
Structure and Functions of RNA 
G-quadruplexes 

Prakash Kharel and Pavel Ivanov 

Contents 

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 
2 DNA G4s (dG4s) Versus RNA G4s (rG4s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 
3 Functions of rG4s in the Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 

3.1 Transcriptional Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 
3.2 mRNA Maturation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 
3.3 Non-coding RNA Maturation in the Nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 

4 RNA Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
5 Functions of rG4s in the Cytoplasm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 

5.1 Translation Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 
5.2 mRNA Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 
5.3 ncRNA Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 

6 rG4 Binding Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 
7 RG4s and Membrane-Less Biomolecular Condensates . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 
8 rG4s as Therapeutic Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 
9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 

Abstract G-quadruplexes (G4s) are four-stranded nucleic acid secondary structures 
that are formed by the stacking of square planar guanine arrangements and stabilized 
by favorable cations. Potential G4-forming sequences are distributed in the regula-
tory regions of the genome and transcriptome. G4s are proposed to modulate various 
physiological and pathophysiological cellular processes. As such RNA G4s (rG4s) 
have been implicated in several key processes of gene regulation such as RNA matu-
ration, mRNA translation, and RNA transport. rG4s often impact cellular biology 
by associating different RNA binding proteins, both of which could act as crucial 
therapeutic targets in the fight for developing novel therapeutics for the diseases 
associated with rG4-containing transcripts.
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1 Introduction 

Guanine (G)-rich nucleic acid sequences can fold into four-stranded secondary struc-
tures called G-quadruplexes (G4s) via the stacking of two or more square planar G 
arrangements known as G-quartets (Sen and Gilbert 1988). It was first noted in 
1910 that high concentrations of impure guanylic acid formed a gel in an aqueous 
solution (Bang 1910). 50 years later, Khorana and co-workers found similar highly 
ordered aggregation with the first synthesized deoxyguanosine oligonucleotides. 
These earlier observations were structurally rationalized using X-ray diffraction 
studies that could be explained by a hydrogen-bonding arrangements of four G bases, 
thus proposing the G-quartet assembly (Gellert et al. 1962). More than a century after 
the initial discovery of Bang, the G4 field has moved quite a remarkable distance. 

G-quartets (or G-tetrads), structural units of G4s, are formed when guanines are 
organized into square planar arrangements where each G base is connected to two 
other bases. The G-quartet involves two edges of each of the four G bases with 
Watson–Crick and Hoogsteen base pairings (Fig. 1a) (Gellert et al. 1962). Hydrogen 
bonds (H-bond) between each G pair involve four donor/acceptor atoms, the N1, 
N7, N2, and O6 atoms, such that a G-quartet has eight total hydrogen bonds (four 
N2−H…N7 and four N1−H…O6 bonds). Importantly, four carbonyl oxygen (O6) 
atoms form a negatively charged core in the center of the G-quartet (Fig. 1b). Under 
the favorable condition, two or more G-quartets stack onto one another to form a 
right-handed helical G4 structure (Fig. 1c). The central anionic core of a G-quartet 
or the central space between two quartets provides a perfect space for the binding of 
a cation, which in turn provides key stability to the quartets and G4s (Bhattacharyya 
et al. 2016). Because of the defined geometry and size of the central channel, only 
cations with an adequate charge, size, and dehydration energy can coordinate a G4. Of 
particular biological importance, Na+,K+, and NH4 

+ cations are most physiologically 
relevant and G4-stabilizing (Fig. 1c). Cations like K+ and NH4 

+ are too large to fit 
into the plane of G-quartet, but readily accommodate into the space between two 
G-quartets and coordinate with eight O atoms. On the other hand, smaller Na+ is 
embedded into the middle of a single G-quartet and coordinates only four O atoms, 
thus contributing less to G4 stability. In contrast, cations with very small ionic radii 
such as Li+ do not favor G4 formation.

Generally speaking, potential intramolecular G4-assembling sequences can be 
formed by repetition of a G-tract sequence motif within a single run of sequence. In 
such repetitive motif GmXnGmXoGmXpGm, m is the number of G bases in every short 
G-track, which are connected by intervening Xn, Xo, Xp sequences with any combi-
nation of bases including Gs (Puig Lombardi and Londoño-Vallejo 2020). Despite 
having a lot of similarities in their basic building units, in fact, G4s are a diverse family 
of nucleic acid structures that can fold into various topologies (Lightfoot et al. 2019;
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Fig. 1 Watson–Crick and Hoogsteen base pairing interaction sites in a guanine base. b. A square 
planar G-quartet arrangement stabilized by a centrally located cation. H-bonding between each pair 
of guanines involves four donor/acceptor atoms (the N1, N7, N2, and O6 atoms) resulting in 8 H-
bonds per quartet. Four carbonyl oxygen (O6) atoms form a negatively charged core in the center of 
the G-quartet that favors the binding of monovalent cations ( ). c. A G-rich sequence with at least 
4 G-stretches with at least 2 Gs each can fold into G4 under favorable conditions (top); and Prefer-
ential binding of mostly used monovalent cations to G4s (bottom). d. syn and anti-conformation of 
glycosidic bond in Gs. In RNA, this remains almost exclusively in anti-conformation resulting in 
all parallel rG4 topology. e. G4s with different topologies and molecularities

Winnerdy and Phan 2020). In bona fide G4s, the G4 topologies are dictated by the 
pattern of strand polarities and the orientation of interconnecting loops. The G4s can 
have parallel (all backbones running in the same direction), anti-parallel (adjacent 
backbones run in the opposite direction), or mixed topologies (Fig. 1e). While the 
different topologies bring structural diversity, their influence on G4 formation and 
contributions to cellular functions is largely unknown. Another aspect of G4 struc-
tural diversity arises from the difference in the number of G-quartet stacks and the 
number of molecules involved. Based on the number of G-quartets, G4s can be 2-
tier, 3-tier, 4-tier, and so on. Depending upon the number of nucleic acid molecules 
involved, besides unimolecular (intramolecular), G4s can also be bimolecular, or
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Fig. 2 Role of RNA G-Quadruplexes (rG4s) in the nucleus and the cytoplasm. rG4s have impli-
cations in almost every step of RNA life that ranges from the regulation of transcription, splicing, 
and 3' end maturation in the nucleus to RNA transport, and the regulation of mRNA translation, 
ncRNA maturation, and RNA interference in the cytoplasm. Additionally, rG4s contribute to phase 
separation and/or aggregate formation in both the nucleus and cytoplasm

tetramolecular (Fig. 1e). Moreover, the nature of the flanking sequence can have a 
direct impact on the function of an rG4 (Zheng et al. 2022). 

2 DNA G4s (dG4s) Versus RNA G4s (rG4s) 

Both dG4s and rG4s look very similar at first glance. However, an assumption that 
rG4s are DNA counterparts is oversimplified. One of the key differences between 
dG4 and rG4 comes from the presence of a 2'-hydroxyl group (2'−OH) in the ribose 
sugar (Zaccaria and Fonseca Guerra 2018; Zhang et al. 2010). Not only, 2'−OH 
allows more intramolecular interactions within RNA G4s but also, they are favored 
to bring water molecules, making rG4s often more stable compared to their DNA 
counterparts. Additionally, the steric constraints posed by 2'-OH strongly favor the 
anti-conformation (via restrains on the glycosidic torsion angle), and imposition of 
additional constraints on sugar puckering (the ribose having a preference for C3'-
endo puckering) (Fig. 1d). Consequently, the rG4 topology is almost always parallel 
where all four strands are oriented in the same direction (Fig. 1e). In contrast, dG4s 
are polymorphic and can adapt parallel, antiparallel or mixed conformations (Fig. 1e). 
rG4s also differ from dG4s in their cation interaction specificity. In a study based on 
a pair of G4 oligos, it was shown that while K+ dramatically stabilizes both dG4s and 
rG4s, Na+ only had a strong effect on dG4s. For divalent cations, only Sr2+ increases 
the stability of the rG4s. On the other hand, biologically relevant divalent cation Mg2+
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actually can destabilize rG4s (Balaratnam and Basu 2015). These unique features 
make rG4s more compact, less hydrated, and often more thermodynamically stable 
than dG4s. Furthermore, their presence in the cellular context makes the folding 
possibility of rG4s very different than that of dG4s; while the cellular DNA is almost 
always in a double-stranded form, cellular RNA is mostly in a single-stranded form. 

3 Functions of rG4s in the Nucleus 

3.1 Transcriptional Regulation 

Putative G4s are commonly found in the genomic DNA, thus making it possible that 
corresponding rG4s are also formed upon transcription. In turn, the nascent RNA 
can base pair with the complimentary template DNA strand to form an RNA:DNA 
hybrid, which together with the displaced DNA strand, forms R-loop (Belotserkovskii 
et al. 2018). Bioinformatic analysis identified that such hybrid putative G4s (pG4s) 
are enriched downstream of the transcription start sites and are found in >97% 
of human genes, with an average of 73 hybrid pG4s per gene (Xiao et al. 2013). 
Indeed, the formation of R-loop G4s was confirmed using T7 RNA polymerase 
in vitro transcription. Such assay suggested that R-loop G4s inhibit transcription 
in vitro and represent cis-elements that are built into a gene and can be activated 
co-transcriptionally. The nascent RNA and non-template DNA strand of mitochon-
drial CSBIIcan co-transcriptionally form a stable DNA–RNA hybrid G4, which was 
suggested to promote transcription termination (Zheng et al. 2014). Furthermore, 
hybrid G4s formed by nascent transcript with DNA are shown to be dominating in 
number and thermodynamically more stable, which can help populate G4s in expense 
of duplex DNA (Shrestha et al. 2014). Furthermore, post-transcriptionally formed 
switch from rG4 to R-loop have been suggested to promote the class switch recom-
bination (CSR) in the mouse immunoglobulin heavy chain (IHC) locus (Almeida 
et al. 2018). In mouse IHC, RNA helicase DDX1 directly binds to rG4s present in 
the intronic switch region, dissolving the structure thereby leading to a structural 
switch from rG4 to an R-loop form. R-loop formation results in a non-template 
single-strand DNA that could be a substrate for activation-induced cytidine deami-
nase (AID), the enzyme that initiates CSR by converting cytidines to uracils. Addi-
tionally, DNA:RNA hybrid G4s could contribute to transcription termination as 
potential G4s are proposed to act as terminator sequences that can stall RNA Poly-
merase II transcription. For example, R-loops formed behind elongating polymerase 
II are prevalent over G-rich sites located downstream of poly(A) signals, and are 
capable of G4 formation (Skourti-Stathaki et al. 2011). The DNA damage response 
protein Senataxin (SETX) is a DNA/RNA helicase which plays a key role in the 
resolving of R-loops thereby allowing 5' → 3' exonuclease Xrn2 access to the 3'
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cleavage poly(A) sites causing nascent RNA release, 3' cleavage product degrada-
tion and RNA polymerase II termination (Skourti-Stathaki et al. 2011). The deple-
tion of SETX causes such pause-mediated transcription termination. RNA:DNA 
hybrid G4s can also contribute to transcription termination via coupling with 3'-end 
polyadenylation in association with heterogeneous nuclear ribonucleoprotein factors 
(HNRNP H/F) (Decorsière et al. 2011). For example, in tumor protein 53 (TP53) 
mRNA, rG4s interact with the splicing/polyadenylation factor HNRNP H/F to regu-
late polyadenylation. Under normal circumstances, mRNAs lacking rG4s at poly(A) 
signals are efficiently processed, whereas efficient 3'-end processing of TP53 mRNA 
is inhibited presumably because of the rG4, resulting in the reduced gene expres-
sion. However, under genotoxic stress, there is global repression of mRNA 3'-end 
processing resulting in decreased mRNA maturation. In contrast, 3'-end processing 
of TP53 mRNA is up-regulated to increase the expression of TP53. This anoma-
lous mechanism is possible due to the recognition of rG4 in the TP53 pre-mRNA 
by HNRNP H/F causing efficient recruitment 3’-end processing factors, which ulti-
mately leads to an increased p53 expression. Another study showed that a G4 helicase 
DHX36 binds to TP53 rG4 under genotoxic condition and resolves the rG4 once the 
stress is removed thereby making TP53 mRNA available for immediate expression 
(Newman et al. 2017). 

3.2 mRNA Maturation 

Furthermore, rG4s also contribute to pre-mRNA splicing. Genome-wide analysis of 
alternatively spliced transcripts found over 3 million rG4 capable sites mapped to 
approximately 30,000 mammalian genes (Kikin et al. 2008). Alternative splicing 
is regulated by the synergic action of many RBPs with RNA elements that impact 
spliceosome assembly at neighboring splice sites (Wang et al. 2015), therefore rG4s 
assembled in the vicinity of splice sites may directly impact the binding of regulatory 
RBPs. For example, two rG4s are found within the FMRP-binding site (FBS) on its 
pre-mRNA (FMR1), which give rise to different FMRP isoforms (Didiot et al. 2008). 
As observed in a minigene system, the FMR1 FBS can be a potent exonic splicing 
enhancer and acts as a control element that regulates alternative splicing in response 
to intracellular levels of FMRP isoforms. The binding of the longer FMRP isoform to 
FBS results in decreased synthesis of the longer FMRP isoforms (carrying a complete 
exon 15) concomitant with an increase of shorter isoforms. rG4 abrogating mutations 
in the FBS resulted in decreased FMRP binding, ablate exonic splicing enhancer 
activity and change the splicing pattern of FMR1 pre-mRNA (Didiot et al. 2008). 
On the other hand, rG4s in intron 6 of the human telomerase reverse transcriptase 
(hTERT), the rate-limiting component of telomerase, can serve as an intronic splicing 
silencer as observed by G4-specific ligand-mediated impairment of hTERT splicing 
(Gomez et al. 2004). Additionally, an rG4 located in intron 3 of TP53 pre-mRNA 
acts as an intronic splicing enhancer as it stimulates the splicing of intron 2 leading 
to a differential expression of transcripts encoding distinct p53 isoforms (Marcel
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et al. 2011). Furthermore, using a reporter system that consists of rG4 WT 3’UTR of 
FXR1 mRNA, it has been shown that the presence of rG4 results in a more prominent 
shorter mRNA isoform while a G4 mutated version produced a prominent longer 
mRNA isoform, suggesting the role of 3'UTR mRNA rG4s in increasing alternative 
polyadenylation efficiency (Beaudoin and Perreault 2013). 

3.3 Non-coding RNA Maturation in the Nucleus 

In addition to mRNA maturation, rG4 structures can modulate the nuclear biology 
of noncoding RNAs, including both long non-coding RNA (lncRNAs) and short 
non-coding RNAs. There are relatively fewer studies in the role of rG4s in lncRNA. 
In the nucleus, nascent NEAT1 lncRNA binds to the non-POU domain-containing 
octamer-binding protein (NONO) through rG4 motifs (Simko et al. 2020). NONO 
plays an essential role in the initial paraspeckle formation stabilizing nascent NEAT1 
transcript and providing the foundation necessary for the recruitment of the addi-
tional protein components needed for the subsequent steps of NEAT1 assembly and 
maturation (Clemson et al. 2009). 

As such rG4s are also implicated in pre-miRNA maturation. Using computational 
analyses, two different groups proposed that 13–16% of pre-miRNAs harbor at least 
one putative rG4 motif in their sequence (Mirihana Arachchilage et al. 2015; Pandey 
et al. 2015). Based on in vitro data, rG4s in some pre-miRNAs exist in equilibrium 
with the canonical stem-loop structure such that their folding unwinds the stem-
loop, thus hindering Dicer-mediated cleavage of the pre-miRNA and consequently 
affecting the pre-miRNA maturation process. First, it has been demonstrated that 
the maturation of the clinically relevant human pre-miR92b can be regulated by 
rG4 formation (Mirihana Arachchilage et al. 2015). Since the Dicer enzyme is stem-
loop structure specific, disruption of the stem-loop because of the ion-dependent rG4 
formation was found to inhibit Dicer-mediated maturation of pre-miR-92b, leading to 
reduction of mature miR-92b and de-repression of its targets. Similarly, it was found 
that rG4s in pre-miRNAs govern the biogenesis of mature miRNAs through a ‘struc-
tural interference’ mechanism (Pandey et al., 2015). A two-tier rG4 within pre-let7e 
interferes with Dicer-mediated processing, thus leading to a reduction of mature miR-
let7e levels (Pandey et al. 2015). Furthermore, it has been proved that the formation 
of an rG4 structure in pre-miR149 inhibits Dicer processing in vitro and this can be 
stabilized by the C8 acridine orange derivative and is used as a supramolecular carrier 
for the cancer-selective delivery of the ligand, considering the ability of such rG4 to 
bind to nucleolin (NCL) protein overexpressed on the surface of prostate cancer cells 
(Kwok et al. 2016). Interestingly, several pre-miRNA rG4s, such as pre-miR-1229, 
and miR-1229-3p, have been implicated in Alzheimer’s disease, and pre-miR-26a-
1 rG4 has been linked to obesity regulation (Imperatore et al. 2020). Similarly, 
rG4s are implicated in Moloney leukemia virus 1 like (MOV10L1) mediated piRNA 
biogenesis (Zhang et al. 2019a).
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4 RNA Transport 

Subcellular RNA transport is a crucial post-transcriptional process that is key to 
spatiotemporal control of gene expression. RNA export from the nucleus to the cyto-
plasm is a ubiquitous phenomenon that is essential in the transport of a wider class 
of RNAs including mRNA, rRNA, tRNA, lncRNA, and miRNA. rG4s can play a 
crucial role in regulating the transport of G4-containing transcripts from the nucleus 
to the cytoplasm. In addition to nucleo-cytoplasmic export, the cytoplasmic mRNA 
transport mechanism is especially important in asymmetric cells such as neurons 
where transcribed mRNAs travel large distances to their sites of translation (Loya 
et al. 2010). It has been shown that 3'UTRs rG4s of PDS-95 (post-synaptic density 
protein 95; contains three G4s) and CaMKIIa (Ca2 + /calmodulin-dependent protein 
kinase II; contains one G4) mRNAs can regulate their dendritic localization (Subra-
manian et al. 2011). Furthermore, mRNA 3’UTR rG4s were shown to contribute to 
dendritic mRNA localization in an FMRP dependent manner (Goering et al. 2020). 

5 Functions of rG4s in the Cytoplasm 

5.1 Translation Regulation 

Translation of mRNA to protein codes is one of the most important steps in RNA 
metabolism, and its regulation is tightly controlled. Secondary structures such as 
internal ribosome entry site (IRES)-like elements and rG4s in 5'UTR (untranslated 
regions) can significantly impact the translation efficiency (Georgakopoulos-Soares 
et al. 2022). Putative rG4s are overrepresented in the 5'UTRs of mRNAs implying 
important regulatory functions. When present, rG4s in mRNA 5'UTRs mostly inhibit 
translation (Kumari et al. 2007). However, 5'-UTR rG4s in the context of IRES-like 
elements, are known to augment the translation (Morris et al. 2010). mRNA 3’UTR 
rG4s also contribute to translation both negatively and positively (Arora and Suess 
2011; Beaudoin and Perreault 2013; Thandapani et al. 2015). 

Several cell-based reporter assays showed that rG4s in the mRNA 5’UTRs cause 
reduction in the efficiency of their translation (Kumari et al. 2007; Morris and Basu 
2009). It has been shown that the rG4 density and position relative to the 5' caps along 
with their stability contribute to their respective influence in translation (Kumari 
et al. 2008). Depletion or pharmacological inhibition of eukaryotic initiation factor 
4A (eIF4A), a helicase that unwinds RNA secondary structures and facilitates the 
recruitment of the 43S preinitiation complex, generally reduces the translation effi-
ciency of mRNAs. However, rG4-bearing transcripts are more sensitive to eIF4A 
depletion indicating that rG4s directly influence recruitment or scanning of preiniti-
ation complexes/ribosome (Bordeleau et al. 2006; Wolfe et al. 2014). Unwinded rG4s 
in 5'UTRs can promote the formation of 80S ribosomes on alternative, upstream start 
codons, thus inhibiting the translation of the main open reading frame. rG4s in FGF2
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(Bonnal et al. 2003), α-Syn (Koukouraki and Doxakis 2016), and VEGF (Morris et al. 
2010) mRNAs are proposed to stimulate translation as a part of an internal ribosome 
entry site (IRES) or IRES-like elements, potentially by helping recruit the 40S ribo-
somal subunit (Bhattacharyya et al. 2015). Of note, rG4s in the mRNA open reading 
frame (ORF) have a much lower abundance than in the UTRs, and when present 
may act as translational repressors/ roadblocks for the elongating ribosomes (Miri-
hana Arachchilage et al. 2019). For example, rG4 within the ORF of APP mRNA 
inhibits its translation via association with FMRP, a known translational silencer 
(Westmark and Malter 2007). However, some rG4s, such as in MLL1/4 mRNA ORF, 
can potentially enhance their translation. MLL1/4 rG4 is recognized by the RGG-
containing factor AVEN in a complex with rG4 helicase DHX36 (Thandapani et al. 
2015). The binding of DHX36 stimulates MLL1/4 mRNA translation presumably 
via its rG4-resolving activity, thus removing structure mediated blockade for elon-
gating ribosomes. rG4s in the 3' UTR of mRNA are shown to inhibit translation 
(e.g., PIM1, APP) (Arora and Suess 2011; Crenshaw et al. 2015)., however the 
molecular mechanism of such effects is unclear. 

5.2 mRNA Stability 

The stability of a given mRNA transcript is determined by the presence of sequence 
motifs (Koh et al. 2019; Siegel et al. 2021) and structures (Fischer et al. 2020), 
which can be bound by trans-acting RNA-binding proteins to inhibit or enhance 
mRNA decay. As such rG4s present in mRNA 3’UTRs can contribute to mRNA 
stability. Although the ubiquitous presence of rG4s in mRNA is clear and their role 
in the translation regulation has been a matter of several studies, their role in mRNA 
stability has only being recently being explored. We (Kharel et al. 2023) and others 
(Yang et al. 2022) have demonstrated that mRNA G4s are stress responsive elements 
such that rG4 folding is enhanced under different cellular stresses and 3’UTR mRNA 
rG4 folding contributes to mRNA stability. Additionally, 3’UTR rG4 folding has been 
shown to interfere with miRNA-mediated gene regulation (Rouleau et al. 2017). 

5.3 ncRNA Biology 

When present within transcripts, rG4s can directly influence RNA biogenesis and 
their downstream function in the cytoplasm as well. It has been independently 
reported by two laboratories that an rG4 present in pre-miRNAs can modulate their 
DICER-mediated maturation (Mirihana Arachchilage et al. 2015; Pandey et al. 2015). 
The formation of stable rG4s was reported in the ribosomal RNA as well (Mestre-Fos 
et al. 2019), although their functional roles in ribosome functions are still unclear. It 
has been reported that the formation of an rG4 in piRNA-48164 hinders PIWI protein
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binding thereby inhibiting the target reporter gene silencing in the cells (Balaratnam 
et al. 2019). 

Furthermore, in response to various stresses cytosolic transfer RNAs are cleaved 
by ribonucleases in the anticodon loops (Akiyama et al. 2022; Yamasaki et al. 2009). 
Such stress-induced cleavage of tRNAs in the cytoplasm yields a novel class of 
small RNAs called tRNA-derived stress-induced tRNA fragments (tiRNAs), which 
represent tRNA 5'- and 3'-halves (Yamasaki et al. 2009). We have shown that 
5'tiRNAs derived from tRNAAla and tRNACys contain 5'G-rich motifs, which can 
adopt tetramolecular G4 structures that are functionally active and inhibit translation 
by directly interacting with eIF4G1 under stress (Ivanov et al. 2014; Lyons et al. 
2017, 2020). As a consequence of such inhibition, cells undergo translational repro-
gramming, which aims on stress adaptation and cell survival. Partially, adaptation to 
stress can be explained by the abilities of G4-assembling tiRNAs to promote forma-
tion of stress granules (Emara et al. 2010), RNA granules with pro-survival roles in 
RNA metabolism (Ivanov et al. 2019). 

6 rG4 Binding Proteins 

While the dynamics of rG4 vs non-rG4 equilibrium is largely controlled by their 
ionic environment in vitro, within the cells, proteins potentially could solely (indi-
vidually or as a part of protein–protein or RNP complexes) dictate or contribute 
to the cation-assisted G4 folding-unfolding dynamics (reviewed in (Kharel et al. 
2020b)). A G4 binding protein can recognize and bind to a G4 in a multistep process 
involving main binding domains recognizing the G4 structure with the assistance of 
interactions from neighboring disordered regions (reviewed in (McRae et al. 2017)). 
In some cases, previously unstructured (intrinsically disordered) regions of rG4BPs 
become ordered upon canonical RNA binding to stabilize G4-interacting confor-
mations. Several pull-down and cross-linking coupled with immunoprecipitation 
experiments show that many proteins can specifically bind to G4s in the cells. The 
analysis of reported rG4 interacting proteins reveals the presence of certain specific 
domains and motifs, or unstructured regions in the established or predicted binding 
regions of the rG4BPs (Kharel et al. 2020b). By virtue of their chemical nature and 
structural features, RRM (RNA-recognition motif) and RGG (Arginine-Glycine-
Glycine) motifs within the RNA- binding proteins are mostly reported to be involved 
in the interaction with rG4s and hence are the most studied. In addition, some RBPs 
like Heterogeneous nuclear ribonucleoprotein H (HNRNPH1) and CCHC-type zinc 
finger nucleic acid binding protein (CNBP) bind to the G-rich motifs of RNA and 
actually prevent rG4 formation (Benhalevy et al. 2017a; Russo et al. 2010). Both 
CNBP and HNRNPH1 can also recognize, bind and destabilize the folded rG4s 
(Benhalevy et al. 2017a; Vo et al. 2022). On the other hand, helicase RBPs like 
DEAH-Box Helicase 36 (DHX36) bind to rG4s and actively resolve the structure 
(Booy et al. 2012). There are numerous other rG4 binding proteins that are recruited
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by rG4s to perform other cellular functions, such as splicing and translation regu-
lation. Some rG4s might act as rG4BP sequestering elements thus preventing these 
factors from their other cellular functions (Conlon et al. 2016). Additionally, rG4-
rG4BP interaction also contributes to RNA transport (discussed before) and RNA– 
protein condensate formation (discussed later). Some of the major rG4BPs and their 
known/ proposed functions are summarized in the Table 1 (also reviewed at (Fay 
et al. 2017b)). 

Table 1 Representative list of rG4BPs and their functions 

rG4BPs Function 

AFF3, 
AFF4 

Modulate splicing by recognition of the exonic splicing enhancer Melko et al. 
(2011) 

CNBP Promotes the translation of G-rich mRNAs by preventing rG4 formation 
Benhalevy et al. (2017) 

DHX36 Acts as dG4 and rG4 helicase Chen et al. (2018a); Tippana et al. (2019) 

eIF4A Alters translation efficiency of mRNAs with rG4 and other structural elements in 
the 5' UTR (Schmidt et al.  2022; Wolfe et al. 2014) 

eIF4G1 Under cellular stress, 5'tiRNAAla rG4 binds to HEAT1 domain of eIF4G1 thereby 
inhibiting translation Lyons et al. (2020) 

FMR2 Modulates splicing by recognition of the exonic splicing enhancer Bensaid et al. 
(2009) 

FMRP Binds to rG4s and modulates the activity of microRNA (miRNA)-mediated 
silencing in the 3' UTR of a subset of mRNAs through its interaction with RNA 
helicase Moloney leukemia virus 10 (MOV10) Kenny et al. (2019). Promotes 
mRNA localization in the neuronal cells Goering et al. (2020) 

FUS/TLS Binds rG4s and results in liquid–liquid phase separation and cellular condensate 
formation. Notably, ALS-linked mutations result in the dysregulation of 
liquid–liquid phase separation Ishiguro et al. (2021) 

GRSF1 Melts mitochondrial rG4s and enhances degradosome-mediated degradation of G4 
RNAs Pietras et al. (2018) 

hnRNP A1 Regulates MST1R mRNA splicing and translation Cammas et al. (2016) 

hnRNP A2 Promotes the translation of FMR1 by preventing G4 from forming; unfolds LTR 
promoter G4s Khateb et al. (2007) 

hnRNP A3 Binds to G4C2 repeats and is a constituent of inclusions in the hippocampus of 
patients with C9orf72 mutations Mori et al. (2013) 

hnRNP H1 Destabilizes rG4s and modulates splicing Vo et al., (2022). Sequestration of 
hnRNP H1 to G4C2 foci causes alterations in splicing Conlon et al. (2016) 

Lin28 Remodels rG4s in its target mRNA and miRNA and affects mRNA stability and 
miRNA metabolism O’Day et al. (2015) 

Nucleolin Preferentially binds long-looped rG4s Lago et al. (2017). Binds to HCV viral core 
RNA G4 and suppresses its replication 

TRF2 Binds TERRA rG4 and contributes to telomeric integrityMei et al. (2021) 

YB1 Binds 5'tiRNAAla rG4s and contributes to stress granule formation and translation 
inhibition Lyons et al. (2016)
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7 RG4s and Membrane-Less Biomolecular Condensates 

Liquid–liquid phase separation (LLPS) is a biophysical phenomenon that contributes 
to the formation of membrane-less RNA–protein assemblies (or biocondensates) 
in the cells, such as cytoplasmic nuclear paraspeckles, cytosolic P bodies, and 
stress granules (Ivanov et al. 2019). Interestingly, some transcripts containing G-
rich RNA repeat sequences can seed RNA only foci in vitro or RNA-containing 
protein complexes in lysates and live cells (Fay et al. 2017a; Ivanov et al. 2014; 
Yamasaki et al. 2009). rG4s have been heavily linked in the formation of such 
ribonucleoprotein (RNP) granules or RNA granules which are involved in various 
cellular processes and linked to several diseases including neurodegeneration and 
cancers (Wolozin and Ivanov 2019). Biophysical and structural gel-like features of 
poly(G) RNA assembly at higher concentrations could be the key contributing factor 
to LLPS and follows condensate formation. Furthermore, rG4s and their sequestered 
protein partners could assemble or aggregate to form RNP condensates. Several 
rG4 features qualify them as candidate contributors to LLPS (Asamitsu and Shioda 
2021). First, at high concentrations, poly-guanosine can form gel-like structures in 
aqueous solutions. These largely static gel-like condensates might stimulate LLPS 
by increasing the local concentration of liquid phases. Second, RG4s formed in cis 
or in trans may promote the recruitment of multivalent protein factors leading to 
promotion of protein condensates that further contribute into LLPS-induced forma-
tion of RNA granules. Additionally, the arginine-/glycine-rich domains (RGG) of 
several rG4 binding proteins are structurally intrinsically disordered which brings 
conformational flexibility and degenerates specificity in RNA binding. Degeneracy 
in RNA binding could result in RBP oligomerization or multivalent interactions with 
other proteins or multiple RNAs/mRNPs at the same time, which is important to 
build RNP assemblies further promoting LLPS. Importantly, RGG domains mediate 
protein–protein interactions and can induce liquid–liquid phase separation even in 
the absence of RNA both in vitro and in live cells (Schuster et al. 2018). 

We and others showed the role of rG4s in the formation of RNA granules 
in the transcripts generated by the GGGGCC hexanucleotide repeats (rG4C2) in 
the C9orf72 gene which is the most common genetic mutation associated with 
amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD) (Fay 
et al. 2017a). rG4C2 RG4s can also influence ALS/FTD-linked LLPS by modulating 
repeat-associated non-AUG (RAN) translation occurring at C9orf72 repeats, which 
generates toxic arginine-rich dipeptides that in turn can also promote LLPS. Simi-
larly, short root mRNA rG4 was shown to induce a phase separation-like phenomenon 
in the plant cells (Zhang et al. 2019b). It has also been suggested that 3-tier rG4s 
are specially more efficient at inducing phase separation than their 2-tier counter-
parts (Zhang et al. 2019b). Contributions of rG4s into formation of biomolecular 
condensates is an area of active research currently and a matter of studies by several 
laboratories.
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8 rG4s as Therapeutic Targets 

Increasing evidence supporting the idea that rG4s can contribute or even regulate 
a variety of physiological and pathological processes has encouraged the design 
and development of rG4-interacting ligands that may act as therapeutic agents. 
Small molecule ligands have been the most investigated therapeutics and have been 
primarily used to stabilize the rG4s, enhancing their inherent repressive role in 
mRNA translation by obstructing ribosomal activity or interfering with translation 
machinery. G4 ligands often share common structural features such as an aromatic 
core, which permits stacking interactions with planar G-quartet, and one or more 
positive moieties that may interact with nucleic acids backbone phosphate groups 
in grooves and loops. Currently, several labs are working to develop ligands that are 
rG4-specific. There are numerous generic G4 targeting small molecule ligands that 
nonspecifically target and mostly stabilize both dG4s and rG4s (e.g., listed at http:/ 
/www.g4ldb.com database). Nevertheless, a few of them show a low or high speci-
ficity toward rG4 (Select rG4 ligands in Fig. 3a) (reviewed in Kharel et al. 2020a; 
Santos et al. 2021).

It has been shown that the interaction of bisquinolinium ligands such as PhenDC3 
with TRF2 mRNA rG4 results in the suppression of its expression (Halder et al. 
2011). The driving mechanism for the binding of bisquinolium ligands towards rG4s 
was proposed to be π–π stacking with square-planar G-quartets. Similarly, Migli-
etta et al. identified anthrafurandione derivatives as potential therapeutics that target 
5’UTR KRAS mRNA rG4s to repress the mRNA translation in pancreatic cancer 
cells (Miglietta et al. 2017). The binding mechanism seems to involve the π–π 
stacking interactions of anthrafurandione core with G-quartets, whereas the cationic 
side chains bind to grooves and loops via electrostatic interactions. Despite of not 
being reported as a therapeutic, parallel G4 interacting porphyrin molecule, N-methyl 
mesoporphyrin-IX, brings selectivity towards rG4s and parallel dG4s (Sabharwal 
et al. 2014). This selectivity allows the use of NMM-IX as the rG4 trapping ligand 
under appropriate environmental conditions (Kharel et al. 2023). A polyaromatic 
molecule, RGB-1 has been shown to interact with TERRA and NRAS mRNA G4s 
where RGB-1 is proposed to selectively recognize rG4s due to the presence of H-
bonding acceptors that interact with the 2'-OH group of the rG4s (Katsuda et al. 
2016). However, a deeper structural analysis of the interacting RGB-1:rG4 complex 
is still lacking. Similarly, carboxy-pyridostatin has been used to selectively stabilize 
cytosolic G4s in the cells. c-PDS has been shown to establish π–π stacking inter-
actions with TERRA G-quartets, and several hydrogen bonds with guanine residues 
(Rocca et al. 2017). Importantly, cPDS showed a stabilizing effect on TERRA rG4 
(ΔTm = 20.7 °C), which was not affected by the addition of up to 100 equivalents 
of a dG4 competitor. 

A small molecule library was used to screen ligands that could discerningly bind 
to the (G4C2)4 rG4 formed by the mutagenic G4C2 repeats found in the first intron of 
the C9orf72, the most common genetic cause of C9-ALS/FTD (Simone et al. 2018). 
This repeat-associated intron sequence can be translated through the non-canonical

http://www.g4ldb.com
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Fig. 3 rG4s targeting. a. Some of the representative small molecule ligands with a higher selec-
tivity towards rG4s, and b. schematic of one of the strategies to target rG4 using engineered 
oligonucleotide therapeutic
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mechanism of translation (Repeat associated non-AUG translation), synthesizing 
toxic dipeptides. High quantities of dipeptides (poly-GA, GR, GP, PA, PR) can aggre-
gate and induce pathogenic RNA granule formation, leading to cellular cytotoxicity. 
Targeting of such rG4s by small molecules in the iPSC-derived motor neurons and 
C9orf72 mutated Drosophila led to the reduction of dipeptide products, decreasing 
disease-related cytotoxicity. The small molecule ligands potentially destabilized the 
G4s formed by (G4C2)n sequence within the mutated intron and inhibit RNA foci 
formation, resulting in the inhibition of RAN translation of the dipeptide repeats. 

Small molecules like QUMA-1 and ISCH-based fluorogenic probes provide a 
powerful platform to study rG4 folding dynamics inside the cells. A red-emitting fluo-
rescent probe, QUMA-1, has been successfully developed for the selective, contin-
uous, and real-time visualization of rG4s in both live and fixed cells (Chen et al. 
2018b). Furthermore, G-quadruplex-triggered fluorogenic hybridization (GTFH) 
probes have been successfully engineered and synthesized, which are capable 
of specifically tracking a particular specific rG4 based on the covalently linked 
complimentary probe attached to the dye (ISCH) (Chen et al. 2016). 

Engineered oligonucleotides that directly or indirectly target rG4 regions to stabi-
lize the structure or to bring a molecular lock to a particular structure (Fig. 3b) 
further provide with a more specific rG4 targeting alternative over the ligand-based 
approaches (reviewed in Cadoni et al. 2021; Kharel et al. 2020a). However, nuclease-
mediated cleavage of the phosphodiester bonds, unfavorable pharmacokinetics, and 
sub-optimal complex stability limit the direct clinical application of chemically 
unmodified nucleic-acids-based therapeutics. Chemical modifications, including the 
phosphate backbone (e.g., phosphorthioates), the sugar moiety (e.g., locked nucleic 
acids or 2'-O-alkyl ribonucleic acids), and the nucleobases (e.g., modified bases) 
have been designed to improve the stability and bioavailability of such therapeutics. 

A strategy to lock miRNA-92b in the rG4 form using a complementary locked 
nucleic acid-based approach was used to minimize the canonical stem-loop structure 
resulting in blocked miRNA processing (Fig. 3b) (Mirihana Arachchilage et al. 2018). 
A rationally designed locked nucleic acid sequence that specifically binds to a region 
near the 3'-end of pre-miR92b, regulates the equilibrium between rG4 and stem-loop. 
Upon treatment, such equilibrium was shifted toward the G4 conformation. This, in 
turn, reduced the amount of mature miRNA-92, thus resulting in a therapeutic effect 
on its mRNA targets as demonstrated by the rescue of PTEN tumor suppressor 
gene expression in human non-small-cell lung cancer cells. Additionally, a strategy 
using complementary γ-peptide nucleic acid oligomers to invade an rG4 resulting in 
translation repression of a reporter gene was used (Oyaghire et al. 2016). 

While nucleic acid-based therapeutic strategies for targeting rG4s possess incred-
ible promise in terms of specificity and therapeutic output, challenges remain based 
on the poor pharmacodynamics of these larger therapeutic molecules. Cellular uptake 
of the larger, negatively charged molecules has poor efficiency in crossing the cell 
membrane or maintaining bio-stability, making use of co-delivery materials almost 
necessary. However, given the prevalence of rG4s in transcriptome and the lack of 
specificity of the currently used set of small molecules, finding ligands that will 
precisely bind to a particular rG4 remains immensely challenging. Thus, systematic
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efforts to identify and characterize unique rG4 features with clever drug engineering 
would be needed to develop effective structure–function-based rG4 drugs. 

9 Concluding Remarks 

Unfortunately, only few 3-D structures of rG4s have been determined to date. Recent 
advances in the G4 field clearly indicate the formation of rG4s in vivo and their 
broader role in RNA biogenesis, transport, stability, subcellular localization, and 
mRNA translation. Thus, understanding of structural features of rG4s in the context 
of endogenous transcripts is particularly important. Whenever present, rG4s and 
rG4BPs interact dynamically to guide RNA biology and cell biology. The dissecting 
of molecular details of such rG4-rG4BP interactions is particularly challenging. 
Nonetheless, recent advances in RNA biology fostered by cutting edge technologies 
at both proteome and transcriptome scales have already pushed rG4-rG4BP interac-
tion studies to the nucleotide-amino acid resolutions. Furthermore, such approaches 
will allow detailed compositional characterization of dynamic rG4-RNP complexes 
in subcellular compartmentalization- and stimuli-dependent manners (e.g., under 
stress conditions). Expectedly, rG4s have the potential to serve as therapeutic targets. 
This partially stems from the fact that rG4-bearing RNA targets have only limited 
lifetime once transcribed, when compared to G4 DNA targets that embedded in the 
genomic context. We expect that future rG4 research will continue focusing on the 
atomic details of the molecular partnership between rG4s, rG4BPs, and rG4 ligands. 
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