the platform for the device data and allows 
devices to communicate with each other. The data are emitted to IoT security 
platform that integrates the data from various sources and further analysis is 
performed. The required data are extracted after the analysis. The results are shared 
across devices. 

In healthcare, IoT can be any device that can collect health data and that will be 
able to connect and upload the data to the Internet (Dang et al. 2019). These devices 
include smart cell phones, smart watches, implanted surgical devices and digital 
medications to name a few. IoT can be used to predict and diagnose health issues and 
treat and monitor the patient in or out of the hospital. IoT can support healthcare 
systems to improve and democratize patient care. Some of the services provided by 
IoT in healthcare include eHealth, community-based healthcare, mobile health 
(mHealth) and smartphones. These systems can be used by medical staff to track 
and monitor health progress remotely, allow early detection of diseases, and improve 
disease identification and self-management (Dang et al. 2019; Saarikko et al. 2017; 
Nazir et al. 2019; Yuehong et al. 2016). Many health delivery services have made the 
switch to technological-supported health delivery systems due to Covid-19 (Fisk 
et al. 2020). For this reason, it is key to know how IoT technologies can support the 
healthcare system and improve the safety and effectiveness of the system (Ye et al. 
2020).
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1.1.1 IoT-Based Healthcare Construction 

There are three basic levels which include the perception level, network level and 
application level (Sethi and Sarangi 2017). Perception and identification technolo-
gies are key in IoT. The perception level is the sensing system that collects the data. 
Sensory devices that can capture changes in the environment include infrared 
sensors, cameras, radio frequency identification (RIF) and GPS to name a few. 
These devices allow perception via object-, location- and geographical identification 
that is converted into digital signals (Sethi and Sarangi 2017; Wu et al. 2010). Using 
these sensory technologies, treatments can be monitored in real-time. Table 1 shows 
examples of devices that can improve and support healthcare services. The network 
level is data communication and storage of data. This level includes wireless and 
wired networks that processes the information from the perception level and stores 
the information. The information is communicated over various frequencies includ-
ing technologies such as Bluetooth, RIF, Wi-Fi, 5G and wireless sensor networks 
(Sethi and Sarangi 2017; Li et al. 2018). The information is stored at a cloud-based 
(centralized) or local (decentralized) location. Cloud-based computing is flexible, 
ubiquitous and can be scaled to size (Darwish et al. 2019). The cloud can support 
electronic medical records (EMRs), medical IoT devices such as smartphones, 
patient portals and therapeutic strategies (Dang et al. 2019). Local or decentralized 
processing and networking can improve the scalability of IoT. Edge cloud is a new 
concept that allows the processing of data in a decentralized approach that reduces 
the required amounts of data (Sethi and Sarangi 2017; Pan and McElhannon 2017). 
The application level applies and interprets data and is responsible for application-
specific services (Sethi and Sarangi 2017). These applications use artificial intelli-
gence to improve diagnosis, prognosis and treatment (IBM 2018). IoT-based 
healthcare and the use of AI and deep learning can assist medical professionals to 
predict diseases and improve diagnosis and management (Tobore et al. 2019). 

IoT allows data to be collected, communicated and stored and enables data 
analysis and smarter healthcare that can improve diagnosis, risk identification, 
treatment monitoring and management. Smart healthcare services can use the infor-
mation from IoT, big data, AI and deep machine learning to provide a more 
personalized, efficient and convenient system (Tian et al. 2019). IoT improves the 
efficiency and quality of the ecosystem of service delivery like assessment manage-
ment, hospital management, optimization of resources and workflow of staff 
(Thangaraj et al. 2015; Yu et al. 2012). 

1.1.2 Health Service Improvement Through IoT 

Primary healthcare is becoming more accessible. However, disease prevention must 
be a focal point to decrease the burden of disease. IoT can improve population health 
and transition the healthcare model to a hybrid of primary, secondary and tertiary 
healthcare. There is a demand for easy access to health information and many
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Table 1 IoT devices that can support health service delivery systems 

IoT device Description Uses 

Vital sign 
patches. 

To track and monitor respiratory rates, 
heart rates, sleep cycle, temperature, 
etc. 

One pilot trial followed patients that 
were discharged from emergency. 
The patients had infections, heart 
failure, chronic obstructive pulmo-
nary disease or asthma. The study 
showed fewer negative events and 
lower healthcare costs via IoT 
(Levine et al. 2020). The patches will 
be investigated for their effectiveness 
and will potentially have further 
applications for hypertension, type 
2 diabetes mellitus, asthma, sleep 
apnea, etc. 

Inhalers that 
are Bluetooth-
enabled. 

A Bluetooth sensor will be used 
coupled with a mobile app that will 
allow predictive analysis and provide 
feedback. 

Used for asthmatic patients or for 
respiratory conditions. IoT devices 
can improve healthcare utilization 
through self-management and symp-
tom identification (Merchant et al. 
2016, 2018). 

Therapeutic 
extended or 
virtual reality. 

Virtual reality, mixed reality or aug-
mented reality can be used to visualize 
data collected from sensors from IoT. 

Virtual reality has become increas-
ingly popular as it is portable, vivid 
and immersive. This can be used for a 
range of outpatient and inpatient 
applications (Birckhead et al. 2019; 
Eckert et al. 2019). Augmented reality 
and mixed reality applications have 
been suggested to outperform tradi-
tional service methods including cen-
tral vein catheterization, anesthesia 
and acquisition of anatomy knowl-
edge (Gerup et al. 2020). Other virtual 
reality applications have been applied 
in various diseases (Tashjian et al. 
2017; Chirico et al. 2016; Lohse et al. 
2014; Valmaggia et al. 2016) and is 
suggested to assist in obesity preven-
tion and management (Persky 2011). 

Digital 
medications. 

An external body sensor, for example 
a wearable sensor patch, which 
receives information from an ingest-
ible sensor 

The smart medication interacts with a 
wearable patch and communicates 
with a mobile app. Information is 
stored on the cloud. A mobile app can 
also be used to remind patients to take 
their medication and share informa-
tion with others (Plowman et al. 
2018). 

Smart voice 
assistants. 

Provides support to users through 
vocal conversations. These devices 
include Siri, Alexa, Google Home and 
Amazon. 

The hand-free feature of smart voice 
assistants assists various groups for 
example the elderly, disabled or 
technologically impaired users 

(continued)



smartphone users want to download a health-related app for self-management (Pai 
2015). AI has provided point-of-care health information which can assist with 
medical and lifestyle advice. Established AI bots include Your Md, Woebat, 
HealthTap and Babylon that provide instant medical advice based on symptoms 
(Nadarzynski et al. 2019). However, the accuracy has not been approved

Internet of Things in Society 5.0 and the Democratization of Healthcare 117

Table 1 (continued)

IoT device Description Uses 

(Dojchinovski et al. 2019). The inter-
active conversations with the smart 
voice assistants enables an engaged 
and patient-centered usage (Laranjo 
et al. 2018). The conversation agents 
can provide answers to health-related 
questions without human contact, 
collect data, assist with self-
management activities, etc. (Ilievski 
et al. 2019). 

Wearables. Devices worn by the user for exam-
ple glucose monitors can be used to 
dosage and time and recommend 
accurate dosage type. 

Examples of wearables include smart 
insulin pens continuous glucose 
monitors (Sangave et al. 2019), smart 
watches, loneliness detectors (Doryab 
et al. 2019), fall detectors like iFall 
(Sposaro and Tyson 2009), wearable 
blood pressure monitors (Kakria et al. 
2015) and wireless electrocardiogram 
monitors (Majumder et al. 2018). 
These IoT compatible devices can 
improve insulin administration and 
decrease medication errors (Sangave 
et al. 2019). 

Social robots. AI system that can interact with 
humans through social rules (Chen 
et al. 2018). 

Robots in the hospital settings are 
used to provide navigation informa-
tion, collect patient data and to detect 
abnormal actions (Van der Putte et al. 
2019; Wan et al. 2020). In home set-
tings, health robots can detect 
unhealthy behaviors, assist in treat-
ment and therapies and manage med-
ication (Baur et al. 2018; Tao et al. 
2016; Nijholt et al. 2018; Moyle et al. 
2013). 

Smart 
cameras. 

Changes in the environment can be 
captured by smartphone cameras. 

Smart cameras are associated with 
smartphones. Data are downloaded to 
an app. This can assist the healthcare 
delivery system via diabetic wound 
analysis (Bhelonde et al. 2015), heart 
rate, skin and dry eye disease moni-
toring (Ashique et al. 2015;  Połap 
et al. 2018; Shimizu et al. 2019).



(Wisniewski et al. 2019). There is a need for a reliable digital, evidence-based app 
and resources (Borycki 2019). IoT also offers the opportunity to learn from and link 
nonhealth IoT technologies to provide support, monitor daily activities and encour-
age lifestyle changes. Nonhealth and health IoT data provide valuable information 
regarding surveillance on a population level, accidents, environmental conditions 
and risk factors which can be difficult to collect through human reporting systems 
(Pacheco Rocha et al. 2019; Lai et al. 2020). Through data linkage and IoT, pro-
fessionals will be able to make evidence-based decisions to promote health, safe 
transportation systems, quality public services and smart healthcare (Pacheco Rocha 
et al. 2019; Wray et al. 2018; Palmieri et al. 2016) (Fig. 2). An IoT-based healthcare 
system allows the overall healthcare systems to evolve past the traditional model of 
service delivery to a more coordinated, continuous and proactive, continuous 
approach (Korzun 2017). It provides improved high-quality care that is less invasive 
than traditional methods. Improved changes in the healthcare system are also very 
attractive to policy makers as they can enhance the health system field’s efficiency 
(Dauwed and Meri 2019) and can provide model flexibility based on the individual’s 
need or population-wide need. IoT uses AI to improve the accuracy of results.
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Fig. 2 IoT meaning to 
Society 5.0. The IoT can 
come from anybody, any 
device, any business, any 
network, anytime and 
anywhere. Using the IoT 
devices from Table 1, data is 
collected and stored on the 
cloud. The data is accessed 
and analyzed, and decisions 
are based on the 
information. Medical staff 
will be able to make 
evidence-based decisions to 
promote health, diagnosis, 
prognosis, treatment and 
monitoring 

Internet of 
Things 

Anybody 

Any 
Device 

Any 
Business 

Any 
Network 

Anytime 

Anywhere 

1.1.3 4P Medicine (Personalized, 
Predictive, Participatory and Preventive) Using IoT Services 

The goal of medicine, that is personalized, predictive, participatory and preventive 
(4Ps), has been advocated by Leroy Hood and others. The 4Ps are summarized in 
Table 2. Systems approaches in medicine and biology provides consumers, physi-
cians and patients with personalized health and disease information at the cellular,



organ and molecular levels (Flores et al. 2013). The information collected by the IoT 
system makes disease care more cost-effective as medical care will be personalized 
and the cause might be treated. Patients will be more encouraged to be involved in 
their medical care and can observe lifestyle decision impact. Predictions models can 
be designed based on the IoT system data that will assist in the prediction and 
possible prevention of diseases. 
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Table 2 The 4Ps 

Goal IoT application References 

P1— 
personalization 

The goal of personalization 
is to identify tailored treat-
ment based on the genetic 
profile of each individual. 
Other factors will also be 
considered like patients’ 
abilities, needs, lifestyle, 
social contexts, family his-
tory and psychological 
aspects. 
This will improve treat-
ment outcomes and sur-
vival rates. Disease risks 
can be discovered and pre-
cautionary steps can be 
taken to optimize wellness. 

IoT will allow the captur-
ing and collection of data 
that can be accessible to the 
patient and medical staff. 
The data can be used to 
design treatment that is 
personalized to the patient. 
This is also known as pre-
cision medicine. 

Pravettoni and 
Triberti (2020), 
Jarow (2018), 
Sebri and Savioni 
(2020) 

P2— 
Predictive 

The goal of predictive 
medicine is to use genetic 
and laboratory tests to pre-
dict the onset of a disease 
and the involved risks. 
Techniques such as AI, 
biomedical imaging instru-
ments and machine learn-
ing can be used. 

The data in the IoT system 
can be used to design pre-
dictive models that can be 
used to assess risks and 
provide treatment 
solutions. 

Tuena et al. (2020) 

P3— 
participatory 

The goal of participation is 
to involve individuals and 
to empower them. They 
will be able to manage their 
health status that will allow 
communication between 
the patient and the medical 
staff. 

The IoT system will allow 
the data to be accessible to 
the patient and will allow 
the patient to be more 
involved in their 
healthcare. The patient will 
be able to ask questions 
and learn more about their 
health. 

Kondylakis et al. 
(2020) 

P4— 
preventative 

The goal is to define inter-
ventions to a disease before 
it occurs. Environmental, 
socioeconomical and psy-
chological factors can also 
be considered. 

The data in the IoT system 
from various devices can 
be used to assess risks and 
provide treatment or life-
style intervention before 
the disease occurs. 

Monzani and 
Pizzoli (2020)
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1.1.4 Democratize the Healthcare System with IoT 

New demands around health, safety and public health have been put on connective 
technologies and smart devices (Dodge 2020). In the ambient assisted living (AAL), 
IoT devices have gained prevalence (Incki and Ari 2018). AAL can be defined as 
“the use of communication technologies (ICT) and information in daily living 
including the use in a working environment that enables social connection, 
remaining active for longer and to live independently” (Monekosso et al. 2015). 
Improved computing capacity will allow for full operational systems and specialized 
software in the IoT system. These improvements will allow expedited data 
processing without compromising the safety and integrity of the data collected 
(Incki and Ari 2018). The goal in designing any IoT solution is to create a system 
that guides and simplifies decision-making by collecting data from various 
connected devices, compiling it and proving the right information to the right person 
at the right time (Dodge 2020). IoT will also be democratized as it will be available 
and accessible to the public. The democratization of healthcare will allow the 
empowerment of the patient, prove convenience and knowledge, and allow the 
patient to become responsible for their own care (Chemweno 2021). Data democra-
tization can overcome barriers, improve health structures and assist communities 
with health challenges (Chemweno 2021). Data democratization and healthcare 
democratization will allow people to prioritize essential resources like employment, 
food, childcare and education as the data will be available using IoT systems. 

Artificial Intelligence and Society 5.0 

Society 5.0 framework is based on data captured by real-world sensors and sent to 
the virtual cloud world for AI-based analysis, which will return to the real world in 
physical form through robots, machines and motor vehicles (Garg et al. 2022). 
Objects, people and systems will be connected in Society 5.0. Hopeful new values 
will be created through social innovation, elimination of regional, age, gender and 
language disparities and enable the delivery of personalized products and services 
that meet many individuals and potential needs. Society 5.0 involves autonomous 
manufacturing in general and for specific products with human intelligence and AI 
as a backbone technology (Mourtzis et al. 2022). As a human-centric design solution 
where humans and robots collaborate, Society 5.0 has constantly gained more 
attention during the last years, aiming to solve the challenges of the Society 4.0 
(Mourtzis 2021; Fukuyama 2018). 

1.2 Internet of Things and the United Nations Sustainable 
Development Goals (UN SDGs) 

The Internet of Things (IoT) can make significant contributions to support the 
implementation of the SDGs regarding social and environmental terms. Pay-as-



you-go and low-cost IoT can be potential solutions to achieve SDGs by 2030 (López 
Vargas et al. 2020). IoT can assist to achieve sustainable and stronger development; 
allow the opportunity for economical and human development while the impact in 
developing countries must not be overlooked (Rahim 2017). Developing countries 
are shown to be ideal for IoT innovation, can support economic growth, and 
contribute to cultural, environmental and social development (Barro et al. 2018). 
IoT development has allowed for the management and monitoring of renewable 
energy systems that improved the electrical access (Biggs et al. 2016; Ramanathan 
et al. 2017). IoT has the potential to predict and minimize the destruction of natural 
disasters (Pelc and Koderman 2018) like tsunamis and earthquakes (Biggs et al. 
2016) that can avoid serious injuries and save lives. 

Internet of Things in Society 5.0 and the Democratization of Healthcare 121

The benefits of IoT falls into the UN SDGs. Specifically, IoT implements SDG 
goals 3 (Good Health and Well-Being), 6 (Clean Water and Sanitation), 14 (Life 
Below Water), 15 (Life on Land) and 17 (Partnership for the Goals). Goal 3 aims for 
good health and well-being. IoT allows the capturing of data on all devices and 
allows model predictions to improve health and well-being. Sensors of various 
devices will upload the data that can be analyzed. Smart watches for example can 
detect irregular heart rate and can notify medical staff of potential risk. This will 
improve treatment and save lives. There is, however, a need for additional resources 
such as engineers and technicians, capacity building and a working power supply 
and back-up solutions. Goal 6 aims to ensure clean water and sanitation. IoT will 
allow the monitoring and management of water, sanitation and electrical systems and 
technologies (Biggs et al. 2016; Ramanathan et al. 2017; UN ESCAP 2018). IoT will 
allow all the data captured by sensors to be analyzed and will provide reliable 
information about the water resources state, usage, wastewater generation and 
treatment (World Water Assessment Programme 2020). For example, sensors within 
the water filtration system will detect any debris, incorrect pH level or soil level. 
Other sensors will detect incorrect temperatures used for water cleaning. All the 
information will be loaded into the cloud and adjustments can be made based on the 
analysis results. IoT is already implemented by using low-cost reverse osmosis 
systems with smart controllers that allowed effective distribution of water to rural 
areas and allowed the guarantee and monitoring of water quantity and quality in real-
time Jiangsu, (2020). IoT can thus assist healthcare systems by minimizing diseases, 
improving survival rates of patients and decreasing the burden on hospitals due to 
safer water, better waste management and providing healthier lifestyles in general to 
the population. 

IoT can be used to improve life on land and in water (Goal 14–15) by allowing 
predictive modeling based on the capturing of data by various devices. Actions can 
be taken to avoid catastrophic events and improve the health of all living organisms 
on land or in the water. Sensors of various devices can detect various changes in the 
atmosphere, ground and water. The data will be captured across all devices. Changes 
can be made using smart devices and controllers that will allow the management of 
sustainable marine and terrestrial ecosystems. A balanced ecosystem will decrease 
the potential of harmful diseases and will improve health. The healthcare system will 
benefit from sustainability and decreased burden on the system. IoT will also allow



the growth of partnerships worldwide to increase the collaboration between people, 
science and technology (Goal 17). The IoT allows all data to be captured and stored 
and will be accessible across the Internet. This will allow world contribution based 
on data analysis and the partnerships will allow improved ideas for healthcare and 
healthcare management. 
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2 Challenges of IoT and Society 5.0 

Cloud-based use of IoT has a few challenges including support effectiveness, human 
rights violations such as safety and security, reliability, transparency and energy 
consumption. The gathering, storage or distribution of data is one of the major 
concerns. Data must not be shared with third parties and private information must 
be protected. Cloud storage will also need adequate storage space and excessive data 
accumulation can be difficult to navigate. A major issue is that disclosed information 
can potentially be used to identify an individual (Bader et al. 2016). This will violate 
human rights such as safety, privacy and security. Although breached confidentiality 
is a major concern, the value must be considered (Lee et al. 2020). There are various 
factors that affect clinicians’ acceptability of technology-supported programs. These 
factors include accuracy, ease of use, compatibility, knowledge, attitudes, external 
factors like patient–clinician interaction and organization and reimbursement 
(Gagnon et al. 2016). Low-income countries may also not have access to IoT devices 
leading to a recourse crisis for these countries. Regarding privacy and security, IoT 
can undergo cyber-attacks due to wireless communications and low energy. The 
National Institute of Standards and Technology (NIST) has drafted a security guide 
and recommendations for IoT devices; however, some guidelines may be unclear 
(NIST 2019). 

There are also issues regarding the standardization and interoperability of IoT and 
healthcare protocols. Manufacturers and industry partners must still reach a consen-
sus regarding standards for machine-to-machine communication and wireless com-
munication protocols (Rubí and Gondim 2019). Historically, remuneration for 
technology-assisted healthcare has been challenging and differs between countries 
(Tuckson et al. 2017). Guidelines and policies on cyber-security, interoperability, 
protocols and reimbursements must become key precedences to ensure the effective, 
low-cost and successful use of IoT healthcare models in the medical field. IoT 
utilizes cutting-edge communication technologies and needs a lot of high transmis-
sion bandwidth, storage space and cloud computing. IoT devices use high amounts 
of energy in filtering and transmission of data. Studies have shown that IoT devices 
waste up to 30% of energy (Shah et al. 2022). IoT devices can result in an energy 
resource crisis due to their demand and waste. Energy management is an important 
factor to consider when developing IoT devices. Smart environments also need a lot 
of sensors in different places. These sensors are very expensive. Zouai et al. pro-
posed a new approach using an IoT robot to oversight the smart environment to 
reduce this cost. The robot will carry a range of different sensors that will be able to



sense the surrounding environment and will send data to the various points and 
devices (Zouai et al. 2019). This application can also be used in hospitals and other 
healthcare facilities. 
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Challenges of Society 5.0 include legal, safety, ethical, security, privacy, human 
rights violation, societal issues, energy and resource crisis. Companies must be able 
to adapt quickly to Society 5.0 and all the technological advancements. This is not 
always possible and the financial implications might be too much in the beginning. 
People will also be able to live longer as they will have better medical care and 
decreased stress levels. This will place a burden on healthcare resources as unique 
needs will have to be met. In 2018, around 35 million people aged 65 and over in 
Japan, were representing over 28% of the total Japanese population (Sharp 2020). 
The aging of the Japanese population is still rising and it will increase the pressure on 
the public healthcare system. Energy resources can also be depleted due to the high 
demand of technologies such as IoT and living resources. Available energy 
resources will not be able to cover the required energy output demand for living 
and industrial consumption which will lead to a bigger energy crisis that is currently 
experienced. Another issue is the overreliance on technology. People will be think-
ing and problem-solving less on their own. There are also concerns about privacy, 
surveillance and manipulation of data when using big data and algorithms. AI is also 
a relatively new concept and the social implications of AI are unknown. There is also 
a concern for job security as robots will be doing the work intended for humans. This 
will lead to an increased unemployment rate and stress will increase leading to a 
decay in health. Humans and technology are becoming more involved and can result 
in issues related to liability and responsibility. Society 5.0 must be implemented in 
an ethical way. If handled correctly, the challenges can be overcome. 

3 Benefits and Future Perspectives 

The use of IoT in medicine will reduce the cost of doctors’ visits and travelling and 
will relieve the pressure off hospitals to concentrate on emergencies (Shehabat and 
Al-Hussein 2018). IoT will also improve patient outcomes as it will be used to 
monitor the patient or to detect early diseases and health issues. IoT can improve 
medical research and enhance collaboration and communication between medical 
researchers and medical staff. It can also assist with managing the information 
(Shehabat and Al-Hussein 2018). IoT devices will be able to track and monitor 
respiratory rates, heart rates, sleep cycle, temperature and glucose levels to name a 
few (Levine et al. 2020). It can allow the patient or doctor to receive the information 
and treatment to be applied faster. This will improve patient outcomes and care. IoT 
can also benefit people with disabilities such as hearing or sight disabilities. People 
who are hearing disabilities make use of internal or external devices that can be 
implanted to improve their hearing (Rghioui and Oumnad 2018). Another option is 
the use of a wireless low-cost glove that is designed to help the deaf communicate 
with others (Rghioui and Oumnad 2018). The smart voice assistant will also be able



to assist sight-impaired individuals by allowing a hand-free feature (Dojchinovski 
et al. 2019). IoT can be used for the monitoring of patients which will improve 
patient care, especially after surgery. Sensors will also allow patients to move freely 
while they can be monitored. Although there are challenges, the benefits outweigh 
the challenges and will lead to an improved healthcare system. 
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Although there are challenges regarding IoT energy waste, if properly and 
effectively used, the challenges can be overcome. IoT can assist in better energy 
resource consumption. IoT is key in the transfer of energy and power to smart 
devices and buildings. IoT can be used to efficiently power buildings and reduce 
the consumption (Pan et al. 2015). IoT-based smart decisions can be taken to 
efficiently monitor and control devices and scalable architecture (Nandury and 
Begum 2015). IoT can assist Smart grid (SG) to enable the flow of data and 
electricity within the electricity system networks (ESN) and its clusters (Kumar 
et al. 2020). SG can replace the conventional fossil fuel-rich grid with the distributed 
energy resources (DER), thus improving the energy resource crisis (Kumar et al. 
2020). IoT enables data monitoring, data sensing and data storage that can be used 
for efficient decision-making and control of SG. This can lead to enhanced avail-
ability, reliability, resilience, sustainability, security and stability. Improved energy 
consumption will benefit the healthcare system as it will allow healthcare systems to 
be fully functional at a lower energy demand. 

Society 5.0 will enhance all industries in the world. It will solve many challenges 
that are currently faced. Society 5.0 will improve the lives of humans and improve 
patient care and healthcare. It will raise living standards. For example, stress will be 
decreased, patients will have access to medical advancements at low costs, and 
human abilities will be expanded through AI and robots which will allow people to 
be more fulfilled. Society 5.0 will provide technological support for the aging 
population. It will assist people to stay healthy by example innovative walking 
aids. Society 5.0 will also allow important information to be easily shared between 
medical professionals. This will reduce reliance on hospitals and hospital visits. 
People will have more control and will be empowered. Society 5.0 will be able to 
influence the population migration. For example, automated transport will be 
enabled which will allow low-income people to travel and get the needed healthcare. 
Smart sensors will also enable patients to receive warnings before symptoms may be 
apparent. 

4 Conclusion 

Advanced information technologies have provided the opportunity for innovation in 
our daily lives. IoT is an evolving technology that allows improved solutions in 
healthcare like the integration of devices, accurate medical record keeping, sampling 
and identification of diseases’ causes and risk factors. IoT’s sensor-based technology 
provides the ability to reduce the risk of surgery and aids with example COVID-19 
type pandemic. Medical students can also be trained more efficiently for disease



detection and treatment possibilities. IoT can allow healthcare systems to predict 
health issues and improve diagnosis, prognosis, treatment and monitoring (Fig. 3). 
Although there are challenges regarding human rights such as privacy, safety and 
security, as well as energy and resource challenges, the value of IoT outweighs the 
challenges. IoT implementation in healthcare will rely on a code of practice for the 
privacy, management, confidentiality and cyber-security of data. There are still gaps 
for research to address like how IoT devices can be interoperable with local and 
international health systems and designed with standardized protocols and on the 
efficiency of storage and cloud-based solutions to name a few. The goal of Society 
5.0 is to enable a society where people enjoy life and prosper. Economic growth and 
technological development aid in this goal. Despite the challenges, the possible 
advancements made by Society 5.0 and the impact that it will have on democratizing 
healthcare outweigh the challenges. Society 5.0 will lead to a healthcare system that 
is predictive, preventive, personalized and participatory rather than reactive as it is 
nowadays. It can prolong life expectancy and fulfillment. 
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IoT in Society 
5.0 and 

Healthcare 
Sensors 

Connectivity 

Analysis 

Application 

Device 

Fig. 3 IoT in Society 5.0 and healthcare. The device captures the information through the sensors. 
The data are connected to the cloud and are stored on the cloud. The analysis is done based on the 
received data and stored data. The results are used to improve the diagnosis, prognosis, treatment 
and monitoring of the patient. The device captures new data with the treatment provided and new 
information is received on the cloud for analysis 
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Abstract The society we envision to live in for the future is one where scientific and 
technological innovations lead to human health innovations that merge cyberspace 
and physical space. In women’s health, this can be compared with an autonomous 
driving of these cyber services toward improved women’s health and early identi-
fication of diseases where strategies and services are decentralized such that women 
of all ages, languages, and citizenship lead high-quality lives. Imagine a system 
where women’s health information is collected and processed, and such results are 
applied in the real world whether rural or urban. With the current advancement in 
technology, access to smartphones and other intelligent gadgets, such ideas should 
be explored in lower-middle-income countries (LMICs) for managing cervical 
cancer, a leading cause of death among women. Women, in this age of advanced 
healthcare services, should not be dying from preventable cancers such as cancer of 
the cervix. Besides advancements in primary prevention strategies such as HPV 
vaccines, the disease is often preceded by pre-malignant lesions which, when 
identified early, can be removed entirely and their development into invasive cancer 
arrested. This dismal picture can be improved by merging cyberspace information 
with day-to-day physical space. Applying Society 5.0 to a subunit of society such as 
a village or a suburb in a metropolitan city can potentially offer solutions in our 
setting. This chapter discusses the opportunities for employing technological inno-
vations in Society 5.0 to improve cervical cancer management and women’s health 
in South Africa, as an example of lower-middle-income countries. For the SDGs 
targets to be met in the LMICs, there is a need to simultaneously address challenges 
such as the energy crisis and bureaucratic issues such as those affecting oversight by 
government departments as they may deter the implementation of some of Society 
5.0 programs. Not only is preventing and treating cervical cancer a human right but 
also a reproductive health right that requires adequate resources distribution, protec-
tion of women’s privacy, and maintaining security to their personal information that 
may be collected during periods of piloting and implementation of research pro-
grams that are aimed at finding solutions for cervical cancer programs in LMICs. 

Keywords Society 5.0 · Next-generation healthcare · lower-middle-income-
countries · Cervical cancer · Artificial intelligence · SDGs · Rights · Energy crisis · 
Privacy · Oversight · Security · Safety · Resource crisis 

1 Introduction 

Global cancer statistics (GLOBOCAN 2020) estimated that in 2020, there were 19.3 
million new cancer cases reported and 10 million cancer-related deaths, globally. 
Cervical cancer was recorded as the fourth commonest cancer with 604,000 new 
cases and 342,000 cervical cancer–related deaths worldwide. Globally, cervical 
cancer is known as the fourth leading cause of cancer-related deaths in women 
(Sung et al. 2021).
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The global general cancer burden is expected to reach as much as 28.4 million 
cases in 2040, which is an increase of 47% from 2020 records. A large increase in the 
burden of disease is expected in transitioning (developing) versus transitioned 
(developed) countries (64% to 95% and 32% to 56%, respectively) due to demo-
graphic changes. However, factors such as globalization and the growing economy, 
which may contribute to the increase in risk factors, may further exacerbate the 
problem. For developing countries to attain sustainable cancer care including pre-
vention services, infrastructure development is pivotal, and these strategies will also 
be critical for global cancer control (Sung et al. 2021). 

During their migration, humans went from being hunter-gatherer societies (Soci-
ety 1.0) that were burdened by disease and dependent on herbs and natural immunity 
to fight diseases; to an agricultural society (Society 2.0) that depended on farming, 
farming innovations, and technology that designed drought-resistant crops and 
genetic modifications which resulted in animals that produced gallons of milk and 
bulk of meat; through to an industrial society (Society 3.0) that manufactured 
machinery that did a bulk of work; and to the latest information technology society 
(Society 4.0) that can access the entire world and almost do anything from the palm 
of their hands (Deguchi et al. 2020). In all these stages, each society had strategies to 
screen and manage disease in keeping with the skills and expertise of that society’s 
era. Specifically, each society has ways and means to preserve health, be it through 
screening, prevention, and treatment of that organ disease, even though the termi-
nology and phrases used to describe such may have changed over the years. 

The society we envision for the future (in fact, we are already living in it) is one 
where scientific and technological innovation leads the human innovations that 
merge cyberspace and physical space. In women’s health, think of this as autono-
mous driving of these cyber services toward improved women’s health and early 
identification of diseases where strategies and services are decentralized such that 
women of all ages, languages, and citizenship lead high-quality lives (Deguchi et al. 
2020). 

In many developed countries, the implementation of an effective screening 
program hastened the decline of cervical cancer incidences, such as those in Europe, 
Oceania, and Northern America, even though there was an observed increase in 
diagnosis at a younger age which may be attributed to changes in sexual behaviors 
with a resultant increase in HPV infections (Bray et al. 2005). The reduction in new 
cervical cancer rates was also observed in countries such as the Caribbean and South 
Americas, whereas the majority (seven of eight) of sub-Saharan countries reported a 
uniform rise in the rate (Jedy-Agba et al. 2020). 

Cervical cancer is one of the cancers that are considered almost completely 
preventable through a highly effective primary (HPV vaccine) and secondary 
(screening) prevention strategies. However, less than 30% of LMICs have 
implemented national HPV vaccination programs in comparison to what is 
implemented in high-income countries, where more than 80% of these countries 
have National HPV vaccination programs (Sung et al. 2021). The age-standardized 
incidence and mortality rates for cervical cancer are relatively higher in most African



regions compared to other regions and the world (Fig. 1), and the reasons for such 
disparities are poorly understood. 
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1.1 What Does Merging Cyberspace with Physical Space 
Imply? 

Cyberspace can be defined as a digital space where real-world data are collected and 
analyzed by machines/computers to drive solutions. This is where virtual life or 
events are converted into useful information. In the context of Society 5.0, this real-
world data is analyzed in cyberspace using artificial intelligence (AI) and mirrored to 
the real physical world. Therefore, merging these two will imply a smooth flow from



the physical world to the cyber world and back from the cyber world into the 
physical world (Deguchi et al. 2020). 
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1.2 What Makes Society 5.0 the Hope for Women’s Health 
in LMICs? 

Imagine a system where women’s health information is collected and processed, and 
such results are applied in the real world whether rural or urban. With the coverage of 
the current advancements in technology, access to smartphones and other intelligent 
gadgets, such ideas should have long been alive (Adel 2022). 

2 The Societal Problem of Cervical Cancer 

It is unfortunate that in this day and age of advanced healthcare services, many 
women still die from preventable cancers such as cancer of the cervix. Besides 
advancements in primary prevention strategies such as HPV vaccines, the disease 
also has premalignant lesions which when identified early can be completely cured 
and development into invasive cancer can be arrested. However, such is not the case 
in most developing societies in both urban and rural areas, rich and poor. There are 
many possible reasons why the health sector and society have not succeeded in 
stopping the deaths from this disease. These range from perceived lack of resources, 
misplaced human resources, blocked access to entry into health systems, poor 
reporting and delay of results, and a lot of patients on the waiting list for surgery. 
However, the proposed concept of merging cyberspace and day-to-day physical 
space in Society 5.0 offers new hope for women’s health in Africa. Unfortunately, 
many lower- and middle-income countries continue to plan and execute health 
programs in the same way that did not yield many results in the past 50 years, 
thus, failing to acknowledge the evolution and development of human societies and 
the technological advancements that permit pulling the future to today and bringing 
tomorrow to now. 

3 The Sustainable Development Goals and Society 5.0 

Antonio Guterres, the Secretary-General of the United Nations, on the launch of a 
report on the socioeconomic impacts of COVID-19 in March 2020 said that “Every-
thing we do during and after this crisis [COVID-19] must be with a strong focus on 
building more equal, inclusive and sustainable economies and societies that are more 
resilient in the face of pandemics, climate change, and the many other global 
challenges we face” (United Nations 2020a). There was a slow decline in the



probability of dying from cardiovascular disease, cancer, diabetes, and chronic 
respiratory disease in people between the ages of 30 and 70 from 22% in 2000 to 
19% in 2010 and 18% in 2016 partly due to a shortage of services to prevent diseases 
with severe disruption to these services seen during the COVID-19 pandemic. The 
worst affected regions were the LMICs. The implementation of the SDGs (with 
specific reference to goal 3) was therefore an essential priority. This included the full 
range of essential health services, from health promotion to prevention, treatment, 
rehabilitation, and palliative care. If LMICs were to be covered by the year 2030, 
strategies that include the use of technology, advanced preventive programs, and 
merging cyberspace with physical space should be part of the solution (United 
Nations 2020b). The SDGs were aligned with Society 5.0 actions as a universal 
call for ending poverty for countries including LMICs, the protection of the planet, 
and to guarantee the enjoyment of peace and prosperity by all people by 2030. Using 
Society 5.0 to improve women’s health through AI-based cervical cancer screening 
particularly speaks to SDG number 3, which focuses on good health and well-being 
(Narvaez Rojas et al. 2021; WHO 2021). 
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4 What Are the Society 5.0 Solutions to Cervical Cancer? 
(Some Insights) 

Applying this to a subunit of society such as a village or a suburb in the city can offer 
solutions to the problems in lower-middle-income country settings. 

4.1 Information Gathering 

The screening of cervical cancer has tremendously evolved over time (Table 1), and 
current approaches such as nucleic acid testing (DNA, RNA, mRNA, etc.) have led

Table 1 The evolution of cervical cancer screening throughout the years through Societies (WHO 
2020; Forslund et al. 2019) 

Year/period Cervical cancer screening activity 

1928 Dr. Papanikolaou—uterine cancer can be discerned from a vaginal smear 

Later Dr. Aurel Babes and the invention of the Pap smear 

1943 American Cancer Society endorses Pap smear 

1955–1980 The incidence rate of cervical cancer drops by 70–80% 

1988 First clinically available HPB test (viral Pap) 

1996 Liquid-based cytology from Hologic (thin prep) 

1996 SurePath, FDA approved by Becton Dickinson 

2003 HPV DNA testing 

2011 HPV RNA testing 

2018 mRNA E6/E7



to the accumulation of big data that is potentially amenable to AI and data analytics. 
The advanced use and ethical sharing of information between government agencies 
and departments such as Statistic South Africa, information on shopping trends, 
school and university information, driver and vehicle licensing services information, 
etc., may be applied to either villages or suburbs isolated from major metropolitan 
cities. “From crucial information about medication and its effects, right through to 
daily goals and aspirations, it will help to ensure that everyone can be treated as an 
individual” (Mohamoud 2020). Information such as age, smoking, sexual behavior, 
drinking and risks for unsafe sex, access to healthcare, use and access to the internet 
and emails, and ownership of smartphones or any other intelligent gadgets may be 
gathered to the benefit of the society as a whole. Such information may be synchro-
nized with information available within the district or regional health facility for 
processing and developing risk profiles for individuals, districts, or regions. This 
data is collected from the real world and processed by computers/machines (Adel 
2022).
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4.2 Information Processing 

The processing of this information may be initiated by retrospective access to the 
data, profiling and characterizing the women who have had the disease (precancer 
and cancer). Such information can then be used in collaboration with statistical 
computations and AI systems to develop a risk score for developing cancer, esti-
mating the progression from normal to abnormal cells (precancer) based on individ-
ual characteristics and the score and estimating the rate of progression from 
precancer to cancer based on these individual factors. Instead of generalizing the 
entire population, these factors and scores can be individualized to a specific female/ 
woman (Pravettoni and Triberti 2020; Loppolo et al. 2020). 

4.3 Application to the Real World 

Such information can then be used in government budgets and planning for the 
region/district and resources (such as vaccines, screening kits, colposcopy services, 
and theater booking) can be mobilized as and when needed for that suburb. With this 
information, smart resource management can be done without increasing expendi-
ture and with minimalizing any unaccounted expenditure or corruption (The Acad-
emy of Medical Sciences 2019). 

Individual women can then be informed through any available services such as 
box office, email, cell phone, or direct contact when they are due for a screening or 
when they are at the most risk for the development of abnormal cells or cancer; and if 
there is a need for theater, such can be booked without them having to join long



queues in healthcare facilities. Such implementation is not out of this world and will 
use the technology we have and the cyberspace that currently exists to solve real-life 
problems in real time (The Academy of Medical Sciences 2019; Fardazar et al. 
2021). 
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Then perhaps one may ask how the rural areas will benefit from this Society 5.0 
innovation. They will benefit in two ways. Direct: If multiple individuals within the 
rural village are considered high risk for disease development or are due for another 
screening, such information gathered centrally can be synthesized into services 
offered to them as a subgroup. Self-applied test kits, for example, can be sent through 
e-hailing vehicles, ten or so patients test and give the sealed kit back to the e-hail 
driver who will deliver directly to a laboratory, and tests are processed and results 
sent to women in real time. This solves the challenge of access and financial 
resources (Mahdavi et al. 2018; Fardazar et al. 2021). In our opinion, governments 
do not have to employ 20 healthcare workers to provide such services as cervical 
cancer screening. The use of the e-hailing system or related services also saves on 
transportation costs for the specimen to the laboratories, as well as for the patients. 
An indirect benefit is that when provincial and district governments save money by 
offering such services in the urban areas, more resources are made available for use 
by remote regions and can therefore be redirected. 

4.3.1 Rapid HPV DNA PCR Machine 

In the theme of Society 5.0 aiming to solve social issues from a new perspective, 
different aspects of health such as screening programs will be connected and 
technology will integrate big data, the Internet of Things (IoT), and artificial 
intelligence to develop digital and physical infrastructure for services such as 
cervical cancer screening (Narvaez Rojas et al. 2021). 

With regards to health, it is estimated that by 2065, most populations will have 
more than 35% of people who are above the age of 65 years. Not only will this result 
in a reduction in the workforce but also an increased incidence of age-related 
malignancies. Therefore, screening for malignancies becomes important to all. The 
LMICs are already burdened by malignancies and will need to increase screening 
and prevention efforts to reduce the impact (Narvaez Rojas et al. 2021). This will 
require rapid, reliable, and affordable technology. 

5 How Will Society 5.0 Benefit Women’s Healthcare 
in LMICs? 

In digital healthcare, Society 5.0 affords an alternative option where technology 
affords support and essential healthcare medical systems for the benefit of society 
with regard to the quality of healthcare services (Narvaez Rojas et al. 2021).



Features Description of general development
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Table 2 Main disruptive technologies of the Fourth Industrial Revolution and their impact on 
women’s health (cervical cancer) 

Impact on cervical cancer screening 
and treatment 

Artificial 
intelligence 

Algorithms of machine learning and 
automated decisions 

Hand-held cervical screening equip-
ment for triage 

Advanced 
mobile world 
wide web 

Smartphones, 4/5G Easy access to applications and 
information regarding choice on 
management, triage decision, and 
disease staging by clinicians in 
remote areas 

Internet of 
Things 

Wireless sensors, monitoring of digital 
and physical information 

Allows for prediction model analysis 
to improve screening and treatment 
applications 

Big data Data science, analytics New diagnostic technologies and 
monitoring of cancer, proteomics in 
screening and risk monitoring 

Blockchain Cryptocurrency and digital mining Digitalizes transactions and payments 
related to cervical cancer manage-
ment and removes access to funds 
delays in remote settings 

Smart 
environment 

Controlling and decision by machines 
or human commands 

Biomarkers and sensors can pick up 
the presence of environmental car-
cinogens and toxicity 

Ubiquitous 
computing 

Global access and storage (cloud) Access to data for cancer-related 
studies, use of patient data stored for 
monitoring of disease and screening 
follow-up 

Wearables and 
devices 

Remote health monitoring, diagnostics 
and decisions, and emergency notifi-
cations system 

Monitoring of well-being of patients 
undergoing treatment of cervical 
cancer including deterioration in 
patients who are for palliative care 
and need treatment plan changing 

The collection of data, storage, and analyses in a cloud infrastructure is presented 
in an affordable systems product that LMICs can afford to purchase and maintain for 
the benefit of the citizens. With this system, information regarding cervical screening 
status, results, follow-up trends, appointments, and any new information processed 
can be sent to their district and will ensure timeously compliance to screening such 
as cervical cytology and prevention strategies such as HPV vaccination (Narvaez 
Rojas et al. 2021). 

Some of the disruptive technological advances seen in the Fourth Industrial 
Revolution (Table 2) and some applications relevant to cervical cancer prevention, 
screening, and management and development of research will be key if all societies 
including LMICs are to advance and benefit from Society 5.0 (de Hoyos Guevara 
2022).
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Table 3 Comparison between Industry 4.0 and Society 5.0 (Adapted from Deguchi et al. 2020) 

Title Industry 4.0 (Germany) Society 5.0 (Japan) 

Design (a) High-Tech Strategy 2020 Action 
Plan for Germany 
(b) Recommendations for implementing 
the strategic initiative INDUSTRIE 4.0 
(Industry 4.0 Working Group, 2013) 

(a) Fifth Science and Technology Basic 
Plan (released 2016) 
(b) Comprehensive Strategy on Science, 
Technology, and Innovation for 2017 
(released 2017) 

Objectives (a) Smart factories 
(b) Focuses on high-tech manufacturing 

(a) Super-smart society 
(b) The focus is on society as a whole 

Key issues (a) Cyber-physical systems (CPS) 
(b) Internet of Things (IoT) 
(c) Mass customization 

(a) High-level convergence of cyber-
space and physical space 
(b) Balancing economic development 
with a resolution of social issues 
(c) Human-centered society 

The WHO Global Strategy 2030 to accelerate the elimination of cervical cancer 
and achieve a cervical cancer-free society by the end of the century requires efforts 
from various strategies and role players. This includes the plan to achieve a 90% full 
vaccination of girls with an HPV vaccine by 15 years of age, 70% of women to have 
been screened using a high-performance test done at ages 35 and 45 years, and lastly, 
a 90% of those identified with cervical disease (premalignant or malignant) to 
receive treatment (90% of women with precancer treated, 90% of women with 
invasive cancer managed) (Sung et al. 2021). 

As society moves or upgrades from Society 4.0 to Society 5.0, there will be a 
transition from currently known dimensions to newer dimensions (Polat and Erkollar 
2021). There are some key differences between Industry 4.0 and Society 5.0 
(Table 3). The former advocated for smart factories while the latter called for a 
super smart society. Their scope of deployment of cyber-physical systems differs in 
that Industry 4.0 deploys in a manufacturing environment whereas Society 5.0 
deploys across society as a whole (Deguchi et al. 2020). 

Society 5.0 has the potential to resolve multiple challenges in many aspects of 
human life such as mobility, agriculture, food, manufacturing, disaster control, 
energy, and most importantly healthcare. The concept fully integrates with a sus-
tainable society where everyone can live a safe and fulfilling life empowered by 
digital solutions and an integrated approach to health challenges. This will surely 
allow governments the opportunity to develop a robust framework for a smooth 
transition from Society 4.0 into Society 5.0, enriched with new-age digital technol-
ogies (Deguchi et al. 2020; United Nations 2021). The model is likely to benefit 
South African society through processes as described in Fig. 2.
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Fig. 2 Vision of a sustainable society where everyone can live a healthy, safe, and fulfilling life 

6 How Will Cervical Cancer Screening Be Affected? 

6.1 Introduction 

As the third most common cancer in women globally, effects have been put to 
increase and improve screening and vaccination programs in developed countries. 
There is a wide disparity in the burden of disease between women in developed 
countries and women in underdeveloped or developing countries. Such has become 
more profound recently (Sung et al. 2021). Human papillomavirus (HPV) is cate-
gorized as low-risk (Lr) or high-risk (Hr), depending on the oncogenic potential of 
the strain or sub-strain. The majority of cervical cancer diseases are attributed to the 
infection with the Lr HPV. Sexual contact is often necessary for HPV transmission, 
and it is the most common STI in the world. Incidences of the disease are highest 
during teenage years and in 20–30-year-olds. These ages are associated with risk 
factors such as the early age of sexual debut and multiple sexual partners (Bedell 
et al. 2020). 

When there is immune competency, most young women will be able to mount an 
effective immune response and clear the HPV infection or reduce the viral load to 
less than detectable levels within the 24 months period. Tobacco use, immunosup-
pression, low socioeconomic status, and long-term use of oral contraceptives are 
associated with the persistence of the disease. HPV consists of a circular, double-
stranded genome containing nine open reading frames. “Early” (E) genes control 
DNA maintenance, replication, and transcription (Fig. 3). E1 and E2 are expressed at 
high levels early in HPV infection and allow for viral replication within cervical 
cells. “Late” (L) genes encode capsid proteins (Bedell et al. 2020).
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Fig. 3 The role of HPV E6 and E7 in cervical cancer carcinogenesis 

6.2 Medical Laboratories in Cervical Cytology and HPV 
Screening in the Context of Vision 2030 and Society 5.0 

Lower-middle-income countries face many challenges that hamper progress in the 
eradication of HPV infection and treatment of its sequelae (Catarino et al. 2015). 
Among these is a desperately under-resourced healthcare system. The doctor-to-
patient ratio in South Africa stands at 26 per 100,000 1: 3846. The nurse-to-patient 
ratio is calculated at 1: 213. A cytotechnologist screens approximately 60 cervical 
smears daily in the public sector, well above recommended daily case numbers with 
potentially high error rates (Ahmed and Davids 2021; SANC 2020). The lack of 
improvement in these statistics and lack of innovation means that sub-Saharan 
Africa continues to under-diagnose and undertreat HPV and cervical cancer. This 
is further complicated by an entrenched undercurrent of poorly managed HIV 
infection (Marima et al. 2021). With adequate funding and resourcing, local 
vaccinology will manufacture HR HPV vaccines. Following the COVID-19 pan-
demic, governments in Africa are investing in prefilled vaccine manufacturing and 
rollout. 

A Society 5.0 ideal in this space will see individuals self-vaccinating, in a similar 
way that patients are self-administering insulin and heparin in the comfort of their 
own homes. Family-centered vaccination by parents for their children and school-
driven vaccination drives are initiatives that will reduce much pressure on the health



Challenges

system. Some contextual challenges for the realization of Vision 2030 and Society 
5.0 in South Africa are presented in Table 4. 
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Table 4 Challenges that may impact South Africa’s Vision 2030 in the context of Society 5.0 

South Africa’s Vision 2030, in line with the 
Society 5.0 approach 

Low laboratory equipment capacity Repurposing of oversupplied PCR testing 
equipment as well as accompanying skills left 
behind by the COVID-19 pandemic.a 

Low laboratory staff capacity Use of automated cytology screening tools 
such as BD’s FocalPoint GS. Such tools save 
laboratory human capacity valuable screening 
time, affording staff more time to focus on 
difficult positive cases. 

Low healthcare professional capacity Self-testing: Placing testing into the patients’ 
hands provides much-needed relief in terms of 
health professionals’ capacity.b 

The human condition Adequate sex education. Equal responsibility 
for sexual health is shared by both sexes. 
Eradicative HPV vaccination drives. Educa-
tion on the use of existing smartphone tech-
nology towards sharing health information 
amongst individuals and health-care profes-
sionals, placing the responsibility of individ-
ual’s health back into their hands. 

Current and historical economical inequality National Health Insurance. 

HPV screening is riddled with diagnostic pit-
falls which include transient infections, con-
tributing to over-diagnosis and potential over-
treatment and inaccurate statistics 

Extension of basic HPV PCR screening to 
include a full cytological evaluation. This can 
be achieved by the addition of preserving 
media to self-testing kits:

• Diagnosis grading of intraepithelial neo-
plasia

• Diagnosis of in-situ and invasive malig-
nancies

• Diagnosis of concomitant infections such 
as trichomoniasis, candida 
Enduring that protocols are properly applied to 
avoid over-treatment. 

a Lozar et al. (2021) 
b Arbyn et al. (2018), Bishop et al. (2019), Hitti (2020), Saville et al. (2020), Smith et al. (2016) 

The WHO’s approach: The current approach to cervical screening for HPV as 
mandated/guided by the WHO in their 2020 report assessment has placed HPV PCR 
as an adjunct step in the algorithm for screening and treatment for cervical Hr HPV. 
In accommodation of the larger developing world, the visual inspection with acetic 
acid (VIA) step is retained due to its affordability and wide availability and sensi-
tivity. The addition of HPV-PCR as an adjunct in the algorithm was informed by the 
need to re-purpose/utilize the massive roll-out of PCR that was stimulated by the 
COVID-19 pandemic (skilling, software, hardware, and consumables) (WHO 2021).
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South Africa has done away with the VIA step because patients already receive 
Pap testing at primary health-care level facilities. Because of the pandemic, even the 
poorest third-world countries now have PCR testing facilities (WHO 2021). 

6.3 HPV Self-Testing Devices Are Already in Use 
on the Continent 

Human papillomavirus self-testing is an important screening tool for the early 
detection of HPV infection and the development of benign and malignant 
HPV-associated lesions. Some of the self-testing HPV devices are described in 
Fig. 4a–d. 

Fig. 4 (a) Various HPV self-testing medical devices available on the market (Rover) (Bishop et al. 
2019). Images used with permission from Rovers® Medical Devices (www.roversmedicaldevices. 
com). (b) Evalyn® Brush used in Kenya (by Rover) (Bishop et al. 2019). Image used with 
permission from Rovers® Medical Devices (www.roversmedicaldevices.com). (c) Matter’s 
Sukha concept enables women to carry out smear tests at home. Images used with permission 
from Matter (matter.co.uk). (d) Widely used dry swab already piloted in Australia (Arbyn et al. 
2018; Bishop et al. 2019; Saville et al. 2020; Smith et al. 2016)

http://www.roversmedicaldevices.com
http://www.roversmedicaldevices.com
http://www.roversmedicaldevices.com
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6.4 Newer Cervical Screening Technologies That May 
Benefit the LMICs 

6.4.1 HPV DNA 

The Hybrid Capture II HPV-DNA Assay (Digene) is the first FDA-approved test for 
the detection of Hr HPV. To date, four other tests have received FDA approval: 
Cervista HPV HR (Hologic), Cervista HPV 16/18 (Hologic), Cobas HPV test 
(Roche Molecular Systems), and APTIMA HPV Assay (Gen-Probe). These have 
expanded the scope in an era where HPV is used as a primary screening modality. 
The HPV testing machine is costly and needs laboratory processing, and time to 
obtain results. However, for LMICs, there is a newer variant of the test, the Hybrid 
Capture II HPV DNA test that has been designed to work in low-resource settings 
(the careHPV testing system, QIAGEN, Germantown, MD, USA). It is simple, fast, 
low-cost, and robust (Bedell et al. 2020). There is also a low-cost PCR-based testing 
system (AmpFire human papillomavirus detection system, Atila Biosystems) that is 
not only rapid in analyzing specimens but also more sensitive (Fig. 5). It is approved 
for use in China and Europe but not yet in the USA. This will also be ideal for 
LMICs such as South Africa (Bedell et al. 2020). 

6.4.2 HPV mRNA Technology 

The new focus is on the use of HPV mRNA tests for oncoproteins E6 and E7 
messenger RNA detection as an alternative to HPV DNA. The HPV infects the basal 
cell layer and uses the double-stranded DNA at its core and a protein coat (capsid). 
The HPV DNA tests detect viral DNA through a hybridization technique or a highly 
conserved region of the L1 capsid protein or E genes using PCR whereas the HPV 
mRNA tests detect transcripts of the viral E6/E7 oncoproteins (WHO 2021). 

Fig. 5 AmpFire human papillomavirus detection system, Atila Biosystems (Bedell et al. 2020)
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Oncogenesis is a result of persistent infection from any of the high-risk genotypes 
of HPV. This is essential for cervical oncogenesis. The viral particles enter the basal 
layer of the cervical epithelium and integrate their DNA with the host cellular DNA. 
As it persists, the E6 and E7 oncoproteins are expressed. These proteins are primarily 
responsible for neoplastic transformation (WHO 2021). 

The E7 protein binds and degrades retinoblastoma (pRb), the tumor suppressor 
protein, which initiates uncontrolled activation of the cell cycle. The E6 protein 
degrades p53 (another tumor suppressor protein) and inhibits apoptosis 
(programmed cell death) and upregulates telomerase activity. The results are cell 
cycle deregulation and cellular immortalization which kickstarts the process of 
carcinogenesis. The level of E6 and E7 expression increases as the grade of cervical 
intraepithelial dysplasia worsens. These changes in HPV mRNA expression of 
E6/E7 oncoproteins directly underlie the neoplastic phenotype. Detection of HPV 
E6/E7 mRNA of these two oncoproteins could be more specific than viral DNA 
(WHO 2021). 

6.4.3 Digital Colposcopy 

Advances in technology have led to the development of digital optical technology 
and the manufacturing of highly portable digital colposcopes (Fig. 6) with ultra-
high-resolution benefits to manipulate the picture such as magnification and transfer. 
The gadget and its portability are useful tools for the visual inspection and treatment 
of premalignant lesions in rural settings (Liu et al. 2016). 

When using digital colposcopy software, it is possible to connect through a 
smartphone which further enhances the image and offers ease of image transfer to 
a higher center for interpretation. An example is a technology used in the Enhanced 
Visual Assessment System (MobileODT, Israel) which utilizes the advanced optics 
found in Android smartphones and is easily available even in low-resource countries 
(Bedell et al. 2020; Liu et al. 2016). 

6.4.4 Self-Sampling for HPV 

Self-sampling is an acceptable method in lower-middle-income countries and has 
been accepted well in rural areas such as the Kwazulu-Natal in South Africa. The 
specimen is collected with either a swab or brush. Several pilot studies have shown 
the benefits of using a tampon for specimen collection. The use of the Dacron swab 
makes testing easy as this device is used in combination with the color indicator 
cards (Mbatha et al. 2017). Since its introduction, self-testing has been reported to be 
less sensitive (11% reduction) to the clinician-collected sample with regards to a 
DNA test and detection of high-grade cervical lesions (Gravitt and Rositch 2014). 
However, recent studies have shown that self-collected vaginal samples, cotton 
swabs, and Dacron swabs have an overall sensitivity of 0.74 and specificity of 
0.88 when compared with the clinician-collected samples and at times the two are



comparable (Mbatha et al. 2017). A study in a lower-middle-income country, Ghana, 
reported that because the prevalence of high-risk HPV is higher in HIV-positive 
women, acceptance of the self-test helps reduce the weight of visiting a facility and 
delayed referral for management as these patients are known to progress rapidly 
from severe dysplasia to malignancy (Asare et al. 2022). We believe that in LMICs, 
there are barriers that need to be overcome such as personal preferences, environ-
mental factors affecting access, and other barriers including religion. If women are to 
benefit maximally from the legacy facilities retained after pilot studies or larger 
studies, these barriers must be overcome. 
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Fig. 6 Digital colposcopy



148 L. Mbodi et al.

6.4.5 DNA Methylation 

DNA methylation (DNAme) of host cell DNA is another alternative triage tool for 
Hr HPV-positive women. DNAme has a major role in gene transcription and in 
genomic stability. Aberrant methylation leads to the silencing of tumor suppressor 
genes, cell immortality, and malignant transformation. When used for screening 
triage, it will be an added advantage that it is automated, objective, and run on the 
same sample as the HPV assay. Some of the genes that have been shown to have 
elevated methylation profiles in cervical cancer are CADM1, DAPK1, and RARB. 
Its disadvantages are that it does not cover other HPV types such as 18, 31, 33, and 
45 and the high cost (Lorincz et al. 2013). 

Elevation of methylation of the HPV 16 L1 and L2 is associated with high-grade 
cervical intraepithelial neoplasm (CIN) and invasive cancer. Although further stud-
ies are required to validate this for clinical practice, there is indeed a known 
association between specific patterns of DNAme in HPV16 L1 and L2 and high-
grade CIN. When rolled out for clinical use, it will help in reducing the waiting 
period for results and reduce the false negative rate (Lorincz et al. 2013). 

6.4.6 The Use of Gene-Xpert 

Xpert® HPV is a qualitative, in vitro test that detects HPV in liquid-based cytology 
(LBC) specimens collected in PreservCyt®. It is able to detect DNA of different Hr 
HPV types of up to 14. It is quick and results may be available in 60 minutes (Fig. 7). 
Due to the prevalence of TB in Southern Africa and Africa in general, many health 
facilities in South Africa have a Gene-Xpert machine. Therefore, its use in screening 
for cervical cancer is a good step forward toward reducing morbidity and mortality. 
Each HPV test can be completed in around 1 hour (Cubie and Campbell 2017). 

Collection (LBC) Admix in Acetone  DNA Molecules 

mixed with dry 

PCR reagents 

Processing Results 

 

 

Fig. 7 The Gene-Xpert machine HPV testing process
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Although currently, the positivity is about 19.9%, in the detection of HPV graded 
as “other,” it is more than such detection on HPV 16 or HPV 18/45 (64.4% versus 
24.2%) for each of HPV 16 or 18/45. The test identifies HPV 31-related types (HPV 
31, 33, 35, 52, or 58) mostly in HIV positive people (43.4%). It also has the 
advantage of ease of use by non-laboratory staff with minimal training, has a rapid 
turnaround time, and gives reproducible results in about an hour with the added 
bonus of partial genotyping (Cubie and Campbell 2017). 

6.4.7 HPV First Void Urine Testing 

Urine “liquid biopsy” for human HPV DNA testing has been reported to have a 
reasonable correlation with that which is collected from the cervix. The ease of 
sampling and higher acceptability by women due to its non-invasiveness makes it a 
perfect test for use in LMICs. The test is performed on the first-void urine and is able 
to detect cervical cells that were shed off into the vagina and have become a 
contaminant on the labia (Pattyn et al. 2019). During voiding, these cells are 
admixed with urine, making it possible for testing HPV DNA on this first void 
specimen (Vorsters et al. 2014). However, there are challenges related to the 
standardization of urine collection, storage and preservation, and processing tech-
niques. This technique is predominantly still being piloted, and hopefully, we will 
have answers that address these challenges and improve the efficacy of the test. 

6.5 Radiotherapy Management in LMICs 

Surgery has an established role in the curative treatment of cervical cancer. How-
ever, a large number of women present with advanced or inoperable diseases for 
which radiotherapy has an established role in both cure and palliation. The avail-
ability of gynecology oncology and radiation oncology services is, however, limited 
in lower-middle-income countries. Even in LMICs with limited gynecology oncol-
ogy services, patient access to services is limited by poverty and access to tertiary 
care facilities (Zubizarreta et al. 2014). 

Approximately two-thirds of low-income countries and up to one-third of middle-
income countries do not have radiotherapy facilities. The figures for Africa are 
significantly worse with 80% of low-income countries (LIC) and 44% of LMICs 
having no radiotherapy facilities (Zubizarreta et al. 2014). Between 4000 and 7000 
new units are required to meet the needs of LMICs currently. 

Concurrent chemoradiotherapy remains the standard of care for locally advanced 
cervical cancer. Cisplatinum 40 mg/m2 has been the most common agent studied 
and a dose-response has been found to impact disease-free survival with a cumula-
tive dose of 200 mg required to meet the threshold for clinical benefit.
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6.5.1 Radiotherapy Access in LMICs 

There is a dire shortage of radiotherapy resources across the African continent. Even 
with the upscaling of HPV vaccinations, there will remain a significant burden of 
cervical cancer requiring radiotherapy treatment (Rodin et al. 2021). At least 5000 
new megavoltage radiotherapy units are required to meet the needs of the African 
continent (Ngwa et al. 2022). Less than half the continent has brachytherapy 
equipment and like megavoltage units, most of these are concentrated in certain 
parts of the continent (Tumba and Theyra-Enias 2022). The mere provision of 
equipment will not address the problem. Human resources include radiation oncol-
ogists, medical physicists, radiotherapists, and oncology nurses. Staffing numbers 
are determined by patient workload and equipment availability. Based on the current 
equipment needs in Africa, ~50,000 individuals will need to be trained to meet 
current recommendations (Rodin et al. 2021). 

6.5.2 Technological Advances to Deal with LMICs’ Radiotherapy Needs 

Hypofractionated Radiotherapy 

Hypofractionation for pelvic malignancies has proven to be an acceptable form of 
treatment. The process of delivering higher doses per fraction while reducing the 
total dose and overall treatment time is an attractive one, especially in centers where 
resources are limited. Clinical evidence has confirmed the safety and efficacy in 
breast, prostate, and rectal cancers (Kapiteijn et al. 2001; START Trialists’ Group 
2008). In rectal cancer, 25Gy in five fractions has been confirmed in early stage, 
resectable, as well as locally advanced disease (Kapiteijn et al. 2001). Data has been 
lacking on cervical cancer but there are ongoing randomized studies in this regard. 
Nonetheless, hypofractionated cervical cancer radiotherapy is practiced in LMICs 
driven by need as opposed to clinical evidence (Rodin et al. 2021). 

7 A Vision for the Future in LMICs 

For LMICs, a process where screening a woman at just one time in her life after the 
age of 35 will be beneficial. Evidence suggests that it decreases the risk of dying 
from cervical cancer by 70% with the risk of cancer-related death reduced by 85% if 
the screening is done every 5 years (Bedell et al. 2020) The future where testing is 
rapid, low-cost, high volume, and self-administered with multitudes of tests a day is 
not impossible using the above-mentioned technologies. It is not hard to imagine a 
future where screening programs utilize rapid, low-cost, high-volume, self-swab 
HPV testing of thousands of women per day. Although these modern tools utilize 
minimal energy and some are operated and rechargeable batteries, there is still a need



for a secured energy supply. In most LMICs’ government systems, there is a crisis in 
energy supply, and many villages and other establishments still do not have at least a 
reliable supply of electricity if at all (Jamal 2015). The screening could be done by 
nurses, midwives, or trained local healthcare workers and images interpreted by 
artificial intelligence software (Bedell et al. 2020). Not least, drones have been used 
in healthcare and have proven to assist in breaking the divide and giving the 
opportunity to patients who have limited (or would rather not directly seek) access 
to healthcare facilities. 
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8 Challenges to Implementing Programs for Improving 
Women’s Health in LMICs 

For Society 5.0 to work effectively in improving the screening and treatment of 
women’s malignancies, there should be a good and collaborative working relation-
ship between national and local governments. The current red tape in many LMICs 
hinders progress in developing services such as building an inter-sector information 
integration architecture and striking a balance between protection and access to 
personal information. For innovation to be successful, ease on existing national 
and district regulations should be imposed (Deguchi et al. 2020). 

Currently, the rural regions of these LMICs have little identifiable data manage-
ment systems and such should be established. The urbanized part of the LMICs has 
some regions with data managed both privately and publicly and these should be 
consolidated, leveraged, and coordinated with the resultant building of inter-sector 
information integration architecture (Deguchi et al. 2020). 

The existing national and local government policies in existence will need to be 
enforced together with resolutions of social issues. The generation of data, analysis, 
and synthesis should not be done only by private companies that are conducting 
research, piloting projects, and building infrastructure for these studies. Govern-
ments should also play a role. However, in most LMICs, governments often fail to 
do so, and health data will be owned by private companies with no guarantee of 
citizens’ safety (Deguchi et al. 2020). 

9 Conclusion 

LMICs will benefit from pilot studies done by big pharma and manufacturers with 
regard to equipment. The pilot of cervical cancer screening tools such as those used 
in self-collection when combined with mobile stations for pilots, use of drones, and 
smartphone technology will solve the problems experienced by patients with regard 
to access to results, follow-up plans, and referral for treatment. Africa and other 
LMICs are not without resources but have resistance from bureaucrats and political



leaders who in most instances do not share the vision with healthcare workers on the 
ground. The WHO 2030 plan and its accelerated approach to address all the SDGs is 
possible in LMICs. The sharing of skills and training of fellow clinicians in the 
identification and management of precancer and cancer patients will be made 
possible and easy by aspiring toward Society 5.0. The implementation strategies of 
Society 5.0 will see LMICs improve drastically with regard to screening and 
treatment of premalignant lesions and improve the outcome of cervical cancer 
management, via integration of the cyberspace with physical healthcare space for 
better women’s health. 
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Abstract Conceptualized in Japan, Society 5.0 sets an ambitious goal of advancing 
the human endeavor from the current information-intensive society to a knowledge-
intensive society by creating a human-centered society based on the integration of 
cyberspace with real-world physical space, exploiting the powers of artificial intel-
ligence technologies for the betterment of all human life at both individual and 
societal levels. It is a society that uses technological advancement objectively to
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provide an equitable and fair distribution of the world’s resources, circumventing the 
current inter-personal and global-regional based disparities and inequalities. Such a 
society will be incomplete without a human-centered health care system, designed to 
understand patients holistically and provide suitable comprehensive solutions to a 
patient’s health needs. Artificial intelligence (AI) in the drug discovery process uses 
machine learning and deep learning computational models that enhance the under-
standing of disease heterogeneity, identify dysregulated molecular pathways, and 
find the right therapeutic target as well as the appropriate drug candidate during the 
discovery and design process; thereby, improving efficacy and speed of drug 
discovery. AI can use deep learning algorithms to analyze vast amounts of data 
from scientific text and publications relating it to a patient’s clinical data and 
laboratory characteristics and thereby identify suitable candidates for inclusion in a 
particular clinical trial. AI can also predict the responses to therapy including drug-
drug or drug-food interactions. Another crucial aspect of achieving a human-
centered health care system will be the protection and upholding of basic human 
rights as enshrined in the UN’s Universal Declaration of Human Rights. Drug 
development has notable impact on some of these rights and now even more so 
with the incorporation of AI and machine learning. In this chapter, we outline a brief 
overview of some of the uses of AI in the drug development process. We discuss the 
possible influence of AI-enhanced drug discovery in a human-centered health care 
system with special reference to the drug discovery process, the challenges of 
availability of therapeutics, especially in low- and middle-income countries, and 
the challenge posed by the energy crisis on big pharma. And finally, we touch on the 
human rights issues posed by AI in drug discovery.
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1 Introduction 

From time immemorial, human society has gone through a number of eras charac-
terized by massive paradigm shifts and evolution from one era to the next. Human 
beings started their journey as mere hunter-gatherers (Society 1.0), then settled into 
agrarian communities (Society 2.0), and eventually progressed to start large indus-
tries during the industrial revolution phases (Society 3.0) which culminated in the 
information age (Society 4.0). Some argue that perhaps now we are also at the 
precipice of another jump from the information-gathering and information-
consuming society to an information-application society characterized by the inte-
gration of artificial intelligence (AI) in our everyday lives (Society 5.0). Japan has 
now set a challenge to the world by conceptualizing what is commonly called 
Society 5.0. The ideals and ambitious goals of Society 5.0 is the advancement of 
human endeavor by creating a human-centered society, moving from the current 
information-intensive society to a knowledge-intensive society, by the integration of 
cyberspace with real-world physical space and exploiting the powers of AI technol-
ogies for the betterment of all human life at both individual and societal levels 
(Tokyo 2020). It is a society that uses technological advancement objectively to 
provide an equitable and fair distribution of the world’s resources, circumventing the 
current inter-personal and global-regional based disparities and inequalities (Tokyo 
2020). 

One of the fundamental tenets of a human-centered society is the creation of 
human-centered health care systems. A health care system based on the fundamental 
appreciation of human emotions, thought processes, and people’s behavioral ten-
dencies as far as their health is concerned, while at the same time optimizing and 
encouraging human-centered behavior among all health care providers and health 
care facilities (Searl et al. 2010). A health care system designed to understand 
patients holistically and provide suitable comprehensive solutions, delivering prod-
ucts and services that cater to the patient’s health needs in a meaningful and 
pleasurable experience (Melles et al. 2021). Central to the delivery of any health 
care is the provision of safe therapeutic agents to the right patient, at the right time 
via an effective and safe dose. The human-centered design includes the design of 
policies, strategies, services, and products that are effective; accessible; sustainable; 
lead to improvement in the well-being of humans; enhance user satisfaction; and 
counteract possible adverse events on human health, safety, and performance 
(Melles et al. 2021). Health care provision almost always involves the prescription 
of drugs either as the main treatment of the disease or part thereof. To this end, it is 
important that clinicians provide effective and safe drugs that are easy to administer 
and improve patient compliance. Drug discovery is a complex and tedious process, 
where a traditional workflow can take 12–14 years costing on average more than 2.6 
billion USD (Manish Vyas et al. 2018). Though recently, due to the COVID-19 
pandemic, we have seen faster time to market of drugs and vaccines in effort to fight 
the pandemic with much faster repurposing of already existing agents and the FDA 
more rapidly issuing emergency use approval (EUA) for a number of drugs. For



example, the combination drug consisting of monoclonal antibodies Casirivimab 
and imdevimab used to treat mild to moderate SARS-CoV-2 infection by targeting 
the spike protein was issued the first EUA in November 2020 (Gao and Sun 2021). 
The efficacy of Casirivimab and imdevimab combination to decrease the develop-
ment of symptomatic disease or reduce the duration of symptoms was tested in a 
Phase III clinical trial, that started enrolling on July 13, 2020, and lasted for 
seven months to January 28, 2021, and follow-up ending on March 11, 2021, having 
only enrolled only 314 participants (O’Brien et al. 2022). Artificial intelligence can 
be successfully applied at different phases of drug development to enhance effi-
ciency and speed while significantly lowering costs. AI can be employed at various 
phases of the drug development process, for example, cell target classification and 
sorting, the prediction of a drug’s physical properties, prediction of toxicities, 
prediction of the 3D structure of a drug, and prediction of drug-protein interactions 
(Chan et al. 2019). For drug discovery to enhance the envisaged human-centered 
society, the fundamental question will be on which areas of drug discovery should be 
the main focus, especially since recent research experience suggests that computa-
tional methods fare better with chemistry than they do with biology in a sense that 
specific chemical reactions are constant and predictable whereas biological systems 
may respond differently to the same chemical compound due to a variety of factors 
like patient physiology, genomics, previous environmental or chemical exposures, 
etc. (Bender and Cortés-Ciriano 2021). Hence, the application in a systems-oriented 
manner of novel in silico AI approaches to drug discovery and administration will 
tremendously improve precision health, particularly in resource-limited settings. 
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2 Drug Discovery 

The process of drug discovery starts by identifying a disease process which may be 
either new or existing, that requires pharmacological therapy. The needed therapeu-
tic agent may be unavailable as in the case of new disease or in a case of existing 
disease. The available agents may be inadequate due to a variety of reasons, 
including lack of safety, poor efficacy, toxicity, or poor compliance, as a result of 
cumbersome dosages. The initial phases of drug development and one of the most 
important steps involves generation and analysis of data to identify a suitable drug 
target, which can be either a receptor, a protein, a gene, an RNA, or a disease 
pathway that if inhibited or activated will result in a desired therapeutic effect 
(Hughes et al. 2011). The biological target, which is involved in a dysfunctional 
biological process leading to a disease state, is often identified during basic science 
research (Mohs and Greig 2017). Table 1 summarizes the drug development process. 
New drug discovery projects are associated with high attrition rates due to the ever-
rising cost of research and development, coupled with low success rates. For 
example, only around 11% of new compounds complete development and get 
approval from regulators, while approximately 62% of new drug candidates fail in 
phase II and III clinical trials. Another major hurdle in drug development is the
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Table 1 Drug development process: Overview summary of the process of drug development 
project from initiation to FDA approval 

Activity Aim and description Examples, time, and cost References 

Target 
identification 

Identify molecular compound 
or pathway involved in the 
disease process that can be 
targeted with a drug. Involves 
data mining of a wide range of 
biomedical data. 

Genes, pathways, proteins, 
or RNAs: lncRNA, miRNA, 
ceRNAs 

Hughes et al. 
(2011), 
Jayarathna 
et al. (2022) 

Target 
validation 

Employ various techniques to 
interrogate that the target will 
respond to a drug with safe 
therapeutic benefits. Multi-
validation approaches are 
preferred. 

Antisense technologies. 
Monoclonal antibodies assess-
ment. Chemical genomics 
assess genomic response to 
chemicals 

Hughes et al. 
(2011) 

Hit 
discovery 

“Hit”—The first compound 
that shows activity against a 
targeted protein or pathway, 
often found by screening 
chemical libraries or computer 
simulations. 

Obtained via virtual, tradi-
tional high-throughput, or 
fragment-based screen-
ing = small molecules (<1000 
Dalton) 

Mak and 
Pichika 
(2019), Zhu 
et al. (2013) 

Lead com-
pound 
identification 

A chemical compound that has 
the potential to be developed 
into a new drug and is used as 
the basis for structural chemi-
cal modifications. 

Compounds with molecular 
weights below 500 and logP 
values below 5 

Mak and 
Pichika 
(2019), Hefti 
(2008) 

Lead optimi-
zation phase 

Drug candidates are designed 
from the lead compound 
maintaining its favorable 
properties while improving on 
its deficiencies. 

High throughput DMPK (drug 
metabolism and pharmacoki-
netics) screening 

Deore et al. 
(2019) 

Pre-clinical 
testing 

In vivo animal studies to eval-
uate drug candidate safety and 
efficacy and in vitro studies. 

Assess pharmacokinetics and 
pharmacodynamics of drug 
and monitor toxicity 
Timeline: 1–2 years 

Deore et al. 
(2019), 
Matthews 
et al. (2016) 

Clinical tri-
als (0–IV) on 
human 
subjects 

Phase 0 – first-in-human, 
micro-dose studies, and few 
volunteers to clean 
pharmacokinetic data. 
Phase I – assess safety and 
dosage. 
Phase II – assess efficacy and 
side effects. 
Phase III – assess efficacy and 
adverse drug events in larger 
groups over longer periods. 

Timeline: 6–7 years Deore et al. 
(2019), 
Matthews 
et al. (2016) 

Regulatory 
approval 

Application for regulatory 
approval once the drug has 
passed Phase III. 

Timeline: 1–2 years (FDA) Matthews 
et al. (2016), 
Deore et al. 
(2019) 

Clinical 
trial –Phase 
IV 

Phase IV – post-approval 
monitoring of drug perfor-
mance in real-world setting. 

Thromboprophylaxis in 
esophageal cancer patients 
(TOP-RCT) – ongoing trial 

Zhang et al. 
(2016), NIH 
(2022)



vastness of chemical space, which is composed of more than 1060 molecules (Mak 
and Pichika 2019). To get one drug approved, approximately 5000–10,000 com-
pounds have to be tested and enter the investigation and development pipeline, 
significantly increasing cost and time (Deore et al. 2019). Figure 1 shows the 
funnel-type progression of chemical compounds through the drug development 
process. A wide variety of molecular structures or ligands can be targeted for drug 
design based on their level of complexity and the desired pharmacological drug 
effect. G protein-coupled receptors (GPCRs), for example, have become some of the 
most commonly targeted protein families because of their involvement in multiple 
physiological functions and rich ligand space owing to their structural and functional 
complexity (Díaz et al. 2019). Understanding the physical interplay between thera-
peutic agents and the intended targets in a living ecosystem is crucial during the drug 
development process and also remembering that the clinical outcomes observed may 
be the result of downstream effects (Zhavoronkov et al. 2020). Generally, the more 
nuanced the intended effect is, the more complex the molecular space that is required 
for drug design. There are various types of ligands that are targeted during the 
process of drug design, including full and partial agonists, neutral antagonist, full 
and partial inverse agonists, allosteric modulators, and biased ligands (Díaz et al. 
2019).
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Fig. 1 The funnel-shaped 
flow of chemical 
compounds from hypothesis 
generation to the final 
approved drug 

2.1 Artificial Intelligence in Drug Discovery 

Machine learning (ML) and in particular deep learning (DL) have proven useful in 
enhancing drug development. Drug discovery proceeds in a feedback loop mecha-
nism of design, make, test, and analyze (DMTA) cycle ensuring that developers can 
adapt, recover, and learn from mistakes during the process. Machine learning 
methods that utilize active learning (AL) are well suited to this feedback loop



mechanisms (Smith et al. 2018). AI technology is becoming more and more useful in 
the pharmaceutical industry due to the advancement and exponential growth of big 
data; AI is used to predict whether treatment will be successful in a patient, to assess 
for potential repurposing of existing drugs, and to evaluate the drug’s safety and 
efficacy (Patel and Shah 2022). Machine learning involves the use of algorithms to 
identify patterns within given data sets. Deep learning uses artificial neural networks 
(ANNs) comprising of interconnected sophisticated computing elements compara-
ble to the human brain neural network that mimic the functioning of the human brain 
and thus have an ability to learn and deduce new data and solve problems by 
recognizing patterns in the input data (Paul et al. 2021). AI learning requires 
harnessing and understanding volumes of data derived from basic science, clinical 
research, and clinical practice. This data is typically sourced from hundreds of 
sources and presented in different formats. Cognitive computing solutions, like 
IBM Watson, are empowered to understand technical, industry-specific information 
and use advanced reasoning, predictive modeling, and machine learning techniques 
to enhance research. They were specifically designed to combine and interrogate big 
datasets and understand various types of data such as laboratory results in a struc-
tured database or the text of scientific publications (Chen et al. 2016). The main 
benefits of using AI in drug development are in drug design, poly-pharmacology, 
drug repurposing, and drug screening. Predicting drug properties helps to reduce the 
rate of inappropriate clinical trials and unsuitable participants, which would be 
beneficial from both financial and ethical standpoints (Patel and Shah 2022). With 
drug repurposing and reevaluation using AI tools, we can develop better and 
improved medicines than currently available, medications that offer benefits in 
terms of potency, safety, tolerability, and convenience without the need to manip-
ulate new biological targets that are dissimilar to those directly affected by existing 
medications (Mohs and Greig 2017). Machine learning models such as support 
vector machines, k-Nearest Neighbors, Naïve Bayes, and Random Forest have 
been utilized for some time in drug discovery. However, recently deep learning or 
deep neural networks (DNNs) have risen to prominence because of the superior 
computational power and flexible architecture which allows the generation of 
models that can perform single-task or multitask machine learning as well as predict 
drug-target interaction more accurately (Ekins et al. 2019). The advantage of deep 
learning is its capability to adapt to a wider class of chemical compounds and 
modeling tasks allowing for a more efficient use of data (Jiménez-Luna et al. 
2021). Figure 2 depicts the role of artificial intelligence in the drug discovery process 
over time, while Fig. 3 highlights some of the areas where artificial intelligence can 
be successfully employed during drug development. 
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2.1.1 Artificial Intelligence in Identifying Potential Drug Targets 

Artificial intelligence is useful in identifying potential biological entities that can be 
used as targets for drug development. For example, IBM Watson as a cognitive 
learning computational model was used to accurately predict and rank RNA-binding
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Fig. 2 Artificial intelligence in drug discovery: Depicts the progress of AI application in drug 
discovery over the years, showing increases in computing power and data. CPU – central processing 
unit, GPU – graphics processing unit, QSAR – quantitative structure-activity relationship, CADD – 
computer-aided drug discovery, ANN – artificial neural networks, scRNA – single-cell RNA 
sequencing data (Zhu 2020; Wang et al. 2019; Cai et al. 2020) 

Fig. 3 Depicting some of the areas where AI can be integrated into the drug discovery process. 
Adapted from Paul et al. (2021)



IBM Watson is a supercomputer developed by International Business
Machines (IBM) which has a combination of AI and sophisticated analytical
software. Watson can be utilized in various domains, including medicine, life
sciences, engineering, law, and finance. It collates data into what is called Watson
corpus and groups databases relevant to each domain into domain-specific cor-
puses. It then uses deep natural language processing and machine learning
capabilities to teach itself and make a meaningful conclusion in a cognitive
fashion from the vast data (Chen et al. ). Its health application called Watson2016

proteins (RBPs) that are altered in amyotrophic lateral sclerosis (ALS) by mining 
scientific publications and extracting domain-specific text features to identify new 
connections between the entities of interest. Eight of the top ten altered RBPs as 
ranked by IBM Watson were validated with immunohistochemistry and RNA and 
protein analyses of the lumbar spinal cords of ALS patients and normal 
non-neurogenic controls. ALS is a devastating neurodegenerative disease that is 
putatively caused by alterations in RBPs and at present has no treatment (Bakkar 
et al. 2018).
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Applying multiple supervised and unsupervised machine learning algorithms on 
molecular data, Sinkala et al. (2020) sub-classified pancreatic cancer into two 
distinct subtypes that upregulate different kinases. Subtype-1 tumors showed 
upregulation of m-TOR signaling pathway–associated kinases like MTOR-
pS2448, GSKB-pS21-S9, and PDK-pS241 whereas subtype-2 tumors display 
upregulation of the cell cycle–associated kinases like CDK1-pY15, p27-pT158, 
and p27-pT198. Most of these kinases are potential targets for small molecule 
inhibitors. The small molecule inhibitors are currently being tested or used in 
some anticancer clinical trials (Sinkala et al. 2020). ML can analyze multiple 
complex pathways to identify appropriate potential targets. For example, competing 
endogenous RNAs (ceRNA) have been identified as important post-transcriptional 
regulators of gene expression via the microRNA-mediated mechanism and may play 
a prominent role in the molecular pathogenesis of hormone-dependent cancers 
(Jayarathna et al. 2022). Jayarathna et al. utilized a supervised machine learning 
algorithm called Cancerin to identify regulation-factor-mediated ceRNA networks in 
five hormone-dependent cancers; they identified cancer survival significant ceRNAs 
BUB1 and EXO1 for invasive breast carcinoma, adenocarcinoma of the colon, 
uterine corpus endometrial carcinoma; and ceRNA RMM 2 for prostate adenocarci-
noma, adenocarcinoma of the colon, and uterine corpus endometrial carcinoma. 
These ceRNAs provide potential targets for drug development against these 
hormone-dependent cancers (Jayarathna et al. 2022). 

2.1.2 Artificial Intelligence Tools in Pharmaceuticals 

A number of AI-based tools that function in the pharmaceutical industry have been 
developed, and these include the following:

• IBM Watson



Health was designed to analyze structured and unstructured data from a patient’s
medical records, scientific publications, and other relevant data (i.e., clinical
research trial data and basic science research) and thereby assist clinicians by
providing possible appropriate options for further treatment or disease manage-
ment of a patient. Watson has information from literature curated by Memorial
Sloane Kettering Cancer Center, over 200 textbooks, 12 million text pages, and
over 290 medical journals (Manish Vyas et al. ; Paul et al. . However,
while Watson Health is excellent at the interpretation of well-organized curated
data it has had difficulties with the interpretation of very unstructured medical
data from written medical notes and case reports and often confuses medical
abbreviations used by clinicians because it fails to decipher the medical context
when an acronym is used; MD Anderson data found that despite training Watson
still could not interpret unstructured medical language as well as human beings
could (Schmidt ).2017

2021)2018
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• Robot pharmacy 
While employing AI to develop innovative medicines is helpful, we also need 

to consider access and the appropriate administration of these drugs. In the real-
world setting almost half of all medications are inappropriately prescribed, 
dispensed, or sold, while at the same time only about 50% compliance rate is 
seen among patients (Leisinger et al. 2012). Technological companies have 
developed AI technology in the form of Robot pharmacies to improve safety 
and efficiencies in drug dispensing, with improved dose preparation and the 
ability to keep track of all medications dispensed and stored in the facility. 
UCSF Medical Center uses robotic technology for the preparation and tracking 
of medications and their system purportedly performed much better than humans 
at delivering accurate medication to correct patients after preparing more than 
350,000 doses (Manish Vyas et al. 2018). 

Although Robot pharmacies have been proven to significantly reduce medi-
cation errors, they do have disadvantages and limitations. These include high 
initial set-up cost coupled with expensive up-keep that may lead to job losses to 
offset those costs, an unexpected failure of the computer program controlling the 
pharmacy with disastrous consequences especially with IV preparation systems, 
etc. Mechanical errors do also occur, which included vials or fluid bags that fall 
outside the weight parameters, failure of the robot to successively grip or hold a 
vial due to manufacturing defects, incorrect measurements of syringes or other 
items, faulty needles, and failure to recognize barcodes and correct medication 
vials (Alahmari et al. 2022). 

2.1.3 Artificial Intelligence in Drug Screening/Virtual Screening 

Artificial intelligence, ML, and DL through superior computational modeling have 
the ability to identify and validate chemical compounds, assist in the hit discovery, 
peptide synthesis, evaluation of physiochemical properties, drug monitoring for 
efficacy and effectiveness, and drug repurposing. AI models can also identify



potential toxicity problems that may occur as a result of off-target interactions 
(Gupta et al. 2021). 
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Virtual screening (VS) is a computational technique used to search a large library 
of chemical compounds in order to identify those that are likely to bind to a specific 
drug target, usually an enzyme or receptor (Gimeno et al. 2019). Traditionally 
screening for lead compounds involved in vitro high-throughput screening of all 
the chemical space for existing compounds in a particular collection, which is very 
time- and resource-heavy while producing a low number of hits (Carpenter and 
Huang 2018; Mcinnes 2007). Virtual screening introduces the possibility to screen 
both existing molecules as well as those that are not physically present in the 
collection of interest, but can be purchased or synthesized, while at the same time 
introducing the increased computational ability to predict binding affinity which 
enables scientists to test only a relatively small subset of compounds in low or 
medium throughput assay format (Mcinnes 2007). 

Virtual screening for potential drug candidates minimizes time and cost associ-
ated with early drug discovery, by accurately predicting the ligand–protein binding 
potential between a chemical compound and target protein in silico, thus minimizing 
the need for costly in vitro/in vivo experiments. VS facilitates faster hit identification 
and validation and lead optimization. VS methods can be ligand-based (LBVS) or 
structure-based (SBVS) or a combination of both, with SBVS having emerged as 
one of the most promising techniques (Maia et al. 2020; Negru et al. 2022). VS 
sequentially selects the compounds that have a higher susceptibility to bind to the 
target protein with the least amounts of adverse reactions. This process can filter out 
from 500 compounds down to only 5 compounds that will proceed to in vitro 
experiments (Maia et al. 2020). In SBVS, the protein structure is known and 
available and it’s docked into the environment of the biochemical target, and the 
compound library of small molecules is explored using computer algorithms and 
scoring functions (mathematical algorithms) to assess the binding affinity strength 
between the docked compound and the target. A number of docking software 
programs are available with different conformational sampling algorithms and a 
variety of scoring functions. In LBVS, biological data is evaluated to identify known 
active or inactive compounds that will be used to retrieve other potentially active 
molecular scaffolds based on similarity measures (evaluates the database for the 
nearest-neighbor molecules most likely to exhibit the needed bioactivity against the 
bioactive reference structure), common pharmacophores (a 3D molecular structure 
that is needed for a ligand to interact with target receptor binding site), or descriptor 
values (Lavecchia and Di Giovanni 2013). 

Pal et al. in their study to identify potential anti-cancer agents that may target 
GPR12 0, a G-protein coupled receptor that is over-expressed in colorectal cancer 
cells, virtually screened approximately 350,000 well-characterized and drug-like 
molecules from the SPECS database against GPR120s and finally only selected 
13 hit-compounds which needed in vitro testing. In the end, they identified a 
potential chemical scaffold for future CRC anti-cancer drugs named dihydrospiro 
(benzo[h]quinazoline-5,1′ -cyclopentane)-4(3H)-one (Pal et al. 2021).
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Virtual screening will undoubtedly be further enhanced by the machine learning 
ability to not only predict drug–protein interactions but also to accurately predict the 
three-dimensional structure of proteins. The revolution in protein structure predic-
tion is the advent of AlphaFold2 system developed by DeepMind, and it is an 
artificial neural network system that predicts protein structure with a median accu-
racy of 1.5 ångströms. AlphaFold2 considers both local and long-range interactions 
in protein molecules. It uses computational algorithms that efficiently capture long-
range interactions on the basis of fundamental aspects of protein geometry and 
repeatedly applies these operations to refine its structure prediction, while also 
applying structured machine-learning approaches that deduce protein structures by 
identifying patterns of mutation in proteins that evolve in common temporo-spatial 
environment and thereby identifying amino-acid residues that are closely related to 
each other. It may predict approximately 60% of all human-protein regions 
(Alquraishi 2021). 

2.1.4 Artificial Intelligence in Prediction of Physiochemical Properties 

A crucial step in drug discovery and design is to define the relationship between 
chemical structures and biologically active physiochemical properties because they 
indirectly affect the drug’s pharmacokinetics and its target receptor family. Physi-
cochemical properties include solubility, partition coefficient (logP), degree of 
ionization, and intrinsic permeability of the drug (Paul et al. 2021). 

Quantitative structure–property relationship (QSPR) methods involve supervised 
learning methods designed to extract and predict often complex relationships 
between the physicochemical properties of interest and the molecular structure of 
chemical materials (Le et al. 2012; Zang et al. 2017). Zang et al. developed QSPR 
models for in silico prediction of six physicochemical properties (logP, logS, 
logBCF, BP, MP, or logVP) by analyzing the binary molecular fingerprints from 
diverse data sets of environmental organic chemicals. The data sets used were 
obtained from Estimation Program Interface (EPI) Suite. They used unambiguous 
machine learning algorithms, namely multiple linear regression (MLR) which pro-
duced a linear model to describe the relationship between a physicochemical prop-
erty and molecular fingerprint bits, partial least-squares regression (PLSR) generated 
linear statistical models based on the fingerprint bits and the physicochemical 
property being predicted, random forest (RF) is a nonlinear consensus method 
based upon an ensemble of decision trees, and support vector regression (SVR), 
which was shown to be superior to the other three approaches, modeled a nonlinear 
relationship between the property and molecular descriptors (Zang et al. 2017). 

“Quantitative-structure activity relationship (QSAR) modeling is a computational 
approach through which quantitative mathematical models can be created between 
chemical structure and biological activities” (Gupta et al. 2021). The mathematical 
model helps in identifying a chemical entity from molecular databases that can be 
used as a drug compound, which is then sent for laboratory synthesis followed by 
in vitro or in vivo testing (Gupta et al. 2021). Many systems-oriented, multiscale



mathematical models using ordinary and stochastic differential equations (ODE and 
SDE) have been formulated to determine the therapeutic efficacy of combinatorial 
administration of cancer drugs (Goldie et al. 1988; Sun et al. 2016; Malinzi et al. 
2021). The merits of these higher order abstraction mathematical models have been 
demonstrated in various experimental scenarios to be able to significantly mitigate 
the prohibitive cost and human effort required in the drug development pipeline, as 
well as determine the optimal combination of drugs, which minimizes toxicity and 
other adverse side effects (Malinzi et al. 2021). These emerging novel mathematical 
oncological approaches would be potentially beneficial for optimal and cost-
effective oncological care in resource-limited health care settings. 
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2.1.5 Artificial Intelligence in Predicting Drug-Drug and Drug-Food 
Interactions 

Drug-drug interaction (DDI) and drug-food interaction (DFI) can lead to a signifi-
cant decrease in drug efficacy, compliance, and safety with increased risk of adverse 
events. Furthermore, pharmacogenomics which deals with individual genomic dif-
ferences in metabolism of drugs can affect the efficacy and precision of pharmaco-
logical agents in treating various diseases (Ryu et al. 2018). Available computational 
models that are used to predict drug–drug interactions can be divided into three 
categories namely similarity-based methods, networks-based methods, and machine 
learning methods. ML methods improve DDI prediction by integration of multiple 
aspects of data from a single source or multiple heterogeneous data sources, with 
ensemble learning, kernel methods, and deep learning used predominantly to inte-
grate data from heterogeneous sources. However, data integration has a downside of 
increasing data complexity and a potential to drown data regarding the underlying 
molecular perturbations that result in DDI (Mei and Zhang 2021). In an attempt to 
improve on these data integration shortcomings, Mei and Zhang developed a 
machine learning framework that uses drug target gene profiles and signaling 
pathways as the basis of learning and prediction of DDI; they employed 
l2-regularized logistic regression model (Mei and Zhang 2021). 

Artificial intelligence can be used not only to predict potential drug-drug and 
drug-food interactions, but also suggest alternative drug pairs that produce minimal 
side effects and are more effective. Ryu et al. (2018) presented a computational 
model called DeepDDI that employed machine learning and DNN to predict and 
classify drug-drug interaction for a given drug pair. As system inputs, they used the 
names of drugs and their chemical compound’s structural information, provided in 
simplified molecular-input line-entry system (SMILES). DeepDDI outputs were 
presented as readable human sentences that describe changes in pharmacological 
effects and/or the risk of adverse drug events because of the interaction between two 
drugs in a pair. DeepDDI produced specific information on drug interactions with 
high accuracies of 84.8–93.2% in predicting drug-drug interaction and drug-food 
interactions (Ryu et al. 2018).
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2.1.6 Drug Repurposing 

Drug repurposing is an approach of assessing whether an existing drug, which may 
or may not have been approved for original intended use, can be repositioned and 
used for another new indication. It offers a cost-effective and rapid solution to drug 
development, bringing much needed therapeutics to patients quicker and at less cost 
than designing a new drug (Zhou et al. 2020). 

Ge et al. (2021) used an integrative network combining machine learning and 
statistical analysis model to identify potential drug targets for the treatment of 
SARS-CoV-2. They used a network-based knowledge mining algorithm called 
CoV-DTI and used a deep learning–based relation extraction method named 
BERE among other methods. Their study demonstrated that poly-ADP-ribose poly-
merase 1 (PARP1) inhibitor CVL218 exhibited significant antiviral activity against 
SARS-CoV-2 and therefore could be used to treat COVID-19. CVL218 demon-
strated inhibitory activity against the replication of SARS-CoV-2. Its antiviral 
mechanism was shown to be potentially mediated by binding and interaction with 
the nucleocapsid protein of SARS-CoV-2. At the time of their study CVL218 and 
other PARP1 inhibitors either already had FDA approval or were being actively 
tested in clinical trials as potential antiviral therapeutic agents (Ge et al. 2021). 

2.1.7 Clinical Trial Design and Artificial Intelligence 

Significant cost and time in the drug development pipeline are consumed by the 
clinical trial phases (Ekins et al. 2019). This phase can take up to 57% (1.46 of 2.56 
billion USD) of the total budget cost and last for 7–10 years. Therefore, failure in 
clinical trials impairs investment into the trial itself and also negatively affects 
pre-clinical development costs. The major reasons for failures during trials are 
poor patient selection and recruitment, as well as ineffective patient monitoring 
during trials (Zhavoronkov et al. 2020). AI can improve the success of clinical trials. 
For example, for patient cohort selection natural language processing (NLP) and 
computer vision algorithms such as optical character recognition (OCR) can be used 
to automate and compile patient data from “omic” data, electronic medical record 
(EMR), handwritten paper copies, digital medical imagery, and biomarkers, thereby 
improving clinical trial enrichment and patient cohort composition (Harrer et al. 
2019). IBM developed the AI-based clinical trial matching system called Watson for 
Clinical Trial Matching (WCTM) that helps to match patients to clinical trial by 
analyzing and integrating the large quantity of structured and unstructured EMR 
data, creating detailed patient profiles of clinical findings and comparing them to trial 
eligibility criteria in ongoing clinical trials (Zhavoronkov et al. 2020). A study by 
Beck et al. evaluated the performance of WCTM in a cohort of 239 breast cancer 
patients and found that WCTM correctly identified 91–95% of eligible patients in 
three out of the four trials and reduced screening time by 78%, and they concluded



that WCTM assisted and expedited matching patients with correct clinical trials 
(Beck et al. 2020). 
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2.2 Challenges 

The sheer scale of the large chemical space plus data sets of millions of compounds 
that are held by pharmaceutical companies for drug development coupled with the 
rapid growth, diversity, and uncertainty of this large data poses a significant chal-
lenge to computing power of traditional ML tools and AI. For instance, some 
computational models can predict large numbers of compounds or simple physico-
chemical parameters but fail to predict complex biological and pharmaco-genomic 
properties, such as the efficacy and adverse effects of compounds (Paul et al. 2021). 

Artificial intelligence models and tools rely heavily on the availability of credible 
medical data. One of the challenges is the accessibility of EMR data. EMR formats 
tend to differ widely between institutions and regions and are sometimes not 
compatible with each other; some records are not digitalized or even electronic 
and exist in a decentralized environment with no data exchange. Strict legal regula-
tory frameworks on data collection also limit access to patient data by third parties, 
with even patients themselves having difficulty accessing their own records (Harrer 
et al. 2019). Properly kept EMR will be particularly useful in low- and middle-
income countries (LMICs), especially in Africa, where infectious diseases have 
become the leading cause of death, with HIV and multi-drug resistant TB being 
the major culprits, followed by trauma deaths. Patients with infectious diseases 
require continuous treatment and long-term care, necessitating an efficient record-
keeping system. Some of the challenges negatively affecting widespread use and 
implementation of EMR in LMICs are related to poor bandwidth availability and 
access to the internet in health facilities, low levels of computer literacy and lack of 
motivation to use the system correctly, and concerns from clinicians about medico-
legal litigation (Ohuabunwa et al. 2016). For most LMICs, EMR adoption and 
implementation is limited to specific disease programs such as HIV and TB in 
small regions of the country. Effective implementation is influenced by the avail-
ability of funding (which commonly comes from external donors) and poor involve-
ment of stakeholders, and therefore evidence-based strategies need to be developed 
to enable EMR integration in the national health care systems of LMICs (Kumar and 
Mostafa 2020). 

Despite an enormous amount of extremely valuable chemical and biological data 
being now publicly available together with screening data, most of this data is kept in 
different databases using different formats and generally is not AI model ready or 
machine readable. Therefore, this data needs to be properly curated and prepared 
before the machine learning models can be used (Ekins et al. 2019). Over and above 
that in resource-constrained settings, the feasibility of deploying AI for drug delivery 
is limited by factors such as lack of stable power supply, human resources, and 
computer infrastructures.
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Another challenge that AI faces is the interpretation and analysis of unstructured 
medical data because the quality of data varies and different medical institutions 
sometimes use medical terms differently (Schmidt 2017). 

Major global events of the past three years have led to unprecedented multi-
pronged crises. The COVID-19 pandemic and subsequent shutdowns have led to 
shortages of raw materials and the Ukraine-Russia war has worsened the situation 
leading to an energy crisis that has negatively impacted not only Europe but the 
entire globe. Big pharma is faced with escalating energy costs and costs of raw 
material, such that a lobby group, Medicines for Europe, has warned that European 
pharmaceutical companies may have to stop producing cheaper generic drugs 
(Hawkins 2022). The increase in energy and resource costs will push drug prices 
higher, limiting the availability of medicines, especially in under-resourced coun-
tries. Companies are now having to change their business models in order to 
accommodate the energy crisis, such as looking at alternative energy sources in 
particular renewable energies (Stewart 2023). 

3 Achieving a Human-Centered Health System 

A human-centered health system has people as the focal point of all care solutions. It 
is a system that seeks to gain deep understanding of people’s needs and design 
solutions by seeing the world through the eyes of all people involved (patients, 
caregivers, clinicians, nurses, pharmacists, and all the involved stakeholders). It 
incorporates the experiences and insights of patients, citizens, and the workforce. 
Human-centered health design involves empathy and prototyping, requiring input 
from both patients and clinicians, which results in greater satisfaction, better health 
outcomes, and proper allocation of resources (Naar et al. 2018). 

The most expensive part of drug design is the conduct of human clinical trials. AI 
has the potential to lower this cost, but by supplementing trial designs with human-
centered design (HCD), costs can be lowered even further. HCD has the ability to 
bring new ideas to entrenched problems by bringing in a strong human lens and 
integrating multiple stakeholder perspectives in program designs. The greater the 
engagement of stakeholders in a project the greater their continued willingness and 
motivation to engage and see the project to completion (Blynn et al. 2021). Bender 
and Cortes have argued that limiting the failure rate in clinical trial phases may be 
more important in terms of cost reduction than decreases in the cost of individual 
preclinical phases or the speed of completion of a phase. They also argue that it is 
crucial to improve the quality of decisions regarding which chemical compound will 
be the best to take forward in drug discovery projects, the best compound being the 
one that is most likely to provide the desired outcome in terms of efficacy and safety 
(Bender and Cortés-Ciriano 2021). 

Artificial intelligence applications in drug discovery can increase access to 
medicine and improve the experience of patients, their families together with health 
care workers, and all involved in the health care system. Access to affordable, safe,



and effective medicine is a fundamental human right. To try and attain universal 
human rights and improve the lives of all the earth’s inhabitants, in accordance with 
the United Nations developed sustainable development goals (SDG) that need to be 
achieved by the year 2030. Goal number 3 talks about “Ensuring healthy lives and 
promoting well-being for all at all ages” and particularly goal 3.8 seeks to “Achieve 
universal health coverage, including financial risk protection, access to quality 
essential health-care services and access to safe, effective, quality and affordable 
essential medicines and vaccines for all” (UN-SDGs 2015). However, more than half 
of the people living in low- and middle-income countries do not have access to 
essential medicines for a variety of reasons including the high cost of medicines and 
poor health care infrastructure. New medicines are unaffordable for the majority of 
the population living in LMICs, while at the same time these countries have 75% of 
the world’s poor, accounting for the majority of the global disease burden (Stevens 
and Huys 2017). Therefore, leveraging the AI’s advantages of increased speed 
coupled with reduced cost of drug development will be paramount if we are to attain 
Goal 3 of SDGs. While governments are responsible for the health care infrastruc-
ture, pharmaceutical companies can play a key role in improving access to medi-
cines; through innovation and enhancing research and development capabilities, 
they will be well poised to produce cheap and innovative medicines that improve 
quality of life (Leisinger et al. 2012). Improving access to essential medicines and 
vaccines coupled with their proper use will reduce unnecessary suffering and 
potentially save up to 10.5 million lives each year (Leisinger et al. 2012). 
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Artificial intelligence plays a crucial role in the development of a human-centered 
health care system, playing a role not only in the laboratory space of research and 
development but also during the implementation processes. For example, Beede 
et al. conducted a human-centered evaluation of a deep learning system by 
conducting a prospective sociotechnical study in a real-world clinical setting. The 
study evaluated the performance of the deep learning algorithm used to assess retinal 
images of diabetic patients for the detection of diabetic eye disease (diabetic 
retinopathy), but it also had an additional focus on the human aspects of deploying 
the DL algorithm. They assessed the experience of nurses, technicians, and indi-
rectly of patients interacting with the system. They found that the system signifi-
cantly improved the time to specialist referral recommendation from up to ten weeks 
for a referral recommendation to same-day immediate referral recommendation. 
However, the study did highlight human aspect challenges with respect to nurse 
and patient experience; nurses expressed frustrations with the systems’ inability to 
grade “poor” quality images while patients complained about the logistical problems 
posed by the sudden need to travel to the far away referral center (Beede et al. 2020). 
Figure 4 demonstrates the interaction between drug discovery and artificial intelli-
gence and how that can be integrated with human-centered design with the aim of 
achieving a human-centered health care system. 

Artificial intelligence in the treatment of disease is not confined to drug discovery 
alone. In recent years, virtual reality (VR) simulations have emerged as a treatment 
for a variety of mental health diseases. According to the World Health Organization 
(WHO), mental health disorders affected 12.5% (1/8) of the world’s population in



2019, with anxiety and depressive disorders being the most common conditions. Just 
in 2020 alone with the COVID-19 pandemic, there was an estimated increase of 26% 
in anxiety and 28% in depression (WHO 2022). Virtual reality provides an advanced 
human–computer interface that enables the creation of specific computer-generated 
virtual environments that are used to retrain the brain’s reaction to the scenarios that 
lead to the mental disorder (Riva and Serino 2020). VR in vitro exposure allows for 
better control and standardization of the simulated environment for both therapists 
and patients compared to in vivo exposure (Guitard et al. 2019). VR exposure 
therapy combined with cognitive behavioral therapy has been used to successfully 
treat social anxiety disorder, depression, post-traumatic stress disorder, phobias, 
autism, and schizophrenia (Baghaei et al. 2021; Park et al.  2019). 
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Fig. 4 Human-centered health care system. Requires putting people first. Applying human-
centered design principles of empathy and prototyping in any project that will result in a health 
care outcome or health care experience 

4 Human Rights Impact of Artificial Intelligence and Drug 
Development 

Another fundamental tenet of achieving a human-centered health care system will be 
the protection and upholding of basic human rights as enshrined in the UN’s 
Universal Declaration of Human Rights. Drug development has notable impact on 
some of these rights and now even more so with the incorporation of AI and machine



learning. These two fields raise certain challenges; drug development impacts the 
right to health and access to essential medicines, while AI and machine learning raise 
challenges with regard to privacy and security of citizens and protection from biases. 
Enhancing drug development with AI involves canvassing large amounts of sensi-
tive and private medical data from large groups of patients be it in the initial phases 
of identifying a target disease or during the clinical trial phases, thereby raising 
concerns about the right to privacy (Noorbakhsh-Sabet et al. 2019). It is important, 
however, to underline that human rights are not necessarily always threatened but 
may be enhanced by AI as noted by Mpinga et al.; see Table 2 (Mpinga et al. 2022). 
The use of AI in the drug discovery and development process fast-tracks the process 
making it more cost-effective and efficient, thereby promoting access to medicines 
and the right to health. While on the other hand, selection biases of data points used 
to feed learning algorithms and the use of “limited” genomic and clinical trial 
databases from selected regions or ethnic groups may lead to the development of 
agents that may be unsafe to use in underserved under-represented peoples, thereby 
threatening their rights to health, safety, and life (Naik et al. 2022). 
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Table 2 Impact of AI on human rights in relation to health care (Adapted from Mpinga et al. 2022) 

Area Impact of AI Protected rights Threatened rights 

Health and health 
care 

Improved diagnostics 
Improved access to care 
Increased safety in care 
Strengthening and precision in 
prevention 
Improved quality control of care 
Improving health promotion 

Right to health 
Right to life 
Right to infor-
mation 
Right to work 
Right to 
participate 

Right to work 
Right to health 
Right to culture 
Right to life 
Right to 
non-discrimination 

Pharmaceutical companies as main developers of drugs have an obligation to find 
a balance between their needs to protect their patents and profits on one hand, while 
on the other hand ensuring people’s right to access safe and quality medicines by 
promoting transparency, monitoring, accountability, fair pricing, ethical marketing, 
and promulgating and adhering to regulations concerning drug safety and quality. 
Whereas governments have a legal obligation to ensure quality essential medicines 
are available, affordable, and accessible to their citizenry and they are duty-bound to 
prevent violations of human rights by pharmaceutical companies (Gruskin and Raad 
2010). Two United Nations guidelines – the Guiding Principles on Business and 
Human Rights (2011) and the Human Rights Guidelines for Pharmaceutical Com-
panies in Relation to Access to Medicines (2008) – appropriate a moral obligation 
and responsibility to pharmaceutical companies to make essential medicines includ-
ing vaccines are available, particularly to patients in LMICs (Santoro and Shanklin 
2020).
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5 Conclusion 

Enhancing human-centered health care is about improving the quality of health care 
offered to all the world’s citizens, regardless of race, gender, age, sexual orientation, 
or geography. Human-centered design needs to be integrated in all projects or 
innovation of any product or service that is intended to produce healthy outcomes 
and service experience. Incorporation of artificial intelligence in drug discovery will 
drastically reduce the cost and time to production of new, innovative, safe, efficient, 
easy-to-use medications, with minimal occurrence of adverse drug events. The ease 
of drug administration and less adverse events will surely improve the experience of 
not only the patients but also the clinicians and caregivers. And more importantly, 
pharmaceutical companies that lead drug development should realize that they have 
a moral responsibility to assist in the achievement of the right to access to essential 
medicines as a vital component of the fundamental human right to health. AI in drug 
discovery has the potential to transform the drug discovery process from a purely 
industrial design to hopefully a more human-centered design process. 
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The Role of Digital Twinning, the Next 
Generation of EMR/EHR in Healthcare 
in a Society 5.0: Collecting Patient Data 
from Birth to the Grave 

Rodney Hull, Nkhensani Chauke-Malinga, Guy Roger Gaudji, 
Kim R. M. Blenman, and Zodwa Dlamini 

Abstract The U.S. FDA estimates that drug treatments may be ineffective in 
38–75% of patients. This clearly demonstrates the importance of personalized 
medicine. Personalized medicine requires vast amounts of data, and a digital twin 
is an easy way to represent and use this data. A digital twin is a virtual copy of an 
individual generated using large amounts of highly descriptive data specific to that 
individual. To generate the most accurate digital twin, information should be 
collected from the individual’s birth, and this record must be kept up to date. This 
digital twin will then be a digital version of the individual containing their full 
medical history, genetic information, family history, biometric data, demographic 
information, and details concerning their environment and exposure to risk factors 
for various diseases. Epigenomic, transcriptomic, proteomic, metabolomic, and 
microbiomic data should be collected at various times to identify potential risk
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biomarkers that have developed. When an individual requires medical treatment, the 
digital twin can be updated using the latest “omics” data. These digital twins can then 
be used as accurate virtual models to test patient responses to various treatment, or to 
monitor patients at risk, which will improve early diagnosis and ensure early 
treatment. In this way, the digital twin could contribute to the lifetime healthcare 
goals of healthcare in Society 5.0, leading to the goals of improving the life 
expectancy and vitality of an individual through personalized healthcare from the 
cradle to the grave. Digital twins can also be used to improve health delivery and the 
healthy layout of cities and attain a multitude of other sustainable development 
goals, through virtual modeling and optimization based on the use of these models. 
Despite the promise of digital twins in healthcare, there are barriers to their use and 
implementation. These include ethical issues, violation of privacy, abuse, and the 
creation of a population of hypochondriacs as digital twins can be used to overdi-
agnose conditions.
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1 Introduction 

The emerging technology and practice of creating a digital twin has most often been 
employed by the industrial and engineering sectors (Wickramasinghe et al. 2021). A 
digital twin can be used to represent a physical object (or individual), process, or 
service as a virtual model consisting of both data and algorithms. They differ from 
traditional models in that they can represent unique features specific to the entity 
being modelled. Using technologies such as smart sensor technology, data analytics, 
and artificial intelligence, these models can be used to “test” their real-world 
counterparts in a digital virtual space and as these technologies improve, the pre-
dictions made through the use of digital twins will become more accurate. In the 
industrial engineering and commercial space this allows for prediction of system 
failures and the improvement of system performance or to innovate whole new 
approaches (Liu et al. 2019). 

However, the creation of digital twins is now being applied to the field of 
healthcare and medicine, where it is being promoted as an exciting and promising 
approach that can further advance efforts in medical discoveries and improve clinical 
and public health outcomes (Schwartz et al. 2020). Some of these applications 
include modeling the management of diseases such as multiple sclerosis (Voigt 
et al. 2021), dementia (Wickramasinghe et al. 2022), cancer (Hernandez-Boussard 
et al. 2021), and cardiovascular disease (Sun et al. 2022). Digital twins can also be 
used for the testing and development of medical equipment in a virtual space, such as 
radiological devices (Pesapane et al. 2022), or as a means to perfect or develop new 
procedures, such as a model for surgical interventions (Kurakova et al. 2022). A 
digital twin is created using patient-specific data to create a virtual copy of the



patient. Additionally, these digital twins could be amalgamated into a digital repre-
sentation of a population group. To create an accurate digital twin, detailed and up-
to-date patient information is required (Batch et al. 2022). This digital twin can be 
used to monitor the change in the patient’s risk of developing a disease across their 
lifespan and to decide on the best treatment for an individual. Simply put, this digital 
twin serves as a model of a physical entity and can be used to model the response of 
the physical entity to situations within the digital domain (Wickramasinghe et al. 
2021). In the fields of medicine and public health, it can serve as the next develop-
ment in electronic health/medical records for either an individual or an aggregate of 
records to model the response of a population. Modeling disease occurrence, spread, 
response to treatment, and outcome using digital twins would be required for a new 
era of precision medicine (Wickramasinghe et al. 2021; Björnsson et al. 2019). 
Healthcare in a Society 5.0–based healthcare system would involve a human-
centered approach that is actively led by the patient focused on preventive care, 
but most importantly it is centered around the individual with personalized medicine, 
involving tailor-made solutions from treatment and diagnosis to assessment 
(Natakusumah et al. 2022). The importance of personalized medicine was demon-
strated by a report from the FDA in 2013 which estimated that drug treatments were 
ineffective in 38–75% of patients being treated for a variety of conditions. This is 
due to standardized treatments being unable to account for individual variations 
(Parker 2005). This illustrates just a single problem that exists in healthcare that can 
be solved through the use of digital twins and the digitization of every individual 
patient. This chapter will discuss the development, application, and concerns around 
digital twins in Society 5.0 healthcare systems. In line with achieving the reforms 
necessary to implement Society 5.0 are the 17 United Nations sustainable develop-
ment goals. These goals were agreed to by member states in 2015 and are meant to 
provide a blueprint for the development of a prosperous future for individuals and 
the planet. Healthcare is covered by SDG-3. This chapter will cover the use of digital 
twins in the realization of SDG-3, but digital twinning can be applied to most if not 
all these development goals, examples of which are given in Fig. 1 (Costanza et al. 
2016). 
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2 History, Overview, and the Generation of a Digital Twin 

The first practical use of a digital twin was in 2010 where NASA used digital twins to 
model spacecraft flight (Glaessgen and Stargel 2012). The digital twin model system 
consists of three components, the source, which is the physical thing being modelled, 
the digital twin, and the data which connects them. The source can be virtually 
anything ranging from an individual to a population to a city or even a manufactur-
ing process. The twin that is created based upon this object or process is a virtual 
copy based on all the descriptive or quantitative data available to create the most 
exact copy. This data is collected from the source and used to create the twin 
(Grieves 2014). The use of the digital twin as a predictive model for patient
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healthcare is becoming more accurate thanks to the aforementioned smart sensor 
technologies, data analytics, and artificial intelligence. This predictive information 
can then be applied back to the patient, changes can be implemented, and new data 
can be gathered and used to alter the twin to make new predictions. This creates a 
feedback loop of information between the patient and the digital twin where the 
digital twin can be said to be learning (Boschert et al. 2018) (Fig. 2). The modeling 
and simulations of a human body using a digital twin to improve diagnosis, 
prognosis, treatment, screening, and overall well-being can be more beneficial 
with the expansion of the source and scope of accessible data since the twin will 
become more accurate. Due to the bi-directional flow of data between the physical 
world and the digital twin, the twin is also capable of learning and developing 
(Björnsson et al. 2019; Tao et al. 2019a). 
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Fig. 2 The flow of information from physical objects to digital twins. Information is gathered from 
the physical object(s), in this case individual patients. This information can be gathered by medical 
professionals through clinical means or through the individual’s interaction with devices connected 
to the Internet of Things. This data is unique to each individual and gives rise to a corresponding 
unique digital twin. These twins can be used to perform various simulations, the result of which can 
be used to implement changes in real life. This will change the status of the individual which will be 
reflected in new information gathered from the individual. This information is fed back into the 
digital twin. In this way, the AI algorithms can learn from those implemented changes and use this 
information to fine-tune its predictions 

The bi-directional flow of information between a digital twin and its physical 
counterpart means that a digital twin is not a static copy or simple simulation model. 
Not only that but the continuous inclusion of updated information the idea of a 
digital twin is based upon means that the digital twin will change as their physical 
counterpart changes (Boschert et al. 2018). 

A digital twin can be created not just of an individual, but of various tissues, body 
systems cell types, diseases, or populations. These different types of digital twins can 
even be created to model individual cells or even cellular components (Fig. 3). Not



only can digital twins be created for a specific disease or disorder, but a twin could be 
created for the causative agent, bacteria, virus, or parasite. This twin could be used to 
model the effect of drugs, vaccines, or other therapeutic agents on these agents or 
even a population of these agents (Singh et al. 2021a). As previously stated, one type 
of digital twin is a digital replica of infectious or disease-causing agents, while 
another is the modeling of individual components. In its simplest form, this may only 
be a model of individual molecules. Protein modeling has been performed for many 
years and these are in fact digital twins representing the same physical characteristics 
of the real-life molecule (Fig. 3). These types of digital twins have recently been used 
to model the interaction between the spike protein of the SARS-coronavirus and 
digital twins of real-life individual’s angiotensin-converting enzyme 2 (ACE2) 
receptors (Piplani et al. 2021). 
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Fig. 3 Concepts in the design and creation of and types of digital twins. The various levels of 
complicity of a digital twin describe how often the twin is updated: never, frequently, or in real time. 
The most complex and useful twin for the highest accuracy modeling would be one where the twin 
is updated in real time and can use machine learning algorithms to learn from the changes brought 
about by interventions or changes to the real life individual. The red lines and circles indicate 
concepts such as the twin being a temporal entity and a repository of digital twins in the form of a 
“bank.” The blue lines and circles represent the main types of digital twins while the black lines and 
circles represent the different applications of a digital twin 

One of the most basic types of digital twins is the reference digital twin, a 
template used to construct digital twins. As such they are also known as proto-
twins (Popa et al. 2021). One of the major uses of digital twins in healthcare is the 
ability to test various treatments or scenarios of the same patient’s digital twin at the 
same time. To do this, multiple copies of the same individual’s digital twin need to 
be made. These digital twin copies are referred to as digital twin instances. In order 
to create a digital twin of a population of individuals an aggregate or composite twin



must be made by adding information from the individual digital twins that represent 
the individuals making up that population. This type of twin can be used for 
predicting the spread of a pandemic within an individual population (De Benedictis 
et al. 2022). Both aggregates and instances can be stored in organized repositories 
which can be combined with other similar repositories to create different aggregates 
or groups of instances. These repositories are known as digital twin banks (Garg 
2021). A final type of digital twin that is useful in healthcare is the digital twins of 
organizations (DTOs). This could be a model of a hospital or other healthcare 
organization, a health department, or a referral chain between healthcare providers. 
This twin can be used to optimize their design and running (Callcut et al. 2021). 
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In addition to different types of digital twins, there are also different levels of 
sophistication, abstraction, and complexity for digital twins. These differences are 
due to the fidelity of the twin which is a measure of how much the digital twin 
reflects the current state of the real-life patient. This fidelity is therefore a measure of 
three different characteristics. Firstly, how much real-world detail is used to con-
struct the digital twin. Secondly, if the digital twin is being updated with new 
information in real time using updated data from connected instruments (via the 
IOT), and finally, if the algorithm used to update the twin is capable of learning from 
the changing status of the patient using the new information (Gerber et al. 2019) 
(Fig. 3). 

A final important concept for digital twins is that they are a product of the time the 
data used to create them covers in the physical world. In other words, was the data 
used to construct them recorded at an individual’s birth continuing until they die or 
was it just between two specific dates? This information is important for aggregate 
twins as they can cover the period for which a population was exposed to the 
situation being modeled or the times they existed as a distinct population. This 
temporal delineation of the digital twin is known as the digital thread (Garg 2021). 

Currently, there is no single software that is specifically designed to create a 
digital twin of an individual. Some of the software that has previously been devel-
oped or is in use to model either medical devices, specific organs, or the digital 
environment of an individual are listed in Table 1. A multi-purpose human/medical 
digital twin software development kit (SDK) has been developed and is available as 
of 2022. It is hoped it will become widely available at some point in the future to 
complement existing (generic) digital twin software tools (e.g., GE Digital 2022) and 
optimize them for medical and healthcare applications. 

2.1 Data Used to Generate a Digital Twin 

The collection of data is one of the most important concepts and barriers for the 
creation of an accurate digital twin. However, recent developments may make this 
easier. In particular, the Internet of Things may mean that data can be accurately 
gathered from everyday objects an individual uses and most importantly for 
healthcare from devices attached to or implanted into the human body. This would



allow for the acquisition of greater quantities of real-time, more accurate data than 
ever before, which can then be used to construct a more accurate digital twin (Jacoby 
and Usländer 2020). These not only include devices but also apps such as activity 
trackers, diet monitors, and telemedicine services (Björnsson et al. 2019). This 
ability to collect real-time data not only allows data concerning the health of an 
individual to be gathered but also environmental data concerning risk factors to 
which they may be exposed. The Internet of Things would also allow devices to 
communicate with each other concerning an individual who is using many 
connected devices. This remote monitoring and integration of data would allow 
for faster generation of digital twins in real time whilst continually updating with the 
most recent data concerning the status of an individual and allow for the generation 
of a more up-to-date digital twin. The collection storage and analysis of this data is 
assisted by other advancing technologies, with the aforementioned AI being the most 
important, but also including cloud computing (Kamel Boulos and Al-Shorbaji 
2014). 
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Table 1 Software used to create digital twins relevant to healthcare 

Company and software Details References 

Semarx: The Human 
Digital Twin (HDT) 

AI-based software that learns based on the users’ 
interactions with the environment. The digital twin 
enables the user to optimize and automate their digital 
interactions based on their preferences and interests. 

SEMARX 
(2022) 

Twinbase Open-source digital twin web server that stores digital 
twin documents. 

Autiosalo 
et al. (2021) 

Living Heart’ Transform a person’s two-dimensional (2D) scan into a 
full-dimensional model of their heart. Allows for 
manipulation and testing using a virtual heart model. 

Scoles 
(2016) 

ALTAIR-One total twin Medical device design by simulating and optimizing to 
improve device designers and manufacture. Leading to 
improved patient care and reduced costs. 

Forward 
(2022) 

Only the development of modern simulation capabilities and the ability to gather 
large amounts of data in the form of genomic, transcriptomic, epigenomic, proteo-
mic, microbiomic and medical reports, among others, make the creation of a digital 
twin modeling something as complex as the human body even possible. This allows 
for the modeling of even complex molecular processes such as protein structures 
(Paul et al. 2021). The collection of these omics data should ideally begin at birth 
with the genome being sequenced. Mutations can be identified, and all this data will 
be used as the basis for the generation of the digital twin, along with basic demo-
graphic data and data concerning the family history of disease. At this stage, the 
collection of transcriptomic data would only be done in a future setting where this is 
easy, rapid, and routine as each tissue and cell type within the body would have a 
different transcriptome. Rather data like this will be collected at various points 
throughout the lifetime with clinical checkups and consultations. At various stages 
throughout the life of the patient, the genome can be sequenced again to track any 
mutations that have arisen in different tissues of the body. All this data can be used to



make a digital twin that best reflects the genetics of the individual (Telenti et al. 
2016). Another form of omics data which is being increasingly studied is 
microbiomics. The population of the microbiome of an individual can give important 
insights into an individual’s health and well-being. In the future, microbiomic data 
can be gathered at every doctor’s visit. This will give the digital twin the ability to 
model an individual’s changing lifestyle, diet, and health and allow for the modeling 
of the risk of developing specific disease due to these changes (Lloyd-Price et al. 
2016). 
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At this moment, the generation of a digital twin that is fully capable of fully 
representing a physical object as complex and intricate as the human body is not 
possible. This is largely due to all the complex interactions between the various 
molecules, tissues, cells, organs, and body systems present. Modern medicine is still 
able to use the simplified twins we are capable of generating, such as pandemic 
modeling, drug design, and disease progression. However, without the ability to 
gather and utilize large amounts of specific data, these twins will remain simple 
approximations and will only give predictions of limited accuracy. Currently relying 
on omics data to generate a digital twin is problematic due to the cost associated with 
whole genome, transcriptome, or proteome studies. However, with the research costs 
of big data technologies constantly decreasing and the increasing availability of 
computing resources, obtaining this data for every patient will become more cost-
effective. This would lead to the use of digital twins becoming the standard proce-
dure (Lehrach et al. 2016). 

3 The Role of a Digital Twin in a Society 5.0 Healthcare 
System 

The aim of personalized medicine is to provide healthcare that is centered around the 
differences between individuals and populations and target these for care, diagnosis, 
prognosis, monitoring, and prevention. These differences include genetic makeup, 
lifestyle, and environmental factors. Digital twins give the ability to model how this 
unique makeup of an individual will affect the different aspects of healthcare 
(Harvey et al. 2012). 

Digital twins can also be used to model many healthcare situations. These include 
determining drug interactions; the effectiveness of a treatment; the safety and out-
comes of a procedure; the frequency and type of disease screening to be carried out; 
the most useful molecular markers to use for diagnosis, prognosis, and disease 
monitoring; as well as keeping an accurate and fully accessible complete medical 
ID. All these can be done in silico, improving care and optimizing resources 
(Kuchemüller et al. 2021; Sahal et al. 2022). Digital twins can also be used in 
medical research to lower costs, and partially replace laboratory experiments and the 
use of laboratory animals, with in silico simulations. Rather than using animals 
aggregate digital twins can be used to perform more personalized medicine research



(Kuchemüller et al. 2021; Piplani et al. 2021). By modeling the health and wellness 
of individuals and populations, digital twins can also be used to improve the working 
life span of an individual as well as increase efficiency and output by decreasing sick 
leave and incapacity leave (Tao et al. 2019b). The use of digital twins as virtual test 
subjects will also lead to a decrease in errors made in treating a patient and highlight 
any side effects or harm a treatment may cause. This will in turn result in a reduction 
in medicolegal liabilities (Benson 2021). 
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3.1 Digital Twins in Personalized Medicine 

The “guardian angels” principle was proposed by Lehrach et al. (2016). These 
guardian angels were “virtual twins” of every European individual that could assist 
in establishing personalized healthcare and disease prevention in Europe. These 
digital twins will be created using data gathered from multiple sources including 
but not limited to -omics, imaging, clinical, and sensor data (Lehrach et al. 2016). 

Personalized disease management using digital twins has been tested in various 
studies. Disease such as multiple sclerosis requires lifetime management to prevent 
or lessen the resulting neurological disability. This disease occurs in young adults 
and is a chronic multidimensional disease. This disease has been intently studied and 
large amounts of research data can be used to create digital models of the disease 
itself. These can be used in conjunction with the digital twin of the individual patient 
to model the progression of the disease and suggest the best actions that must be 
taken to minimize morbidity. This can be done by using the patient’s genomic 
information and evaluating how it will interact with the molecular basis of the 
disease as well as the effect of the patient’s environment, nutrition, and lifestyle on 
the disease (Voigt et al. 2021; Walsh et al. 2020). A large body of evidence support 
the link between endocrine disruptor chemicals (EDCs) and urogenital birth defects, 
diabetes, obesity, and metabolic syndrome worldwide and in South Africa. Digital 
twins can provide scientific data to address the current gaps in environmental 
policies and in the long term reach the SDG-3 goals with regards to maternal 
newborn and children deaths. Evidence shows that EDCs have a substantial impact 
on an individual’s genome, transcriptome, proteome, epigenome, and metabolome 
(Bornman et al. 2017; Singh et al. 2021b). All this information is contained within 
the patient’s digital twin (Voigt et al. 2021; Walsh et al. 2020). 

3.2 Treatment Modeling 

The guardian angel digital twin proposal previously described envisages the practice 
of generating a digital twin becoming the standard medical practice, leading to each 
individual in Europe having a digital twin which can be used to test all possible 
treatments and only prescribing the most predicted to be the most effective for the



patient (Lehrach et al. 2016). This process involves the generation of multiple twin 
instances. Each instance or duplicate twin is treated using a different drug or 
treatment option. Like the twin, these treatments are all virtual and are created 
based on known data concerning the treatment. This includes its pharmacokinetics, 
pharmacodynamics, the molecular pathways it affects, whole libraries of proteins 
and ligands that it may associate with, the models of these interactions, the treatment 
side effects, toxicity, and half-life. This data may also include case reports 
concerning the previous use of the treatment. All this data is tested against the digital 
twin using advanced AI algorithms. A different treatment is applied to each indi-
vidual twin meaning that multiple treatment options can be tested simultaneously. 
The results can be used to select the best treatment option (Björnsson et al. 2019). 
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There are many ways these drugs can be tested in these simulations. One example 
is the use of protein–protein interaction (PPI) networks, constructed using a patient’s 
proteomic or transcriptomic data as a map. Changes in protein expression caused by 
a treatment can then be mapped to the patients PPI to identify changes in the 
pathways the drug could cause when used to treat the patient (Zhou et al. 2014; 
Barabási et al. 2011). Another example could involve genetic changes detected in a 
patient. These alterations that lead to transcript and protein changes can be used to 
create a twin with the altered protein and protein expression patterns. A treatment 
targeting this protein can be used to treat the digital twin. The resulting effects on PPI 
and pathways can then be simulated in the twin. 

Digital twins also show promise in the fields of drug discovery, drug develop-
ment, as well as replacing or shortening animal and laboratory drug trials. By 
creating digital twins of target organs or through the use of aggregate digital twins, 
experimental drugs can be assessed for their effectiveness, toxicity, or pharmacoki-
netics, before further money is invested in them or further development takes place, 
thus saving time and money (Canzoneri et al. 2021; Portela et al. 2021). For 
example, a digital twin of the liver was created using knowledge concerning liver 
disease and the effect of drugs on the liver. This twin was used to simulate the 
development of various liver diseases, but also assess the response of both normal 
liver function and the response of liver disease to new experimental drugs 
(Subramanian 2020). 

Digital twins of the human immune system have also been created; obviously the 
immune system is important in a wide range of disorders from autoimmune disease 
to infections. Because of this, a digital twin of this body system will be especially 
useful in modeling the ability of an individual’s immune system to fight off an 
infection, screening individuals for autoimmune diseases and modeling the progres-
sion of a disease or condition. However, these twins are challenging to create due to 
the human immune system involving complex interactions between many different 
immune cells and tissues. It is also difficult to measure an individual’s immune state. 
To construct a digital twin of an individual’s immune system, data is collected from 
each level of the physiological scale from the whole body to the body systems, to the 
organs, to the tissues, to the cells, and to the molecular level. A digital twin of each of 
these levels of complexity is constructed and then these separate digital twins are 
integrated into a multiscale base model (Laubenbacher et al. 2022).
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Even far simpler treatment options such as orthodontic treatment have been 
shown to benefit from the creation of simple digital twins. Using facial scans and 
three-dimensional (3D) imaging to create a digital twin of the patient’s face and jaw, 
the correct measurements, and assessments of the alignment of the various structural 
components of a patient’s face allow for more precise individual interventions to 
correct any issues with the alignment of the central incisors with the forehead (Cho 
et al. 2021). 

3.3 Aggregate Twins and Digital Twin Populations: Whole 
Population Modeling 

Society 5.0 aims to bring about a society that is a balance of economic, societal, and 
personal development, and relies on the interdependence of these factors. The recent 
COVID-19 pandemic highlighted how this delicate balance can be plunged into 
turmoil during a global pandemic. In many regards the pandemic highlighted the 
shortcomings of public health. As healthcare in society 5.0 is centered on the 
individual so public health in Society 5.0 should be centered on the individuals 
within that society (Natakusumah et al. 2022). Of greatest concern to public health 
5.0 would be the interactions between people and the existence of patients with 
medical conditions within a community (Adel 2022). One of the main concerns of 
public health is to prevent disease outbreaks and to track the spread of diseases to try 
to limit or control that spread (Natakusumah et al. 2022). Aggregate twins can be 
constructed using the individuals of a particular population to give a digital repre-
sentative population for the modeling of public health concerns. However, digital 
twins of entire populations may also be useful. 

As already alluded to one of these concerns is tracking and managing disease 
outbreaks. Virtual systems capable of doing this more accurately than current models 
using standardized populations would be vital to allow public health sectors to be 
better prepared and to take meaningful action when the time comes. A model of a 
smart city or Society 5.0 city contained an integrated disease outbreak model (Deren 
et al. 2021). This model was constructed using data gathered in China during the 
COVID-19 pandemic. It made use of a digital twin of the patients at a particular time 
period in specific locations during the pandemic. It also used cloud computing and 
AI to analyze new data concerning a new or hypothetical outbreak to generate 
instructions on how to best stop the spread of the outbreak. The integrated model 
can trace the disease based on the locations of affected patients as well as identifying 
these patients’ close contacts. When digital twins of different non-patient 
populations are entered into the model, it can assess the risk of the disease spreading 
through this population using the location, health status, and environment of these 
digital twins (Deren et al. 2021). 

Another method making use of digital twins to monitor and control a disease 
outbreak uses digital twins of individuals based on their smartphones. The phones



collect basic data such as age, gender, and underlying health issues, which the user 
enters. The user can then also enter any symptoms they have and the results of any 
diagnostic test. These digital smartphone twins are location-linked with hospitals 
and medical centers that will use the information collected from the digital twins to 
plan for bed space, medical staff, and equipment. Once again close contacts can be 
identified using the smartphone location or recently visited locations (El Azzaoui 
et al. 2021). 
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Digital twins of cities have been created to help city planners improve the health 
of people living within those cities. These can range from access to people with 
special needs to removal of waste, pest control, the effect of heat waves as well as the 
effect of emissions from traffic and industries as well as the use of chemicals in 
agriculture. In South Africa, both agrochemicals and pest control insecticides, 
mainly for the control of malaria, have been found to leach into aquatic environ-
ments including freshwater supplies. These chemicals have been linked to endocrine 
disruption, interfering with normal hormone function (Horak et al. 2021; Patrick 
et al. 2016). Digital twins can be used to simulate the effect of these chemicals on 
individuals, but even more importantly they can be used to simulate the environ-
ments in which the chemicals are deployed. This will allow predictions of how these 
chemicals enter the water resources through runoff and drainage. These models can 
be used to change the way these chemicals are used, limiting their indiscreet or 
excessive use as well as allowing for the prevention of runoff or drainage. The 
current energy crisis has important implications for healthcare. The WHO states that 
“Access to clean, sustainable and affordable energy, outlined in the seventh Sus-
tainable Development Goal (SDG 7), plays a crucial role in advancing health 
(SDG3)” (World Health Organisation 2023). Digital twins are already being used 
to create simulations of powerplants and energy grids to optimize maintenance, 
avoid waste, and predict failures. Industries can use digital twins to model their 
manufacturing process and assess their energy usage and waste. This includes 
providing predictions of energy lost to the production of heat as a by-product as 
well as modeling their creation of waste gasses such as CO and CO2 (Sifat et al. 
2022). 

These models are not static simulations but mirror the movement and infrastruc-
ture of a city at different times of the day and the behavior of the city residents. These 
model cities allow various alterations both physical and administrative to be 
modelled in the virtual world (Deren et al. 2021). These cities also allow for 
modeling the effect new buildings will have on the health and well-being of the 
city residents. New buildings will alter the sunlight surrounding buildings receive 
and these changes caused by shadows can be modelled in various seasons and 
conditions (Patrick 2020). Reduced sunshine can lead to seasonal affective disorder, 
a condition that normally appears in the autumn and has symptoms including 
depression, low energy, listlessness, insomnia or over-sleeping, lack of hunger or 
dietary changes, and even suicidal thoughts (Kurlansik and Ibay 2012).
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4 Issues with Digital Twins 

There are many design criteria for creating a digital twin, many of which revolve 
around the data used to construct the model. These concerns and design criteria 
include the perceived accuracy of the data, the use of personal information, who is 
able to access alter or remove data, how visible the data is, and finally is the twin 
designed in such a way that it can be easily integrated into different healthcare 
computational systems. There are also issues of consent when it comes to the 
gathering and storing of data. How much needs to be disclosed to the real-life people 
the twin represents? (Schwartz et al. 2020) When it comes to data removal, whether 
due to the presence of incorrect data or data that violates an individual’s privacy, 
who has the right to access and edit this data? One option to solve this is the creation 
of a modular digital twin, where related data sets are separated (Fig. 4). The twin 
only functions as a whole with all modules working together by each module 
communicating through a central data structure. This means new modules can be 
added or others edited without interfering with the twin as a whole. Additionally, 
access to edit the twin can be granted to different modules at different times 
(Masison et al. 2021) (Fig. 4). The safety of data is also a concern. To what extent 
should the data used to create a digital twin be encrypted and who has the right to the 
key to unencrypted data? If commercial companies are paid to host or curate the 
digital twins what is stopping them from selling this data to a third party? (Parmar 
et al. 2020; Fuller et al. 2020) 

Fig. 4 Representation of a modular digital twin. Related datasets are separated but joined by a 
central network or framework to create the entire functional digital twin. Only certain modules are 
accessible to certain individuals. For instance, commercial entities such as insurance companies are 
only allowed to access modules such as demographic data, while an individual can access all 
modules but is only allowed to edit specific modules
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Even some of the technologies used to implement digital twins have their own 
disadvantages and limitations. Since they are based on AI technology both the twin 
and the underlying AI algorithms require good quality accurate data. Questions 
surrounding the quality of data are important considerations for not only AI but 
data analytics as well. The intensive collection of data from individuals may itself 
pose an ethical risk as it can infringe on the rights of an individual who may not want 
their data collected but are not given the choice due to the automated collection of 
data that occurs with the IOT. It may also increase the risk of an individual’s data 
being stolen through data mining inference attacks (Krumm 2007). The danger of 
hyper-collection of data may lead to the collection and inclusion of data that has no 
bearing on health, and this in turn can lead to overcomplications and incorrect results 
when the twin is used to model a healthcare scenario (Bagaria et al. 2020). This 
excess data collection may be exploited to collect data which can then be sold to 
other commercial entities such as insurance companies or retailers. This is known as 
data brokerage and healthcare data may be very valuable to pharmaceutical compa-
nies and marketing organizations (Prainsack 2017). Currently, health data is 
protected by law and legally informed consent is required from the patient to share 
this information. However, the networking of devices and databases in the smart 
society may render this legal protection obsolete. The maintenance and use of data 
also pose a problem since as software and hardware are upgraded, so digital 
obsolescence may result in data not being able to be transferred to the newer systems. 
This may result in the loss of data. Another problem is data transferability. This 
becomes a problem as data is collected by devices from different manufacturers 
using different analysis or operating software. This may lead to data being unable to 
be used or being entered into the analysis or AI software incorrectly (Sandborn 
2007). 

Smart sensors that can be used to gather data are likely to be expensive since the 
microchips need to contain both sensors and actuators, making them more complex. 
Another issue is that of sensor calibration. Currently, smart sensors need to be 
calibrated using an external processor. If this means an individual needs to take 
the sensor to a manufacturer or service partner, the end result may be devices that are 
not serviced regularly, correctly, or not at all. This may result in the collection of 
incorrect inaccurate data (Majumder et al. 2017). This may be problematic when it 
comes to data gathered through the IOT. For instance, if an AI were to monitor the 
information from a device such as a smartphone which gives the individual’s 
location as a bar, it does not necessarily mean that the individual is consuming 
alcohol, yet an AI capable of learning may infer this (Rao and Mane 2019). The use 
of mobile wearable devices and smartphones to collect data is also a concern as the 
constant collection of data and real-time updating of a digital twin would be 
happening without the individual’s consent. The individual may want the device 
and may want to wear the device but may not agree to the collection of data 
(Armstrong 1995). There are also questions around the accuracy of these devices 
(Falter et al. 2019; Marcus 2020). 

Digital twins also face the same issues that AI does in mistrust and suspicion. It is 
human nature to fear the new and unknown. It is natural to doubt the accuracy of



predictions made by AI using digital twins because it is difficult to understand how 
AI has come to this conclusion. These concerns over mistrust in AI are valid and can 
be summed up by the black box problem. This problem revolves around medical 
professionals not being able to determine or understand how an AI came to its 
conclusion. This is especially problematic once the AI is fully automated using ML 
or DL. This may lead to doubt as to the accuracy of the conclusions reached by the 
AI (Sorell et al. 2022). One option would be to develop AI systems that explain their 
operations by creating an easy to understand log of the actions taken by the AI in 
constructing or modeling using the digital twin (Kwong et al. 2022). In addition to 
this, there has always been a mistrust of mechanization and automation, of these 
things replacing or rendering humans obsolete. It is important to remember that 
digital twins are tools to be used to make predictions and the decision to act on those 
predictions will ultimately reside with the humans using these tools (Fuller et al. 
2020). 
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The digital twin also requires standardization, involving the actions of an orga-
nizing body comprised of all stakeholders such as industry, government, academia, 
and practitioners. Such organizing bodies already exist, such as the Swedish Digital 
Twin Consortium (2022) and the Digital Twin Consortium (2022). The Digital Twin 
Consortium is a collection of industrial, government, and academic members. These 
industry partners include software and hardware IT companies, companies from the 
aerospace and motor vehicle sectors, the agricultural sector, transportation, military, 
natural resource management, as well as the healthcare sector. The consortium aims 
to drive the adoption and development of digital twin technology (DigiTwins 
Consortium 2022). The STDC is more focused on the medical sector than the DT 
consortium. It is made up of partners from multiple disciplines within the healthcare 
sector. These include partners from healthcare, medical and technical faculties, and 
industry. The academic partners consist of multiple universities, hospitals, and 
medical institutes within Switzerland (Consortium.). 

The mass of information contained within a digital twin and the extensive results 
generated when that twin is used to model a scenario, suggests that there may be an 
issue that could lead to overdiagnosis. Digital twins can be effectively used to give 
an early warning of a disease and allow for preventive healthcare. But this may also 
lead to overdiagnosis and overtreatment. For instance, if a patient possesses specific 
genetic biomarkers these may only indicate that the patient is predisposed to 
developing a disease, not that they have the disease (Mandl and Manrai 2019; 
Walker and Rogers 2017; Bunnik et al. 2015). 

One of the main ethical issues concerning digital twins is how much control a 
person has over their digital twin, but this twin must be able to be accessed by and 
therefore managed by the healthcare system. The aforementioned regulatory orga-
nizations as well as governments must be responsible for data privacy and the 
protection of people’s personal biological information (Bruynseels et al. 2018). 
There is also a fear that aggregate digital twins or populations of digital twins may 
lead to population-specific patterns being identified and this information being used 
to discriminate against groups of individuals, especially in those countries, such as 
the USA, where the majority of healthcare is privatized (Bruynseels et al. 2018). The



answer to all these problems most likely lies in the creation of new regulations. 
These new technologies require the creation of new laws specifically for the collec-
tion and use of information by AIs for the use of creating a digital twin and the use of 
this twin. In South Africa, the Protection of Personal Information Act 4 of 2013 
(“POPI”) came into effect on July 1, 2021. This act requires that all companies treat, 
handle, store, and protect the private information of other parties or their clients in a 
way that it cannot be misused, exploited, or divulged. 
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The major cost associated with digital twins is the creation of infrastructure to 
generate, capture, and integrate the data. There is also the initial capital cost of 
setting up digital information systems, which involves the cost of software to build 
the twin, AI systems to manage and integrate data being used to create the twin, 
servers or space on cloud storage, and finally, the training of individuals to run and 
maintain the system (Parmar et al. 2020). Currently, the costs involved with data 
collection and curation mean that for poorer individuals or in lower- to middle-
income countries the use of digital twin technology for personalized medicine might 
not be a viable healthcare initiative. This could result in increased discrimination and 
inequity between the haves and have-nots. Countries like South Africa with their 
public and private healthcare systems may only be able to institute digital twin 
technology in the private healthcare sector (Bruynseels et al. 2018). 

It has been suggested that like many medical advances, the use of digital twins 
should be pioneered using animals. Already digital twins have been used in the 
veterinary care of livestock, where digital twins were not only used to manage 
livestock but also to detect signs of distress and to predict and diagnose illnesses 
in the animals (Neethirajan and Kemp 2021). 

5 Conclusion 

Society 5.0 calls for the sustainable and more intelligent use of resources while it 
aims to improve the lives of those living in it through, among other initiatives, 
improved healthcare. One of the main tenets put forward by the concept of 
healthcare in Society 5.0 is the desire for personalized lifelong healthcare. Digital 
twins are simply the digitization of the individual based upon data collected 
throughout the individual’s lifetime or over a given period of time. The integration 
of technology into our everyday lives makes collecting this data far easier and in 
conjunction with advances in the biomedical industry makes the creation of an 
accurate digital twin feasible (Fig. 5). An intelligent digital twin, combining data, 
knowledge, and algorithms (AI), has the capacity to accurately simulate public 
health and medical situations. These simulations will be individual or population 
specific as the digital twins reflect those physical entities. These simulations can 
include medical conditions, disease progression, drug interactions, treatment effec-
tiveness, as well as the spread of a disease and make accurate predictions which can 
inform practices and assist in planning, diagnosis, prognosis, and the choice of 
treatment. They can also be used to model health-related situations that are in line



with the UN SDGs. These include the layout of healthy cities, clean water and 
contaminants in drinking water systems, the effects of the energy crisis on healthcare 
and how to efficiently use limited electricity capacity in healthcare, as well as 
the alleviation of poverty. The use of digital twins in healthcare can help drive the 
transformation to healthcare 5.0 by providing truly personalized modeling of the 
patient. 
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Fig. 5 A summary of digital twin technology in healthcare 5.0. A twin of the real-world patient is 
created through the collection of multiple forms of data, which is interpreted by an AI algorithm to 
create a digital twin. In healthcare the twin can be used as an individual, a group, as a population, or 
the characteristics of multiple twins can be combined to create an aggregate twin. These twins can 
be used in simulations of either conditions pertaining to an individual patient such as diagnosis, 
prognosis, or response to treatment or even to monitor the disease progression. Aggregate or 
populations of twins can be used to model public health initiatives and planning, to optimize the 
treatment of patients at a medical facility, or model the spread of a disease 
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Abstract Cyber-physical systems (CPSs) allow the integration of digital and phys-
ical systems to perform well-organized and precise tasks in several disciplines 
including medicine. Reliability, efficiency, and security are key players in achieving 
successful CPSs. Artificial intelligence (AI) systems can host and manage large data 
sets from different sources including omics and biomarkers bank used for the 
development of targeted therapies and accurate medical diagnoses. The inclusion 
of CPSs can advance the ability of AI systems to logically synergize digital
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platforms with physical elements and back, thus improving control and automatic 
actuation of health technologies. In a world where digitalization has become part of 
our daily lives, incorporating and actualizing new technologies for personalized and 
precision medicine can be achieved through CPSs. Input data can be communicated 
to computational platforms where patient environmental, health, and diagnostic 
information can be analyzed to assess the efficacy of precise medical therapies. 
Human-based technologies such as networks-on-chip (NoC) could allow constant 
communication between patients and healthcare providers as well as real-time 
monitoring of patient health status. However, the disadvantage of CPS is the 
vulnerability to cyber-based attacks which could be as a result of terrorism or 
organized crime thus compromising confidentiality and human rights. Should certain 
information regarding patients end up in the wrong hands, this information can be 
used to target, harass, or take advantage of certain groups of individuals. The 
inclusion of a security layer equipped with protocols such as open authorization, 
user-managed access, and self-sovereign identity in Society 5.0 ensures the incor-
poration of common global laws. This chapter will focus on integrating CPSs in 
Society 5.0 to improve accurate patient diagnosis, treatment, and monitoring in 
advancing healthcare management systems.
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1 Introduction 

The Fourth Industrial Revolution focuses on efficient and optimal industrial produc-
tion and data management. It comprises cyber-physical systems (CPSs) in which the 
physical and digital worlds are intertwined by the industrial Internet of Things (IoT). 
The idea here was to create smart machines/factories that can be utilized in various 
sectors including health (Adebayo et al. 2019; Popov et al. 2022). Multilayered 
architectures for specific CPSs have three main layers which include the physical 
layer, the cyber layer, and the human interactive/decision layer. The physical layer 
comprises of two sublayers which are the sensor and the application layers. The 
cyber layer has two sublayers, which are the storage and the processing layers. The 
collected data is processed and analyzed using different algorithms (Edward et al. 
2017; Pedro 2022). The development of network layer architecture for CPS security 
to protect and guard against cyberattacks serves as a crucial component of medical 
CPS (Chaganti et al. 2021). Future technological advancements have sparked the 
idea of smart or intelligent hospitals. Integration of artificial intelligence 
(AI) technologies for processing of high volume of patient information through 
big data systems to allow prompt decision-making is essential for the new concepts 
adapted to the upcoming new era referred to as Society 5.0 (Rovira-Simón et al. 
2022). Most of the technologies used for monitoring patients’ health status rely on 
embedded systems. The use of glucose/heart rate/blood pressure monitors, magnetic



resonance imaging (MRI), computerized tomography (CT) scans, positron emission 
tomography (PET) scans, and so forth have advanced medical diagnostics and 
monitoring (Lindén and Björkman 2014). Some of these systems permit remote 
monitoring of patients and all facilitate prompt diagnosis and treatment decisions. 
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However, future technologies continue to advance toward nano and smart tech-
nologies, including microchips. A link between innovative and social sciences is 
formulated and sustained with the intention of providing human-centered healthcare 
(Ioppolo et al. 2020). Society 5.0 is expected to most certainly bridge the gap 
between cyberspace and physical space. To achieve this, Society 5.0 will facilitate 
the realization of modern smart technologies through the integration of AI algo-
rithms which facilitate big data analytics, IoT, metaverse, robotics, digital twining, 
blockchain, and networks-on-chip (NoC) for the optimization of personalized med-
icine. This chapter will explore some of these concepts in the context of CPSs in 
healthcare management. These technologies will be integrated into the healthcare 
management systems and in the process ensure cost-effectiveness and quality of life 
(Garg 2022). CPS is most important in modern-day medical practice where new 
effective human-centered healthcare management and service delivery are in high 
demand. The study by Sony et al. supports the idea that medical CPSs will provide 
high-quality, comprehensive, accessible, reproducible, more coordinated, and 
accountable human-centered healthcare service delivery (Sony et al. 2022) (Fig. 1). 

2 CPS-Embedded Systems 

Embedded systems require specialized skills for programming and installation of 
hardware components. Mobile medical systems can monitor health parameters such 
as temperature and heartbeat with a wireless microcontroller. The sensor signaling 
conditioning circuits have an embedded software algorithm responsible for moni-
toring the temperature, pulse rate, heartbeat, and blood pressure. Thereafter a record 
generated from the electrocardiogram (ECG) is displayed on the liquid-crystal 
display (LCD) screen (Reshma 2019; Fouad 2017). Data generated from these 
recordings is stored in the built-in erasable programmable read-only memory 
(EPROM) of the microcontroller. This ensures that data is not lost in case of 
power cut-off (Fouad 2017) or during loadshedding which frequently takes place 
in South Africa. Additionally, data can be processed using ARM7LPC2148 which is 
transferred wirelessly to LabVIEW software through ZigBee. The ZigBee technol-
ogy is cost-effective and energy-conserving (Thirukrishna et al. 2021). 

Some monitoring systems are designed to monitor both health and fitness status. 
This is mostly important in patients with metabolic diseases. Fitness or health status 
can be recorded and sent via text messages or email to relevant individuals who 
could then advise or take necessary action. In addition, blood glucose level and 
muscle condition data can also be recorded, displayed on the screen, and stored as 
patient history (Abdullah et al. 2015). The embedded systems can automatically 
send the recordings to an android phone of healthcare providers potentiating



clinicians to remotely examine the patient, make a diagnosis, and provide patient 
prescription (Reshma 2019). Remote health monitoring systems can be redesigned 
from the already available hospital equipment using advanced technology (Reshma 
2019). 
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Fig. 1 Transitioning from an information society to a supersmart society. Whereas the concept of 
Society 4.0 brought a lot of technological advancements, it focused more on the manufacturing 
sector. The society depended more on machines to complete various tasks. However, Society 5.0 
looks forward to integration and collaboration between humans and machines. Human emotion, 
cognitive skills, and analytical skills cannot be completely replaced by machines and the lack of 
these abilities does not benefit society as a whole but mostly the manufacturing sector. These skills 
are essential in healthcare management/delivery systems. Society 5.0 intends to connect all these 
aspects through the integration of CPS, AI, and fog-cloud computing. This will also create global 
competitiveness and facilitate socioeconomic balance 

2.1 Fog- and Cloud-Based CPS for Diagnosis and Disease 
Management 

The next generation of digital systems should have new methodologies which 
incorporate modular design approaches, highly configurable systems, and secure 
hardware and software components. Federated cloud is a collaboration of cloud 
providers who deliver services, which could include healthcare services to the cloud



broker to the consumer’s request and satisfaction. Here the middleware infrastruc-
ture and service layers are replaced with a cloud broker (manages cloud services and 
establishes relationships between cloud providers and consumers). A classic service 
enabler, which is a messaging platform that allows efficient and consistent exchange 
of information, notifications, or communication between the applications and 
enablers, is incorporated into private cloud infrastructures (Andriopoulou and 
Lymberopoulos 2012). Federated healthcare cloud broker architecture is proposed 
for accessing and sharing information at different sites. Policy-based, service-level 
agreement (SLA) verification and reputation-based approaches are computed trust-
enhancing instruments to ensure the security and privacy of the users. The develop-
ment of a software with multi-tier cloud applications is also suggested for distribu-
tion among more than one layer thus providing efficient management and high 
security (Gao et al. 2017). 
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Early detection of the disease is crucial in determining the treatment strategies 
which could lead to the reversal or cure of the disease. Fog-cloud-assisted CPS can 
assist with screening and early detection of the disease even in remote areas. The 
physical space includes healthcare providers and data (medical, personal, and 
environmental datasets) collected which is integrated into cyberspace where analysis 
of real-time data (diagnosis, evaluation of adverse effects, and sending out alerts) 
occurs. The fog layer of the cyberspace serves as a bridge between the physical space 
and the cloud layer. The connection between the fog and cloud layers allows for the 
classification of the disease and storing of medical information. To achieve this, the 
fog layer–based naïve Bayes classifier was used to classify ulcerative colitis user into 
critical or non-critical events. Cloud layer–based IoT sensors are embedded in the 
user’s body for monitoring purposes. The principal component analysis was used for 
predictive accuracy and ensuring the reduction of redundancy and background noise. 
Thereafter, deep neural network (DNN) was used to assess the current stage of 
ulcerative colitis. The multilayer perceptron (MLP) was used to classify ulcerative 
colitis into different stages. This novel IoT-fog-cloud-assisted CPS was predicted to 
accurately diagnose and classify ulcerative colitis. The benefit of the system is that 
patient information is stored on a cloud where it is accessible anytime it is needed 
remotely and at the point of care. Patients can constantly be monitored, and an alarm 
will be set off to alert healthcare providers should the patient be in need of 
emergency assistance (Verma et al. 2020). Medical cybernetics (MC) includes 
monitoring devices that use mathematical processes and measurement models 
embedded within a wearable sensor system. Zsolt suggests that current monitoring 
systems such as exercise heart rate monitors can be improved by the integration of 
CPS tools such as cloud computing to assist in the prevention or early diagnosis of 
cardiometabolic conditions. Their goal is to develop devices that can support fitness 
goals by building resilience and improved physiological reserve capacity. These 
new-generation devices will measure parameters such as insulin resistance and 
maximal oxygen uptake (VO2max) for risk assessment of cardiovascular disease 
(CVD) (Zsolt 2020). 

The risk of developing coronary heart disease (CHD) can also be assessed with 
the assistance of a cloud-based cyber-physical localization system. High-risk



patients can be tracked and located with global positioning system (GPS)-enabled 
monitors for prompt emergency responses and facilitation of home-based healthcare 
management services. The physical systems such as wearable devices will collect 
data from the user which will be stored in a cloud. The data will be accessible to both 
the user and healthcare professionals for a long period of time. Should the patient 
develop CHD over time, diagnostic alerts due to an abnormal electrocardiogram 
(ECG) reading will be sent to the user, caregivers, and the treating doctor (Sood and 
Mahajan 2018). The incorporation of AI systems in the early detection of 
non-communicable diseases (NCDs) could be one of the cornerstones of the efforts 
toward a cancer-free and metabolic disease-free Society 5.0. Machine learning 
(ML) algorithms can be integrated with CPS to identify risk factors, predict and 
classify the disease, and facilitate the monitoring of several NCDs (Ferdousi et al. 
2021). 
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3 Nanotechnology 

The concept of a supersmart society (5.0) contributes to the realization of United 
Nations (UN) sustainable development goals (SDGs). Nanotechnology/nanoscience 
is already contributing immensely to accelerating SDG 3 vision. Pokrajac and 
co-authors discuss how nanotechnology can be aligned with SDGs to accelerate 
the progress toward the 2030 vision. The authors are developing a multisectoral 
approach by inviting leading nanocenters to contribute to the realization of this 
vision. This includes the development of messenger ribonucleic acid (mRNA) for 
the development of COVID-19 vaccines. Monitoring of patients with the use of 
microchips and nursing robots for preventative and therapeutic purposes will ensure 
extended healthy life expectancy. As a result, the global cost of medical care will be 
minimized (Pokrajac et al. 2021). 

The NoC systems can be developed for the detection of dysregulations in 
genomic and/or proteomic processes that lead to diseases. Cellular signaling and 
response can be modeled using biochemical reaction networks such as stochastic 
networks. Explicit models which identify bound or unbound molecules or particle-
based models which identify ways in which molecules interact with each other 
causing either activation or inhibition of the other can be implemented. Following 
this, techniques such as the Gillespie-based, particle-based rule evaluation, or spatial 
particle-based can be utilized to get information on how cellular interactions enable 
normal function or disease development (Bogdan et al. 2015). 

Automated CPSs (ACPSs) play an important role in the implementation of early 
and reliable diagnostics. The efficiency of next-generation microprocessors will 
depend on the use of multicore accelerators for high performance of multiple tasks 
and energy efficiency. The ACPS multicore accelerator uses NoC to facilitate 
personalized healthcare. However, limited computational speed can affect the effec-
tiveness of the processing components of the NoC. Thus, Hou et al. bridged this gap 
by developing a novel 3-D optical NoC (ONoC) topology structure for the ACPS



that could quickly identify disease biomarkers as in the case of aberrations in a 
protein structure that could lead to a particular disease. Data from the chip was 
captured using the proteomic and genomic sensing technology, and this was 
achieved by the inclusion of the intralayer on-chip optical router onto the 3-D 
torus topology structure followed by the incorporation of the vertical on-chip optical 
router. The signal-to-noise ratio (SNR) – aware routing-on-chip algorithm guaran-
tees favorable and improved reliability of data transmission intended for human– 
machine interaction. In terms of the area of the chip, the topology structure 
corresponded to a smaller chip area. The advancement of the ratio was directly 
proportional to that of the topology scale thus allowing the system to provide 
automated diagnosis and personalized healthcare. A novel grooming-on-chip 
mechanism improved computation speed for assessing biomarkers. Therefore, the 
ONoC-based ACPS accelerator operated at a faster speed for rapid analysis of the 
biomarkers. Photonic sensing was used for the detection of biomarkers thus 
ascertaining the accuracy and reliability of the results. The size of the chip and 
automation (no need for technical expertise) made it convenient for use in person-
alized healthcare (Hou et al. 2019). 
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Li et al. designed a NoC-based multicore architecture as a solution for large-scale 
nonlinear model predictive control (NMPC) problems. Management of big data sets 
in healthcare management and service delivery systems is crucial. Thus, computa-
tional platforms should be able to analyze big data sets and determine control 
decisions from information collected from physical and cyber processes. For this 
to be possible, the NoC-based multicore systems could be used in cases where a 
virus such as human immunodeficiency virus (HIV) manages to escape 
immunosurveillance and spreads. The CPS technology utilizes sensed data to detect 
the pathogen and a model predictive control (MPC) approach to administer an 
engineered compound or trigger protein to detect and control the infection. For 
this model to work, a large-scale system of cognitive hierarchical architecture which 
can collect data from the sensed physical and cyber layers developing dynamical 
models that can provide accurate real-time decisions was considered. To solve 
problems usually associated with MPCs, a CPS with multiple computational units 
with NoC-enabled parallelized multicore chips was developed. The specific CPS 
was intended for HIV gene therapy simulation where the MPC can regulate the 
administration of protected T cells to reduce the viral load. The MPC algorithm 
developed was aimed at achieving dynamic optimization through performing system 
estimates and determining the possible outcome before decision-making can take 
place. Computational platforms embedded into network-of-networks architecture for 
real-time control decisions surpass their predecessors with limitations in memory 
bandwidth and energy consumption. The approach taken by the authors was a 
parallelized formulation of a nonlinear MPC (NMPC). Its computational and com-
munication workload characteristics were analyzed for designing an effective 
NoC-based multicores. The increased prediction horizon facilitated the performance 
of the NoC and attained considerable improvements in network latency and energy 
consumption compared to the mesh NoC-based counterparts (Li et al. 2016). 

The inclusion of very-large-scale integration (VLSI) systems in NoC provides the 
ability to be efficient and fault tolerant. However, challenges in mapping real-time



application tasks to multicores accelerator limit the advantage of improved network 
latency and energy consumption which contribute to the output. To leverage the 
maximum potential of the chip, efficient mapping of the cores is required. To achieve 
this, a clustering-based technique is incorporated in order to leverage the main 
algorithm. Thereafter, an Andean condor algorithm (ACA) is applied as a mapping 
technique on the microprocessor cores of the NoC. This algorithm provides the 
highest performance when compared to other state-of-the-art algorithms (Mehmood 
et al. 2022). Nanorobots are another breakthrough nanotechnology that will be 
discussed in the following section. 
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4 Robotics 

4.1 Surgery 

Robotic surgical technology is minimally invasive with limited hospital stay and fast 
recovery. This technology provides evidence-based, state-of-the-art standard of care 
with better surgical outcomes. This technology is already introduced in more 
advanced countries and so, to facilitate the alignment of Society 5.0 with SDGs, 
the establishment of robotic-assisted collaboration programs between local surgeons 
and international robotic experts will improve skills training models. Robotic surgi-
cal skills come with the benefit of reduced exhaustion experienced by surgeons 
particularly in public hospitals with a long waiting elective theatre list, resulting in 
better decision-making and reduced conversion. The rate of conversion is unlikely 
with robotic surgery with the benefit of reduced technical error (Randell et al. 2015; 
Bateman 2015). Training will improve the effectiveness of theatre staff, coordina-
tion, and operative duration. Ergonomic training will improve the technical skills of 
the operating surgeon (Kanji et al. 2021). Advancement of robotic surgical systems 
in Society 5.0 will come with the development of autonomous systems that makes it 
easier to maneuver the ergonomics of the robotic console thus reducing strain 
experienced by the operating surgeon. The idea of having robots assist in surgical 
treatment was first entertained in 1967, although it took three decades for the first 
surgical robot to be developed. In the 1980s, the orthopedic image-guided system 
used in prosthetic replacement was developed. Thereafter, the United States 
(US) Food and Drug Administration (FDA) approved the da Vinci surgical system 
by Intuitive Surgical which is now widely used in countries that can afford it around 
the world (George et al. 2018). 

According to literature, patents for the da Vinci surgical system expired in 2019, 
and this was followed by several robotic systems that were in development. The 
robots are categorized according to their control consoles with some using arrange-
ment of robotic arms, laparoscopic handles, eye tracking, microscope-like oculars, 
and so on (Rassweiler et al. 2017). The new laparoscopy surgical robots, Senhance 
surgical robotic system and the REVO-I Robot platform, were introduced. The 
differences between da Vinci and Senhance surgical robotic systems are the inde-
pendent arms rather than a “cluster” of arms and the unique eye tracking system that



makes it easier to manipulate and operate the latter. The position of the monitor is 
placed in such a way that surgical trainees can see and follow the surgical procedure. 
Recurring costs are less because of the reusable laparoscopic instruments. The 
REVO-I Robot platform has a four-armed robotic operation cart like the da Vinci 
and the advantage of reusable endoscopic instruments, making it more cost-effective 
(Rao 2018). Nakadate et al. suggested that the next-generation robotic surgery 
should be accessible and have extended dexterity for port surgery. The authors 
suggest the integration of sensor technology and data storage (Nakadate et al. 
2015) of which in this case fog and cloud computing might be advisable. 
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4.2 Other Healthcare Robots 

The use of robots in state hospital pharmacies which usually have a high number of 
patients has proven effective in facilitating service delivery and reducing waiting 
time for discharged/outpatients who need their prescription medicine before heading 
home. The surge of COVID-19 has also facilitated the use of robots for effective and 
regular sanitation of certain areas of the hospital without the need of exposing 
healthcare workers to infectious diseases. Turnaround time for diagnostic laborato-
ries has also been improved by the use of automated laboratory equipment capable of 
processing several samples at the same time. Medical robots acting as caregivers can 
be used to monitor and take care of the elderly remotely. These robots could provide 
medication and regularly monitor health status. In case of an abnormal reading or an 
emergency, the robot can alert the healthcare providers who will then make a 
diagnosis and provide prescriptions (Owen-Hill 2022; Holland et al. 2021). Other 
interesting future healthcare robots to embrace the concept of Society 5.0 are 
nanorobots. A micro-ingestible origami robot comes in a form of a capsule that 
can be ingested. When it reaches the stomach, the robot unfolds, allowing it to detect 
a swallowed button battery which if left long enough damages the lining of the 
stomach. The robot can also patch the burned stomach lining and deliver the drugs to 
the affected area for enhanced recovery. The robot is designed in such a way that the 
structure that removes the battery from the stomach is folded in an anelliptic cylinder 
package and frozen so that it can dissolve when reaching the stomach. The diamet-
rically oriented cubic neodymium magnet embedded into the robot will attract and 
pull the battery toward the robot. This magnetic attraction is also used to guide the 
robot to the battery’s location. Once the battery is removed through the gastrointes-
tinal tract, another origami robot is sent to patch the inflamed area burned by the 
battery. This robot has a similar design with the difference being that, once it reaches 
its destination, it degrades in order to release the delivered drug (Hardesty 2016; 
Miyashita et al. 2016). Nanorobots can also be used in targeted cancer therapies. A 
DNA robotic system has a DNA aptamer which specifically identifies nucleolin 
expressed by tumors and thrombin with the tumors. Coagulation gets activated 
within the tumor and deprives the tumor of blood supply (Li et al. 2016). Future 
robotic systems and their application in health will improve healthcare management



by delivering accurate, timeous, and reliable diagnostic, decision-making, and 
treatment tools (Table 1). 
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Table 1 Future healthcare robotic systems 

Robot Key roles References 

Nanorobots Precision oncology (target and kill cancer cells) 
Patch wounds 
Remove foreign objects 
Deliver drugs to a precise location 

Li et al. (2016), 
Hardesty (2016) 

Tele-nursing A nurse can control the robot remotely and perform 
normal patient care tasks for patients. 

Hauser and 
Shaw (2020) 

AI doctors and coaches Artificial intelligence algorithm is developed to 
assist clinicians effectively and diagnose and treat 
patients according to their specific diseases. 

Banks (2022) 

Exoskeletons These robots are used in physical rehabilitation to 
assist patients to recover from injuries. The robot 
trains the body how to move again. 

Banks (2022) 

Clinical training robots These robots allow trainee doctors to practice skills 
including surgical skills until they are ready to treat 
patients. Trainees can go back to training modules 
saved on the robots to access their progress. 

Alexander 
(2020) 

Blood sampling robots Blood can be drawn with precision from the 
patient’s arm and be tested instantaneously thus 
providing fast results and healthcare service. They 
could also administer intravenous fluid as first-line 
patient treatment. 

Leipheimer 
et al. (2019) 

CPS-based homecare 
robotic systems (HRS) 

Based on the concept of autonomous cyber-
physical systems rather than closed-loop human– 
machine systems. These robots are capable of 
decision-making without human intervention 
unless something out of the ordinary happens. They 
are social companions expected to serve as first-aid 
robots in case of emergency. They are to be 
involved in assisted living, interventional rehabili-
tation, and disease prevention programs. 

Yang et al. 
(2020) 

5 Metaverse Platforms in Healthcare Industry 

Metaverse is a three-dimensional (3D) cyberspace that is a replica of the physical/ 
biological world integrated into digital reality. Metaverse is facilitated using virtual 
reality (VR), augmented reality (AR), mixed reality (MR), extended reality (XR), 
and high-speed internet (5G/6G). Users of VR can have a real physical world 
experience in a virtual realm through digital technologies. With AR technology, 
the physical or biological object is integrated into virtual space and gets projected as 
a 3D object. The XR technology on the other hand integrates the physical/biological



and virtual (VR, AR, and MR) worlds in virtual space. The XR technology is 
expected to be more in demand in the future and strategical plans for its implemen-
tation in Society 5.0 healthcare industry must be in place. These strategies can 
include education and training of medical professionals on the use of metaverse 
services to solve healthcare challenges (Lee 2022), especially in low- and 
middle-income countries (LMICs) where healthcare service delivery is poor due to 
a lack of human resources and infrastructure. Strategies should also have a means of 
securing global competitiveness in the healthcare industry (Lee 2022). These strat-
egies should then align well with the SDGs and the 2030 agenda. The SDGs 3, 9, and 
10 aim to reduce premature mortality by ensuring good health and promoting well-
being (Chotchoungchatchai et al. 2020). 
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Human rights to good health and well-being must not be discriminatory and 
should accommodate everyone despite their age, race, and gender. To protect human 
rights or remedy the right to health, Nampewo et al. suggest that there be people 
responsible for ensuring that human rights to health are enforced in healthcare 
management services. Enshrining legal laws and delegating human rights laws to 
health to specific duty bearers will ensure that all patients are treated fairly and with 
respect (Nampewo et al. 2022). Access to healthcare services which includes 
infrastructure (SDG 9) is enshrined in the Bill of Rights in the Constitution of the 
Republic of South Africa, 1996, but the realization and practicality of it in the 
existing healthcare status in South Africa is not yet possible (Kirby 2010). This is 
the reality that is faced by many LMICs. Efforts to improve the quality of healthcare 
delivery systems in the country are not enough (Maphumulo and Bhengu 2019) 
more so if there is a lack of infrastructure. These issues should be addressed during 
the implementation of smart hospitals in LMICs to ensure that quality healthcare 
services are provided to all (SDG 10) (Ngoc Dinh et al. 2020). Thus, future 
development of smart industrial innovation and infrastructure should be cognizant 
of these issues and facilitate the implementation of virtual realities which will reduce 
the use of invasive health management protocols. The development and availability 
of infrastructure should reduce global inequalities and insure global healthcare 
competitiveness (Fig. 2). In metaverse, a patient’s real-world health data can be 
used to generate the patient’s digital twin which could be used for diagnostic 
purposes and decision-making or predict clinical outcomes. 

The development of new digital systems should be able to address global 
development goals. In particular, SDGs 3 (good health and well-being), 9 (industry, 
innovation, and infrastructure), and 10 (reduced inequality) are centered around the 
achievement of improved disease-free life expectancy. These goals can be reached 
through the development of AI-integrated smart hospitals/infrastructure that can be 
readily available even in LMICs to minimize global inequalities. Metaverse will 
transform the world of medicine by allowing for the diagnosis and treatment of 
patients to be performed remotely without the need for invasive therapeutic inter-
ventions, improving patient survival and reducing medicolegal concerns. For med-
ical metaverse systems to be of great success, high internet frequencies (5G/6G) will 
be required to provide increased capacity, very high speed, and reduced latency.
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Fig. 2 Implementation of 
metaverse systems in health 
5.0 with the integration of 
AI applications 

Hologram technology is a system that allows 3D polarized projection of images 
(Fig. 3). It can be utilized in treatment planning of invasive procedures such as 
surgical interventions. Clinicians can use the projected 3D organ structure in a 
holographic image for decision-making. The image will be an exact replica of the 
organ studied and thus provide detailed information of the patient’s organ during the 
procedure. Moreover, an injury or fractures of soft or hard tissue can be picked up 
with ease on the patient’s hologram. Patient data can be stored on digital platforms 
(vide supra), allowing clinicians to track the patient’s progress through readily 
available medical records. Radiological holograms could be applied in cardiovascu-
lar, chest, genitourinary, musculoskeletal, neuroradiology, pediatric, and head and 
neck radiology (Haleem et al. 2020). A metaverse of medical technology and AI 
(MeTAI) can facilitate medical imaging-guided diagnosis and therapy. For instance, 
a patient presenting with a cardiovascular disease can be taken for a CT scan which 
will then provide information on the potential pathologies. This data will then be 
projected on the patient’s avatar and scanned using virtual CT scanner. Three-
dimensional printing of physical avatars could mimic real scans and improve not 
only decision-making but also patient education about their condition (Wang et al. 
2022). 

Invasive surgical procedures such as biopsies will not be necessary for diagnosis 
and decision-making. Clinicians will be able to examine the exact replica of the 3D 
human organ projection before proceeding with therapeutic interventions 

The future of surgical training will include the simulation of surgical procedures 
using VR. The concept dates back to the mid-1990s when Ota et al. suggested that



surgical trainees could be taught new surgical procedures and their level of compe-
tence assessed before they could operate on patients. Information stored during 
training can be revisited to allow trainees continual practice to perfect their skills. 
The VR simulation could be used to mimic laparoscopic surgical techniques thus 
improving training without the cost of expensive animal training models (Ota et al. 
1995). A virtual reality simulator for laparoscopic surgery (MIST VR) which 
simulates movement needed to perform minimally invasive surgical procedures 
minimizes the need to practice on patients. The model could provide all the elements 
that mimic laparoscopic surgery and could accurately separate a novice surgeon 
from a trainee. Measurement of psychomotor skills gave feedback on the effective-
ness of training and junior trainees could be separated into those that require more 
training and the group that is ready to operate on patients (Taffinder et al. 1998). 
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Fig. 3 An example of Society 5.0 medical hologram system 

Initially, VR and AR were used in anatomical education before implementation as 
tools for surgical training. However, AR is applied to enhance neuroimaging data. 
HoloLens, the AR device by Microsoft Inc., is a headset computer hologram that 
allows the user to observe, listen, and interact with the projected physical world/ 
object. The LCD screen is displayed in front of the user’s eyes, and the spatial sound 
technology and gestural interaction promote a distinct interactive holographic envi-
ronment. The data needed to project computational objects is stored in the HoloLens 
thus eliminating the need for computer storage systems. Karmonik and colleagues 
developed an algorithm that could be used to create AR objects from MRI data. The 
algorithm was created using readily available cost-free software. High-resolution



MRI images of the brain were imported into FreeSurfer. The left and the right brain 
hemispheres were obtained in the stereolithographic (STL) format. Both hemi-
spheres were combined on a 3D visual platform using ParaView and stored in the 
X3D format. The task-based fMRI images were analyzed, and the white matter tracts 
were reconstructed using different systems before functional connectivity (FC) was 
determined. The created algorithm for converting the image data into 3D objects 
could successfully provide a virtual display of the brain through the AR device 
(Karmonik et al. 2018). A 3D printed and AR kidney model was created for a better 
understanding of the anatomy of the kidney. The model could be utilized in planning 
therapeutic intervention and decision-making during robotic partial nephrectomy. 
As in the previous study, radiological imaging was used to collect data. Image 
segmentation was performed using other algorithm platforms followed by 3D 
printing before the kidney could be virtually displayed using an AR device (Wake 
et al. 2018). 
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6 Challenges of CPS Healthcare Systems 

The need for the development of novel architectures for cellular and molecular 
modeling has long been recognized although their development comes with several 
challenges. The heterogenicity, structural variability, and complex functionality of 
biological systems pose these challenges. Biological interactions are multiscale and 
relevant simulation approaches can be a challenge even with the use of specialized 
hardware. Analysis of biological proteins generates a large amount of data which 
could range from gigabytes to terabytes depending on the time scale of the simula-
tion software used. This could lead to tedious analysis and interpretation of results 
(Bogdan et al. 2015). The exchange of information between the patient and the 
healthcare providers is important for the early detection of the disease and decision-
making. The complexity of the anatomical and physiological parameters in relation 
with the patients’ demographics, for example, newborn versus the elderly and female 
versus male, require the development of computational intelligence that can accom-
modate all these issues (Lee et al. 2012). 

The ability to tailor-make healthcare management systems according to specific 
diseases/personalized treatment comes with its pros and cons. Medical CPSs are 
vulnerable to cyberattacks making cybersecurity a big concern. These attacks could 
be due to terrorism or organized crime. The safety of these technologies must be 
assured by the development of high-confidence, authenticated software that can 
guarantee the security of medical CPSs. Software systems that not only handle big 
data but guarantee the confidentiality and safekeeping of these data while providing 
easy access to the user are critical. If these data fall into the wrong hands, it could 
compromise the patient’s health making them vulnerable to discrimination, possible 
bodily harm, and abuse. The performance of real-time applications requires low fault 
latency to prevent delays that could disturb the operational cycle of medical CPSs. 
This could lead to poor data sharing and consequently affect timeous patient 
diagnosis and treatment (Lee et al. 2012).
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Confidentiality is important in the security layer. The proposed framework for 
Society 5.0 shall include sharing of personal information using different security 
methods, such as the OAuth 2.0, user-managed access (UMA), and self-sovereign 
identity (SSI). The OAuth is the standard protocol utilized for authorization thus 
allowing an application to access information from the other for the end user with an 
access token. The UMA is layered on top of the OAuth 2.0 allowing the user to have 
options in terms of accessibility to personal data, the period and conditions of access. 
The users can manage and monitor sharing preferences from a central control. The 
SSI is a sovereign and portable identity. It can be utilized for personal purposes or as 
companies giving the user verified credentials related to their identity for access to all 
relevant digital services and ensuring confidentiality at the same time. For instance, 
these protocols could assist in cases where healthcare providers need access to 
patient data such as medical history or reports using OAuth and UMA. Patient 
consultation fees could be paid using payment applications that require both the 
healthcare practitioner and the patient to have access to payment-related data for the 
application using OAuth and UMA (Patil et al. 2022; Yildiz et al. 2022). 

Lastly, safety for the use of medical CPSs should be assured by issuing opera-
tional certificates. The process of approving and validating these devices should be 
cost-effective thus ensuring that these get distributed to provide much-required 
services (Lee et al. 2012). Currently, the cost-effectiveness of medical CPS devices 
such as robotic systems is not certain as it is difficult to prove that the benefits of 
robotic surgery outweigh that of traditional open and laparoscopic surgery (Chiu 
et al. 2019). 

With regards to these future novel wearable, ingestible, implantable, and other 
similar direct human contact technologies, safety and the impact on the biology and 
behavior of human beings is not clearly defined. For example, technology-related 
addiction from smartphones, the internet, and video games is a well-known risk 
associated with obesity which leads to metabolic diseases such as diabetes and 
CVDs. This is a critical problem that currently has detrimental impacts on the 
lives of adults and most children (Kracht et al. 2020; Haghjoo et al. 2022; Porter 
and Goolkasian 2019). The other concern includes the increasing psychological 
impact seen with interactions through virtual platforms. A high percentage of 
individuals engaging in these activities are reported to develop mental health issues 
leading to depression and suicide (Twenge et al. 2018). These are concerns that 
cannot be ignored when developing innovative CPSs for future health management 
services so that the adverse effects do not outweigh the intended benefits of these 
technologies. On the contrary, there are games that have solely been developed to 
assist people to cope with stress (Ajmal et al. 2022). Metaverse has been reported to 
induce intense negative emotions which are also associated with violent behavior 
compared to the use of computers (Lavoie et al. 2021; Drummond et al. 2021). 
However, it is worth noting that metaverse can also be used to encourage and 
promote healthy living (Plante et al. 2003). The ONoC-based chip are also not 
always reliable as the data generated have the potential to mislead the medical 
practitioner, causing false interpretations as a result of the imprecise understanding 
of the biomarkers (Hou et al. 2019). The safety of other medical CPSs such as



miniature robots including origami is yet to be investigated as these types of 
innovations are still under laboratory experimental stages. Whether the biodegrad-
ability of the robot will take long enough to develop certain adverse effects is not yet 
known. The method for removal and discharge of foreign materials from the 
gastrointestinal tract by the robots is also not yet well defined (Miyashita et al. 
2016). We can therefore not omit or gloss over these very important issues. Safety 
measures have to be in place when developing these technologies. This includes high 
security measures and ensuring that there are limited or no adverse effects associated 
with these technologies (Fig. 4). 
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Fig. 4 Summary of the contributions of healthcare CPSs in Society 5.0. Development of high-end 
technology for monitoring systems. Medical robots clean and sanitize certain areas in the hospital. 
Assistant robots assist patients with adherence and monitoring of general health status. High-end 
technology is used to develop systems such as remote monitors. Metaverse (AR/VR) allows the user 
to see, hear, and interact with the projected organ in cyberspace. Augmented reality–AR; Visual 
reality–VR
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7 Conclusion 

Integration of embedded software that regulate monitoring devices, fogging, auto-
mated physical systems, and AI algorithms in healthcare management is about to 
change the way medicine is practiced in Society 5.0. Medical CPS applications 
permit remote patient monitoring through sensor technology, digitalization of data 
storing/mining/sharing, and alerts sent to care providers. Integration of AI and cloud/ 
fog computing enables the processing and storage of big data. Digitally assisted 
patient management ensures timeous, less invasive, and effective methods of treating 
patients. The security of CPSs can be assured by the development of reliable 
autonomous security patches that detect any form of a security hole and eradicate 
the threat before it can cause any harm. Should there be any disruptions, these should 
be dealt with in a timeous manner to prevent any delays in patient care and 
management. 

Apart from the cybersecurity concerns, which can be dealt with by continuous 
research and reprogramming of security systems, some of the biggest concerns in 
LMICs are the potential loss of jobs which most of these countries have worked hard 
to acquire, scarce skills, and lack of medical personnel. This stems from the 
automation of hospital services which in some instances could potentially replace 
human labor. Yes, machines will occasionally require human intervention, but the 
question would be, how many people will be needed to check if the machine is 
operating well and optimally? How many times will the machines need to be 
serviced by humans and how many people will be required to provide these services? 
Will the era of automation lead to self-services as well? Although machines cannot 
completely replace humans, these are real societal concerns especially in countries 
like South Africa where job creation is a challenge. Plans to ascertain global 
socioeconomic balance still sound further off as the poor might still not be able to 
afford these advanced technologies. Although overall survival is bound to improve 
over time, the disparities between hospitals might still exist. Private hospitals are 
only afforded by a certain class of individuals who will certainly have access to the 
best healthcare management services facilitated by high-end technologies. The less 
fortunate might have access to average healthcare technological advancements, and 
this would be a violation of human rights to good and efficacious health service 
delivery. For these reasons and others mentioned in the text, the concept of Society 
5.0 promises to align with UN SDGs to ensure equality and a long healthy life span 
for all. 
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Transformation of the Healthcare 
Ecosystem in the Era of Society 5.0 

Meshack N. Bida, Sylvia Motlalepule Mosito, Thabiso Victor Miya, 
Demetra Demetriou, Kim R. M. Blenman, and Zodwa Dlamini 

Abstract The term “healthcare ecosystem” refers to a system in which patients, 
healthcare providers, healthcare policy makers, and administrators participate in 
health outputs. The COVID-19 pandemic has given us new lessons and changed 
the definition of norm worldwide. Some lessons may be temporary, but, groundwork 
changes in our approach to healthcare ecosystem design will be necessary to assist in 
handling the challenges of future catastrophes. The healthcare ecosystem is mainly 
comprised of value creation formula, customer value proposition (CVP), as well as 
partner network. These elements are driven by four business model pillars which are: 
management, information, financing, and human resources. The use of artificial 
intelligence (AI) in healthcare promises to revolutionize healthcare ecosystem struc-
tural reforms in terms of robustness, agility, and accuracy. Digitization of the 
healthcare system is occurring on several fronts such as cloud-based technology, 
blockchain technology, and medical Internet of Things (IoT). Many of these health
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technologies offer a hope to improve access to healthcare to under-resourced com-
munities as well as provide quick often real-time access to patient health data for 
quick real-time clinical decisions, but they are not without limitations. Whereas 
some of these limitations are purely technical, others are related to compromised 
patient privacy. These healthcare technologies further improve the wave of precision 
medicine in the long run, by improving the turn-around time for diagnosis and 
treatment. The privacy, safety, and security of patient health records can be set at 
the highest level using healthcare technologies through several oversight mecha-
nisms available. However, legitimacy of implementation remains subject to the legal 
framework of human rights policies, the ability to avoid potential environmental 
health hazards, as well as the economy of scale.
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1 The Main Objectives of Healthcare Ecosystem Design 

The main objectives of healthcare ecosystem in oncological settings are to work 
toward increasing access to screening, early diagnosis, and improving accessibility 
of high-quality medicinal treatment. It could also assist to improve the community 
and patient’s knowledge of cancer across a broad range of other topics—including 
lifestyle modifications, quality of life benefits, and diet. The improved healthcare 
ecosystem will be used to ensure that the patients focus on the cure rather than the 
disease itself. Therefore, every individual in the cancer care ecosystem has a role to 
play in reforming and providing support to every patient with cancer (Singh 2020). 

By weighing the costs of services with the benefits to the consumer, effective 
utilization of resources, prevention of over-servicing, reduction of fruitless expen-
diture, as well as coordinating care for maximum effectiveness can be achieved. The 
value creation formula can be described as the value of care which comprises of 
quality service, end results, and well-being divided by the total cost of patient care 
over a period. This translates into the actual measurement of improvement in 
patient’s health outcomes for the given cost of attaining that improvement. The 
purpose of value-based care revision is to enable the healthcare system to generate 
more worth for patients. The ideal model of the ecosystem of healthcare should 
include a range of levels of healthcare, from community-based, secondary healthcare 
centers to tertiary healthcare centers (Viswanadham 2021). 

The efficiency ideas in healthcare should always involve the patient’s contribu-
tion in creation of value. The providers should aim at matching the value creation 
standard process to the customer (patient) (Nordgren 2009). Soon, healthcare should 
embrace collaboration, cooperation or partnerships, and affiliations in all sectors of 
the biological and life science in the ecosystem.
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2 The Trends of the Healthcare Ecosystem 

The terrain of the healthcare ecosystem is rapidly changing with five main trends 
becoming apparent:

• Hybrid care models combining virtual services
• Digitalization of healthcare specialties
• Increased AI adoption
• Migration of health systems to the cloud
• Advanced precision medicine 

3 Hybrid Care Models Combining Physical and Virtual 
Services 

Hybrid healthcare comprises of physical (in-person) and telemedicine consultations 
(Fig. 1). It is also driven by telecommunication tools such as Zoom meetings, video 
conferencing, etc. Several aspects of clinical care such as patient monitoring, 
appointment scheduling, and follow-up can also be done in a virtual platform. The 
patient’s individual circumstances determine if remote management or face-to-face 
management will be ideal (Rongey et al. 2011). 

The COVID-19 pandemic has significantly accelerated telehealth adoption and is 
rapidly changing the patient and practitioner experience. Several specialist practices 
such as dermatology have benefited from telemedicine during the COVID-19 pan-
demic and have managed to operate even during the height of total lockdown. 
However, some patients were not yet comfortable with telemedicine and still prefer 
physical consultations. Nonetheless, video conferencing consultations have been 
welcomed by most patients. For some patients with minor medical conditions, such

Remote In-personHybrid 

Fig. 1 A hybrid model of the healthcare system



as psoriasis or acne, telemedicine consultations remain a preferable option. But for 
patients who may need surgery or biopsies, telehealth consultations are not an 
option.
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A general workplace model mixes physical contact and remote consultation and 
gives room and support to employees. Employees have better work-life balance and 
autonomy in a hybrid;/ workplace and tend to be more applied to their work. This 
makes the workplace productive. A genera workplace which prioritizes the health of 
employees may be of value to some of the HR technologies. Some of the benefits 
include:

• Increased employee productivity: Several factors contribute to improving 
employee productivity: fewer interruptions at home compared to the office, 
increased autonomy to choose location and work hours, repurpose commuting 
time, and the opportunity to go to the office at times when in-person collaboration 
is ideal.

• Reduced overhead costs: Institutions or companies now take into consideration 
the real estate opportunities and strategies to reduce office space or locate their 
offices to smaller cities which can reduce the cost of production and office 
expenses such as electricity bills and rental. Genera employees often become 
more engaged, leading to reduced costs and less turnover.

• Staff experience and work-life balance: Autonomy and improved flexibility 
increase job satisfaction and happiness. In turn, this increases performance at 
work and overall employee well-being. An integrated focus on work-life balance 
can lead to a prosperous hybrid workplace.

• Additional protection through social distancing: With COVID-19 variants still 
posing a threat to physical contact, the genera workplace model enables the office 
space to be designed in a way that emphasizes safety and sanitization. Mixing and 
matching who is in the office, and when, enables social distancing and increased 
cleaning. In turn, this makes it easier if there is a need to perform contact tracing 
(Durai 2022). 

3.1 Digitization of Healthcare Specialties 

The health ecosystem digital era requires innovations that advance diagnosis and 
treatment, especially in hospital-based patient care that results in a reduction of error 
(Fig. 2) (India 2017). Furthermore, numerous innovations, such as video consulta-
tions or virtual meetings, are also required to ensure continuous care through the 
facilitation of off-site patient management. This can be achieved through telemed-
icine by reducing wastage, such as time and labor in the delivery system (India 
2017). By partnering with individuals to support self-management, digital innova-
tion will positively impact on the socioeconomic determinants of health, such as 
transportation costs and lesser consultation fees using remote technologies 
(Serbanati et al. 2011).
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Fig. 2 Utilizing digital health technology to create evidence and deliver evidence-based healthcare 
(Adapted from Sharma et al. 2018) 

Digital technologies provide advantages that are associated with the possibility of 
remote access to many medical services, and in the last decade have led to the rapid 
spread of digital medicine. Furthermore, there are several negative factors that have 
emerged through the diverse use of digital technologies in medicine. These technol-
ogies may cause serious harm to the life and health of people, and induce significant 
damage to the society, especially where the diagnosis is incorrect which results in 
mismanagement of patients (Mirskikh et al. 2021). 

The information age of healthcare provides opportunities to optimize clinical 
research and clinical care delivery using telecommunication. Regarding telecommu-
nications in patient care and research, although of high quality, there are major 
concerns about patients’ protection and privacy, especially due to the absence of 
legislation that guarantees ownership on the part of the healthcare provider in cases 
of mismanagement. This requires new regulatory policy innovations before full-
scale implementation (Sharma et al. 2018). The types of innovations that are likely to 
be adopted in a healthcare organization should address the quality improvements in 
health outcomes.
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4 Digital Transformation of the Healthcare Ecosystem 
Through Blockchain Health Technology 

The COVID-19 pandemic has negatively impacted even the world’s best healthcare 
systems because of the state of operating on disconnected and centralized networks 
with inefficient data-sharing capability. Decentralization, with effective patient 
metadata sharing using blockchain technology, provides an opportunity to preserve 
and accurately utilize patient data. Deploying this blockchain technology in the 
healthcare ecosystem enables the regulatory authorities and healthcare providers to 
process large volumes of data, make timely decisions, and develop better health 
policies to intervene. Blockchain is a technology that keeps a record of healthcare 
information or data in a secure and immutable manner. Blockchain was introduced 
via Bitcoin, and research is ongoing to explore its suitability and application to 
non-financial markets. Research in the application of blockchain technology in the 
healthcare sector is still new and will have a major impact, especially in the access 
and management of a large volume of data (Agbo et al. 2019). Instead of using a 
central database, the blockchain record is distributed across networks, with optimal 
information security. The authorized users can upload or download data but cannot 
delete or alter the data. The system preserves and exchanges patient data through 
healthcare centers and individuals. Blockchain technology also reduces error in a 
significant way, by allowing several participants to play an oversight role and thus 
gives ideal operational efficiency in the healthcare system (Burniske et al. 2016). 

The features of blockchain include immutability, transparency, efficiency, better 
security, and decentralization (see Fig. 3): 

– Features of blockchain: 
Decentralization: Blockchain uses a decentralized and distributed ledger to 

deliver the optimal processing capabilities of all participating users in the net-
work. This decreases latency and eliminates errors that may occur from any point 
of the user. 

Immutability: It is the ability to ensure the stability of entries by creating 
immutable ledgers. In blockchain technology, the blocks are permanently saved 
and never changed if the participating user continues to maintain the network. 

Transparency: A high level of transparency by sharing entry details among all 
users involved in the network. 

Better security: Blockchain offers better security, especially public types of 
blockchain where a public key infrastructure is in place, to protect against adverse 
actions to change data. This security feature in the blockchain network protects 
the integrity of information. 

Efficiency: Blockchain distributes all data entries to make it more transparent, 
thus allowing data verification at multiple points of usage (El Bassam 2021). 

Healthcare institutions and healthcare providers often work in silos in the 
healthcare ecosystem without the benefit of momentary updates in patient informa-
tion. This insufficient interoperability allows a high level of information gap and is



error-prone in decision-making during patient management. For example, some of 
the patient data in the use of medicines may be relevant to the pathologists in terms 
of diagnosis and if such information is shared among all healthcare providers 
timeously, it may be helpful for the healthcare practitioners to make a timeous 
diagnosis. Large volumes of healthcare metadata are shared across the healthcare 
system and in so doing errors, fraud, and duplications can be avoided (Engelhardt 
2017). 
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Fig. 3 A blockchain is a decentralized architecture with built-in security to increase the trust and 
integrity of transactions (Adapted from El Bassam 2021) 

Thus, blockchain development for healthcare addresses the following key lapses: 

– Patients can avoid medical services that are irrelevant to their current care. 
– Physicians have full access to the medical history of a patient, thus minimizing 

the risk of inaccurate decision-making in emergency cases. 
– Ability to trace first and last mile delivery verticals in pharmaceutical stores as 

well as to identify the specific medicines based on the active ingredients (Panwar 
and Bhatnagar 2020). 

– Limitations of blockchain application in healthcare: 

In many ways, the potential of blockchain technology in the healthcare industry is 
sometimes overstated. It has up to date remained as theoretical frameworks, layouts, 
or models, seldom with a prototype or pilot implementation especially in the most 
under-resourced areas, where the impact is likely to be most observable to learn



from. Thus, large-scale deployment of blockchain technology in the healthcare 
industry is rare in practice.
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Fig. 4 Types of blockchain: Public, private, or something in between (Adapted from Wegrzyn and 
Wang 2021) 

In addition, blockchain is not well suited as a storage facility due to the capacity 
constraints of computational needs in every network participant (often called 
“node”). Storing large records on this blockchain technology, including full elec-
tronic medical records or genomic data records, would be costly or inefficient if such 
computational needs are not in place. In this regard, government institutions rather 
than private healthcare organizations are best suited for this task. It is also difficult to 
use blockchain technology as an analytic tool for such data, thus providing limited 
clinical decision support and statistical analysis, especially for research use. 

On the Protection of Personal Information Act (POPI Act) in South Africa, 
storing personal health data “on chain” (i.e., in blockchain) will make such infor-
mation visible to other network participants, which is data privacy infringement 
(South African Government 2013). Then there are patient rights under the EU 
General Data Protection Regulation, particularly the right to erasure, which are 
incompatible with the immutability of blocks in a chain (Europe 2022) (Fig. 4). 

All types of blockchains can be regarded as permissionless, permissioned, or 
both. Permissionless blockchains allow any user to pseudo-anonymously join the 
blockchain network (i.e., to become “nodes” of the network) with minimal or no 
restriction to the rights of the nodes on the blockchain network. Permissioned 
blockchains have built-in restrictions to data access on the network to certain 
nodes and often restrict the rights of the nodes on the particular network. However, 
the identities of the users of a permissioned blockchain are known to the other users 
in the network (Wegrzyn and Wang 2021). Hybrid blockchains are centrally con-
trolled by a single organization, but with a level of oversight performed by the public 
blockchain. In this regard, data security in the case of healthcare blockchains can be 
customized accordingly to comply with the protection of patient information policy



in South Africa, for example, by regulating access to information using codes or 
password protection (Wegrzyn and Wang 2021). 
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4.1 Digitalization Through the Internet of Things 

In the last ten years or so, there has been an increase in the development of health 
devices and instruments that can be operated using the internet. These devices are 
referred to as the Internet of Things (IoT) devices. These IoT devices have a wide 
range of industry application which includes process systems, manufacturing, and 
law enforcement but are now increasingly being implemented in the field of 
healthcare systems (Pradhan et al. 2021a, b). 

Medical IoT can also be used to collect patient’s information, for diagnosis of 
diseases, for monitoring of patient’s health condition, and to provide alerts in case of 
a medical emergency (see Fig. 5). 

The use of IoT devices in the healthcare sector is referred to as medical IoT and 
has now become a large field of study, which is transforming the healthcare systems’ 
operations, by enabling remote patient consultation, accessing of patients’ vital 
records by physicians, and even doing minor surgical procedures remotely, such 
as incision and drainage of superficial skin abscess and self-sampling for specimen 
procurement for HPV testing (Akkaş et al. 2020). Some of these devices have been
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Fig. 5 Categories of IoT application (Adapted from Pradhan et al. 2021a)



applied as IoT-enabled biosensors, IoT in medical implant manufacturing, IoT in 
rehabilitation devices, IoT-enabled medical robotics, IoT in genomics, as well as IoT 
devices in pharmaceutical industries (Akkaş et al. 2020). A complete IoT system 
consists of four separate components that operate together to ensure the required 
output (Pradhan et al. 2021b).
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– Sensors/Devices: 
The sensors are connected to special devices and collect minute data from the 

surrounding environment. Some of these data include geographical location or 
vital data of a patient, such as temperature, pulse, or blood pressure. Sensors can 
be attached to a device such as a mobile phone which already has built-in sensors 
such as GPS, camera, and accelerometer. 

– Connectivity: 
The data is sent to a cloud infrastructure or an IoT platform with the help of 

either wireless or wired networking technologies, such as Bluetooth, Wi-Fi, 
cellular networks, ethernet, etc. 

– Data Processing: 
The data is stored in a cloud infrastructure, analyzed, and processed by a Big 

Data Analytics Engine, for clinical decision-making. This analysis could range 
from checking if the temperature, heart rate, blood pressure or blood glucose 
readings are within an acceptable range (Jagadeeswari et al. 2018). The processed 
data is then used to act accordingly or provide a medical opinion. 

– User Interface: 
The end user is notified often by an email, text, notification, or alert sound 

triggered on their IoT application. 

4.2 Benefits of IoT 

The benefits of the application of IoT in other industries provide a positive spin-off 
in the healthcare ecosystem, which includes: 

– Access to High-Quality Data: 
One of the most frustrating things in practicing healthcare is accessing patient 

data in good quality. Clinical history, laboratory results, medical treatment, and 
even surgical procedures for an individual patient are often hand scribbled with 
illegible handwriting or poor electronic records data quality. IoT promises to 
magnificently improve data quality especially with verification and timeous 
access (Pradhan et al. 2021b). 

– Better Tracking and Management: 
Over time, health records become difficult to store and access at the point of 

need. IoT has the potential to trace back any such medical history as may be 
relevant at the point of care, irrespective of where and when such data was 
accumulated.
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– Efficient Resource Utilization: 
One of the challenges in managing patients is the wastage of resources through 

duplication of tests, for example. Because of the transparency that is offered by 
IoT technology, such wastage could be reduced. 

– Automation and Control: 
Automation drives laboratory medicine, and this links well with IoT to allow 

remote access to essential laboratory information within the network. 
– Comfort and Convenience: 

The interconnectivity of devices and aggregation of data provide the patient 
with full control over the monitoring of their health condition with accessible 
remote monitoring by the clinical care team. Several visits to the healthcare center 
for monitoring becomes unnecessary in some cases of chronic care, such as 
diabetes and hypertension, especially if hand-held devices are used to monitor 
patients in this regard. 

– Saves Time and Money: 
The cost of healthcare delivery is markedly reduced by cutting overheads such 

as travel and several face-to-face consultations, especially in some follow-up 
consultations which allow remote monitoring. Specialist physician consultations 
take place quicker on the network with delay. 

Some real-world applications of IoT presently in use are: 

– Smart Home: 
Smart home systems such as connected inhalers, smart thermometers, ECG 

monitors, and blood pressure monitor devices offer security and convenience and 
save time. 

– Wearables: 
Devices such as Smart Watches and Fitness Tracking Bands that can be worn 

can, with the help of installed software, track and monitor heart rate, blood 
pressure, sleeping and eating habits, caloric intake, etc. The measurements 
made by these devices, can be relayed to a healthcare service provider. 

– Smart Cities: 
Smart cities provide their citizens with a preventative aspect of community-

based healthcare and allow public health data to be easily collected from citizens. 
Smart cities assist to minimize environmental pollution and provide optimal 
waste management (Menon et al. 2022). 

4.3 Examples of Internet of Things 

Several examples of IoT are out there in public but the one that is often spoken about 
in the healthcare industry is Hero Health. It is a medication dispenser that is used for 
home treatment and elderly care. This smart appliance also sends alerts to your 
smartphone if they miss a dose, thus assisting the physician in monitoring the patient 
(Mathew et al. 2018). Other examples such as Blossom, Philips Hue, Nest Learning



Thermostat, and Amazon Go have not found a niche yet in the healthcare sector so 
far and are mainly used in manufacturing, especially with regards to equipment 
monitoring (Fig. 6). 
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4.3.1 Limitations of Internet of Things–Based Systems 

Several challenges are encountered in the application of medical IoT: 

– Servicing and Cost: 
Like any other computational system, IoT requires continuous upgrading 

regularly. Every IoT-based system involves many connected medical devices 
and sensors which require high cost of maintenance, servicing, and upgradation 
costs. 

– Power Consumption: 
Most IoT devices consume large quantities of voltage requiring a high-power 

battery. Integration of the IoT system with renewable energy systems may help to 
address this challenge. 

– Standardization: 
Standardization of medical IoT devices, although without its faults, is based on 

the communication protocols from data aggregated. The validation and standard-
ization of electronic medical records (EMRs) recorded by IoT devices should be 
done on a wide scale. This can be achieved if various organizations and stan-
dardization bodies form working groups for the standardization of the devices. 
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Fig. 6 An example of how an IoT system works from collecting data to taking action (Adapted 
from Pradhan et al. 2021b)
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– Data Privacy and Security: 
Internet of Things–aided applications in healthcare networks are susceptible to 

cyberattacks. This may result in mismanagement of patients’ valuable informa-
tion as well as negatively affecting patient treatment. 

– Scalability: 
Most medical IoT-aided devices are not liable to scalability as new informa-

tion on emerging diseases is gathered due to a lack of uniformity among the 
connected devices. 

– Identification: 
Patients often have multiple diseases and are seen by multiple healthcare 

specialists which may compromise the identity of the patient, caregiver, and 
doctors among each other in a single treatment process, due to large volumes of 
specific data that needs to be correctly captured (Gatouillat et al. 2018). 

4.3.2 Digitalization Using Robotic Services 

The IoT-aided robotic system is a wireless network that offers robotic services by 
interconnecting multiple robots with the smart environment, using information and 
communication technologies to share large volumes of data. The IoT-aided robotic 
system is integrated with various sensors directed toward particular healthcare goals 
such as disease monitoring, diagnosing, and doing simple tasks, depending on the 
level of integration. The higher levels of integration systems may perform complex 
operations (Alotaibi and Yamin 2019). In other words, the IoT-aided robotic system 
is simply a complex form of IoT that also has the functional advantage of robotic 
technology. The layout of an IoT-aided robotic system consists of three layers: the 
physical layer, the network control layer, and the application layer. 

The Internet of Things and robotics are closely linked. The Internet of Robotics 
Things (IoRT) is also viewed as the integration of robotics technologies in IoT 
scenarios (Afanasyev et al. 2019). The sensors are used to collect vital health data of 
the patient’s body such as blood pressure, pulse, and temperature. The sensors may 
also be upgraded to include switches, actuators, and other drives that can be used to 
perform simple tasks. Robots can connect either with other robots with sensors or 
actuators, to create a multi-robot network of routers, and controllers through com-
munication network protocols. The application layer solely depends on the objective 
of the integrated system. The healthcare applications of an IoT-aided robotic system 
depend on the nature of tasks and objectives which are drafted in the communication 
protocol as a set of functionalities which can meet the demands. Some of these 
functionalities may involve the quaternary care of patients as in the rehabilitation of 
patients and remote management of chronic diseases and disabilities, such as remote 
management of paraplegics, diabetes, or psychotherapy. 

Once machine learning techniques have been applied to these robots, the robots 
are able to develop recognition ability and the ability to perform complex tasks and 
are able to function in various scenarios in which they are deployed. The robots can 
access sensor data that are recorded in real time such as speech, image, and video.



These data are time sensitive and must be processed in real time to allow prompt 
intervention and treatment where necessary (Hadidi et al. 2018). 
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4.3.3 Increased Artificial Intelligence Adoption 

“AI is a capability of a computer program to perform tests or reasoning processes 
that we usually associate with intelligence in a human being.” 

Medical science has improved and continues to do so immensely, increasing the 
life expectancy of individuals worldwide. As life expectancy rises, the healthcare 
systems face an increase in the need for healthcare services. The high life expectancy 
means that the cost of healthcare delivery increases. The workforce is increasingly 
facing increasing demands and struggling to accommodate the needs of its patients. 
The demand increases due to the aging population, lifestyle changes, and changing 
patient demands. Treating such patients is costly and requires systems that are 
dynamic and suited for long-term continuity of care. 

In the context of the healthcare ecosystem, AI has the potential to improve 
accuracy, that is, diagnostic precision, thus yielding better outcomes as well as 
reducing the time of production. This is seen largely in laboratory diagnosis, clinical 
diagnosis, imaging analysis, research studies, financial administration, documenta-
tion, workflow simplification, and other duties in the healthcare system. 

Currently, medical management spending is exorbitant and without major struc-
tural changes, the healthcare system will struggle to remain effective. The adoption 
of AI has the potential to positively alter the medical management system and assist 
in the challenges set out above (Dhamnani et al. 2019). AI in healthcare has 
relevance in the processing of claims, clinical documentation, revenue cycle, and 
medical records management. AI technology can assist healthcare professionals to 
diagnose patients by analyzing symptoms, suggesting personalized treatments, 
predicting risks, and detecting abnormal results (Table 1). Outweighing the benefits 
and risks of AI, concerns have been raised regarding the impacts, benefits, and risks 
of AI on patients, healthcare professionals, and healthcare systems. There are also 
debates on how AI and the data that supports it should be used. 

A complete adoption of AI into the healthcare system is still in its early stages. In 
low socioeconomic settings, AI adoption is significantly affected by social power 
which can either be knowledge-based or non-knowledge-based. The knowledge-
based power structures are social powers related to knowledge and skills, such as 
expertise in AI. They can also include informational, expert, and referent powers. 
This knowledge-based power is therefore more applicable in areas of large-scale 
high socioeconomic development, which are capacitated in terms of human 
resources. The non-knowledge-based power structures comprise of coercive, 
reward, and legitimate powers. They are not related to personal knowledge and 
individuals’ skills (Sun 2021). Additional benefits of AI in medical sciences include 
patient diagnosis, end-to-end drug discovery and development, as well as improve-
ment of communication between healthcare providers and patients (Ekins 2016; 
Dilsizian and Siegel 2014). In the recent past, computer algorithms have virtually



eliminated errors in the health system, often very attractive and intimidating to 
humans (Basu et al. 2020). 
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Table 1 Major healthcare companies using AI in medical sciences around the world (Adapted 
from Basu et al. 2020) 

Company name Main purpose Website 

AiCure (New York City), 
patient-oriented 

Utilizes audio, video, and behavioral infor-
mation to better understand the link between 
patients, disease, and treatment. 

https://www. 
aicure.com 

Aidence (Amsterdam, the 
Netherlands), clinician-oriented 

AI for radiologists that improves diagnostics 
for lung cancer treatment. 

https://www. 
aidence.com 

Aiva Health (Los Angeles), 
administrative and operational-
oriented 

The first voice-powered medical care assis-
tant: Connects patients with the correct 
healthcare providers for communication. 

https:// 
aivahealth. 
com 

Babylon Health (London), 
administrative and operational-
oriented 

Uses NLP and AI to generate an internation-
ally accessible and affordable healthcare 
system. 

https://www. 
babylonhealth. 
com 

Bot MD (Singapore), clinician-
oriented 

Bot assistant: Answers clinical questions, 
transcribes case notes, and organizes images 
and files automatically. 

https://www. 
botmd.io/en/ 

Suki (San Francisco), clinician-
oriented 

Voice-controlled digital health assistant for 
physicians. 

https://www. 
suki.ai 

Insitro (San Francisco), patient-
oriented 

Utilizes advanced machine learning together 
with computational genomics to decrease 
time and cost related to drug discovery for 
patients. 

Artificial intelligence applications in healthcare can be clinician-orientated, 
patient-oriented, or administrative and operational-oriented AI (Davenport and 
Kalakota 2019). 

4.3.4 Migration of Health Systems to the Cloud 

Cloud computing augments healthcare technologies such as electronic medical 
records, mobile applications, patient portals, and big data analytics (Fig. 7). It is 
scalable and flexible, can be customized to most healthcare ecosystems, and ulti-
mately improves the decision-making process. By leveraging cloud-based comput-
ing solutions, healthcare systems can reduce costs, enhance privacy, and improve 
patient care quality through collaboration and interoperability. Examples of 
healthcare cloud computing include Amazon Web Services (AWS), which has 
been rated as a leader in the healthcare cloud computing market. 

Cloud-based healthcare can be described as the integration of cloud computing 
technology to create and manage cloud-based healthcare services. Since the gener-
ated data can be securely stored off-site, it is regarded as a critical benefit for provider 
organizations regardless of the volume of data stored. This cloud-based healthcare 
system tackles the following essential requirements of the healthcare industry:

https://www.aicure.com
https://www.aicure.com
https://www.aidence.com
https://www.aidence.com
https://aivahealth.com
https://aivahealth.com
https://aivahealth.com
https://www.babylonhealth.com
https://www.babylonhealth.com
https://www.babylonhealth.com
https://www.botmd.io/en/
https://www.botmd.io/en/
https://www.suki.ai
https://www.suki.ai


238 M. N. Bida et al.

Some reasons 
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Fig. 7 Some reasons why healthcare is moving to the cloud (Adapted from ScienceDirect) 

1. On-demand access to computing with large volume storage resources, which 
will otherwise not be possible in old healthcare systems 

2. Support enormous datasets for electronic health records (EHR), genomic data, 
and radiology images offloading 

3. Ability to share EHR among authorized physicians and healthcare facilities in 
different geographic locations, with timely access to life-saving information and 
reducing the need for double testing 

4. Improvement in monitoring and analysis of diagnosis, treatment, performance, 
and cost data 

Healthcare’s digital transformation has encouraged patients to seek out more in 
the way of operational efficiency, clinical excellence, innovation capability.
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4.3.5 Advanced Precision Medicine 

The world is in a period of enormous progress in the fight against cancer. We now 
have immunotherapy and cancer early diagnostic tests which we never had before. 
Despite having these tools, we still have persistent inconsistencies in cancer end 
results. Precision medicine (also referred to as personalized medicine) is a techno-
logically advanced approach to mass population screening, disease diagnosis, treat-
ment, and prevention based on the individual’s uniqueness in terms of genetic 
makeup, unique environment, and lifestyle. The emerging field of precision medi-
cine is an area of enormous potential and is rapidly catching the public eye. The 
future of precision medicine rests on the different technologies that are integrated to 
complement the knowledge and skills of healthcare professionals in the milieu of 
clinical practice. This requires ongoing research to understand the knowledge gap as 
well as weighing the benefits it provides in patient management. 

According to Prosperi et al. precision medicine is the “approach for disease 
treatment and prevention that takes into account individual variability in genes, 
environment, and lifestyle for each person” (Adams and Petersen 2016; Prosperi 
et al. 2018). The current treatment for cancer may be a combination of surgery, 
chemotherapy, radiation, and immunotherapy, depending on the histologic type of 
cancer and its staging. Looking at the gene level, precision medicine can help decide 
on individualized treatment with certain medicines demonstrating to be more effi-
cacious for specific genes (World Economic Forum 2020). It needs a balanced 
healthcare ecosystem to attain personalized prevention and treatment. This can be 
achieved by incorporating risk assessment into the primary healthcare setting and 
ensuring that the healthcare providers in the primary care are provided with the right 
equipment to make precision prevention possible (Ayodele 2022). 

From targeting late-stage cancers to curing rare inherited diseases, precision 
medicine is assured to impact millions of people within the next decade. The biggest 
challenge in the field of precision medicine is patient confidentiality. The protection 
of privacy, confidentiality of personal and medical information, of the participants is 
critical, especially with the POPI Act’s policy innovation. During research, partic-
ipants need to be briefed about the risks and advantages of partaking. In essence, 
researchers must have a rigorous informed consent process. Lastly, cost is also a 
critical issue in precision medicine and needs to be addressed. Precision medicine 
partially depends on data collection and analysis. The data collection, storage, and 
sharing, which are crucial to implementing precision medicine, make security, 
privacy, and integrity a serious concern to patients, healthcare providers, and society 
as a whole (Rasch 2018, 2021).
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5 Technology and Innovation in Biomarker Discovery 
Through Genomics and Multi-omics Data Processing 

Omics technologies are critical in advancing precision medicine through the discov-
ery of new biomarkers. To date these technologies have not been fully exploited 
given that only a few omics-derived biomarkers have been incorporated into clinical 
practice. A careful selection of potential biomarkers requires a high level of sensi-
tivity and specificity to be clinically relevant. The ideal omics-driven biomarker 
should have features with high predictive power in accuracy, be less robust in 
analytic terms, as well as be cost-effective in production (Fortino et al. 2020). 

6 Funding Mechanisms in Propelling Health Innovation 

Access to quality healthcare is a major problem worldwide. Together with poverty, 
these two factors are the twin devils causing poor livelihood for many across the 
globe. However, innovative finance through partnerships can assist to make access 
to healthcare a possibility. These partnerships can redirect resources and address 
market inefficiencies and other systemic deficiencies that are preventing people in 
lower socioeconomic regions to access healthcare. Healthcare companies can poten-
tially play a major role as investors, innovators, and advisors to generate financial 
returns and develop new markets, and eventually improve health outcomes. In this 
way, new opportunities are identified through finance partnerships, thus breaking 
down access barriers at each stage of the healthcare value chain. 

6.1 Innovative Finance Can Be Applied in Four Key Areas 
of the Healthcare Ecosystem 

– Research and Development (R&D): The main focus of financing is product 
development partnerships as well as investment funds through research. These 
goals can be achieved using incentives and collaboration often between the 
under- and over-resourced partnerships. It is a sure way of ensuring skills transfer 
as well as capacity building. 

– Core Operations: Optimizing core operational platforms can be facilitated by 
volume guarantees, payment plans, and investment agreements. In this way, new 
business models are usually conceived which ensures a wider distribution net-
work that increases access to healthcare. A good example of volume guarantee 
arrangement is the use of contraception devices by the majority of women in low 
socioeconomic settings through a group of funders in Africa (Tsui et al. 2017). 

– Health Systems: Through financing small business enterprises, the health sys-
tems can be strengthened and expanded. These financial ventures may take the
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form of credit trade finance and social bonds which can strengthen the capacity to 
deliver medicines, patient education, and health services to remote areas previ-
ously untapped. 

– Patients and Customers: There are opportunities for healthcare companies to 
start micro-economic ventures in savings, credit, and insurance. This has the 
potential to stimulate demand and improve access to health services and products 
(Nordic Precision Medicine Forum 2022). 

7 Alignment with Sustainable Development Goals 

One of the Sustainable Development Goals (SDGs), as adopted by the United 
Nations in 2015, is Goal 3 for “GOOD HEALTH AND WELL-BEING.” The 
evolution of the healthcare ecosystem should be aligned with this goal by working 
toward removing barriers of access to healthcare using technology. An effective 
healthcare ecosystem will allow increased access to screening, early diagnosis, and 
improved accessibility to high-quality medicinal treatment. This will implement 
SDG Goal 3 by assisting good health and well-being. It can also assist to improve 
the community and patient’s knowledge of cancer, lifestyle modifications, quality of 
life benefits, and diet. The improved healthcare ecosystem, as previously mentioned, 
can be used to give hope to the patients for better options in disease monitoring and 
management. In the same breath, access without affordability will be meaningless 
and, in this way, cost-effective funding strategies should also be pursued through 
collaborative partnerships especially targeting low-income communities. Good 
health should not be a prized commodity but a basic human right for us to realize 
the 2030 Agenda of sustainable development. Multiple fronts of the pursuit of the 
2030 Agenda of sustainable development should include addressing the health of our 
communities as part of dealing with socioeconomic inequalities. 

8 Overall Impact of Technology on the Ecosystem 

The impact of technology on the healthcare ecosystem is closely interlinked with 
other determinants such as affordability, eagerness to the adoption of new technol-
ogies, status of health of population, and skills level of healthcare professionals to 
utilize these technologies. Due to the lack of widespread usage in a greater popula-
tion scale, modeling quality improvements, such as its impact on life expectancy, 
aging populations, productivity, and gross domestic product (GDP), is a challenging 
task (Marino and Lorenzoni 2019). Given the low-level adoption of digital technol-
ogy, especially in low-income countries, an autoregressive distributed lag (ARDL) 
model approach has been used in some studies in countries such as BRICS (Brazil, 
Russia, India, China, and South Africa), which demonstrated increasing life expec-
tancy between 1993 and 2019, except in Brazil (Jiang et al. 2022).
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The impact of technology on the healthcare work force has been variable in most 
studies, reflecting the complex nature of technology integration in the healthcare 
ecosystem. Several determinants come into the picture such as eagerness to adopt 
technology, especially due to physicians’ attitudes and skills. There is a lot of 
variation in the impact, with many healthcare organizations seeing no benefits 
(Acemoglu and Autor 2011). 

9 Human Rights 

Several of the transformative technologies which have impacted the healthcare 
ecosystem are by nature global and operate based on a set of rules and principles 
that have a law-like nature—the Lex Cryptographia. This law-like nature of these 
technologies makes some of the utilization by international organizations difficult 
due to questionable compliance with the local laws and foreign policy perspective, 
thus questioning the legitimacy of use in some countries. Lex Cryptographia is 
defined as a set of rules that are managed through smart contracts in a setting of 
decentralized organizations. These complex systems of smart contracts are required 
for technologies such as blockchain for purposes of code-dependent self-executable 
rules among the individuals participating in a blockchain network (Dimitropoulos 
2022). Blockchain technology is so global that the United Nations and the World 
Bank have adopted it. The World Health Organization (WHO) has partnered with 
major blockchain and technology companies to launch a distributed ledger technol-
ogy (DLT)-based platform for sharing data concerning the coronavirus pandemic to 
facilitate “fully private information sharing between individuals, state authorities and 
health institutions.” 

10 Privacy 

In terms of privacy, blockchain technology maintains long-term storage and confi-
dentiality of patient data and records. Such data or records can also be stored as 
immutable data or records depending on the situation. The types of data and records 
that can be stored include medical history, treatment-related data, and laboratory 
information all of which could be historic or current. Access to data can be regulated 
to allow only certain individuals to have access or modify or add additional data. For 
example, some participants may only have read the data, whilst others are able to 
load additional data. This serves well for maintaining and controlling patient pri-
vacy, especially where data access by unauthorized participants may have undesir-
able consequences, for example, HIV status not readily accessed by the nursing staff, 
etc. (Haleem et al. 2021).
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11 Safety 

Blockchain technology in the healthcare ecosystem can preserve and exchange 
health data and records of patients, as well as accurately identify serious errors in 
the workup and management of patients. This can range from the appropriateness of 
pharmaceutical prescriptions, doses, to the frequency of medicinal treatment. Some 
patients may be allergic to certain medical drugs and information on any allergies 
can be obtained from the clinical history of the patient. This will be flagged by this 
technology to ensure the safety of patients. In clinical trials, decision-making with 
regards to the continuation of the trials when adverse reactions are experienced by 
patients, can be safely done in the early phase of the trial (Haleem et al. 2021). 

12 Security 

Storage and management of patient health data and records must be stored with 
versatility, accountability, and authentication for data access. As the health records 
and data are accessed and used for different purposes, safekeeping, decentralized 
protection, and confidentiality are paramount to avoid threats of unauthorized access. 
Thus, there is a great potential for blockchain technology to improve data efficiency 
for healthcare, as well as assist to avoid the fear of data manipulation and ensure a 
unique data storage pattern at any desired level of security. Through a distributed 
ledger network that adds and never deletes or modifies records without a common 
consensus, security is guaranteed. The high level of data security is provided by a 
cryptographic hash that connects newly added information, but at the same time 
blocks records with a data block. The distributed blockchain ledger architecture 
ensures that data is not processed in any particular centralized hub or venue and is 
accessible and accountable to all network users (Haleem et al. 2021). 

13 Oversight 

Using common consensus mechanisms, adequate oversight can be achieved 
throughout the blockchain network of interconnectivity. Two common consensus 
mechanisms have been described which includes:

• Proof of Work (PoW) is one of the most common consensus mechanisms. The 
blockchain users or miners (a blockchain user/node who participates in a com-
petition with others to solve complex cryptographic problems, to validate a 
particular block) have that block added to the blockchain and receive a reward 
for doing so.

• Proof-of-Stake (PoS) is the second most common consensus mechanism alterna-
tive to PoW. This uses low energy, less processing time, low cost, and low
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computational power than PoW. The PoS consensus mechanism uses a random-
ized method to select the participants who get to create the next new block in the 
chain. Instead of miners, the validators are present in PoS. The users can stake 
their tokens to become a validator which means they lock their money for a 
certain period of time to create a new block. The user who has the biggest stake 
has the highest chance to become a validator and a chance to create a new block. 
This process also depends on that one user, considering how long the coins have 
been staked. By using this consensus mechanism in the network, we can save the 
energy of other validators because only selected validators can create a block. 

Several other consensus mechanisms have been adopted in other industries and 
include Delegated Proof of Stake, Proof of Authority, and Proof of History. 

Several important blockchain concepts and definitions are:

• Ledger—A record of transactions over time while still allowing for tracking and 
analysis. It documents the transfer of ownership and is ultimately a means for 
proving ownership.

• Block—A block is a unit of data (or record) that holds a collection of transactions 
which, together with many other blocks arranged in a specific order, form a 
blockchain.

• Hash—Digital equivalent of a fingerprint; unique and useful for detecting 
changes in a file. This is one component that makes the blockchain secure.

• Consensus mechanism—A fault-tolerant process to achieve agreement about a 
set of data among many users or nodes. Proof of Work is one of the most common 
consensus mechanisms.

• Miner—A blockchain user/node who participates in a competition with others to 
solve complex cryptographic problems, to validate a particular block, have that 
block added to the blockchain, and receive a reward for doing so.

• Blockchain can refer to: (1) a data structure which represents a series of immu-
table transaction records; (2) an algorithm or a collection of technologies; (3) a 
distributed, peer-to-peer network of systems; and (4) a system of recording 
information in a way that makes it difficult or impossible to change, hack, or 
cheat the system (HHS 2021). 

14 Energy Crisis 

Blockchain technology presents with it the potential side effects due to the increas-
ing needs in electricity for validation of all blockchain-based transactions or records, 
which could eventually generate some crypto-damages and give rise to several 
health issues. The implementation of blockchain technology should be done with 
caution to ensure a real sustainable, ethical, and consistent healthcare system. The 
potential environmental and eventually health impact cannot be underestimated with 
the increasing use of blockchain within the healthcare ecosystem. This lack of 
consideration becomes somewhat of a paradox as technological solutions are



meant to improve healthcare and must therefore be implemented in a way that does 
not harm the environment nor human health (Schinckus 2022). 
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15 Resource Crisis 

Although blockchain technologies are useful in improving efficiencies in the 
healthcare ecosystem, the technology infrastructure comes with a high demand of, 
amongst others, human capital in terms of technological skills, high tech computer 
infrastructure as well as bandwidth connectivity. These resources are, in most 
low-income countries, simply not affordable. Thus, the uptake of this technology 
is likely to lag in the developing economies as the implementation of these technol-
ogies is likely to create a resource crisis in many ways. Careful consideration of 
several factors is necessary to avoid disruption of these developing economies. A 
phased-out approach is perhaps the best way to avoid creating a resource crisis, by 
selectively identifying urbanized areas before a complete rollout is undertaken. One 
of the strategies of implementation is to consider public health intervention espe-
cially disease-specific screening, as this is likely to reduce the global burden of 
diseases, mortality, morbidity, and economic costs (Bhattacharya et al. 2019). 

16 Conclusion 

Advancements in the healthcare system such as electronic consultations and video-
conferencing assist in real-time diagnosis as well as accessing digital therapeutics. 
These strategies have become vital as part of the fourth industrial innovation, 
through advancement in medical science and dependence on digital platforms. The 
efficient extraction of high-volume information analytics through internetworked 
machines has grown to a great extent. Society 5.0 involves a human-centered 
community which seeks to strike a balance between high economic demands and 
societal liabilities by combining the cyber and physical space. AI seems to be on the 
high rise and intimidating to healthcare providers. However, it remains a viable 
option in achieving equity in the provision of high-quality healthcare to society. 
Most healthcare technologies are already in the domain of genomic analysis, clinical 
data storage, big data, and analytics to drive precision medicine. However, full-scale 
extension in the implementation of these strategies in clinical platforms is still 
lagging, especially in the low socioeconomic setting. Digital technology innovation 
is gradually impacting the healthcare sector using several technologies, such as 
blockchain technology, IoT, and IoT-aided robotics. Blockchain is a relatively 
new technology that can be used to manage large volumes of patient data in a 
transparent and accountable manner. It operates as a ledger of transactions where all 
ledger entries are visible to all participants within a communication network.
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A large body of knowledge about the layout of medical IoT systems, their 
components, and the network of communication among the different components 
exist, albeit with minimal practical implementation experience, more so in the under-
resourced communities mainly due to cost barriers. These technologies should be 
expanded to the low socioeconomic populations as pilot projects with carefully 
planned financing strategies. They will certainly be tested in their robustness espe-
cially when it comes to remote diagnosis and patient monitoring. There is a guaran-
tee of privacy, safety, and security of patient health records through several oversight 
mechanisms available. However, several countries may need to relook at their 
healthcare policy and legal framework to bolster the legitimacy of implementation 
and address the potential environmental health hazards to avoid potential litigations. 
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Healthcare Transformation Using 
Blockchain Technology in the Era 
of Society 5.0 

Thabiso Victor Miya, Benny Mosoane, Georgios Lolas, and Zodwa Dlamini 

Abstract Prior to the advancement of technology as we know it today, many 
hospitals stored maintenance and patient medical records using paper-based record 
systems. However, this is changing as the digital era is tremendously advancing. The 
shortcomings of paper-based record systems include data loss, manipulation, and 
access constraints. In some healthcare facilities, patient medical records are kept 
only for a certain period of time. Thus, patients are unable to retrieve their medical 
records after a certain period of time. Although many facilities store patients’ 
medical records in electronic computer systems, these data can still be accessed 
and manipulated without the knowledge of the patient. However, this downside can 
be solved by the use of Blockchain technology. Blockchain can be described as a 
structure that stores records of transactions into blocks in cyberspace. This technol-
ogy prevents records from being manipulated or corrupted without a common 
consensus. In essence, Blockchain is a “digital ledger” whereby every transaction 
is monitored and permitted by the owner using a digital signature, thus making this 
technology secure and reliable. With regard to data management and maintenance, 
the introduction of Blockchain technology will make a significant difference to the 
healthcare ecosystem in Society 5.0. Blockchain technology, although it is not a 
panacea, provides fertile ground for investment and experimentation as well as
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proof-of-concept testing. Blockchain is still in developmental stages and as such, it 
faces several challenges such as latency, security, privacy, and usability. Thus, legal 
and technological experts need to collectively revise feasible solutions that are in line 
with human rights so that this technology can thrive and succeed.
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1 Introduction 

1.1 Health Data Challenges in the Healthcare Industry 

Proper management and safe retrieval of large personal health data generated during 
the provision of services and conducting business remain as important challenges for 
the healthcare industry (Attaran 2022). This generated health data is mostly 
non-standardized across systems, inaccessible, and difficult to comprehend, utilize, 
and share. Furthermore, this data is pulled from diverse sources and stored in 
centralized information technology (IT) systems, thus making it difficult to manage 
and share (Attaran 2022). Requesting, compiling, sending, and receiving patient data 
requires many resources and is also time-consuming (Clim et al. 2019). Secure 
retrieval and efficient management of this data allow healthcare systems to generate 
a holistic view of patients, enhance communication, improve health results, while 
also improving care quality and treatments (Bresnick 2016). Other significant 
challenges facing the healthcare industry are the lack of comprehensive and secure 
population health data, interoperability, and inaccessibility of medical records. 
Lastly, the security of the generated healthcare data is also an important issue in 
this industry. For instance, numerous healthcare organizations store critical health 
data in a centralized IT infrastructure which is vulnerable to hacking, ransomware, 
and other cyberattacks (Bresnick 2016). 

There has recently been a move towards patient-driven interoperability, whereby 
the exchange and use of healthcare data are patient-driven (Kamble et al. 2018). 
However, the development of infrastructure, computer programs, and tactical 
methods that can bring data reliably and securely is still in its infancy stage (Gordon 
and Catalini 2018). Healthcare data systems that are currently in use have numerous 
challenges which include data accuracy, integrity, quality, and patients’ privacy. 
Thus, innovative technology that can help resolve these problems is urgently needed. 
Blockchain technology is emerging as one of the promising solutions to the current 
challenges facing the healthcare industry (Pirtle and Ehrenfeld 2018).



Healthcare Transformation Using Blockchain Technology in the Era. . . 251

2 Blockchain Technology in 5.0 Society 

2.1 What Is Blockchain Technology? 

Blockchain technology was first introduced in 2008 through the Bitcoin 
cryptocurrency technology endoskeleton by Satoshi Nakamoto. This technology is 
based on technologies and concepts from 1991 by Stuart Haber and W. Scott 
Stornetta (1990). Post inception, Blockchain has been applied in numerous indus-
tries including healthcare, finance, and business (Kassab et al. 2019). Blockchain 
technology can be described as a decentralized public digital ledger that records 
transactions across different computers (Haleem et al. 2021), essentially a living list 
of linked digital records. Blockchain is verified and linked to the previous “block,” 
thus forming a long chain as shown in Fig. 1. This means that the data involved 
cannot be retrospectively changed without changing the following blocks (Haleem 
et al. 2021). In Blockchain, transactions are registered and checked publicly, thus 
providing a certain level of accountability to the participants (Kumar et al. 2018). 
Furthermore, Blockchain data is maintained on networks instead of a central

1. Transac�on 

Item 
1. Money 
2. Document 
3. Goods 
4. Contract 

2. Block crea�on 

Info 
1. Time 
2. Amount 
3. History 
4. Policy 
5. Keys 

3. Varifica�on 

Varifica�on 
1. Broadcast info 
2. Verified by all users 
3. Open informa�on 

4. Block add�on 

New block 
1. New block ready to be added 
in chain 
2. Info correct and valid 

5. Finish 

Transac�on end 
1. Transac�on finish 
2. Info saved 

Fig. 1 Basic steps on how transactions are initiated, verified, and executed using Blockchain 
technology. Adapted from Onik et al. (2019)



database. This is important because it improves stability and prevents the data from 
being hacked (Moona et al. 2019).
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3 Blockchain Structure 

A block in Blockchain technology comprises information, a hash of the current 
block, a hash of the previous block, and a timestamp (Monrat et al. 2019; Shahnaz 
et al. 2019) as shown in Fig. 2. A hash in Blockchain can be described as an arbitrary 
number that miners usually alter to receive a certain hash value. The received value 
is then used to significantly decrease the exertion required to check transactions in a 
block (Iansiti and Lakhani 2017). Transactions in Blockchain can be described as 
small units of tasks stored in public blocks. These transactions are verified by the 
system participants and are, thus, tamperproof. Furthermore, participants in this 
system are able to replicate, host, and maintain the Blockchain. This enables the 
Blockchain to be protected from unauthorized access and hackers (Iansiti and 
Lakhani 2017). 

4 Blockchain Categories 

There are currently four Blockchain categories, namely private, public, consortium, 
and hybrid Blockchains (Ray et al. 2020). Private Blockchains are for single 
enterprise solutions, and they are used for tracking data exchange between

Block 2Block 1 Block n 

Previous Hash 

Hash #XYW7 Nonce 

Time Stamp 

NonceHash of Transac�ons 
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Hash #WZHash #XW 

Nonce 

Time StampPrevious Hash 
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Hash #X Hash #W Hash #Z 

Transac�on X Transac�on Y Transac�on W Transac�on Z 

Hash #Y 

Fig. 2 Components of Blockchain technology. Adapted from Monrat et al. (2019)



individuals or various departments. Furthermore, each participant in private 
Blockchain needs consent to join in and to be considered as a known member. 
Conversely, public Blockchain is a decentralized network where each member has 
access to the Blockchain data and could also participate in the consensus process 
(Wood 2014). Examples of public Blockchain include Ethereum and Bitcoin (Wood 
2014). Consortium Blockchain on the other hand is a permissioned network that is 
accessible to a certain privileged group. This type of Blockchain is utilized as a 
synchronized distributed database that tracks data exchange between participants 
and is both auditable and dependable (Wood 2014). Lastly, hybrid Blockchains are a 
combination of public and private Blockchain benefits. In this case, the public 
Blockchain is used to make a completely accessible ledger, while the private 
Blockchain runs in the background to control changes to the ledger (Wood 2014).
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5 Applications of Blockchain in Society 5.0 Healthcare 

5.1 Healthcare Record-Keeping Using Blockchain 

Blockchain technology can be used as a record-keeping solution in healthcare 
(Attaran 2022). In particular, Blockchain is a useful mechanism for recording steady 
and continuous growth of transactions (Cheng et al. 2018). Therefore, this technol-
ogy can be used to secure personal information, healthcare records, important 
medical information, as well as DNA data. Blockchain can be used in healthcare 
to securely store patients’ medical records whereby doctors and patients can 
remotely access those records (Finasko 2017). Furthermore, Blockchain allows for 
a heterogenous protection system and movability across different phases. Therefore, 
this enables healthcare providers to make an integrated health records system that is 
centered around the patients. Thus, patients have full control of their data (Bresnick 
2016). This Blockchain-driven integrated health system can help to curb fraud and 
also allows for reconciliation of records and activities. Furthermore, this integrated 
health system enables patients to remotely access, manage, and securely share their 
medical information with healthcare professionals anywhere around the world. It 
also enables patients to track their medical backgrounds like vaccines, chronic 
diseases, and allergies (Bresnick 2016). Li et al. proposed a medical data 
Blockchain-powered preservation system that enables a reliable storage solution to 
ensure the verifiability and primitiveness of medical data and simultaneously ensure 
users’ privacy (Li et al. 2018). The proposed system also enables users to perma-
nently preserve critical data. Moreover, if tampering of the data is suspected, the 
originality of the preserved data can be verified (Li et al. 2018). In another study, 
Zhang and Lin proposed a Blockchain-powered personal health information system 
which is secure and ensures the privacy of the users (Zhang and Lin 2018). This 
system is mainly for diagnosis improvements in the e-Health systems (Zhang and 
Lin 2018). Since Blockchain technology is immutable, it can help to improve the



accuracy of diagnosis. Privacy and security assurance are important issues in the 
proposed system (Zhang and Lin 2018). 
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5.2 Healthcare Data Sharing Using Blockchain 

Inadequate interoperability of data leads to the complexity of identifying patients 
(Attaran 2022). It also leads to information blockage whereby healthcare providers 
constrain the exchange of electronic health information or patient data (Attaran 
2022). Blockchain can make it easier to share healthcare data across system users 
and also end the problem of interoperability in the Society 5.0 healthcare system 
(Paranjape et al. 2019). Patients are identified using a unique identifier called hash ID 
in the permissioned healthcare Blockchain (Paranjape et al. 2019). This hash ID 
ensures the security and privacy of the system user and, thus, puts the patient at the 
helm of the ecosystem. Furthermore, patients oversee the sharing of the decryption 
key associated with their own blocks of data with their healthcare provider. There-
fore, Blockchain will enable patients and healthcare providers to receive or access 
accurate and updated comprehensive medical information (Paranjape et al. 2019). 

5.3 Healthcare Data Security and Identity Management 
Using Blockchain 

Medical data security and patient privacy are pivotal issues in the healthcare industry 
(Attaran 2022). Therefore, there is a need for innovative solutions that can effec-
tively resolve these issues. As previously mentioned, healthcare providers often store 
medical information in old IT infrastructures that are susceptible to hacking 
(Bresnick 2016). Loss of this medical information often leads to the loss of a lot 
of money (Bresnick 2016). Thus, healthcare providers have begun investing in novel 
technologies such as advanced data encryption and artificial intelligence (AI) to 
prevent cyberattacks on medical data (Duffy 2018). Blockchain technology can 
provide identity management and health data security solutions to the healthcare 
industry (Bouras et al. 2020). This technology can protect medical data and curb 
cyberattacks. Blockchain protects confidential data through encryption, thus render-
ing it immutable and indecipherable. As previously mentioned, Blockchain uses 
hash ID which is a unique number that is only known by the user. Thus, healthcare 
providers can access patient medical information only with clear access to the 
Blockchain record (Yaeger et al. 2019). Therefore, this puts the patients at the center 
of the Blockchain network. Interoperation of medical data between healthcare pro-
viders increases diagnostic accuracy and probability of successful treatments. It also 
reduces the healthcare cost, which is beneficial to the patients (Leon 2018). Lastly, 
Blockchain allows patients to keep their medical data secure while also allowing



them to share it with their preferred healthcare providers. Thus, it provides complete 
ownership of the medical data and guarantees authenticity against potential 
cyberattacks (Leon 2018). 
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5.4 Monitoring of Patients Remotely 

Blockchain technology plays a key role in storing, sharing, and recovering medical 
data, remotely (Ben Fekih and Lahami 2020). Thus, Blockchain can potentially be 
used to monitor patients remotely. To do this, medical data are collected using tools 
such as mobile devices, the Internet of Things (IoT), as well as body area sensors 
(Ben Fekih and Lahami 2020). For example, Ichikawa et al. applied Blockchain to 
their mobile health app which facilitates cognitive behavioral therapy for insomnia 
(CBTi) through smartphones (Ichikawa et al. 2017). CBTi is the most effective 
method for treating insomnia (Jacobs et al. 2004). However, it is expensive, labor-
intensive, and it is based in medical facilities (Ichikawa et al. 2017). Due to its high 
cost and lack of trained clinicians to perform this treatment, many patients do not 
have access to the CBTi method (Ichikawa et al. 2017). To overcome this problem, 
Blockchain technology has enabled developers to deliver CBTi through the internet. 
This is done by collecting patients’ medical data from their smartphones. The data 
then gets stored in the network server where feedback on the stored data can also be 
transferred back to the patients (Ichikawa et al. 2017). Griggs et al. also created a 
system that utilizes Blockchain smart contracts feature to analyze patients’ medical 
data collected by Wireless Body Area Networks (WBANs) (Griggs et al. 2018). 
These WBANs are created through different implanted or wearable patient medical 
devices that measure and record vital indicators, in real time (Griggs et al. 2018). 
These vital indicators include glucose levels and heart rates. Other medical devices 
are actuators that can automatically provide treatments, based on measurements 
recorded by the sensors (Griggs et al. 2018). In 2016, it was reported that approx-
imately 7.1 million patients worldwide use remote monitoring to manage their health 
(Mack 2017). 

5.5 Healthcare Financial Records Management Using 
Blockchain 

Fraud and billing errors are critical issues in healthcare billing (Attaran 2022). Thus, 
modern innovative technologies are required to solve these problems. Blockchain 
can solve these issues by decentralizing billing records which can process payments 
while also preventing fraudulent transactions (Giancaspro 2017). Blockchain has a 
feature called smart contracts. These smart contracts are self-activating and their 
terms of agreement between the buyer and the seller are written directly into lines of 
code. Furthermore, these contracts are distributed across a decentralized network of



Blockchain (Giancaspro 2017). Smart contracts are located in a specific area in the 
Blockchain network and have a specialized address. These contracts are invoked by 
depositing cryptocurrency to a unique address. This is followed by a verification 
process in the consensus protocol (Luu et al. 2016). Importantly, these smart 
contracts do not require a third party or updated security and traceability (Li et al. 
2018). Smart contracts can help eliminate mistrust between the payers and healthcare 
providers by permitting a more capable healthcare payment model. In addition, 
penalties and reimbursements can be executed through unique health parameters 
within the medical record in the Blockchain network. This in turn helps eliminate 
human errors from applying value-based payments (Yaeger et al. 2019). Smart 
contracts Blockchain can alert patients’ insurance companies about billing and 
claim settlements. This in turn increases fraud detection effectiveness while also 
decreasing administrative costs and pricing (Lorenz 2016). Blockchain can help 
insurance companies improve claims processing by acquiring inputs from various 
sources without compromising the information (Lorenz 2016). Lastly, Blockchain 
technology can provide reliable medical insurance data storage solutions. These 
solutions can ensure the verifiability and primitiveness of the data while also 
ensuring high credibility to network users (Zhou et al. 2018). 
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6 Application of Blockchain in Society 5.0 Pharmaceuticals 

6.1 Drug Tracing Using Blockchain 

Counterfeit drugs are a major issue faced by the healthcare industry (Attaran 2022). 
In developing countries, over 15% of drugs sold are counterfeit (Singh 2019). It is 
reported that pharmaceutical companies lose approximately $200 billion each year 
due to counterfeit drugs (Singh 2019). The problem of counterfeit drugs can be 
solved using Blockchain technology through the provision of drug traceability, 
security, and visibility. Blockchain utilizes features such as point-by-point and 
authenticity tracking to prevent drug counterfeiting while also ensuring the genu-
ineness of the drugs produced by specific pharmaceuticals. Furthermore, this tech-
nology allows users to authenticate the drugs before they purchase them (Haq and 
Esuka 2018). Besides tracking the drugs from the manufacturer to the patient, 
Blockchain can also record drug effectivity on the patient after use (Haq and 
Esuka 2018). This data is subsequently stored for future statistical purposes (Haq 
and Esuka 2018). 

6.2 Clinical Trials Using Blockchain 

Clinical trials commonly generate a lot of data and are expensive to conduct as they 
take years to complete and often involve fraud (Attaran 2022). Therefore, it is



important to develop a transparent solution that can ensure that anyone can review 
clinical reports. The solution also needs to secure and protect the authenticity of the 
trial results to prevent mutability (Attaran 2022). Blockchain technology can be used 
to facilitate clinical trials through the provision of document verification and data 
integrity (Singh 2019). Lastly, this technology ensures that the generated data does 
not get modified without the consent access (Singh 2019). 

Healthcare Transformation Using Blockchain Technology in the Era. . . 257

6.3 Public Health Management Using Blockchain 

The recent COVID-19 outbreak has shone a light on the importance of population 
health data (Nash 2015). This data is a critical tool used to promote good health 
practices and also to treat various health problems (Nash 2015). It is difficult to carry 
out analytical solutions needed to map COVID-19 behavior and impact without a 
comprehensive population health data system (Postelnicu 2020). Blockchain can 
provide instant information regarding potential outbreaks to relevant health institu-
tions (Postelnicu 2020). Blockchain facilitates the collaboration of various 
healthcare providers involved in healthcare initiatives using distributed ledger tech-
nology. This is important because it allows healthcare providers to gain insights into 
critical healthcare trends (Postelnicu 2020). Overdosing on medical compounds such 
as opioids is another critical issue facing the healthcare industry (IBM 2018). 
Blockchain can be used to provide the sole source of comprehensive information 
regarding the purchase of any controlled substance in all dispensers. The seller can 
use this information to determine the appropriate number of opioids a dispenser can 
order, for example. Lastly, this information can also be used to raise awareness about 
alcohol and drug abuse (IBM 2018). 

6.4 Healthcare Supply Chain Using Blockchain 

Blockchain technology is used by pharmaceutical companies to track raw materials, 
components, or compounds in the supply chain (Singh 2019). Pharmaceutical 
researchers can also use Blockchain to obtain health- and medical-related supply 
chain data. The authenticity and origin of medical supplies can be identified using 
Blockchain, thus improving the security of the supply chain (Bocek et al. 2017; 
Shanley 2017; Vecchione 2017). Lastly, Blockchain technology can be applied 
across different sectors in the healthcare industry, including vaccine transportation, 
perishable foods, medical supplies, and clinical trials (Rijmenam 2018).
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7 The United Nations Sustainable Development Goals 
Versus Blockchain Technology 

In 2015, the United Nations (UN) Member States created 17 Sustainable Develop-
ment Goals (SDGs) (United Nations 2015). These UN SDGs are aimed at ending 
poverty and other major challenges facing humanity and the planet in alignment with 
strategies to improve education and health (Hughes et al. 2019). Furthermore, the 
goals are also aimed at reducing inequality, stimulating economic growth, preserving 
oceans and forests, while also tackling climate change (Hughes et al. 2019). Thus, if 
these goals can be systematically addressed, the world will be a better place to live in 
(de Villiers et al. 2021). Digitalization has been widely accepted as an important part 
of attaining these UN SDGs. In fact, digital technologies are seen as both enablers 
and obstacles to sustainability, equality, as well as social inclusion (Zheng and 
Walsham 2008). For the purposes of this chapter in relation to healthcare in Society 
5.0, Table 1 discusses how the UN’s “Good health and well-being” SDG (United 
Nations 2015) can be integrated into Blockchain technology. 

The integration of Blockchain into the UN SDGs emphasizes the many benefits 
that can be achieved by the widespread adoption of this innovative technology 
(Hughes et al. 2019). However, this requires international partnership and substantial 
investment to effect security, standards, and governance (Thiruchelvam et al. 2018). 
Lastly, migration toward Blockchain technology should be spearheaded by devel-
oping economies as this will reduce adoption barriers (Thiruchelvam et al. 2018). 

8 Blockchain Challenges and Limitations 

Different researchers have identified a number of challenges and limitations associ-
ated with Blockchain technology. According to Khan et al. (2020), Blockchain 
technology is error-prone and possesses some architectural issues. Below is a 
summary of the seven main technical issues associated with Blockchain technology 
identified by Swan (2015). 

Table 1 The “Good health and well-being” UN SDG vs. Blockchain technology. Adapted from 
Hughes et al. (2019) 

UN SDG Blockchain technology 

Good health and 
well-being 

Blockchain technology could facilitate change in relation to sustainability 
that can impact health, medication, and humanitarian aid supply and 
distribution. Developing countries still face challenges in relation to the 
integrity of basic food products and medical supplies. Furthermore, 
logistical management and enforcement across geographical diversity and 
linguistic barriers are also major challenges in developing counties. 
Blockchain technology can help solve these challenges by enabling 
parties to ship and monitor the lifecycle of health products by using its 
transactional integrity and immutability features. This will in turn 
improve the health and well-being of the citizens.
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8.1 Low Throughput 

Throughput is one of the seven issues associated with Blockchain as identified by 
Swan (2015). For example, a Blockchain-powered Bitcoin network can process 3 to 
20 transactions per second (Xu 2016). According to Khan et al. (2020), the maxi-
mum number of transactions in the Bitcoin network does not exceed five. Con-
versely, Cong and He (2019) reported 47,000 transactions per minute in the visa.com 
network after conducting several network stress tests. Therefore, if e-commerce 
companies process transactions using Blockchain, then they will fail (Khan et al. 
2020). This is due to transactional delays and will subsequently increase network 
communication costs (Khan et al. 2020). Min et al. (2016) proposed a permission 
Blockchain network to increase protocol performance. This is achieved by 
partitioning the main network and computing power into sub-committees, also 
known as chunks (Min et al. 2016). The purpose of this method was to increase 
throughput and lower latency while retaining the Bitcoin network security (Min et al. 
2016). 

8.2 High Latency 

High latency is an important issue in the Blockchain-powered Bitcoin network 
(Khan et al. 2020). Bitcoin network requires 10 minutes to process one transaction 
and requires even more time to prevent double-spending issues (Khan et al. 2020). 
Although Bitcoin has security measures in place to reject double-spending, it 
eventually exacerbates latency further. Eyal et al. (2016) proposed a novel 
Bitcoin-NG protocol aimed at enhancing throughput while also lowering the latency. 
The authors claim that latency will only be limited to the propagation delay of the 
network. They managed to achieve this by decoupling the Bitcoin network into two 
planes and transaction serialization. Eyal et al. (2016) reported a lower latency in 
Bitcoin-NG compared to the original Bitcoin. Croman et al. (2016) also proposed a 
suggestion to increase throughput while lowering the latency. The suggestion is that 
the block size should not go beyond 4 megabytes (MB), and that the block interval 
should not be less than 12 seconds. This will increase throughput to about 27 trans-
actions per second (Croman et al. 2016). 

8.3 Security and Privacy Issues 

Blockchain technology is best known for its innovative security features. Bitcoin 
cryptocurrency is a notable innovation by Blockchain, and it is said to be more 
valuable than real gold (Khan et al. 2020). Therefore, this makes Bitcoin a valuable 
target for hackers. The first security risk in the Bitcoin network is identity theft

http://visa.com


(Xu 2016). Identity on this network is a combination of private and public keys. 
However, private keys determine the overall security in the network. Furthermore, 
storage of these private keys requires wallets. Various wallets are available in the 
market, for example, paper, web, desktop, hardware, and mobile wallets (Khan et al. 
2020). Paper and hardware wallets are said to be more secure, but they are not 
enough to prevent private key theft (Khan et al. 2020). Ethereum cryptocurrency is 
another popular Blockchain implementation (Wood 2014). In the case of Ethereum, 
private keys are secured by a wallet provider company. The company provides 
password protection solutions for private keys. Thus, if the keys get stolen, the 
funds cannot be accessed and stolen (Sohaib et al. 2019). Two-factor security is 
another solution that can be used to prevent the theft of private keys (Goldfeder et al. 
2014). In this instance, private keys can be shared between two devices such as a 
mobile phone and a computer. A confirmation is forwarded to the owner’s mobile 
phone whenever a transaction is executed from a different phone or computer. A 
transaction will be signed and ready for successful execution, only after the owner’s 
confirmation from the phone (Goldfeder et al. 2014). Eclipse attacks are other 
examples identified by Heilman et al. (2015). Eclipse attacks involve the exploitation 
of numerous IP addresses to monopolize connections through a node of the victim. 
Hackers can then attack consensus systems, selfish mining, or double-spending 
(Heilman et al. 2015). This can be prevented by choosing specific outgoing connec-
tions or by disabling incoming connections (Heilman et al. 2015). 
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With regard to privacy, some aspects of Blockchain are pseudonymous. This 
means that user identity is hidden behind a public key while other aspects of 
transcriptions are shared publicly (Sweeney 2000). This is particularly problematic 
with regard to health data. This is because people can be identified using basic 
demographic information (Sweeney 2000). Therefore, if an individual’s identity is 
matched to their public key, all the transactions associated with that particular key 
are then known to be associated with an individual (The European Parliament and 
the Council of the European Union 2016). This problem is not only limited to public 
Blockchain, but it is also catastrophic to the private Blockchain. This is because an 
individual may not want all users to gain access to the same data or they may want to 
revoke data authorization sometime later (The European Parliament and the Council 
of the European Union 2016). However, both of these options are not possible if 
their identity has been linked to their public key. Thus, Blockchain innovations that 
provide selective disclosure of private data will be needed in the healthcare sector 
(The European Parliament and the Council of the European Union 2016). 

8.4 Fork Issues 

In Blockchain, forking happens when alterations need to be made (Khan et al. 2020). 
Two types of forks exist in Blockchain, and those are hard and soft forks. Nodes 
adopt any change that occurs within the network. When nodes are upgraded, they 
continue to validate blocks. Soft fork is when non-upgraded nodes continue to



validate blocks. Conversely, with hard forks non-upgraded nodes do not continue to 
validate blocks. In hard fork, Blockchain network is permanently separated into two 
chains. Additionally, non-upgraded nodes remain on the existing Blockchain while 
upgraded nodes transition toward a novel Blockchain. In contrast, a soft fork remains 
temporary until the software upgrade is complete. After the upgrade, nodes continue 
to work on a common chain and the Blockchain does not split (Khan et al. 2020). 
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8.5 Wasting of Resources and Energy 

Proof of work (PoW) is crucial in the Bitcoin network because it provides security 
against cyberattacks. However, a bundle of computing resources gets wasted, 
including electricity bills and hardware costs (Khan et al. 2020). Approximately 
15 million dollars’ worth of energy is wasted every day (Koteska et al. 2017; 
Yli-Huumo et al. 2016; Reynolds et al. 2017). This energy wastage does not align 
with UN SDG number seven which is “affordable and clean energy.” Thus, inno-
vative solutions need to be implemented to address this issue. 

8.6 Usability 

According to Swan (2015), the Bitcoin application programming interface (API) is 
way less user-friendly compared to the current standards of other new user-friendly 
APIs such as the commonly used REST API. A lack of expertise may impede the 
incorporation and utilization of Blockchain technology in the healthcare industry 
(Haleem et al. 2021). Thus, innovative solutions need to be implemented to address 
these issues. 

8.7 Size and Bandwidth Limitation 

The constantly increasing size of the Blockchain in the Bitcoin network is an 
important issue. In February 2016, the Bitcoin database size was recorded at 
500000 MB (Yli-Huumo et al. 2016; Koteska et al. 2017). According to Visa, the 
size will approximately reach 214 PB each year if the network continues to grow 
(Khan et al. 2020). According to Kim et al. (2017), the size will grow each year due 
to the addition of new blocks of data to existing data. As the number of nodes 
increases, data will also increase. Furthermore, this data is broadcast to all nodes in 
the network, subsequently leading to increased costs. Thus, the easiest way of 
managing the data size is to erase old blocks that are not currently needed (Kim 
et al. 2017).
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8.8 Human Rights Issues 

Blockchain technology is a gift and a threat when it comes to the issue of human 
rights (Naves et al. 2019). The right to privacy, to remedy, and not to be discrim-
inated against are particularly at risk. To ensure that the positive impact of this 
technology outweighs the negative, human rights must be considered at an early 
stage of Blockchain development. The right to privacy is particularly vulnerable in 
this instance because data cannot be altered or deleted once it has been submitted to a 
Blockchain platform. This means that errors made with regard to personal data 
cannot be reversed (Naves et al. 2019). Although the right to privacy needs informed 
consent from the participants for the usage of their personal information, there is a 
risk that Blockchain platforms are technically complex, and so participants will find 
it difficult to understand. Permissioned or regulated permissionless Blockchains 
operate by certain rules, therefore they can be easily regulated and forced to comply 
with current legal systems. Thus, legal and technological experts need to come 
together and devise solutions that are both technically feasible and prioritize 
human rights (Naves et al. 2019). 

9 Conclusion 

Despite being in its early developmental stages, Blockchain technology has numer-
ous innovative applications in the healthcare industry. Due to its inherent data 
encryption and decentralization capabilities, Blockchain can enhance the security 
of medical records, cost reduction, supply chain, improve access control, improve 
interoperability, improve data integrity, strengthen trust in clinical trials, and also 
prevent counterfeit medical supplies (Fig. 3). Other beneficial applications of 
Blockchain technology include medicines tracing (drug discovery, development, 
and distribution process), smart contracts, and healthcare insurance mediation. 

Blockchain applications in healthcare will continue to broaden in the future. 
However, Blockchain challenges such as throughput, latency, security, privacy, 
usability, size, and bandwidth problems still need to be addressed. Various organi-
zations and individual researchers have already proposed innovative solutions to 
address the challenges and limitations of this technology. Nevertheless, this tech-
nology will be of great benefit to Society 5.0 once it is completely adopted into the 
healthcare system in the near future.
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Fig. 3 Overview of Blockchain advantages on healthcare. Adapted from Onik et al. (2019) 
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Society 5.0 Healthcare: Ethics, Legal Rights, 
Human Rights, Safety and Security 

Kim R. M. Blenman, Rodney Hull, Charles Maimela, Thulo Molefi, 
Richard Khanyile, and Zodwa Dlamini 

Abstract The smart digital technologies required to make Society 5.0 and 
healthcare possible in our current society are new and in many cases operate in 
ethical gray areas as they can be misused or used incorrectly, violating human rights 
and values in many countries and especially in those with low resources. Some of the 
issues include violation of privacy, ignoring patient autonomy, bias, targeting 
vulnerable groups of people, cost, availability, accuracy, transparency, trust, 
employment, and safety-related issues. The gathering of patient data is one of the 
major concerns surrounding these technologies. This is due to the invasion of 
privacy associated with the collection of this data and the ability of this data to be 
used without the individual’s permission in some countries. The gathering of 
information not relevant to healthcare may constitute an invasion of privacy. The
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ease of analysis with which artificial intelligence (AI) can identify patterns within 
patient data may lead to overdiagnosis and overtreatment. There are fears that as 
these technologies advance there may be a loss of autonomy due to a lack of 
transparency of exactly how a specific AI works, what it is actually producing, 
how that product is confirmed, and how that product is being interpreted to make a 
healthcare decision. As such regulations are currently being put in place in many 
countries to ensure that a human being plays a vital role in the decision-making 
process. Biased data and outdated datasets could lead to AI adopting age, gender, 
ancestry/ethnicity, cultural, socioeconomic, or other biases against specific groups, 
usually those who were historically disadvantaged or suppressed. The diverse means 
by which this information is gathered is also a cause for concern. Many of the 
wearable, mobile devices currently offered are not pure medical devices but are 
entertainment or fashion devices with the built-in ability to record an individual’s 
biometrics and vital signs. As such, the reliability of these devices is unclear. Even 
pure medical devices require maintenance, calibration, and upgrades, all of which 
could influence the quality of data collection. Despite these challenges, the promise 
held by these technologies for advancing healthcare is too great to ignore, and as 
such there are a variety of solutions to these problems which are being put in place or 
have been proposed. These technologies require the creation of new laws and a 
reassessment of legal rights surrounding privacy and liability and the creation of 
legal frameworks to ensure the safety of these technologies as well as reexamining 
the laws surrounding consent and intellectual property. This chapter, although not 
intended to be exhaustive, will discuss some problems and ethical issues surrounding 
these new technologies and some potential solutions. We hope that this will start the 
continued discussion on how to incorporate these new technologies legally, ethi-
cally, safely, and securely in keeping with the highest standards of human rights.
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1 Introduction 

New technologies are the cornerstone of the new smart society proposed by Society 
5.0. The adoption of these new technologies holds much promise in optimizing and 
improving healthcare, leading to a healthier population. However, many challenges, 
both ethical and practical, face the adoption and application of these new technol-
ogies. The ethical concerns, in particular, are wide and varied and are present in 
clinical, research, public health, and personalized medicine applications. These new 
technologies present many ethical problems around data usage, data access, trust in 
the new technologies, the technologies negatively influencing patient–doctor com-
munication, the efficiency of health services delivered by these technologies, safety, 
and liability issues. Apart from these issues, there is a problem surrounding the cost 
of these new technologies and whether poorer countries will have access to or be 
able to implement these technologies safely and ethically.
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A PubMed (United States National Institute of Health National Library of 
Medicine) search revealed that there are very limited publications on ethics and 
the promising technologies for the Society 5.0-based healthcare system in the 
MEDLINE database of references from life science and biomedical topics. Most 
publications are concerned with ethics and artificial intelligence, big data, bioinfor-
matics, and the digitization of healthcare (Fig. 1a). Apart from peaks in papers, 
especially those concerning ethics and bioinformatics, the trend is a modest increas-
ing number of papers that have remained flat from 2017 to 2022. It is hoped that 
these papers will drastically increase especially as these topics become more impor-
tant as a concerted effort is made to move to a Society 5.0-based healthcare system. 
The newer technologies represented in Fig. 1b have significantly fewer publications. 
It is apparent that before Society 5.0 can truly be implemented, ethical and other 
human-centric (e.g., legal rights, human rights, safety, and security) questions 
surrounding the use of the technologies required for its implementation need to be 
addressed. 

2 Human Values and Ethics 

All new medical technologies or devices must be built around a core of human 
values. Alongside this, there must be accountability for the use of these technologies. 
The aim of Society 5.0 and healthcare in this society is human-centered. As such, the 
implementation of these new technologies requires not only input from medical 
science but also from the social sciences and humanities as well as from lawmakers 
and economists just to name a few (Dignum 2019). When designing a device or 
software to be used in healthcare 5.0 the following tenets should be remembered: 

1. Ethics in design—Involves considering various ethical issues during the design of 
the device or software. For example, this includes avoiding age, gender, ancestry/ 
ethnicity, cultural, socioeconomic, or other bias in the implementation of the 
technology. 

2. Ethics in application—This highlights the ethical behavior of those individuals 
involved in the design and use of these tools and devices. For artificial intelli-
gence (AI), this would also cover the curation of the AI learning and giving it data 
sets representative of the population it will be working with. 

3. Ethics for diverse stakeholders—This involves making sure that these tools and 
devices are regulated by rules and laws that protect all stakeholders. This will also 
ensure that the technology can be effectively and safely applied to healthcare 
systems (Dignum 2019). 

One of the most important factors in the development of Society 5.0 is that this 
smart society will aid in the world achieving the sustainable development goals 
(SDGs) put forth by the United Nations (UN). The official purpose of the UN is to 
“maintain international peace and security, develop friendly relations among 
nations, achieve international cooperation, and be a center for harmonizing the
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Fig. 1 Papers with ethics and various digital technologies in their titles or abstracts from PubMed. 
(a) The results with the highest number of papers included ethics and artificial intelligence, ethics 
and big data, ethics and bioinformatics, and ethics and the digitization of healthcare. (b) The search 
terms with a smaller number of papers included ethics and cyber-physical systems, ethics and the 
Internet of Things, ethics and blockchain, ethics and digital twins, and ethics and remote sensing



actions of nations.” Since it was founded in 1945 it has been involved in the 
worldwide promotion and protection of health (Brown et al. 2006). However, the 
new digital technologies required for this smart society have also led the UN to 
develop ethical frameworks and regulations regarding the use of these new technol-
ogies. In terms of artificial intelligence, one of the most important and prevalent of 
these new technologies, the United Nations spent two years preparing a report 
outlining the ethical use of AI. The purpose of this report was to help ensure that 
the report and the six principles it covers can help serve as a foundation for the 
ethical implementation of this technology. The six principles outlined in the 
report are:
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Protecting autonomy—The first UN guideline states that the final say on all 
health decisions should be made by a human being. Ideally, that human being should 
be the patient in consultation with their doctor or health professional. Doctors must 
be able to, if they feel it is necessary, reject the conclusion and decision of an AI 
system. Additionally, patient data should be protected and not be accessed without 
patient permission (WHO Guidance 2021). 

Promoting human safety and well-being—AI and any health-related technol-
ogy should be constantly monitored to make sure they are working correctly (WHO 
Guidance 2021). 

Ensuring transparency—Information regarding the design of AI systems must 
be freely available and their operation must be transparent enough so that they avoid 
becoming black boxes (WHO Guidance 2021). 

Fostering accountability—There must be a mechanism to hold someone 
accountable if a technology leads to patient harm, through incorrect use, AI making 
a mistake through errors in learning (poor data or algorithm development), or a 
failure in the technology itself. This means there must be a method for determining 
who is at fault and how they should be penalized (WHO Guidance 2021). 

Ensuring equity—Making AI and other medical technologies easily accessible 
to the whole world (low-, middle-, and high-resource countries). This can be 
achieved by making sure it is available in multiple languages and is trained using 
diverse sets of data to avoid overfitting. Finally, it must be ensured that no ancestry/ 
ethnicity or other (age, gender, cultural, socioeconomic, etc.,) biases are present in 
any data analysis or collection technologies (WHO Guidance 2021). 

Promoting tools that are responsive and sustainable—The maintenance and 
updating of devices and software should not be so expensive or difficult that it 
cannot be done in healthcare systems with limited resources. There must be mech-
anisms in place to remove ineffective devices or software, and regular updates must 
be available (WHO Guidance 2021) (Fig. 2).
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Fig. 2 Principles guiding the ethical application of digital technologies and their relationship with 
the UN guidelines on AI. The general guidelines when it comes to creating an ethical piece of 
technology for healthcare include maintaining ethical considerations during the application and 
design of the technology, as well as ensuring that it benefits or does no harm to any of the 
stakeholders 

3 Specific Ethical Problems Surrounding Healthcare 
Technologies in Healthcare 5.0 

3.1 Sociodemographic Biases and Protecting Vulnerable 
Populations 

Ethical issues around sociodemographic biases include concerns over discrimination 
based on ethnicity, age, gender, socioeconomic status, disabilities, mental health, 
and even culture. Artificial intelligence systems can either consciously or



unconsciously reflect the biases of those who created it or those that taught it leading 
it to discriminate against vulnerable groups or individuals. For instance, in cultural 
bias there may be issues such as the technologies or the implementation of the 
technologies ignoring cultural differences and applying a one solution fits all 
approach. An example of this is facial recognition software, which is less able to 
consistently recognize African faces compared to European faces, most likely 
because it was trained on Asian and European faces. This can also serve as an 
example of problems with data or training data quality (Kaur et al. 2020). Two types 
of bias exist, data bias and societal bias. Data bias occurs when a dataset is used in 
machine learning that is biased toward certain individuals. This can happen easily 
with the use of artificial intelligence and machine learning (ML) by using inappro-
priate or incomplete datasets as training datasets. The choice of the dataset must take 
ethical issues into consideration. It must also evaluate human dignity. Older datasets 
may include terms or classifications now known to be meaningless or even immoral, 
such as data with racist or sexist classifications or terms. This becomes especially 
dangerous if this is applied to new data collected in a biased way. This threat 
becomes even greater if it is the intention of the user to purposefully stigmatize a 
group of individuals based on certain traits and use the AI to justify their actions or 
plan/implement these actions (Ghassemi and Mohamed 2022; Chang and 
Obermeyer 2020). Societal bias involves societal norms leading to us thinking in 
very set ways ignoring individuals that fall outside of these societal norms. This will 
result in any AI trained with data edited by a data scientist with these societal biases 
to also try and force decisions regarding these vulnerable individuals to conform to 
societal norms. These societal biases include gender, sexuality, and disabilities 
(Mozafari et al. 2022). Biases can also occur if, for instance, a device or AI is 
designed and developed in a resource-rich setting and then used in a low-resource 
setting. These two settings will differ in the treatments that can be safely and fairly 
performed (Price et al. 2019). 
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One of the greatest fears when it comes to AI targeting groups due to demo-
graphics, racial, ancestry/ethnicity, or genetic differences is the targeting of a specific 
group for special treatment, which in the most extreme case could result in genocide. 
This is easy to see with respect to the application of AI to autonomous weapon 
systems. This may result in a situation such as that imagined in fictional works such 
as the motion picture The Terminator (Poghosyan 2020). It is not difficult to see how 
medical information can be used by AI, big data, digital twinning, and cloud 
computing to instigate, plan, or justify genocide, segregation, or stigmatization 
based on historical examples of the use of medical science in these situations. The 
genocide of the Herero and Nama people which took place in Namibia in the early 
twentieth century involved medical sterilization, and medical science was used to 
justify these actions by “confirming” the superiority of certain populations over 
others (Semmens 2019). Another example is that of the Tuskegee syphilis studies 
which took place from 1932 to 1972. During these studies, African Americans were 
purposefully left untreated in order to observe the progress of the disease (Brandt 
1978). Yet, another example is the Havasupai Native American Tribe (study 1989, 
Arizona, USA) in which their genetic material was taken and not used for the



purpose that it was originally intended but was also used for other purposes without 
the patient’s consent (Sterling 2011). The ability of AI to learn from and adopt racist 
attitudes from those individuals it interacts with has been shown to occult easily and 
without intention. In 2016 Microsoft launched an AI called Tay. Tay was designed to 
be an AI chatbot that would interact with individuals on social media to develop 
conversational understanding by learning from other individuals on social media. 
Over a period of just 24 hours, the AI developed racist and sexist attitudes and began 
using racist and sexist language, resulting in the AI being shut down (Schwartz 
2019). 
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The Singapore framework group released a framework detailing how AI should 
be used to ensure that it conforms to ethical standards and has a means of ensuring 
responsibility. One of the central tenets of this framework is that AI should be able to 
conform to the different societal contexts of the communities the AI intends to serve. 
In order to do this, the AI must be designed to recognize different societal norms and 
values (Makridakis 2017). 

3.2 Protection of the Individual 

3.2.1 Employment and Job Market 

Major concerns of healthcare 5.0 are how the adoption of new technologies will 
affect jobs related to healthcare as well as budget and resource allocations in 
healthcare institutions. For instance, it is important to note that the introduction of 
AI into the workplace will result in changes in the types and needs for certain jobs 
due to it causing a shift in the demand for required skills. It will also affect the size of 
the workforce as AI, and many of the other smart technologies, will allow an 
increase in efficiency and many jobs will be able to be done, debatably, with less 
staff. Currently, AI is having a greater effect on middle-skilled jobs, while robotics is 
affecting lower-skilled jobs (Kristin 2017). Job losses in certain sectors may be offset 
as new jobs are created, especially around the new digital technologies which will be 
introduced and become more common in the smart Society 5.0 (Cooke and Zubcsek 
2017). However, as a society, we must be intentional in ensuring the diverse 
representation of individuals who will be in these new fields. 

3.2.2 Informed Consent 

There is an active debate globally concerning whether a patient is required to give 
informed consent for their data to be used by these smart technologies or even 
collected and stored in the first place. It is possible that the collection of information 
will become fully automatic, instantaneous, and ubiquitous just like the constant 
collection of location-tracking information from individuals who have smartphones. 
This could happen to the extent that it will be impossible for anyone to avoid.



However, the storage and use of this data is another question. This is especially a 
concern if the patient does not want certain types of information to be used or 
accessed (Win 2005). If these technologies become the standard for patient care, the 
clinical care team must not only request the use of these digital technologies but also 
educate the patient on what these technologies will do, how they will help, and the 
risks involved. In addition, if the technology such as AI is operating in a way the 
clinical care team does not fully understand, that is, if the AI is a black box, must the 
clinicians disclose that they do not fully understand how the diagnosis was reached 
or why the treatment regime decided on was chosen based on the AI assessment 
(Win 2005)? If the patient has a right to have the treatment explained to them and the 
clinical care team cannot do so, it could be said that the patient’s rights are being 
violated if the technology and treatment were used without the patient’s consent 
(Win 2005). 
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3.2.3 Safety 

The IBM Watson AI for Oncology treatment is meant to select the best treatment for 
patients based on their medical records. However, it became apparent that some of its 
recommendations were unsafe and incorrect (Strickland 2019; Brown 2018). These 
errors were due to the AI being trained using a small number of hypothetical cases 
rather than actual patient data (Strickland 2019). This highlights the concerns 
regarding the safety and effectiveness of AI. The safety of AI’s recommendations, 
diagnoses, and prognoses can only be ensured by using valid datasets for training as 
well as having a human user or technician understand how the AI works. This is true 
of any of the digital technologies used in this new era of smart healthcare. 

3.3 Excess Data Collection, Data Quality, 
and Over- and Under-Diagnosis 

The danger of hyper-collection of data occurs when data not useful to patient care or 
relevant in healthcare is collected and stored (Institute of Medicine (US) The 
National Roundtable on Health Care Quality 2010). This excess data could be 
used for purposes, nefarious or benign, without the consent of the patient. This 
excess data can, for example, be sold to or acquired by private companies for 
marketing purposes. An example is the contact-tracing application developed by 
the Singapore government to help in the fight against the COVID-19 pandemic, 
which was found to be collecting data that could be used in criminal investigations 
(Wong et al. 2022). This repurposing of healthcare data is known as “function 
creep,” and is greatly helped and facilitated through the collection of excess data. 
The inclusion and analysis of unnecessary data in any analysis performed by an AI 
may result in incorrect or false predictions due to data that is unrelated to the task at



hand, clouding the decision-making process of the AI by overcomplicating the 
process (Bagaria et al. 2020). The problems caused by using poor-quality data can 
clearly be seen in the failure of many of the applications designed to help during the 
COVID-19 pandemic. For instance, the AI COVID-19 detection software that used 
chest scans to make their diagnosis. This data was poor in quality and resulted in a 
very low success rate in the prediction of a positive COVID-19 infection 
(Mohamadou et al. 2020). 
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Fig. 3 The processes of deductive disclosure and sampling bias. A collection of data describing 
individuals’ data on their age, education level, and whether they have a genetic polymorphism can 
be used to identify an individual or a group of individuals. For instance, even if the data has been 
anonymized, by looking at all three parameters (dimensions) we can deduce that if the data shows 
the individual is between 36 and 50, has a postgraduate level of education, and does not have the 
polymorphism, this is individual A. This figure also demonstrates sampling bias. These samples 
were most likely collected at a university campus as most of the subjects have a tertiary level of 
education, which is not true of the general population 

Historically, health research has been prone to the collection of biased data and 
the stigmatization of certain groups of people. Many of the datasets used to teach AI 
can be biased since they predominantly consist of data from individuals who 
according to sociopolitical race are considered white men of European descent 
(Mahmood et al. 2014). This data can also be influenced by societal biases 
(Mahmood et al. 2014). An AI using this data or a digital twin being created using 
this data may result in patients of different ethnicities and socioeconomic statuses 
being over- or under-treated (Vyas et al. 2020). Figure 3 gives a simple example of 
sampling bias. The samples collected here show a larger percentage of individuals 
having higher education qualifications than is true of the general population. A 
simple explanation is that these samples were collected from a university with 
staff and students having higher education levels than most of the population. 

Overdiagnosis is the process whereby actions are carried out unnecessarily due to 
the presence of indicators that a problem may arise. An example of this is the 
presence of a genetic marker which may predispose an individual to a disease,



which requires surveillance but no further actions or treatment. It can also apply if a 
condition that can cause no harm or symptoms is diagnosed and treated rather than 
being merely noted and observed (Kale and Korenstein 2018; Mandl and Manrai 
2019; Bunnik et al. 2015; Walker and Rogers 2017). The ease of testing, including 
self-testing, diagnosis, and remote diagnosis, has led to a period of new digital 
screening tests which are being developed faster than they can be tested for their 
accuracy and effectiveness (Capurro et al. 2022). This may lead to many false 
diagnoses as well as under- and overdiagnosis. 
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3.4 Privacy and Protection of Information 

As information technologies advance, the collection and availability of data grows. 
This raises valid concerns about who can access this data and what it can be used for 
(Mai 2016). One of the risks surrounding data collection and storage arises from the 
fact that disclosed information could potentially be used to identify an individual 
(Bader et al. 2016). Associated with this are risks surrounding the dimensionality of 
data. Even if data is anonymized, it is possible to re-identify an individual through 
association with multidimensional data. That is, with only one parameter most 
individuals cannot be eliminated, but with each additional parameter the number 
of individuals in each dataset diminishes until an identification can be assigned 
(Fig. 3). This process is known as deductive disclosure (Rothstein 2010). Some of 
the new technologies that will be used to drive healthcare in Society 5.0 pose a threat 
to privacy by their very nature. This includes remote sensor technology, the Internet 
of Things, GPS in smartphones, social media, and large omics databases (Bader et al. 
2016). Accidental disclosures of health-related data are more likely as the volume of 
data increases (Lundberg and Lee 2016). This may happen due to malicious data 
hacking or through inadvertent data mismanagement (Myers et al. 2008). 

With the rampant use of technologies such as social media, the IoT, cloud 
computing, and AI using big data, it has been suggested that what people consider 
a normal level of privacy will change (Xafis 2015). Even before the current big data 
era, it became obvious that privacy can no longer be considered as the ownership of 
data since the generation of much of this data involves many people. Even in clinical 
tests, the results are generated by lab workers and are known by the clinical care team 
who commissioned the tests. Even if the results should not be publicly disclosed, the 
information is still known by multiple people and could be obtained from one of 
these individuals in some countries (Mai 2016). 

Currently, data relating to an individual’s health is protected by the law in most 
nations. Since healthcare technologies in Society 5.0 revolve around the collection of 
large amounts of data from many sources, the number of people involved in the 
collection of this data is vast and that number grows when the people involved in 
data curation are taken into account. The intensive collection of data from individ-
uals may itself pose an ethical risk as it can infringe on the rights of an individual 
who may not want their data collected but are not given the choice due to the



automated collection of data that occurs with the IoT. It may also increase the risk of 
an individual’s data being stolen through data mining inference attacks (Krumm 
2007). 
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Another question is that of the ownership of data. The practice of selling patient 
data is on the rise with both companies and governments having sold patient data for 
profit (Lords 2018). The trading of data by public companies for commercial, 
insurance, or marketing purposes is known as data brokerage. The data obtained 
from a variety of sources that makes smart healthcare possible would also be 
valuable to companies. This healthcare data may be used to sell specific products 
based on an individual’s health or be used to alter the risk-based contributions for 
medical or life insurance as well as to pharmaceutical companies (Prainsack 2017; 
Gerke et al. 2019). This function creep is another violation of data privacy, and the 
data sold or exchanged through data brokerage violates the doctor–patient relation-
ship. This is further complicated by the excess collection of data discussed in Sect. 
3.4. where unrelated data is gathered under the guise of health data in some 
countries. Patients need to be protected from such practices. Another issue which 
must be resolved is whether a patient has the right to change or remove information. 
This data is meant to reflect the patient and, therefore, there must be a good reason to 
edit it. The removal of data would decrease the ability of any smart technology such 
as AI or digital twinning to recommend treatments or diagnose illness, but are there 
circumstances where it would be within the patients’ right to remove data? Also 
many technologies analyze data in real time, so if a patient wants this data deleted 
then it is likely that the results of the analysis would also need to be deleted (Gerke 
et al. 2019). 

Currently, health data is protected by law and legally informed consent is required 
from the patient to share this information. However, the networking of devices and 
databases in the smart society could potentially render this legal protection obsolete. 
The maintenance and use of data also pose a problem since software and hardware 
are frequently upgraded. This could potentially result in digital obsolescence where 
data may not be transferrable to newer systems if standard backward compatibility 
approaches are not included in the technology designs. This may result in the loss of 
data. Another problem is data interoperability. This becomes a problem if data is 
collected by devices from different manufacturers using different analysis or oper-
ating software. This may lead to data being unable to be used or being entered into 
the analysis or AI software incorrectly (Sandborn and Packaging Technologies 
2007). 

4 Inherent Flaws in the New Technologies 

The implementation of these advanced technologies that are required to implement 
smart healthcare in Society 5.0 may be too expensive for many low- and middle-
income countries (LMICs). The costs associated with these technologies are varied. 
In terms of gathering data, the internet in many LMICs may not be fast enough to



support many of the remote technologies. Additionally, the construction of smart 
sensors is complicated by the need for sensors, actuators, and connectivity functions. 
This complexity leads to increased costs. 
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The information technologies used to gather information that is to be used to drive 
digital healthcare and smart individual-centered healthcare have demonstrated that 
they can have problems with accuracy. Even if data is accurately captured, stored, 
and curated, this may change over time as stored data is sensitive to changes or 
upgrades in software and hardware. Currently, the most popular operating systems 
are Android, Windows, and iOS. The transfer of data between these operating 
systems as well as the accessibility of data using browsers and different software 
is not always directly possible without conversion software. Even with conversion 
software some data may be lost. This problem is known as data transferability. This 
is especially true when it comes to the software on different smart devices not being 
directly transferable to the OS or software of the storage system or analysis software. 
The end result of this is unusable or corrupted data (Sandborn and Packaging 
Technologies 2007). For remote sensors, such as worn devices or smart devices 
that connect through the IoT, to be accurate, these devices need to be calibrated. 
Generally, this calibration cannot be done remotely and requires the input from an 
external processor. This may be even more problematic in LMICs where there may 
be a lack of technicians, or the technician or calibrating device may only be available 
in urban centers (Majumder et al. 2017). There are questions surrounding the 
accuracy of many of the devices that are used to gather information for the digiti-
zation of healthcare. This is especially true of the remote sensors or devices that 
record data and submit it via the IoT. These include smartphones, wearable devices, 
appliances, motor vehicles, and even social media and internet search histories. For 
example, the Apple Watch can collect data on an individual’s heart rate and energy 
expenditure. However, when assessing the use of the Apple Watch for monitoring 
the heart rate and energy expenditure of a cardiac patient, it was found that the device 
overestimated energy expenditure (Falter et al. 2019). 

Technologies such as AI (including ML) and many of the remote data-gathering 
procedures create a sense of mistrust due to a lack of transparency. This is most 
prevalent in regard to AI. This is because it is not always clear how the AI has come 
to its final decision. This is especially true of ML or deep learning algorithms as they 
can adapt and change in ways that the original creator did not foresee or intend. This 
is known as the black box problem (Poon and Sung 2021). This lack of transparency 
can lead to mistrust and doubts about the result given by the AI (Sorell et al. 2022). 
This has resulted in reluctance in the adoption of these technologies for diagnosis 
and treatment recommendations in some countries. There is also a lower tolerance 
for machine errors than there is for human errors, which is enhanced when a user is 
unable to understand what could have led to the technology failing.
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5 Applications to Medical Research 

The incorporation of these technologies into medical research is a point of concern as 
the reliability and accuracy of the results generated through these technologies are 
uncertain. One of the problems the use of these technologies can lead to is 
overfitting. In this case, the data used by an AI tool or recorded by a remote sensor 
is specific to a group of individuals and not the population as a whole. The use of this 
data to formulate a treatment or construct the digital twin of a population will lead to 
errors when used on patients outside of the small group used to obtain the data. An 
example of this is research data concerning heart attacks, which is mainly obtained 
from men. Using this data to create models for the prediction and prognosis of heart 
attacks will not be accurate when applied to women (Sallstrom et al. 2019). The 
collection and maintenance of research data are also complicated by the large 
amounts of data that are now possible to collect using technologies such as remote 
sensing, the IoT, cloud computing, and AI tools. As more data is collected and 
analyzed it becomes far more likely that disclosure of study participants’ private 
information will occur. In another example of deductive disclosure, genome-wide 
association studies that report allele frequencies could be used to identify individuals 
in that study if someone had access to this person’s genotype (Braun et al. 2009). 

6 Legal Rights and Issues 

6.1 Regulation 

In the United States, some laws have been recently put in place that include the 
regulation of these new digital technologies. The 21st Century Cures Act includes 
mechanisms that support the adoption of electronic health records, nationwide 
interoperability, and information blocking. In response, the FDA has a created a 
Digital Health Center of Excellence which includes documents and guidance on 
digital health content, digital health policy, digital health reports, medical device 
interoperability, augmented reality and virtual reality in medical devices, software as 
a medical device (SaMD), device software functions including mobile medical 
application, wireless medical devices, and the digital health software precertification 
pilot program (https://www.fda.gov/medical-devices/digital-health-center-excel 
lence). It is anticipated that the regulations and guidance will grow as more tech-
nologies are created specifically for the diagnosis, prevention, or treatment of disease 
in the new era of Society 5.0 healthcare. 

In other countries, discussions are still ongoing as to the regulatory fate of this 
technology. Global bodies such as the United Nations have deliberated on minimal 
requirements in their guidelines for the ethical use of AI. In LMICs, such as Africa, 
the Organization for Economic Co-operation and Development (“OECD”) reported 
that 700 AI policy initiatives have been implemented by 60 countries since 2017,

https://www.fda.gov/medical-devices/digital-health-center-excellence
https://www.fda.gov/medical-devices/digital-health-center-excellence


and 42 countries adopted the OECD’s intergovernmental AI policy guidelines. 
However, only five African countries contribute to the OECD’s 60-country mem-
bership (ALT Advisory 2022). The status of regulation of AI, in particular, is given 
in Table 1, where it can be seen just how much work needs to be done on the 
continent. 
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In 2020, Cyril Ramaphosa, the president of South Africa, called for a unified 
regional approach to AI involving the creation of a blueprint for African nations on 
which to base the development of their own AI policies. South Africa, in collabo-
ration with other African nations as well as Smart Africa Alliance and 
multidisciplinary stakeholders, is attempting to create an Artificial Intelligence 
Blueprint aimed at outlining opportunities and challenges as well as to make 
recommendations on policy. The African Union (AU) has established an AU 
working in 2019. The mandate of the Working Group is threefold. Firstly, to 
facilitate the creation of an Africa-wide stance on AI. Secondly, to develop an 
Africa-wide capacity-building framework. Finally it aims to create a think tank to 
carry out these functions in order to realise both the AU’s Agenda 2063 and the UN 
SDGs (ALT Advisory 2022). 

6.2 Data Privacy and Protection 

Various laws in various countries exist to protect an individual’s privacy. However, 
these may not be sufficient in the big data era with smart healthcare being driven by 
technologies that are reliant on big data. In the United States of America, the Health 
Insurance Portability and Accountability Act (HIPAA) protects privacy, but it only 
covers specific health information and only relates to specific “covered entities” 
which includes clinical organizations, health-related companies, and their associates 
(Cohen and Mello 2018). In a smart healthcare system, information is going to be 
gathered by many organizations and systems not covered by this act or is data 
collected by the individual through wearable devices (Price and Cohen 2019). This 
act does not protect de-identified health information, which is allowed to be shared 
and used freely. However, we have already discussed the challenges with 
de-identified data in many dimensions (Fig. 3). In LMICs like Africa, the Malabo 
Convention is a set of laws adopted by the AU. The stated aim of this convention is 
that it is “aimed at strengthening fundamental rights and public freedoms, particu-
larly the protection of physical data, and punish any violation of privacy without 
prejudice to the principle of the free flow of information.” Some of the laws and 
regulations that the convention contains include the necessity for each state to 
establish a national data protection authority (“DPA”) and limited provisions for 
the regulation of AI. These limited regulations apply to the automated processing of 
personal information and for people not to be subject to decisions based solely on the 
automated processing of data (ALT Advisory 2022). 

Cybersecurity of the IoT, where the smart healthcare system of Society 5.0 will 
operate, is a concern as the IoT is vulnerable to deliberate attacks, both cyber and



Country Data protection 

legislation 

addresses 

automated 

decision-making 

Has a 

national 

AI 

strategy 

Has 

draft 

policy 

on AI 

Expert 

body 

on AI 

National 

Development 

Plan priority 

Algeria 

Angola 

Benin 

Botswana 

Burkina Faso 

B Burundi 

Cabo Verde 

Cameroon 

Central African Republic 

Chad 

Comoros 

Congo (Rep. of) 

Cote d’Ivoire 

Democratic Republic of Congo 

Djibouti 

Egypt 

Equatorial Guinea 

Eritrea 

Eswatini 

Ethiopia 

Gabon 

The Gambia 

Ghana 

Guinea 

Guinea-Bissau 

Kenya 

Lesotho 

Liberia 

Libya 

Madagascar 

Malawi

(continued)
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Table 1 The state of AI regulation on the African continent (ALT Advisory 2022) 



Table 1 (continued)

physical attacks (Perakslis 2014). There are multiple targets for cyberattacks which 
include wearable devices, company or hospital servers, medical devices, and patient 
data storage clouds (Masons 2017). These attacks can risk patient data, either 
resulting in data leaks or the loss of data, which can threaten a patient’s privacy or 
healthcare. These attacks could even interfere with the functioning of the AI or 
bioinformatic tools resulting in poor analysis of data and incorrect recommendations 
(Perakslis 2014). It is necessary to create and enforce an international law that details 
cybersecurity, its implementation, and the strengthening of underlying systems and 
infrastructure to make these systems more resilient and responsive to attack. The 
greatest difficulty is that this must be done across borders, regardless of the wealth of 
a country or region (Perakslis 2014; Gerke et al. 2019).
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Mali 

Mauritania 

Mauritius 

Morocco 

Mozambique 

Namibia 

Niger 

Nigeria 

Rwanda 

Sao Tome & Principe 

Senegal 

Seychelles 

Sierra Leone 

Somalia 

South Africa 

South Sudan 

Sudan 

Tanzania 

Togolese Republic 

Tunisia 

Uganda 

Sahrawi Arab Republic 

Zambia 

Zimbabwe 

The various laws and regulations that a country should have in place to ethically and 
responsibly institute AI. The green boxes denote that the country has the rules, regulations, 
or advisory bodies in place while the red box denotes that the country has no such regulation 
in place. The table clearly shows that much work is still needed for the ethical use of AI to be 
implemented in Africa Table columns must be alliged with each other 

Privacy in the European Union is protected by the General Data Protection 
Regulation. This is a newer law and contains specific  definitions on what health-
related data is specific for an individual and is related to their physical or mental 
health. The act also accepts a broader definition of what an entity is that gathers or 
uses data and what the provision of health services means (Irish National Teachers’



Organisation 2018). The act prohibits the processing of genetic data, biometric data, 
and data concerning health, but does also include a list of exceptions. These 
exceptions include cases where explicit consent is given or if the analysis of and 
use of the information is required for public health or if it is needed for archiving 
purposes to advance the public interest. Research purposes are another exception, 
both scientific and historical (Irish National Teachers’ Organisation 2018). Under 
this act, patients and individuals whose data is collected must be informed and made 
aware of the existence of technologies which can automatically analyze and interpret 
this data to make decisions regarding the profiling of the population and themselves. 
They must also be informed about the consequences of these analyses (Irish National 
Teachers’ Organisation 2018). The individuals must be able to access the data used 
in these analyses and to insist on the right not to be subject to a decision made by the 
automated analysis of their data (Irish National Teachers’ Organisation 2018). 
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6.3 Liability and Responsibility 

Another important question is who is responsible or liable when these technologies 
fail, cause harm, or even death. This is especially a concern for the use of automated 
machines for surgery or AI-based treatment selection. There are multiple individuals 
or companies that could bear responsibility. These include the software developers 
or engineers, the company that builds the smart device or robotic system, individuals 
or regulatory bodies that approved the device or software for medical use, and/or the 
healthcare professionals who were the endpoint users of the technology. Addition-
ally, what should be done if something an AI tool has learned, through poor data or 
incorrect analysis, leads to harm? Should governments or regulatory bodies decide 
who is at fault or should it be decided on a case-by-case basis? It is impossible to 
hold the technologies themselves accountable but if manufacturers or designers 
could be shown not to have tested or constantly monitored for quality assessment 
and quality assurance, the software, robot, or device extensively then they may be 
held responsible. It is for this reason that it has been suggested that a list of 
stakeholders should be generated showing who is responsible at what stage of use 
or implementation of the technology (Dignum 2019). This is further complicated 
when humans follow the recommendations of a given AI tool, for example, for 
treatment. What are the legal repercussions if a doctor follows these recommenda-
tions only for it to be incorrect and lead to harming the patient? Additionally, could a 
doctor be held responsible for choosing not to follow the recommendations given by 
the AI tool? Even if this leads to harm, there is no way of knowing if the recom-
mendation given by an AI tool would have had a better outcome (Dignum 2019). 

Currently, in the United States, AI- and healthcare-related software are defined as 
a tool under the control of the health professional and they are responsible for any 
errors that occur, resulting in them being sued for medical malpractice if anything 
happens that lead to these technologies causing harm (Esmaeilzadeh 2020; Price 
et al. 2019). However, if the details of the technology is hidden from the clinician or



if the AI/ML- based algorithm comes to a decision in which the clinician has no 
insight (i.e., black box), should the clinician be responsible? This is a future 
consideration since neither AI tools nor any other digital technology are used as a 
standard of care and are currently only used in supportive roles and the clinician is 
not without options, such as ignoring the recommendations made by an AI tool that 
has analyzed data collected from various sources (Price et al. 2019). The fact that 
these technologies play a supporting role also means that legal claims against the 
manufacturers may fail in some countries (Price and Nicholson 2017). Corporate 
liability and vicarious liability laws may also be used to assign blame against the 
hospitals or medical institutes that purchase software or devices to assist in patient 
treatment in some countries. Negligent credentialing laws may also apply here for 
some countries. These laws state that a hospital is responsible for verifying the 
credentials of their medical staff and in the same way, they would be responsible for 
verifying the accuracy and reliability of the software or devices they use to treat 
patients (Gerke et al. 2020). 
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The European Parliament published the Civil Law Rules on Robotics: European 
Parliament resolution in 2017. This resolution stated that the current liability laws 
will not suffice for the regulation of these new technologies in healthcare and new 
laws need to be developed and put in place. This was followed by the creation of the 
EU’s New Technologies Formation (NTF) group in 2019. This group released a 
report on these new emerging technologies. Some of these recommendations were 
that AI robotic systems that operate in a public space must be held responsible for 
any damage they cause and those using technologies that can be considered as 
autonomous are still accountable for any harm caused (Nagamarpalli 2021). In 
2020, the European Commission published a report on AI, the IoT, and robotics 
concerning their safety and implications for the liability which concluded that while 
existing laws can cope, they need to be adjusted. Adjustments also need to be made 
to national regulatory frameworks concerning product liability (Cohen et al. 2020) 
(Fig. 4). 

6.4 Intellectual Property 

The cost of developing these new technologies as well as gathering the data that they 
require is high, and companies and individuals require the promise of financial 
rewards to incentivize them to develop these technologies. However, information 
technologies have long been plagued by piracy and theft, and the rights of the 
companies to the information they collect and the software they develop for these 
new technologies must be corrected. This must be balanced against the desire for 
open-source software, freedom of information in science, and equal access of all, 
regardless of economic and developmental limitations, to databases and these 
devices and software (Lemley and Shafir 2011). These technologies and the infor-
mation they require are currently protected by a variety of laws, including long 
contracts, copyright, trade secrets/the law of confidence, database rights, competition



law, and personal data integrity rights (Minssen and Pierce 2018). However, these 
laws are sometimes not compatible with large databases made up of unstructured 
nonrelational data (Gervais 2019). Also, these laws may hinder the transformation of 
technologies such as AI tools into transparent entities as trade secret laws and 
contracts can protect the disclosure of algorithms and hide software functions and 
datasets (Gervais 2019). Public-private partnerships need to be encouraged as do 
incentives to share data (Richter and Slowinski 2019). 
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Fig. 4 The assigning of liability when new digital “smart” technologies cause harm. The first step 
in establishing responsibility is examining consent and disclaimer information. What did the patient 
give assent to and were they warned of the risks? The patient must then be able to prove that harm 
was done to them through the use of technology. The liability framework to be followed once harm 
has been established depends on whether the technology is classed as a service or a product. If the 
technology is classed as a service, the blame would almost always fall on the endpoint user. 
However, if the technology is a product, then blame can fall on a variety of individuals or 
companies. In almost every case, blame can be assigned to the hospital of the healthcare facility 
that approved the use of the technology in the facility
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7 Solutions to Some of These Issues 

Many of the issues surrounding the ethical and moral implementation of these digital 
technologies would be solved through the implementation and adoption of a means 
of assigning responsibility for the design of these technologies and the accountability 
for their failures. These regulations should help to protect human rights and ensure 
the well-being of patients and conform to ethical principles and societal values 
(Bhattacharya et al. 2020). This would require the formulation of new laws and 
regulatory bodies or government departments to efficiently control the application of 
these new technologies. These bodies would help to establish a chain of responsi-
bility (Dignum 2019). Regulatory bodies must also ensure that autonomous AI tools 
are specifically designed with a clear aim, and this aim must be beneficial to the 
Society 5.0 framework as well as constantly monitored for deviations from its aim 
and programming (Anderson et al. 2018). To correctly perform these functions, the 
members of these regulatory bodies and the lawmakers overseeing the implementa-
tion of new laws must have a clear understanding of the capacity and limitations of 
all these technologies. These laws and regulations may be difficult to formulate and 
enforce as they must deal with issues around accountability, responsibility, and 
transparency, but with diligent oversight, this process can succeed (Dignum 2019). 

Biases in datasets may be resolved as the amount of collected data increases. With 
the prevalence of data collection sources such as the IoT any skewness in the data 
should eventually be corrected and the databases should come to resemble the actual 
population. This can be additionally improved if attempts are made to collect data 
from underrepresented groups. It should also be noted that different algorithms for 
analysis or machine learning should be used for different population groups, or the 
AI or bioinformatic software should be able to narrow its functionality based on 
different population groups only in circumstances where this is the only option or it 
is warranted by a scientific rationale such as biology (e.g., cancer patients with 
BRCA mutations). 

When it comes to improving the transparency of AI technologies, it has been 
proposed to use a stepwise approach, where the AI functions in a small stepwise 
fashion allowing clinicians and healthcare professionals to clearly understand each 
of the small steps the AI makes to get to the final decision. Another option would be 
to create an AI that generates a log of all its activities and actions (Kwong et al. 
2022). The excessive collection of information and the trading of information 
without an individual’s consent is another issue that would require the action of 
lawmakers and regulatory bodies. The misuse of information or the use of poor or 
historically biased datasets is more difficult to solve and would require careful 
auditing of these datasets as well as teaching the AI when to exclude data. In addition 
to this, the learning and development of the AI can be audited at every stage. This 
can be done by carefully analyzing the results generated by the analysis of the data 
performed by the AI and checking the results for accuracy and meaningfulness. 
These results can be used to fine-tune the performance of the AI (Hripcsak et al. 
2016). The regulation of devices that can be used to record medical data as well as



laws controlling how long a device can function without an upgrade or service would 
vastly improve the reliability and accuracy of collected data. 
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The autonomy of these different technologies, such as automatic data collection 
and transmission, the real-time creation of digital twins, and automated decisions 
made by AI and implemented by robotics, is a cause for concern as it may violate 
human values and rights and could lead to discrimination and immoral unethical 
actions. These aims should not be, for instance, the creation of an AI or medical 
device that can be used to replace health workers, but rather to improve the lives of 
patients, health workers, and not replace the final decision of the patient in consul-
tation with their doctor and clinical care team. Regardless of the role the technology 
is expected to play, it must always consider the individual rather than groups of 
individuals or treat all populations as if they are identical regardless of socioeco-
nomic status or culture (Dignum 2019). 

8 Conclusion 

The digitization of healthcare and biological information is proceeding rapidly and is 
required for the implementation of a smart society and the healthcare system to 
match, that is, Society 5.0 Healthcare. Despite these technologies posing significant 
ethical challenges, they offer too many promises of truly personalized healthcare to 
be ignored, and it is basically the responsibility of governments, regulatory bodies, 
and international cooperation in the form of organizations like the UN to implement 
means to effectively regulate these technologies so that they do no harm. The UN has 
already formulated guidelines for the use of AI, and other regulatory bodies already 
exist for digital twins and medical devices. This is similar to the situation in the early 
twentieth century regarding the sale of medicines and drugs, which initially was 
unregulated and led to a great deal of harm and in many instances death. New laws 
and regulatory bodies were created to control and enforce laws surrounding the 
testing, manufacture, and sale of drug therapies. The same process will have to be 
performed for these new technologies. These ethical issues can be solved as long as 
these technologies are implemented cautiously with extensive testing and auditing 
and as long as the healthcare system these technologies promise to improve remains 
human-centered. 
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Way Forward for Society 5.0 
and Next-Generation Healthcare 

Zodwa Dlamini, Rodney Hull, Ravi Mehrotra, Richard Khanyile, 
and Thulo Molefi

Abstract We envisage living in a society where scientific and technological inno-
vations lead to reforms in human health by merging cyber and physical spaces. The 
concept of Society 5.0 was first proposed in Japan. Society 5.0 is a smart, 
knowledge-based society, which uses digital information-based technologies such 
as artificial intelligence (AI), cloud computing, and the Internet of Things (IoT) to 
gather and analyse large amounts of data. Elements of Society 5.0 are human-centric 
and promote the integration of the physical world and cyberspace in its economic 
development and innovation framework. The promotion of a smart, knowledge-
based, human-centric society is designed with the hopes of leading to a better life for 
all human nations, regardless of their ethnicity or wealth. Digital information 
technologies, together with the concept of Society 5.0, will assist in implementing 
the United Nations (UN) Sustainable Development Goals (SDGs), particularly Goal 
3, which looks at the use and integration of new technologies in improving 
healthcare, resulting in individuals living a longer, healthier and more productive
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life. The healthcare sector is a fundamental component of the economy, and as such, 
it requires that the individuals in the sector be in peak mental and physical health to 
facilitate maximal societal growth. It is common knowledge that health is wealth, 
and this is reflected by the rate of growth and development in societies and when 
their population is healthy. In its implementation, Society 5.0 will not only require 
new technologies but will also drive technological developments. Developments that 
will improve data analytical methods and geospatial surveillance for the prevention 
of chronic diseases. The implementation of Society 5.0 into healthcare systems will 
strengthen precision medicine approaches and invariably improve all spheres of 
human health. Despite the challenges such as human rights violations, security, 
privacy, safety and the impact on the energy crisis, these technologies will pave 
the way forward for improved healthcare systems and living.
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1 Conclusion 

Society 5.0 is an ambitious endeavour conceptualized in Japan. Its aim is to propel 
humanity from the current information-intensive reality to a more knowledge-based 
paradigm. This is conceived to be achieved through creating a human-centred 
society based on integrating cyberspace with the real physical world. Society 5.0 
can be simply defined as a future intelligent, sustainable society. The aim of 
healthcare systems in Society 5.0 is to improve the longevity and productivity of 
individuals as well as quality of life and ensure health equity and equality, while 
driving the upliftment and use of cutting-edge technologies. This will be accom-
plished by using digital information technologies to minimize the incidence and 
severity of disease and optimize the use of medical resources. The intricacies 
involved in the management of cancer provide the perfect scenario to apply the 
principles of Society 5.0. By using the strategies of healthcare in Society 5.0, the 
incidence of cancer could be lowered by increasing the ease and speed of screening 
and diagnosis. At the same time, these strategies can improve access to quality 
personalized oncology services globally, including in low-middle-income countries 
(LMICs). LMICs have fewer resources with which to combat a disease like cancer. 
The strategies of smart healthcare, if implemented in these areas, will drastically 
improve the screening and treatment of premalignant and invasive diseases, resulting 
in improved patient outcomes. Technologies of the Fourth Industrial Revolution 
(4IR) allow for the generation, gathering, storage and analysis of large amounts of 
information. Their integration and application in Society 5.0 will allow for better 
personalized medicine. 

Central amongst these 4IR technologies is Artificial Intelligence (AI). AI allows 
for the automated categorization, analysis, and interpretation of data to mimic human 
cognition and come to conclusions which can be acted upon. In healthcare, these



decisions include predictions of the best diagnostic approaches, prognostic predic-
tors and treatment strategies. Achieving these goals involves exploiting AI for the 
betterment of all human life at both individual and societal levels. The potential role 
that AI can play in healthcare in Society 5.0 is demonstrated by its use of intelligence 
in drug discovery. This will drastically reduce the cost and production times for 
newly conceptualized drugs. The use of AI can also help ensure the safety, ease of 
use, and efficacy of these new medications, as well as reduce the occurrence of 
adverse drug events. These improvements will ease clinician decision-making and 
enhance the quality of patients’ lives. 
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The development of a disease, its progression and its management can be thought 
of as facets of a single process, one which warrants an active, integrated response 
from all stakeholders. This can be effectively achieved by appropriately leveraging 
all available resources. This includes the engineering of health-related information, 
which is another example of these cutting-edge technologies and health informatics. 
The Internet of Things (IoT) allows for the connection of physical objects with 
sensors, processors, and software, therefore, enabling efficient gathering and 
exchange of data. We already have a large body of knowledge concerning the layout 
of medical IoT systems, including knowledge of the components involved in their 
functioning and communication networks. Currently, this knowledge has only had 
minimal, real-world practical implementation. This is especially true in under-
resourced communities because of cost issues. Technologies such as the IoT need 
to be expanded to remote populations in lower socioeconomic areas to facilitate 
remote diagnosis and patient monitoring. Pilot projects with carefully planned 
financing strategies have been carried out to test their use in remote diagnosis and 
patient management. Key to the success of these projects will be establishing the 
robustness of these technologies in these environments. A digital twin is a virtual 
representation of a real-life object. Digital twins can be used to virtually model 
individuals or populations. For instance, in healthcare, they can be used to model 
patient responses to various treatments or to screen high-risk patients, resulting in 
early diagnosis and treatment. An intelligent digital twin, combining data, knowl-
edge, and algorithms (AI), has the capacity to accurately simulate public health and 
medical situations. Simulations may be individual or population-specific and these 
can be used to model medical situations such as disease progression, drug interac-
tions, treatment efficacy and the spread of disease. Virtual modelling can make 
accurate predictions and inform clinical practices. 

Devices used to remotely monitor patients require the integration of embedded 
software that regulates these devices. This embedded software controls their com-
puter fogging functions, automated physical systems and AI algorithms. These 
devices and the level of integration within them are about to change the way 
medicine is practised, helping to realize healthcare within Society 5.0. These medical 
cyber-physical systems (CPS) permit remote patient monitoring through sensor 
technology, digitalization of data storing, mining, and sharing and allow the trans-
mission of alerts to care providers. The processing and storage of big data by these 
devices are facilitated through the integration of AI with cloud/fog computing. 
Digitally assisted patient management systems allow for rapid, less invasive and



effective patient care. The security of CPS requires the development of reliable 
autonomous security patches. These patches would detect security breaches or 
vulnerabilities and eradicate the threat before it can cause any harm. The unsolicited 
access and manipulation of electronic data is a major issue for many of these 
technologies. This is especially true for facilities that store patients’ medical records 
in electronic computer systems. Blockchain technology is a solution to this problem 
as this technology prevents data corruption or record manipulation without a com-
mon consensus. Blockchain technology functions as a digital ledger monitor, which 
sends alerts every time the data is accessed. This gives the owner control over who 
accesses the data, as well as who’s allowed to manipulate it. The owner controls this 
using a digital signature, making this technology secure and reliable. This technol-
ogy will significantly enhance the implementation of the other information-based 
technologies required for healthcare in Society 5.0. Besides security, Blockchain can 
also perform various healthcare functions, such as medicines tracing (drug discov-
ery, development and distribution process), smart contracts and healthcare insurance 
mediation. The challenges facing this technology, such as throughput, latency, 
security, usability, size and bandwidth, are not insurmountable and solutions to 
these problems are actively being sought. 
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The smart digital technologies required to make Society 5.0 and healthcare in this 
society possible are not without their various challenges and issues (Fig. 1). Despite 
its challenges, these technologies offer innumerable promises for truly personalized 
healthcare to be ignored. Another promise these technologies offer is the democra-
tizing of healthcare. Currently, the cost of 4IR technological advances puts them 
beyond the reach of many emerging nations and individuals. This cost factor is 
currently prohibitive, unscalable and therefore unsustainable, particularly in LMICs 
where they are the most needed. The governments of these countries need to make a 
collective and conscientious effort to invest more in these technologies, as they can 
effectively improve preventative medicine. The long-term effect of this will be a 
return on these investments, as the current financial burden of disease treatment 
outweighs the initial investment in disease prevention. 

Additionally, in many cases, these new technologies operate in ethical grey areas. 
This is because they can be misused, resulting in safety issues, poor clinical decision-
making, and violation of human rights and values. As such, governments, regulatory 
bodies and international cooperatives, like the UN, must effectively regulate these 
technologies to prevent harm. There are also legal and human rights issues sur-
rounding these technologies, ranging from the protection of privacy, informed 
consent to intellectual property laws. Most important is the question of who bears 
legal liability when the technologies cause harm to an individual. New laws and 
regulatory bodies need to be created to control and enforce laws concerning these 
issues. These ethical issues can be remedied, and harm minimized by cautiously 
implementing these technologies following extensive testing and auditing. 

Another challenge is the impact these technologies will have on the current 
energy crisis. One of the biggest barriers of these technologies is the lack of 
resources required to implement them. They require storage capacity, cloud com-
puting capacity, computational power, raw materials for manufacturing the required



hardware, expertise for the design, and manufacturing of both hardware and soft-
ware, and this will consume large amounts of energy. The implementation of Society 
5.0 will require a reliable supply of energy. If this challenge can be overcome, the 
benefits that these technologies will provide outweigh the challenges. For example, 
AI, IoT and digital twinning have the potential to manage, monitor and adjust the 
consumption of energy resources (Sifat et al. 2022; Nandury and Begum 2015). 
Smart grids (SG) would improve the flow of data and electricity within the electricity
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Fig. 1 Summarizes the aims, expected outcomes, technologies and challenges facing healthcare in 
Society 5.0. The aims of healthcare in Society 5.0 are shown in the orange quadrant. They include a 
longer life with more extended periods of productivity due to a lower incidence of disease or 
decreased severity of the disease. The central white diamond shows the technologies used to 
implement healthcare in Society 5.0. The issues with and barriers to the implementation of these 
technologies are shown in the pink lower quadrant. These include cost, ethics and legal rights. 
Society 5.0, especially healthcare in Society 5.0, will help the world realize the UN’s sustainable 
development goals. For healthcare, the most obvious will be SDG 3, Good health and well-being. 
However, the implementation of these technologies will result in progress being made in many of 
the other SDGs. Finally, the blue quadrant lists the actual applications of these technologies in 
healthcare that would allow us to achieve the aims of healthcare in Society 5.0



system networks (ESN) and allow for the replacement of conventional fossil fuel– 
rich grids with distributed energy resources (DER) (Kumar et al. 2020).
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This book has attempted to introduce the concept of a novel, human-centred 
healthcare system, delivered through implementing an innovative, knowledge-based 
approach known as Society 5.0. It has raised the different digital technologies which 
will make this possible and described how these technologies would help fulfil the 
fundamental promise of healthcare in Society 5.0, which is a longer and healthier 
life. It has also discussed how these technologies will contribute to achieving the 
sustainable development goals set forward by the UN. Society 5.0 will lead to a 
healthcare system that is predictive, preventive, personalized and participatory rather 
than reactive. In this way, it can provide improved healthcare from the cradle to the 
grave by increasing productivity, quality of life and longevity. 
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