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Preface 

This volume contains selected contributions by participants of the 13th International 
ISAAC Congress, which was organized at Ghent University, Belgium, and was 
held from August 2 to August 6, 2021. The ISAAC congress series is the main 
bi-annual event of the International Society for Analysis, its Applications and 
Computation. This edition continued the successful series of meetings previously 
held in: Delaware (USA, 1997), Fukuoka (Japan, 1999), Berlin (Germany, 2001), 
Toronto (Canada, 2003), Catania (Italy, 2005), Ankara (Turkey, 2007), London (UK, 
2009), Moscow (Russia, 2011), Krakow (Poland 2013), Macau (China, 2015), Växjö 
(Sweden, 2017), and Aveiro (Portugal, 2019). 

The 13th ISAAC Congress was an important scientific event that promoted 
communication of mathematical advances in mathematical analysis, its applications, 
and its interactions with computation, encouraging further research progress. 
Mathematicians from different parts of the world had the opportunity to present 
their results and new ideas. In total, there were 659 participants from all continents 
who registered to take part in the conference. There were 374 talks, consisting 
of 6 plenary lectures and 368 contributed talks, contributing to the 16 congress 
sessions, some of which were organized by the special interest groups of the society. 
Following a well-established tradition within society, an award is presented to one or 
various outstanding young mathematicians. The ISAAC award of the 13th ISAAC 
Congress was given to Guido De Philippis (New York University, USA) for his 
major contributions to calculus of variations, partial differential equations, and 
geometric measure theory. 

The following sessions contributed to the present volume. The volume also 
features an article by S. Jaffard et al., originating from Jaffard’s plenary lecture 
Multivariate Multifractal Analysis delivered at the congress. 

• Applications of dynamical systems theory in biology, organized by Torsten 
Lindström. 

• Challenges in STEM education, organized by Ján Guncaga and Vladimir Mityu-
shev.

v



vi Preface

• Complex analysis and partial differential equations, organized by Sergei 
Rogosin, Ahmet Okay Celebi, and Carmen Judith Vanegas. 

• Complex variables and potential theory, organized by Tahir Aliyev Azeroglu, 
Massimo Lanza de Cristoforis, Anatoly Golberg, and Sergiy Plaksa. 

• Constructive methods in the theory of composite and porous media, organized by 
Vladimir Mityushev, Natalia Rylko, and Piotr Drygaś. 

• Generalized functions and applications, organized by Michael Kunzinger and 
Marko Nedeljkov. 

• Harmonic analysis and partial differential equations, organized by Vladimir 
Georgiev, Michael Ruzhansky, and Jens Wirth. 

• Partial differential equations on curved spacetimes, organized by Anahit Gal-
styan, Makoto Nakamura, and Karen Yagdjian. 

• Recent progress in evolution equations, organized by Marcello D’Abbicco and 
Marcelo Rempel Ebert. 

• Wavelet theory and its related topics, organized by Keiko Fujita and Akira 
Morimoto. 

We would like to thank the organizers of all sessions of the congress for their 
invaluable work and efforts. They very much supported the congress organization 
by inviting participants, planning their sessions, and selecting speakers. During the 
congress itself, they did an excellent job organizing the chairing of their meetings. 
The session organizers were also responsible for the refereeing process of the 
contributions to this proceedings volume. 

The ISAAC board and the participants of the congress thank Jasson Vindas and 
his group for the excellent organization of the 13th ISAAC Congress. 

Aveiro, Portugal Uwe Kähler 
Freiberg, Germany Michael Reissig 
Milan, Italy Irene Sabadini 
Ghent, Belgium Jasson Vindas 
November 2022



Contents 

Part I Plenary Lecture 

A Review of Univariate and Multivariate Multifractal Analysis 
Illustrated by the Analysis of Marathon Runners Physiological Data . . . . . 3 
Stéphane Jaffard, Guillaume Saës, Wejdene Ben Nasr, Florent Palacin, 
and Véronique Billat 

Part II Applications of Dynamical Systems Theory in Biology 

Wavefronts in Forward-Backward Parabolic Equations and 
Applications to Biased Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
Diego Berti, Andrea Corli, and Luisa Malaguti 

Bohr-Levitan Almost Periodic and Almost Automorphic 
Solutions of Equation x′(t) = f (t  − 1, x(t  − 1)) − f (t,  x(t))  . . . . . . . . . . . . . . .  73 
David Cheban 

Periodic Solutions in a Differential Delay Equation Modeling 
Megakaryopoiesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 
Anatoli F. Ivanov and Bernhard Lani-Wayda 

Discrete and Continuous Models of the COVID-19 Pandemic 
Propagation with a Limited Time Spent in Compartments . . . . . . . . . . . . . . . . .  101 
Olzhas Turar, Simon Serovajsky, Anvar Azimov, and Maksat Mustafin 

Part III Challenges in STEM Education 

Some Aspects of Usage of Digital Technologies in Mathematics 
Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  117 
Ján Gunčaga 
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Plenary Lecture



A Review of Univariate and Multivariate 
Multifractal Analysis Illustrated by the 
Analysis of Marathon Runners 
Physiological Data 

Stéphane Jaffard, Guillaume Saës, Wejdene Ben Nasr, Florent Palacin, 
and Véronique Billat 

Abstract We review the central results concerning wavelet methods in multifractal 
analysis, which consists in analysis of the pointwise singularities of a signal, and we 
describe its recent extension to multivariate multifractal analysis, which deals with 
the joint analysis of several signals; we focus on the mathematical questions that 
this new techniques motivate. We illustrate these methods by an application to data 
recorded on marathon runners. 

1 Introduction 

Everywhere irregular signals are ubiquitous in nature: Classical examples are 
supplied by natural phenomena (hydrodynamic turbulence [89], geophysics, natural 
textures [76]), physiological data (medical imaging [12], heartbeat intervals [2], 
E.E.G [37]); they are also present in human activity and technology (finance [17], 
internet traffic [5], repartition of population [46, 104], text analysis [85], art [3]). 
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The analysis of such phenomena requires the modelling by everywhere irregular 
functions, and it is therefore natural to use mathematical regularity parameters in 
order to classify such data, and to study mathematical models which would fit their 
behavior. Constructing and understanding the properties of such functions has been 
a major challenge in mathematical analysis for a long time: Shortly after Cauchy 
gave the proper definition of a continuous function, the question of determining if 
a continuous function is necessarily differentiable at some points was a major issue 
for a large part of the nineteenth century; though a first counterexample was found 
by Bolzano, his construction remained unknown from the mathematical community, 
and it was only in 1872, with the famous Weierstrass functions 

.Wa,ω(x) =
+∞∑

n=0

sin(anx)

aωn
for a > 1 and ω ∈ (0, 1), (1) 

that the problem was settled. However, such constructions were considered as weird 
counterexamples, and not representative of what is commonly met, both in mathe-
matics and in applications. In 1893, Charles Hermite wrote to Thomas Stieltjes: I 
turn my back with fright and horror to this lamentable plague: continuous functions 
without derivative. The first statement that smooth or piecewise smooth functions 
were not adequate for modelling natural phenomena but were rather exceptional 
came from physicists, see e.g. the introduction of the famous book of Jean Perrin 
“Les atomes”, published in 1913. On the mathematical side, the evolution was slow: 
In 1931, Mazurkiewicz and Banach showed that most continuous functions are 
nowhere differentiable (“most” meaning here that such functions form a residual set 
in the sense of Baire categories). This spectacular result changed the perspective: 
Functions which were considered as exceptional and rather pathological actually 
were the common rule, and smooth functions turn out to be exceptional. 

A first purpose of multifractal analysis is to supply mathematical notions which 
allow to quantify the irregularity of functions, and therefore yield quantitative tools 
that can be applied to real life data in order to determine if they fit a given model, 
and, if it is the case, to determine the correct parameters of the model. One can also 
be more ambitious and wonder which “types” on singularities are present in the 
data, which may yield an important information of the nature of the signal; a typical 
example is supplied by chirps which are singularities which behave like 

.g(x) = |x − x0|α cos
(

1

|x − x0|β
)

, (2) 

displaying fast oscillations near the singularity at . x0. Such singularities are e.g. 
predicted by some models of turbulence and therefore determining if they can be 
found in the recorded data in wind tunnels is an important issue in the understanding 
of the physical nature of turbulence. 

A first step in this program was performed by A. Kolmogorov in 1941 [80]. 
Let .f : Rd → R. The  Kolmogorov scaling function of f is the function .ηf (p)
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implicitly defined by 

.∀p > 0,
ˆ

|f (x + h) − f (x)|pdx ∼ |h|ηf (p), (3) 

the symbol . ∼ meaning that 

. ηf (p) = lim inf|h|→0

log

(ˆ
|f (x + h) − f (x)|pdx

)

log |h| . (4) 

Note that, if f is smooth, then one has to use differences of order 2 or more in 
order to define correctly the scaling function. Kolmogorov proposed to use this 
tool as a way to determine if some simple stochastic processes are fitted to model 
the velocity of turbulent fluids at small scales, and a first success of this approach 
was that fractional Brownian motions (see Sect. 2.2) do not yield correct models 
(their scaling functions are linear, whereas the one measured on turbulent flows are 
significatively concave [9]). 

An important interpretation of the Kolmogorov scaling function can be given 
in terms of global smoothness indices in families of functions spaces: the spaces 
.Lip(s, Lp(Rd)) defined as follows. Let .s ∈ (0, 1), and .p ∈ [1,∞]; . f ∈
Lip(s, Lp(Rd)) if .f ∈ Lp(Rd) and 

.∃C > 0, ∀h > 0,
ˆ

|f (x + h) − f (x)|pdx ≤ C|h|sp (5) 

(here also, larger smoothness indices s are reached by replacing the first-order 
difference .|f (x + h) − f (x)| by higher order differences). It follows from (3) and 
(5) that, 

.∀p ≥ 1, ηf (p) = p · sup{s : f ∈ Lip(s, Lp(Rd))}. (6) 

An alternative formulation of the scaling function can be given in terms of global 
regularity indices supplied by Sobolev spaces, the definition of which we now recall. 

Definition 1 Let .s ∈ R and .p ≥ 1. A function f belongs to the Sobolev space 
.Lp,s(Rd) if .(Id − ∆)s/2 f ∈ Lp, where .g = (Id − ∆)s/2f is defined through its 
Fourier transform as 

. ĝ(ξ) = (1 + |ξ |2)s/2f̂ (ξ).

This definition amounts to state that the fractional derivative of f of order s 
belongs to . Lp. The classical embeddings between the Sobolev and the .Lip(s, Lp)
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spaces imply that 

.∀p ≥ 1, ηf (p) = p · sup{s : f ∈ Lp,s(Rd)}. (7) 

In other words, the scaling function tells, for each p, the order of (fractional) 
derivation of f up to which .f (s) belongs to . Lp. 

A limitation of the use of the Kolmogorov scaling function for classification 
purposes is that many models display almost identical scaling functions (a typical 
example is supplied by the velocity of fully developed turbulence, see e.g. [82, 98]); 
the next challenge therefore is to construct alternative scaling functions which 
would allow to draw distinctions between such models. A major advance in this 
direction was reached in 1985 when Uriel Frisch and Giorgio Parisi proposed 
another interpretation of the scaling function in terms of pointwise singularities 
of the data [99]. In order to state their assertion, we first need the recall the most 
commonly used notion of pointwise regularity. 

Definition 2 Let .f : Rd → R be a locally bounded function, .x0 ∈ Rd and let 
.γ ≥ 0; . f belongs to .Cγ (x0) if there exist .C > 0, .R > 0 and a polynomial P of 
degree less than . γ such that 

. if |x − x0| ≤ R, then |f (x) − P(x − x0)| ≤ C|x − x0|γ .

The Hölder exponent of f at . x0 is 

.hf (x0) = sup
{
γ : f is Cγ (x0)

}
. (8) 

Some functions have a very simple Hölder exponent. For instance, the Hölder 
exponent of the Weierstrass functions .Wa,ω is constant and equal to . ω at every 
point (such functions are referred to as monohölder functions); since .ω < 1 we 
thus recover the fact that .Wa,ω is nowhere differentiable. However, the Hölder 
exponent of other functions turn out to be extremely irregular, and U. Frisch and 
G. Parisi introduced the multifractal spectrum .Df as a new quantity which allows 
to quantify some of its properties: .Df (H) denotes the fractional dimension of the 
isoregularity sets, i.e. the sets 

.{x : hf (x) = H }. (9) 

Based on statistical physics arguments, they proposed the following relationship 
between the scaling function and .Df (H): 

.Df (H) = inf
p

(
d + Hp − ηf (p)

)
, (10) 

which is referred to as the multifractal formalism, see  [99] (we will discuss in 
Sect. 2.1 the “right” notion of fractional dimension needed here). Though the 
remarkable intuition which lies behind this formula proved extremely fruitful, it
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needs to be improved in order to be completely effective; indeed many natural 
processes used in signal or image modelling do not follow this formula if one tries 
to extend it to negative values of p, see  [81]; additionally, the only mathematical 
result relating the spectrum of singularities and the Kolmogorov scaling function in 
all generality is very partial, see [55, 60]. In Sect. 2.2 we will discuss (10), and 
see how it needs to be reformulated in terms of wavelet expansions in order to 
reach a fairly general level of validity. In Sect. 2.3 we will discuss the relevance 
of the Hölder exponent (8) and introduce alternative exponents which are better 
fitted to the analysis of large classes of real-life data. Their characterization requires 
the introduction of orthonormal wavelet bases. This tool and its relevance for 
global regularity is recalled in Sect. 2.4 and the characterizations of pointwise 
regularity which they allow are performed in Sect. 2.5. This leads to a classification 
of pointwise singularities which yields a precise description of the oscillations 
of the function in the neighbourhood of its singularities which is developed in 
Sect. 2.6. This implications of this classification on the different formulations of 
the multifractal formalism are developed in Sect. 2.7. The tools thus developed are 
applied to marathon runners physiological data (heart rate, acceleration, cadence, 
i.e. number of steps per minute) in Sect. 2.9; thus showing that they lead to a 
sharper analysis of the physiological modifications during the race. The numerical 
results derived on real-life data have been obtained using the Wavelet p-Leader and 
Bootstrap based MultiFractal analysis (PLBMF) toolbox available on-line at https:// 
www.irit.fr/~Herwig.Wendt/software.html. 

The explosion of data sciences recently made available collections of signals the 
singularities of which are expected to be related in some way; typical examples are 
supplied by EEG collected at different areas of the brain, or by collections of stock 
exchange prizes. The purpose of Sect. 3 is to address the extension of multifractal 
analysis to the multivariate setting, i.e. to several functions. In such situations, a 
pointwise regularity exponent .hi(x) is associated with each signal .fi(x) and the 
challenge is to recover the joint multivariate spectrum of the . fi which is defined as 
the fractional dimension of the sets of points x where each of the exponents . hi(x)

takes a given value: If m signals are available, we define 

.Ef1,...,fm(H1, . . . , Hm) = {x : h1(x) = H1, . . . , hm(x) = Hm}, (11) 

and the joint multifractal spectrum is 

.Df1,...,fm(H1, . . . , Hm) = dim(Ef1,...,fm(H1, . . . , Hm)). (12) 

These notions were introduced by C. Meneveau et al. in the seminal paper [95] 
which addressed the joint analysis of the dissipation rate of kinetic energy and 
passive scalar fluctuations for fully developed turbulence, and a general abstract 
setting was proposed by J. Peyrière in [100]; In Sect. 3.1, we introduce the 
mathematical concepts which are relevant to this study. In Sect. 3.2 we give a 
probabilistic interpretation of the scaling functions introduced in Sect. 2, and we 
show how they naturally lead to a 2-variable extension in terms of correlations.

https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
https://www.irit.fr/~Herwig.Wendt/software.html
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The initial formulation of the multifractal formalisms based on extensions of the 
Kolmogorov scaling function suffers from the same drawbacks as in the univariate 
case. This leads naturally to a reformulation of the multifractal formalism which is 
examined in Sect. 3.3, where we also investigate the additional advantages supplied 
by multivariate multifractal analysis for singularity classifications. In order to 
investigate its relevance, we study a toy-example which is supplied by Brownian 
motions in multifractal time in Sect. 3.4. In Sect. 3.5, we illustrate the mathematical 
results thus collected by applications to the joint analysis of heartbeat, cadence and 
acceleration of marathon runners. 

2 Univariate Multifractal Analysis 

2.1 The Multifractal Spectrum 

In order to illustrate the motivations of multifractal analysis, let us come back to 
the initial problem we mentioned: How badly can a continuous function behave? 
We mentioned the surprising result of Mazurkiewicz and Banach stating that a 
generic continuous function is nowhere differentiable, and the Weierstrass functions 
yield examples of continuous functions which may have an arbitrarily small (and 
constant) Hölder exponent. This can actually be improved: A generic continuous 
function satisfies 

.∀x ∈ R, hf (x) = 0, (13) 

see [115]: At every point the Hölder exponent of f is as bad as possible. An example 
of such a continuous function is supplied by a slight variant of Weierstrass functions: 

. f (x) =
∞∑

j=1

1

j2
sin(2j x).

Let us now consider a different functional setting: Let .f : [0, 1] −→ [0, 1] be an 
increasing function. At any given point .x ∈ [0, 1] f can have a discontinuity at x, 
in which case .hf (x) = 0. Nonetheless, this worse possible behavior cannot be met 
everywhere: An important theorem of Lebesgue states that f is almost everywhere 
differentiable and therefore satisfies 

. for almost every x ∈ [0, 1], hf (x) ≥ 1.

The global regularity assumption (the fact that f is increasing implies that its 
derivative in the sense of distributions is a bounded Radon measure) implies that, 
in sharp contradistinction with generic continuous functions, the set of points such 
that .hf (x) < 1 is “small” (its Lebesgue measure vanishes). On other hand, the
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set of points where it is discontinuous can be an arbitrary countable set (but one 
easily checks that it cannot be larger). What can we say about the size of the sets 
of points with intermediate regularity (i.e. having Hölder exponents between 0 and 
1), beyond the fact that they have a vanishing Lebesgue measure? Answering this 
problem requires to use some appropriate notion of “size” which allows to draw 
differences between sets of vanishing Lebesgue measure. The right mathematical 
notion fitted to this problem can be guessed using the following argument. Let 

. Eα
f = {x : f /∈ Cα(x)}.

Clearly, if .x ∈ Eα
f , then there exists a sequence of dyadic intervals 

.λj,k =
[

k

2j
,
k + 1

2j

]
(14) 

such that 

• x belongs either to .λj,k or to one of its two closest neighbours of the same width, 
• the increment of f on .λj,k is larger than .2−αj = |λj,k|α (where . |A| stands for 

the diameter of the set A). 

Let .ε > 0, and consider the maximal dyadic intervals of this type of width less than 
. ε/3, for all possible .x ∈ Eα

f , and denote this set by . Λε
α . These intervals are disjoint 

(indeed two dyadic intervals are either disjoint or one is included in the other); and, 
since f is increasing, the increment of f on .[0, 1] is bounded by the sum of the 
increments on these intervals. Therefore 

. 
∑

λ∈Λε
α

|λ|α ≤ f (1) − f (0).

The intervals . 3λ (which consists in the dyadic interval . λ and its two closest 
neighbours of the same length) for .λ ∈ Λε

α form an .ε-covering of . Eα
f (i.e. a covering 

by intervals of length at most . ε), and this .ε-covering satisfies 

. 
∑

λ∈Λε
α

|3λ|α = 3α
∑

λ∈Λε
α

|λ|α ≤ 3α(f (1) − f (0)).

This property can be interpreted as stating that the .α-dimensional Hausdorff 
measure of . Eα

f is finite; we now give a precise definition of this notion. 

Definition 3 Let A be a subset of . Rd . If .ε > 0 and .δ ∈ [0, d], let  

.Mδ
ε = inf

R

(
∑

i

|Ai |δ
)

,
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where R is an .ε-covering of A, i.e. a covering of A by bounded sets .{Ai}i∈N of 
diameters .|Ai | ≤ ε (the infimum is therefore taken on all .ε-coverings). For any 
.δ ∈ [0, d], the .δ-dimensional Hausdorff measure of A is 

. mesδ(A) = lim
ε→0

Mδ
ε .

One can show that there exists .δ0 ∈ [0, d] such that 

. 

{∀δ < δ0, mesδ(A) = +∞
∀δ > δ0, mesδ(A) = 0.

This critical . δ0 is called the Hausdorff dimension of A, and is denoted by . dim(A)

(and an important convention is that, if A is empty, then .dim (∅) = −∞). 
The example we just worked out shows that a global regularity information on 

a function yields information on the Hausdorff dimensions of its sets of Hölder 
singularities. This indicates that the Hausdorff dimension is the natural choice in 
(10), and motivates the following definition. 

Definition 4 Let .f : Rd → R be a locally bounded function. The multifractal 
Hölder spectrum of f is the function 

. Df (H) = dim({x : hf (x) = H }),

where .dim denotes the Hausdorff dimension. 

This definition justifies the denomination of multifractal functions: One typically 
considers functions f that have non-empty isoregularity sets (9) for H taking all 
values in an interval of positive length, and therefore one deals with an infinite 
number of fractal sets .Ef (H). The result we obtained thus implies that, if f is an 
increasing function, then 

.Df (H) ≤ H. (15) 

This can be reformulated in a function space setting which puts in light the sharp 
contrast with (13): Indeed, recall that any function of bounded variation is the 
difference of an increasing and a decreasing function; we have thus obtained the 
following result. 

Proposition 1 Let .f : R → R be a function of bounded variation. Then its 
multifractal spectrum satisfies 

. ∀H, Df (H) ≤ H.

Remark 1 This result does not extend to several variables functions of bounded 
variation which, in general, are not locally bounded, in which case their Hölder 
exponent is not even well defined.
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2.2 Alternative Formulations of the Multifractal Formalism 

Wementioned that (10) yields a poor estimate of the multifractal spectrum. A typical 
example is supplied by sample paths of fractional Brownian motion (referred to 
as fBm), a family of stochastic processes introduced by Kolmogorov [79], the 
importance of which was put in light for modeling by Mandelbrot and Van Ness 
[91]. This family is indexed by a parameter .α ∈ (0, 1), and generalizes Brownian 
motion (which corresponds to the case .α = 1/2); fBm of index . α is the only 
centered Gaussian random process . Bα defined on . R+ which satisfies 

. ∀x, y ≥ 0 E(|Bα(x) − Bα(y)|2) = |x − y|2α.

FBm plays an important role in signal processing because it supplies the most simple 
one parameter family of stochastic processes with stationary increments. Its sample 
paths are monohölder and satisfy 

. a.s. ∀x, hBα (x) = α,

(see [77] and [41] for a recent sharp analysis of the pointwise regularity of their 
sample paths) so that their multifractal spectrum is 

. a.s. ∀H,

{
DBα (H) = 1 if H = α

= −∞ else.

However, the right hand-side of (10) yields a different value for .H ∈ (α, α + 1]: It  
coincides almost surely with the function defined by 

. 

{
LBα (H) = α + 1 − H if H ∈ [α, α + 1]

= −∞ else,

see [5, 69, 70]. This is due to the fact that the decreasing part of the spectrum is 
recovered from negative values of p in (10), and the corresponding integral is not 
well defined for negative ps, and may even diverge. It follows that sharper estimates 
of the multifractal spectrum require a renormalization procedure which would yield 
a numerically robust output for negative ps. Several methods have been proposed 
to solve this deadlock. They are all based on a modification of the Kolmogorov 
scaling function in order to incorporate the underlying intuition that it should include 
some pointwise regularity information. A consequence will be that they provide an 
extension of the scaling function to negative ps. This extra range of parameters plays 
a crucial role in several applications where it is required for classifications, see e.g. 
[83, 98] where the validation of turbulence models is considered, and for which the 
key values of the scaling function which are needed to draw significative differences 
between these models are obtained for .p < 0.
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A first method is based on the continuous wavelet transform, which is defined as 
follows. Let . ψ be a wavelet, i.e. a well localized, smooth function with, at least, one 
vanishing moment. The continuous wavelet transform of a one-variable function f 
is 

.Ca,b(f ) = 1

a

ˆ
R

f (t)ψ

(
t − b

a

)
dt (a > 0, b ∈ R); (16) 

Alain Arneodo, Emmanuel Bacry and Jean-François Muzy proposed to replace, 
in the integral (3), the increments .|f (x + δ) − f (x)| at scale . δ by the continuous 
wavelet transform .Ca,b(f ) for .a = δ and .b = x. This choice follows the heuristic 
that the continuous wavelet transform satisfies .|Ca,b(f )| ∼ ahf (x) when a is small 
enough and .|b − x| ∼ a. Note that it is not valid in all generality, but typically fails 
for oscillating singularities, such as the chirps (2). Nonetheless Yves Meyer showed 
that this heuristic actually characterizes another pointwise regularity exponent, the 
weak scaling exponent, see  [97]. Assuming that the data do not include oscillating 
singularities, the integral (3) is discretized and replaced by the more meaningful 
values of the continuous wavelet transform i.e. at its local maxima [8]; if we denote 
by . bk the points where these extrema are reached at the scale a, the integral (3) is  
thus replaced by the sum 

.

∑

bk

|Ca,bk
(f )|p ∼ aζf (p) when a → 0, (17) 

This reformulations using the multiresolution quantities .|Ca,bk
(f )| yields better 

numerical results than when using the increments .|f (x + δ) − f (x)|; above all, 
the restriction to the local suprema is a way to bypass the small values of the 
increments which were the cause of the divergence of the integral (3) when p is 
negative. Numerical experiments consistently show that the multifractal formalism 
based on these quantities yields the correct spectrum for the fBm, and also for large 
collections of mutifractal models, see [11]. 

Another way to obtain a numerically robust procedure in order to perform 
multifractal analysis is supplied by Detrended Fluctuation Analysis (DFA): From 
the definition of the Hölder exponent, Kantelhardt et al. [78] proposed the following 
multiresolution quantity based on the following local . L2 norms 

.Tmf d(a, k) =
(
1

a

a∑

i=1

|f (ak + i) − Pk,a,NP
(i)|2

) 1
2

, k = 1, . . . , n/a, (18) 

where . n denotes the number of available samples and .Pt,a,NP
is a polynomial of 

degree .NP obtained by local fit to f on portions of length proportional to a. The
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integral (3) is now replaced by 

. Smf d(a, q) = a

n

n/a∑

k

Tmf d(a, k)q ∼ aζmf d (q),

and the multifractal spectrum is obtained as usual through a Legendre transform of 
this new scaling function .ζmf d , thus yielding the multifractal detrended fluctuation 
analysis (MFDFA). Note that, here again, we cannot expect the multifractal 
formalism based on such a formula to be fitted to the Hölder exponent: The choice 
of an . L2 norm in (18) is rather adapted to an alternative pointwise exponent, the 2-
exponent, which is defined through local .L2-norms, see Definition 5 (and [84] for an 
explanation of this interpretation). The MFDFA formalism performs satisfactorily 
and is commonly used in applications (cf., e.g., [50, 111]). 

The methods we mentioned meet the following limitations: They cannot be 
taylored to a particular pointwise exponent: We saw that the WTMM is fitted to the 
weak-scaling exponent, and the MFDFA to the 2-exponent. They lack of theoretical 
foundation, and therefore the estimates that they yield on the multifractal spectrum 
are not backed by mathematical results. In practice, they are difficult to extend 
to data in two or more variables (for MFDFA, the computation of local best fit 
polynomials is an intricate issue). The obtention of an alternative formulation of 
the multifractal formalism which brings an answer to these two problems requires a 
detour through the notions of pointwise exponents, and their characterizations. 

2.3 Pointwise Exponents 

At this point we need to discuss the different notions of pointwise regularity. One of 
the reasons is that, though Hölder regularity is by far the one which is most used in 
mathematics and in applications, it suffers a major limitation: Definition 2 requires 
f to be locally bounded. In applications, this limitation makes the Hölder exponent 
unfitted in many settings where modelling data by locally bounded functions is 
inadequate; in Sect. 2.4 we will give a numerically simple criterium which allows 
to verify if this assumption is valid, and we will see that the physiological data we 
analyse are typical examples for which it is not satisfied. On the mathematical side 
too, this notion often is not relevant. A typical example is supplied by the Riemann 
series defined as 

.∀x ∈ R, Rs(x) =
∞∑

n=1

sin(n2x)

ns
, (19) 

which, for .s > 1, are locally bounded and turn out to be multifractal (in which case 
their multifractal analysis can be performed using the Hölder exponent [32, 54]),
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but it is no more the case if .s < 1, in which case an alternative analysis is developed 
in [108] (using the p-exponent for .p = 2, see Definition 5 below). 

There exist two ways to deal with such situations. The first one consists 
in first regularizing the data, and then analyzing the new data thus obtained. 
Mathematically, this means that a fractional integral is performed on the data. 
Recall that, if f is a tempered distribution defined on . R, then the fractional integral 
of order t of f , denoted by .f (−t) is defined as follows: Let .(Id − ∆)−t/2 be the 
convolution operator which amounts to multiplying the Fourier transform of f with 
.(1 + |ξ |2)−t/2. The fractional integral of order t of f is the function 

. f (−t) = (Id − ∆)−t/2(f ).

If f is large enough, then .f (−t) is a locally bounded function, and one can consider 
the Hölder exponent of t (the exact condition under which this is true is that t has 
to be larger than the exponent .hmin

f defined below by (25) or equivalently by (26). 
This procedure presents the obvious disadvantage of not yielding a direct analysis 
of the data but of a smoothed version of them. 

The other alternative available in order to characterize the pointwise regularity 
of non-locally bounded functions consists in using a weaker notion of pointwise 
regularity, the p-exponent, which we now recall. We define .B(x0, r) as the ball of 
center . x0 and radius r . 

Definition 5 Let .p ≥ 1 and assume that .f ∈ L
p
loc(R

d). Let  .α ∈ R; . f belongs to 
.T

p
α (x0) if there exists a constant . C and a polynomial . Px0 of degree less than . α such 

that, for r small enough, 

.

(
1

rd

ˆ
B(x0,r

|f (x) − Px0(x)|pdx

)1/p

≤ Crα. (20) 

The p-exponent of f at . x0 is 

.h
p
f (x0) = sup{α : f ∈ T p

α (x0)} (21) 

(the case .p = +∞ corresponds to the Hölder exponent). 

This definition was introduced by Calderón and Zygmund in 1961 in order 
to obtain pointwise regularity results for the solutions of elliptic PDEs, see [35]. 
For our concern, it has the important property of being well defined under the 
assumption that .f ∈ L

p
loc. For instance, in the case of the Riemann series 

(19), an immediate computation yields that they belong to . L2 if .s > 1/2 so 
that, if .1/2 < s < 1, p-exponents with .p ≤ 2 are relevant to study their 
regularity, in contradistinction with the Hölder exponent which won’t be defined. 
Another example of multifractal function which is not locally bounded is supplied 
by Brjuno’s function, which plays an important role in holomorphic dynamical 
systems, see [92]. Though its is nowhere locally bounded, it belongs to all .Lp
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spaces and its multifractal analysis using p-exponents has been performed in [66]. 
Note that p-exponents can take values down to .−d/p, see  [73]. Therefore, they 
allow the use of negative regularity exponents, such as singularities of the form 
.f (x) = 1/|x − x0|α for .α < d/p. 

The general framework supplied by multifractal analysis now is ubiquitous in 
mathematical analysis and has been successfully used in a large variety of mathe-
matical situations, using diverse notion of pointwise exponents such as pointwise 
regularity of probability measures [33], rates of convergence or divergence of series 
of functions (either trigonometric [13, 25] or wavelet  [13, 65]) order of magnitude 
of ergodic averages [43, 44], to mention but a few. 

2.4 Orthonormal Wavelet Decompositions 

Methods based on the use of orthonormal wavelet bases follow the same motivations 
we previously developed, namely to construct alternative scaling functions based on 
multiresolution quantities which “incorporate” some pointwise regularity informa-
tion. However, we will see that they allow to turn some of the limitations met by the 
previously listed methods, and they enjoy the following additional properties: 

• numerical simplicity, 
• explicit links with pointwise exponents (which, as we saw, may differ from the 

Hölder exponent), 
• no need to construct local polynomial approximations (which is the case for DFA 

methods now in use), 
• mathematical results hold concerning either the validity of the multifractal 

formalism supplied by (10) or of some appropriate extensions; such results can be 
valid for all functions, or for “generic” functions, in the sense of Baire categories, 
or for other notions of genericity. 

Let us however mention an alternative technique which was proposed in [4] where 
multiresolution quantities based on local oscillations, such as 

. dλ = sup
3λ

f (x) − inf
3λ

f (x),

or higher order differences such as 

. dλ = sup
x,y∈3λ

∣∣∣∣f (x) + f (y) − 2f

(
x + y

2

)∣∣∣∣ ,

and which wouldn’t present the third problem that we mention. However, as far as 
we know, they haven’t been tested numerically. 

One of the reasons for these remarkable properties is that (in contradistinction 
with other expansions, such as e.g. Fourier series) wavelet analysis allows to
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characterize both global and pointwise regularity by simple conditions on the 
moduli of the wavelet coefficients; as already mentioned, the multifractal formalism 
raises the question of how global and pointwise regularity are interconnected; 
wavelet analysis therefore is a natural tool in order to investigate this question and 
this explains why it was at the origin of major advances in multifractal analysis both 
in theory and applications. 

We now recall the definition of orthonormal wavelet bases. For the sake of 
notational simplicity, we assume in all the remaining of Sect. 2 that .d = 1, i.e. 
the functions we consider are defined on . R, extensions in several variables being 
straightforward. Let .ϕ(x) denote a smooth function with fast decay, and good joint 
time-frequency localization, referred to as the scaling function, and let .ψ(x) denote 
an oscillating function (with N first vanishing moments), with fast decay, and good 
joint time-frequency localization, referred to as the wavelet. These functions can be 
chosen such that the 

.ϕ(x − k), for, k ∈ Z (22) 

and 

.2j/2ψ(2j x − k), for, j ≥ 0, k ∈ Z (23) 

form an orthonormal basis of .L2(R) [96]. The wavelet coefficients of a function f 
are defined as 

.ck =
ˆ
R

f (x) ϕ(x − k) dx and cj,k = 2j

ˆ
R

f (x) ψ(2j x − k) dx (24) 

Note the use of an . L1 normalization for the wavelet coefficients that better fits local 
regularity analysis. 

As stated above, the Hölder exponent can be used as a measurement of pointwise 
regularity in the locally bounded functions setting only, see [70]. Whether empirical 
data can be well-modelled by locally bounded functions or not can be determined 
numerically through the computation of the uniform Hölder exponent .hmin

f , which, 
as for the scaling function, enjoys a function space characterization 

.hmin
f = sup{α : f ∈ Cα(R)}, (25) 

where .Cα(R) denotes the usual Hölder spaces. Assuming that . ϕ and . ψ are smooth 
enough and that . ψ has enough vanishing moments, then the exponent .hmin

f has the 
following simple wavelet characterization: 

.hmin
f = lim inf

j→+∞

log

(
sup
k

|cj,k|
)

log(2−j )
. (26)
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It follows that, if .hmin
f > 0, then f is a continuous function, whereas, if .hmin

f < 0, 
then f is not a locally bounded function, see [5, 71]. 

In numerous real world applications the restriction .hmin
f > 0 constitutes a 

severe limitation; we will meet such examples in the case of physiological data 
(see also [5] for other examples). From a practical point of view, the regularity of 
the wavelets should be larger than .hmin

f in order to compute the estimation of .hmin
f . 

In the applications that we will see later, we took Daubechies compactly supported 
wavelets of increasing regularity and we stopped as soon as we found a threshold 
beyond which there is no more modification of the results. In our case, we stopped at 
order 3. In applications, the role of .hmin

f is twofold: It can be used as a classification 
parameter and it tells whether a multifractal analysis based on the Hölder exponent is 
licit. Unlike other multifractality parameters that will be introduced in the following, 
its computation does not require a priori assumptions: It can be defined in the widest 
possible setting of tempered distributions. 

We represent these two types of data on Fig. 1 for a marathon runner. The race is 
composed of several stages including a warm-up at the beginning, a recovery at the 
end of the marathon, and several moments of small breaks during the marathon. The 
signal was cleaned by removing the data that did not correspond to the actual race 
period (warm-ups, recoveries and breaks) and by making continuous connections to 
keep only the homogeneous parts. This type of connection is suitable for regularity 
exponents lower than 1 as in the case of our applications. 

If .hmin
f < 0, then a multifractal analysis based on the Hölder exponent cannot be 

developed, and the question whether a multifractal analysis based on the p-exponent 
can be raised see Fig. 2. Wavelet coefficients can also be used to determine whether 
f locally belongs to . Lp or not (which is the a priori requirement needed in order to 
use the corresponding p-exponent), see [4, 5, 71]: Indeed, a simple wavelet criterium 
can be applied to check this assumption, through the computation of the wavelet 
structure function. Let  

.Sc(j, p) = 2−j
∑

k

|cj,k|p. (27) 

Fig. 1 Representation of data: heart rate (left) in beats per minute, cadence (middle) in steps per 
minute and acceleration (top) in meters per second squared. The time scale is in 0.1 s
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Fig. 2 Estimation by log-log regression of the .hmin of a heart rate (left) and an acceleration (right). 
The points of the regression line up successfully along a close to straight line thus showing that 
the values of .hmin, are precisely estimated and are negative. It follows that a multifractal analysis 
based on Hölder exponent cannot be performed on these data 

The wavelet scaling function is defined as 

.∀p > 0, ηf (p) = lim inf
j→+∞

log (Sc(j, p))

log(2−j )
; (28) 

one can show that it coincides with the Kolmogorov scaling function if .p > 1, see  
[55]. The following simple criterion can be applied in order to check if data locally 
belong to . Lp [73]: 

.
if ηf (p) > 0 then f ∈ L

p
loc,

if ηf (p) < 0 then f /∈ L
p
loc.

}
(29) 

Remark 2 The wavelet scaling function enjoys the same property as .hmin
f : Its  

computation does not require some a priori assumptions on the data, and it can 
be defined in the general setting of tempered distributions. Note that it is also 
defined for .p ∈ (0, 1]; in that case the Sobolev space interpretation of the scaling 
function has to be slightly modified: In Definition 1 the Lebesgue space . Lp has to be 
replaced by the real Hardy spaces . Hp, see  [96] for the notion of Hardy spaces and 
their wavelet characterization. Note that these function space interpretations imply 
that the wavelet scaling function does not depend on the specific (smooth enough) 
wavelet basis which is used; it also implies that it is unaltered by the addition of a 
smooth function, or by a smooth change of variables, see [4] and ref. therein (Fig. 3). 
For the same reasons, these properties also hold for the exponent .hmin

f ; they are  
required in order to derive intrinsic parameters for signal or image classification. In 
the following, we shall refer to them as robustness properties. In applications (28)
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Fig. 3 Wavelet scaling function of heart rate (left) and cadence (right) of a marathon runner. It 
allows to determine the values of p such that .ηf (p) > 0. We conclude that a multifractal analysis 
based on p-exponents is directly possible for heart rate data, but not for the cadence, where the 
analysis will have to be carried out on a fractional integral of the data 

Fig. 4 Estimation by log-log regression of the wavelet scaling function of heart rate (left) and 
cadence (right) for .p = 1. The slope of the regression is positive for heart rate and negative for 
cadence. These regressions, estimated for a sufficiently large number of values of p allow to plot 
the wavelet scaling functions, as shown in Fig. 3 

can be used only if .ηf (p) can be determined by a log-log plot regression, i.e. when 
the lim inf actually is a limit, see e.g. Fig. 4. This means that the structure functions 
(27) satisfy .Sc(j, p) ∼ 2−ηf (p)j in the limit of small scales, a phenomenon coined 
scale invariance. The practical relevance of the wavelet scaling function (and other 
multifractal parameters that we will meet later), comes from the fact that it can be 
used for classification of signals and images without assuming that the data follow 
an a priori model.
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2.5 Wavelet Pointwise Regularity Characterizations 

One advantage of orthonormal wavelet based methods is that they allow to construct 
a multifractal analysis which is taylored for a given p-exponent, which is not 
the case of the alternative methods we mentioned. We shall see in Sects. 2.6 
and 2.9 the benefits of this extra flexibility. For this purpose, we have to construct 
multiresolution quantities (i.e., in this context, a non-negative function defined 
on the collection of dyadic cubes) which are fitted to p-exponents. We start by 
introducing more adapted notations for wavelets and wavelet coefficients; instead of 
the two indices .(j, k), we will use dyadic intervals (14) and, accordingly, .cλ = cj,k , 
and .ψλ = ψj,k . The wavelet characterization of p-exponents requires the definition 
of p-leaders. If .f ∈ L

p
loc(R), the  wavelet  p- leaders of f are defined as 

.𝓁
(p)
j,k ≡ 𝓁

(p)
λ =

⎛

⎝
∑

λ'⊂3λ

|cλ' |p 2j−j '
⎞

⎠
1/p

, (30) 

where .j ' ≥ j is the scale associated with the sub-cube . λ' included in . 3λ (i.e. . λ' has 
width .2−j '

). Note that, when .p = +∞ (and thus .f ∈ L∞
loc(R)), p-leaders boil down 

to wavelet leaders 

. 𝓁λ = sup
λ'⊂3λ

|cλ' |,

[61, 112]. 
Let us indicate where such quantities come from. They are motivated by 

constructing quantities based on simple conditions on wavelet coefficients and 
which well approximate the local . Lp norm of Definition 5. For that purpose we 
use the wavelet characterization of the Besov space .B0,p

p which is “close” to 
. Lp (indeed the classical embeddings between Besov and . Lp spaces imply that 
.B

0,1
p →ͨ Lp →ͨ B

0,∞
p ); with the normalization we chose for wavelet coefficients, 

the wavelet characterization of .B
0,p
p is given by 

. f ∈ B
0,p
p if

∑

k

|ck|p < ∞ and
∑

j,k

2(sp−1)j |cj,k|p < ∞,

see [96] and, because of the localization of the wavelets, the restriction of the second 
sum to the dyadic cubes .λ' ⊂ 3λ yields an approximation of the local . Lp norm of 
.f − P around the interval . λ (the substraction of the polynomial P comes from the 
fact that the wavelets have vanishing moments so that P is reconstructed by the first 
sum in (22), and the wavelet coefficients .cj,k of f and .f − P coincide). Actually, 
the uniform regularity assumption .ηf (p) > 0 (which we will make) implies that the 
quantities (30) are finite.
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Denote by .λj,k(x) the unique dyadic interval of length .2−j which includes x; a  
key result is that both the Hölder exponent and the p-exponent can be recovered 
from, respectively, wavelet leaders and p-leaders, according to the following 
formula. 

Definition 6 Let .h(x) be a pointwise exponent and .(dλ) a multiresolution quantity 
indexed by the dyadic cubes. The exponent h is derived from the .(dλ) if 

.∀x, h(x) = lim inf
j→+∞

log
(
dλj,k(x)

)

log(2−j )
. (31) 

It is proved in [64, 67, 71] that if .ηf (p) > 0, then the p-exponent is derived 
from p-leaders, and, if .hmin

f > 0, then the Hölder exponent is derived from wavelet 
leaders. Note that the notion of p-exponent can be extended to values of p smaller 
that 1, see [63]; this extension requires the use of “good” substitutes of the . Lp spaces 
for .p < 1 which are supplied by the real Hardy spaces . Hp. The important practical 
result is that the p-leaders associated with this notion also are given by (30). 

In applications, one first computes the exponent .hmin
f and the function .ηf (p). If  

.hmin
f > 0, then one has the choice of using either p-leaders or wavelet leaders 

as multiresolution quantities. Though leaders are often preferred because of the 
simple interpretation that they yield in terms of the most commonly used (Hölder) 
exponent, it has been remarked that p-leaders constitute a quantity which displays 
better statistical properties, because it is based on averages of wavelet coefficients, 
instead of a supremum, i.e. a unique extremal value, see [7] and ref. therein. If 
both .hmin

f < 0 and .ηf (p) < 0 for all ps, then one cannot use directly these 
techniques and one performs a (fractional) integration on the data first. If one wants 
to use wavelet leaders, the order of integration s has to satisfy .s > −hmin

f since 

.hmin
f (−s) = hmin

f + s. Similarly, in the case of p-leaders it follows immediately from 
the Sobolev interpretation (7) of the wavelet scaling function that 

. ηf (−s) (p) = ps + ηf (p).

Thus, if .ηf (p) < 0, then an analysis based on p-leaders will be valid if the order of 
fractional integration s applied to f satisfies .s > −ηf (p)/p. In practice, one does 
not perform a fractional integration on the data, but one simply replaces the wavelet 
coefficients .cj,k by .2−sj cj,k , which leads to the same scaling functions [5], and has 
the advantage of being performed at no extra computational cost. 

2.6 Towards a Classification of Pointwise Singularities 

In Sect. 2.3 we motivated the introduction of alternative pointwise regularity 
exponents by the requirement of having a tool available for non locally bounded
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functions, which allows to deal directly with the data without having recourse to 
a smoothing procedure first; but this variety of exponents can also serve another 
purpose: By comparing them, one can draw differences between several types 
of singularities. This answers an important challenge in several areas of science; 
for example, in fully developed turbulence, some models predict the existence of 
extremely oscillating structures such as (2) and the key signal processing problem 
for the detection of gravitational waves also involves the detection of pointwise 
singularities similar to (2) in extremely noisy data [45]. 

Let us start with a simple example: Among the functions which satisfy . hf (x0) =
α, the most simple pointwise singularities are supplied by cusps singularities, i.e. 
by functions which “behave” like 

.Cα(x) = |x − x0|α (if α > 0 and α /∈ 2N). (32) 

How can we “model” such a behavior? A simple answer consists in remarking that 
the primitive of (32) is of the same form, and so on if we iterate integrations. Since 
the mapping .t → hf (−t) (0) is concave [10], it follows that (32) satisfies 

. ∀t > 0, hC(−t)
α

(t0) = α + t.

For cusp singularities, the pointwise Hölder exponent is exactly shifted by the order 
of integration. This is in sharp contrast with the chirps (2), for which a simple 
integration by parts yields that the Hölder exponent of its n-th iterated primitive 
is 

. ∀n ∈ N, hC(−n)
α,β

(t0) = α + (1 + β)n,

from which it easily follows that the fractional primitives of the chirp satisfy 

. ∀t > 0, hC(−t)
α,β

(t0) = α + (1 + β)t,

[10]. We conclude from these two typical examples that inspecting simultaneously 
the Hölder exponents of f and its primitives, or its fractional integrals, allows to 
put in light that oscillating behaviour of f in the neighbourhood of its singularities 
which is typical of (2) (see [107] for an in-depth study of the information revealed 
by the mapping .t → hf (−t) (t0)). To that end, the following definition was proposed, 
which encapsulates the relevant “oscillatory” information contained in this function, 
using a single parameter. 

Definition 7 Let .f : Rd → R be such that .f ∈ L
p
loc. If  .h

p
f (x0) /= +∞, then the 

oscillation exponent of f at . x0 is 

.Of (x0) =
(

∂

∂t
h

p

f (−t) (x0)

)

t=0+
− 1. (33)
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Remark 3 In theory, a dependency in p should appear in the notation since f 
belongs to several . Lp spaces. However, in practice, a given p is fixed, and this 
inaccuracy does not pose problems. 

The choice of taking the derivative at .t = 0+ is motivated by a robustness 
argument: The exponent should not be perturbed when adding to f a smoother 
term, i.e. a term that would be a .O(|x −x0|h) for an .h > hf (x0); it is a consequence 
of the following lemma, which we state in the setting of Hölder exponents (i.e. we 
take .p = +∞ in Definition 7). 

Lemma 1 Let f be such that .hf (x0) < +∞ and .Of (x0) < +∞; let . g ∈ Cα(x0)

for an .α > hf (x0). Then, for s small enough, the Hölder exponents of . (f + g)(−s)

and of .f (−s) coincide. 

Proof By the concavity of the mapping .s → hf (−s) (x0), see  [6, 72], it follows that 

. hf (−s) (x0) ≤ hf (x0) + (1 + Of (x0))s;

but one also has .hg(−s) (x0) ≤ α + s; so that, for s small enough, . hg(−s) (x0) >

hf (−s) (x0), and it follows that .h(f +g)(−s) (x0) = hf (−s) (x0). ⨅⨆
The oscillation exponent takes the value . β for a chirp; it is the first of second 

generation exponents that do not measure a regularity, but yield additional 
information, paving the way to a richer description of singularities. In order to go 
further in this direction, we consider another example: Lacunary combs, which 
were first considered in [6, 72] (we actually deal here with a slight variant). Let 
.φ = 1[0,1]. 

Definition 8 Let .α ∈ R and .γ > ω > 0. The lacunary comb .Fα
ω,γ , is  

.Fα
ω,γ (x) =

∞∑

j=1

2−αjφ
(
2γj (x − 2−ωj )

)
. (34) 

We consider its behaviour near the singularity at .x0 = 0: if  .α > −γ , then 
.Fα

ω,γ ∈ L1(R) and it is locally bounded if and only if .α ≥ 0. In that case, one 
easily checks that 

.hFα
ω,γ

(0) = α

ω
, and hFα

ω,γ
(−1) (0) = α + γ

ω
(35) 

and one obtains (see [6]) that . OFα
ω,γ

(0) = γ
ω

− 1.
We conclude that chirps and lacunary combs are two examples of oscillating 

singularities. They are, however, of different nature: In the second case, oscillation 
is due to the fact that this function vanishes on larger and larger proportions of 
small balls centered at the origin (this is detailed in [72], where this phenomenon is 
precisely quantified through the use of accessibility exponent of a set at a point). 
On the other hand, chirps are oscillating singularities for a different reason: It is
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due to very fast oscillations, and compensations of signs. This can be checked by 
verifying that the oscillation exponent of .|Cα,β | at 0 vanishes. 

We will now see that this difference can be put in evidence by considering the 
variations of the p-exponent. Comparing the p-exponents of chirps and lacunary 
combs allows to draw a distinction between their singularities; indeed, for .p ≥ 1, 
see [73], 

.h
p
Fα

ω,γ
(0) = α + 1

p

(γ

ω
− 1

)
(36) 

whereas a straightforward computation yields that 

. ∀p, h
p
Cα,β

(0) = α.

We conclude that the p-exponent of .Fα
ω,γ varies with p, whereas the one of 

.Cα,β does not. We will introduce another pointwise exponent which captures the 
lacunarity of the combs; it requires first the following notion: If .f ∈ L

p
loc in a 

neighborhood of . x0 for .p > 1, the  critical Lebesgue index of f at . x0 is 

.pf (x0) = sup{p : f ∈ L
p
loc(R) in a neighborhood of x0}. (37) 

The p-exponent at . x0 is defined on the interval .[1, pf (x0)] or .[1, pf (x0)). We  
denote: .qf (x0) = 1/pf (x0).Note that .pf (x0) can take the value .+∞. An additional 
pointwise exponent, which, in the case of lacunary combs, quantifies the sparsity of 
the “teeth” of the comb, can be defined as follows see [72]. Its advantage is that it 
quantifies the “lacunarity information” using a single parameter instead of the whole 
function .p → h

(p)
f (x0). 

Definition 9 Let .f ∈ L
p
loc in a neighborhood of . x0 for a .p > 1. The lacunarity 

exponent of f at . x0 is 

.Lf (x0) = ∂

∂q

(
h

(1/q)
f (x0)

)

q=qf (x0)
+ . (38) 

This quantity may have to be understood as a limit when .q → qf (x0), since 

.h
1/q
f (x0) is not necessarily defined for .q = qf (x0). This limit always exists as a 

consequence of the concavity of the mapping .q → h
1/q
f (x0), and it is nonnegative 

(because this mapping is increasing). 
The lacunarity exponent of .Fα

ω,γ at 0 is . γ
ω

− 1, which puts into light the fact 
that this exponent allows to measure how .Fα

ω,γ vanishes on “large sets” in the 
neighborhood of 0 (see [72] for a precise statement). Furthermore the oscillation 
exponent of .Fα

ω,γ at 0 is . γ
ω

− 1, so that it coincides with the lacunarity exponent. 
The oscillation exponent is always larger than the lacunarity exponent. A way to 
distinguish between the effect due to lacunarity and the one due to cancellations is
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to introduce a third exponent, the cancellation exponent 

. Cf (x0) = Of (x0) − Lf (x0).

The lacunarity and the cancellation exponents lead to the following classification of 
pointwise singularities see [6]. 

Definition 10 Let f be a tempered distribution on . R: 

• f has a canonical singularity at . x0 if .Of (x0) = 0. 
• f has a balanced singularity at . x0 if .Lf (x0) = 0 and . Cf (x0) /= 0.
• f has a lacunary singularity at . x0 if .Cf (x0) = 0 and .Lf (x0) /= 0. 

Cusps are typical examples of canonical singularities, chirps are typical examples 
of balanced singularities and lacunary combs are typical examples of lacunary 
singularities. 

Many probabilistic models display lacunary singularities: It is the case e.g. for 
random wavelet series [6, 72], some Lévy processes, see [18] or fractal sums of 
pulses [103]. Note that our comprehension of this phenomenon is very partial: For 
instance, in the case of Lévy processes, the precise determination of the conditions 
that a Lévy measure should satisfy in order to guarantee the existence of lacunary 
singularities has not been worked out: in [18], P. Balanca proved that some self-
similar Lévy processes with even Lévy measure display oscillating singularities, 
which actually turn out to be lacunary singularities and also that Lévy processes 
which have only positive jumps do not display such singularities; and, even in these 
cases, only a lower bound on their Hausdorff dimensions has been obtained. In 
other words, for Lévy processes, a joint multifractal analysis of the Hölder and the 
lacunarity exponent remains to be worked out. Note also that there exists much less 
examples of functions with balanced singularities: In a deterministic setting it is 
the case for the Riemann function [68] at certain rational points. However, to our 
knowledge, stochastic processes with balanced singularities have not been met up 
to now. 

Another important question is to find numerically robust ways to determine if a 
signal has points where it displays balanced or lacunary singularities. This question 
is important in several areas of physics; for instance, in hydrodynamic turbulence, 
proving the presence of oscillating singularities would validate certain vortex 
stretching mechanisms which have been proposed, see [49]. Another motivation is 
methodological: if a signal only has canonical singularities, then its p-multifractal 
spectrum does not depend on p and its singularity spectrum is translated by t after 
a fractional integral of order, so that all methods that can be used to estimate 
its multifractal spectrum yield the same result (up to a known shift in the case 
of a fractional integration). An important questions related with the multifractal 
formalism is to determine if some of its variants allow to throw some light on these 
problems. Motivated by applications to physiological data, we shall come back to 
this question in Sects. 2.9 and 3.3.
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Note that the choice of three exponents to characterize the “behaviour” of a 
function in the neighbourhood of one of its singularities may seem arbitrary; indeed, 
one could use the very complete information supplied by the following two variables 
function: If f is a tempered distribution, then the fractional exponent of f at . x0 is 
the two variable function 

. Hf,x0(q, t) = h
1/q
f (−t) (x0) − t,

see [6] where this notion is introduced and its properties are investigated. However, 
storing the pointwise regularity behaviour through the use of a two-variables 
function defined at every point is unrealistic, hence the choice to store only 
the information supplied by the three parameters we described. This choice is 
motivated by two conflicting requirements: On one hand, one wishes to introduce 
mathematical tools which are sophisticated enough to describe several “natural” 
behaviours that can show up in the data, such as those supplied by cusps, chirps, 
and lacunary combs. On other hand, at the end, classification has to bear on as little 
parameters as possible in order to be of practical use in applications; the goal here 
is to introduce a multivariate multifractal analysis based on a single function f , but  
applied to several pointwise exponents associated with f (say two or three among a 
regularity, a lacunarity and a cancellation exponent). 

Our theoretical comprehension of which functions can be pointwise exponents 
is extremely partial, see [106] for a survey on this topic: It has been known for a 
long time that a pointwise Hölder exponent .hf (x) can be any nonnegative function 
of x which can be written as a liminf of a sequence of continuous functions, see 
[16, 39, 53], but the same question for p-exponents is open (at least in the case 
where it takes negative values). Similarly, which couples of functions . (h(x),O(x))

can be the joint Hölder and oscillation exponents of a function also is an open 
question (see [57] for partial results), and it is the same if we just consider the 
oscillation exponent, or couples including the lacunarity exponent. One meets 
similar limitations for multifractal spectra: In the univariate setting supplied by 
the multifractal Hölder spectrum, the general form of functions which can be 
multifractal spectra is still open; nonetheless a partial result is available: functions 
which can be written as infima of a sequence of continuous functions are multifractal 
spectra [52]; additionally, as soon as two exponents are involved, extremely few 
results are available. For instance, if f is a locally bounded function, define its 
bivariate oscillation spectrum as 

. Df (H, β) = dim{h : hf (x) = H and Of (x) = β}.

Which functions of two variables .D(H, β) can be bivariate oscillation spectra is a 
completely open problem.
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2.7 Mathematical Results Concerning the Multifractal 
Formalism 

We now consider a general setting where .h : R→ R is a pointwise exponent derived 
from a multiresolution quantity .dλ(= dj,k) according to Definition 6, and defined in 
space dimension d. The associated multifractal spectrum . D is 

. D(H) = dim({x : h(x) = H }).

The support of the spectrum is the image of the mapping .x → h(x), i.e. the 
collection of values of H such that 

. {x ∈ R : h(x) = H } /= ∅

(note that this denomination, though commonly used, is misleading, since it may 
not coincide with the mathematical notion of support of a function). 

The leader scaling function associated with the multiresolution quantities . (dj,k)

is 

.∀q ∈ R, ζf (q) = lim inf
j→+∞

log

(
2−j

∑

k

|dj,k|q .

)

log(2−j )
. (39) 

Note that, in contradistinction with the wavelet scaling function, it is also defined for 
.p < 0. Referring to “leaders” in the name of the scaling function does not mean that 
the .dj,k are necessarily obtained as wavelet leaders or wavelet p-leaders, but only to 
prevent any confusion with the wavelet scaling function. The Legendre spectrum is 

.L(H) := inf
q∈R(1 + qH − ζf (q)). (40) 

As soon as relationships such as (31) hold, then the following upper bound is valid 

.∀H, D(H) ≤ L(H) (41) 

(see [61] for particular occurrences of this statement, and [4] for the general setting). 
However, for a number of synthetic processes with known .D(H) (and for a proper 
choice of the multiresolution quantity), this inequality turns out to be an equality, in 
which case, we will say that the multifractal formalism holds. The leader scaling 
functions obtained using wavelet leaders or p-leaders can be shown to enjoy the 
same robustness properties as listed at the end of Sect. 2.4, see  [4] (it is therefore 
also the case for the Legendre spectrum). It follows from their mathematical and 
numerical properties that wavelet leader based techniques form the state of the art 
for real-life signals multifractal analysis (Fig. 5).
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Fig. 5 Representation of scale function and the univariate Hölder Legendre spectra of the 
primitives of heart beat frequency (left) and cadence (right) of one marathon runner during the 
entire race. The multiresolution quantities used in these derivation are the wavelet leaders of the 
primitive of the data 

In applications, one cannot have access to the regularity exponent at every point 
in a numerically stable way, and thus .D(H) is unaccessible; this explains why, in 
practice, .L(H) is the only computationally available spectrum, and it is used as such 
in applications. However, information on the pointwise exponent may be inferred 
from the Legendre spectrum. Such results are collected in the following theorem, 
where they are stated in decreasing order of generality. 

Theorem 1 Let .h : R→ R) be a pointwise exponent, and assume that it is derived 
from multiresolution quantities .dj,k according to Definition 6. The following results 
on h hold: 

• Let 

. hmin = lim inf
j→+∞

log

(
sup
k

dj,k

)

log(2−j )
and hmax = lim inf

j→+∞

log

(
inf
k

dj,k

)

log(2−j )

(42) 

then 

.∀x ∈ R hmin ≤ h(x) ≤ hmax. (43)
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• If the Legendre spectrum has a unique maximum for .H = c1, then 

. for almost every x, h(x) = c1; (44) 

• If the leader scaling function (39) associated with the .dj,k is affine, then f is a 
monohölder function, i.e. 

. ∃H0 : ∀x, h(x) = H0,

where . H0 is the slope of the leader scaling function. 

Remark 4 The last statement asserts that, if h is a pointwise exponent associated 
with a function f , then f is a monohölder function. This result has important 
implications in modeling since it yields a numerically simple test, based on global 
quantities associated with the signal, and which yields the pointwise exponent every-
where. This is in strong contradistinction with the standard pointwise regularity 
estimators, see e.g. [19] and ref. therein, which are based on local estimates, and 
therefore on few data thus showing strong statistical variabilities, and additionally 
often assume that the data follow some a priori models. 

Proof We first prove the upper bound in (43). Let .α > hmax ; there exists a sequence 
.jn → +∞ such that 

. log

(
inf
k

djn,k

)
≥ log(2−αjn),

so that at the scales . jn all . dλ are larger than .2−αjn . It follows from (31) that 

. ∀x, h(x) ≤ α,

and the upper bound follows. The proof of the lower bound is similar (see e.g. [70]). 
⨅⨆

The second statement is direct consequence of the following upper bounds for 
the dimensions of the sets 

.E+
H = {h(x) ≥ H } and E−

H = {h(x) ≤ H } (45) 

which are a slight improvement of (41), see [70]: 

Proposition 2 Let h be a pointwise exponent derived from the multiresolution 
quantity .(dj,k). Then the following bounds hold: 

. dim(E−
H ) ≤ inf

q>0
(1 + qH − ζf (q)) and dim(E+

H ) ≤ inf
q<0

(1 + qH − ζf (q))

(46)
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Let us check how (44) follows from this result. Note that the first (partial) Legendre 
transform yields the increasing part of .L(H) for .H ≤ c1 and the second one yields 
the decreasing part for .H ≥ c1. If . L has a unique maximum for .H = c1, it follows 
from (46) that 

. ∀n, dim(E−
c1−1/n) < 1 and dim(E−

c1+1/n) < 1.

All of these sets therefore have a vanishing Lebesgue measure, which is also the 
case of their union. But this union is .{x : h(x) /= c1}. It follows that almost every x 
satisfies .h(x) = c1. 

Finally, if the leader scaling function is affine, then its Legendre transform is 
supported by a point . H0 and takes the value .−∞ elsewhere. The upper bound 
(41) implies that, if .H /= H0 the corresponding isoregularity set is empty. In other 
words, . H0 is the only value taken by the pointwise exponent, and f is a monohölder 
function. 

Remark 5 If .hmin = hmax , the conclusion of the first and last statement are the 
same. However, one can check that the condition .hmin = hmax is slightly less 
restrictive than requiring the leader scaling function to be affine (the two conditions 
are equivalent if, additionally, the .lim inf in (42) is a limit). 

The parameter . c1 defined in Theorem 1 can be directly estimated using 
log-log plot (see [5] and ref. therein), and, in practice it plays an important 
role in classification as we will see in the next section. When the mul-
tiresolution quantity used is the p-leaders of a function f , the associated 
exponent . c1 may depend on p, and we will mention this dependency 
and denote this parameter by .c1(p, f ). This is in contradistinction with 
the exponent .hmin defined by (42), which, in the case of functions with 
some uniform Hölder regularity, coincides with the exponent .hmin

f defined 
by (26) for leaders and p-leaders, as shown by the following lemma; 
note that it is actually preferable to compute it using (26), which has 
the advantages of being well defined without any a priori assumption 
on f . 

Lemma 2 Let .f : R → R be such that .hmin
f > 0. Then the .hmin parameter 

computed using p-leaders all coincide with the .hmin
f computed using wavelet 

coefficients. 

Let us sketch the poof of this result. Suppose that .hmin
f > 0 and let .α > 0 be 

such that .α < hmin
f . Then, the wavelet coefficients of f satisfy 

.∃C, ∀j, k |cj,k| ≤ C2−αj .
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Therefore the p-leaders of f satisfy 

. 𝓁
(p)
λ ≤

⎛

⎝
∑

λ'⊂3λ

(2−αj '
)p 2j−j '

⎞

⎠
1/p

. ≤
⎛

⎝
∑

j '≥j

2−αpj '
2j−j '

⎞

⎠
1/p

≤ C2−αj ;

it follows that the corresponding p-leader is smaller that .|cλn | so that the .hmin com-
puted using p-leaders is smaller that the one computed using wavelet coefficients. 
Conversely, by definition of .hmin

f , there exists a sequence of dyadic intervals . cλn of 
width decreasing to 0, and such that 

. |cλn | ∼ 2−hmin
f jn ,

and the corresponding p-leader is larger that .|cλn | so that the .hmin computed using 
p-leaders is smaller that the one computed using wavelet coefficients. 

The following result yields an important a priori bound on the dimensions of the 
singularity sets corresponding to negative regularity exponents, see [73]. 

Proposition 3 Let .p > 0, and let .f : R → R be a function such that .ηf (p) > 0. 
Then its p-spectrum satisfies 

. ∀h, Dp(H) ≤ 1 + Hp

Let us elaborate on the information supplied by the exponent .c1(p, f ): A direct 
consequence of (44) is that, if a signal f satisfies that the exponent .c1(p, f ) takes 
the same value for .p1 < p2, then this implies that the p-exponent satisfies that 

. for almost every x, h
p1
f (x) = h

p2
f (x),

which implies that the mapping .p → h
p1
f (x) is constant for .p ∈ [p1, p2]; but, since 

the mapping .p → h
1/p
f (x0) is concave and increasing, see [6, 72], it follows that this 

mapping is constant for p small enough; as a consequence, the lacunarity exponent 
vanishes at x. Similarly, if, for a given p, .c1(p, f (−1)) − c1(p, f ) = 1, this implies 
that 

. for almost every x, h
p

f (−1) (x) = h
p
f (x) + 1,

and the same argument as above, see [6, 72], yields the absence of oscillating 
singularities for almost every point. In other words, the computation of .c1(p) yields 
a key information on the nature of the singularities a.e. of the signal, which we
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summarize in the following statement, which will have implications in the next 
section for the analysis of marathon runners data. 

Proposition 4 Let .f : R→ R be a function in . Lp. 
If 

. ∃q > p : c1(p, f ) = c1(q, f ),

then for almost every x, f has no lacunary singularity at x. 
If f satisfies 

. ∃p : c1(p, f (−1)) − c1(p, f ) = 1,

then, for almost every x, f has a canonical singularity at x. 

These two results are characteristic of signals that only contain canonical 
singularities, see Sect. 2.6, and they also demonstrate that .c1(p, f ), which, in 
general, depends on the value of p is intrinsic for such data (see a contrario [72] 
where the exponent .c1(p, f ) of lacunary wavelet series is shown to depend on the 
value of p, and [103] where the same result is shown for random sums of pulses). 
Note that such results are available in the discrete wavelet approach only; they would 
not be possible using the WTMM or the MFDFA approaches, which do not allow 
to draw differences between various pointwise regularity exponents and therefore 
do not yield spectra fitted to different values of the p-exponent. To summarize, the 
advantages of the p-leader based multifractal analysis framework are: the capability 
to estimate negative regularity exponents, better estimation performances, and a 
refined characterization of the nature of pointwise regularities. 

One important argument in favor of multifractal analysis is that it supplies robust 
classification parameters, in contradistinction with pointwise regularity which can 
be extremely erratic. Consider for instance the example of a sample path of a 
Lévy process without Brownian component (we choose this example because such 
processes now play a key role in statistical modeling): Its Hölder exponent is a 
random, everywhere discontinuous, function which cannot be numerically estimated 
or even drawn [56]: In any arbitrary small interval .[a, b] it takes all possible values 
.H ∈ [0,Hmax]. On the opposite, the multifractal spectrum (which coincides with 
the Legendre spectrum) is extremely simple and robust to estimate numerically: 
It is a deterministic linear function on the interval .[0,Hmax] (with . D(Hmax) =
1). This example is by no means accidental: though one can simply construct 
stochastic processes with a random multifractal spectrum (consider for instance a 
Poisson process restricted to an interval of finite length), large classes of classical 
processes have simple deterministic multifractal spectra (and Legendre spectra), 
though no simple assumption which would guarantee this results is known. The 
determination of a kind of “0-1 law” for multifractal spectra, which would guarantee 
that, under fairly general assumptions, the spectrum almost surely is a deterministic 
function, is a completely open problem, and its resolution would greatly improve our 
understanding of the subject. Even in the case of Gaussian processes, though it is
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known that such processes can have a random Hölder exponent [15], the possibility 
of having a random multifractal spectrum still is a open issue. 

2.8 Generic Results 

Let us come back to the problem raised in Sect. 2.1 of estimating the size of the 
Hölder singularity sets of increasing functions which led us to the key idea that the 
Hausdorff dimension is the natural way to estimate this size. One can wonder if the 
estimate (15) that we found for the multifractal spectrum is optimal. In 1999, Z. 
Buczolich and J. Nagy answered this question in a very strong way, showing that it 
is sharp for a residual set of continuous increasing functions, see [34]. What does 
this statement precisely mean? Let E be the set of continuous increasing functions 
.f : R → R, endowed with the natural distance supplied by the .sup norm. Then 
equality in (15) holds (at least) on a residual set in the sense of Baire categories, i.e. 
on a countable intersection of open dense sets. 

This first breakthrough opened the way to genericity results in multifractal 
analysis. They were the consequence of the important remark that scaling functions 
for .p > 0 can be interpreted as stating that f belongs to an intersection of Sobolev 
spaces . Eη (in the case of the Kolmogorov scaling function) or of a variant of these 
spaces, the oscillation spaces in the case of the leader scaling function [62]. One 
easily checks that . Eη is a complete metric space, and the Baire property therefore 
is valid (i.e. a countable intersection of open dense sets is dense). The question 
formulated by Parisi and Frisch in [99], can be reformulated in this setting: If 
equality in (41) cannot hold for every function in . Eη (since e.g. because it contains 
.C∞ functions), nonetheless it holds on a residual set [59]. This result found many 
extensions: The first one consists in replacing the genericity notion supplied by 
Baire’s theorem by the more natural notion supplied by prevalence, which is an 
extension, in infinite dimensional function spaces of the notion of “Lebesgue almost 
everywhere”, see [38, 115] for the definition of this notion and its main properties, 
and [48] for its use in the setting of multifractal analysis. The conclusions drawn in 
the Baire setting also hold in the prevalence setting, and raise the question of the 
determination of a stronger notion of genericity, which would imply both Baire and 
prevalence genericity, and which would be the “right ” setting for the validity of the 
multifractal formalism. A natural candidate is supplied by the notion of porosity , 
see [87], but the very few results concerning multifractal analysis in this setting do 
not allow to answer this question yet. Note also that Baire and prevalence results 
have been extended to the p-exponent setting [47], which allows to deal with spaces 
of functions that are not locally bounded. Another key problem concerning the 
generic validity of the multifractal formalism concerns the question of taking into 
account the information supplied by negative values of p in the scaling function 
(39). The main difficulty here is that the scaling function does not define a function 
space any longer, and the “right” notion of genericity which should be picked is 
completely open: Though Baire and prevalence do not really require the setting
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supplied by a (linear) function space, nonetheless these notions are not fitted to 
the setting supplied by a given scaling function which includes negative values of 
p. In [22] J. Barral and S. Seuret developed an alternative point of view which is 
less “data driven”: They reinterpreted the question in the following way: Given a 
certain scaling function .η(p), they considered the problem of constructing an ad 
hoc function space which is taylored so that generically (for the Baire setting), 
functions in such a space satisfy the multifractal formalism for the corresponding 
scaling function, including its values for .p < 0 (and Legendre spectrum). Another 
limitation of the mathematical results of genericity at hand is that they are not able to 
take into account selfsimilarity information: In (28), in order to introduce a quantity 
which is always well-defined, and corresponds to a function space regularity index, 
the scaling function is defined by a .lim inf. But, most of the time, what is actually 
observed on the data (and what is really needed in order to obtain a numerically 
robust estimate) is that this .lim inf actually is a true limit, which means that the . Lp

averages of the data display exact power-law behaviours at small scales. Up to now, 
one has not been able to incorporate this type of information in the function space 
modeling developed. 

2.9 Implications on the Analysis of Marathon Runners Data 

The increasing popularity of marathons today among all ages and levels is inherited 
from the human capacity to run long distances using the aerobic metabolism [86], 
which led to a rising number of amateur marathon runners who end the 42,195 km 
between 2h40min and 4h40min. Therefore, even if nowadays, marathon running 
becomes “commonplace”, compared with ultra-distance races, this mythic Olympic 
race is considered to be the acme of duration and intensity [93]. Running a marathon 
remains scary and complex due to the famous “hitting the wall” phenomenon, 
which is the most iconic feature of the marathon [28]. This phenomenon was 
previously evaluated in a large-scale data analysis of late-race pacing collapse in 
the marathon [110]; Smyth [109] presented an analysis of 1.7 million recreational 
runners, focusing on pacing at the start and end of the marathon, two particularly 
important race stages. They showed how starting or finishing too quickly could 
result in poorer finish-times, because fast starts tend to be very fast, leading to 
endurance problems later, while fast finishes suggest overly cautious pacing earlier 
in the race [109]. Hence, the definition of a single marathon pace is based on 
the paradigm that a constant pace would be the ideal one. However, in [30], 
a 3 years study shows that large speed and pace variations are the best way 
to optimize performance. Marathon performance depends on pacing oscillations 
between non symmetric extreme values [101]. Heart rate (HR) monitoring, which 
reflects exercise intensity and environmental factors, is often used for running 
strategies in marathons. However, it is difficult to obtain appropriate feedback for 
only the HR value since, as we saw above, the cardiovascular drift occurs during 
prolonged exercise. Therefore, now we have still to investigate whether this pace
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(speed) variation has a fractal behavior and if so, whether this is the case for the 
runners’s heart rate which remains a pacer for the runners who aim to keep their 
heart rate in a submaximal zone (60–80% of the maximal heart rate) [93]. Here, 
we hypothesized that marathonians acceleration (speed variation), cadence (number 
of steps per minute) and heart rate time series follow a multifractal formalism and 
could be described by a self similar function. Starting in the 1990s, many authors 
demonstrated the fractal behavior of physiological data such as heart rate, arterial 
blood pressure, and breath frequency of human beings, see e.g. [2, 51]. In 2005, 
using the Wavelet Transform Maxima Method, E. Wesfreid, V. L. Billat and Y. 
Meyer [113] performed the first multifractal analysis of marathonians heartbeats. 
This study was complemented in 2009 using the DFA (Detrended Fluctuation 
Analysis) and wavelet leaders applied on a primitive of the signal [29]. Comparing 
the outputs of these analyses is hasardous; indeed, as already mentioned, these 
methods are not based on the same regularity exponents: WTMM is adapted to the 
weak scaling exponent [97], DFA to the p-exponent for .p = 2 [73, 84], and wavelet 
leaders to the Hölder exponent [61]. In the following, we will propose a method 
of digital multifractal analysis of signals based on p-leaders, which, in some cases, 
can avoid performing fractional integrations (or primitives) and thus transform the 
signal. In [29], it was put in evidence that multifractal parameters associated with 
heart beat intervals evolve during the race when the runner starts to be deprived 
of glycogen (which is the major cause of the speed diminution at the end of the 
race. This study also revealed that fatigue decreases the running speed and affects 
the regularity properties of the signal which can be related with the feelings of the 
runner measured by the Rate of Perception of Exhaustion (RPE), according to the 
psychophysiological scale of Borg (mainly felt through the breathing frequency). 
In addition, there is a consistent decrease in the relationship between speed, step 
rate, cardiorespiratory responses (respiratory rate, heart rate, volume of oxygen 
consumed), and the level of Rate of Perception of Exhaustion (RPE), as measured 
by Borg’s psychophysiological scale. The runner does not feel the drift of his heart 
rate, in contradistinction with his respiratory rate. These physiological data are not 
widely available and only heart rate and stride rate are the measures available to 
all runners for economic reasons. Moreover, these data are generated heartbeat by 
heartbeat and step by step. 

Our purpose in this section is to complement these studies by showing that a 
direct analysis on the data is possible if using p-leaders (previous studies using 
the WTMM or the standard leaders had to be applied to a primitive of the 
signal), and that they lead to a sharper analysis of the physiological modifications 
during the race. We complement the previous analyses in order to demonstrate the 
modifications of multifractal parameters during the race, and put in evidence the 
physiological impact of the intense effort after the 20th km. For that purpose, we 
will perform a multifractal analysis based on p-leaders. 

We analyzed the heartbeat frequency of 8 marathon runners (men in the same age 
area). Figure 2 shows the determination of exponents .hmin

f for heartbeat frequency 
and cadence through a log-log regression; the regression is always performed 
between the scales j = 8 and j = 11 (i.e. between 26s and 3mn 25s), which have
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been identified as the pertinent scales for such physiological data, see [2]. For most 
marathon runners, .hmin

f is negative, see Table 1, which justifies the use of p-leaders. 
We then compute the wavelet scaling function in order to determine a common value 
of p for which all runners satisfy .η(p) > 0, see Fig. 3 where examples of wavelet 
scaling function are supplied for heartbeat frequency and cadence. In the case of 
heartbeat frequency, the computation of the 8 wavelet scaling functions yields that 
.p = 1 and .p = 1.4 can be picked. The corresponding p-leaders multifractal 
analysis is performed for these two values of p, leading to values of .c1(p) which 
are also collected in Table 1. 

In Fig. 6, the value of the couple .(hmin
f , c1(p)) is plotted (where we denote by 

.c1(p) the value of H for which the maximum of the p-spectrum is reached). The 
values of .c1(p) are very close to . 0.4 whereas the values of .hmin

f notably differ, and 
are clearly related with the level of practice of the runners. Thus M8 is the only trail 
runner and improved his personal record on that occasion; he practices more and 
developed a very uneven way of running. Table 1 shows that the values of .c1(p) do 
not notably differ for different values of p and, when computed on a primitive of 
the signal, are shifted by 1. We are in the situation described in Proposition 4 and 
we conclude in the absence of oscillating singularities at almost every point. This 
result also shows that .c1(p), which may depend on the value of p (see [72] where 
it is shown that it is the case for lacunary wavelet series), is intrinsic for such data. 
We will see in Sect. 3.5 that a bivariate analysis allows to investigate further in the 
nature of the pointwise singularities of the data. 

We now consider the evolution of the multifractality parameters during a 
marathon: at about the 25th km (circa 60% of the race) runners feel an increased 
penibility on the RPE Borg scale (Fig. 7). Therefore we expect to find two regimes 
with different parameters before and after this moment. This is put in evidence 
by Fig. 8 which shows the evolution of the multifractality parameters during the 
first half and the last fourth of the marathon thus putting in evidence the different 
physiological reactions at about the 28th km. From the evolution of the multifractal 
parameters between the beginning and the end of the marathon race, we can 
distinguish between the less experimented marathon runners, whichever their level 
of fitness, and those who know how to self pace their race. Indeed, according 
to the evolution of the couple .(hmin

f , c1(p)), the less experimented (R 7) loosed 
the regularity of his heart rate variation. This shows that the marathon running 
experience allows to feel how to modulate the speed for a conservative heart rate 
variability. From the evolution of the multifractal parameters between the beginning 
and the end of the marathon race, we can distinguish between the less experimented 
marathon runners, whichever their level of fitness and those who know how to 
self pace their race. In [101] its was shown that the best marathon performance 
was achieved with a speed variation between extreme values. Furthermore, a 
physiological steady state (heart rate and other cardiorespiratory variables), are 
obtained with pace variation [31]. This conclusion is in opposition with the less 
experimented runners beliefs that the constant pace is the best, following the 
mainstream non scientific basis recommendations currently available on internet.
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Fig. 6 Representation of the 
pair .(Hmin, c1(p)) with 
.p = 1 deduced from the 
1-spectrum of heart rate and 
computed for the entire race; 
.Hmin appears as the most 
relevant classification 
parameter. The isolated point 
on the left corresponds to R8, 
the most trained runner 

Fig. 7 Estimation of .hmin
f by log-log regression for the heart rate of a marathon runner at the 

beginning (50% first part of the race) on the left and the end (25% last part of the race) on the 
right. The clear difference of the values obtained shows that the exponent .hmin

f is well fitted to 
characterize the evolution of physiological rythms during the race. These data, together with the 
evolution of the parameter .c1(p), are collected in Fig. 8 with . p = 1

In Sect. 3.5 we will investigate the additional information which is revealed by 
the joint analysis of several physiological data. 

3 Multivariate Multifractal Analysis 

Up to now, in most applications, multifractal analysis was performed in univariate 
settings, (see a contrario [88]), which was mostly due to a lack of theoretical 
foundations and practical analysis tools. Our purpose in this section is to provide a 
comprehensive survey of the recent works that started to provide these foundations, 
and to emphasize the mathematical questions which they open. In particular, 
multivariate spectra also encode on specific data construction mechanisms. Mul-



A Review of Univariate and Multivariate Multifractal Analysis 39

Fig. 8 Evolution of the couple .(Hmin, c1(p)) with .p = 1 deduced from the 1-spectrum of the 
heart rate between the beginning (in blue) and the end (in red) of the marathon: the evolutions 
are similar except for three runners: R3 and R6 who had great difficulties and R7 who is the least 
experienced runner with a much longer running time 

tivariate multifractal analysis deals with the joint multifractal analysis of several 
functions. For notational simplicity, we assume in the following that we deal with 
two functions . f1 and . f2 defined on . Rd and that, to each function is associated a 
pointwise regularity exponent .h1(x) and .h2(x) (which need not be the same). 

3.1 Multivariate Spectrum 

On the mathematical side, the main issue is to understand how the isoregularity sets 

. Ef1(H1) = {x : h1(x) = H1} and Ef2(H2) = {x : h2(x) = H2}

of each function are “related”. A natural way to translate this loose question into 
a precise mathematical problem is to ask for the determination of the multivariate 
multifractal spectrum defined as the two-variables function 

.D(f1,f2)(H1,H2) = dim({x : h1(x) = H1 and h2(x) = H2}). (47)
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this means that we want to determine the dimension of the intersection of the 
two isoregularity sets .Ef1(H1) and .Ef2(H2). The determination of the dimension 
of the intersection of two fractal sets usually is a difficult mathematical question, 
with no general results available, and it follows that few multivariate spectra have 
been determined mathematically, see e.g. [23, 24] for a joint analysis of invariant 
measures of dynamical systems. One can also mention correlated and anticorrelated 
binomial cascades, see Sect. 3.4 for the definition of these cascades, and [74] for  
the determination of bivariate spectra when two of these cascades are considered 
jointly. 

On the mathematical side, two types of results often show up. A first category 
follows from the intuition supplied by intersections of smooth manifolds: In general, 
two surfaces in . R3 intersect along a curve and, more generally, in . Rd , manifolds 
intersect generically according to the sum of codimensions rule: 

. dim(A ∩ B) = min(dimA + dimB − d,−∞)

(i.e. the “codimensions” .d − dimA and .d − dimB add up except if the output is 
negative, in which case we obtain the emptyset). This formula is actually valid for 
numerous examples of fractal sets, in particular when the Hausdorff and Packing 
dimensions of one of the sets A or B coincide (e.g. for general Cantor sets) [94]; 
in that case “generically” has to be understood in the following sense: For a subset 
of positive measure among all rigid motions . σ , . dim(A ∩ σ(B)) = min(dimA +
dimB − d,−∞). However the coincidence of Hausdorff and Packing dimensions 
needs not be satisfied by isoregularity sets, so that such results cannot be directly 
applied for many mathematical models. The only result that holds in all generality 
is the following: if A and B are two Borel subsets of . Rd , then, for a generic set of 
rigid motions . σ , .dim(A ∩ σ(B)) ≥ dimA + dimB − d. This leads to a first rule 
of thumb for multivariate multifractal spectra: When two functions are randomly 
shifted, then their singularity sets will be in “generic” position with respect to each 
other, yielding 

. D(f1,f2)(H1,H2) ≥ Df1(H1) +Df2(H2) − d.

In practice, this result suffers from two limitations: the first one is that, usually, 
one is not interested in randomly shifted signals but on the opposite for particular 
configurations where we expect the conjunction of singularity sets to carry relevant 
information. Additionally, for large classes of fractal sets, the sets with large 
intersection, the codimension formula is not optimal as they satisfy 

. dim(A ∩ B) = min(dimA, dimB).

While this alternative formula may seem counterintuitive, general frameworks 
where it holds were uncovered, cf. e.g., [20, 40, 42] and references therein. This is 
notably commonly met by limsup sets, obtained as follows: There exists a collection 
of sets . An such that A is the set of points that belong to an infinite number of the . An.
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This is particularly relevant for multifractal analysis where the singularity sets . E−
H

defined in (45) often turn out to be of this type: It is the case for Lévy processes or 
random wavelet series, see e.g. [14, 56, 58]). For multivariate multifractal spectra, 
this leads to an alternative formula 

.D(f1,f2) = min(Df1(H1),Df2(H2)) (48) 

expected to hold in competition with the codimension formula, at least for the 
sets . E−

H . The existence of two well motivated formulas in competition makes it 
hard to expect that general mathematical results could hold under fairly reasonable 
assumptions. Therefore, we now turn towards the construction of multifractal 
formalisms adapted to a multivariate setting, first in order to inspect if this approach 
can yield more intuition on the determination of multivariate spectra and, second, 
in order to derive new multifractality parameters which could be used for model 
selection and identification, and also in order to get some understanding on the ways 
that singularity sets of several functions are correlated. 

In order to get some intuition in that direction, it is useful to start with a 
probabilistic interpretation of the multifractal quantities that were introduced in the 
univariate setting. 

3.2 Probabilistic Interpretation of Scaling Functions 

We consider the following probabilistic toy-model: We assume that, for a given 
j , the wavelet coefficients .(cj,k)k∈Z of the signal considered share a common law 
. Xj and display short range memory, i.e. become quickly decorrelated when the 
wavelets .ψj,k and .ψj,k' are located far away (i.e. when .k − k' gets large); then, 
the wavelet structure functions (27) can be interpreted as an empirical estimation 
of .E(|Xj |p), i.e. the moments of the random variables . Xj , and the wavelet scaling 
function characterizes the power law behaviour of these moments (as a function 
of the scale . 2−j ). This interpretation is classically acknowledged for signals which 
display some stationarity, and the vanishing moments of the wavelets reinforce this 
decorrelation even if the initial process displays long range correlations, see e.g. the 
studies performed on classical models such as fBm ([1] and ref. therein). We will 
not discuss the relevance of this model; we just note that his interpretation has the 
advantage of pointing towards probabilistic tools when one shifts from one to several 
signals, and these tools will allow to introduce natural classification parameters 
which can then be used even when the probabilistic assumptions which led to their 
introduction have no reason to hold. 

From now on, we consider two signals . f1 and . f2 defined on . R (each one 
satisfying the above assumptions) with wavelet coefficients respectively .c1j,k and 

. c2j,k . The “covariance” of the wavelet coefficients at scale j is estimated by the
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empirical correlations 

. for m, n = 1, 2, Sm,n(j) = 2−j
∑

k

cm
j,kc

n
j,k. (49) 

Log-log regressions of these quantities (as a function of .log(2−j ) allow to determine 
if some power-law behaviour of these auto-correlations (if .m = n) and cross-
correlations (if .m /= n) can be put in evidence: When these correlations are found to 
be significantly non-negative, one defines the scaling exponents .Hm,n implicitly by 

. Sm,n(j) ∼ 2−Hm,nj

in the limit of small scales. Note that, if .m = n, the exponent associated with the 
auto-correlation simply is .ηf (2) and is referred to as the Hurst exponent of the data. 

Additionally, the wavelet coherence function is defined as 

. C1,2(j) = S1,2(j)√
S1,1(j)S2,2(j)

.

It ranges within the interval .[−1, 1] and quantifies, as a scale-dependent correlation 
coefficient, which scales are involved in the correlation of the two signals, see [7, 
114]. 

Note that probabilistic denominations such as “auto-correlation”, “cross-
correlations” and “coherence function” are used even if no probabilistic model 
is assumed, and used in order to derive scaling parameters obtained by log-log plot 
regression which can prove powerful as classification tools. 

As an illustration, we estimated these crosscorrelations concerning the following 
couples of data recorded on marathon runners: heart-beat frequency vs. cadence, 
and cadence vs. acceleration, see Fig. 9. In both cases, no correlation between 

Fig. 9 Wavelet coherence between heart-beat frequency and cadence (left) and between accelera-
tion and cadence (right)
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the wavelet coefficients at a given scale is put in evidence. Therefore, this is a 
situation where the additional bonus brought by measuring multifractal correlations 
is needed. Indeed, if the cross-correlations of the signals do not carry substantial 
information, this does not imply that the singularity sets of each signal are not 
related (as shown by the example supplied by Brownian motions in multifractal 
time, see below in Sect. 3.4). In that case, a natural idea is to look for correlations that 
would be revealed by the multiscale quantities associated with pointwise exponents 
rather than by wavelet coefficients. 

3.3 Multivariate Multifractal Formalism 

The idea that leads to a multivariate multifractal formalism is quite similar as the 
one which led us from wavelet scaling functions to leaders and p-leaders scaling 
functions: One should incorporate in the cross-correlations the multiscale quantities 
which allow to characterize pointwise regularity, i.e. replace wavelet coefficients by 
wavelet leaders in (49). 

Suppose that two pointwise regularity exponents . h1 and . h2 defined on . R are 
given. We assume that each of these exponents can be derived from corresponding 
multiresolution quantities . d1

j,k , and .d
2
j,k according to (31). A  grandcanonical 

multifractal formalism allows to estimate the joint spectrum .D(H1,H2) of the 
couple of exponents .(h1, h2) as proposed in [95]. In the general setting provided 
by multiresolution quantities, it is derived as follows: The multivariate structure 
functions associated with the couple .(d1

j,k, d
2
j,k) are defined by 

.∀r = (r1, r2) ∈ R2, S(r, j) = 2−j
∑

k

(d1
j,k)

r1(d2
j,k)

r2 , (50) 

see [6, 27] for the seminal idea of proposing such multivariate multiresolution 
quantities as building blocks of a grandcanonical formalism. Note that they are 
defined as a cross-correlation, which would be based on the quantities .d1

j,k and 

. d2
j,k , with the extra flexibility of raising them to arbitrary powers, as is the case 
for univariate structure functions. The corresponding bivariate scaling function is 

.ζ(r) = lim inf
j→+∞

log (S(r, j))

log(2−j )
. (51) 

The bivariate Legendre spectrum is obtained through a 2-variable Legendre 
transform 

.∀H = (H1,H2) ∈ R2, L(H) = inf
r∈R2

(1 − ζ(r) + H · r), (52)
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where .H · r denotes the usual scalar product in . R2. Apart from [95], this formalism 
has been investigated in a wavelet framework for joint Hölder and oscillation 
exponents in [10], in an abstract general framework in [100], and on wavelet leader 
and p-leader based quantities in [6, 72]. 

Remark 6 The setting supplied by orthonormal wavelet bases is well fitted to be 
extended to the multivariate setting, because the multiresolution quantities . dλ are 
defined on a preexisting (dyadic) grid, which is shared by both quantities. Note that 
this is not the case for the WTMM, where the multiresolution quantities are defined 
at the local maxima of the continuous wavelet transform (see (17)), and these local 
maxima differ for different signals; thus, defining multivariate structure functions in 
this setting would lead to the complicated questions of matching these local maxima 
correctly in order to construct bivariate structure functions similar to (50). 

The multivariate multifractal formalism is backed by only few mathematical 
results. A first reason is that, as already mentioned, the Legendre spectrum does 
not yield in general an upper bound for the multifractal spectrum, and this property 
is of key importance in the univariate setting. Another drawback is that, in 
contradistinction with the univariate case, the scaling function (51) has no function 
space interpretation. It follows that there exists no proper setting for genericity 
results except if one defines a priori this function space setting (as in [26, 27] 
where generic results are obtained in couples of function spaces endowed with the 
natural norm on a product space). We meet here once again the problem of finding a 
“proper” genericity setting that would be fitted to the quantities supplied by scaling 
functions. We now list several positive results concerning multivariate Legendre 
spectra. 

The following result of [75] shows how to recover the univariate Legendre 
spectra from the bivariate one. 

Proposition 5 Let .d1
j,k , and .d2

j,k be two multiresolution quantities associated with 
two pointwise exponents .h1(x) and .h2(x). The associated uni- and bi-variate 
Legendre spectra are related as follows: 

. L1(H1) = sup
H2

L(H1,H2) and L2(H2) = sup
H1

L(H1,H2).

This property implies that results similar to Theorem 1 hold in the multivariate 
setting. 

Corollary 1 Let .d1
j,k and .d2

j,k be two multiresolution quantities associated with 
two pointwise exponents .h1(x) and .h2(x). The following results on the couple 
.(h1(x), h2(x)) hold: 

• If the bivariate Legendre spectrum has a unique maximum for . (H1,H2) =
(c1, c2), then 

. for almost every x, h1(x) = c1 and h2(x) = c2. (53)
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• If the leader scaling function is affine then 

. ∃(c1, c2), ∀x, h1(x) = c1 and h2(x) = c2.

Note that the fact that the leader scaling function is affine is equivalent to the 
fact that the bivariate Legendre spectrum is supported by a point. In that case, if 
the exponents . h1 and . h2 are associated with the functions . f1 and . f2, then they are 
monohölder functions. 

Proof The first point holds because, if the bivariate Legendre spectrum has a unique 
maximum, then, its projections on the . H1 and the . H2 axes also have a unique 
maximum at respectively .H1 = c1 and .H2 = c2 and Proposition 5 together with 
Theorem 1 imply (53). 

As regards the second statement, one can use Proposition 5: If the bivariate 
scaling function is affine, then .L(H1,H2) is supported by a point, so that Propo-
sition 5 implies that it is also the case for univariate spectra .L(H1) and .L(H2), and 
Theorem 1 then implies that . h1 is constant and the same holds for . h2. ⨅⨆

Recall that, in general, the bivariate Legendre spectrum does not yield an upper 
bound for the multifractal spectrum (in contradistinction with the univariate case), 
see [74] where a counterexample is constructed; this limitation raises many open 
questions: Is there another way to construct a Legendre spectrum which would yield 
an upper bound for .D(H1,H2)? which information can actually be derived from the 
Legendre spectrum? A first positive result was put in light in [74], where a notion of 
“compatibility” between exponents is put in light and is shown to hold for several 
models: When this property holds, then the upper bound property is satisfied. It is 
not clear that there exists a general way to check directly on the data if it is satisfied; 
however, an important case where it is the case is when the exponents derived are the 
Hölder exponent and one of the “second generation exponents” that we mentioned, 
see [6, 72]. In that case, the upper bound property holds, and it allows to conclude 
that the signal does not display e.g. oscillating singularities, an important issue both 
theoretical and practical. Let us mention a situation where this question shows up: 
In [18], P. Balanca showed the existence of oscillating singularities in the sample 
of some Lévy processes and also showed that they are absent in others (depending 
on the Lévy measure which is picked in the construction); however, he only worked 
out several examples, and settling the general case is an important issue; numerical 
estimations of such bivariate spectra could help to make the right conjectures in this 
case. 

The general results listed in Corollary 1 did not require assumptions on correla-
tions between the exponents . h1 and . h2. We now investigate the implications of such 
correlations on the joint Legendre spectrum. For that purpose, let us come back 
to the probabilistic interpretation of the structure functions (50) in terms of cross-
correlation of the .(d1

j,k)
r1 and .(d2

j,k)
r2 . As in the univariate case, if we assume that, 

for a given j , the multiresolution quantities .d1
j,k and .d2

j,k respectively share common
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laws . X1
j and . X2

j and display short range memory, then (50) can be interpreted as an 

empirical estimation of .E(|X1
j |r1 |X2

j |r2). If we additionally assume that the . (d1
j,k)

and .(d2
j,k) are independent, then we obtain 

. S(r, j) = E(|X1
j |r1 |X2

j |r2) = E(|X1
j |r1) · E(|X2

j |r2),

which can be written 

.S(r1, r2, j) = S1(r1, j)S2(r2, j). (54) 

Assuming that .lim inf in (51) actually is a limit, we obtain . S(r1, r2, j) ∼
2−(ζ 1(r1)+ζ 2(r2))j yielding .ζ(r1, r2) = ζ 1(r1) + ζ 2(r2). Applying (52), we get 

. L(H1,H2) = inf
(r1,r2)∈R2

(1 − ζ 1(r1) + ζ 2(r2) + H1r1 + H2r2)

. = inf
r1

(1 − ζ 1(r1) + H1r1) + inf
r2

(1 − ζ 2(r2) + H2r2) − 1,

which leads to 

.L(H1,H2) = L(H1) +L(H2) − 1. (55) 

Thus, under stationarity and independence, the codimension rule applies for the 
multivariate Legendre spectrum. In practice, this means that any departure of the 
Legendre spectrum from (55), which can be checked on real-life data, indicates that 
one of the assumptions required to yield (55) (either stationarity or independence) 
does not hold (Fig. 10). 

As a byproduct, we now show that multivariate multifractal analysis can give 
information on the nature of the singularities of one signal, thus complementing 
results such as Proposition 4 which yielded almost everywhere information of this 
type. Let us consider the joint multifractal spectrum of a function f and its fractional 
integral of order s, denoted by .f (−s). If  f only has canonical singularities, then 
the Hölder exponent of .f (−s) satisfies . ∀x0, .hf (−s) (x0) = hf (x0) + s, so that the 
joint Legendre spectrum is supported by the line .H2 = H1 + s. In that case, the 
synchronicity assumption is satisfied and one can conclude that the joint multifractal 
spectrum is supported by the same segment; a contrario, a joint Legendre spectrum 
which is not supported by this line is interpreted as the signature of oscillating 
singularities in the data, as shown by the discussion above concerning the cases 
where the upper bound for bivariate spectra holds. Figs. 11, 12, and 13 illustrate 
this use of bivariate multifractal analysis: In each case, a signal and its primitive 
are jointly analyzed: The three signals are collected on the same runner and the 
whole race is analyzed. Figure 11 shows the analysis of heartbeat, Fig. 12 shows 
the cadence and Fig. 13 shows the acceleration. In the first case, the analysis is 
performed directly on the data using a p-exponent with .p = 1, whereas, for the
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Fig. 10 On the left, the bivariate multifractal spectrum between heart-beat frequency primitive 
and cadence primitive are shown, and, on the right, the bivariate multifractal spectrum between 
acceleration and cadence with fractional integral of order 1.5 are shown. This demonstrates the 
strong correlation between the pointwise singularities of the two data: indeed the bivariate spectra 
are almost carried by a segment, and a bivariate spectrum carried by a line .H2 = aH1 +b indicates 
a perfect match between the pointwise exponents according to the same relationship: . ∀x, . h2(x) =
ah1(x) + b

Fig. 11 Bivariate 1-spectrum of heartbeat frequency and its primitive: the bivariate spectrum lines 
up perfectly along the line . H2 = H1 + 1

two last ones, the analysis is performed on a fractional integral of order . 1/2. In  
each case, the results yield a bivariate Legendre spectrum supported by the segment 
.H2 = H1 + s, which confirms the almost everywhere results obtained in Sect. 2.9: 
The data only contain canonical singularities.
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Fig. 12 Bivariate Hölder spectrum of fractional integrals order .1/2 and .3/2 of cadence: the 
bivariate spectrum lines up perfectly along the line . H2 = H1 + 1

Fig. 13 Bivariate Hölder spectrum of fractional integrals of order .1/2 and .3/2 of acceleration: the 
bivariate spectrum lines up perfectly along the line . H2 = H1 + 1

3.4 Fractional Brownian Motions in Multifractal Time 

In order to put in light the additional information between wavelet correlations and 
bivariate scaling functions (and the associated Legendre spectrum), we consider the 
model supplied by Brownian motion in multifractal time, which has been proposed 
by B. Mandelbrot [36, 90] as a simple model for financial time series: Instead of the 
classical Brownian model .B(t), he introduced a time change (sometimes referred to 
as a subordinator) 

.B(f (t)) = (B ◦ f )(t)
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where the irregularities of f model the fluctuations of the intrinsic “economic time”, 
and typically is a multifractal function. In order to be a “reasonable” time change, 
the function f has to be continuous and strictly increasing; such functions usually 
are obtained as distribution functions of probability measures . dμ supported on . R (or 
on an interval), and which have no atoms (i.e. .∀a ∈ R, .μ(a) = 0); typical examples 
are supplied by deterministic or random cascades, and this is the kind of models that 
were advocated by B. Mandelbrot in [90]. Such examples will allow to illustrate the 
different notions that we introduced, and the additional information which is put into 
light by the bivariate Legendre spectrum and is absent from wavelet correlations. 

Let us consider the slightly more general setting of one fBm of Hurst exponent . α
(the case of Brownian motion corresponds to .α = 1/2) modified by a time change 
f . In order to simplify its theoretical multifractal analysis, we take for pointwise 
regularity exponent the Hölder exponent and we make the following assumptions on 
f : We assume that it has only canonical singularities and that, if they exist, the non-
constant terms of the Taylor polynomial of f vanish at every point even if the Hölder 
exponent at some points is larger than 1 (this is typically the case for primitives of 
singular measures). In that case, classical uniform estimates on increments of fBm, 
see [77] imply that 

. a.s. ∀t, hB◦f (t) = αhf (t), (56) 

so that 

. a.s. ∀H, DB◦f (H) = Df (H/α);

Note that the simple conclusion (56) may fail if the Taylor polynomial is not 
constant at every point, as shown by the simple example supplied by . f (x) = x

on the interval .[0, 1]. 
We now consider .B1 ◦ f and .B2 ◦ f : two independent fBm modified by the 

same deterministic time change f (with the same assumptions as above). It follows 
from (56) that, with probability 1, the Hölder exponents of .B1 ◦ f and . B2 ◦ f

coincide everywhere, leading to the following multifractal spectrum, which holds 
almost surely: 

.

⎧
⎪⎪⎨

⎪⎪⎩

if H1 = H2, D(B1◦f,B2◦f )(H1,H2) = Df

(
H1

α

)

if H1 /= H2, D(B1◦f,B2◦f )(H1,H2) = −∞.

(57) 

Figure 14 gives a numerical backing of this result: The Legendre spectrum 
numerically obtained corresponds to the theoretical multifractal spectrum. Let us 
give a non-rigourous argument which backs this result: The absence of oscillating 
singularities in the data implies that the maxima in the wavelet leaders are attained 
for a . λ' close to . λ, so that the wavelet leaders of a given magnitude will be close 
to coincide for both processes, and therefore the bivariate structure functions (50)



50 S. Jaffard et al.

Fig. 14 Binomial measure with .p = 1/4 (left) and its repartition function (right) which is used as 
the time change in Fig. 16 

satisfy 

. Sf (r, j) = 2−j
∑

λ∈Λj

(d1
λ)r1(d2

λ)r2 ∼ 2−dj
∑

λ∈Λj

(d1
λ)r1+r2

so that 

. a.s. , ∀r1, r2, ζ̃ (r1, r2) = ζ(r1 + r2).

where . ̃ζ is the bivariate scaling function of the couple .(B1 ◦ f,B2 ◦ f ) and . ζ is the 
univariate scaling function of .B1 ◦ f . Taking a Legendre transform yields that the 
bivariate Legendre spectrum .L(H1,H2) also satisfies a similar formula as (57), i.e. 

. a.s. , ∀H1,H2,

⎧
⎪⎪⎨

⎪⎪⎩

if H1 = H2, L(B1◦f,B2◦f )(H1,H2) = Lf

(
H1

α

)

if H1 /= H2, Lf (H1,H2) = −∞.

(58) 

Let us now estimate the wavelet cross correlations. Since f is deterministic, the 
processes .B1◦f and .B2◦f are two independent centered Gaussian processes. Their 
wavelet coefficients .c1j,k and .c2j,k therefore are independent centered Gaussians, and, 
at scale j the quantity 

. Sm,n(j) = 2−j
∑

k

c1j,kc
2
j,k

is an empirical estimation of their covariance, and therefore vanishes (up to small 
statistical fluctuation). In contradistinction with the bivariate spectrum, the wavelet
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cross correlations reveal the decorrelation of the processes but does not yield 
information of the correlation of the singularity sets. 

In order to illustrate these results, we will use for time change the distribution 
function of a binomial cascade . μp carried on .[0, 1]. Let  .p ∈ (0, 1); . μp is the 
only probability measure on .[0, 1] defined by recursion as follows: Let . λ ⊂ [0, 1]
be a dyadic interval of length . 2−j ; we denote by . λ+ and . λ− respectively its two 
“children” of length .2−j−1, . λ+ being on the left and . λ− being on the right. Then, 
. μp is the only probability measure carried by .[0, 1] and satisfying 

. μp(λ+) = p · μp(λ) and μp(λ−) = (1 − p) · μp(λ).

Then the corresponding time change is the function 

. ∀x ∈ [0, 1] fμp(x) = μp([0, x]).

In Fig. 14, we show the binomial cascade .μ1/4 and its distribution function, and 
in Fig. 15 the cross-correlation between two, independant realizations of this process 
is displayed; and in Fig. 16 we use this time change composed with a fBm of Hurst 
exponent .α = 0.3 (Fig. 17). 

Fig. 15 Cross-correlation of the wavelet coefficients of two independent fBm with the same time 
change: the distribution function of the binomial measure . μp with .p = 1/4. The cross-correlation 
reflects the independence of the two processes
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Fig. 16 fBm with .H = 0.3 and .H = 0.5 subordinated by the multifractal time change supplied 
by the distribution function of the binomial measure . μp with . p = 1/4

Fig. 17 Bivariate multifractal spectrum of two independent fBm with the same time change: the 
distribution function of a binomial measure with .p = 1/4; in contradistinction with the cross-
correlation of wavelet coefficients, the wavelet leaders are strongly correlated, leading to a bivariate 
multifractal Legendre spectrum theoretically supported by the line .H1 = H2, which is close to be 
the case numerically 

Remark 7 The fact that the same time change is performed does not play a 
particular role for the estimation of the wavelet cross-correlations; the same result 
would follow for two processes .B1 ◦ f and .B2 ◦ g with . B1 and . B2 independent, 
and where f and g are two deterministic time changes. Similarly, . B1 and . B2 can be 
replaced by two (possibly different) centered Gaussian processes. 

Let us mention at this point that the mathematical problem of understanding what 
is the multifractal spectrum of the composition .f ◦ g of two multifractal functions 
f and g, where g is a time subordinator i.e. an increasing function, is a largely
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open problem (and is posed here in too much generality to find a general answer). 
This problem was initially raised by B. Mandelbrot and also investigated R. Riedi 
[102] who worked out several important subcases; see also the article by S. Seuret 
[105], who determined a criterium under which a function can be written as the 
composition of a time subordinator and a monohölder function, and [21] where J. 
Barral and S. Seuret studied the multifractal spectrum of a Lévy process, under a 
time subordinator given by the repartition function of a multifractal cascade. 

3.5 Multivariate Analysis of Marathon Physiological Data 

Let us consider one of the marathon runners, and denote his heart beat frequency by 
. ff and his cadence by . fc and by .f (−1)

f and .f (−1)
c their primitives. We performed 

the computation of the bivariate scaling function .ζ
f

(−1)
f ,f

(−1)
c

(using wavelet leaders) 

and we show its Legendre transform .L
f

(−1)
f ,f

(−1)
c

on Fig. 18. This spectrum is widely 

spread, in strong contradistinction with the bivariate spectra obtained in the previous 
section; this indicates that no clear correlations between the Hölder singularities 
of the primitives can be put in evidence. Figure 5 shows the two corresponding 
univariate spectra (which can be either computed directly, or obtained as projections 
of the bivariate spectrum). 

In order to test possible relationships between the bivariate spectrum and the two 
corresponding univariate spectra, we compute the difference 

. L(H1,H2) −L(H1) −L(H2) + 1,

which allows to test the validity of (55) and 

. L(f1,f2) − min(Lf1(H1),Lf2(H2)),

Fig. 18 Representation of the bivariate Hölder Legendre spectrum of the primitives of heart beat 
frequency and cadence: this bivariate spectrum is derived from the same data that were used to 
derive the two univariate spectra shown in Fig. 5
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Fig. 19 Representation of the difference of the bivariate spectrum and the two formulas proposed 
in (54) and (47). The graph on the left is closer to zero, which suggests that the large intersection 
formula seems more appropriate in this case 

which allows to test the validity of (48), they are shown in Fig. 19. This comparison 
suggests that the large intersection formula is more appropriate than the codimen-
sion formula in this case. Keeping in mind the conclusions of Sect. 3.1, these results 
indicate that an hypothesis of both stationarity and independence for each signals is 
inappropriate (indeed this would lead to the validity of the codimension formula), 
and on the opposite, these results are compatible with a pointwise regularity yielded 
by a limsup set procedure, as explained in Sect. 3.1. 

4 Conclusion 

Let us give a summary of the conclusions that can be drawn from a bivariate 
multifractal analysis of data based on the Legendre transform method. This analysis 
goes beyond the (now standard) technique of estimating correlations of wavelet 
coefficients; indeed here wavelet coefficients are replaced by wavelet leaders, which 
leads to new scaling parameters on which classification can be performed. On 
the mathematical side, even if the relationship between the Legendre and the 
multifractal spectra is not as clear as in the univariate case, nonetheless, situations 
have been identified where this technique can either yield information on the 
nature of the singularities (e.g. the absence of oscillating singularities), or on the 
type of processes that can be used to model the data (either of additive or of 
multiplicative type). In the particular case of marathon runners, the present study 
shows a bivariate spectrum between heart rate and cadence are related by the large 
intersection formula. In a recent study [31] a multivariate analysis revealed that, for 
all runners, RPE and respiratory frequency measured on the same runners during 
the marathon were close (their angle is acute on correlation circle of a principal 
component analysis) while the speed was closer to the cadence and to the Tidal 
respiratory volume at each inspiration and expiration). The sampling frequency of
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the respiratory parameters did not allow to apply the multifractal analysis which 
here reveals that the cadence and heart rate could be an additive process such 
as, possibly a generalization of a Lévy process. Heart rate and cadence are under 
the autonomic nervous system control and Human beings optimize their cadence 
according his speed for minimizing his energy cost of running. Therefore, we 
can conclude that is not recommended to voluntarily change the cadence and this 
bivariate multifractal analysis mathematically shows that the cadence and heart rate 
are not only correlated but we can conjecture that they can be modeled by an additive 
process until the end of the marathon. 

Acknowledgments We thank the anonymous referee for many stimulating and insightful remarks 
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Wavefronts in Forward-Backward 
Parabolic Equations and Applications 
to Biased Movements 

Diego Berti, Andrea Corli, and Luisa Malaguti 

Abstract We consider a discrete biological model concerning the movements of 
organisms, whose population is formed by isolated and grouped individuals. The 
movement occurs in a random way in one spatial dimension and the transition 
probabilities per unit time for a one-step jump are assigned. Differently from other 
papers on the same subject, we assume that the random walk is biased and so, by 
passing to the limit, we obtain a parabolic equation which includes a convective 
term. The noteworthy feature of the equation is that the diffusivity changes sign. We 
investigate the existence of wavefront solutions for this equation, their qualitative 
properties and we estimate their admissible speeds; in this way we generalize some 
recent results concerning the case of unbiased movements. Our discussion makes 
use of some results obtained by the authors on the existence of wavefront solutions 
in backward-forward parabolic equations. 

1 Introduction 

The diffusion-convection reaction parabolic equation 

.ut + f (u)x = (D(u)ux)x + g(u), t ≥ 0, x ∈ R (1) 
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is frequently used for modeling and analyzing various problems in different areas; 
we emphasize here those in biology [17] and crowd dynamics [7]. In these cases the 
unknown function .u = u(t, x) in (1) denotes a normalized density or a concentration 
and then u is valued in the interval .[0, 1]. Equation (1) occurs, in the case . f = 0, in  
the study of invasion processes [13, 14] where it is obtained as a continuum limit 
of a discrete model. The introduction of the term f is motivated below. 

We assume that the convective term f satisfies 

(f) .f ∈ C1[0, 1], .f (0) = 0, 

where the condition .f (0) = 0 just fixes a representative. We consider in the 
following a monostable reaction term g, i.e., 

(g) .g ∈ C1[0, 1], .g > 0 in .(0, 1), .g(0) = g(1) = 0. 

The most important condition concerns the diffusivity D: we assume 

(D) .D ∈ C1[0, 1], .D > 0 in .(0, α) ∪ (β, 1) and .D < 0 in .(α, β), 

with .α, β ∈ (0, 1) and .α < β. Notice that D may vanish in 0 or 1; moreover, 
the slopes of g and D in 0 and 1 may also be 0. Condition (D) frequently occurs in 
models of invasion processes [3, 13, 14], and makes (1) a forward-backward-forward 
equation. We refer to Fig. 1 for a representation of the assumptions above. 

Under conditions (f), (g) and (D), Eq. (1) admits wavefronts, i.e. traveling wave 
solutions .u(t, x) = ϕ(x − ct), for some speed .c ∈ R, whose profiles . ϕ reach the 
equilibria .u ≡ 0 and .u ≡ 1 at infinity and are monotone [3]. In particular, if a profile 
is decreasing, then it satisfies 

.ϕ(−∞) = 1, ϕ(∞) = 0. (2) 

Wavefronts are in agreement with several experimental data, hence their interest. 
The study of their existence in reaction-diffusion equations goes back to the seminal 
papers by Aronson-Weinberger [1] and Fife [9], and was then discussed in various 
contexts with different techniques (see e.g. [6, 10, 11, 16]). A detailed discussion 
on wavefronts satisfying (2), when the diffusivity is as in (D), recently appeared in 
[3]. A result appearing in [3] provides the existence of a continuum of wavefronts 
for Eq. (1); they are parameterized by their speed c, for  c in the half-line .[c∗,∞). 

0 1 1 1 

Fig. 1 Typical plots of the functions f , g and D
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Estimates on the threshold value . c∗ are also obtained there. We remark that, in 
special cases, . c∗ can be exactly computed. 

Consider now the discrete biological model in [13, 14], where the population 
consists of isolated and grouped individuals moving randomly on a line. However, 
differently from those papers, assume that the random walk is biased. The  
continuum model obtained by passing to the limit has exactly the form of Eq. (1); 
since the movement is biased, this limiting equation includes, in particular, the 
convective term f . This derivation appears in Sect. 2; comparisons with previous 
similar models are also made there. In Sect. 3 we provide the theoretical tools for 
the study of this model. In particular, we summarize some general results from [3] 
(see Theorem 1); we also show that, in the case .f = 0, the estimates of . c∗ obtained 
in [3] lead to an explicit value (see Corollary 1), which coincides with that in [14]. 
By means of these results, in Sect. 4 we discuss the existence of wavefront solutions 
to the model proposed in Sect. 2. In this way we extend a result of [14] to the case 
of a biased movement. 

In some cases the reaction term g displays a so-called bistable behavior, i.e., . g <

0 in .(0, θ) and .g > 0 in .(θ, 1), with .g(0) = g(θ) = g(1) = 0 and .θ ∈ (0, 1). This  
happens, in particular, in the models of invasion processes under some conditions 
on their parameters (see Remark 1). Also in this case Eq. (1) admits wavefronts, but 
the range of their wave speeds now reduces to a bounded closed interval, which can 
possibly degenerate to a single value. Moreover, the presence of the convective term 
f allows additional properties on their profiles: for example, the number of profiles 
for each admissible speed c can be infinite, and profiles may display plateaus (i.e., 
horizontal stretches) at level . θ . We refer to [4] for a complete discussion of this case 
including the presence of a convective term. 

2 A Biological Model with Biased Movements 

The modeling of the movement of organisms in a biological system by partial 
differential equations has a long history, and a satisfactory framework was provided 
in [18–20]. In particular, the continuum model in [19] was obtained by passing to 
the limit in a discrete model where the transition probabilities per unit time for a 
one-step jump were assigned; we also refer to [12] for the connections between the 
discrete and the continuum model. A similar approach, in one space dimension, was 
more recently proposed in [13] for populations constituted by isolated and grouped 
individuals, and a focus on the case where the diffusivity becomes negative has been 
done in [14]; both papers are in particular concerned with wavefront solutions. 

In [12, 14] the random movement in the underlying discrete model is assumed 
to be unbiased, in the sense that the transitional probabilities do not depend 
on the direction of the motion. Then, no convection appears. We provide here a 
generalization of the model in [13] by introducing a possibly biased movement; 
this leads, in general, to a convective term.
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We now introduce the model, referring to [13] for more details. The population 
is constituted by isolated agents and grouped agents; both classes can reproduce, die 
and move, with different rates. Agents occupy the sites . j∆, for . j = 0,±1,±2, . . .

and . ∆ > 0. Let . cj be the probability of occupancy in the j site. Its variation during 
a time-step .τ > 0 is provided by the following process: 

. δcj =

=P i
m

2

[
aicj−1(1 − cj )(1 − cj−2) + bicj+1(1 − cj )(1 − cj+2)

−
(
ai + bi

)
cj (1 − cj−1)(1 − cj+1)

]

+ P
g
m

2

[
agcj−1(1 − cj ) + bgcj+1(1 − cj ) − agcj (1 − cj+1) − bgcj (1 − cj−1)

]

− P
g
m

2

[
agcj−1(1 − cj )(1 − cj−2) + bgcj+1(1 − cj )(1 − cj+2)

−(ag + bg)cj (1 − cj−1)(1 − cj+1)
] + reaction terms. (3) 

The terms .P i
m and .P g

m are the movement transitional probabilities for isolated and 
grouped individuals, respectively. If .ai = bi = ag = bg = 1, then (3) coincides 
with [13, (1)]; we have not explicitly written the reaction terms because they are 
exactly as in [13, (1)]. We introduced instead the positive parameters .ai, bi and 
.ag, bg , which produce a (linearly) biased movement for the isolated and grouped 
individuals, respectively. We use the notation .ai,g, bi,g to denote the two sets of 
parameters together. By noticing that each bracket is divided by 2, we have 

.ai + bi = ag + bg = 2, (4) 

because a bias .ai,g toward the left implies a complementary bias . bi,g = 2 − ai,g

toward the right. The continuum model is obtained by understanding . cj as a smooth 
function .c = c(x, t) and expanding c around .x = j∆ at second order. Then, one 
divides Eq. (3) by . τ and passes to the limit for .∆ → 0 and .τ → 0 while keeping 
.∆2/τ constant; for simplicity we assume .∆2/τ = 1. Analogous assumptions are 
made in [12, 19] and in [13, 14]. In this procedure, as in [13], one assumes that the 
following limits are finite: 

. lim
∆,τ→0

P
i,g
m

2
=: Di,g.
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Here, we also require, for some .Ci,g ∈ R, 

. lim
τ→0

ai,g(τ ) = lim
τ→0

bi,g(τ ) = 1 and ai,g(τ ) − bi,g(τ ) ∼ Ci,g

√
τ for τ → 0.

(5) 

Assumption .(5)1, namely, that the limits of .ai,g and .bi,g coincide, implies that their 
common value is 1 by (4). Assumption .(5)2 is analogous to assumption [13, (3)]  
for the birth and death probabilities in the reaction terms, which is here assumed as 
well. Then one finds Eq. (1) with 

.f (u) = − (
CiDi + CgDg

)
u(1 − u)2 − CgDgu(1 − u), . (6) 

D(u) = Di

(
1 − 4u + 3u2

)
+ Dg

(
4u − 3u2

)
, . (7) 

g(u) = λgu(1 − u) + [
λi − λg −

(
ki − kg

)]
u(1 − u)2 − kgu. (8) 

Notice that in the case .Ci = 0 the function f is convex in .[0, 1] if .ag > bg , and 
concave otherwise. The expression of the terms D and g coincide with those in [13, 
(2)]; the parameters .λi,g and . ki,g are as in [13, (3)]. 

3 Wavefronts in a Forward-Backward-Forward Parabolic 
Model 

We briefly report in the following the main results on the existence and main 
properties of wavefronts for Eq. (1); we denote with . ϕ the wave profile and assume 
that it is decreasing. We refer to [3, Theorem 6.1] for a comprehensive discussion. 

Theorem 1 Consider Eq. (1) and assume conditions (f), (g) and (D). Then there 
exists .c∗ ∈ R such that (1) admits wavefronts satisfying (2) if and only if .c ≥ c∗. 
Moreover, 

(i) we have .ϕ' < 0 if .0 < ϕ < 1 and .ϕ /= α, .ϕ /= β; 
(ii) .D(ϕ)ϕ' → 0 as .ξ → α and .ξ → β; 
(iii) the threshold value . c∗ can be estimated depending on f , g and D. 

We now comment on the previous results. 
First, for every .c ≥ c∗ the corresponding wavefront is unique up to space shifts, 

as usual when dealing with wavefronts. 
Second, the threshold . c∗ is defined as the maximum among three sub-thresholds, 

that we call here . c∗
1, . c∗

2 and . c∗
3; they are the thresholds for the existence of wavefronts 

connecting 0 with . α, . α with . β and . β with 1, respectively. In general, and in particular 
if .f /= 0, an explicit value of . c∗ cannot be given. However, we provide below some
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estimates for these thresholds. They can all be obtained by [4, (4,3), (4.6)] and are 
the following 

. max

{
sup
(0,α]
A0, f

'(0) + 2
√

D(0)g'(0)

}
≤ c∗

1 ≤ sup
(0,α]
A0 + 2

√
sup
(0,α]
B0, (9) 

. max

{
sup
[α,β)

Aβ, f '(β) + 2
√

D'(β)g(β)

}
≤ c∗

2 ≤ sup
[α,β)

Aβ + 2
√

sup
[α,β)

Bβ, (10) 

. max

{
sup
(β,1]
Aβ, f '(β) + 2

√
D'(β)g(β)

}
≤ c∗

3 ≤ sup
(β,1]
Aβ + 2

√
sup
(β,1]
Bβ, (11) 

where, for .v ∈ [0, 1], the functions .Av = Av(u) and .Bv = Bv(u) are defined by, 
for .u ∈ [0, 1] \ {v}, 

. Av(u) := f (u) − f (v)

u − v
Bv(u) := 1

u − v

ˆ u

v

D(s)g(s)

s − v
ds.

Third, the . C1 regularity of g is assumed here in order to simplify the discussion; 
similar results hold true when g is barely continuous in the interval . [0, 1], see [3]. 

Fourth, let . ϕ be a profile of a wavefront for (1). The value .ξα ∈ R such that 
.ϕ(ξα) = α is easily proved to be unique; moreover, one can deduce that . ϕ'(ξα) < 0
if .D'(α) < 0, while it can be .ϕ'(ξα) = −∞ if .D'(α) = 0. An analogous discussion 
holds for the point . β. Explicit formulas for .ϕ'(ξα) and .ϕ'(ξβ) are provided in [3, 
(2.9), (2.16)]. 

Now, we give a rough sketch of the proof of Theorem 1. The main technique is 
a first-order reduction: since the profiles are strictly monotone . ϕ when . 0 < ϕ < 1
(and .ϕ /= α, .ϕ /= β), hence the inverse function .ξ(ϕ) is well defined and so is 

. z(ϕ) := D(ϕ)ϕ(ξ(ϕ)).

It is plain to see that .z(ϕ) satisfies the first-order, singular equation 

.ż(ϕ) = −c + f '(ϕ) − D(ϕ)g(ϕ)

z(ϕ)
(12) 

for .ż = dz/dϕ, and also that .z(0) = z(α) = z(β) = z(1) = 0. The investigation 
then proceeds by studying (12) separately in each interval .[0, α], [α, β] and . [β, 1]
by mainly exploiting comparison-type techniques, for which we refer to [2].
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In order to check how the estimates on . c∗ that we obtained are precise, we now 
focus on the case .f = 0. We show, under a light further condition, that in this case 
they provide an explicit value for . c∗. More precisely, we assume 

.(Dg)'(u) ≤ (Dg)'(0) for every u ∈ [0, 1]. (13) 

Assumption (13) is motivated by the fact that when it holds and also . f '(u) ≤ f '(0)

for .u ∈ [0, α], then (9) clearly reduces to 

. c∗
1 = f '(0) + 2

√
D(0)g'(0).

The following simple result is new. It generalizes to the case of general g and D a 
result in [14]. 

Corollary 1 Consider Eq. (1) with .f = 0 and assume conditions (g), (D) and (13). 
Then 

.c∗ = 2
√

D(0)g'(0). (14) 

Proof By (9) we have 

. 2
√

D(0)g'(0) ≤ c∗
1 ≤ 2

√
sup

u∈(0,α]
D(u)g(u)

u
.

Since for every .u ∈ (0, α] we have 

. D(u)g(u) = (Dg)'(θu)u for some θu ∈ (0, u),

then 

. sup
u∈(0,α]

D(u)g(u)

u
≤ max[0,α](Dg)' = D(0)g'(0),

because of (13), from which it follows .c∗
1 = 2

√
D(0)g'(0). It remains to prove that 

.c∗
2, c∗

3 ≤ c∗
1. To this end, we make use of the right-hand side of (10) and (11) as 

follows. 
As above, we have 

. 
1

u − β

ˆ u

β

D(s)g(s)

s − β
ds = (Dg)'(σu) for some σu ∈ (α, 1).

where . σu is contained either in .(u, β) or in .(β, u), according to .u < β or .u > β.
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Since .(Dg)' = (Dg)'(u) has its maximum at .u = 0 because of Dg, then, from 
the right-side of (10) and (11), we deduce 

. c∗
2, c∗

3 ≤ c∗
1 .

This concludes the proof since . c∗ is the maximum among . c∗
1, . c∗

2 and . c∗
3. ⨅⨆

4 Wavefronts in a Biological Model with Biased Movements 

We now apply Theorem 1 and Corollary 1 to the model proposed in Sect. 2. We are  
then looking for wavefronts for Eq. (1) when we assume (6)–(8). As in [13, 14], we 
also assume 

.Di > 4Dg > 0 and λg = λi = λ > 0, ki = kg = 0. (15) 

With these choices, D has two sign-changes as prescribed by (D), occurring at some 
.α ∈ (1/3, 2/3) and .β ∈ (2/3, 1) (see [14, (7)] for their expressions), while g simply 
takes the shape 

.g(u) = λu(1 − u). (16) 

As far as f is concerned, i.e. the choice of . Ci and . Cg , we just assume that . Ci, Cg ∈
R. The case .f = 0, i.e. .Ci = Cg = 0, was treated in [13, 14]. 

Theorem 1 applies directly, without additional computations. In particular, under 
(15) there exists .c∗ ∈ R such that this model admits wavefronts with speed .c ∈ R, 
connecting 1 to 0, if and only if .c ≥ c∗. Moreover, the profile . ϕ is unique up to 
space shifts for every admissible c. 

Furthermore, we claim that condition (13) is satisfied. Indeed, we have 

. (Dg)'(u) = −12λ
(
Di − Dg

)
u3 + 21λ

(
Di − Dg

)
u2 − λ

(
10Di − 8Dg

)
u + λDi.

First, we observe that .(Dg)'(0) = λDi . Then, since .−12u2 + 21u − 8 < 2, we  
deduce 

. − 12
(
Di − Dg

)
u3 + 21

(
Di − Dg

)
u2 − 8

(
Di − Dg

)
u < 2Diu − 2Dgu,

and hence, because of .Dg > 0, we obtain 

.(Dg)'(u) < λ
(
2Diu − 2Dgu − 2Diu + Di

)
< λDi = (Dg)'(0).
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Thus, in case .f = 0, by Corollary 1, we obtain the result in [14, (11)], that is 

. c∗ = 2
√

λDi.

We stress that in [14] the authors claimed the result as an application of the 
geometric singular perturbation theory [8]. Instead, Corollary 1 is a consequence of 
the upper and lower solution techniques that we adopted to investigate wavefronts. 

Now, consider the case .f /= 0, and then at least one between . Ci and . Cg does not 
vanish. If we denote 

. H(u) := f (u)

u
= −(CiDi + CgDg)(1 − u)2 − CgDg(1 − u),

then (9) becomes 

. max

{
sup

u∈(0,α]
H(u), f '(0) + 2

√
λDi

}
≤ c∗

1 ≤ sup
u∈(0,α]

H(u) + 2
√

λDi,

because (13) is satisfied. Since f is given in (6), then .H(u) can be explicitly 
computed and its supremum can be evaluated depending on the choices of . Ci and 
. Cg . This provides explicit bounds for . c∗

1, and analogously for . c∗
2 and . c∗

3. 

Remark 1 Assumption (15) implies that the reaction term g in (16) is monostable. 
A different choice of the parameters .Di,g, λi,g, ki,g clearly gives rise to other 
models. For instance, we can modulate the values of .λi,g and .ki,g to obtain a bistable 
reaction term. This happens if 

. kg = 0 and ki > λi ≥ 0 and λg > 0,

because then g in (8) becomes 

. g(u) = θu(1 − u)(−1 + γ u),

with 

. θ = ki − λi and γ := λg + θ

θ
> 1.

For models with unbiased movements, i.e. when .f = 0, this case was discussed 
in [13, 15]. In particular, numerical simulations are proposed in [15] to suggest the 
presence of shock-fronted wavefronts. To the best of our knowledge the existence 
of wavefronts in biased models has never been investigated. Such a discussion can 
be led by means of the results and techniques developed in [4], where the equation 
includes a convective term; we refer to [5].
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Bohr-Levitan Almost Periodic 
and Almost Automorphic Solutions of 
Equation x'(t) = f (t− 1, x  (t  − 1)) − f (t,  x(t))  

David Cheban 

Abstract This paper is dedicated to the problem of almost periodicity of solutions 
for functional differential equations .x' = h(t, xt )(∗) when the right hand side is 
monotone with respect to spacial variable. The main results are established in the 
framework of general non-autonomous (cocycle) dynamical systems. We apply our 
general results to a class of delay differential equations . x'(t) = f (t −1, x(t −1))−
f (t, x(t)) (**). In particular, we prove that every solution of equation (**) with 
Bohr-Levitan right hand side is asymptotically Bohr-Levitan almost periodic. 

1 Introduction 

This paper is dedicated to the problem of almost periodic solutions and structure of 
compact global attractor (Levinson center) of functional differential equations 

.x' = h(t, xt ). (1) 

We apply our general results for a class of delay differential equations 

.x'(t) = f (t − 1, x(t − 1)) − f (t, x(t)). (2) 

Equation (2) may be viewed as the nonautonomous form of a model growth 
processes and gonorrhea epidemics introduced by K. Cooke and J. Yorke [1, 2, 11]. 

The writing of this paper was motivated by the works O. Arino [1], J. Jiang 
and X. Zhao [13] as well as a series of works by the author [6–10]. The aim 
of this paper is to study the problem of the existence of Levitan/Bohr almost 
periodic (respectively, almost automorphic, recurrent and Poisson stable) solutions 
for dissipative functional differential equation (1) when the right hand side is 
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monotone with respect to spacial variable. We establish the main results in the 
framework of general non-autonomous (cocycle) dynamical systems. We apply our 
general results for a class equations (2) which may be viewed as the nonautonomous 
form of a model growth processes and gonorrhea epidemics. In particular, we prove 
that every solution of equation (2) with Bohr-Levitan right hand side is asymptoti-
cally Bohr-Levitan almost periodic. For Bohr almost periodic (respectively, almost 
automorphic) equations our result improve and/or refine the results of O. Arino [1] 
(respectively, J. Jiang and X. Zhao [13]). 

2 Non-autonomous (Cocycle) Dynamical Systems 

In this section we collect some notions and facts from the autonomous and non-
autonomous dynamical systems [3] (see also, [5, Ch.IX]) which we will use below. 

2.1 Cocycles 

Let Y be a complete metric space, let .R := (−∞,+∞), .Z := {0,±1,±2, . . .}, 
.T = R or . Z, .T+ = {t ∈ T| t ≥ 0} and .T− = {t ∈ T| t ≤ 0}. Let .(Y,T, σ ) be an 
autonomous two-sided dynamical system on . Y and E be a real or complex Banach 
space with the norm . | · |. 
Definition 1 (Cocycle on the State Space E with the Base .(Y,T, σ )) The triplet 
.〈E, φ, (Y,T, σ )〉(or briefly φ) is said to be a cocycle (see, for example, [5] and 
[15]) on the state space . E with the base .(Y,T, σ ) if the mapping . φ : T+ ×Y ×E →
E satisfies the following conditions: 

1. .φ(0, y, u) = u for all .u ∈ E and .y ∈ Y ; 
2. .φ(t + τ, y, u) = φ(t, φ(τ, u, y), σ (τ, y)) for all .t, τ ∈ T+, u ∈ E and .y ∈ Y ; 
3. the mapping . φ is continuous. 

Definition 2 (Skew-Product Dynamical System) Let .〈E, φ, (Y,T, σ )〉 be a cocy-
cle on .E,X := E × Y and . π be a mapping from .T+ × X to X defined by 
equality .π = (φ, σ ), i.e., .π(t, (u, y)) = (φ(t, ω, u), σ (t, y)) for all .t ∈ T+ and 
.(u, y) ∈ E × Y . The triplet .(X,T+, π) is an autonomous dynamical system and it 
is called [15] a skew-product dynamical system. 

2.2 Bebutov’s Dynamical Systems 

Let .X,W be two metric spaces. Denote by .C(T×W,X) the space of all continuous 
mappings .f : T × W �→ X equipped with the compact-open topology and let .σ
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be the mapping from .T × C(T × W,X) into .C(T × W,X) defined by the equality 
.σ(τ, f ) := fτ for all .τ ∈ T and .f ∈ C(T × W,X), where . fτ is the .τ -translation 
(shift) of f with respect to variable t , i.e., .fτ (t, x) = f (t +τ, x) for all . (t, x) ∈ T×
W . Then [5, Ch.I] the triplet .(C(T× W,X),T, σ ) is a dynamical system on . C(T×
W,X) which is called a shift dynamical system (dynamical system of translations 
or Bebutov’s dynamical system). 

Recall that the function .ϕ ∈ C(T, X) (respectively, .f ∈ C(T × W,X)) 
possesses the property . (A), if the motion .σ(·, ϕ) (respectively, .σ(·, f )) generated 
by the function . ϕ (respectively, f ) possesses this property in the dynamical system 
.(C(T, X),T, σ ) (respectively, .(C(T× W,X),T, σ )). 

As the quality of the property .(A) there can stand the Lagrange stability 
(st. L), uniform Lyapunov stability (un. st. . L+), periodicity, almost periodicity, 
asymptotical almost periodicity and so on. 

For example, a function .f ∈ C(T×W,X) is called almost periodic (respectively, 
recurrent etc.) in .t ∈ R uniformly with respect to (w.r.t.) w on every compact subset 
from W , if the motion .σ(·, f ) is almost periodic (respectively, recurrent) in the 
dynamical system .(C(T× W,X),T, σ ). 

2.3 Bohr-Levitan Almost Periodic, Almost Automorphic 
and Recurrent Motions 

Definition 3 A number τ ∈ S is called an ε >  0 shift of x (respectively, almost 
period of x), if ρ(π(τ, x), x) < ε (respectively, ρ(π(τ + t,  x), π(t, x))  <  ε  for all 
t ∈ S). 
Definition 4 A point x ∈ X is called almost recurrent (respectively, Bohr almost 
periodic), if for any ε >  0 there exists a positive number l such that at any segment 
of length l there is an ε shift (respectively, almost period) of point x ∈ X. 

Definition 5 If the point x ∈ X is almost recurrent and the set H(x)  := 
{π(t, x) | t ∈ T} is compact, then x is called recurrent. 

Definition 6 A point x ∈ X of the dynamical system (X, T, π)  is called Levitan 
almost periodic [14] (see also [6, Ch.I]), if there exists a dynamical system (Y, T, σ )  
and a Bohr almost periodic point y ∈ Y such that Ny ⊆ Nx, where Nx := 
{{tk}| π(tk, x)  → x as k → ∞}. 
Definition 7 A point x ∈ X is called Lagrange stable, if its trajectory Σx := 
{π(t, x) : t ∈ T} is relatively compact. 

Definition 8 A point x ∈ X is called almost automorphic in the dynamical system 
(X, T, π),  if it is Lagrange stable and Levitan almost periodic.
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2.4 B. A. Shcherbakov’s Principle of Comparability of Motions 
by Their Character of Recurrence 

In this subsection we will present some notions and results stated and proved by B. 
A. Shcherbakov [16, 17] (see also [6, Ch.I]). 

Let .(X,T1, π) and .(Y,T2, σ ) be two dynamical systems. 

Definition 9 A point .x ∈ X is said to be comparable (respectively, uniformly 
comparable) with .y ∈ Y by the character of recurrence, if the mapping . h : Σy →
Σx , defined by equality 

. h(σ(t, y)) = π(t, x)

for any .t ∈ T, is continuous (respectively, uniformly continuous). 

Theorem 1 Let x be comparable with .y ∈ Y . If the point .y ∈ Y is stationary 
(respectively, . τ–periodic, Levitan almost periodic, almost recurrent), then the point 
.x ∈ X is also so. 

Denote by .Mx := {{tn} ⊂ R : such that {π(tn, x)} converges . }. 
Definition 10 A point .x ∈ X is said [4, ChII] to be strongly comparable by 
character of recurrence with the point . y ∈ Y , if .My ⊆ Mx . 

Theorem 2 Let X be a complete metric space. If the point x uniformly comparable 
by character of recurrence with y, then .My ⊆ Mx . 

Theorem 3 Let y be stable in the sense of Lagrange. The inclusion .My ⊆ Mx takes 
place, if and only if the point x is stable in the sense of Lagrange and the point x 
uniformly comparable by character of recurrence with y. 

Theorem 4 Let X and Y be two complete metric spaces, the point x be uni-
formly comparable with .y ∈ Y by the character of recurrence. If the point 
.y ∈ Y is stationary (respectively, .τ -periodic, quasi-periodic with the frequency 
basis .ν1, ν2, . . . , νm, Bohr almost periodic, almost automorphic, almost recurrent, 
recurrent), then so is the point .x ∈ X. 

2.5 Monotone Non-autonomous Dynamical Systems 

Assume that E is an ordered Banach space [18]. A subset U of E is called lower-
bounded (respectively, upper-bounded) if there exists an element .a ∈ E such that 
.a ≤ U (respectively, .a ≥ U ). Such an a is said to be a lower bound (respectively, 
upper bound) for U . A lower bound . α is said to be the greatest lower bound (g.l.b.) 
or infimum, if any other lower bound a satisfies .a ≤ α. Similarly, we can define the 
least upper bound (l.u.b.) or supremum. 

Let V be an order convex subset of E.
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Definition 11 Let .〈E, ϕ, (Y,T, σ )〉 be a cocycle and .〈(X,T+, π), (Y,T, σ ), h〉 be 
a non-autonomous dynamical system associated by cocycle . ϕ (i.e., .X := E × Y , 
.π = (ϕ, σ ) and .h := pr2 : X → Y ). The cocycle . ϕ is said to be monotone if 
.u1 ≤ u2 implies .ϕ(t, u1, y) ≤ ϕ(t, u2, y) for any .t > 0 and .y ∈ Y . 

Recall that 

1. a forward orbit .{π(t, x0)| t ≥ 0} (.x0 = (u0, y0)) of skew-product dynamical 
systems .〈(X,T+, π) (.X = E × Y , .π = (ϕ, σ )) is said to be uniformly stable if 
for any .ε > 0, there is a .δ = δ(ε) > 0 such that . ρ(ϕ(t0, u, y0), ϕ(t0, u0, y0)) < δ

implies .ρ(ϕ(t, u, y0), ϕ(t, u0, y0)) < ε for every .t ≥ t0; 
2. a continuous mapping .γ : S → X is said to be an entire (full) trajectory of the 

skew-product dynamical system .(X,T+, π) if .γ (t + τ) = π(t, γ (τ )) for any 
.t ∈ T+ and .τ ∈ S. 
Below we will use the following assumptions: 

(C1) every compact subset K of V has both infimum .α(K) and supremum .β(K); 
(C2) for every .x ∈ V × Y , the set .ϕ(T+, u, y) is pre-compact and positively 

uniformly Lyapunov stable; 
(C3) the cocycle .〈E, ϕ, (Y,T, σ )〉 is monotone; 
(C4) for any two bounded full trajectories . γj (.j = 1, 2) with .γ1(t) ≤ γ2(t) for 

any .t ∈ T, there exists .t0 > 0 such that whenever .γ1(s) < γ2(s) holds for some 
.s ∈ T, then .γ1(t) ⩽ γ2(t) for all .t ≥ s + t0. 

Denote by 

. ωx :=
⋂

t≥0

⋃

τ≥t

π(τ, x)

.ω-limit set of the point .x ∈ X. 

Theorem 5 ([8]) Suppose that (C1)–(C3) and (C4) are fulfilled. Assume that 
.(Y,T, σ ) is almost recurrent, i.e., there exists an almost recurrent point . y0 ∈ Y

such that .Y = H(y0). 
Then for any .(u0, y0) ∈ V × Y the following statements hold: 

1. for any .q ∈ Y the set 

. ω(u0,y0)

⋂
Xq

consists of a single point .{(uq, q)}; 
2. the point .(xq, q) is strongly comparable by character of recurrence with the point 

.q ∈ Y ; 
3. 

. lim
t→+∞ ρ(ϕ(t, u0, y0), ϕ(t, uy0 , y0)) = 0.
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3 Functional-Differential Equations with Finite Delay 

Let us first recall some notions and notations from [12]. Let . r > 0, C([a, b],Rn)

be the Banach space of all continuous functions .ϕ : [a, b] → R
n equipped with the 

. sup–norm. If .[a, b] = [−r, 0], then we set .C := C([−r, 0],Rn). Let . σ ∈ R, A ≥ 0
and .u ∈ C([σ − r, σ + A],Rn). We will define .ut ∈ C for any .t ∈ [σ, σ + A] by 
the equality .ut (θ) := u(t + θ), −r ≤ θ ≤ 0. Consider a functional differential 
equation 

.u̇ = f (t, ut ), (3) 

where .f : R× C→ R
n is continuous. 

Denote by .C(R× C,Rn) the space of all continuous mappings . f : R× C→ R
n

equipped with the compact-open topology. On the space .C(R × C,Rn) there 
is defined (see, e.g. [5, ChI] and [16, ChI]) a shift dynamical system . (C(R ×
C,Rn),R, σ ), where . σ is a mapping from .R × C(R × C,Rn) to . C(R × C,Rn)

defined by equality .σ(τ, f ) := fτ for any .f ∈ C(R × C,Rn) and .τ ∈ R and . fτ is 
.τ -translation of f , i.e. .fτ (t, φ) := f (t + τ, φ) for any .(t, φ) ∈ R × C. Let us set 
.H(f ) := {fτ : τ ∈ R}. 

Along with Eq. (3) let us consider the family of equations 

.v̇ = g(t, vt ), (4) 

where .g ∈ H(f ). 
Condition (F1). In this Section, we suppose that Eq. (3) is regular, i.e., the 

conditions of existence, uniqueness and extendability on .R+ for any Eq. (4) are  
fulfilled. 

Remark 1 Denote by .ϕ̃(t, u, f ) the solution of equation (3) defined on . [−r,+∞)

with the initial condition . u ∈ C. By .ϕ(t, u, f ) we will denote below the trajectory 
of Eq. (3), corresponding to the solution .ϕ̃(t, u, f ), i.e. a mapping from .R+ into . C, 
defined by .ϕ(t, u, f )(s) := ϕ̃(t + s, u, f ) for any .t ∈ R+ and .s ∈ [−r, 0]. Below  
we will use the notions of “solution” and “trajectory” for Eq. (3) as synonymous 
concepts. 

It is well-known [15] that the mapping .ϕ : R+ × C × H(f ) → C possesses the 
following properties: 

1. .ϕ(0, v, g) = v for any .v ∈ C and .g ∈ H(f ); 
2. .ϕ(t + τ, v, g) = ϕ(t, ϕ(τ, v, g), σ (τ, g)) for any .t, τ ∈ R+, .v ∈ C and . g ∈

H(f ); 
3. the mapping . ϕ is continuous. 

Thus Eq. (3) generates a cocycle .〈C, ϕ, (Y,R, σ )〉 and a non-autonomous dynamical 
system .〈(X,R+, π), .(Y,R, σ ), h〉, where .Y := H(f ), .X := C × Y , . π := (ϕ, σ )

and .h := pr2 : X → Y .
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Remark 2 Let F be a mapping from .H(f )×C→ R
n defined by equality . F(g, x) =

g(0, x) for any .(g, x) ∈ H(f ) × C, then F possesses the following properties: 

1. F is continuous; 
2. .F(gτ , x) = g(τ, x) for any .(g, x, τ ) ∈ H(f ) × C× R; 
3. Eq. (3) (and its H -class (4)) can be rewritten as follows 

.x'(t) = F(σ(t, g), xt ) (g ∈ H(f )). (5) 

Let .C+ := {φ ∈ C : φ ≥ 0, i.e., .φ(t) ≥ 0 for any .t ∈ [−r, 0]} be the cone of 
nonnegative functions in . C. By .C+ on the space . C there is defined a partial order: 
.u ≤ v if and only if .v − u ∈ C+. 

Condition (F2). Equation (3) is monotone, that is, the cocycle .〈C, ϕ, (H(f ), . R,

.σ)〉 generated by (3) possesses the following property: if .u ≤ v, then . ϕ(t, u, g) ≤
ϕ(t, v, g) for any .t ≥ 0 and .g ∈ H(f ). 

Recall (see, e.g. [18, ChV]) that a function .f ∈ C(R × C,Rn) is said to be 
quasi-monotone if .(t, u), (t, v) ∈ R× C, .u ≤ v, and .ui(0) = vi(0) for some i, then 
.fi(t, u) ≤ fi(t, v). 

Lemma 1 ([10]) Let .f ∈ C(R × C,Rn) be a quasi-monotone function, then the 
following statements hold: 

1. if .u ≤ v, then .ϕ(t, u, f ) ≤ ϕ(t, v, f ) for any .t ≥ 0; 
2. any function .g ∈ H(f ) is quasi-monotone; 
3. .u ≤ v implies .ϕ(t, u, g) ≤ ϕ(t, v, g) for any .t ≥ 0 and .g ∈ H(f ). 

Corollary 1 Let .f ∈ C(R×C,Rn) be a regular and quasi-monotone function, then 
the cocycle .〈C, ϕ, (H(f ),R, σ )〉, associated by Eq. (3), is monotone. 

Remark 3 If the function .f ∈ C(R×C,Rn+) is quasi-monotone, then F (. F(g, x) =
g(0, x) for any .(g, x) ∈ H(f ) × C) is also so, i.e., for any . (g, u), (g, v) ∈ H(f ) ×
C+, .u ≤ v, and .ui(0) = vi(0) for some i, then .Fi(g, u) ≤ Fi(g, v). 

Theorem 6 ([18, Ch.V])  Let .f, g ∈ C(R × C+,Rn) be regular and assume that 
either f or g is quasi-monotone. Assume also that .f (t, φ) ≤ g(t, φ) for all . (t, φ) ∈
R× C+. If .φ,ψ ∈ C+ satisfy .φ ≤ ψ , then .ϕ(t, φ, f ) ≤ ϕ(t, ψ, g) for all .t ≥ 0. 

Corollary 2 Assume that .f ∈ C(R × C+,Rn) is regular, quasi-monotone and 
.〈C+, ϕ, (H(f ),R, σ )〉 is the cocycle in .C+ generated by Eq. (3) (respectively, by 
its H -class (4)). Then the condition 

. F(g, x) ≤ F(g, x)

for any .(g, x) ∈ H(f ) × C+ implies that 

.φ(t, x, g) ≤ ϕ(t, x, g)
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for any .t ≥ 0, .g ∈ H(f ) and .x ∈ C+, where .F ∈ C(H(f ) × C+,Rn) is some 
regular function and .〈C+, φ, (H(f ),R, σ )〉 (shortly, . φ) is the cocycle generated by 
equation 

. x' = F(σ (t, g), xt ) (g ∈ H(f )).

Proof This statement follows directly from Theorem 6. ⨅⨆
Condition (F3). The cone .C+ is positively invariant with respect to cocycle . ϕ

generated by Eq. (3), i.e., .ϕ(t, φ, g) ∈ C+ for any .(t, φ, g) ∈ R+ × C+ × H(f ). 

Lemma 2 Assume that the function .f ∈ C(R× C,Rn) is regular, quasi-monotone 
and .f (t, 0) ≥ 0 for any .t ∈ R. Then . C+ is a positively invariant subset of the cocycle 
. ϕ, generated by Eq. (3), i.e., .ϕ(t, x, g) ∈ C+ for any .(t, x, g) ∈ R+ × C+ × H(f ). 

Proof Let .g ∈ H(f ), then it is easy to check that under the condition of Lemma 2 
the function g is also regular, quasi-monotone and .g(t, 0) ≥ 0 for any . t ∈ R. Note  
that .F(g, x) = g(0, x) ≥ 0 for any .(x, g) ∈ C+ × H(f ). By Theorem 6 we have 
.φ(t, x, g) ≤ ϕ(t, x, g) for any .t ≥ 0, .g ∈ H(f ) and .x ∈ C+, where . ϕ is the cocycle 
generated by Eq. (3) (respectively, Eq. (5)) and . φ is the cocycle defined by equation 
.x' = 0, i.e., .φ(t, x, g) = x for any .x ∈ C+, .t ≥ 0 and .g ∈ H(f ). By Corollary 2 
we have .ϕ(t, x, g) ≥ x for any .(t, x, g) ∈ R+ × C+ × H(f ). This means that 
.ϕ(t, x, g) ≥ 0, i.e., .ϕ(t, x, g) ∈ C+ for any .(t, x, g) ∈ R+ × C+ × H(f ). Lemma 
is proved. ⨅⨆

Condition (F4). For any bounded subset .A ⊂ C the set .f (R × A) is bounded 
in . Rn. 

Lemma 3 ([10]) Let .ϕ(t, u, f ) be a bounded on .R+ solution of equation (3), then 
under the condition (F4) the set .ϕ(R+, u, f ) ⊂ C is pre-compact. 

Definition 12 A solution .ϕ(t, u0, f ) of Eq. (3) is said to be compact on .R+ if the 
set .Q := ϕ(R+, u0, f ) is a compact subset of . C, where by bar we mean the closure 
in . C and .ϕ(R+, u0, f ) := {ϕ(t, u0, f ) : t ∈ R+}. 

Let .f ∈ C(R × C,Rn), .σ(t, f ) be the motion (in the shift dynamical system 
.(C(R×C,Rn),R, σ )) generated by f , .u0 ∈ C, .ϕ(t, u0, f ) be a solution of equation 
(3), .x0 := (u0, f ) ∈ X := C× H(f ) and .π(t, x0) := (ϕ(t, u0, f ), σ (t, f )) be the 
motion of skew-product dynamical system .(X,R+, π). 

A solution .ϕ(t, u0, f ) of Eq. (3) is called [6, Ch.I], [16, 17] compatible (respec-
tively, strongly compatible or uniformly compatible) if the motion . π(t, x0)

is comparable (respectively, strongly comparable or uniformly comparable) with 
.σ(t, f ) by character of recurrence.
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4 A Class of Delay Differential Equations with a First 
Integral 

Considered equation 

.x'(t) = f (t − 1, x(t − 1)) − f (t, x(t)), (6) 

where .f ∈ C(R× R,R). 
Denote by .H(f ) the closure in .C(R× R,R) of .{fτ | τ ∈ R} w.r.t. compact-open 

topology, where .fτ (t, u) := f (t + τ, u) for any .(t, u) ∈ R× R. 
Along with Eq. (6) we consider its H -class, i.e., the family of equations 

.x'(t) = g(t − 1, x(t − 1)) − g(t, x(t)) (g ∈ H(f )). (7) 

Assume that: 

(. F 1) Eq. (6) is regular, i.e., for each Eq. (7) the conditions of existence, unique-
ness and extendability on .R+ are fulfilled; 

(. F 2) the function f is non-decreasing in x; 
(. F 3) .f ∈ C(R × R,R) and for any bounded subset M from . R there exists a 

positive constant .L = L(M, f ) such that .|f (t, u1) − f (t, u2)| ≤ L|u1 − u2| for 
any .(t, u1), (t, u2) ∈ R× M; 

(. F 4) .f (t, 0) = 0 for any .t ∈ R. 

Remark 4 

1. Note that Eq. (6) is regular if f satisfies the following conditions: . f (t, 0) = 0
for any .t ∈ R, f is monotone increasing and locally Lipschitz in .x ∈ C [2]. 

2. If the function .f ∈ C(R × R,R) possesses the property (. F 3) with the constant 
.L = L(M, f ) > 0, then every function .g ∈ H(f ) possesses the property (. F 3) 
with the same constant .L = L(M, f ). 

Along with Eq. (6) we consider equation 

.x'(t) = F(t, xt ), (8) 

where .F ∈ C(R× C,R) is defined by equality 

.F(t, φ) := f (t − 1, φ(−1)) − f (t, φ(0)) (9) 

for any .(t, φ) ∈ R× C.
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Lemma 4 For any compact subset K from . C there exists a compact subset . K from 
. R such that 

. max|t |≤l, φ∈K
|F(t + p, φ) − F(t + q, φ)| ≤

max
|t |≤l, u∈K

|f (t+p−1, u)−f (t+q−1, u)|+ max
|t |≤l, u∈K

|f (t+p, u)−f (t+q, u)|

for any .p, q ∈ R and .l > 0, where .f ∈ C(R × R,R) and .F ∈ C(R × C,R) is 
defined by (9). 

Proof Let .p, q ∈ R, .l > 0 and K be a compact subset from . C, then there exists a 
compact subset . K from . R such that .φ(s) ∈ K for any .s ∈ [−1, 0] and . φ ∈ K . Note  
that 

. |F(t+p, φ) − F(t + q, φ)| ≤ |f (t+p − 1, φ(−1)) − f (t + q − 1, φ(−1))| +
|f (t+p, φ(0)) − f (t+q, φ(0))| ≤ max

|t |≤l, φ∈K
|f (t+p − 1, u) − f (t+q−1, u)| +

max
|t |≤l, φ∈K

|f (t + p, u) − f (t + q, u)|

and, consequently, 

. max|t |≤l, φ∈K
|F(t + p, φ) − F(t + q, φ)| ≤

max
|t |≤l, u∈K

|f (t+p−1, u)−f (t+q−1, u)|+ max
|t |≤l, u∈K

|f (t+p, u)−f (t+q, u)|

for any .p, q ∈ R and .l > 0. Lemma is proved. ⨅⨆
Note that on the space .C(R × R,R) (respectively, .C(R × C,R)) is defined 

the compact-open topology and a shift dynamical system . (C(R × R,R),R, σ )

(respectively, .(C(R× C,R),R, σ )) with respect to time t . 

Corollary 3 The function .F ∈ C(R×C,R) defined by (9) is uniformly comparable 
by character of recurrence with .f ∈ C(R× R,R). 

Proof This statement directly follows from Lemma 4 and corresponding definition 
of uniformly comparability of functions by their character of recurrence. ⨅⨆
Corollary 4 If the function .f ∈ C(R×R,R) is stationary (respectively, .τ -periodic, 
quasi-periodic with the frequency basis .ν1, ν2, . . . , νm, Bohr almost periodic, 
Levitan almost periodic, almost recurrent, recurrent) in .t ∈ R uniformly w.r.t. u 
on every compact . K from . R, then the function F defined by (9) is also stationary 
(respectively, .τ -periodic, quasi-periodic with the frequency basis .ν1, ν2, . . . , νm, 
Bohr almost periodic, Levitan almost periodic, almost recurrent, recurrent) in . t ∈ R
uniformly w.r.t. . φ on every compact K from . C.
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Proof This statement follows from Theorems 1, 4 and Corollary 3. ⨅⨆
Lemma 5 The following statements hold: 

1. condition (. F 1) (respectively, (. F 2)) implies .(F1) (respectively, . (F2)) for Eq. (8); 
2. if there exists a point .x0 ∈ R such that 

.‖f ‖0 := sup
t∈R

|f (t, x0)| < +∞, (10) 

then (. F 3) implies .(F3) for Eq. (8). 

Proof The first statement is evident. 
Let A be an arbitrary bounded subset of . C and R be a positive number such that 

. sup
φ∈A

(‖φ‖C + |x0|) ≤ R.

To prove the second statement we note that if condition (10) holds, then by Lemma 2 
condition .(F3) follows from (. F 3). Assume that condition (. F 3) is fulfilled. If A is 
a bounded subset of . C, then we have 

. |F(t, φ)| = |f (t − 1, φ(−1)) − f (t, φ(0))| ≤
|f (t − 1, φ(−1)) − f (t − 1, x0| + |f (t − 1, x0) − f (t, x0)| +

|f (t, x0) − f (t, φ(0)| ≤ L(R)|φ(−1) − x0| + L(R)|x0 − φ(0)| + 2‖f ‖0‖ ≤
2L(R)(||φ||C + |x0|) + 2‖f ‖0 ≤ 2L(R)R

and, consequently, the set .F(R×A) is a bounded subset from . Rn. Lemma is proved. 
⨅⨆

Lemma 6 ([2]) Let . φ and . φ be given in . C, .ϕ(t, φ, f ) and .ϕ(t, ψ, f ) the solutions 
of equation (6). Suppose that .ψ ≤ φ, then .ϕ(t, ψ, f ) ≤ ϕ(t, φ, f ) for any .t > 0. 

Let .C := C([−1, 0],R) and .ϕ(t, φ, g) be the solution of equation (7) passing 
through .φ ∈ C at initial moment .t = 0. 

Define .V : C× H(f ) → R by 

. V (φ, g) := φ(0) +
0ˆ

−1

g(τ, φ(τ))dτ.

It is easy to check that V possesses the following two properties: 

(V1) For any .c ≤ d in . R there is .M = M(c, d) > 0 such that . |V (φ, g) −
V (ψ, g)| ≤ M‖φ − ψ‖ for any . φ,ψ ∈ [c, d]C := {φ ∈ C| c ≤ φ(τ) ≤
d for all τ ∈ [−1, 0]} and .g ∈ H(f );
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(V2) 

. V (φ, g) − V (ψ, g) ≥ φ(0) − ψ(0)

for any .φ ≥ ψ in . C and .g ∈ H(f ). 

Lemma 7 ([13]) The following statement holds: 

. V (π(t, (φ, g))) = V (φ, g)

for any .(φ, g) ∈ C× H(f ) and .t ≥ 0. 

Lemma 8 Under conditions (. F1)–(. F 3) for any .c ≤ d in . R and .g ∈ H(f ), there 
exists .K = K(c, d) > 0 such that 

. ‖ϕ(t, φ, g) − ϕ(t, ψ, g)‖ ≤ K‖φ − ψ‖

for any .φ,ψ ∈ [c, d]C and .t ≥ 0. 

Proof This statement may be proved using the same ideas as in the proof of Lemma 
6.3 from [13]. Below we will present the details of this proof. 

For .c ≤ d in . R and .g ∈ H(f ), let .M = M(b, c, f ) > 0 be defined as in the 
property (V1). We first show that 

.|ϕ(t, φ, g) − ϕ(t, ψ, g)| ≤ M‖φ − ψ‖ (11) 

for any .c ≤ ψ ≤ φ ≤ d and .t ∈ R+. Indeed, by Lemma 6, we have . ϕt (ψ, g) ≤
ϕt (φ, g) for any .t ∈ R+. It then follows from (V1), (V2) and Lemma 7 that 

. |ϕ̃(t, φ, g) − ϕ̃(t, ψ, g)| = |ϕ(t, φ, g)(0) − ϕ(t, ψ, g)(0)| =
ϕ(t, φ, g)(0) − ϕ(t, ψ, g)(0) ≤ V (ϕ(t, φ, g), gt ) − V (ϕ(t, ψ, g), gt ) =
V (π(t, (φ, g)) − V (π(t, (ψ, g)) = V (φ, g) − V (ψ, g) ≤ M‖φ − ψ‖

for any .t ∈ R+. For any .φ,ψ ∈ [c, d]C, we define 

. α(s) := min
s∈[−1,0]{φ(s), ψ(s)} and β(s) := max

s∈[−1,0]{φ(s), ψ(s)}.

Clearly, .c ≤ α ≤ φ, ψ ≤ β ≤ d. By the definition of . α and . β, it then follows that 

. β(s) − α(s) = (
φ(s) + ψ(s) + |φ(s) − ψ(s)|)/2 −

(
φ(s) + ψ(s) − |φ(s) − ψ(s)|)/2 = |φ(s) − ψ(s)|,
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for any .s ∈ [−1, 0], which implies that 

. ‖α − β‖ = ‖φ − ψ‖.

By (11), we have 

. |ϕ(t, α, g) − ϕ(t, β, g)| ≤ M‖α − β‖,

for any .t ∈ R+. Moreover, Lemma 6 implies that 

. ϕ(t, α, g) ≤ ϕ(t, φ, g), ϕ(t, ψ, g) ≤ ϕ(t, β, g),

for any .t ∈ R+. Thus, we obtain 

. |ϕ(t, φ, g) − ϕ(t, ψ, g)| ≤ |ϕ(t, α, g) − ϕ(t, β, g)| ≤ M‖α − β‖ = M‖φ − ψ‖,

for any .t ∈ R+. It then follows that 

. ‖ϕt (φ, g) − ϕt (ψ, g)‖ ≤ K‖φ − ψ‖,

where .K := max{1,M}. ⨅⨆
Corollary 5 Under conditions (.F 1)–(.F 4) every solution .ϕ(t, φ, g) of Eq. (7) is  
bounded on . R+. 

Proof Let .φ ∈ C and .c > 0 such that .−c ≤ φ(s) ≤ c for any .s ∈ [−1, 0] and 
.K = K(−c, c) be a positive constant from Lemma 8. By condition (. F 4) we have  
.ϕ(t, 0, g) = 0 for any .t ∈ R and according to Lemma 8 we have 

. ‖ϕ(t, φ, g)‖ ≤ K‖φ‖

for any .t ∈ R+. ⨅⨆
Lemma 9 Under conditions (. F1)–(.F 4) every solution .ϕ(t, u0, f ) of Eq. (6) is  
positively uniformly Lyapunov stable. 

Proof According to Lemmas 3 and 5 (item ii) .ϕ(R+, u0, f ) is a pre-compact subset 
of . C and, consequently, there are .c0 ≤ d0 (.c0, d0 ∈ R) such that . c0 ≤ ϕ(t, u0, f ) ≤
d0 for any . t ∈ R+. Let . δ0 be a fixed positive number and 

. W0 = [c0 − δ0, d0 + δ0]C := {φ ∈ C| c0 − δ0 ≤ ϕ(s) ≤ d0 + δ0, ∀ s ∈ [−1, 0]}.

If we suppose that the statement of Lemma is false then there are .ε0 > 0, . δn → 0
(. δn > 0) as .n → ∞, .tn ≥ 0, .un ∈ W0 and .sn ≥ tn such that 

.‖ϕ(tn, un, f ) − ϕ(tn, u0, f )‖ < δn (12)
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and 

. ‖ϕ(sn, un, f ) − ϕ(sn, u0, f )‖ ≥ ε0

for any .n ∈ N. 
Since the sequence .{ϕ(tn, u0, f )} ⊂ ϕ(R+, u0, f ) is pre-compact and .δn → 0 as 

.n → ∞, then from (12) it follows that the sequence .{ϕ(tn, un, f )} is pre-compact 
too. Without loss of generality we can assume that .δn ≤ δ0 for any .n ∈ N and, 
consequently, .{ϕ(tn, un, f )} ⊆ W0. Denote by .K0 := K(c0 − δ0, d0 + δ0) > 0 the 
positive constant figuring in Lemma 8. Let .τn := sn − tn. In virtue of Lemma 8 we 
have 

. ε0 ≤ ‖ϕ(sn, un, f ) − ϕ(sn, u0, f )‖ = ‖ϕ(tn + τn, un, f ) − ϕ(tn + τn, u0, f )‖ =
‖ϕ(τn, ϕ(tn, un, f ), f tn) − ϕ(τn, ϕ(tn, u0, f ), f tn)‖ ≤

K0‖ϕ(tn, un, f ) − ϕ(tn, u0, f )‖ ≤ K0δn (13) 

for any .n ∈ N. Passing to the limit in (13) as .n → ∞ we obtain . ε0 ≤ 0. The last  
inequality contradicts to the choice of the number . ε0. The obtained contradiction 
proves our statement. The lemma is proved. ⨅⨆

Under conditions (. F 1)–(. F 4) the following statement holds. 

Lemma 10 ([13]) Let .g ∈ H(f ) and let .u(t) and .v(t) be two bounded solutions 
defined on . R of (7)with .u(t) ≤ v(t) for any .t ∈ R there exists a number .τ > 0 such 
that whenever .u(s) < v(s) for some .s ∈ R, then .u(t) ⩽ v(t) for all .t ≥ τ + s. 

Theorem 7 Suppose that the function .f ∈ C(R×R,R) is almost recurrent in . t ∈ R
uniformly with respect to u on every compact subset from . R. 

Then under Conditions (. F 1)–(. F 4) the following statements hold: 

1. for any solution .ϕ(t, v, g) of Eq. (7) there exists a solution .ϕ(t, γv, g) of (7) 
defined and bounded on . R such that: 

a. .ϕ(t, γu, g) is a strongly compatible solution of (7); 
b. . lim

t→∞ |ϕ(t, v, )g − ϕ(t, γv, g)| = 0; 

2. if the function .f ∈ C(R × R,R) is stationary (respectively, .τ -periodic, quasi-
periodic with the frequency basis .ν1, ν2, . . . , νm, Bohr almost periodic, almost 
automorphic, almost recurrent, recurrent) in .t ∈ R uniformly with respect to 
u on every compact subset from . R, then .ϕ(t, γu, f ) is also stationary (respec-
tively, .τ -periodic, Bohr almost periodic, quasi-periodic with the frequency basis 
.ν1, ν2, . . . , νm, almost automorphic, almost recurrent, recurrent).
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Proof Let .Y := H(f ), .(Y,R, σ ) be the shift dynamical system on .H(f ) and 
.〈C, ϕ, (Y,R, σ )〉 be the cocycle generated by Eq. (6) (respectively, by family of 
equations (7)). Under the conditions of Theorem 7 the cocycle above possesses the 
following properties: 

1. by Lemma 6 the cocycle . ϕ is monotone; 
2. according to Lemmas 3, 5 and Corollary 5 every solution .ϕ(t, ψ, g) of Eq. (7) is  

pre-compact; 
3. in virtue of Lemma 9 every solution .ϕ(t, ψ, g) of Eq. (7) is positively uniformly 

Lyapunov stable; 
4. by Lemma 10 the cocycle satisfies condition (C4). 

To finish the proof of Theorem it is sufficient to apply Theorems 1, 4 and 5. ⨅⨆
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Periodic Solutions in a Differential Delay 
Equation Modeling Megakaryopoiesis 

Anatoli F. Ivanov and Bernhard Lani-Wayda 

Abstract We consider a scalar nonlinear differential delay equation which was 
recently proposed as a mathematical model for platelet production (megakary-
opoiesis). The equation has a unique positive equilibrium about which solutions 
tend to oscillate. We show that periodic oscillations in the model always exist 
when the equilibrium is linearly unstable. Several methods of proof are proposed. 
They include an adapted version of established ejective fixed point techniques, and 
application of a more recent theorem for nonlinear semiflows. We indicate how an 
analogous result can be obtained for a different class of equations frequently used 
in applications. 

1 Introduction 

It is well known that differential delay equations serve as mathematical models 
for a large variety of phenomena in applied sciences, in particular in biology and 
physiology [5, 7, 12, 15]. This contribution is motivated by the recent paper [3] 
where a relatively simple delay equation is proposed as a model of platelet produc-
tion in human body (see Eq. (1) below). As it is observed from clinical data and 
measurements, the total number of platelets is stable with possible relatively small 
regular deviations in time. In the mathematical model such dynamics correspond to 
the existence of a unique positive equilibrium with typical oscillatory behavior of 
solutions about it. The physiological system exhibits the negative feedback property, 
when a deviation from the equilibrium in one direction forces the system to move in 
the opposite direction. This leads to the existence and typical nature of the so-called 
slowly oscillating solutions in the mathematical model, for which the time distance 
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between consecutive passages through the equilibrium level is greater than the delay 
time in the  system.  

Important mathematical questions arise then for the differential delay model 
under consideration, which would provide theoretical explanation of the observed 
phenomena. The first one is the global stability of the unique equilibrium, when any 
initial function results in a solution that is attracted by the equilibrium. This question 
is studied and answered affirmatively in paper [10]. The second one is the existence 
of slowly oscillating periodic solutions, which is answered in the present work. 
We show that the mere instability of the equilibrium implies the existence of such 
periodic solutions, which are likely to be stable and hence experimentally observable 
(although our methods do not prove the stability). Existence of periodic solutions 
is an information significantly beyond oscillatory behavior of most solutions. We 
would also like to mention that some initial studies on the qualitative analysis of the 
mathematical model are initiated in the original paper [3]. 

We consider the differential delay equation 

.ẋ(t) = −μx(t) + f (x(t)) g(x(t − τ)), (1) 

with strictly decreasing and positive . C1 functions .f, g : [0,∞) → R having 
negative derivative, and .μ, τ > 0. It has a unique equilibrium .x∗ > 0 as the 
positive solution of the equation .f (x)g(x) = μx. Setting . f̃ (y) := f (x∗ + y) −
f (x∗), g̃(y) := g(x∗ + y) − g(x∗), one has . f̃ (0) = 0 = g̃(0), f̃ '(0) = f '(x∗) <

0, g̃'(0) = g'(x∗) < 0, and the negative feedback properties . f̃ (y) ·y < 0, g̃(y) ·y <

0 (y /= 0). Setting .y(t) := x(t) − x∗ transforms Eq. (1) to  

.ẏ(t) = −μy(t) + f̃ (y(t)) · g(x∗ + y(t − τ)) + f (x∗)g̃(y(t − τ)). (2) 

The linearization of equation (2) at zero is given by 

. ẏ(t) = −μy(t) + f (x∗)g'(x∗)y(t − τ) + f '(x∗)g(x∗)y(t)

= −Ay(t) − By(t − τ),

with the positive numbers .A := μ − f '(x∗)g(x∗) and .B := −f (x∗)g'(x∗). The  
associated characteristic equation 

.λ + A + Be−λτ = 0 (3) 

is well-studied, e.g., in [8]. We make an assumption of instability, which automati-
cally implies oscillatory behavior, concerning the eigenvalue (solution of (3)) with 
maximal real part: 

. The characteristic equation has a leading unstable eigenvalue λ = ρ + iω (4) 

with ρ >  0.
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Remark 1 Define .smin as the smallest positive solution of the equation . τA + s ·
cos[√s2 − (τA)2] = 0. Condition (4) is satisfied if and only if 

.Bτ > smin. (5) 

Then the characteristic equation (3) has no real roots, and .ω ∈ (π/(2τ), π/τ). 

Proof Equation (3) is equivalent to .τλ+ τA+Bτe−λτ = 0, and the latter has roots 
with positive real part if and only if condition (5) holds, as shown in [8]. Note that 
.smin has to satisfy .s2min > (τA)2+π2/4, so it follows from (5) that .Bτ > π/2. Now 

if . λ solves (3) then .λ̃ := τ(λ + A) solves .λ̃ + BτeτAe−λ̃ = 0. It is well known that 
this equation has no real roots if .BτeτA > e−1 (see e.g. Proposition 4 in [3]), and 
under condition (5) one has .BτeτA > Bτ > π/2 > e−1, so that . ̃λ (and hence . λ) 
cannot be real. The inequalities for . ω are proved in [8]. ⨅⨆

It is shown in [3] that, in absence of real eigenvalues, Eq. (1) exhibits oscillations 
about . x∗. We mention the result on sustained oscillations by O. Arino in this context 
[1]. Recall that a slowly oscillating solution is such that the distance between any 
two zeros of .x(t) − x∗ is greater than the delay . τ . In the present note we show 
that the oscillatory behavior includes slowly oscillating periodic solutions, with one 
positive and one negative semi-cycle. 

We assume that for every .ϕ ∈ C there exists a unique solution .xϕ(t) to Eq. (1) 
or (2) defined for all .t ≥ 0. Such existence is guaranteed e.g. by the assumption of 
Lipschitz continuity of nonlinearity f . Then Eqs. (1) and (2) induce semiflows on 
the space .C = C0([−τ, 0],R) with the .max-norm .|| · ||∞. The solution segment 
.xt ∈ C is defined as .xt = xϕ(t + s), s ∈ [−τ, 0]. The set of non-negative initial 
functions is invariant under the semiflow for (1), in accordance with the biological 
interpretation. 

2 Cone and Return Map 

We set 

. K := {ϕ ∈ C
∣∣ ϕ = 0 on [−τ, z∗] for some z∗ ∈ [−τ, 0], and ϕ > 0 on (z∗, 0]}.

It is proved in [10], Proposition 2.3, that there exist positive numbers .m,M with 
.m < x∗ < M such that the order interval .{ϕ ∈ C

∣∣ m ≤ ϕ ≤ M} is attracting 
and invariant for the semiflow induced by Eq. (1). For the transformed equation (2) 
this implies that all its solutions . yϕ satisfy .yϕ(t) ∈ [m+,M+] ∀t ≥ 0 for arbitrary 
initial function . ϕ with .ϕ(s) ∈ [m+,M+] ∀s ∈ [−τ, 0],where .m+ = m−x∗,M+ =
M − x∗.
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Proposition 1 (Oscillating Solutions) For a solution .y = yϕ of (2) with . ϕ ∈
K,ϕ ≤ M+ one has .y(t) ∈ [m+,M+] for all .t ∈ [−τ,∞). If  y has two consecutive 
zeroes .zj , zj+1 then the maximum of . |y| between them occurs in .[zj , zj + τ ]. 
Proof The corresponding solution x of (1) has initial function .ϕ + x∗ with values 
in .[x∗,M+ + x∗] ⊂ [m,M] and hence only values in the last interval. The 
corresponding bounds for y follow. Consider now two consecutive zeroes . zj , zj+1
with .y > 0 on .(zj , zj+1). If  .y(t) > 0 and .y(t − τ) > 0 for some t then Eq. (2) 
shows .ẏ(t) < 0, hence the maximum of y on .[zj , zj+1] occurs in .[zj , zj + τ ]. An  
analogous argument in case .y < 0 on .[zj , zj +τ ] proves the assertion about maxima 
of . |y|. ⨅⨆

We can modify f and g outside the interval .[m,M] to bounded . C1 functions . f̂ , ĝ

with the same properties; the corresponding changes of .f̃ , g̃ do not affect solutions 
as described in Proposition 1. In particular, we then have a constant .L > 0 such that 
.|f̃ (y)| ≤ L|y| for all y. Choose now .ν > μ + g(x∗) · L and define 

. Kν := {ϕ ∈ K
∣∣ t �→ ϕ(t) eνt is increasing on [−τ, 0]} ∪ {0}.

Note that . Kν is a closed, convex cone in C, and that for .ϕ ∈ Kν one has 

.||ϕ||∞ ≥ ϕ(0) ≥ e−ντ ||ϕ||∞. (6) 

Proposition 2 For .ϕ ∈ K , the corresponding solution .y = yϕ of Eq. (2) satisfies 
.y > 0 on .(z∗, z∗ + τ ] (with . z∗ as in the definition of K), is defined on .[−τ,∞) , and 
has infinitely many zeroes .z1 < z2 < z3 ... in .(0,∞), all of which are simple, and 
.zj+1 − zj > τ (j ∈ N). (I.e.,  y is slowly oscillating.) The solution segments . yzj +τ

satisfy . yzj +τ ∈ (−1)jKν (j ∈ N).

Proof On .[0, z∗ + τ ], Eq. (2) reduces to the ODE . ẏ(t) = −μy(t) + f̃ (y(t))g(x∗)
with zero as an equilibrium; the uniqueness of solutions and .y(0) > 0 imply . y > 0
on .[0, z∗ + τ ]. For .t > z∗ with .y(t) > 0 and .y(t − τ) > 0, Eq. (2) shows .ẏ(t) < 0. 
Hence, if we had .y(t) > 0 for all .t ≥ 0, then .y(t) → 0 monotonically. The condition 
on absence of real characteristic values excludes this (see, e.g., [3], Proposition 4 
and Theorem 4.1), hence y has a first positive zero .z1 > z∗ + τ , and .ẏ(z1) < 0. 
With .ν > 0 chosen as above, consider now .w(t) := eνty(t) on .[z1, z1 + τ ]. As long 
as .y(t) < 0 (so certainly close to the right of . z1), 

.ẇ(t) = eνt [νy(t) + ẏ(t)]
= eνt [(ν − μ)y(t) + f̃ (y(t))

︸ ︷︷ ︸
≤L|y(t)|=−Ly(t)

g(x∗ + y(t − τ))
︸ ︷︷ ︸

≤g(x∗)

+ f (x∗)g̃(y(t − τ))
︸ ︷︷ ︸

≤0

]

≤ eνt [ν − μ − g(x∗)L]
︸ ︷︷ ︸

>0

y(t),
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hence .ẇ(t) < 0 as long as .y(t) < 0. If  y had a first zero z in .(z1, z1+τ ] then . ẇ < 0
on .[z1, z) would imply .w(z) < 0 and hence .y(z) < 0, a contradiction. Thus . y < 0
and .ẇ < 0 on .(z1, z1 + τ ]. It follows from 

. 
d

dt
[eνty(z1 + τ + t)] = d

dt
[eν(z1+τ+t)y(z1 + τ + t)] · e−ν(z1+τ)

= ẇ(z1 + τ + t)e−ν(z1+τ) ≤ 0, t ∈ [−τ, 0],

that .yz1+τ ∈ −Kν . As above, .y(t) < 0 for all .t > z1 is impossible, and with the 
same argument as for . z1 we obtain inductively the sequence .(zj ) as asserted. ⨅⨆
Corollary 1 The map .K ϶ ϕ �→ y

ϕ

z2(ϕ)+τ maps K continuously into . Kν . 

Proof We see from Proposition 2 that this map takes values in . Kν . The continuity 
follows from the simplicity of zero . z2 and from continuity of the semiflow. ⨅⨆
Proposition 3 (Bound for Return Times) There exists .T1 > 0 such that for all 
.ϕ ∈ Kν one has . z2(ϕ) + τ ≤ T1.

Proof Using Lipschitz bounds for . f̃ and . g̃, a bound for g, and (6), one sees that 
there exist constants .c1, c2 > 0 such that for a solution y with .y0 = ϕ ∈ Kν one has 

. ||ẏ∣∣[0, τ ]||∞ ≤ c1(||yτ ||∞ + ||ϕ||∞) ≤ c1[||yτ ||∞ + eντ ϕ(0)]

≤ c1[||yτ ||∞ + eντ ||yτ ||∞] = c2||yτ ||∞.

Assume now that there exists a sequence .(ϕn) in . Kν such that . z1(ϕn) → ∞.

The sequence .(yϕn
τ ) and, in view of the above estimate, also the rescaled sequence 

defined by .ηn := y
ϕn
τ

||yϕn
τ ||∞ both satisfy the conditions of the Arzelà–Ascoli theorem, 

so we can assume both are convergent. If .yϕn
τ → ψ∗ /= 0 ∈ C, then .ψ∗ ≥ 0, 

the solution of equation (2) with initial segment . ψ∗ has a first simple zero . z∗
1, 

and hence .yϕn has a simple zero close to . z∗
1, a contradiction. In case .y

ϕn
τ → 0, a  

familiar argument (as, e.g., in [11], proof of Lemma 5.7) shows that the solutions . yϕn

satisfy a non-autonomous linear equation with coefficients converging to the ones 
of the linearized equation, uniformly on compact intervals. The rescaled solutions 

.
yϕn

||yϕn
τ ||∞ satisfy the same non-autonomous equation, and their segments at time . τ

(namely, . ηn) have a limit .ζ ∗ /= 0. The solution of the linearized equation with initial 
segment . ζ ∗ has a first simple zero . ̂z1, and it follows that the rescaled solutions (and 
hence also the . yϕn ) have a first zero close to . ̂z1 for large n, again a contradiction. 

It follows that . z1 is bounded on . Kν . With an analogous argument one sees that 
. z2 is bounded as well, since the segments .−y

ϕ

z1(ϕ), ϕ ∈ Kν , are again in . Kν . ⨅⨆
Remark 2 In the above proof, the estimate for .||ẏ∣∣[0, τ ]||∞, which uses the 

particular form of the equation, could be replaced by using the general fact that
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within the class of slowly oscillating solutions there is a constant .k > 0 such that the 
inequality .||yt+1||∞ ≥ k||yt ||∞ is always satisfied (uniformly non-superexponential 
decay); see e.g. [6], where the uniformity is not explicitly stated in Theorem 2.2, but 
actually proved in Proposition 2.8. 

It follows from Corollary 1 and Proposition 3 that the return map 

. P : Kν → Kν, ϕ �→ y
ϕ

z2(ϕ)+τ if ϕ /= 0, P (0) = 0

(as in Theorem 3.4 of [11], Theorem 2 below in the present work) is well-defined, 
continuous (use that the semiflow is uniformly continuous on .[0, T1] × {0C}) and 
compact (since certainly .z2(ϕ) + τ ≥ τ ). 

For .ϕ ∈ C, let .πλϕ denote the complex spectral projection of . ϕ to the (complex) 
one-dimensional subspace of .C0([−τ, 0],C) corresponding to the leading eigen-
value .λ = ρ + iω; then .(πλϕ)(t) = Π(ϕ) ·eλt for .t ∈ [−τ, 0], with a complex linear 
functional . Π. Associated to . λ is a (real) two-dimensional subspace U of C spanned 
by .ψ1, ψ2, where .ψ1(t) = eρt cos(ωt) and .ψ2(t) = eρt sin(ωt). The real spectral 
projection of .ϕ ∈ C to U is .πUϕ = c1ψ1 − c2ψ2, where . c = Π(ϕ) = c1 + ic2
with . Π as above. To provide a lower bound for . πU , it is sufficient to provide a lower 
bound for the functional . Π. Up to a nonzero constant factor, . Π is given by 

. Π̃ϕ := ϕ(0) − B · J (ϕ), where J (ϕ) :=
ˆ 0

−τ

e−λ(τ+s)ϕ(s) ds

(see Corollary 2.5 in [11]). 

Proposition 4 (Lower Bound for Spectral Projection) There exists .c > 0 such 
that .|Π̃ϕ| ≥ c||ϕ||∞ for .ϕ ∈ Kν , with an analogous estimate for . Π. 

Proof Consider .ϕ ∈ Kν . We write .||ϕ||L1 for .
´ 0
−τ

|ϕ(x)| dx. From  . Re(λ) > 0 and 
(6) we see that for . ϕ ∈ Kν

.|J (ϕ)| ≤ ||ϕ||L1 ≤ τ · ||ϕ||∞ ≤ τeντ ϕ(0). (7) 

We have .ω ∈ ( π
2τ , π

τ
), see  Remark  1. It follows that 

. Im(J (ϕ)) =
ˆ 0

−τ

e−ρ(τ+s) · (− sin(ω(τ + s))︸ ︷︷ ︸
≤0

·ϕ(s) ds.

Thus, with .σ := min−τ/2≤s≤0
| sin(ω(τ + s)| > 0, and .ϕ̃(s) := eνsϕ(s), we obtain 

.| Im(J (ϕ))| ≥ σ ·
ˆ 0

−τ/2
e−ρ(τ+s)e−νseνsϕ(s) ds ≥ σ1

ˆ 0

−τ/2
ϕ̃(s) ds,
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with a constant .σ1 > 0. Since . ϕ̃ is increasing, we can conclude 

.| Im(J (ϕ))| ≥ σ1

2

ˆ 0

−τ

ϕ̃(s) ds ≥ σ1

2
e−ντ

︸ ︷︷ ︸
=:σ2

ˆ 0

−τ

ϕ(s) ds = σ2||ϕ||L1 . (8) 

Now if .||ϕ||L1 ≤ ϕ(0)
2B then we see from (7) that 

. |Π̃ϕ| ≥ ϕ(0) − B|J (ϕ)| ≥ ϕ(0) − B · ϕ(0)

2B
= ϕ(0)

2
≥ e−ντ

2
||ϕ||∞.

If however .||ϕ||L1 ≥ ϕ(0)
2B then (8) shows  

. |Π̃ϕ| ≥ | Im(Π̃ϕ)| = | Im(J (ϕ))| ≥ σ2||ϕ||L1 ≥ σ2

2B
ϕ(0) ≥ σ2

2B
e−ντ ||ϕ||∞.

The asserted lower estimate for . Π̃ and hence for . Π follows. ⨅⨆
Remark 3 In the passage following Lemma 2.9 in [11], it was mentioned that the 
conditions for a lower bound of the spectral projection are automatically satisfied for 
dimensions .N = 1, 2, 3; however, this is true only for .N = 2, 3, while for . N = 1
one has to use the argument of Proposition 4 instead. 

3 Periodic Solutions 

Theorem 1 Under the instability assumption (4), Eq. (2) (and hence Eq. (1)) has a 
slowly oscillating periodic solution, repeating after one positive and one negative 
semi-cycle. 

Based on the above preliminaries, we indicate three methodically different 
approaches to the proof of this result. The preparations from Sect. 2 provide a 
detailed proof in case of approaches I and III; we only sketch the ideas of approach 
II. 

I. Recall that the fixed point 0 ∈ K is called ejective under the map P if there 
exists an open neighborhood 0 ϶ U ⊂ C such that for every ϕ ∈ K ∩ U, ϕ /= 0, 
there is an integer m = m(ϕ) such that P m (ϕ) /∈ K ∩U . Basics of the ejective fixed 
point theory, as applied to periodic solutions of differential delay equations, can be 
found in monographs [4, 9]. 

For the return map P from Section 2, a reasoning similar to the one in [8] shows  
that 0 is an ejective fixed point. Hence, as in the paper [8], Browder’s ejective fixed 
point theorem (see Theorem 2, p. 88 in [8]) implies the existence of a nonzero fixed 
point of P in the cone Kν , leading to a periodic solution of the described type. We 
carry out the proof of ejectivity, assuming that f and g are of class C2.
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Equation (2) can be rewritten as 

.ẏ(t) = F(y(t), y(t − τ)), (9) 

where F(y,  z)  := −μy + f̃ (y)g(x∗ + z) + f (x∗)g̃(z). We have F(0, 0) = 0, and 

. ∂1F(0, 0) = −μ + f̃ '(0)g(x∗) < −μ < 0, ∂2F(0, 0) = f (x∗)g̃'(0) < 0.

With the positive numbers A := −∂1F(0, 0) and B := −∂2F(0, 0), and the 
nonlinear part 

. H(y, z) := F(y, z) − DF(0, 0)(y, z),

Eq. (9) can be written as 

.ẏ(t) + Ay(t) + By(t − τ) = H(y(t), y(t − τ)). (10) 

The associated characteristic equation (3) is solved, in particular, by the leading 
eigenvalue λ = ρ + iω. We have  ρ >  0 and, from Corollary to Lemma 3 of [8], p. 
89, π/(2τ)  < ω  < π/τ . 

There exist δ0 > 0 and c2 > 0 such that if δ ∈ (0, δ0] and y, z ∈ [−δ, δ] then 

.|H(y, z)| ≤ c2δ
2. (11) 

Now assume that 0 is not ejective, and consider a solution y : [−τ,∞) → R of (9) 
with initial segment 0 /= ϕ ∈ Kν such that supt≥0 |y(t)| = δ, for  some  δ ∈ (0, δ0]. 
In view of Proposition 1, there exists a zero zj of y such that ||yzj +τ ||∞ ≥ δ/2, and 
Proposition 2 shows yzj +τ ∈ ±Kν . Since y(zj +τ +·) is also a solution of equation 
(2), we can assume 

. y0 = ϕ ∈ Kν, ||ϕ||∞ ≥ δ/2, and |y(t)| ≤ δ ≤ δ0 for all t ≥ −τ.

Recall the Laplace transform defined by (Ly)(λ) := 
´∞ 
0 e−λt y(t) dt. It has the 

well-known properties (see [11], formula (2.2)) 

. (Lẏ)(λ) = −x(0) + λ(Ly)(λ)

[Ly(· − τ)](λ) = e−λτ

[ˆ 0

−τ

e−λty(t) dt + (Ly)(λ)

]
.

Inspired by [8] (pages 92-93), we now apply the Laplace transform with the 
leading eigenvalue λ to Eq. (10), and we abbreviate the right hand side of that 
equation as h(t). This gives 

.−y(0)+λ(Ly)(λ)+A(Ly)(λ)+Be−λτ

ˆ 0

−τ

e−λty(t) dt+Be−λτ (Ly)(λ)=(Lh)(λ).
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In view of the characteristic equation (3), the terms with (Ly)(λ) cancel out, and 
one obtains 

. − y(0) + Be−λτ

ˆ 0

−τ

e−λty(t) dt = (Lh)(λ),

or, with Π̃ as in Proposition 4, 

. Π̃ϕ = −(Lh)(λ).

(Compare Propositions 2.2. and 2.3 from [11], where the relation between the 
spectral projection and the Laplace transform of the linear part of the equation is 
detailed.) From (11) we obtain a constant c̃2 > 0 such that |− (Lh)(λ)| ≤  ̃c2δ2, and 
from Proposition 4 we see that |Π̃ϕ| ≥ c||ϕ||∞ ≥ cδ/2, so 

. cδ/2 ≤ |Π̃ϕ| = |(Lh)(λ)| ≤ c̃2δ
2,

which gives a contradiction for small enough δ. It follows that there exists a 
number δ1 ∈ (0, δ1] such that every nonzero solution y with y0 ∈ Kν satisfies 
supt≥0 |y(t)| ≥  δ1. This proves ejectivity of the return map P at zero, and Theorem 1 
follows from the ejective fixed point theorem, as in [8]. 

II. Using the modification of f and g to functions bounded in C1(R, R), as  
indicated after Proposition 1, one can consider a homotopy of the form 

. ẏ(t) = −μy(t) + (1 − s) · f̃ (y(t)) · g(x∗ + y(t − τ)) + s · f '(x∗) · y(t) · g(x∗)+
+ f (x∗)g̃(y(t − τ)), s ∈ [0, 1],

which transforms Eq. (2) (for s = 0) to the equation 

. ẏ(t) = [−μ + f '(x∗) · g(x∗)] · y(t) + f (x∗)g̃(y(t − τ))

(for s = 1). The latter is of the type considered in Proposition 2.1 of [14], and the 
homotopy satisfies the admissibility conditions of Theorem D from [14], p. 282 for 
the case N = 1, which then gives a slowly oscillating periodic solution. (The results 
from [14] formally require f and g to be C∞, but that is a minor issue.) In particular, 
the feedback conditions and the linearized equation are preserved throughout the 
homotopy for all s ∈ [0, 1], as well as the a-priori bounds and bounds on return 
times, which apply in particular to periodic solutions. 

One caution is in place here: In order to have that the fixed point index of all 
return maps Ps associated to the equation with homotopy parameter s and to the 
set of slowly oscillating solutions (which was computed to be +1 for a prototype 
equation in [14]) actually indicates existence of a nontrivial periodic solution, one 
has to separate the set {ϕ ∣∣ Ps(ϕ) = ϕ for some s ∈ [0, 1]} from zero—for this 
purpose one may require in addition that zero is hyperbolic for Eq. (2). Then a
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sufficiently small neighborhood of zero cannot contain periodic solutions (due to 
the saddle point property), and, due to the bound on period lengths; also, no initial 
values of periodic solutions, since such solutions would have to have ‘long’ periods. 
Compare the remarks on p. 303 of [14], before formula (9.2). 

III. With the splitting C = U ⊕ S, where U is the (real) eigenspace associated 
to λ and S is the complementary spectral subspace associated to the remaining 
eigenvalues (with real parts less than that of λ), conditions (A1) and (A2) of 
Theorem 3.4 from [11] for semiflows on Banach spaces are satisfied, even with 
the slightly stronger form (Ã1) instead of (A1). 

(Ã1) (E, |·|E) is a Banach space, andФ : R+ 
0 ×E → E is a continuous semiflow,

Ф(t, 0) = 0 for all t , D2Ф exists on R+ 
0 × E, and is continuous as a mapping 

into Lc(E, E). 
(A2) The operators T (t)  := D2Ф(t, 0) ∈ Lc(E, E) form a C0−semigroup 

of linear operators. There exist real numbers α <  β  with β >  0 and a 
decomposition E = U ⊕S into T (t)-invariant closed subspaces, where U /= {0}, 
and a constant K >  0 such that 

. ∀t ≥ 0 : |T (t)u|E ≥ K−1eβt |u|E (u ∈ U), |T (t)s|E ≤ Keαt |s|E (s ∈ S).

We quote this theorem, only with different notation for the return time, and under 
the slightly stronger assumption (Ã1): 

Theorem 2 Assume that the semiflow Ф : R+ 
0 × E → E on the Banach space 

(E, | · |E) satisfies assumptions (Ã1) and (A2). Let {0} /= K ⊂ E be closed and 
convex with 0 ∈ K. Assume that 0 < t1 < T1, that map θ : K \ {0} → [t1, T1] is 
continuous, and Ф(θ(ψ), ψ) ∈ K for ψ ∈ K \ {0}. Define P : K → K by 

. P(0) := 0, P (ψ) := Ф(θ(ψ),ψ) for ψ /= 0.

We further assume: (1) P is compact; (2) P(ψ) /= 0 if ψ /= 0; 
(3) ∃c >  0 : ∀ϕ ∈ K : ||πUϕ|| ≥ c||ϕ||; 
(4) There exist a continuous linear functional η : E → R and c1 > 0 such that 

. ∀ϕ ∈ K : c1|ϕ|E ≤ η(ϕ).

Then P has a fixed point ϕ∗ in K \ {0}, corresponding to a periodic trajectory
Ф(·, ϕ∗) of the semiflow with period θ(ϕ∗). 

With Kν in place of K and with the return map P constructed above in Sect. 2, 
conditions (1) and (2) are satisfied (the return time is clearly bounded from below 
by τ , and bounded above by T1 from Proposition (3). Proposition 4 shows that 
condition (3) holds. As in [11], the linear functional η is simply η(ϕ) = ϕ(0), for  
which the lower bound on Kν is given in (6), so condition (4) holds. Thus Theorem 1 
follows from Theorem 2.
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Theorem 3.4 from [11] was stated for general semiflows, with the intention of 
further applications. We find such an application in the platelet production model 
from paper [3]. 

4 Further Extensions 

Closely related to (1) is the following differential delay equation 

.ẋ(t) = F(x(t − τ)) − G(x(t)). (12) 

It serves as mathematical model for a number of biological phenomena [12], as well 
as a model describing market fluctuations studied in economics [2, 13]. Equation 
(12) is considered under the following basic assumptions induced by applications: 

(. H1) Functions F and G are defined and continuously differentiable on the 
positive semiaxis .R+ = {x ∈ R ∣∣ x ≥ 0} and are positive for all .x > 0. In  
addition G is increasing with .G'(x) > 0 ∀x ∈ R+; 

(. H2) There is a unique positive value .x∗ > 0 such that .F(x∗) = G(x∗), and in 
addition the following inequalities are satisfied 

.F(x) > G(x) ∀x ∈ (0, x∗) and F(x) < G(x) ∀x ∈ (x∗,∞). (13) 

Assumption .(H2) implies the existence of the unique positive equilibrium . x∗ in 
model (12), in agreement with the applied interpretation. An important property 
in addition to (13), frequently required of model (12), is the (non-local) negative 
feedback assumption about the unique positive equilibrium. For this purpose the 
well-defined interval map .Ф := G−1 ◦ F is introduced with the following 
assumption in place: 

(. H3) .F '(x∗) < 0 and there exists a closed finite interval . I0 = [a, b] ⊂ R+, x∗ ∈
I0, such that .Ф(I0) ⊆ I0 and .(Ф(x) − x∗)(x − x∗) < 0 ∀x ∈ [a, b], x /= x∗. 

In case of monotone decreasing F the hypothesis (. H2) and the negative feedback 
assumption (. H3) are satisfied automatically. The linearization of (12) about the 
positive equilibrium .x∗, .ẏ(t) = F '(x∗) y(t − τ) − G'(x∗) y(t), produces the same 
characteristic equation (3) as above, with .A = G'(x∗) > 0 and .B = −F '(x∗) > 0. 
The main periodicity result of Sect. 3, Theorem 1, extends to Eq. (12) as follows. 

Theorem 3 Assume that hypotheses (. H1), (. H2), and (. H3) are fulfilled, and that 
the corresponding characteristic equation (3) has a solution with positive real part. 
Then the differential delay equation (12) has a non-trivial periodic solution slowly 
oscillating about the equilibrium . x∗.

The proof is accomplished along the same lines as the proof of Theorem 1. 
Theorem 3 generalizes a similar result from [12].



100 A. F. Ivanov and B. Lani-Wayda

Acknowledgments We thank the referees for useful remarks that helped us to improve the final 
presentation. 

References 

1. Arino, O.: A Note on “The Discrete Lyapunov Function”. J. Differ. Equ. 104, 169–181 (1993) 
2. Bélair, J., Mackey, M.C.: Consumer memory and price fluctuations in commodity markets: an 

integrodifferential model. J. Dynam. Differ. Equ. 1, 299–325 (1989) 
3. Boullu, L., Adimy, M., Crauste, F., Pujo-Menjouet, L.: Oscillation and asymptotic convergence 

for a delay differential equation modeling platelet production. Discrete Contin. Dynam. 
Systems B 24(6), 2417–2442 (2019) 

4. Diekmann, O., van Gils, S., Verdyn Lunel, S.M., Walther, H.-O.: Delay Equations: Complex, 
Functional, and Nonlinear Analysis. Springer, New York (1995) 

5. Erneux, T.: Applied Delay Differential Equations. Surveys and Tutorials in the Applied 
Mathematical Sciences, vol. 3. Springer, Berlin (2009) 

6. Garab, Á.: Absence of small solutions and existence of Morse decomposition for a cyclic 
system of delay differential equations. J. Differ. Equ. 269(6), 5463–5490 (2020) 

7. Hadeler, K.P.: Delay equations in biology. In: Springer Lecture Notes in Mathematics, vol. 730, 
pp. 139–156 (1979) 

8. Hadeler, K.P., Tomiuk, J.: Periodic solutions of difference differential equations. Arch. Rat. 
Mech. Anal. 65, 87–95 (1977) 

9. Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Applied 
Mathematical Sciences. Springer, Berlin (1993) 

10. Ivanov, A.F.: Global asymptotic stability in a differential delay equation modeling megakary-
opoiesis. Funct. Differ. Equ. 28(3–4), 103–116 (2021) 

11. Ivanov, A.F., Lani-Wayda, B: Periodic solutions for an N -dimensional cyclic feedback system 
with delay. J. Differ. Equ. 268(9), 5366–5412 (2020) 

12. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathe-
matics in Science and Engineering, vol. 191. Academic Press, Cambridge (1993) 

13. Mackey, M.C.: Commodity price fluctuations: price dependent delays and nonlinearities as 
explanatory factors. J. Econ. Theory 48(2), 497–509 (1989) 

14. Mallet-Paret, J.: Morse decomposition for delay differential equations. J. Differ. Equ. 72(1), 
270–315 (1988) 

15. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life 
Sciences. Texts in Applied Mathematics, vol. 57. Springer, Berlin (2011)



Discrete and Continuous Models of the 
COVID-19 Pandemic Propagation with 
a Limited Time Spent in Compartments 

Olzhas Turar, Simon Serovajsky, Anvar Azimov, and Maksat Mustafin 

Abstract The paper considers discrete and continuous models of the epidemic 
propagation with a limited time spent in compartments. It contains a comparative 
analysis carried out for the influence of process parameters on both models. The 
problem of system identification is solved. Namely, we first estimated the accuracy 
of the solution of the inverse problem on the model data. Then the system is 
identified based on real data on the spread of COVID-19 in Kazakhstan, after which 
a forecast is made for the propagation of the epidemiological situation. 

1 Introduction 

COVID-19 pandemic has largely updated the development of mathematical models 
for epidemic propagation. Modern mathematical models of epidemiology go back 
to the work of R. Ross of malaria propagation research [1] and SIR model proposed 
by W. Kermack and A. McKendrick [2]. This model is based on the division of the 
entire population into three compartments of susceptible, infected and recovered. 
This model describes the transition of people from the compartment of susceptible 
to infected and then recovered. It is represented by a system of differential equations 
that describe the change in the size of each of these population compartments over 
time. A natural generalization of the SIR model is the SIRD model, in which it 
is assumed that some part of the infected people die, forming an additional group 
of deceased [3], and its simplification is the SIS model, in which the recovered 
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patients do not develop immunity, i.e. recovered immediately join the group of 
susceptible [4]. The last two models generalize the SIRS model, where those who 
have recovered do not lose immunity immediately, but after some time, which means 
that the recovered group is present, but is not the end state of the population [5]. 

These models do not take into account latency period during which individuals 
have been infected but are not yet infectious themselves. This shortcoming is 
overcome in the SEIR model, in which a compartment of exposed is added [6]. 
Subsequently, other groups of the population were taken into account. Particularly, 
deceased patients were also considered in [7, 8], asymptomatic patients in [9], and 
hospitalized and critical patients in [10, 11]. In addition to ordinary differential 
equations, partial differential equations are also used to describe the propagation of 
an epidemic over a certain territory [12]. There are a significant number of stochastic 
models for the development of epidemics [3]. 

Along with continuous models, discrete models characterized by difference 
equations [13] are also used. In [14, 15], a discrete model with a limited time spent 
in exposed and patient compartments is considered. It assumes that after some time, 
each person from these groups will certainly move to another group: in particular, 
the contact will either become infected or most likely not get infected, the patient 
will either recover or die. In this paper, we consider a modification of this model, as 
well as its continuous analog. Three groups of patients are considered: undetected, 
isolated, and hospitalized. Undetected are not reflected in official statistics and are 
the main carrier of infection. Isolated are included in official statistics, but are not 
hospitalized and are carrier of infection. Being seriously ill hospitalized may die, 
but they are in strict isolation and are not carrier of infection.The flow diagram of 
the compartmental transitions is shown in Fig. 1. 

Fig. 1 Flow diagram of the compartmental transitions
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A comparative analysis of the models is carried out with an assessment of the 
influence of the parameters included in them. We solve the problem of model 
identification with an evaluation of the solution accuracy. As an example, the 
propagation of COVID-19 in Kazakhstan is considered. The forecast results are 
compared with real data. 

2 Discrete Model 

The paper considers a discrete model of the epidemic propagation with a limited 
time spent in compartments. The state of the system in model described by the 
functions of the discrete argument . Sk , . Ek , . Uk , . Ik , . Hk , . Rk , . Dk , which describe, 
respectively, the number of susceptible, exposed, undetected, isolated, hospitalized, 
recovered, and deceased at time k. Let’s call the amounts of days spent in the 
exposed, undetected, isolated, and hospitalized compartments as . ne, . nu, . ni and . nh, 
respectively. The number of people in each compartment at a given time is the found 
as a sum of numbers of specific discrete function for the respective period i.e. 

.Ek =
ne∑

j=1

e
j
k , Uk =

nu∑

j=1

u
j
k, Ik =

ni∑

j=1

i
j
k , Hk =

nh∑

j=1

h
j
k, (1) 

where . ej
k , etc. denotes the number of exposed, etc. at time k and on the j -th day 

of being in the compartment. Each exposed, etc. of the given day of being in his 
compartment, a day later goes to the category of next day of being in this group, if 
it was not the last day of being in the compartment, what corresponds to equalities 
.e

j+1
k+1 = e

j
k , .j = 2, ..., ne − 1, etc.  

The number of people in the compartments of susceptible, exposed and all groups 
of patients at the next time is equal to their number at the previous time, plus those 
who entered and minus those who left this compartment in this day: 

.Sk+1 = Sk − (cuUk + ciIk)
Sk

N
+ pese

ne

k , (2) 

.Ek+1 = Ek + e1k+1 − e
ne

k , Uk+1 = Uk + u1k+1 − u
nu

k , (3) 

.Ik+1 = Ik + i1k+1 − i
ni

k , Hk+1 = Hk + h1k+1 − h
nh

k . (4) 

The number of people who recovered and died at a subsequent point in time is 
equal to their number at the previous point in time plus those who were included in 
this day to the specific compartment: 

.Rk+1 = Rk + puru
nu

k + pir i
ni

k + phrh
nh

k , Dk+1 = Dk + phdh
nh

k . (5)
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In the given formulas, . cu and . ci denote the contagiousness of undetected and 
isolated patients, respectively, .pαβ is the proportion of people in the compartment . α
passing into the compartment . β, and N is the size of the entire population. In this 
case, the following equalities are natural: 

. pes + peu + pei + peh = 1, pui + pur = 1,

pih + pir = 1, phr + phd = 1. (6) 

The number of exposed and all forms of patients on the first day of being 
in corresponding compartment defined by patients passed from other groups and 
determined by the equalities: 

.

e1k+1 = (cuUk + ciIk)
Sk

N
, u1k+1 = peue

ne

k , i1k+1 = peie
ne

k + puiu
nu

k ,

h1k+1 = pehe
ne

k + pihi
ni

k .

(7) 

The initial states of the system . S0, . E0, . U0, . I0, . H0, . R0, . D0 considered as known, 
namely distribution of exposed and all forms of patients at the initial moment are 
considered uniform in terms of days being in compartments. 

The given equalities constitute a discrete model of the epidemic propagation. 
Passing to the limit as k tends to infinity, we establish the equilibrium position of 
the system. We also note that the increments in equalities (5) are positive. Thus, we 
establish the validity of the following statement. 

Theorem 1 The discrete system has a unique equilibrium position, specifically, the 
limiting values of the numbers of exposed and all forms of patients are equal to zero, 
and the numbers of recovered and deceased do increase with time. 

Preliminary calculations were carried out with the following values for length 
of periods: .ne = 14, .nu = 3, .ni = 5, .nh = 7. The contagiousness coefficients 
were assumed to be .cu = 3.18, .ci = 0.171, i.e. undetected patients are considered 
the main carrier of infection. Distribution of exposed parts moving to other 
compartments: .peu = 0.154, .pei = 0.145, .peh = 0.022, .pes = 0.679; transition 
parameters for undetected patients: .pui = 0.03, .pur = 0.97; for isolated patients: 
.pih = 0.021, .phr = 0.982; for hospitalized: .phd = 0.018, .pir = 0.979. The  
total population was assumed to be 18,699,640 people, which corresponds to the 
population of the Republic of Kazakhstan in September 2020 according to the World 
Bank, according to datacatalog.worldbank.org. At the initial moment of time, it was 
believed that there were 140 contact patients, while there were no sick, recovered or 
deceased. Figure 2 shows the corresponding computation results. 

Graphs present that at the initial stage of the process, which lasts about 200 
days, there is a slight increase in morbidity and mortality, which is explained by 
the initially small number of infected and corresponds to the beginning of the 
development of the epidemic. In the next 200 or so days, there is an exponential 
increase in the number of sick and dead. Over the next two months, the number of
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Fig. 2 The number of infected people (top) and deaths (bottom) according to the discrete model 
by days: the number of each day (left) and total up to the moment (right) 

simultaneously ill and dying continues to grow, but the rate of growth is gradually 
slowing down. After reaching the maximum number of daily infected and dying, the 
epidemic gradually fades, which takes about the same time as the entire previous 
period. It is characterized by the fact that both the increase and decrease in the 
number of infected and deceased people every day is non-monotonic, see the left 
graphs in Fig. 2. 

Let’s note that with the considered choice of system parameters, the peak time 
of the epidemic falls on the 461st day from the start of the computations, when the 
maximum number of simultaneously sick people is observed—approximately 280 
thousand people, which is 1.5% of the total population. The epidemic ends within 
990 days, and the total number of recovered people is approximately 10.3 million, 
which is 54.85% of the total population, the number of deceased is 14,460 people, 
which is 0.14% of the total number of infected. 

Table 1 describes the impact of the contagiousness coefficient of undetected 
patients . cu. With the growth of this parameter, both the maximum number of 
simultaneously ailing people and the total number of infected and deceased people 
increase, while the time of reaching the epidemic peak and the duration of the 
epidemic are reduced. This indicates a more intensive development of the epidemic. 
At the same time, the percentage of recovered and deceased from the total number 
of cases remains practically unchanged. 

The coefficient of contagiousness of isolated patients has qualitatively the same 
effect on the system, but significantly lower degree of influence. The influence of all 
parameters characterizing the proportion of exposed patients passing into different 
categories is similar to the influence of contagiousness coefficients, since their
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increase also leads to an increase in the total number of infected people. An increase 
in parameters characterizing the frequency of transition from milder forms of the 
disease to more severe ones, as well as the proportion of deaths among hospitalized, 
has practically no effect on the peak time of the epidemic, its duration, and also on 
the total number of infected cases, but leads to an increase in the number of deceased 
people. 

Table 2 describes the effect of time in exposed compartment . ne. The growth of 
this parameter leads the peak time and the duration of the epidemic increase, while 
the maximum number of sick people at a time, as well as the total number of infected 
and dead, decreases. This indicates a less intensive development of the epidemic. At 
the same time, the percentage of recovered and deceased from the total number of 
infected practically does not change. The time spent in the undetected and isolated 
compartments has a similar effect, namely the influence of the first is the largest 
of three considered parameters, and influence of last is the smallest. Finally, the 
influence of the time spent in the hospitalized group has an even weaker effect on 
the system. With its increase, only the maximum number of patients at the same 
time increases. 

3 Continuous Model 

Let us describe a continuous analogue of the previously considered model. Here 
the same division of the entire population into compartments under the same 
assumptions. Thus, the state of the system is described by the functions of a 
continuous argument S, E, U , I , H , R, D, describing, respectively, the number 
of susceptible, exposed, undetected, isolated, hospitalized, recovered, and deceased 
at an arbitrary point in time. The process is described by the equations 

.

S' = −(cuU + ciI )S/N + pesE/ne,

E' = (cuU + ciI )S/N − E/ne,

U ' = peuE/ne − U/nu,

I ' = peiE/ne + puiU/nu − I/ni,

H ' = pehE/ne + pihI/ni − H/nh,

R' = purU/nu + pirI/ni + phrH/nh,

D' = phdH/nh. (8) 

with the corresponding initial conditions while retaining all the previously accepted 
notation. 

Equating to zero the terms on the right side of equations (8) and solving the 
corresponding system of algebraic equations, we find the equilibrium position of
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Fig. 3 The number of infected (top) and deceased (bottom) people according to continuous (blue) 
and discrete (red) models by days: for each day (left) and total so far (right) 

the system. In addition, we note that the formulas on the right-hand sides of the last 
two equations (8) are positive. Thus, the following statement is true. 

Theorem 2 The continuous system has a unique equilibrium position, and the limit 
values for the number of exposed and all forms of patients are equal to zero, the 
number of recovered and deceased increases with time. 

Numerical analysis of the continuous model was carried out with the same set 
of parameters as for the discrete model. Figure 3 shows changes in the number 
of infected and deaths by day, for each day and in total up to some moment in 
accordance with continuous (blue) and discrete (red) models. As it shown on these 
graphs, the results of calculations for both models turn out to be quite close, although 
the changes of values per day according to the continuous model turns out to be 
smoother. 

Table 3 shows the most important quantitative characteristics of both models 
for the considered set of parameters. Comparing the obtained results, one can note 
an extremely high degree of closeness of the results obtained based on considered 
models. At the same time, the duration of the epidemic according to the continuous 
model is longer than according to the discrete model by about a month or 3.5%, 
while the time to reach the peak of the epidemic in both models is almost the 
same. According to the continuous model, the total number of infected people is 
less than in the discrete model by about 4.5 thousand people, or only 0.1% of the 
total population, the proportion of recovered and deceased from the total number of 
infected people in both cases is almost the same. At the same time, the maximum 
number of simultaneously sick people in the continuous model is less by about
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Table 3 Main quantitative characteristics of discrete and continuous models 

Characteristic Discrete model Continuous model 

Peak time of the epidemic 461 days 456 days 

The maximum number of 
infected at the same time, its 
percentage from the total 
number of cases 

281,187 people, 1.50% 260,916 people, 1.40% 

End time of epidemic 990 days 1020 days 

Total number of infected, its 
percentage from the total 
number of cases 

10,256,695 people, 54.85% 10,252,178 people, 54.75% 

Total number of recovered, its 
percentage from the total 
number of cases 

10,242,235 people, 99.86% 10,237,724 people, 99.86% 

Total number of deceased, its 
percentage from the total 
number of cases 

14,460 people, 0.14% 14,453 people, 0.14% 

20 thousand people, or 0.1% of the total amount of people. An increase in the 
duration of the epidemic with reduce of the total number of cases and the maximum 
number of simultaneously sick people with a constant proportion of deaths suggests 
that according to the continuous model, the intensity of the epidemic is lower than 
according to the discrete model. 

It should be noted that each of the system parameters has a similar effect on both 
models, however, changing the parameters has a greater effect on the time of the 
peak of the epidemic and its duration for the continuous model and on the number of 
infected and deceased for the discrete model. For example, Table 4 lists the system 
characteristics for various values of period . na in the undetected compartment: the 
first (upper) number in each cell corresponds to the discrete model and the second 
(lower) number corresponds to the discrete model. Here, when the parameter is 
increased by 2.5 times, the peak time of the epidemic decreases by more than 6 
times for the discrete model and 7.5 times for the continuous model. At the same 
time, the duration of the epidemic is reduced by 3.2 times for the discrete model 
and by 4.5 times for the continuous model. The maximum number of sick people 
increases to 46. 4 times for the discrete model and 38.3 times for the continuous 
model. The total number of recovered and deceased people increases 4.44 times for 
the discrete model and 4.28 times for the continuous model. 

4 Model Identification 

To forecast the epidemic propagation based on mathematical models, it is necessary 
to properly select the parameters included in them by solving the corresponding 
inverse problems. As characteristics for which we practically do not have reliable
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information, we note the initial values of . E0 and . U0 of exposed and undetected 
compartments, the contagiousness coefficients . cu and . ci , as well as the values . pes , 
. peu, . pei and . par , describing the proportion of the transition from one compartment 
to another. At the same time, we have relatively reliable information about the total 
number of cases, as well as hospitalized and deceased at certain points in time. As 
a result, we arrive at the following inverse problem. 

Problem It is required to choose such a vector . q = (E0, U0, cu, ci, pes, peu, pei,

pur) so that the following conditions are fulfilled 

. Ik[q] = ~Ik, Hk[q] = ~Hk, Dk[q] = ~Dk, k = 1, . . . , K,

there .Ik[q], .Hk[q], .Dk[q] are the numbers of mild ill, hospitalized and deceased 
at time k, respectively, determined using a discrete model for a given value of the 
vector q, and . ~Ik , . ~Hk , . ~Dk are the known values of the corresponding quantities, K is 
the number of time points at which information is measured. 

The problem is reduced to minimization of the following quantity 

. J (q) =
K∑

k=1

{(
Ik[q] − ~Ik

)2 +
(
Hk[q] − ~Hk

)2 +
(
Dk[q] − ~Dk

)2}
.

Finding of the minimum is done using the trust-region method [16]. Considering 
that the size of the population N is quite large, the model is normalized, i.e. 
the number of each of the considered population compartments is preliminarily 
divided by N . To evaluate the effectiveness of the numerical algorithm, their values 
corresponding to the previous calculations are selected as the desired values of the 
parameters, and the corresponding solutions of the system under consideration are 
chosen as the “measurement results”. 

Table 5 shows found values of the sought parameters in comparison with their 
exact values, as well as the absolute and relative calculation errors. Obtained results 

Table 5 The results of the calculation of the inverse problem 

Parameter Exact value Found value Absolute error Relative error 

.S0 0.81648 0.81640 0.00008 0.00001 

.E0 0.10858 0.10864 0.00005 0.00046 

.U0 0.00313 0.00316 0.00003 0.00958 

.cu 3.18 3.16545 0.01455 0.00457 

.ci 0.3 0.29677 0.00323 0.01075 

.Pes 0.679 0.67915 0.00015 0.00022 

.peu 0.154 0.15506 0.00106 0.00685 

.pei 0.145 0.14380 0.00120 0.00824 

.peh 0.022 0.02199 0.00001 0.00055 

.pur 0.8 0.79430 0.00570 0.00713
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show that used algorithm is quite efficient. In particular, the largest error is observed 
in determining of the parameters . U0 and . ci , which is approximately 1%. The 
remaining parameters are restored with an error of fractions of a percent. 

The calculations were also based on real information about the propagation of the 
COVID-19 epidemic in Kazakhstan, see index.minfin.com.ua. July 2020 data was 
used to tune the model. In this case, the following values of the identified parameters 
were obtained: .S0/N = 0.068, .E0/N = 0.0876, .U0/N = 0.00248, .cu = 2.03, 
.ci = 0.517, .pes = 0.37, .peu = 0.312, .pei = 0.261, .peh = 0.0574, .pui = 0.99, 
.pur = 6.24 ·10−8 for discrete model and .S0/N = 0.722, .E0/N = 0.0493, . U0/N =
0.00048, .cu = 4.95, .ci = 0.368, .pes = 0.19, .peu = 0.139, .pei = 0.594, . peh =
0.0759, .pui = 0.83, .pur = 0.168 for continuous model. 

Using these values of the model coefficients, a forecast was made for the 
development of the epidemic for the next two months, i.e. August and September 
2020. The results were compared with the actual course of the epidemic over the 
same period. Figure 4 shows graphs of changes in the number of infected (above) 
and deceased (below) by days based on discrete (left) and continuous (right) models. 
There, blue lines indicate real data, red lines indicate the results of calculations from 
the first month (July), the data for which were used to identify the model, and orange 
lines indicate the forecast for the next two months (August - September). As can 
be seen from the above graphs, the results of the forecast sufficiently reflect the 
course of the development of the epidemic. Forecasting for a longer period leads to 
a gradual decrease in the forecast accuracy. 

As can be seen from the above graphs, the results of the forecast quite well reflect 
the course of the development of the epidemic. Although the parameter values of the 
models under consideration, reconstructed using real data, differ, the accuracy of the 

Fig. 4 Forecasted change in the number of infected (above) and deceased (below) by days 
compared to real data based on discrete (left) and continuous (right) models
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forecast for both models is of the same order. We only note a smoother change in 
the functions in the continuous model compared to the discrete one. The results 
obtained indicate a rather high efficiency of the proposed models and the possibility 
of their use for forecasting epidemics. 

We also note that forecasting for a longer period leads to a gradual decrease in 
the accuracy of the forecast. An increase in accuracy can be achieved by taking into 
account additional factors, in particular the effect of vaccination and the possibility 
of reinfection. 
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Part III 
Challenges in STEM Education



Some Aspects of Usage of Digital 
Technologies in Mathematics Education 

Ján Gunčaga 

Abstract Digital technologies have entered our daily lives and into schools. Com-
puters, tablets, smartphones are a part of today’s generation of children from birth; 
therefore they appear naturally also in education. Besides interactive whiteboards 
and notebooks in classrooms, children also often possess tablets and smartphones. 
For the teacher, it is a very actual question, how to implement advantages of these 
technologies in education. It appears that all of the formerly mentioned technologies 
have its place and they can use in effective way for achieving educational goals. 
Constructivist Theory of Learning has influence on mathematics education. It will 
be selected some topics from Slovak curricula for school mathematics. It will be 
discussed the aspect of visualization in mathematics education. The understanding 
of mathematics concepts can be deeper, motivation of pupils is greater in this case 
and, finally yet importantly, their creativity of students and pupils obtain strong 
support. 

1 Introduction 

Slovakia as a member country of the European Union has his educational documents 
formulated according the document “Recommendation of the European parliament 
and of the council of 18 December 2006 on key competences for lifelong learning” 
(see [20]). Mathematics education in lower secondary level is oriented to the 
development of the mathematical competence. The competences have definition in 
this document as a combination of knowledge, skills and attitudes appropriate to 
the context. Key competences are those, which all individuals need for personal 
fulfilment and development, active citizenship, social inclusion and employment. 
According [21] the mathematical competence is the ability to develop and apply 
mathematical thinking in order to solve a range of problems in everyday situations. 

J. Gunčaga () 
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Building on a sound mastery of numeracy, the emphasis is on process and activity, 
as well as knowledge. Mathematical competence involves, to different degrees, 
the ability and willingness to use mathematical modes of thought (logical and 
spatial thinking) and presentation (formulas, models, constructs, graphs, charts). 
The document explains that essential knowledge, skills and attitudes related to this 
competence includes a sound knowledge of numbers, measures and structures, basic 
operations and basic mathematical presentations, an understanding of mathematical 
terms and concepts, and an awareness of the questions to which mathematics can 
offer answers. An individual should have the skills to apply basic mathematical 
principles and processes in everyday contexts at home and work, and to follow and 
assess chains of arguments. An individual should be able to reason mathematically, 
understand mathematical proof and communicate in mathematical language, and 
to use appropriate aids. A positive attitude in mathematics has its base on the 
respect of truth and willingness to look for reasons and to assess their validity. The 
State Educational Programme ISCED 2 Mathematics (see [27]) defines since 2010 
mathematics education at the lower secondary level. This school subject is a part 
of the thematic area “Mathematics and working with information”. It divides into 
following thematic areas:

. Numbers, variable and arithmetic operations with numbers,

. Relations, functions, tables, charts,

. Geometry and measurement,

. Combinatorics, probability, statistics,

. Logic, reasoning, proofs. 

The main goal of the thematic area “Geometry and measurement” is that 
students obtain knowledge about base planar and space geometrical figures with 
inquiry-based methods and discover their properties. They learn to estimate, to 
measure and to calculate the size of the angle, length of some segment, surface 
and volume of some solid. They solve position and metrical tasks from reality. 
Space thinking plays one important role. In the year 2014 was innovated this 
program (compare with [11]) and big part of this new program is formulated in 
the form of standards. The beginning of this program formulates importance of the 
information and communication technologies (ICT) in the mathematics education. 
The role of the school subject mathematics is to develop the ability of students to 
use ICT tools for searching, elaborating, saving and presentation of information. 
The usage of the appropriate software should make easier heavy calculations or 
complicate algorithms. It brings concentration to the kern of the solved problem. 
Contents of the curriculum has the base on competences. Existing mathematical 
knowledge of the students and their experiences with the application of the existing 
knowledge is the base for discovery and presentation of the new mathematical 
notions. Education underlines the development of the students’ abilities, mainly 
with active approach of students. Thematic area “Geometry and measurement” is 
oriented to the base plane and space geometrical figures such line, point, segment, 
triangle, quadrilateral, square, rectangle, circle, cube, rectangular parallelepiped, 
cylinder, cone, pyramid and sphere. Students learn their basic properties. Following
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thematic area “Symmetries in the plane (axial and central)” is oriented to symmetry 
and congruence of the geometrical figures, central and axial symmetry, finding of 
axial and central symmetrical figures, construction of the picture according muster. 
The continuation in the sixth class is in the thematic area “The area and perimeter 
of the rectangle, square and rectangular in the decimal numbers, the units of area”, 
“The angle and his measure, operations with angles” and “Triangle, congruence of 
the triangles”. The mentioned geometrical figures are classified in these thematic 
areas such straight, right, acute and obtuse angle, angle bigger than straight angle; 
acute-angle triangle, rectangular and obtuse triangle. The work continues with the 
notions perimeter and area, units of perimeter and area. The continuation in the 
seventh class is in the thematic area “rectangular parallelepiped and cube, their 
surface and volume in the decimal numbers, transformation of the units of the 
surface and volume”. It will be started in the eighth class with the enhancement of 
the knowledge about quadrilaterals and triangles in the frame of the thematic area 
“parallelogram, trapezium, perimeter and the area of the parallelogram, trapezium 
and triangle”. The continuation id in the thematic area “Circle, circle line”. It 
will be introduced here the notion of the Ludolph number , circle arc, central 
angle, sector of a circle, segment of a circle, the perimeter and the area of the 
circle, the length of the circle line. Geometrical activities in the eighth class are 
ending with the thematic area “Prism”. The students obtain the knowledge about 
normal prisms, their networks, surfaces and volumes, the connections with cube 
and rectangular parallelepiped. The Pythagoras theorem in the rectangular triangle 
and his applications dominates in the ninth class. The geometric education after that 
is oriented to the pyramid, cylinder, cone, sphere and their surface and volume. The 
last thematic area is oriented to the triangle and similar triangle, similarity, similarity 
of triangles and planar geometrical figures. 

2 PISA Testing and Mathematical Literacy 

In the area of assessment of mathematical knowledge, a very important place 
belongs to the international testing of the OECD Programme for International 
Student Assessment (PISA). PISA gives attendance to the development of the math-
ematical literacy. This survey launched first time in 1997. Its goal is the evaluation 
of educational systems worldwide by testing the skills and knowledge of 15-year-
old pupils. Since then, it has been conducted every third year. The survey focuses on 
several different aspects. According [16] the mathematical literacy is an individual’s 
capacity to formulate, employ and interpret mathematics in a variety of contexts. It 
includes reasoning mathematically and using mathematical concepts, procedures, 
facts and tools to describe, explain and predict phenomena. It assists individuals to 
recognize the role that mathematics plays in the world and to make the well-founded 
judgements and decisions needed by constructive, engaged and reflective citizens. 
In its testing, PISA survey pays lot of attention to teaching styles. According to 
[18] the teacher of mathematics has a great opportunity. If he fills his allotted time
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with drilling his students with routine operations, he kills their interest, hampers 
their intellectual development, and misuses his opportunity. But if he challenges the 
curiosity of his students by setting them problems proportionate to their knowledge, 
and helps them to solve their problems with stimulating questions, he may give 
them a taste for, and some means of, independent thinking. In 2012, there was a 
PISA measurement in Slovakia in 9-grade primary school pupils (lower secondary 
level). According to [8] 34 OECD countries and 31 OECD partner countries with 
approximately 510.000 pupils took part in the PISA 2012 measurement. In Slovakia, 
all 15-year old pupils born from January 1996 to December 1996 were included in 
the testing. It was made a stratified selection of schools and pupils forming a testing 
sample. Thus, 231 selected schools with 5.737 pupils were involved in the testing. 
The performance of Slovak pupils in mathematical literacy within the international 
PISA 2012 study was under the average of the involved OECD countries. The 
countries like Norway, Portugal, Italy, Spain, Russian Federation, United States 
of America, Lithuania, Sweden and Hungary had a performance comparable with 
the performance of Slovakia. When comparing the performance of Slovak pupils, 
statistically significant was the decrease of the achieved average score in the PISA 
2012, as compared to all previous three-year cycles of the study. Between 2009 
and 2012 it was a decrease from 497 to 482 points. There are three categories of 
mathematical procedures: express, use and interpret. According to [1] the worst  
results Slovakia achieved in the category interpret. Here the difference, as compared 
to the average of OECD countries, was as much as 24 points (473 points). According 
to [5] in the PISA study four content categories in mathematics distinguished in the 
year 2012:

. changes, relations and dependencies;

. quantity;

. space and shape;

. uncertainty and data. 

It is important for geometry teaching the category Space and shape. This category 
obtain a wide range of phenomena that are encountered everywhere in our visual 
and physical world: patterns, properties of objects, positions and orientations, 
representations of objects, decoding and encoding of visual information, navigation 
and dynamic interaction with real shapes as well as with representations. Plane 
and space geometry serves as an essential foundation for space and shape, but 
the category extends beyond traditional geometry in content, meaning and method, 
drawing on elements of other mathematical areas such as spatial visualization, 
measurement and algebra (see also [16]). In the first category, Slovak pupils had 
20 points less than the average of the OECD (474 points), in the second category 9 
points less (486 points); in the third one, the result was the same as OECD average. 
In the fourth category, the result was the worst: only 472 points (21 points less than 
the average of the OECD). There was on 20th–30th April 2015 according to [17] 
next PISA measurement in Slovakia lower secondary schools including 15-year old 
pupils of the 9th grade. 6.350 pupils from 292 schools attended in this measurement. 
According to the initial results, the Slovak Republic achieved the performance of
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475 points in the mathematical literacy. The performance of Slovak pupils was, 
like in 2012, statistically significantly lower than the average of OECD countries 
(490 points)—the difference was 15 points. Malta, Lithuania, Hungary, Israel and 
USA reached a performance comparable with Slovakia. A statistically significantly 
lower performance than Slovakia was reached by 4 OECD countries—Greece, 
Chile, Turkey and Mexico. The comparison of the performance of Slovak pupils in 
mathematics with 2012 testing showed a non-significant decrease of performance of 
7 points. This means that in the PISA 2015 the Slovak pupils achieved a performance 
comparable to that of 2012. These results shows (see [4]), that the achievement of 
mathematical education has in the field geometrical education stagnate character 
without progress and on another fields low niveau under average of the OECD 
countries. It implies the need of the modernization and innovation in many parts 
of mathematics education. 

3 The Aspect of Visualization in Geometry Teaching 

The manipulation and interpretation of planar shapes and space figures in settings 
that call for tools ranging from dynamic geometry software and another ICT tools 
such using of different augmented reality applications. The aspect of visualization 
plays important role in the geometry teaching and this aspect is interdisciplinary. 
According [16] the aspect of visualization plays specific role in the scientific 
literacy. For example, interpreting data is such a core activity of all scientists that 
some rudimentary understanding of the process is essential for scientific literacy. 
Initially, data interpretation begins with looking for patterns, constructing simple 
tables and graphical visualizations, such as pie charts, bar graphs, scatterplots or 
Venn diagrams. Scientists make choices about how to represent the data in graphs, 
charts or, increasingly, in complex simulations or 3D visualizations. Nowadays 
exists many educational software, which make 3D visualizations of functions and 
space figures. The Van Hiele levels characterize the understanding of geometrical 
notions. Dutch mathematics teachers Pierre van Hiele and his wife Diana van 
Hiele-Geldof developed this theory. There are characterized according [9] and [10] 
following five levels: 

1. Student can recognize geometric concepts, types and groups of geometric figures 
by their physical appearance, and in global way, without explicitly distinguishing 
their mathematical components or properties. 

2. Student can recognize the mathematical components and properties of geometric 
concepts. He is able to verify conjectures through empirical reasoning and 
generalization. Student only formulates in this level basic logical relationships 
between mathematical properties of the geometrical figures. 

3. Student is able to manage any logical relationship. He can to prove conjectures 
using informal deductive reasoning. He understand simple formal proofs, but he
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is not able to construct themselves. He is able to classify geometric figures and 
groups of these figures and to compare them. 

4. Student in this level is able to understand, why it is needed the rigorous reasoning. 
He can write formal deductive proofs. He understand, what does it mean axioms, 
hypotheses, definitions and other notions of logic. 

5. Student can manage different axiomatic systems, he is able to analyze and 
compare properties in two axiomatic systems (for example triangle in the 
Euclidean geometry and spherical triangle in the spherical geometry). 

The aspect of visualization and using ICT tools in mathematics education (such 
an augmented reality applications or educational software, for instance GeoGebra) 
can help students in the movement into higher Van Hiele level in the educational 
process (see also [2]). Vinner in [25] brings another point of view. If it will be 
shown the students some geometrical object, they obtain from teacher two types of 
information:

. Graphical: It includes pictures, drawings, physical objects, models and so on 
that students see in textbooks, blackboards, and with another ways. It works 
like a collection of photos. It is possible to give here using dynamical geometric 
systems and augmented reality applications.

. Verbal: It includes definitions, theorems, formulas, properties of plane and space 
geometric figures and so on that students read in textbooks, from screen of 
the computer other mobile devices, hear from teachers, other students by the 
collaborative lesson or other person. It works like a collection of newspaper cut-
outs. 

McLeod in [15] describe theory of cognitive thinking by Bruner (see [3]). His 
stages of understanding by the cognitive processes is useful also by mathematics 
education using mobile technologies in lower secondary level. Student by the 
understanding of geometric notions is able to be educated in following stages:

. Enactive stage appears first. It involves encoding action based information and 
storing it in our memory. Students work in this stage with different models of 
geometric figures in real or in the augmented reality mode. Nowadays, they can 
use possibilities of dynamic geometric systems.

. Iconic stage is typical by the fact, that information is stored visually in the form of 
images (a mental picture in the mind’s eye). For some, this is conscious; others 
say they don’t experience it. This may explain why, when students/pupils are 
learning a new subject, it is often helpful to have diagrams or illustrations to 
accompany the verbal information.

. Symbolic stage is the last. This is where information is stored in the form 
of a code or symbol, such as language. This is the most adaptable form of 
representation, for actions and images have a fixed relation to that which they 
represent. Cube is a symbolic representation of a single class of space figures. 
Symbols are flexible in that they can be manipulated, ordered, classified etc., so 
the user isn’t constrained by actions or images. In the symbolic stage, knowledge 
is stored primarily as words, mathematical symbols, or in other symbol systems.
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Bruner’s constructivist theory suggests it is effective when faced with new material 
to follow a progression from enactive to iconic to symbolic representation; this 
holds true even for adult learners. A true instructional designer, Bruner’s work also 
suggests that a learner even of the age in the lower secondary level is capable of 
learning any material so long as the instruction is organized appropriately. 

4 Constructivist Theory of Learning 

The constructivist theory of learning assumes that each person creates (constructs) 
his/her own knowledge of the world in which s/he lives. Constructivism tries to 
overcome the transmissiveness of traditional teaching—the transfer of “the teacher’s 
knowledge” to the student. It deals with learning, alongside understanding (see 
[23] and [22]). According [14] the inductive (constructivist) approach in teaching 
characterizes by distinctly different characteristics from the deductive approach, 
while cognitive development and the learning process define as follows:

. Always based on the achieved level of learners’ development,

. Provide meaningful learning,

. Enable learners to realize their own meaningful learning process,

. Influence learners so that they will modify their own knowledge schemes,

. Create and maintain a rich relationship between new knowledge and already 
existing knowledge schemes. 

In connection with the intensive intersection of digital technologies into every-
day life, teaching mathematics with ICT environment requires sufficient material 
and technical equipment. It needs also changes in educational approach, new 
communication methods in mathematics, a change in the status of the teacher 
of mathematics and the student, and an organizational change in mathematics 
lessons. A necessary condition for making changes in the teaching process is 
according [13] sufficient computer literacy among mathematics teachers, and their 
motivation and willingness to learn more in this field. The term ‘constructionism’ is 
a mnemonic for two aspects of the theory of science education. From constructivist 
theories of psychology, it is taken a view of learning as the reconstruction, rather 
than transmission, of knowledge. Then, the extension of the idea of manipulative 
materials to the idea that learning is most effective when part of an activity, which 
the learner experiences as constructing a meaningful product. The students during 
the lessons are active and they built new concepts, which help them to understand 
new notions according to their own personal needs. The opposite approach to 
constructionism is instructionism, which, in terms of teaching, typically involves the 
teacher giving instructions to children, such that they have limited opportunity for 
their own activity and personal way of thinking. Instructionism vs. constructivism 
looks like a split between two strategies for education: two ways of thinking about 
the transmission of knowledge. Behind all this is a split that goes beyond the 
acquisition of knowledge and touches on the nature of knowledge and the nature
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of knowing. Constructivist instructional design, according [12], aims to provide 
generative mental constructions embedded in relevant learning environments, which 
facilitate knowledge construction by learners. The constructivist approach has many 
applications in different areas. It is possible to find a good example in the field 
of languages in [26] and in the field of science education for disabled children in 
[24]. Teaching mathematics provides scope for developing most of the competences 
defined by the International Society for Technology in Education, which are 
important for young people today. For example, using GeoGebra software, students 
can experiment, create and verify hypotheses. Within the project method, they can 
collaborate, communicate, collect and evaluate information from the Internet and 
process statistical data. Scientific thinking can be developed, for example, by a 
workshop method, where they not only create hypotheses using software, but learn 
to name problems and to argue. 

5 Conclusions 

Digital technology is being introduced into many school curricula, and “visual-
ization has blossomed into a multidisciplinary research area, and a wide range 
of visualization tools have been developed at an accelerated pace” (compare with 
[19]). GeoGebra software is suitable for primary school mathematics instruction 
(specifically in teaching geometry to children in the fifth and sixth grade). It 
has great potential for use with interactive boards, and especially in the form of 
m-learning when students use smartphones and tablets. The option of using ready-
made GeoGebra applets is very attractive for teachers. In addition, learning becomes 
more attractive, as teachers have the opportunity to replace transmissive teaching 
with the constructivist method to a great extent. Moreover, it also increases the 
digital literacy of students and teachers, which is a great benefit. In the future, 
more materials should be created and reviewed by experts on portals available for 
teachers, as well as classified according to topic units and students’ age. Teacher 
training should focus on enhancing digital literacy, the ability to the work with 
GeoGebra and the methodology of teaching with digital technology. Presented 
examples offer innovative techniques in the teaching of spherical and plane geom-
etry and promote the spatial imagination of pupils and students. Currently, similar 
features offer the 3D version of GeoGebra software. It will be organized in future 
many kinds of research, how can educational software to help by visualization 
and explanation of the geometrical concepts and to support by students space 
imagination in appropriate way. Another important goal is, how to support digital 
literacy by pupils and students in the educational process during mathematics and 
other natural sciences lessons (see [7] and [6]). 
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Teaching of STEM Lectures During the 
COVID-19 Time 

Ján Gunčaga, Věra Ferdiánová, and Martin Billich 

Abstract The COVID-19 pandemic situation has adversely affected mobility and 
international cooperation of students and workers throughout Europe. The transfer 
of knowledge from foreign experts who can point out the issue in another point of 
view is an integral part of university studies. However, the reaction of international 
agency CEEPUS have been greatly flexible a it allowed online and blending 
mobility to several countries. Thus, the aim of this article is to introduce the 
possibility how to implement online teaching with the use of foreign workers using 
available tools and means. The presentation shows practical experience within direct 
online teaching of STEM subjects in university courses. Primarily, the advantage of 
using GeoGebra software in online teaching of mathematical subjects is pointed 
out. Thanks to the aspect of GeoGebra visualization, there was no discomfort in 
transition of full—time teaching to distance teaching, because understanding of the 
given topic is not affected by changing the form of teaching. As a part of direct 
online teaching, a presentation of historical mathematical problems were created; 
with use of GeoGebra software it facilitated the conversion of historical tasks into a 
more modern form. 
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1 Introduction: The CEEPUS Network 

CEEPUS (Central European Exchange Programme for University Studies) is an 
exchange programme aimed at regional cooperation and mobility, especially within 
pre-arranged inter-university networks. The international agreement on the basis of 
which the cooperation is implemented is “CEEPUS III” (Agreement concerning the 
Central European Exchange Programme for University Studies), which entered into 
force on 1 May 2011, replacing the previous agreement CEEPUS II. The programme 
is intended for: 

• undergraduate students 
• postgraduate students 
• academic staff 

Participating countries: Albania, Bosnia and Herzegovina, Austria, Bulgaria, 
Croatia, Czech Republic, Hungary, Montenegro, Moldova, North Macedonia, 
Poland, Romania, Slovakia, Slovenia, Serbia. The universities of Pristina, Prizren 
and Peja in Kosovo also cooperate. International stays can take place at any eligible 
university abroad. Scholarship applications can be submitted either within an 
existing network (if the selected school is a partner) or as a CEEPUS freemover to 
any HEI. 

At the beginning of the COVID-19 pandemic, there was a difficult situation in 
terms of mobility. For example, students were afraid to go abroad, as the image in the 
media was intimidating. Most universities did not even recommend trips abroad out 
of an abundance of caution. Consequently, the single European countries closed, air 
links between connections were cancelled and overall the times were not favourable 
for the implementation of any mobility with direct teaching activities. 

Compared to the Erasmus project, the agency reacted very quickly and efficiently 
to the situation. In the Erasmus project, the Agency allowed, at most, the extension 
of certain types of projects such as credit mobility, etc. In contrast, student mobility 
was widely cancelled from the student’s position, as the problem was the closed 
borders and in some countries the teaching at universities was only distance learning 
(e.g. in CR, SK, Italy, etc.): 

Teacher mobility. It is subject to full-time employment and a number of teaching 
hours of 6 hours per week. The mobility is not intended for academic cooperation, 
but for cooperation within teaching experience and exchange of good practice. 

• Student mobility: this is regular study mobility involving activities during the 
semester. The expected study period is from 3 months to 10 months. It is intended 
for all full-time students. 

• Short term student: These are special types of practical mobilities designed for 
students to work on their Master’s or Dissertation theses in collaboration with the 
host institution. The expected duration of the trip is at least 1 month. 

• Blended mobility: In the case of virtual mobility, the applicant completes the 
professional program offered by the host institution without physical mobility, 
that is, without travelling to the host country. Hybrid (blended) mobility requires
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a partial physical presence, so the mobility can be implemented partly in physical 
form and partly in virtual form [7]. 

• Online mobility: This is mobility that is professionally identical to teacher or 
student mobility, but it is implemented online. 

2 Math Teaching by Using GeoGebra 

Many educators say that the main goals of teaching mathematics are: 

• the development of logical thinking 
• the development of creative thinking 
• the development of an autonomous person 
• the development of the ability to solve problems 

GeoGebra and educational software allows to implement these goals in mathe-
matics education. GeoGebra is one of the most original mathematical tools that 
joins geometry, algebra and calculus. GeoGebra can be used for both teaching 
and learning mathematics from middle school through college to the university 
level. This open-source dynamic mathematics software help students to acquire 
more knowledge about geometric objects and to visualize adequate math process. 
GeoGebra enhances following key competencies for students: 

• The skills of mathematical processing of the task. 
• Ability to solve mathematical problems. 
• Development of algoritmic thinking. 
• Interpretation of the task results. 
• Work with numerical experiments and graphical representations. 

These tasks are important also during the online teaching in pandemic situation. 
The basic idea of GeoGebra’s environment is to provide two representations 

of each mathematical object in its algebra and geometry windows. If we change 
an object in one of these windows, its representation in the other one will be 
immediately updated. We can manipulate variables easily by dragging “free” objects 
around the plane of drawing, or by using sliders. However, GeoGebra has many 
ways to provide investigating geometrical proprieties, including the use of new 
commands with symbolic support for deriving, discovery and proving geometrical 
conjectures. The advantages we see in this geometry tool are: 

• GeoGebra is user-friendly tool and offers easy-to-use interface, multilingual 
menus and commands, with minimal informatics experience required. 

• GeoGebra was created to help students grasp some complicated or very abstract 
concepts in mathematics. It provides an opportunity to explore the world of 
mathematics in more details. 

• GeoGebra stimulates teachers to use technology in investigations and visualiza-
tion of mathematics.
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• GeoGebra is good for producing and publishing complex and mathematically 
correct illustrations. 

• GeoGebra provides an easy way to create interactive online materials. The 
worksheet files can be published as dynamic web pages. 

2.1 Selected Examples in GeoGebra for Online Teaching for 
Future Math Teachers 

Open questions above brings special teaching situation for teaching of future 
mathematics teachers. The task was, how to visualized and explain mathematics 
notions? There was very helpful the dynamic character of educational software such 
GeoGebra. The function in GeoGebra “Trace On” is important for visualization and 
explaining of the different kind of the sets in the plane with the given condition. It 
will be presented in the following examples. 

Example 1 Draw the set of points, which have the same distance from the two given 
points A, B. 

Solution It will be used here two circles k and m wit the radius r—changing 
parameter. It will be obtained by the using the function “Trace On” the line CD 
(see Fig. 1). This function is used for the points C, D, which are intersection points 
of the circles k and m. We obtain the line CD, which is the axis of the segment AB 
(Fig. 1). 

Fig. 1 The solution of the Example 1
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Fig. 2 The solution of the Example 2 

Example 2 Draw the set of points, which have the same distance from the two given 

different rays with one common point V: .
−→
V A, .

−→
V D. These rays also create the angle 

./ AV D. 

Solution It will be used here two lines k and m and changing parameter r. k is 

parallel to .
−→
V A, belongs to half-plane .

−−−→
V AD and his distance from .

−→
V A is r. m is 

parallel to .
−→
V D, belongs to half-plane .

−−−→
V DA and his distance from .

−→
V D is also r. 

Now the intersection point of k and m is the point E. It will be used the function 

“Trace On” for the point E, so it will be obtained the ray .
−→
V E, which is the axis of 

the angle AV D (see Fig. 2). 

Another type of school tasks suitable for future math teachers are examples from 
historical mathematical textbooks. These examples is possible to visualize with the 
help of educational software. 

Example 3 There is given two different circles k and l with the common center S. 
On the circle with a smaller radius is given the point A. Draw another circle, which 
obtain the point A and touch the circles k and l (example from [5]). 

Remark It is possible to draw some circle, which touch the circle with a smaller 
radius from inside or outside. 

Solution Let’s the radius of the circle k is s and the circle l is r . The line SA has 
two common points X and Y with the circle l with a bigger radius. Now we can 
draw circles . m1, . m2 with diameter XA and YA  (They have radius . r+s

2 and . r−s
2 , see  

Fig. 3).
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Fig. 3 The solution of the Example 3 

2.2 Concept of Geometric Place with GeoGebra 

We begin with the construction of a circle tangent two non-congruent internally 
tangent circles, where the desired circle is tangent to the larger given circle at a 
given point M . Let the centres and radii of two given circles be represented by . S1, 
. r1 and . S2, . r2 respectively, where .r2 < r1. There exists such a circle (see Fig. 4). The 
following procedure shows the construction of this circle, given by the centre S and 
radius r . 

The center S must lie on line passing through center . S1 of the large circle and 
given point M . This center is equidistant from the circle with a smaller radius 
and given point M . Therefore, the centres S, . S2 and a point N forms an isosceles 
triangle, where point N (outside the larger circle) lies at a distance of . r2 from given 
point M on line passing through center . S1 and given point M , i.e. .|S1N | = r1 + r2. 
Now we can construct base .S2N of an isosceles triangle .S2SN , where the point S is 
unknown. However, if we construct the perpendicular bisector of the base . S2N , we  
get the third point S of our triangle, which is the center of desired circle. 

In previous steps we constructed the initial model for more tasks based on 
concept of geometric place. First of all, we can demonstrate that the locus of all 
points S forms an ellipse. This statement is a conjecture, which can be supported or 
refuted with help of GeoGebra. One way to verify the truth of the conjecture could 
be to study what happens with the position of point S, when M is dragged along 
the larger circle are bound dragging with activated command Trace On. When M 
is dragged along the larger circle centered at point . S1, it can be observed that S 
seems to move along an ellipse as well. With usage of Trace On command, the 
described process is easy to see. Another way, In GeoGebra the locus of S could 
also be obtained by using the inbuilt Locus tool.
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Fig. 4 Circle in the first task 

In the end we found that: The locus of all points S forms an ellipse and the focal 
points of this ellipse are the centers . S1 and . S2 of the given circles. The major axis 
of the ellipse is .2a = r1 + r2, where . r1 and . r2 are the radii of the given circles. 
An ellipse is usually defined as the set of all points in a plane for which the sum of 
distances from two given points (called foci) is fixed. 

2.3 Extending Problem 

Consider the similar problem as above. Begin with two non-congruent internally 
tangent circles centred on points . S1 and . S2. Construct a circle with given radius r to 
be tangent to both of them (tangent to the larger internally). 

Solution Let the radii of two given circles be . r1 and . r2 .(r2 < r1). Suppose S is the 
centre of the circle to be constructed. Then: 

.(i) S will be .|r1 − r| from . S1, therefore it will be on a circle with radius . |r1 − r|
and centre . S1. 

.(ii) S will also be .r2 + r from . S2, therefore it will be on a circle with radius . r2 + r

and centre . S2. 

If we construct the circles described in . (i) and . (ii), their intersection S is the center 
of circle forming the answer to the problem. The availability of dynamic geometry 
software GeoGebra can be used to study main geometrical facts of existing points S.
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Activity In this problem, the slider tool could be used to vary the value of given 
radius r as a parameter. We can construct some more centres and circles with 
required properties: 

(1) For a few value of radius r construct the circles and plot their centres. 
(2) Sketch the curve that contains the centres of all constructed circles. 

In GeoGebra we can draw the searched locus of S again using the tool Locus (in 
a similar way as in the preceding problem). Figure 5 shows the completed task. 

Equation of the Ellipse The analytical method for solving this problem requires 
to take certain coordinate system. Suppose the centres of the given circles are 
represented by . S1 and . S2 and their radii . r1 and . r2 respectively. The point of contact 
is assigned to be the Origin and the line joining the centres of the given circles is the 
x–axis. Let the centre of the drawn circle be .S(x, y) and its radius r . Also  

. |SS1| + |SS2| = (r1 − r) + (r2 + r) = r1 + r2 = constant

therefore, the locus of S being an ellipse. More about finding an equation of desired 
ellipse is elaborated in [1]. 

Note Depending on the relative positions of the given circles, their centres and radii, 
the locus of desired centres for tangent circles may be not only an ellipse but also a 
hyperbola. 

Fig. 5 Centres and circles with required properties
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3 Conclusions 

While looking for the previous presented examples with solutions questions, it 
is important to point out the reinforcement of the role of visualization by the 
computer. 

• Visualization can often provide a simple and effective approach to discovering 
mathematical results, to problem solving, and to discover the concrete structure 
of the mathematical model by which students gain new knowledge or they learn 
the new mathematics notion. 

• Visualization of relationships and connections in one model allows to derive new 
results in other mathematical areas and disciplines through new models which 
are isomorphic to this model (completely or only partially). 

• Computer algebra systems (CAS) or dynamic geometry systems (DGS) bring 
the possibility to dynamically change the parameters of representation (graphs of 
functions, geometric shapes). It speeds up and makes for students easier to find 
connections between different mathematical notions and areas when they acquire 
new knowledge. 

The usage of educational software such GeoGebra brings opportunity to solve 
more complex problems. Through solving this problems, the student can learn more 
from curricula and understand logical connections between different parts. It also 
supports cooperative learning. Visualization as an important supporting factor of the 
online teaching during the pandemic situation (see [4]). Many educational experts 
speak about hybrid or blended learning, the teaching and learning will be now 
different than before. It is expected that online teaching will have an important role 
in the teaching of external students in future (see [6]). 
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Extra-Curricular Activities to Promote 
STEM Learning 

Natali Hritonenko, Victoria Hritonenko, and Olga Yatsenko 

Abstract This chapter provides examples of extra-curricular activities proven 
to work well in face-to-face, hybrid, and virtual course settings. The included 
warm-up workouts, design-a-problem projects, decode-a-phrase sudoku, and cross-
disciplinary word problems are designed to stimulate the learning of mathematical 
fundamentals and demonstrate both the versatility of mathematics and unity of 
science. They can be integrated in any STEM courses. The goal is to boost math-
ematical preparation, encourage math-anxious students, and entertain advanced 
students. Such problems transcend the boundaries of traditional mathematics and 
extend into other disciplines to stimulate out-of-box approaches to problem solving. 
All proposed activities are accompanied by detailed descriptions, examples, and 
students’ feedback about challenges and benefits. They do not require mathematical 
proficiency above College Algebra and elements of Calculus, though can be easily 
extended to include more advanced topics. 

1 Introduction 

Two of the greatest scholars of all times, German mathematician Carl Friedrich 
Gauss (1777–1855) and Greek philosopher Aristotle (384 BC-322 BC), defined 
mathematics as the queen of the sciences and stated that mathematical sciences 
particularly exhibit order and symmetry, and these are the greatest forms of the 
beautiful. Indeed, mathematics is magnificent, fascinating, and exciting. However, 
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mathematical disciplines are among the most challenging subjects for students in 
high school, college, and university. They are often considered both the greatest 
fear for students and a barrier for their academic success and career ambitions. 
Moreover, the Programme for International Student Assessment (PISA) ranked the 
US’s achievements in mathematics almost at the bottom of the 35 industrialized 
nations and in the 38th place out of the 71 total countries surveyed [1, 2]. 

College Algebra and its subject-oriented satellites Contemporary Algebra and 
Finite Mathematics are college core course requirements. In addition, all sci-
ences require a strong foundation of mathematics and are subjects to its rules. 
Multi-disciplinary instructions are becoming a major trend in modern educational 
curricula, and a strong mathematical background is a must. Students without a solid 
mathematical background may fall behind, lose interest in the topic, and fail not 
only their mathematics class, but also other classes. Instructors that teach Physics, 
Biology, and Engineering claim that about 65% of students with weak mathematical 
preparation either do not or barely pass their classes. 

Students often give up before even trying to solve a problem that involves 
mathematical statements because of their fear of the subject, which just blocks their 
minds. In addition to a possibility of their inadequate mathematical preparation, it is 
probable that students do not study on a regular basis. Various surveys [3, 4] show  
that students should study on their own for 2–3 hours per week for every credit hour. 
It is unlikely that D-F-W students follow this suggestion that results in their poor 
preparation. 

To fight the challenges in STEM education, numerous teaching techniques have 
been suggested to make mathematics more appealing to students. Publishers develop 
and constantly improve easy-to-read textbooks and software packages. Tutorial 
services are widely available and are even offered in some college for free. YouTube 
is full of video tutorials and helpful animations. Despite the plethora of these 
resources, more than a half of American students do not pass College Algebra on 
their first attempt [5, 6]. 

Challenges in STEM education appear in both face-to-face and online (i.e., 
internet, virtual) courses. With the rapid development of technology throughout 
the past several decades, along with other global circumstances, virtual learning 
is significantly changing the shape of modern education. Flexible schedules, the 
convenience of studying at a student’s own pace, simultaneous career development, 
remote accessibility to learning, and financial savings on tuition, room and board 
are just a few advantages of online education. Thus, virtual instruction is growing 
at an extraordinary pace worldwide. The percentage of U.S. undergraduates taking 
at least one online class increased from 15.6% in 2004 to 43.1% in 2016, while 
the percentage of undergraduate students enrolled in fully online degree programs 
rose from 3.8% in 2008 to 10.8% in 2016 [7–10]. In comparison, the annual growth 
rate of online training is 8.5% in Germany, the leader of online education in the 
European Union [11, 12]. Students’ satisfaction with online learning is reported to 
be high. To meet increasing demands of virtual education, colleges and universities 
have offered various online programs at lower or no cost [7–9, 12].
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The COVID-19 pandemic has enormously accelerated virtual education [13]. 
Online learning emerged as a safe and sustainable option for schools and colleges 
during this challenging time. Some face-to-face classes or portions thereof need 
to be offered in virtual settings. New types of classes, such as internet/online syn-
chronous and asynchronous, hybrid, and hyflex, have been immediately suggested 
and, in most cases, created. Students that generally prefer face-to-face learning have 
had to move online and handle switching to digital learning. Such students are quite 
different from the students who had initially chosen to pursue their education in an 
online setting, often facing unique challenges in both motivation and understanding. 
Traditional online students are at least mentally prepared for virtual education, 
though even they may not fully predict its challenges. 

Most students who have been forced to move to an online setting by circum-
stances, e.g., COVID-19, are not happy with these changes. Surveys show that 
they fear being lonely, self-educated, and far away from their peers and professors. 
Such students believe they are not getting the same level of education, attention, 
and mentorship as during face-to-face instruction. Indeed, students must be more 
responsible for their own study and schedule when learning online as compared to 
face-to-face. Thus, online education creates new questions and calls for effective 
teaching strategies for making studying effective and engaging students into the 
learning process, potentially even pushing them toward success. 

As it has been pointed out, challenges in STEM have various sources such as not 
sufficient students’ mathematical background, prior STEM preparation that mostly 
concentrates on choosing a correct answer in a final test instead of understanding 
foundations. On the other hand, college instructors should accept all students signed 
up for their course and cover their course syllabus. Having inadequate preparation, 
students are lost in their classes. What can be done to bring students to the level 
needed and make a learning approach captivating and exciting to make students 
willing to practice even after a long workday? It is important to go beyond traditional 
academic training by helping students adapt to new challenges and providing 
a great scholastic environment for their education. A reasonable mix of graded 
assignments with non-traditional activities for practice and mastery encourages 
students to go beyond their regular “boring” homework and is beneficial to any 
study, especially in an online setting. Numerous recommendations, novel teaching 
practices, animations, tutorials, YouTube videos, and other mixed media have been 
developed and are ready to be integrated into the classroom to meet the demands 
and requirements of a course curriculum [see, e.g., [14–19]. 

This chapter presents several activities proven to work well in face-to-face, 
hybrid, and virtual settings. Their goals are to make mathematics classes interesting, 
entertaining, and, at the same time, educational. They aim to help students review 
and master mathematical fundamentals, stimulate students’ interest in mathematics 
and motivate them to invest more time in their studies. Emphasis is made on 
both learning mathematical fundamentals and connecting mathematical formulas to 
other disciplines to demonstrate their versatility. Some of them can be integrated 
to mathematics classes, while others are interdisciplinary to be introduced to a 
variety of disciplines. The presented ideas can be modified to fit existing course
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learning objectives or inspire design of new activities. All discussed activities allow 
reasonable flexibility. Deadlines of some activities can be set before a coming topic, 
while deadlines of others can be open to the last weeks of a term. Extra grade 
points can be offered as an incentive for their completion. Integrating activities 
into a course and analyzing the outcomes, an instructor can decide what activities 
work for a specific group of students better. Another highlight of the presented 
activities is memorizing basic mathematical formulas (widely used in science) while 
using them in multiple ways in different activities. As a result, students will be 
better prepared for both their future courses and SAT, ACT, GRE, MCAT, GMAT, 
and other standardized exams. Examples of interesting puzzles and projects that 
can be implemented in high school and college courses are provided along with 
supplemental students’ responses as a reflection of their challenges and benefits. 
Although the mathematical level is acceptable for middle, high school, and college 
students with College Algebra or equivalent, these activities can be modified and 
extended to include any desired STEM topics. 

2 Learning Through Games and Puzzles 

Everybody enjoys playing games over work. Why not to add some science and 
incorporate them to a course curriculum to make a subject more intriguing and 
simultaneously foster student creativity, enhance student understanding, challenge 
stronger students, and help weaker students to catch up? Customized games and 
puzzles are powerful tools in the instructor’s arsenal to combat classroom fatigue 
and, at the same time, repeat and review the key concepts in a relaxed and fun 
atmosphere [14–19]. The COVID-19 pandemic accelerated the trend towards the 
web-based live classes and caught many instructors struggling to adapt. The games 
such as Sudoku, Guess Who, and Math Bingo came to the rescue and nurtured 
the strong educational bond between the instructor and students and contribute to 
the positive educational outcomes. They have the power to stimulate non-traditional 
learners, encourage students in danger of falling behind, while the advanced students 
are entertained and have an opportunity dive deeper into the subject. The games 
should not require any knowledge out of a subject content, but, rather, deeper 
thinking and understanding. At the same time, these games can serve as a good 
review tool and help support understanding of the studied material. 

Flexibility in the number and selection of extra-curricular activities allows easy 
adjustment to any students’ preparation, class setting, and program requirements. 
Carefully crafted games and puzzles make mathematics classes entertaining and 
educational for students learn and review while playing. Basic mathematical rules, 
properties, and statements will naturally come to their mind and stay there. Small 
surveys given to students can guide instructors what way to go. As an engaging 
but nontraditional educational tool, they greatly contribute to successful STEM 
education when properly applied.
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This section provides examples of two types of such activities, classroom Warm-
ups games and puzzles for homework. Brief notes from students’ surveys are shown 
in italic. 

2.1 Warm-Ups Games 

Warm-ups games consist of small questions easily solved without using a calculator. 
They can be played at the beginning of each class and at the middle of a long class 
to gain students’ attention. Warm-ups games target to not only review fundamentals, 
master basic concepts, and prepare students for a new topic but also bring students’ 
mind to the class. Indeed, coming from different classes students need some time to 
adjust their thoughts to another class. 

The warm-ups format can vary and, depending on a group participation, can be 
played differently. The plan is to have 5–15 short questions or statements related to 
topics needed to be reviewed or studied in class. It is beneficial to ask additional 
questions or discuss students’ responses, especially if the majority responses are 
incorrect. Examples of three types of Warm-ups games: word problems, True/False, 
and what is greater, are presented below. 

Short Word Problems 

Description Offer a few short answer problems that can be mentally solved. Some 
examples of such problems are below. 

1. A woman bought a dress and paid $58 and a half of what it cost. How much did 
the dress originally cost? 

2. The heaviest jackfruit grown was 76 lb. The heaviest green cabbage was just 
ln(sin90. ◦) lb heavier than the heaviest jackfruit. What was the weight of heaviest 
green cabbage? 
By the way, both records were set up in the US, the heaviest jackfruit was grown 
in Hawaii in 2003, while the heaviest green cabbage was grown in Alaska in 
1998. 

3. It takes 2 days to paint a fence. How many days would it take to paint a twice 
wider and twice taller fence (working at the same pace)? 

4. Divide 10 by a half and add ten. What do you get? 
5. What is the lowest square number presented as the sum of squares of two other 

positive numbers? 

It will bring more fun if at least some questions are complemented by interesting 
facts, like in Problem 2. It is noteworthy to mention that the last question, Problem 5, 
is a modification of a $15,000 question on Who want to be a millionaire [20]. Ideas 
of problems for this activity can be found in different sources [21, 22, and others].
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True/False Games 

Description Ask students to clap if a statement is TRUE, raise both hands up if it 
is FALSE, or stand up if it can be either TRUE or FALSE. Alternatively, students 
can be asked in advanced to prepare colored cards with FALSE or NEVER (black 
card), TRUE or ALWAYS (white card), POSSIBLE (red card) and to show the 
corresponding card. A few examples of statements related to reviewing odd/even 
functions are given below. 

1. If y = f (x) is even, then y = f (-x) is odd. 
2. |f (x)| is even. 
3. The product of two even functions is even. 
4. The product of two odd functions is odd. 
5. The inverse of an even function is even. 
6. A graph of a function can be symmetric about the y-axis. 
7. A graph of a function can be symmetric about the x-axis. 

Seeing and analyzing students’ responses help an instructor understand what 
needed to be discussed. More detailed questions after each statement, like Why? 
When is it true? Why is it nonsense? Why is it impossible?, lead to a deeper 
understanding of the concept. 

What Is Greater? 

Description Ask students to prepare three colored cards with ‘<’, ‘=’, ‘?’ or four 
cards if ‘>’ is added. The card ‘?’ is to be shown when all signs are possible 
depending on additional information. Another option is to ask students to raise a 
left (right) hand if the left (right) expression is greater than the right (left) one, clap 
if they are equal. A few examples of questions that target trigonometric functions 
are below. 

1. sin(x) or tan(x) 
2. (sinx+cosx). 2 or sin2x 
3. sin(x) or sin. 2(x) 
4. secx. 2 or 0 
5. sec. 2x. 2 or 1+tan. 2x. 2

6. sec. 2x or 0 
7. sin2x or 2sinx, where x is in the first Quadrant 
8. sin. 23x+cos. 23x or 3 

The importance of warm-ups and the following brief discussions cannot be 
overestimated. It may appear that students are passive during the first games, for they 
are not used to play in mathematics classes. However, with time, seeing the progress 
in their study that leads to better understanding and remembering the learning 
material, the students understand the value of these games and actively participate. 
Evaluations of warm-ups revealed that only a little more than a half of students
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enjoyed them; however, when asked whether warm-ups should be continued, 100% 
of students say “Yes”. 

In their surveys, students note that the “warm-ups games are more important 
than a class itself, they help remember basic formulas and their relations. They are 
fun and make a class alive. Warm-ups make” the students “to be in class on time”. 

2.2 Puzzles for Homework 

Puzzles are a great asset for fighting challenges of STEM education and bringing 
some fresh air to a subject. They can come in different forms, like finding incorrect 
steps or solving a puzzle. They can be designed to be related to a certain topic or 
several topics. 

The first example below aims to review basic algebraic formulas. The second 
sudoku tests knowledge on solving algebraic equations and systems. 

Is  1 + 1 + 1 = 0 Correct?  If not, find what step is incorrect in the proof below. 

Proof 

Step 1: Let .a = b. Step 2: .a3 = b3. Step 3: . a3 − b3 = 0.

Step 4: . (a − b)(a2 + ab + b2) = 0.

Step 5: . (a − b)(a2 + ab + b2)/(a − b) = 0/(a − b).

Step 6: . (a2 + ab + b2) = 0.

Step 7: . a2 + ab + b2 = 0.

Step 8: Let .a = b = 1, then . 12 + 1 · 1 + 12 = 1 + 1 + 1 = 0

Surprisingly, the most common answer shows a mistake is going from Step 3 to Step 
4. The idea for such riddles can be found at different web-pages and publications, 
see, e.g., [23]. 

Sudoku Fill in the square (Fig. 1 below) with the letters A, B, E, F, G, L, N, R, U, 
such that each letter appears only once in each row, each column, and each small 
square. Find the hidden statement decoded as 

. 1 2 3 4 5 6 7 8 9 10

and tell whether you agree with it. Each number stands for the letter from Sudoku 
that satisfies the following statements: 

1. The row number of the first letter is a, and its column number is b such that 
.x = 9 and .x = −1 satisfy the quadratic equation .x2 − bx − a = 0. 

2. The row number of the second letter is a, and its column number is b, such that 
the graphs of two lines described by the equations .y = 2x +a and . 3y −bx = 9
coincide.
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Fig. 1 Sudoku 

3. The row number of the third letter is a, such that the quadratic equation . x2 −
2ax + 4 = 0 has two equal positive solutions. The column number of the third 
letter is that solution. 

4. If the row number of the fourth letter multiplied by 2 is added to its column 
number multiplied by 3, the result will be 22. If the column number multiplied 
by 2 is subtracted from the row number, the result will be 4. 

5. The difference between the row and the column numbers of the fifth letter is 5, 
the difference between their squares is 65. 

6. The column number of the sixth letter is 3 units more than its row number. If 
the row number is decreased by 2 and the column number is increased by 5, 
their new sum will be 18. 

7. The row and column numbers of the seventh letter are prime numbers with the 
sum of 7 and positive difference. 

8. The row number of the eight letter represents the side of the base, and its 
column number stands for the height of the box with a square base. Its surface 
area is 56, and the box is 4 units taller than wider. 

9. The row number of the ninth letter is the width, and the column number is the 
length of a rectangle with the area of 40 and the perimeter of 26. 

10. The row and column numbers of the tenth letter are the same. Their product is 
the value of the largest area of a rectangle with the perimeter of 16. 

The decoded phrase shows FUN ALGEBRA. Yes, algebra is fun, indeed. Sudoku 
can contain different statements to be decoded, e.g., Viva Statistics [19], Great 
Integral, Area and Perimeter. Suguru, Kakuru, Inkies, and other number puzzles 
[24, 25] can be also modified to fit desirable goals. Students like such puzzles.



Extra-Curricular Activities to Promote STEM Learning 145

3 Projects in Mathematics Classes 

Project-based learning is a very popular education strategy. Its value has increased 
significantly in the times of virtual training. Numerous research and education 
papers praise the benefits of integrating projects into course curriculum and describe 
their categories, designs, and rubrics [14, 25, 26, and others]. 

This section aims to discuss a special type of individual projects where students 
are requested to design a mathematical statement, an expression to simplify, a word 
problem, or any other type of mathematical problem. Depending on the project, a 
problem should lead to a certain answer or incorporated into a story. A student’s 
class roll number, birthday, or a favorite number can be the answer to a problem. 
The story can be a fiction, tale, “My Spring Break”, “My Great Nation”, or any 
other relevant or fun theme. Mathematical concepts for the problems vary, but 
should remain related to the topics studied in class (or otherwise be reviewed). If 
applicable, students can be asked to solve their designed problem using two different 
methods and provide a comparative analysis of both ways. After the completion of 
their project, students can be asked to write their honest opinions about the project, 
along with its benefits and challenges. Students must be aware that they will earn 
maximum credit for this task even if they dislike the project as long as they justify 
their point of view. Similarly, zero points will be granted if they simply state, I like 
the project, without any further note. Finally, a double-blind peer review evaluation 
of projects is performed after submission of all projects. This part of project activity 
is not discussed in this chapter, though most students are in favor of this activity 
after a brief initial period of bewilderment and confusion. 

Examples of two different project categories highly appreciated by students are 
provided below. Projects are accompanied with their description, and students’ 
responses shown in italic. Objectives and targeted mathematical topics involved are 
omitted as they are quite visible. 

3.1 Project “Absolute Value” 

Description of the Project 
Five relations .x + y = 1, |x + y| = 1, |x| + y = 1, x + |y| = 1, |x| + |y| = 1, are  
given. 

1. Sketch the graph of each relation. Provide mathematical reasonings for graphs. 
2. What relations are functions, one-to-one functions, relations? 
3. Design a real-world problem with the solution modeled by each function. 

Below are just a few examples of the submissions of College Algebra students 
without any changes of their language.
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Students’ Submissions

• A gymnast is going to compete in the Olympic Games. He goes up the mountain 
top and then down the mountain at the same rate for each ski blade. Represent 
the equation of him going up and down the hill one mile per minute. What is the 
equation that represents his ski blades? Draw a sketch of the mountain. What is 
the equation related to this sketch?

• Pacman is headed one unit to the left side of the screen. While he is headed in 
that direction, he is going one unit down. He can only eat one piece of food at 
a time and there are no ghosts in his way. Trace his path. Draw a sketch of the 
graph of what the path like.

• You are drawing a map of the Yankee Stadium field. Second base is located at 
(0,1), and home plate is located at (0,−1). What is the equation of the graph 
knowing that when players on second and home base make a throw to either first 
or third base it makes a reflection across the x and y-axis. What is the equation 
to this shape?

• I combined all my questions into one problem just to clarify. Every man has a 
special way of proposing to that special someone who completes him. However, 
picking that special ring is what defines you. 

Before you can pick that special ring you must know which store to shop 
at. Each jewelry story presents its best stone by a math equation. The choices of 
stores you have are Jewelry−x+y = 1, Jared−|x+y| =  1, Szu−1−|x|+y = 1, 
Super Jeweler– x + |y| =  1, and Blue Nile−|x| + |y| =  1. In order to find that 
special store you must graph the equations to figure which store is best to buy 
from. Which store is considered the best store a man should go to?

• A flashlight has been lit at 45◦ and reflected from the mirror at the same angle. 
Give a mathematics model of the projection.

• A machine fills Quaker Oatmeal containers with y ounces of oatmeal. After the 
containers are filled, another machine weighs them. If the container’s weight 
differs from the desired y ounce weight by more than 1 ounces, the container 
is rejected. Write an equation that can be used to find the heaviest and lightest 
acceptable weights for the Quaker Oatmeal container. 

Students’ Responses 
As a technologically advanced generation, students submit correct graphs of all 

relations, though it is challenging for them to provide the mathematical rationale 
for sketching graphs and determine why the graphs take this or that form. Thinking 
about the shape of the graphs helps them visualize and understand the absolute 
value better. Creating a word problem is a tricky task  for most students. The most 
important benefit is that students are engaged in learning and have to think outside 
the box.
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3.2 Project “Write a Story” 

Description 

1. Write a story (a story theme is assigned or related to a specific course topic). 
2. Design five mathematical problems related to a certain mathematical concept and 

incorporate them to the story. 

Examples of students’ submission are provided below. 

Story “Our Great Nation: Statue of Liberty” (A Fragment with Two Problems 
from the Story) 

Problem A Lady Liberty is one of the most iconic statutes in America. She greets 
immigrants from overseas and is visited by approximately four million people each 
year. This familiar attraction is a sign of freedom to many Americans. The statue, 
designed by Frédéric Auguste Bartholdi and dedicated on October 28, 1886, was a 
gift to the United States from the people of France. Suppose Lady Liberty was a 
student at ASU (Awesome Statues University) and the tablet she is holding is her 
research paper that she will be presenting in class. Given: 

1. The tablet’s length is 23 ft 7 in., and width is 13 ft 7 in. 
2. The average paper’s length is 11 in. and width is 8 in. 
3. The average number of words that fit one page (single spaced, 12 pt. font, Arial) 

is 450. 

How many words (single spaced, 12pt. Arial font) were most likely at the Lady 
Liberty’s assignment? How many average size papers is that equivalent to? 

Problem B A father and a son decided to visit the Statue of Liberty for Spring 
Break. The young boy was super excited about visiting and wanted to take lots of 
pictures to show his class when he returned to school on Monday. The two decided 
that for every ten steps, the father would take a picture of the son. The son would 
take a picture of the view every three more steps. And they would ask a stranger 
to take a picture of them both. The ended up with 80 pictures. How many of each 
type of picture did the boy have to show his class given that there are 354 steps? 
(Approximate your answers to the nearest whole number.) 

Story “Spring Break” 
For Spring Break my family and I went on vacations to Mexico. We traveled by car 
when we got to Refugio, Texas, I stopped at a Shell gas station to fill up. It was a 
surprise to me to find an old friend at that gas station. We filled our tank and left 
the gas station at the same time. I traveled 120 km/h heading south while my friend 
traveled 90 km/h heading west. At what rate was the distance between my friend 
and I increase in 3 hours? 

In Mexico we went to Tampico. Tampico is a pleasant beach. My son wanted 
to take back 1152 cubic inches of sand back home with him. In order to bring 
this amount of sand, he needs to make a square base and open top box. He wants
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to minimize the amount of material used to make the box, what should be the 
dimensions of his box? 

My husband and I both enjoy playing volleyball. Therefore, we brought our 
beach ball with us. My husband started inflating the spherical ball. The volume 
of the ball is increasing by 3 cm?/s as the ball reached 6 cm. How fast is the radius 
changing at this point in time? 

While playing volleyball we decided we needed to mark our playing area so that 
we can determine if the ball is in or out. My husband got out an 80ft rope. What 
would be the dimensions of the court to minimize the area? 

Students’ Responses 
The first story was submitted by a student from a College Algebra class, while 

the second was a Calculus project involving topics on related rates and optimization. 
Even if their problems may have been a little na?ve and incorrect, the students 
were motivated to think and design. Students are praised for their work and gently 
directed if needed. 

Topics can vary in tasks. For instance, a project on Laplace Transforms requires 
to construct the ODE and the initial value problem that have a given function is a 
solution. Then solve the initial value problem by two different ways and compare 
methods and results, and, finally, write a conclusion. 

The project that involved designing a word problem received very high eval-
uations from students. Students say that this project was actually fun (once they 
realized a story they could tell). One very challenging portion was trying to 
implement a problem into the story. The students have never been tasked to create a 
problem with a project usually it is the opposite, where they were tasked to solve a 
problem. 

From the examples in class as well as the homework, solving a problem was not 
an issue and they didn’t think that making up a problem would be so difficult and 
that it is much easier to solve a problem than to create it. In all students felt that it 
was very unique to say the least. It is one of the most demanding projects that they 
have completed intellectually. Although it was interesting, students also feel that 
there are a lot of vague or obscure ways to have completed the project, so it leaves 
a lot of room for error. The students complain that it is tedious at times to think of 
a problem and the project takes a lot of time. Moreover, they don’t know whether 
the problem is good, and have to know the methods before making up a problem, 
though all of them recommend the project to continue. 

Design-a-problem projects spark curiosity in students, make mathematics appeal-
ing, and increase both their writing skills and mathematical culture. Indeed, the best 
way to engage students is to ask them to work on something with limited informa-
tion given. The creativity of students’ projects is incredible, even if the mathematical 
problems are sometimes na?ve or incorrect. Such projects are beneficial not only to 
students, but also to instructors, as instructors can find ‘trouble’ points in students’ 
studies, get to know their students better, and gain some new knowledge they have 
never thought about before reading their students’ stories. Reading problems created 
by students is enjoyable and fun.
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4 Interdisciplinary Projects 

As it has already been mentioned at the beginning of this chapter, mathematics 
is “the queen of the sciences”. If mathematics is the queen, which subject is the 
mother of all sciences? Wikipedia, that knows everything, names mathematics as 
the mother of all sciences because it is a tool which solves problems of every other 
science. Needless to say, that it is impossible to find a discipline that does not require 
at least simple mathematics background. Indeed, new discoveries are made at the 
edges between different disciplines. Thus, it is important to emphasize the unity of 
all sciences. Cross-disciplinary education is an essential part of modern education. 
Elements from different disciplines can be incorporated to any subject. 

Examples of two interdisciplinary projects are presented in this section. The first 
project can be offered in Calculus I or Business Calculus, the second one is suitable 
for College Algebra and any course on Biomathematics, for they do not require any 
background beyond these courses. 

4.1 Project for Business, Management Sciences, Operations 
Research 

Mankind wants to know the future. Predictions have been made since ancient times. 
Can you guess what year it was projected that “there is a world market for maybe 
five computers” and “there is no reason anyone would want a computer in their 
home”? Are you smiling as you read these when you have a computer, or even 
several, in addition to your phones, tablets, and other gadgets? Oh, yes. Probably 
people thought so a hundred years ago. No, both quotes were made less than 
a century ago, in 1943 by the Chairman of IBM, Thomas Watson, and in 1977 
by the Founder of the Digital Equipment Corporation, Ken Olson. Technological 
development was not counted in those predictions. 

Technological development and scientific innovations have changed our world. 
They lead to appearance of new equipment, which is more effective, less expensive, 
and requires less resources than the older models. Therefore, any company is 
continuously working toward the development of optimal modernization/ renovation 
strategies under improving technology. Mathematical techniques are an asset in 
finding a reasonable sustainable solution. 

Let us consider a company that produces some goods, buys new more productive 
equipment, and scraps obsolete (but still functional) equipment of age T with the 
goal to maximize its total net profit over time [27–29]. The efficiency .b(v, t) at time 
t of the equipment installed at time v can be expressed as .b(v, t) = exp. (cv − d(t −
v)) and the cost of the new capital as .p(t) =exp.(ct), where .c > 0 is the rate of 
technological progress. The rate .d > 0 represents the impact of equipment age on 
its efficiency, and q is the initial equipment price. Using mathematical methods, it 
is proven in [27, 28] that under conditions .c + d > 0, c < r, q(r + c) < 1, the
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optimal service lifetime T of equipment that maximizes the discounted profit over 
the infinite horizon is constant and determined from the non-linear equation 

.(r + d)e(−(c+d)T ) − (c + d)e(−(r+d)T ) = (r − c)(1 − (r + d)q), (1) 

where .r > 0 is a discount rate over time. 

Tasks 
1. Analyze the behavior of the efficiency function .b(v, t) and the cost of the new 

capital .p(t) and their dependence on the parameters .c > 0 and d. Consider 
positive and negative d . Provide applied interpretation and examples. 

2. Find the optimal service lifetime T defined by the equation (1) under a small 
discount rate .r << 1 and small technical progress and deterioration rates . c <<

1, d << 1. Interpret this result. 
Hint: Apply the first three terms of the Taylor series for exp(x). 

3. Show that at a small discount rate .r << 1, small technical progress rate 
.c << 1, no deterioration (.d = 0), and equipment price (.q = 1), the equation 
(1) produces the celebrated result of Terborgh (1949) presented in [29] that the 
optimal equipment lifetime is .T = √

2/c. 
Hint: apply the Taylor series for exp(x) up to the second order. 

4. Provide interpretation of your results. Describe dependence of the optimal 
service time T on parameters .c, d, and r . 

4.2 Project for Bio-Medical and Pharmaceutical Sciences 

The Hill equation or Hill-Langmuir equation 

. log(T /(1 − T )) = n log[L] − log K (2) 

is widely used in biochemistry and pharmacology to describe an effect of binding of 
one ligand to a macromolecule (such as a protein or an enzyme) on its capacity 
to bind additional ligand molecules [30, 31]. In the Hill equation, n is the Hill 
coefficient, T is the fraction of protein bound by ligand L, .[L] is the concentration 
of unbound ligand L, K is the dissociation constant between the ligand and protein. 
The Hill coefficient n plays an important role in describing an intricate relationship 
between an enzyme and sequential binding of its multiple ligand molecules. It is 
used by pharmaceutical companies to evaluate the ability of their drugs to bind, slow 
down, or inhibit an activity of a given enzyme, e.g., an enzyme that is important in 
cell division in order to design a drug to combat cancer or other diseases. 

If .n < 1, there is a negative cooperativity between binding the first and subse-
quent ligand molecules to a given enzyme. Ligand-bound protein has a decreased 
affinity to bind other ligands, which is useful for designing pharmaceutical drugs 
that are to inhibit or shut down activity of a target protein.
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If .n = 1, then the binding of the first ligand molecule to an enzyme has no effect 
on subsequent binding of additional ligand molecules. 

If .n > 1, then binding of the first ligand molecule to the enzyme enhances the 
enzyme’s ability to bind subsequent ligand molecules. An example of a positive 
Hill coefficient is hemoglobin, which has four separate binding sites for individual 
oxygen molecules. Binding the first molecule of oxygen to the hemoglobin complex 
has a positive effect, makes it easier for that hemoglobin to bind the second molecule 
oxygen and even easier to bind the third and the fourth ones. The explanation of 
oxygen binding to hemoglobin was the original motivation behind Archibald Hill to 
derive his coefficient. 

Tasks 
1. Find the domain of each variable in the Hill equation (2). 
2. Graph the Hill equation (2) for different ranges of parameter values. Interpret 

your results. 
3. What shape does the graph of Hill equation (2) look like? 
4. Is the relation described by Hill equation (2) a function? one-to-one function? 

Justify your response. 
5. Describe the dependence of the Hill coefficient n on other parameters. Interpret 

your findings. 
6. Present the Hill equation as a function .n = f ([L],K) using just one logarithmic 

function. 
7. Estimate the ranges of parameters when there is positive, negative, and no 

cooperative binding. 
8. Find other applications of the Hill equation (2). 
9. Find other functions that have a shape similar to the function described by the 

equation (2). 

The idea of interdisciplinary projects can be found in numerous research papers, 
books, and just around us. A project can be adjusted to any course topic. Let us say, 
students-athletes take College Algebra only because it is a course requirement, and 
are not interested in these formulas, then think of a project that involves a soccer 
field, a pool table, etc. In general, cross-disciplinary projects stress applicability of 
mathematical statements and form interdisciplinary vision important to raising a 
new knowledgeable generation of scientists, practitioners, and educators. 

5 Summary 

This chapter provides just a few examples of different activities in hope of encour-
aging instructors to design their own puzzles and interesting mathematical problems 
that will assist them in helping students to grasp a topic and, simultaneously, 
enhancing their knowledge and appreciation of mathematics and other disciplines. 
Cartoons, inspiration stories, relaxing games, and other activities can be easily 
added to this list.
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Most students listen to and work on stories about great mathematicians. Such 
stories make mathematics more appealing to them, especially if scientists are chosen 
properly. Why not talk about Napier and Bürgi while introducing logarithms, or 
about Descartes and Fermat while discussing solution of equations or rectangular 
coordinates? None of them were mathematicians but left an essential trace in 
development of mathematics we have today. Let students learn and discover. 
What’s about the ever-so-popular cartoons and comic books? Many of them 
involve mathematics and careless errors. For instance, Calculus students can be 
asked to provide interpretation of the famous spiderman cartoon [32] and find an 
error there or explain the math behind the action [33]. Such tasks that can be 
integrated into mathematical courses making them not only educational but also 
entertaining. Educational activities should be prepared appropriately for different 
types of learners and associated with each mathematical topic. Depending on 
students’ interests, age, and participation, the presented activities can be modified, 
extended, or switched entirely to other types. For instance, tricky and challenging 
problems are very popular among students. 

Expected learning outcomes, design, advantages, disadvantages, and adaptation 
of each activity are to be carefully assessed. An analysis of students’ participation 
(turning in), exam grades (academic performance), and students’ surveys is a great 
asset to assess effectiveness of an introduced activity. 

At the beginning, it takes quite some time and effort from an instructor to prepare 
such activities, set up a learning environment in class, and persuade students to 
start working on extra-curricular assignments, but it is rewarding. Keeping students 
involved and intensively engaged in their studies is crucial. As a benefit, students 
will feel that they are receiving extra attention from and solidarity with an instructor 
and appreciate this. Students become more enthusiastic about working on topics 
presented as puzzles and projects. They emphasize that it makes them think and 
understand the methods and grasp a concept better, strengthens mathematical skills, 
allows them to design a problem they are comfortable with. Although the projects 
are challenging and time-consuming and students have to be familiar with all 
methods being learned, the projects make them think critically of the concepts such 
as their advantages and disadvantages and allow them to be a scientist. 
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Usage of Online Platforms in Education 
of Mathematics in Transcarpathia 
at the Beginning of Quarantine 

Gabriella Papp 

Abstract Distance learning and e-learning as concepts have been in our minds 
for a long time. In March 2020, they suddenly gained great importance due to 
the introduction of quarantine and were immediately put into practice. It had to 
be applied in the everyday lives of teachers and students with surprising speed. 

The goal of this research is to assess and demonstrate how teachers overcome 
the difficulties of mathematics education in distance learning. For this purpose, a 
month later after the beginning of distance education, I conducted a questionnaire 
survey among 20 teachers of mathematics in Transcarpathia who teach in several 
educational institutions with different work experiences. They were asked how 
education went on during quarantine, how they chose the platforms and methods 
needed to hold their lessons, what the checking and testing process was, what 
advantages and disadvantages they faced in distance learning. 

1 Introduction 

Due to the quarantine introduced during the pandemic, teachers had to face a new 
problem. The concept and practice of e-learning and distance learning had to be 
incorporated into everyday life, which were far removed from the methodology 
learned or their lessons. In this regard, teachers had to find solutions to questions 
such as, “Which platform should be used?”, “How can they best to solve that 
changes in the teaching-learning process do not reduce students’ knowledge?”. 
What the teachers did in the educational process with a board, booklet, or interactive 
aids, sometimes playfully, yet accurately, can now only be done remotely using a 
video connection or written instructions. Under the renewed conditions, students 
will have a greater role in independently processing the curriculum, possibly 
searching the Internet. 
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According to Frederick et al. (see [4]) from more complete definition of learning 
can be crafted a new one: Learning is improved capabilities in knowledge and/or 
behavior as a result of mediated experiences that are constrained by interactions 
with the situation. With this definition of LEARNING we are half-way to our goal 
of defining distance learning. Now consider that there is more than one purpose for 
learning. Recognizing that learning is a constant process that takes place wherever 
and whenever the individual is receptive, there must be accommodation made 
for the different purposes for learning (different learning intentions). After all, 
learning situations may be formal (contrived) or be self-directed in everyday settings 
(naturalistic). Learning may occur by design, or it might occur by chance. Therefore, 
with these possibilities in mind, the authors propose three major subcategories 
of learning: (1) instruction: objectives-driven learning; (2) exploration: without 
objectives; and (3) serendipity: unintended learning [4]. 

Digital technologies have made their way not only into our everyday lives, 
but nowadays they are also commonly used in schools. Computers, tablets and 
smartphones are now part of the lives of this new generation of students [6]. All 
subjects are important, and it is difficult to teach all of them that you suddenly 
have to apply this method, yet perhaps one of the most difficult situations is for 
mathematics teachers. Most of the time we spend our days writing on a board, 
taking description the proof, solving practical examples, which now has to be solved 
in a completely different environment, with the help of other tools. To overcome 
difficulties, many platforms can be used to create groups, solve tests and tasks. 

Teachers must understand how technology, pedagogy, and content interrelate, 
and create a form of knowledge that goes beyond the three separate knowledge 
bases. Teaching with technology requires a flexible framework that explains how 
rapidly-changing, protean technologies may be effectively integrated with a range 
of pedagogical approaches and content areas [6]. 

1.1 Distance Learning 

Distance education emerged as an alternative to traditional education in the 18th 
century as a differently conceivable and feasible form of education, teaching, and 
learning. In the beginning, the main tool was the letter in which the written materials 
were delivered to the students. Later, also using traditional mail, image, sound and 
video recordings were also transmitted [3]. 

We can read this about distance education in the 1987 Adult Education Small 
Lexicon, formulated by Gyula Csoma: Distance learning is a special way of 
remote control; a remote control-based management and learning system, which 
is organized for the acquisition of defined, prescribed and precisely structured 
knowledge, thinking and, to a limited extent, action operations in the context of 
work-based learning, in order to meet specific requirements. In the didactic system 
of distance education, the two stages of the teaching-learning process are as far apart 
as possible in space and time [7].
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Bušelić in [1] puts distance learning is a field of education that focuses on 
teaching methods and technology with the aim of delivering teaching, often on 
an individual basis, to students who are not physically present in a traditional 
educational setting such as a classroom. It has been described as a process to create 
and provide access to learning when the source of information and the learners are 
separated by time and distance, or both [1]. The United States Distance Learning 
Association defined distance learning in 1998 as “the acquisition of knowledge and 
skills through mediated information and instruction, encompassing all technologies 
and other forms of learning at a distance.” This is a definition that does not 
distinguish formal and informal learning, or different types of distance (temporal 
and physical) [4]. 

Distance learning offers a myriad of advantages which can be evaluated by 
technical, social and economic criteria. Also, distance learning methods have 
their own pedagogical merit, leading to different ways of conceiving knowledge 
generation and acquisition [1]. By Frederick et al. definition of distance learning is 
this: distance learning is improved capabilities in knowledge and/or behaviors as 
a result of mediated experiences that are constrained by time and/or distance such 
that the learner does not share the same situation with what is being learned [4]. 

1.2 E-Learning 

Learning has a procedural and active character, which must lead to construction of 
knowledge by the learner on the background of the learners individual experience 
and knowledge [9]. New technologies are driving necessary and inevitable change 
throughout the educational landscape. Effective technology use, however, is diffi-
cult, because technology introduces a new set of variables to the already complicated 
task of lesson planning and teaching [6]. 

The concept of e-learning is used in several senses. In the broadest sense, 
technology-supported learning, computer-assisted learning, digital learning [7]. The 
e-Learning system must enable the learner to create the personal information 
landscape while working with the provided learning materials. The means are 
individual compilation and topical rearrangement of learning material, creating 
“pools” of especially important documents as well as the possibility to annotate and 
cross-reference material [9]. Most of the terms have in common the ability to use a 
computer connected to a network, that offers the possibility to learn from anywhere, 
anytime, in any rhythm, with any means [2]. Students have the opportunity to 
proceed on their own schedule independently of the teachers. This is called 
asynchronous learning. This method does not preclude communication between 
students and teachers, as choosing an asynchronous form of communication can 
answer all the questions [3]. 

Tavangarian in [9] summarizes this as follows: We will call e-Learning all forms 
of electronic supported learning and teaching, which are procedural in character and 
aim to effect the construction of knowledge with reference to individual experience,
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practice and knowledge of the learner. Information and communication systems, 
whether networked or not, serve as specific media (specific in the sense elaborated 
previously) to implement the learning process [9]. 

According to [2] communication is the key when it gets difficult to try reaching 
out to students via texts, various messaging apps, video calls, and so on-content 
should be such that enable students for practice and also hone their skills. The 
quality of the courses should be improved continuously and teachers must try to 
give their best [2]. 

1.3 Digital Technologies 

During mathematics classes, pupils can make use of digital technologies in various 
way: 

• during numerical calculations so they can concentrate on the solution of the 
problem itself; 

• for visualisation, modelling and simulation of problems and thus to obtain such a 
graphical representation of the problem, which pushes them towards a solution; 

• as a source of educational materials e.g. e-books or videos, interactive educa-
tional materials; 

• drilling exercises, a pupil can make use of electronic working sheets or e-tests to 
evaluate himself [6]. 

Digital technologies offer teachers a possibility to make use of new educational 
methods, e.g. the constructivist approach, controlled search, workshop method or 
peer instruction method. Digital technologies are very suitable for project teaching, 
too. Teachers can make use of blended learning, flipped classroom method, etc. Last 
but not least, the computers are used for electronic testing when knowledge of the 
pupils is measured [6]. 

Dhawan says that online programs should be designed in such a way that they 
are creative, interactive, relevant, student-centered, and group-based. Instructors 
indulged them in remote teaching few flatforms such as Google Hangouts, Skype, 
Adobe Connect, Microsoft teams, and few more, though ZOOM emerged as a 
clear winner. Also, to conduct smooth teaching-learning programs, a list of online 
etiquettes was shared with students and proper instructions for attending classes 
were given to them [2]. In my opinion, platforms for editing e-tests also play a 
significant role in distance learning. 

The classical test consists of a set of test assignments and questions from 
concrete subject domain, related to an assessment system and offered for solving 
(accomplishment of certain activities) [8]. 

Sokolova and Totkov explain the e-tests theory: The classical taxonomy of 
test questions and assignments is based on the way by which examinees give 
their answers. Test questions and assignments are divided into two groups: free-
form responds (open type)—the examinees construct their answers themselves;
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questions and assignments with constructed answer (closed type)—examinees select 
the correct answer from a set of alternative answers [8]. 

According Korenova Therefore we can define the term “e-test” dually: 1. In a 
narrower meaning, the e-test is an electronically controlled didactic test with an 
option to enrich it with multimedia elements. 2. In a wider meaning, the e-test is 
an electronic interactive material based on a system of questions and searching for 
answers created not only for measuring, but also for reaching educational goals 
(hence can serve as tools for innovative teaching methods). Using e-test we are 
able not just to determine the students’ knowledge, but with these new digital 
tools we can increase the students’ motivation, use them during repetition, exercise, 
controlled discovery methods. The e-test is very attractive from the students’ point 
of view, because the digital world is very close to them [5]. 

Test questions and assignments, which are included in a concrete e-test can be 
chosen on the basis of different principles and rules. Opinions of different authors 
expressed in the literature, are very contradictory [8]. 

The question arises, what kind of digital technology do the mathematics teachers 
of the surrounding Hungarian-language schools use? Is it one of the above-
mentioned platforms or e-tests to assess knowledge even at the beginning of distance 
learning? The results of this research I presented below. 

2 Methods 

The target group of the research were mathematics teachers teaching in Tran-
scarpathia, in Hungarian-language primary and secondary schools, as well as in 
higher education. The 8-item electronic questionnaire I edited using a Google Form 
and then made available on the social network. I got answers to my questions that 
what methods are used after the introduction of distance learning, what platform 
they do it on, and what advantages and disadvantages they see after overcoming the 
initial difficulties. In addition to selecting one and multiple choice items (close type), 
participants had to enter their own answers to the advantages and disadvantages 
questions (open type). Fewer than expected, only 20 responses were received, the 
results of which I will presented below as pilot research. 

3 Results 

While editing the survey questions, I considered important the question “How 
many years of mathematical pedagogical experience?”. I was curious about the 
differences between the different work experiences in choosing and applying the 
technology and platforms required by the new situation. Figure 1 shows the 
distribution of respondents’ work experience.
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Fig. 1 Distribution of respondents’ work experience 

We can see that among the respondents, 8 persons have 1–5 years and another 
5 persons have 6–10 years work experience. This suggests that more than half of 
the respondents are closer to applying the technologies due to their young age. This 
conclusion does not rule out the possibility that the use of technologies or learning to 
use the necessary new programs and platforms would be far from more experienced 
colleagues. 

When choosing educational interfaces, in the spring of 2020, 60. % of responding 
teachers marked Facebook Messenger, and a further 10. % mentioned this application 
choosing the “other” answer option, thus listing more platforms. Regardless of 
work experience, they responded that the applied application was chosen because 
of its prevalence, as their students, or in the case of younger age, the parents of 
the students, had already used it in their daily lives. 10. % used Google applications, 
and another 5–5. % used other platforms like Geogebra groups, Microsoft Teams, 
EduBase and Smart Learning Suite. 

55. % of the responding instructors had already used video call to conduct the 
lesson at the time of the survey. Only 10. % of respondents use the Zoom platform 
alone, and another 10% use other video applications in addition to Zoom. 15. % also 
used it for measuring the level of knowledge when solving both oral and written 
tasks. An additional 25. % created and applied e-tests using different test editing 
platforms, and 35. % used traditional tests during the learning assessment. Other 10. %
was traditional and e-tests, 10. % that students submit photos from their solved tasks 
and 5. % does not use knowledge level measurement. 

In Table 1, I summarized the advantages and disadvantages that respondents 
wrote while completing the questionnaire. During the review, I categorized and 
generalized the responses where the same things appeared. There were respondents 
who expressed several advantages and / or several disadvantages. 

The table shows that the instructors in the survey see the advantage in educating 
students for independent, in which it helps a lot that they are separated from teachers 
in space and time, and that the instructional videos they can be viewed multiple 
times. In contrast, the disadvantages are that it is more difficult for students to learn 
this way, often either due to a lack of necessary tools or difficulties in mathematics. 
And in the case of knowledge assessment tests, it is difficult to decide whether the
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Table 1 Advantages and disadvantages of distance learning according to the respondents 

Advantages Disadvantages 

Students independent (4) Harder to learn (3) 

Raising awareness, interest (2) Lack of device (electricity, internet, 
communication equipment) (4) 

Repeatable/look back video lesson and 
curriculum (3) 

It is difficult to accountability the students 
knowledges (a parent or child had answer?) (3) 

Speed (3) Lack of time (more time to prepare teacher) (3) 

Different space and time (4) No personal contact (4) 

No advantage (2) No disadvantages (1) 

student solved the set task alone or with help. The lack of personal contact was also 
mentioned as a disadvantage. 

Respondents included teachers who said there were no advantages or disadvan-
tages to distance learning. In these cases, it can also be assumed that they did not 
want to answer the question. 

4 Conclusion 

In the spring of 2020, asynchronous learning introduced the application of new 
technologies in our countryside as well. The 20 mathematics teachers I interviewed 
jumped through this hurdle. They use multiple platforms, online materials and video 
calling to do their job accurately and conscientiously. To measure their students’ 
level of knowledge, they perform classroom character lessons in a video call, or 
take online measurements using e-tests or correcting images submitted by students. 

Examining the presented results, the possibility arises that it would be expedient 
to repeat the survey by looking for the same 20 respondents to compare the extent 
to which the technique they used has changed in the last school year of distance 
education. Due to anonymous responses, this would not be easy to do, but instead it 
would be appropriate to extend it to more respondents to I get more accurate values 
and a picture of the distance learning process. 
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The Use of Technologies to Promote 
Critical Thinking in Pre-service Teachers 

Vanda Santos 

Abstract In educational environments, technology is present as a resource that 
facilitates teaching and learning. In higher education, modern education in science, 
technology, engineering and mathematics (STEM) faces fundamental challenges. 
The objective of the present study is to analyse, the learning strategy with the use 
of technologies in mathematical activities, analyse mathematical activities and ways 
of thinking in Higher Education. The research methodology adopted consists of a 
case study, relating to a group of pre-service teachers in a public Higher Education 
Institution. A qualitative approach was adopted with the interpretation of data 
collected through the activities on GeoGebra Classroom, brief questionnaire and 
conducting individual interviews. It is concluded that technologies have a significant 
participation in the educational environment and support teaching and learning. 
The teacher, when perfecting his pedagogical practice, will be able to insert the 
technological tools in teaching and learning, to improve the interaction with students 
and further the improvement of learning with the modelled use of technology in the 
classroom. 

1 Introduction 

In educational environments, technology is present as a resource that facilitates 
teaching and learning. In the teaching and learning of mathematics, at all levels 
of education, it needs to integrate not only technology, but also the establishment of 
links with other areas of knowledge, namely with the sciences in general. 

The purpose of education is not just to teach basic knowledge, but to use thinking 
skills such as creative thinking skills, problem solving skills, science and technology 
skills, as these are necessary skills for sustainability and lifelong education. Accord-
ing to Organisation for Economic Co-operation and Development, the concept 
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of competency implies more than just the acquisition of knowledge and skills 
[11]. There are important skills, such as: learning to do, which includes problem-
solving skills, critical thinking and collaboration; learning to be, which includes 
social and cross-cultural skills, personal responsibility and self-regulation; and 
learning to live together, which includes teamwork, civic and digital citizenship, and 
global competence [1, 11, 13, 16, 17]. Interdisciplinary knowledge is increasingly 
important for understanding and solving complex problems [11]. 

In the teaching and learning of mathematics, at all levels of education, it needs 
to integrate not only technology, but also the establishment of links with other areas 
of knowledge [7], namely with the sciences in general. 

The advantage of using technology in the teaching of mathematics and its 
effects on professional development, namely in basic and secondary education, 
it is well studied [22]. According to the authors Jones [4] and Tomaschko et al. 
[20] are unanimous in stating that the teaching of mathematics, activities supported 
by technology, facilitate the development of positive attitudes that will lead to 
better learning and a greater taste for this science. Technologies enable students to 
work at higher levels of generalization or abstraction and the GeoGebra software 
(for all levels of education that combines together geometry, algebra, spread-
sheets, graphing, statistics and calculus in a single application1 ) given the multiple 
geometric and symbolic representations that it offers of mathematical concepts, 
associating visualization and interactivity [14], can be a potentiator of solid content 
learning mathematicians and supporting Science, Technology, Engineering, (Arts) 
and Mathematics (STE(A)M) education innovating in teaching and learning. The 
use of GeoGebra Classroom, a virtual platform, can made possible preparing STEM 
practices for the teacher. They can assign tasks for students, observe in real time the 
development of the activity carried out by the students, it is possible to view which 
tasks students have (or have not) started, providing an immediate feedback and a 
better interaction between teacher and students [24]. 

In higher education, modern education in STEM face fundamental chal-
lenges [12]. Interdisciplinarity, is an approach with recognized potential to provide 
relevant experiences to students, bringing them closer to reality situations, and 
allowing them to establish connections between curricular topics to develop deeper 
learning in these areas, but also skills such as communication, problem-solving 
and critical thinking [9, 18]. The last skill, critical thinking, according to National 
Research Council is a central element of problem-solving at all levels of STEM 
education [8]. 

In mathematic teaching, according to Su et al. [19], students have the ability to 
improve and develop their critical thinking when learning mathematics by solving 
mathematical problems, identifying possible solutions and evaluating and justifying 
their reasons for doing mathematics, the results and thus gaining confidence in the 
way they think. [19] also mention that critical thinking, combined with mathematical 
reasoning, allows students to reflect on their own reasoning, as they must be taught

1 https://www.geogebra.org/about. 
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to: identify scenarios; evaluate them; select problem-solving strategies; identify 
possible conclusions that have to be logical; describe and summarize a solution; and 
sometimes indicate how these solutions will apply to more advanced mathematical 
problems. 

The objective of the present study is to analyse, the learning strategy with the use 
of technologies in mathematical activity and ways of thinking in Higher Education. 

Overview of the Paper The paper is organised as follows: after the introduction, the 
methodology is presented in Sect. 2. In Sect. 3 the context of the study, participants 
and activities with the use of GeoGebra Classroom are described as well the 
interviews. In Sect. 4 discussion is made. In Sect. 5 conclusions are drawn. 

2 Methodology 

The research methodology adopted consists of a case study, relating to a group of 
pre-service teachers in a public Higher Education Institution. The case study is 
the most common qualitative method and is implemented when the researcher is 
interested in researching a singular, particular situation, defined in the development 
of the study. In fact, [23] states that a “case study is an empirical investigation 
that investigates a contemporary phenomenon within its real-life context, especially 
when the boundaries between phenomenon and context are not clearly evident (p. 
13)”. 

To cross-reference data from multiple sources of evidence, for example an 
interview allows triangulation of data, adding more rigor to the investigations 
[2, 10, 23]. Triangulation is a procedure where convergences between multiple 
and different sources of information are sought to form themes or categories in a 
study [3] .  

3 Study Description 

3.1 Context of the Study 

The activities with the pre-service teachers took place during the academic year 
2020/2021 but, due to the global pandemic by Covid-19, the face to face classess 
were interrupted in the middle of March of 2020 and a distance learning regime was 
adopted.
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3.2 Participants 

The participants (N=10) were pre-service students (Master Students for Training 
of Teachers for the 1st to 6th grades with emphasis on Mathematics and Natural 
Sciencese) at 2nd semester of 2021, between April and May of 2021 . 

During the 1st semester these students worked, in the context of a project 
Formative “Train future teachers to teach children through Challenge Based Learn-
ing (CBL)”, in articulation with other courses. In this experience, students were 
challenged to develop CBL projects [5] in accordance with a common motto for all 
courses. This motto was centered on the goal 11 of the United Nations Sustainable 
Development Goals (SDG–11), about Sustainable Cities and Communities [21] 
using technological resources and technologies to support active learning. This 
project allowed students to work with different areas in each topic, in a STEAM 
strand. 

3.3 Activities Description and Results 

The activities took place at the 2nd semester of 2021. A brief questionnaire were 
given befor the GeoGebra Classroom was introduced. A total of four activities 
in GeoGebra Classroom were given—these activities are in line with the level of 
education that will teach (students between 6 and 12 years old), were aligned with 
the national curricula. At the end an interviews were done by email about critical 
thinking. 

Students have worked previously with GeoGebra software, offline. This was the 
first time in GeoGebra Classroom, a short tutorial about functionalities as a teacher 
and student was given. After this short tutorial, three questions, before the activities, 
were given trough the Zoom platform, such as: Do you have questions from the last 
GeoGebra Classroom class? 90% said no and 10% said yes (some doubts); Did the 
class arouse any curiosity? 100% said yes; Did you have any experience with the 
GeoGebra Classroom after class? 100% said no. The conclusion is they haven’t any 
doubts with the use of GeoGebra Classroom. 

The activities start with an exploratory activity, with two tasks about Eratosthenes 
arc measurement technique to measure the Earth’s circumference. It was about 
Eratosthenes’ the most famous accomplishment, the measurement of the circum-
ference of Earth (Fig. 1). It is possible to see as teacher what the students are doing 
during the realization of the tasks, we see the eight students and task 2 (“Tarefa 2”) 
at Fig. 2. The tasks placed to the groups were: 

1.1 We have to measure the angle formed by the shadow of a stake (indicated 
further orange on the right) and observe that it is equal to the angle to the center 
of the Earth, formed by the two cities;
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Fig. 1 Perimeter of the world 

Fig. 2 Teachers view 

1.2 Try sliding the sliders in the figure. Can you explain why are the three angles 
marked in orange geometrically equal? Use the selectors to position the two 
cities mentioned in the text: Alexandria (latitude 31.2. ◦) and Aswan (latitude 
24. ◦). 

We can see what the students have performed, it is possible visualize the students 
had completed the two tasks realted to this activity. 

The second activity had eight tasks about the concepts of angles and 
parallelism—parallel rays; rays directly parallel; corresponding angles; alternate 
interior angles; alternate exterior angles; vertical angles and supplementary angles.
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Fig. 3 Student’s tasks 

Fig. 4 Student’s task 

These concept are inline with what they will teach in the future. The tasks placed to 
the groups were [15] (Figs. 3 and 4): 

2. Verify that the AC and DF lines are parallel; 
Using letters from the figure, show: 

2.1 Two parallel rays; 
2.2 Two rays directly parallel; 
2.3 A pair of corresponding angles; 
2.4 A pair of alternating internal angles;
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Fig. 5 Student’s task 

2.5 A pair of alternating external angles; 
2.6 Two vertically opposite angles; 
2.7 Two supplementary adjacent angles. 

3. Do you keep the same answers if the AC and DF lines are not parallel? 

The next activity were placed these tasks to the groups (Fig. 5): 

4. See the figure below where a circle with center O and some lines that intersect 
the circle are represented. 

4.1 Check that the line AD is parallel to the line EB; 
4.2 Identify two inversely parallel lines; 
4.3 Identify two corresponding angles, geometrically equal; 
4.4 Consider the line AB as a secant line to the line EB and the other line 

chosen by you (it may vary from the first to the second question). Identify 
two geometrically equal alternate interior angles; 

4.5 Identify two geometrically different alternate interior angles. 

These five tasks are about same concepts—opposite parallel lines; corresponding, 
equal angles; equal alternate interior angles and different alternate internal angles. 

The last three tasks was about Thales’s theorem (congruent angles from perpen-
dicular sides; congruent triangles) (Fig. 6). 

5. One of Thales’ theorems tells us that any triangle inscribed in a circle that has 
one of its sides coincident with a diameter is rectangular (the angle opposite the 
diameter is right). 

5.1 Applying the theorem above identify two congruent acute angles of perpen-
dicular sides;
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Fig. 6 Student and teacher view 

5.2 dentify two geometrically equal (but not coincident) triangles that have as 
vertices points identified in the figure above; 

5.3 Justify the equality of the triangles you marked earlier. 

We see in the image at right the students’ work and verify some of them they 
haven’t completed the task. 

3.4 Interviews 

Structured interviews were conducted using the email interview technique [6]. The 
purpose is to look into the development as a student and a thinker, the interview 
was composed of eigth questions. More particularly, the purpose was to determine 
the extent to which the tools and language of critical thinking have come to play an 
important part in the way the student go about learning, in school and in everyday 
life. 

The data collection procedure consisted of: elaboration of the interview guide 
by the investigator; sending an e-mail to each of the participants with the questions 
with the respective response time; receiving responses sent by participants via e-
mail. After receiving the responses by the participants, the content of the interviews 
was analysed, which consisted of sending the questions in the body of the email, 
inviting the participants to answer, by the researcher. The interviews proceeded to a 
content analysis in which it was organized by categories, such as the identification 
by code was assigned to each interview: Sn (to indicate the student who answered 
that  interview  with  n=1. . . 6  and  the  date).  When  asked  about what does critical 
thinking mean to you? S1 says “Critical thinking involves the ability to assess what 
is perceived, whether through what is heard or observed, through a careful analysis 
of the fundamentals behind what is presented.” (S1, 21st April, via email). About 
the role of critical thinking in class, S2 answer “The role of critical thinking in 
classes is to encourage students to think critically, that is, make them question why 
and awaken the desire to always know more.” (S2, 21st April, via email). Asked 
how you approach learning new ideas, S3 reply “Nowadays, I believe that, to get 
closer to learning of new ideas, it is essential to promote a more interactive, more 
dynamic environment, create new experiences and, in a certain way, bring them
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closer to everyday life.” (S3, 21st April, via email). Regarding learning materials 
promote critical thinking, S1 says “These materials must always contextualize the 
topic addressed in class, and canbe educational games, new texts, books, movies. 
You can also use digital tools such as MindMeister, Neo K12: Flow Chart Games 
and ProcessOn.” (S1, 21st April, via email). To judge the quality of intellectual 
work, the criteria you use are “Clarity, precision, accuracy, relevance and depth.” 
(S6, 22nd April, via email). Concerning how does critical thinking apply to the 
study of mathematics, S6 says “Critical thinking applies to the study of mathematics, 
since it is only when students use critical thinking that they realize its applicability 
in everyday situations and problems. In other words, critical thinking in the study 
of mathematics allows students to analyze their everyday situations and think of 
innovative solutions for them, through the mobilization of mathematical content.” 
(S6, 22nd April, via email). It was asked to give some examples of the use of 
critical thinking in your daily life, the responds was “I feel that, in my daily life, 
critical thinking is part of a set of mental processes that help me deal with major 
or minor events, from small decisions to major ones (why make one decision over 
another) . This is manifested a lot in what is presented to me also in the context of 
the classroom. I stop myself from accepting something as a truth, until I understand 
why it is the way it is.” (S1, 21st April, via email). The last question was about to 
what extent did your teachers encourage you to use critical thinking and to explain 
the answer, S6 says “I think the situation in which I felt that my teachers encouraged 
me to use critical thinking the most was last semester, when we were proposed to 
develop an educational project that included a proposal for a solution to a locally 
and globally relevant problem. In this case, during the development of the project, 
I had to constantly use critical thinking, in order to understand whether the thought 
solutions were feasible or not.” (S6, 22nd April, via email). 

4 Discussion 

The exploration of these three activities, in a total of 18 tasks, follows the work 
developed by these students in the 1st semester, the Formative project, which 
allowed them to have more tools to be able to develop STEM activities in the 
future using technologies, in this case GeoGebra. Since from the point of view of 
didactics in the discipline of Mathematics, GeoGebra is used by a wide international 
community of teachers, its applications in multiple educational contexts have been 
the subject of numerous studies focusing on student learning in the early years, 
basic education, higher education, and the teaching of other sciences. Thus, the 
acquisition of other means of teaching and forms of teaching interconnecting with 
other subjects allows these students to have a greater mastery of other skills, namely 
critical thinking, interdisciplinary knowledge and technology. 

To promote critical thinking skills it is important questioning. Questions can, in 
addition to encouraging the promotion of critical thinking skills, facilitate individual 
student thinking and encourage them to start questioning other students and even
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themselves. The analysis made from the responses to the interview allowed us to 
understand that future teachers have conceptions about critical thinking, revealing 
that critical thinking is important for solving everyday problems and that teachers 
should stimulate critical thinking in their students. Students are aware of the concept 
of critical thinking, because according to S1 “critical thinking is part of a set of 
mental processes that help me deal with major or minor events, from small decisions 
to larger ones (why to make one decision rather than another).”. 

4.1 Limitations of the Study 

This study has some limitations, namely, the sample size of participants, which 
does not allow generalizations; the duration and the observation time, that is, a 
longitudinal study that allows to verify the effects of teacher training. Another aspect 
is the interview being by email can prove to be a more rigid/thought out structure of 
the responses, not being a natural conversation, because of circunstances we lived 
at that time, in which the issues on the topics addressed could have been further 
explored. It is recommended to use semi-structured interviews so that it is possible 
to conduct an interview where the issues under analysis are deepened. 

5 Conclusion 

It is concluded that the technologies have a significant participation in the edu-
cational environment and facilitate teaching and learning. Students realize that 
the use of technologies is important to promote more interactive lessons and that 
critical thinking is important to “always want to know more” as referred to by S2. 
The teacher, when perfecting his pedagogical practice, will be able to insert the 
technological tools in teaching and learning, to improve the interaction with students 
and facilitate the improvement of learning with the modelled use of technology 
in the classroom. The use of the GeoGebra classroom familiarizes students with 
the scientific process and improves the teaching and learning process and with the 
participation in the project Formative, in a STEM approach, allows them to improve 
their future integration of STEM in schools. These student have a prior experience 
with the project Formative and classes with GeoGebra (offline) was a positive point 
to these activities at GeoGebra Classroom, because they can use their experience to 
teach in a STEM approach with their future students. 
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Alarming Changes in Polish Education vs 
Longlife and Remote Learning 

Ryszard Ślęczka 

Abstract The study presents the status and condition of Polish educational system. 
The article presents its strenghts and weaknesses and also the area of possible 
threats. The main part of the text presents the basic assumptions of Polish educa-
tional reforms, including the main benefits of joining the European Union structures. 
The last part of the article presents the issue of distance learning and online 
education. 

1 Introduction 

In 1990s Polish education system became fully modern and similar to the systems 
established in other member states of the European Union. The solutions introduced 
included 6-year primary school and two-stage secondary school. Higher education 
was divided into bachelor’s (licencjat), master’s (magister) and doctoral studies. 
In this context, mandatory education included primary school and stage I of the 
secondary school. It was considered priority and fully matching the challenges of 
the contemporary world. 

2 Previous Solutions 

Like other European community members, Poland has gradually reformed its 
education system. These reforms were aimed at improving the existing educational 
solutions and adapting them to the rapidly changing reality. First of them were 
introduced in our country in 1932, by adopting the Act on the School System 
[1]. During the People’s Republic of Poland (PRL), Polish education system was 
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subject to numerous changes. The act of 1961 deserves particular attention, as it 
introduced 8-year primary schools and 4-year secondary schools [2]. It is mentioned 
purposefully because the solutions it offered are surprisingly similar to the ones 
existing today. Some significant transformations took place after 1989. Polish 
education system shifted from the previous (communist) model of state-governed 
schooling to a more democratic, public and private structure. It was evident that 
this model was compliant with the provisions of the Universal Declaration of 
Human Rights, the International Covenant on Civil and Political Rights or the UN 
Convention on the Rights of the Child. Another important step was gradual joining 
the Bologna process, which kept bringing us closer to the modern educational 
policy in terms of school system and science.1 In the context, the School Education 
Act (1991) [3] and the Act on the Implementation of the School System Reform 
(1999), are worth mentioning. Schools were given under the supervisions of the 
local governments and the whole education model became similar to other European 
and world-wide solutions. The curricula were remade (new teaching framework and 
module-based teaching). Active learning methods were promoted to become part 
of the modern style and model of teaching. The so called Bologna system was to 
ensure the development of the idea of lifelong learning and promote the European 
Higher Education Area [4]. 

The general assumptions were that 80% of the students should complete general 
education path followed with at least bachelor’s degree. The remaining 20% could 
complete vocational schools. In order to improve the quality of education, a system 
of external exams conducted by the central and regional examination bodies was 
introduced [5]. Teachers were categorized into professional promotion groups. The 
four degrees of professional career are: trainee, contract, appointed and chartered 
[6]. Within this structure, teachers can be also awarded the honorary title of 
education professor. Educators were encouraged to take part in different forms of 
professional development such as: workshops, courses and post-graduate studies 
[7]. The educational policy of the recent years reveals attempts to introduce some 
neo-liberal solutions which would limit the role of the state and support new 
solutions regarding management and organization of the education system and 
financing thereof. 

During this time, an attempt to introduce the European Qualification Framework 
was made to ensure greater clarity of qualifications obtained, increase learners’ and 
workers’ mobility and promote lifelong learning. The main objective was to create 
a universal model which would enable comparing qualifications gained in different 
countries and within different education systems. In our country, the National 
Qualification Framework was established, the goal of which was to support the 
reforms of the higher education system and education as a whole. The restructured

1 In June 1999, in Bologna, ministers of higher education from 29 European countries signed the 
Bologna Declaration which established the European Higher Education Area. During the meetings 
in Prague (2001) and Berlin (2003), commitments to coordinate the educational policy were made, 
in order to create a comparable, competitive and globally attractive European higher education 
system. 
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curricula included learning outcomes which referred to the level of knowledge, 
skills, and social competence. They are confirmed using the ECTS (European 
Credit Transfer and Accumulation System) and ECYT (European Credit System 
of Vocational Education and Training) points, referring to the accumulated learning 
outcomes. Within few years that followed the reform, we had reached the European 
educational standards and could compare with other EU member states, in particular 
with the best economically developed ones. 

3 Today’s and Future Perspective 

The present functioning of Polish schools is regulated by the 2016 act the Law on 
School Education (with further amendments) [8], which can be called archaic. It 
surely steers us away from the modern European and global educational standards. 
It has re-established 8-year primary schools, 4-year general secondary schools, 5-
year technical upper secondary schools as well as 3-year stage I and 2-year stage II 
sectoral vocational schools. Sectoral vocational schools are an interesting solution, 
however, they lack adequate funding and support from business and industry sectors. 
Activity of the Ministry of Education in the recent years cannot be evaluated as 
positive. In many instances, especially regarding new solutions, this government 
unit follows the rule of preserving the status quo. Communications presented 
recently by the Ministry are also very alarming. Representatives of this resort and its 
organizational units more and more often present xenophobic and racist messages, 
attacking weaker individuals or people with a different sexual orientation. There 
are too many examples to recall them all here and they are not encouraging. Thus, 
perhaps it is worth mentioning some activities carried out during the last years and 
ask at least two crucial questions which could help us understand the present world. 

In Europe, in the context of the wellbeing crisis and the COVID-19 pandemic, 
some initiatives to support young people were undertaken. One of them was “Youth 
on the Move” aimed at helping young people acquire relevant knowledge, skills and 
experience. The initiative was included in the Europe 2020 strategy and proposed 
28 key actions to adapt education systems to the needs and interests of the young 
European citizens. It promoted international studies and trainings, which facilitate 
the entry of young people into the open labor market (European employment area). 
One of the programme’s objectives was to reduce the share of early school leavers 
(increase the share of young people with tertiary education or its equivalent). This 
strategy was to facilitate joint solutions which should contribute to the increase 
of the employment rate. In the area of experience exchange, a dialogue between 
the member states and the European Commission was undertaken. One if its most 
important documents was “Employment Guidelines”, approved annually by the 
Council of Europe. The document included joint employment report and important 
recommendations addressed to specific countries to improve the whole employment 
process. In our country, the “2020 Human Capital Development Strategy” was 
successfully implemented. It has been prepared in a way to facilitate full use of this
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capital in social, political and economic life. The strategy was used to: increase the 
employment rate, prolong the professional activity and ensure better functioning of 
the senior citizens, improve the situation of persons and groups at risk of social 
exclusion, take care of the citizens’ health and increase the effectiveness of the 
healthcare system, improve the level of civic competence and qualifications. Thanks 
to these and other activities Poland has the one the lowest unemployment rate in 
Europe and in the world. 

Was it important for the young generation of Poles to participate in programmes 
which supported education system financially? We had access to the following 
European programmes: SOCRATES, LEONARDO DA VINCI, MINERVA and 
other. They facilitated European cooperation in terms of open and remote education, 
information and communication technologies and other similar initiatives. For 
example, GRUNDTVIG programme supported development by providing resources 
and services to be used in adult education. The second edition of LEONARDO 
DA VINCI facilitated the development of vocational education through interna-
tional projects which focused on the improvement of the lifelong and vocational 
learning systems and the increase of employment opportunities through promoting 
innovation and entrepreneurship. SOCRATES-Erasmus was addressed to university 
students. This programme is very popular among the students as it allows them to 
gain new experiences and explore cultures in other countries. Along with increasing 
their competitiveness on the labor market, it also gave them a chance to shape their 
personality and individual value systems [9]. 

Was it a mistake to join the Eurydice system (the Education Information 
Network in Europe) which exists from 1980 and supports cooperation in the field 
of education? It works as an ongoing information exchange network between the 
national units (set up by education ministries) and the central unit in Brussels. 
The national units are responsible for providing basic information about their local 
education systems, which is then processed and published as general data about the 
school systems. One of the numerous publications of central unit was the report 
(“Key Data on Education in Europe”) which presented the most important changes 
in education systems during the last decade. It provides statistical and qualitative 
descriptions of the phenomena that occurred in education. Its authors made an 
attempt to answer many questions critical for the future of the young generation 
(for example, what actions do European countries undertake to reduce the share of 
early school leavers). 

4 In Developing Remote Education and Online Learning 

Polish education system, like others in Europe and around the world, has introduced 
solutions rooted in the concepts of lifelong learning. These solutions using media, 
that is, television (EDUSAT channel) and Internet access with wide access to 
educational programs. However, experience has shown that the above mentioned 
forms of learning are still underused and not very popular compared to traditional,
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stationary teaching forms. In this context, the experiences of the last dozen or 
so months (almost two years) of COVID-19 pandemic may be significant. We 
had an opportunity to test the whole education system nation-wide in terms of 
modern teaching forms (for example, remote and online teaching). It seems that 
conclusions drawn from the research conducted are not optimistic. The identified 
barriers include: under-funding of education system, old technology and poor 
awareness of modern challenges among students and teachers. More detailed 
limitations involve education drop-out or information and scientific chaos (remote 
school skipping, lack of psychological assistance addressed to students, teachers and 
parents, unwillingness to show one’s own home). The positive aspects include the 
culture of openness, connected with exchange of experience as well as potential of 
remote education focused on developing students’ individual talents. Students who 
do not have to always be top achievers. 

5 Conclusion 

As a summary, it must be stated that the existing legal regulations of the Euro-
pean Union enable maintaining full social, cultural and educational distinctness. 
According to the Art. 165 and 166 of the Treaty on the Functioning of the European 
Union, education remains within the sphere of competence of the member states. 
EU institutions focus only on coordinating and supporting the actions taken (the 
so called “open method of coordination”). It does not mean that education system 
chosen by certain national subjects is less important or irrelevant. On contrary, 
it seems essential when it comes to building the new European society. Thus, 
Polish approach to education should be expanded to include wider horizons instead 
of limiting it to tradition or someone’s childhood memories. It should be treated 
globally, as a sphere where specific educational activities are implemented to 
prepare young people to enter the labor market, participate in cultural life or identify 
with the civic society. 
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The Most Common Mathematical 
Mistakes in the Teaching of Scientific 
Subjects at Secondary Schools 

Zuzana Václavíková 

Abstract Mathematics is a subject with perhaps the greatest overlap with other 
fields, especially the natural sciences. As a secondary effect of a project focused on 
creating and piloting problem tasks in the field of chemistry and physics, utilizing 
inquiry-based learning, we observed the most common mathematical mistakes and 
conceptual errors that are made by students using mathematical knowledge in other 
areas of the natural sciences. A total of 40 problem tasks were created and verified 
in cooperation with secondary-school teachers of physics and chemistry and more 
than 650 solutions by student were qualitatively assessed. The paper will present 
the most common mistakes and errors repeated across all tasks and compare their 
occurrence between teachers who have and do not have mathematics as a secondary 
subject. The mistakes and errors will also be explained from a mathematical point of 
view and a proposal will be outlined on how to innovate the teaching of mathematics 
in secondary schools. This should lead to the correct understanding of the issues and 
the elimination of the errors found by this research. 

1 Introduction 

1.1 STEM Education in Czech Curriculum 

Mathematics, as one of the disciplines in STEM education, requires the crossing 
of boundaries between it and others subjects for learners to develop a better 
understanding [1, 2]. Even so, the implementation of STEM education in the Czech 
curriculum is still not very noticeable and mathematics is often taught completely 
without any contextual relationship to other subjects. As a result, students do 
not transfer their mathematical knowledge to other subjects and are essentially 
unable to apply mathematics. There are many reasons why STEM education is so 
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difficult to implement into Czech schools. One of the main reasons is probably the 
fact that teachers themselves do not often have any awareness of interdisciplinary 
relationships and teach individual topics without any connection to their application. 
Therefore, in the framework of the education of future teachers and in the framework 
of cooperation with active teachers, it is now crucial for us to work on activities that 
support interdisciplinarity [3]. 

1.2 Mathematical Errors: Research Overview 

Error identification, error analysis and error handling are the most important starting 
points for researching teaching and the learning process, not only in mathematics, 
but also for any scientific discipline. 

According to Radatz’s [4, 5] historical survey, error analysis has been of interest 
to the mathematics education community for at least one hundred years. research 
interest focused on: 

• Listing all potential error techniques; 
• Determining the frequency distribution of these error techniques across age 

group; 
• Analyzing special difficulties, particularly encountered when doing written 

division, and when operating with zero; 
• Determining the persistence of individual error techniques; 
• Attempting to classify and group errors. 

Analyzing students’ errors may reveal the faulty problem-solving process and 
provide information on the understanding of and the attitudes toward mathematical 
problems [5]. The purposes of error analysis are to 

• Identify the patterns of errors or mistakes that students make in their work; 
• Understand why students make the errors; 
• Provide targeted instruction to correct the errors [6]. 

Much of the research, as well as more general studies on mathematical errors, 
focuses on understanding the underlying cognitive causes of these errors, either in 
order to understand the cause of specific errors, or more generally to identify the 
mechanisms underlying these errors. 

In general, any research focused on the identification of mathematical errors is 
usually concerned only with mathematics itself, and not errors arising from the 
transfer of learning mathematical procedures taught in other subjects [6–11].
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1.3 Mathematical Errors: Categorization 

There are many possible approaches for error categorization and error taxonomy in 
mathematics [4–11]. 

The most cited categorization of mathematical errors is probably the Radatz 
categorization [4, 5]. Five categories of errors are identified: 

• Errors due to language difficulties; 
• Errors due to difficulties in obtaining spatial information; 
• Errors due to a deficient mastery of prerequisite skills, facts, and concepts, 
• Errors due to incorrect associations or rigidity in thinking; 
• Errors due to the application of irrelevant rules or strategies. 

Radatz argued that most mathematical errors are causally determined, and very 
often systematic [5]. 

Riccomini [12] outlined four types of errors in his research: procedural, factual, 
careless, and conceptual. Procedural errors occur when students working on the 
wrong order. Factual errors are computational errors and occur when students, for 
example, cannot identify sign, digit or use incorrect formula. Careless errors occur 
when students not paying attention (working too fast, making wrong count, writing 
the wrong number or not following the direction), and conceptual errors occur when 
students have misconceptions and poor understanding of mathematical concept, 
procedures, and applications. 

The specific research directly focused on taxonomy of mathematical errors 
also exists. It is usually oriented towards a specific age group of pupils or 
students (elementary school, secondary school, high school) and errors in a specific 
mathematical area (algebraic operation, proportion, algebra, etc.). For example, 
Ford, Gillard and Pugh [10] developed a taxonomy of errors which undergraduate 
mathematics students may make when tackling mathematical problems. Each error 
is given a code to allow for quick reference to the error when providing feedback to 
students on their work. 

Ben-Zeev [11] constructed a taxonomy of mathematical errors and attempted to 
identify the causes of these errors by integrating findings from different studies. 
The focus in this and other research is to understand why a student makes an 
error. A student may over-generalize an algorithm which holds in one context 
to a structurally similar context where the algorithm no longer works, something 
Ben-Zeev calls syntactic induction. However, this was done only in the context of 
mathematics teaching. 

Research aimed at studying mathematical errors is driven, among other things, by 
the fact that in recent years, error analysis, incorrect exercises method and student-
conducted error analysis aligns with the standards of mathematical practices and 
mathematical teaching practices.
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1.4 Mathematical Errors: Our Object of Interest 

One of the fundamental problems of the Czech curriculum is that the curricula 
of individual subjects are not coordinated. Related to this is the fact that if 
a mathematical apparatus is needed in chemistry for a selected topic, and students 
have not learnt it in their mathematics lessons, the relevant part of mathematics is 
taught by a chemistry teacher, and not a mathematician. Subsequently, when the 
topic is included in mathematics, students already have knowledge and skills in this 
area from a different subject, but students can also transfer some misconceptions. 
Of course, with the implementation of STEM education, the occurrence of errors 
due to incorrect associations or rigidities of thinking can arise. This is due to the 
fact that within a given field, applications from another field are taught from the 
point of their usefulness, and not always primarily with a professional approach, 
therefore, depriving students of a deeper theoretical understanding of the underlying 
principles. 

2 The Research 

The research was conducted using a qualitative method and used data obtained 
from the project “IBSE as a tool for acquiring pupils ‘and teachers’ abilities and 
attitudes to technical and scientific education with regard to market requirements”, 
implemented as a cross-border cooperation with the University of Trnava. It was 
aimed at creating activities for teachers and students that would combine topics from 
physics, chemistry, and biology with the applied mathematical knowledge found 
within them. 

2.1 Data Collection 

During the project, research-oriented tasks utilising an inquiry-based educational 
approach [10, 11] for pupils aged 14–17 were prepared and verified. 8 experienced 
teachers with experience from 4 schools were involved in the task creation process. 
In addition, another 32 in-service teachers were involved, who were able to provide 
us with information on how they teach a given area of mathematics in their scientific 
subject. The tasks were thematically divided into 4 blocks: water, air, colours and 
temperature, and 10 tasks were prepared for each topic. The topics were deliberately 
chosen to relate to all-natural science subjects learnt at school, and to make use of 
the mathematical apparatus that pupils in a given age group have knowledge of. 
A methodological sheet by the author was prepared for each task, and this was 
intended for the teachers. It described the inclusion of the topic in the curriculum 
of the individual scientific subjects, the necessary tools for the experiment, the
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specified target group, and the recommended age of the students. It described the 
research experiment in detail and provided hint questions in case the students did 
not know how to find the answer for the research task. Furthermore, a worksheet was 
created for each task, containing a motivational text and a research question—this 
was the goal of the research itself. The procedure for setting up the experiment, 
the tools needed, and the actual experiment itself, were left up to the students 
to complete. Students recorded the obtained or measured data on a worksheet, 
performed calculations, and formed conclusions from their research. 

All created tasks were then piloted in a class of students who solved the research 
tasks in groups of three, but then completed the worksheet individually. After the 
implementation of all the pilot tasks, we evaluated the completed worksheets from 
the perspective of specific areas of science and evaluated the mistakes made by the 
students. 

In total, we obtained over 650 solutions from the students from the 40 research-
oriented tasks. 

2.2 Methods and Tools 

It was necessary to use mathematics in each worksheet. This mainly consisted of 
working with data (working with tables, creating and reading graphs, interpreting 
measured data, etc.), working with physical or chemical relationships (including 
working with units), descriptive statistics, working with percentages, interpolation, 
understanding the dependencies of quantities, and working with functions. 

After obtaining all the data, and by cooperating with mathematicians and 
pedagogues of the natural sciences, the mathematical topics that appeared in the 
worksheets were divided into two groups, depending on whether it was first taught 
in mathematics or in another scientific subject. 

Furthermore, we only dealt with the mathematical areas of the second group, i.e. 
those that were taught in a subject other than mathematics. Although we did not 
record the students’ personal data, we did register the school and class they were 
from. This made it possible to organize the worksheets according to who has taught 
the specific topic. This combine with information regarding the specialization of 
individual teachers, made it possible to evaluate whether the subject was taught 
by a mathematician (i.e. the teacher had a specialization in combination with 
mathematics) or a non-mathematic teacher. 

In our research, with regard to Riccomini [12], we chose not to focus on the 
procedural, factual and careless errors as although the students were working in 
groups, they completed the worksheets individually which eliminated these errors. 
Throughout they compared the notes and discussed their findings and conclusions. If 
someone made a procedural, factual or careless error, the others pointed out to it and 
he checked his calculations. Instead, we chose to focus on conceptual errors when 
using mathematics in other fields of the natural sciences. More specifically, this
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examined the students’ general misconceptions relating to their poor understanding 
of mathematical concepts, procedures and applications. 

The evaluation of individual errors took place by comparing the worksheets 
completed by students with the solution provided by the teacher who had designed 
the research-oriented task, and with the teacher who had taught the topic to the 
students. The evaluation was also accompanied by interviews conducted with both 
students and teachers where a provided solution used a non-standard procedure 
but was still correct. This was done to determine where the solution had come 
from, either the student or the teacher, and was related to two situations; either 
mathematical procedures that are taught within the target group of students in 
mathematics, but without an applied context, or conversely, procedures used in 
mathematics but which had been taught for the first time in another subject with 
no obvious link to mathematics. 

2.3 Research Questions 

With regard to Radatz [7], the following research questions were used: 

• Are there any errors that arise due to the fact that the application of mathematical 
procedures is not taught in mathematics, i.e. the mathematical apparatus is taught 
in a subject other than mathematics? 

• If so, can misconceptions lead to errors in solving pure math problems? 
• How often does the error occur? 
• Is its occurrence affected by whether the mathematical topic was taught by 

a mathematician or a non-mathematician? 

At the end of the research, we asked ourselves how to prevent such errors. 

3 The Most Common Mathematical Mistakes 

From the point of view of mathematics, we focused on monitoring the most common 
mistakes that students made. At the same time, we tried to track whether mistakes 
occur across the whole class, or in selected students, and whether they occur, or 
reoccur only in cases where the students were focused on another research area 
(chemistry or physics). We also observed whether the teacher of the scientific 
topic that the research question was focused on (chemistry, physics) also made 
the same mathematical errors and transmitted these mathematical inaccuracies or 
misunderstandings of concepts to the students.
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3.1 Equality Relation 

3.1.1 Students’ Worksheets 

The most common mathematical mistake that occurred in all worksheets was the 
incorrect interpretation of the equality relation, usually by writing numerical values 
of physical or chemical quantities into relations with/without units on the different 
sides of the equalities. If we write equality in mathematics, it means that the 
expression on the left side is identical to the expression on the right side. In lessons 
of mathematics with a general notation of expressions using .x, y, f (x) , . . ., it is  
absolutely clear. The problem occurs when students work with physical or chemical 
quantities that have a specific unit. Here it is necessary to realize that the unit 
actually indicates how many times the given measure is greater than the measure 
of the unit. For example, when we write the weight as .m = 25.3 g, we say that the 
weight is 25.3 times greater than one gram. Simply, we work with a unit as if there 
was a mathematical operation “times” (i.e. multiplication) between the numerical 
data and the unit. We can write 

. m = 25.3 g = 25.3 · 1 g.

The sign for multiplication, as everyone knows, does not have to be written in 
mathematics, for example .5x = 5 · x. In Fig. 1 we can see the student’s solution 
for the calculation of density on a worksheet focused on the density of unknown 
substances. It is clear that 

. 
2.024

0.002
= 1012

but 

. 
2.024

0.002
/= 1012

kg

m3 .

Fig. 1 Student’s solution—incorrect equality relation
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If we did not know (or if the students did not know) what the notation means 
and how it is written in mathematics, they would modify it by shortening and they 
would obtain 

. 
2.024

0.002
= 1012

kg

m3

1 = kg/m3

m3 = kg

This is of course, nonsense, even though mathematically it is perfectly fine— 
the problem is that the “equality” does not hold and this is why the solution is 
completely incorrect. Therefore, we have to substitute either all the values without 
units (only a mathematical calculation), or write the units on both sides. 

3.1.2 Teachers’ Methodology Sheets 

It is not only a problem of the students, because in some methodological sheets 
the same type of error also appeared. For example, as Fig. 2 shows, in the teacher’s 
solution for the research task focused on the density of unknown substances, the 
same issue can be observed. In this case, the teacher was a chemistry teacher 
in combination with biology. After indicating the error, the teacher argued that 
such notation is common in chemistry and did not perceive it as a mistake. This 
is where the very problem of teaching without interdisciplinary connections can 
arise. The creation of mathematical mistakes when viewed from the perspective of 
other subjects, are transmitted through teachers to their students. The students and 
teachers will then both continue to make mistakes in this way. At the same time, the 
correct notion of concepts and procedures is harmed, because it seems that “what is 
true in mathematics works differently in chemistry”. 

Fig. 2 Teacher’s solution—incorrect equality relation
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3.1.3 Using the Units: Why It Is the Best Approach 

Thus, the question arises of whether to always teach students to use units when 
working with physical or chemical quantities, or to let them work on the calculation 
without units and then interpret the result with the units. The more useful way, of 
course, is to teach students to always use and write units. There are several reasons 
for this. 

If we write the quantities with the units, we do not have to later remember which 
units to use with the calculation—it is clear from the calculation. In the above case, 
the student does not have to remember that the unit of density is . 

kg
m3 . 

If we use the mass and volume correctly with the units, the result will be correct. 
A student confusing the unit of density in their interpretation will not occur, this was 
shown by one student’s worksheet, as shown in Fig. 3. For solving the problems, 
we do not need to memorize formulas but we need to understand the relationship 
between the variables. The relationship, the unit and the solution are very closely 
connected. The knowledge of one leads to the knowledge of another. When there 
is more mass in the same volume, the substance will be denser—knowing the unit 
makes the calculation of the formula clear. 

Additionally, the opposite is true—if a student knows the unit, he/she does not 
have to remember the relationship for the calculation. In the case of density, if he/she 
remembers that density is given as . 

kg
m3 , it is clear that it must be a ratio of weight in 

kilograms and of volume in cubic meters. 
If we always use the units, we will not lose the point of what we are counting. 

This was shown for example, in the worksheet focused on minerals found in water. 
The student correctly calculated the percentages, but at the end, added a unit of 
grams to the result (how many percent). This further confused him in the task and it 
was obvious that it was not clear to him how he should handle the result of “0.01 g”, 
see Fig. 4. 

Fig. 3 Example of the student’s worksheet
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Fig. 4 Example of the 
student’s incorrect 
interpretation of the 
calculation 

3.2 Problems with Rounding Results 

Another common mistake found, was with the rounding of the results, i.e. the 
interpretation of results with regard to the accuracy of the input data. If we have 
a measuring tool with a certain level of accuracy, or if we have data with fixed 
decimal places already appearing in the relation as an absolute term, the result 
cannot be rounded to higher decimals than the smallest number of decimals given 
in the relation. It is not possible to obtain by calculating, a result more accurate than 
the values entered into the relationship. This always results in a bigger error, so we 
can never round the result to more decimal places than the input data has. Thus, if 
the values given in the relationship are rounded to only three decimal places, we 
do not report the result more precisely than to three decimal places. However, for 
example, with the chemistry worksheets there was a direct requirement to round 
the result to 6 decimal places; although the input data was rounded to four decimal 
places as Fig. 5 shows (in this case other students even used seven decimal places). 

3.3 Work with Decimal Notation 

The last common mistake is a misinterpretation of decimal notation. Although 
it may not seem so with ordinary notation, in mathematics, when working with 
decimal numbers, we make a distinction between the numbers 5.2 and 5.20. In 
the first case, this means a number rounded to two decimal places, which may 
‘represent’ the numbers 5.20, 5.21, 5.22, 5.23, 5.24 etc. The second example 
unambiguously indicates that the number is determined to two decimal places and 
the second digit after the decimal point is exactly zero. The “omission” of zeros at 
the end of decimal notation appeared in worksheets in all of the scientific subjects. It 
was then not clear how many decimal places in the relationship were actually being
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Fig. 5 Rounding the results of computation by students 

worked on, and the students rounded up the results of their calculations to a different 
number of decimal places each time. 

3.4 Other Inappropriate Mathematical Procedures 

Other inappropriate mathematical procedures included, quantifying ongoing inter-
mediate results when obtaining the overall result from multiple relationships. This is 
understandable and acceptable for younger students who cannot work with algebraic 
expressions in a general form; however, it should no longer occur at a high school 
level. The correct mathematical procedure is such that we first express the final 
relation before substituting numerical values, then we calculate the total result from 
the entered values. With partial calculations we increase the error of the result (we 
round it several times). 

A good habit to form is, before measuring and according to the possibilities of the 
tools, to determine the accuracy with which we will calculate and to leave this for the 
entire solution of the problem. Then it would be clear throughout the measurement 
and calculation how the resulting values should be rounded. In Fig. 6 we can see that 
the students have not learned in this way. Despite using the same device during their 
measurement of one of the chemistry problem tasks, they still rounded the results 
completely differently.
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Fig. 6 Rounding the results of measurements by students 

4 Conclusions 

During this research, the answer to the question of whether there are the errors 
that arise due to the fact that the application of mathematical procedures is not 
taught in mathematics, was discovered. In the conducted interviews, mathematics’ 
teachers confirmed that these errors, especially for weaker students, subsequently 
present problems and misunderstandings in mathematics. As mentioned in previous 
sections, it appears that the mistakes are indeed taken from the teachers. These 
mistakes did not occur in only one case, specifically, with the worksheets of a 
teacher who taught a combination of mathematics and physics. None of the mistakes 
described above appeared in either the methodological sheets or during the piloting 
of the tasks for the class of this teacher. For teachers who do not teach mathematics 
as a secondary subject, these errors occurred on almost all worksheets and with all 
students in their classes. 

This brings us back to the crux of the whole issue, the solution to which could be 
brought about by the implementation of STEM education into the Czech curriculum 
together with coordinating the curricula of mathematics and the natural sciences. 
However, there is also the problem of needing to train active teachers who are not 
used to using such a model. Their reaction to highlighting their errors is often that it 
is irrelevant to their scientific subject and they do not perceive them as mistakes 
in their subject. Good communication between teachers of subjects, where the 
content overlaps or where knowledge from another subject is used in another, is also 
important. The first step in rectifying this, was organizing training for the teachers 
involved as well as their school colleagues. An expert outlined the mistakes that
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appeared in the worksheets from other subjects and explained why it was incorrect 
and how it should be done correctly. Unfortunately, the way to improving the issue 
is a task for the long term, and the better use and integration of STEM education 
could provide only a partial solution in the near future. 
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Challenges to the Development 
of Effective Creativity 

Zhanat Zhunussova, Vladimir Mityushev, Yeskendyr Ashimov, 
Mohammad Rahmani, and Hamidullah Noori 

Abstract One of the key problems for students, especially from developing 
countries during pandemic is a lack of the electronic materials. Obviously, there are 
a lot of problems arise during education in the online regime. First of all, it is a weak 
Internet connection combined with the lack of appropriate equipment. Even having a 
higher quality computer they could not setup a program. It is connected to the both 
their knowledge and the specialty. For example, the students biology, chemistry, 
philology and others are not taught to computational skills. In general, they are users 
as ordinary people. But the real situation concerning pandemic requires systematic 
changes procedures in computer education. All these changes should be unified for 
all the students in a group independently on their country. That is why the math 
teachers have to look for an alternative method to make a proper decision for a 
stated problem under supervision of works devoted to projects and diploma. 

1 Introduction 

We pay attention to the textbook [1] which may play the role of a guidance for 
teachers as well as for students. This book is for beginners and could be useful for 
higher qualified specialists in various domains not familiar with the main principles 
of modeling. It is worth to say that the textbook doesn’t fit to a researcher like a 
PhD student in Mathematics or Physics who should concentrate her/his attention 
to a special problem and deeply go into the considered subject, because such a 
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PhD student understands the field of its work and knows the key notions and 
methods. In the same time, the book can be useful for a PhD student in Biology, 
Engineering and so forth who deeply knows special topics and needs to apply 
computer simulations. The textbook [1] is organized in such a way that it contains 
a minimum of information about modeling for a beginner who can find in the 
book the corresponding references and the proper key words in order to find the 
necessary sources in internet. For instance, in order to investigate the trajectory 
of the thrown stone one has to keep in mind the terms gravitation, velocity, 
acceleration to find the corresponding equation for the gravitational law and further 
to solve a problem. In order to model public traffic in a city one has to know the 
key notion of the graph theory. Traditionally, a teacher has the task to explain for a 
student “what”. A student shouldn’t deeply know everything. Knowledge besides 
the fundamental theories and methods includes the option how to find it in internet. 
What is the best way to solve a problem? To apply a theory, to use a computer for 
fast computations? No, just to write the answer, maybe find it internet. If one needs 
a date or something like this, no problem. But if a student has to determine a force 
acting on an object, then usual way to put a button doesn’t work. The student must 
know which button to put. The main question consists in the understanding what to 
look for. The conception of [1] concerns the study of the fundamental theory and 
its usage to quickly find the necessary information. In this sense, the textbook [1] 
is superficial, it doesn’t contain all the theories. Roughly speaking, it answers the 
questions “what” and “how” simultaneously. 

The textbook [1] contains a systematic description how to develop a mathemati-
cal model and explain the main steps. The strategy consists in the following steps: 

• to introduce spatial variables (description of geometry) and time; 
• to think about dimensional units; to introduce the units perhaps during solution 

of the mathematical problem; 
• to introduce assumptions and conditions, first, as simple as possible; 
• to formulate the law (physical, economical, biological, empirical etc.); 
• to develop a mathematical description, first, as simple as possible; 
• to try to solve the mathematical problem “by hand”; if that does not work, to try 

a numerical method; to compare the results if different methods are applied; 
• verification of the model; if the results are suspect to get back to the previous 

steps. 

These steps are illustrated by examples. 
The textbook consists of three parts: general principles and methods, basic 

applications and advanced applications. The first part is divided into two sections 
which introduce to principles of mathematical modeling and numeric and symbolic 
computations. With considering of a simple example of the free falling object from 
a height h a reader can understand how to describe the trajectory of the object. 
The description of projectiles by means of an ordinary differential equation is 
presented. Next, the mathematical problem, more precisely Cauchy problem, is 
solved. Hence, the required particular solution is obtained. By this way a principle 
of hand calculations is described in detail. Further, some formulas from the example
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are checked in the package .Mathematica®. The graph of the obtained trajectory 
is drawn with numerically given parameters. One can use acquired skills from the 
example in order to check equations by calculation of derivatives and integrals. In 
fact, it takes time by hand. Especially, for math teachers who must verify a lot of 
control works for the limited time. Nevertheless, it should be noted, that incorrect 
use of computer by someone yields incorrect results. Such kind result is shown 
on the example about calculating of few partial sums of the series. The series as 
harmonic series diverges, although direct observations of the results could lead to 
the conclusion that the series converges, see the fragment below 

. In[1] := Sn_ :=
n∑

k=1

1

K

. In[2] : T able[Sn, {n, 1660, 1670}]

. Out[2] = {7.99209, 7.99269, 7.99329, 7.99389, 7.9945,

. 7.9951, 7.9957, 7.9963, 7.9969, 7.9975, 7.99809}

By this way, a principle of the stupid computer formulated as follow. Do not trust 
the computer and try to check the result by hand. Even possessing computational 
skills, one has to get a fundamental theoretical knowledge, simultaneously update 
your skills in computer sciences. 

In such a way, the development of mathematical model is gradually discovered 
in the textbook [1]. The steps of the development are demonstrated in a simple 
example, the falling of an object in vacuum and in air. The classification of 
the mathematical modeling is proposed by types as deterministic and stochastic, 
discrete and continuous, linear and non-linear. These types are explained by 
examples. 

2 Examples 

The special attention is paid to 
Principle of transition: continuous . ↔ discrete. To divide a continuous object into 
small parts, to apply a simple formula to every part, to calculate the sum for all the 
parts and get back to the continuous object through the limit operation. 

This principle is used in the standard course of calculus in introduction of 
Riemann integral as the area under the positive graph. Many equations of physics, 
biology, economy and other sciences are based on this principle. For instance, the 
radioactive decay satisfies the physical law .δm = −kmδt , i.e., the increment of 
mass is proportional to the total mass and time. Next, this rule leads to a differential 
equation and its solution .m(t) = m(0)exp(−kt). Such an approach plays the
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fundamental role in mathematical physics and further can be used, for instance, 
in fluid mechanics when the consideration of a discrete liquid element yields the 
Navier-Stokes equations. 

Stability of models is introduced by the principle, that a mathematical model 
must be stable. It is noted, in order to investigate deeply numerical stability, the 
reader should know the main mathematical approaches to stability should be found 
in the courses ODE and PDE. 

There are many exercises useful for student laboratory and for independent 
student works in the form of projects. Below, we illustrate the Monte Carlo method 
to calculate the constant . π . Let . Ω be the square .2× 2 and A be the disk enclosed to 
the square displayed in Figure. Let n points be randomly thrown on the square. Here, 
randomness means that each point is represented by its coordinates randomly chosen 
in the interval (-1, 1). A part of these points m goes onto the disk. For sufficiently 
large n one can expect that the ratio .m/n will be close to the ratio of the areas of 
the disk to the area of the square .|A|/|Ω|. In the considered case, it is equal to . π/4. 
Experimental computations of numbers n and m yields the value of . π . Using this 
approach one can solve the following two examples from Chapter 5 [1]. 

Compute the area of the domain bounded by the ellipse .x2/9+y2/4 = 1 applying 
the Monte Carlo simulations. 

Compute the area .S(a, b) of the domain bounded by the ellipse . x2/a2+y2/b2 =
1 applying the Monte Carlo simulations. 

Hint1: Investigate numerically the dependence of .S(a, b) on two parameters, 
i.e., on a with a fixed b and on b with a fixed a. 

Hint2: An alternative way is based on the formula . S(ka, kb) = k2S(a, b)

where .k > 0 is a linear extension coefficient. Take .k = (ab)− 1
2 . Then, 

.S(a, b) = ab S(d, d−1) with .d = a
1
2 b− 1

2 . Investigate numerically the dependence 
of .S(d, d−1) on d. 

Answer: .S(a, b) = πab. 
Compute the surface area .S(a, b, c) of the ellipsoid by fitting the parameter p in 

the approximate formula 

. S(a, b, c) ≈ 4π

(
apbp + apcp + cpbp

3

) 1
p

Answer: . p ≈ 1.6.
Below, we present an exercise on statistics.
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Consider data presented in the form of a set of dimensional numbers. Take only 
the first digits of these numbers. Generate a statistical distribution of the first digits 
.{1, 2, . . . , 9} following Simon Newcomb (1881) for 

1. populations of countries, 
2. areas of countries, 
3. heights of mountains higher than 2 km. 

Investigate the same statistical distributions but in other bases of number sys-
tems. Investigate the same statistical distributions of first digits in stock exchanges 
taking prices of one stock in time. 

3 Mathematica® Application for Numerical and Symbolic 
Computations 

We have to note that .Mathematica® contains on-line data on US and other 
stocks, mutual funds and other financial instruments. The special operators such 
as FinancialData combined with DateListPlot are used to study market on-line. 

The number of exercises and their diversity (calculus, ODE, data fitting etc.) 
allows to look at the standard mathematical exercises from another computational 
point of view. It is worth noting that visualization including animation serves as a 
significant help to understand the considered problem. An electronic appendix with 
solutions with .Mathematica® codes is applied. 

The textbook establishes the general principles and methods of mathematical 
modeling. At the beginning a simple mathematical model is considered. The model 
is explained by hand calculations as well as applying the packages . Mathematica®
and MATLAB. Some numerical and symbolic computations are considered by 
iterative methods, Newton’s method and a method of successive approximations. 

In our case, the textbook has been used for students studying on specialty 
“Mathematics”. The manner of explanation simultaneously by hand and a package 
are helpful for them. After getting a progress and understanding the basics of the 
package they have been able to develop their skills. 

4 Weierstrass Functions and Their Invariants 

As an example of such a project we consider the optimal random packing problem 
of disks on the plane torus, i.e., in a class of doubly periodic packing with three 
disks per the hexagonal fundamental domain [2]. The Weierstrass .ϱ-function and its



200 Z. Zhunussova et al.

derivatives are introduced by the following operators 

. ϱ[z_] := WeierstrassP [z, g2g3];

. ϱ[0, z_] := WeierstrassP [z, g2g3];

. ϱ[1, z_] := WeierstrassPP rime[z, g2g3];

. ϱ1[z_] := WeierstrassPP rime[z, g2g3];

. ϱ[2, z_] := 6(ϱ[0, z])2 − 30S4/.S4− > 0;

. ϱ[3, z_] := 12ϱ[0, z]ϱ[1, z];

. ϱ[k_/; k > 3, z_] := 12

. 

k∑

s=0

−3Binomial[k − 3, s]ϱ[k − s − 3, z]ϱ[s + 1, z]

The roots of the Weierstrass function can be found by the operate NSolve. The 
optimal packing of three disks on the plane torus can be found by roots of the 
Weierstrass functions and their combinations [2]. The following function includes 
geometrical and analytical computations and illustrates the double periodic best 
packing of three disks 

. HC = Show[Graphics[{{Gray,Disk[{−x[3],−y[3]}, r],

. Disk[{ω1 − x[3],−y[3]}, r],

. Disk[{ω1ω2 − x[3], ω3ω1ω2 − y[3]}, r],Disk[{ω1ω2 − x[3], ω3

. ω1ω6 − y[3]}, r],Disk[{Re[ω1 + ω2 − x[3]], Im[ω1 + ω2] − y[3]}, r],

. Disk[{ω1ω2 − Re[((ω1 + ω2))ω6], ω3

. ω1ω6 − Im[((ω1 + ω2))ω6]}, r]},

. {Dashed, Line[{{−x[3],−y[3]}, {ω1 − x[3],−y[3]},

. {Re[ω1 + ω2 − x[3]], Im[ω1 + ω2] − y[3]}, {Re[ω2] − x[3], Im[ω2] − y[3]},

. {−x[3],−y[3]}}]}, Arrow[{{−0.6, 0}, {0.6, 0}}],

.Arrow[{{0,−0.6}, {0, 0.6}}]}, AspectRatioωAutomatic]]
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Fig. 1 The double periodic best packing of three disks in the hexagonal cell 

The result is displayed in Fig. 1. 
Concerning standard courses of high school, it is difficult to say what is 

hard to compute with the package Mathematica. ®. A beginners may start to 
use it at once on an elementary level and further improve her/his skills related 
to computations. This concerns pupils od secondary school too. Mathematica. ®
contains thousands Explore thousands of free projects across science, engineering, 
technology, business, art, finance, social sciences of different levels and purposes 
[3]. 
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Universality of the Dirichlet Series 
in the Complex Plane 

George Chelidze, George Giorgobiani, and Vaja Tarieladze 

Abstract In this note we show that for any complex number s such that . 0 <

Re(s) ≤ 1 and .Im(s) /= 0, the convergent Dirichlet series 

. 
∑

n

(−1)n−1 1

ns
,

as well as the divergent Dirichlet series 

. 
∑

n

1

ns

are Riemann-like; i.e., the sum range under the rearrangements of each of these 
series is the whole complex plane. 

1 Introduction 

Let X be a Hausdorff topological abelian group. For a series .
∑

n xn in X its sum 
range .SR(

∑
n xn) is defined as the set of all elements .s ∈ X for which there exist 

a permutation .π : N → N such that the rearranged series .
∑

n xπ(n) converges 
in X and .s = ∑∞

n=1 xπ(n). A series  in  X is universal in X if its sum range is 
the whole X. A series  in  X is unconditionally convergent if for every permutation 
.π : N → N the rearranged series .

∑
n xπ(n) converges in X. It is known that for 
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each unconditionally convergent series .
∑

n xn in X, the  set  .SR(
∑

n xn) consists 
of one element. The famous Riemann’s theorem asserts that every convergent but 
not unconditionally convergent series of real numbers is universal in . R. However, 
in . R2 not every series of this type is universal. As it is noted in [16], applying 
the Riemann’s theorem it’s not difficult to construct universal series in . Rd , . d =
2, 3, . . . . 

When X is an infinite-dimensional normed space, the sum range has more 
diverse structure [11] (see also [5]). In the Banach space .X = C([0, 1]) of all 
continuous real valued functions the existence of an universal series was first proved 
in [8]. Using the similar approach, this result was extended for an arbitrary infinite-
dimensional separable Banach space in [15] and the existence of universal series 
with some additional properties was established in [7]. In [12] (cf. [3]) sufficient 
condition for the universality of the series in .L2[0, 1] was included and a specific 
example of such a series was constructed as well. 

In this note we consider the problem of universality of the signed Dirichlet series 

.

∑

n

θn

1

ns
, θn = ±1, n = 1, 2, . . . (1) 

for a fixed .s ∈ C with .0 < Re(s) ≤ 1, Im(s) /= 0. 
We derive the universality of (1) in  . C in case when the series converges; in 

particular we get the universality of alternatively signed Dirichlet series 

.

∑

n

(−1)n−1 1

ns
. (2) 

Recall that (2) converges for any .s ∈ C, 0 < Re(s) < ∞, and its limit is known as 
the Dirichlet .η-function or the alternating .ζ -function. 

We also show that, rather unexpectedly, the divergent Dirichlet series 

.

∑

n

1

ns
(3) 

is also universal in . C. Below we use the following characterizations of universal 
complex series. 

Proposition 1 (cf. [6, Theorem 1.4]) For a series of complex numbers .
∑

n zn the 
following statements are equivalent: 

.(i) .SR(
∑

n zn) = C. 
.(ii) .SR(

∑
n zn) /= ∅ and 

.

∞∑

n=1

|Re(wzn)| = ∞ ∀w ∈ C \ {0} . (4)
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Proposition 2 (cf. [9, Theorem III]) For a series of complex numbers .
∑

n zn the 
following statements are equivalent: 

.(i) .SR(
∑

n zn) = C. 
.(ii) .limn zn = 0 and 

.

∞∑

n=1

max(0, Re(wzn)) = ∞ ∀w ∈ C \ {0} (5) 

Remark 1 Using the Proposition 1, it can be shown that for any fixed .z ∈ C with 
.|z| = 1 and .z /∈ {−1, 1}, we have: .SR(

∑
n
zn
n ) = C (cf. [6]). 

Remark 2 The result given in the previous remark fails for the division ring of 
quaternions . H: for any fixed .z ∈ H, |z| = 1, z /∈ {−1, 1}, we have: . SR(

∑
n

zn

n
) /= H

(cf. [2]). 

Note finally that an analog of Proposition 1 fails if we replace . C by an infinite-
dimensional Hilbert space ([5], pg. 513). More general Proposition 2 (which is not 
mentioned neither in [14] nor in [11]) can be derived also from its Banach-space 
version contained in [13, Corollary 2]. 

2 Auxiliary Statements 

In what follows, for a fixed .s ∈ C, let  . Ds be the set of all sequences .(ξn)n∈N of 
complex numbers such that the series .

∑
n ξnn

−s converges in . C. It can be seen that 
. Ds is always a dense vector subspace and a Borel subset of . CN. 

We recall the following particular case of Jensen-Cahen’s theorem: 

Lemma 1 Let .s ∈ C and .Re(s) > 0. Then for any sequence .(ξn)n∈N ∈ C
N such 

that 

. sup
n∈N

|
n∑

k=1

ξk| < ∞, (6) 

Dirichlet series 

. 
∑

n

ξnn
−s

converges in . C, i. e. we have 

.(ξn)n∈N ∈ Ds . (7)



208 G. Chelidze et al.

In particular, .(θn)n∈N ∈ Ds , where .(θn)n∈N is the alternating sign sequence 
. θn = (−1)n−1, n = 1, 2, . . .

Remark 3 In notations of Lemma 1 
. (a) In case .Re(s) > 1, even from the weaker condition .supn∈N |ξn| < ∞, we can 

conclude that the stronger conclusion 

. 

∞∑

n=1

|ξnn
−s | < ∞

holds instead of (7). 
. (b) In case .0 < Re(s) ≤ 1, the condition (6) implies (7) due to the observations 

. lim
n

n−s = 0 and
∞∑

n=1

|n−s − (n + 1)−s | < ∞ (8) 

and by use of Abel’s identity (summation by parts; cf. [18, Theorem 1.2.4, (p.3)]). 
The second relation in (8) can be proved using the following inequality ([10, Ch.  
II.1, Lemma 2 (p.3)]): 

.|n−s − (n + 1)−s | ≤ |s|
σ

(n−σ − (n + 1)−σ ), n = 1, 2, . . . , (9) 

where .σ = Re(s). An “integral-free” proof of (9) is also possible. 

Remark 4 In connection with Lemma 1 note that not only for the sequence 
.n−s , n = 1, 2, . . . with .s ∈ C, Re(s) > 0, but  for  any .(zn)n∈N ∈ C

N such that 
.limn zn = 0, the existence of the sign sequence .θn ∈ {1,−1}, n = 1, 2, . . . making 
the series .

∑
n θnzn convergent is guaranteed by the Dvoretzky-Hanani theorem [4] 

(or [11]). 

Note also that: 

(I) In terms of the theory of Dirichlet series Lemma 1 asserts that if a sequence 
.(ξn)n∈N ∈ C

N satisfies condition (6), then the abscissa of convergence of the 
Dirichlet series .

∑
n ξnn

−s equals zero. 
(II) If .z ∈ C and .0 < Re(z) < 1, then 

. sup
n∈N

|
n∑

k=1

1

kz
| = ∞. (10) 

In particular, Dirichlet series .
∑

n
1
nz does not converge. (In fact, suppose that 

. sup
n∈N

|
n∑

k=1

1

kz
| < ∞. (11)
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Then taking in Lemma 1 .s = 1 − z and .ξn = 1
nz , n = 1, 2, . . . , we derive the 

convergence of .
∑

n
1
n
.) 

(III) If .t ∈ R \ {0}, then 

. sup
n∈N

|
n∑

k=1

1

k1+it
| < ∞,

but again, Dirichlet series .
∑

n
1

n1+it diverges (cf. [10, Ch. II.1 (p.5)]; see also 
[1, (p. 247)]). 

(IV) If . 12 < Re(s) ≤ 1, then .μ(Ds

⋂{−1, 1}N) = 1, where . μ stands for 
the canonical product probability measure on .{−1, 1}N (this follows from 
Rademacher theorem; cf. [17]). 

Lemma 2 Let .ϕ ∈ R, .t ∈ R \ {0} and .0 < σ ≤ 1. Then 

.

∞∑

n=1

n−σ max(0, cos(ϕ − t ln n)) = ∞ . (12) 

In particular, 

.

∞∑

n=1

n−σ | cos(ϕ − t ln n)| = ∞ . (13) 

Proof Assume the contrary 

.

∞∑

n=1

n−σ max(0, cos(ϕ − t ln n)) < ∞ . (14) 

Fix .k ∈ N and write 

. ak = e
1
t
(2πk t

|t | +ϕ− π
3

t
|t | ),

. bk = e
1
t
(2πk t

|t | +ϕ+ π
3

t
|t | ).

Clearly .ak < bk < ak+1. Set: 

. Λk = N∩]ak, bk[ .

As 

. lim
k

min{Λk} = ∞ ,
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from (14) we get 

. lim
k

∑

n∈Λk

n−σ max(0, cos(ϕ − t ln n)) = 0 . (15) 

Let us see that (15) leads to a contradiction. 
Choose an integer . k0 so that .ak > 1 and .bk > ak + 3, for any .k > k0. Fix now 

.k ∈ N with .k > k0. Observe that 

. card(Λk) ≥ bk − ak − 2 > 1 .

As 

. n ∈ Λk =⇒ cos(ϕ − t ln n) ≥ 1

2
,

we can write 

. 
∑

n∈Λk

n−σ max(0, cos(ϕ − t ln n)) ≥ 1

2

∑

n∈Λk

1

nσ
>

1

2

∑

n∈Λk

1

n
≥

. ≥ 1

2bk

card(Λk) ≥ bk − ak − 2

2bk

= 1

2
(1 − e

− 2π
3|t | − 2

bk

) .

So, 

.

∑

n∈Λk

n−σ max(0, cos(ϕ − t ln n)) >
1

2
(1 − e

− 2π
3|t | − 2

ak + 3
) . (16) 

From (16), as .limk ak = ∞ we get: 

. lim inf
k

∑

n∈Λk

n−σ max(0, cos(ϕ − t ln n)) ≥ 1 − e
− 2π

3|t | > 0 . (17) 

Relation (17) contradicts (15). Hence, (14) doesn’t hold and the lemma is proved. 
⨅⨆

It would be interesting to describe the sequences .(cn) for which the following 
analogue of Lemma 2 is true: 

.cn > 0,
∞∑

n=1

cn = ∞ =⇒
∞∑

n=1

cn max(0, cos(ln n)) = ∞ . (18) 

It can be shown that (18) is not true in general.
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3 Universality Theorems 

Our first universality result looks as follows. 

Theorem 1 Let s be a complex number with .0 < Re(s) ≤ 1, Im(s) /= 0, and let 

.(θn)n∈N ∈ Ds

⋂
{−1, 1}N. (19) 

Then .SR(
∑

n θnn
−s) = C; i.e., the series (1) is universal in . C. 

Proof It suffices to show that the condition .(ii) of Proposition 1 holds for . zn =
θnn

−s , n = 1, 2, . . . . From (19) we have that  .SR(
∑

n zn) /= ∅. So, it remains to 
show that 

.

∞∑

n=1

|Re
(
wn−s

) | = ∞ ∀w ∈ C \ {0}. (20) 

Fix .w ∈ C \ {0} and write .w = reiϕ with some .r > 0 and .ϕ ∈ R. Set also 

. σ := Re(s) and t := Im(s) .

Then we have 

. |Re
(
wn−s

) | = r

nσ
| cos(ϕ − t ln n)|, n = 1, 2, . . .

and (20) is true by equality (13) of Lemma 2. ⨅⨆
It can be seen that Theorem 1 may fail without the assumption (19). Nevertheless, 
it is remarkable that the following statement is true. 

Theorem 2 Let s be a complex number such that .0 < Re(s) ≤ 1 and .Im(s) /= 0. 
Then .SR(

∑
n n−s) = C. 

Proof It suffices to show that the condition .(ii) of Proposition 2 holds for . zn =
n−s , n = 1, 2, . . . . Clearly, .limn zn = 0. So, it remains to show that 

.

∞∑

n=1

max(0, Re(wzn)) = ∞ ∀w ∈ C \ {0} (21) 

Fix .w ∈ C \ {0} and write .w = reiϕ with some .r > 0 and .ϕ ∈ R. Set also 

.σ := Re(s) and t := Im(s) .
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Then we have 

. Re
(
wn−s

) = r

nσ
cos(ϕ − t ln n), n = 1, 2, . . .

and (21) is true by equality (12) of Lemma 2. ⨅⨆
Note finally that in connection with Theorem 1 and Theorem 2 it would be 

interesting to know for which sequences .(ξn)n∈N of real or complex numbers the 
equality .SR(

∑
n ξnn

−s) = C holds. 

References 

1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, New York (1976) 
2. Chelidze, G.: Giorgobiani, G.: Tarieladze, V.: Sum range of quaternion series. J. Math. Sci. 

216(4), 519–521 (2016) 
3. Drobot, V.: Rearrangements of series of functions. Trans. Am. Math. Soc. 142, 239–248 (1969) 
4. Dvoretzky, A., Chojnacki, C.: Sur les changements des signes des termes d’une série á termes 

complexes. C.R. Acad. Sci. Paris 255, 516–518 (1947) 
5. Giorgobiani, G.: Rearrangements of series. J. Math. Sci. 239, 437–548 (2019). https://doi.org/ 

10.1007/s10958-019-04315-9 
6. Giorgobiani, G., Tarieladze, V.: On complex universal series. Proc. A. Razmadze Math. Inst. 

160, 53–63 (2012) 
7. Giorgobiani, G., Tarieladze, V.: Special universal series. In: I. Gorgidze et al. (Eds.), Several 

Problems of Applied Mathematics and Mechanics, pp. 125–130. Nova Science Publishers; 
Mathematics Research Developments, New York (2013) 

8. Hadwiger, H.: Eine Bemerkung uber Umordnung von Reihen reeller Funktionen (in German). 
Tohoku Math. J. 46, 22–25 (1939) 

9. Halperin, I.: Sums of a series, permitting rearrangements. C.R. Math. Rep. Acad. Sci. Can. 
8(2), 87–102 (1986) 

10. Hardy, G.H., Riesz, M.: The General Theory of Dirichlet’s Series. Courier Corporation, 
Chelmsford (2013) 

11. Kadets, M.I., Kadets, V.M.: Series in Banach Spaces. Birkhauser Verlag, Basel (1997) 
12. Kashin, B.S., Saakyan, A.A.: Orthogonal series (in Russian). Nauka, Moscow (1984); transla-

tion of Mathematical Monographs, vol. 75, Amer. Math. Soc., Copyright, 2005 
13. Pecherskii, D.V.: Rearrangements of series in Banach spaces and arrangements of signs. 

Matematicheskii Sbornik 177(1), 24–35 (1988). English translation: Pecherskii, D. V. “Rear-
rangements of series in Banach spaces and arrangements of signs.” Mathematics of the 
USSR-Sbornik 63.1 (1989): 23 

14. Rosenthal, P.: The remarkable theorem of Levy and Steinitz. Am. Math. Month. 94(4), 342– 
351 (1987) 

15. Shklyarski, D.O.: Conditionally convergent series of vectors (in Russian). Uspehi Matem. 
Nauk 10, 51–59 (1944) 

16. Steinitz, E.: Bedingt convergente Reichen konvexe Systeme. (Teil I.) (in German). J. für Math. 
143, 128–175 (1913) 

17. Vakhania, N.N., Tarieladze, V.I., Chobanyan, S.A.: Probability Distributions in Banach Spaces. 
D. Reidel Publishing, Dordreht (1987) 

18. Zygmund, A.: Trigonometric Series, vol. 1. Cambridge University Press, Cambridge (2002)

https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9
https://doi.org/10.1007/s10958-019-04315-9


On One Oscillation Problem of Zeroth 
Approximation of Hierarchical Model for 
Porous Elastic Plates with Variable 
Thickness 

Natalia Chinchaladze 

Abstract The aim of the paper is to investigate of homogeneous Dirichlet problem 
for the vibration problem of porous elastic prismatic shell-like bodies within the 
framework of known models of mathematical problems arising in connection of 
complicated geometry of bodies under consideration (see [18]). We consider cusped 
bodies for them BVPs and IBVPs are non-classical in general. The classical and 
weak setting of the problem are formulated. The weighted Sobolev spaces . Xκ are 
introduced, which are crucial in our analysis. The coerciveness of the corresponding 
bilinear form is shown and uniqueness and existence results for the variational 
problem are proved. 

1 Introduction 

The development of science, industry and technologies on the one hand made the 
possibility of constructing such new composite materials with different physical 
properties (piezoelectric, piezomagnetic, multi-component mixtures, bio-materials, 
meta-materials etc.) that are not found naturally on Earth. On the other hand these 
new materials can be used for future development of the same fields. Several 
examples include piezoelectric sensors for vibration control [17], high precision 
actuators [1], materials with higher strength and stiffness [11] or ones that lower 
energy consumption [4, 16], production cost and size of sensors or actuators [1, 17]. 

In 1955 Ilia Vekua [18] published his models of elastic prismatic shells. In 1965 
he offered analogous models for standard shells [19]. In both papers he considered 
a very important investigation of well-posedeness of boundary value problems 
(BVPs) of peculiar types which could arise in the case of cusped shells. Using I. 
Vekua dimension reduction method, complexity of the 3D domain, occupied by 
the body will be transformed into the degeneracy of the order of the 2D governing 
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equations of the constructed hierarchy of 2D models on the boundary of the 2D 
projection of the 3D bodies under consideration. 

Jaiani [9] is devoted to construction of hierarchical models for piezoelectric 
nonhomogeneous porous elastic and viscoelastic Kelvin-Voigt prismatic shells on 
the basis of linear theories [3, 6, 12, 14, 15]. Using I. Vekua [18] (see also 
[19]) dimension reduction method, governing systems are derived and in the N th 
approximation of hierarchical models BVPs and IBVPs are set. In the . N = 0
approximation, statical problem is investigated. The aim of this paper is to study 
analogous problem in the case of oscillation. 

2 Field Equations for Kelvin-Voigt Materials 

A Kelvin-Voigt material, also called a Voigt material, is a viscoelastic material 
having the properties both of elasticity and viscosity. The theories of viscoelasticity, 
which include the Maxwell model, the Kelvin-Voigt model, and the Standard Linear 
Solid model, are used to predict a material’s response under different loading 
conditions. One of the simplest mathematical models constructed to describe the 
viscoelastic effects is the classical Kelvin-Voigt model (see Eringen [5]). The basic 
idea concerning this model is that the stress is dependent on the deformation tensor 
and deformation-rate tensor. This model consists of a Newtonian damper and Hooke 
elastic spring connected in parallel. 

The field equations have the following form [6, 14]: 

Motion Equations 

. Xji,j + Фi = ρ
..
ui(x1, x2, x3, t), (x1, x2, x3) ∈ Ω ⊂ R

3, t > t0, i, j = 1, 2, 3;

. Hj,j + H0 = ρ0ϕ̈ − F,

where .Xij ∈ C1(Ω) is the stress tensor; . Фi are the volume force components; . ρ0 :=
ρk' (k' is equilibrated inertia), . ρ is the reference mass density; .ui ∈ C2(Ω) are 
the displacements; .Hj ∈ C1(Ω) is the component of the equilibrated stress vector, 
. H0 and . F are the intrinsic and extrinsic equilibrated volume forces; Einstein’s 
summation convention is used; indices after comma mean differentiation with 
respect to the corresponding variables of the Cartesian frame .Ox1x2x3 (throughout 
the paper we assume existence of the indicated (continuous) derivatives); dots as 
superscripts of the symbols mean derivatives with respect to time t .



On One Oscillation Problem of Zeroth Approximation of Hierarchical Model. . . 215

Constitutive Equations (Isotropic Case) 

. Xij = λekkδij + 2μeij + λ∗ėkkδij + 2μ∗ėij + bϕδij + b∗ϕ̇δij , i, j = 1, 2, 3,

Hj = α̃ϕ,j + α∗ϕ̇,j , j = 1, 2, 3,

H0 = −bekk − ξϕ − ν∗ėkk − ξ∗ϕ̇,

where .eij ∈ C1(Ω) is the strain tensor; .ϕ := ν0 − ν ∈ C2(Ω) is the change in 
the volume fraction from the matrix reference volume fraction . ν (clearly, the bulk 
reference density .ρ = νγ , .0 < ν ≤ 1, here . γ is the matrix reference density); 
.λ, λ∗, μ, μ∗, b, b∗, α̃, α∗, ν∗, ξ, ξ∗ are the constitutive coefficients, 
depending on . x1 and . x2; 

Kinematic Relations 

. eij = 1

2
(ui,j + uj,i), i, j = 1, 2, 3.

3 N = 0 Approximation for Porous Elastic Prismatic 
Shell-like Bodies 

We consider prismatic shell-like bodies of Kelvin-Voigt material (see, e.g., [7]) 
which occupies 3D domain . Ω with the projection . ω (on the plane .x3 = 0) and 
the face surfaces 

. x3 = (+)

h (x1, x2) ∈ C2(ω) and x3 = (−)

h (x1, x2) ∈ C2(ω), (x1, x2) ∈ ω,

where 

. 2h(x1, x2) := (+)

h (x1, x2) − (−)

h (x1, x2), (x1, x2) ∈ ω,

is the thickness of the prismatic shell. Prismatic shells are called cusped shells if a 
set . γ0, consisting of .(x1, x2) ∈ ∂ω for which .2h(x1, x2) = 0, is not empty. If 

. 
(+)

h (x1, x2) = −(−)

h (x1, x2)

we have to do with plates of variable thickness. 
Vekua’s hierarchical models for elastic shells are the mathematical models (see 

[2, 7, 20]). Their construction is based on the multiplication of the basic equations of
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linear elasticity by Legendre polynomials .Pr(ax3 − b), .a := 1
h(x1,x2

), .b :=
(−)

h +(−)

h
(+)

h −(−)

h

, 

and then integration with respect to . x3 within the limits . 
(−)

h and . 
(+)

h . By constructing 
Vekua’s hierarchical models in first version on upper and lower surfaces stress-
vectors are assumed to be known, while there the values of the displacements 
are calculated from their Fourier-Legendre series expansions on the segment . x3 ∈[ (−)

h ,
(+)

h

]
. Finally (see, e.g. [7]) we construct an equivalent infinite system with 

respect to the rth order moments . uir , . ϕr . After this, if we suppose that the moments 
whose subscripts, indicating moments’ order, are greater than N equal zero and 
consider only the first .N + 1 equations .(r = 0, N) in the obtained infinite system 
of equations with respect to the r-th order moments . uirand . ϕr we obtain the . N−th 
order approximation (hierarchical model) governing system consisting of . 4N + 4

equations with respect to .4N +4 unknown functions . 
N
uir , . 

N
ϕr (roughly speaking . 

N
uir , 

. 
N
ϕr is an “approximate value” of . uir , . ϕr , since . 

N
uir , . 

N
ϕr are solutions of the derived 

finite system), .i = 1, 3, .r = 0, N . 
In .N = 0 approximation for viscoelastic Kelvin-Voigt prismatic shells the 

governing system has the following form (see [9]): 

. (μhvα0,β),α + (μhvβ0,α),α + (λhvγ 0,γ ),β + (μ∗hv̇α0,β),α + (μ∗hv̇β0,α),α

+(λ∗hv̇γ 0,γ ),β + (bhψ0),β + (b∗hψ̇0),β + 0
Xβ = ρhv̈β0, β = 1, 2; . (1) 

(μhv30,α),α + (μ∗hv̇30,α),α + 
0 
X3 = ρhv̈30; . (2) 

(α̃hψ0,α),α − bhvγ 0,γ − ξhψ0 + (α∗h ψ̇0,α),α − ν∗hv̇γ 0,γ − ξ∗h ψ̇0 + 
0 
H 

= ρh  ̈ψ0 − F0, (3) 

where 

. vk0 :=
0
ui0

h
, k = 1, 2, 3, ψ0 :=

0
ϕ0

h
,

are so called the weighted displacements and the weighted volume fraction. 
Note that, if we take 

. λ∗ = 0, μ∗ = 0, b∗ = 0, α∗ = 0, ν∗ = 0, ξ∗ = 0,

from the above obtained governing system, we get hierarchical models for porous 
elastic prismatic shells.
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In case of .N = 0 approximation for porous elastic prismatic shells, from (1)–(3), 
we get the following governing system 

.(μhvα0,β),α + (μhvβ0,α),α + (λhvγ 0,γ ),β + (bhψ0),β + 0
Xβ = ρhv̈β0, (4) 

.(μhv30,α),α + 0
X3 = ρhv̈30; (5) 

.(α̃hψ0,α),α − bhvγ 0,γ − ξhψ0 + 0
H = ρϕ̈0 − F0. (6) 

Dirichlet problem in the classical form looks like: find 4-dimensional vector 

. v = (v10, v20, v30, ψ0)
T ,

in . ω satisfying system (4)–(6) and the homogeneous Dirichlet boundary conditions 

. vi0 = 0, i = 1, 2, 3; ψ0 = 0 on ∂ω

Let denote by . γ0

. γ0 :=
{
(x1, x2) ∈ ∂ω : 2h(x1, x2) = 0

}
.

BCs for the weighted displacements and the weighted volume fraction are non-
classical in the case of cusped prismatic shells. Namely, we are not always able to 
prescribe them at cusped edges. 

We consider the body whose thickness is given by the following expression 

.2h(x1, x2) = h0x
κ
2 , x2 ∈ [0, l] h0, κ, l = const > 0. (7) 

For the sake of simplicity we assume that 

. vα0 ≡ 0, α = 1, 2; v30 /≡ 0.

In the case of harmonic vibration, taking into account (7), from (5), (6) we get 

. x2
◦
v30,αα + κ

◦
v30,2 − 2μ−1ρϑ

◦
v30 = 2(μh0)

−1x1−κ
2

◦
X3, . (8) 

x2 
◦ 
ψ0,αα + κ 

◦ 
ψ0,2 − (ξ − ρϑ2)α̃x2 

◦ 
ψ0 = −2(α̃h0)

−1x1−κ 
2 F, (9)
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where 

. 
◦
H + F0 = eιϑtF (x1, x2),

◦
X3 = eιϑt

◦
X0

3(x1, x2),

. v30 = eιϑt ◦
v30(x1, x2), ψ0 = eιϑt

◦
ψ0(x1, x2).

From the following theorem (see G. Jaiani, On a generalization of the Keldysh 
theorem, Georgian Mathematical Journal, 2, 3 (1995), 291–297). 

Theorem 1 If the coefficients . aα , .α = 1, 2, and c of the equation 

. x
κα

2 u,αα +aα(x1, x2)u,α +c(x1, x2)u = 0, c ≤ 0, κα = const ≥ 0, α = 1, 2,

are analytic in . ω, then 

(i) if either .κ2 < 1, or .κ2 ≥ 1, 

.a2(x1, x2) < x
κ2−1
2 (10) 

in . ωδ for some .δ = const > 0, where 

. ωδ := {(x1, x2) ∈ ω : 0 < x2 < δ},

the Dirichlet problem (find .v30, ψ0 ∈ C2(ω) ∩ C(ω̄) by their values prescribed 
on . ∂ω) is well-posed; 

(ii) if .κ2 ≥ 1, 

.a2(x1, x2) ≥ x
κ2−1
2 (11) 

in . ωδ and .a1(x1, x2) = O(x
κ1
2 ), .x2 → 0+ (O is the Landau symbol), the 

Keldysh problem ((Find bounded .v30, ψ0 ∈ C2(ω) ∩ C(ω ∪ (∂ω \ γ 0)) by their 
values prescribed only on the arc .∂ω \ γ 0)) is well-posed. 

it follows 

Theorem 2 If 

.ξ − ρϑ2 ≥ 0, (12) 

(i) .κ < 1, the Dirichlet problem is well-posed; 
(ii) if .κ ≥ 1, the Keldysh problem is well-posed.
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Because of Eq. (8) mathematically coincide to the equation of . N = 0
approximation of the classical linear theory of the elasticity (see [8]) we consider 
Eq. (9), which in our case can be rewritten as follows 

. −
(
h

◦
ψ0,α

)
,α −(ρϑ2 − ξ)α̃−1h

◦
ψ0 = α̃−1F, (13) 

.
◦
ψ0 = 0, on ∂ω. (14) 

Let 

. 
◦
ψ0,

◦
ψ∗
0 ∈ C2(ω) ∩ C1(ω̄), F ∈ C(ω̄)

Using Green’s formula and homogeneous BC we get 

. J (
◦
ψ0,

◦
ψ∗
0 ) =

ˆ

ω

F ·
◦

ψ∗
0 dω

.J (
◦
ψ0,

◦
ψ∗
0 ) =

ˆ

ω

[
h

◦
ψ0,α(

◦
ψ∗
0 ),α −(ρϑ2 − ξ)α̃−1h

◦
ψ0

◦
ψ∗
0

]
dω (15) 

Denote by .D(ω) a space of infinitely differentiable functions with compact 
support in . ω. We introduce the bilinear form and norm by the following formulas: 

. (
◦
ψ0,

◦
ψ∗
0 )Xκ :=

ˆ
ω

xκ
2

[ ◦
ψ0,1

◦
ψ∗
0 ,1 + ◦

ψ0,2

◦
ψ∗
0 ,2

]
dω

and 

. ‖ ◦
ψ0‖2Xκ :=

ˆ

ω

xκ
2

[ ◦
ψ2
0 ,1 +

◦
ψ2
0 ,2

]
dω.

The last is the norm because of the well-known Hardy-type inequality (see [13], p. 
69, [10]). So, . Xκ is a Hilbert space. 

The classical and weak setting of the homogeneous Dirichlet problem can be 
formulated as follows: 

Problem 1 Find .v ∈ C2(ω)∩C1(ω) satisfying Eq. (13) in . ω and the homogeneous 
Dirichlet boundary condition (14). 

Problem 2 Find .v ∈ Xκ satisfying the equality 

.J (
◦
ψ0,

◦
ψ∗
0 ) = 〈F,

◦
ψ∗
0 〉 for all

◦
ψ∗
0 ∈ Xκ, (16)
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here F belongs to the adjoint space .[Xκ ]∗, and .〈·, ·〉 denotes duality brackets 
between the spaces .[Xκ ]∗ and . Xκ . 

Lemma 1 The bilinear form .J (·, ·) is bounded and strictly coercive in the space 
.Xκ(ω), i.e., there are positive constant . C0 and . C1 such that 

.|J (
◦
ψ0,

◦
ψ∗
0 )| ≤ C1‖

◦
ψ0‖Xκ ‖

◦
ψ∗
0 ‖Xκ , (17) 

.J (
◦
ψ0,

◦
ψ0) ≥ C0‖

◦
ψ0‖2Xκ (18) 

for all .
◦
ψ0,

◦
ψ∗
0 ∈ Xκ , because of (12). 

Proof Equation (18) follows from (15) and Hardy’s inequality (see [13], p. 69, [10]) 

. J (
◦
ψ0,

0
ψ0) =

ˆ
ω

[
h

◦
ψ0,α

◦
ψ0,α − (ρθ2 − ξ)α̃−1h

◦
ψ0

◦
ψ0

]
dω

. ≥
ˆ

ω

h
[ ◦
ψ0,α

◦
ψ0,α − 4(ρθ2 − ξ)α̃−1x2

2

◦
ψ0,2

◦
ψ0,2

]
dω

. ≥
ˆ

ω

h
[ ◦
ψ0,α

◦
ψ0,α − 4(ρθ2 − ξ)α̃−1l2

◦
ψ0,2

◦
ψ0,2

]
dω

. ≥ C0

ˆ
ω

h(
◦
ψ

2

0,1 + 0
ψ

2

0,2)dω = C0‖
◦
ψ0‖2Xκ , C0 := min{1, 1 − 4(ρθ2 − ξ)α̃−1l2}.

Now, we have to prove (17). 

. |J (
◦
ψ0,

◦
ψ∗
0 )|2 ≤ C2

∣∣∣
ˆ

ω

h
( ◦
ψ0,1

◦
ψ∗
0 ,1 + ◦

ψ0,2

◦
ψ∗
0 ,2

)
dω

∣∣∣
2

. +
∣∣∣
ˆ

ω

(ρθ2 − ξ)α̃−1h
◦
ψ0

◦
ψ∗
0 dω

∣∣∣
2

. + 2C3

∣∣∣
ˆ

ω

h
( ◦
ψ0,1

◦
ψ∗
0 ,1 + ◦

ψ0,2

◦
ψ∗
0 ,2

)
dω

∣∣∣
∣∣∣
ˆ

ω

(ρθ2 − ξ)α̃−1h
◦
ψ0

◦
ψ∗
0 dω

∣∣∣

. ≤ C2‖
◦
ψ0‖2‖

◦
ψ∗
0 ‖2 + 16(ρθ2 − ξ)2α̃−2l2κh2κ0

ˆ
ω

xκ
2

◦
ψ2
0 ,2dω

ˆ
ω

xκ
2

◦
ψ∗2
0 ,2dω

. + 2C3(ρθ2 − ξ)α̃−1hκ
0

[∣∣∣
ˆ

ω

xκ
2 (

◦
ψ0,1

◦
ψ∗
0 ,1 + ◦

ψ0,2

◦
ψ∗
0 ,2)dω

∣∣∣
2∣∣∣
ˆ

ω

xκ
2

◦
ψ0

◦
ψ∗
0 dω

∣∣∣
2]1/2

. ≤ C2‖
◦
ψ0‖2‖

◦
ψ∗
0 ‖2
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. + 16(ρθ2 − ξ)2α̃−2l2κh2κ0

ˆ
ω

xκ
2 (

◦
ψ2
0 ,1 +

◦
ψ2
0 ,2)dω

ˆ
ω

xκ
2 (

◦
ψ∗2
0 ,1 +

◦
ψ∗2
0 ,2)dω

. + 2C3(ρθ2 − ξ)α̃−1hκ
0 l

2
[
‖ ◦
ψ‖2‖

◦
ψ∗
0 ‖2
ˆ

ω

xκ
2

◦
ψ2
0 ,2dω

ˆ
ω

xκ
2

◦
ψ∗2
0 ,2dω

. ≤ C4‖
◦
ψ0‖2‖

◦
ψ∗
0 ‖2 + C5‖

◦
ψ0‖2‖

◦
ψ∗
0 ‖2 + C6‖

◦
ψ0‖2‖

◦
ψ∗
0 ‖2

this proves inequality (17). 

Remark 1 If .J (
◦
ψ0,

◦
ψ0) = 0, then .v ≡ 0 by (18). 

Theorem 3 Let F be a bounded linear functional from .[Xκ ]∗. Then the variational 
problem (16) has a unique solution .v ∈ Xκ for an arbitrary value of the parameter 
. κ and 

. ‖ ◦
ψ0‖Xκ ≤ 1

C0
‖F‖[Xκ ]∗ .

Proof Taking into account Lemma 1.3, the proof immediately follows from the 
Lax-Milgram theorem. . �
Remark 2 It can be easily shown that if .F ∈ L(ω) and supp. F ∩ γ 0 = ∅, then 
.F ∈ [Xκ ]∗ and 

. 〈F ,
◦

ψ∗
0 〉 =

ˆ

ω

F(x)
◦

ψ∗
0 (x) dω,

since .
◦

ψ∗
0 ∈ H 1(ωε), where . ε is sufficiently small positive number such that 

supp. F ⊂ ωε = ω ∩ {x2 > ε}. Therefore, 

. |〈F ,
◦

ψ∗
0 〉| =

∣∣∣
ˆ

ω

F(x)
◦

ψ∗
0 (x) dω

∣∣∣ ≤ ||F ||L2(ω) ||
◦

ψ∗
0 ||L2(ωε)

≤ ||F ||L2(ω) ||
◦

ψ∗
0 ||H 1(ωε)

≤ Cε ||F ||L2(ω) ||
◦

ψ∗
0 ||Xκ .

In this case, we obtain the estimate 

. || ◦
ψ0||Xκ ≤ Cε

C0
||F ||L2(ω) .

Remark 3 The space . Xκ is a weighted Sobolev space.
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Corollary 1 . 
◦
ψ0 has the zero trace on . ∂ω if .κ < 1. 

Remark 4 In case of full system 

. −μ
[
(h

◦
uα,β),α +(h

◦
uβ,α),α

]
− λ(h

◦
uγ,γ ),β −b(h

◦
u4),β −ρhϑ2 ◦

uβ = Fβ,

−μ(h
◦
u3,α),α −ρhϑ2 ◦

u30 = F3,

−α̃(h
◦
u4,α),α +bh

◦
uγ,γ + ξh

◦
u4 − ρhϑ2 ◦

u4 = F4, β = 1, 2,

where 

. 
◦
ui := ◦

vi0,
◦
u4 := ◦

ψ0, Fi := ◦
Xi, F4 := ◦

H + F0,

we introduce the space . Y κ with inner product and a norm as follows 

. (
◦
u,

◦
u∗)Y κ :=

ˆ
ω

xκ
2

[(◦
u1,1 + ◦

u4

)( ◦
u∗
1,1 +

◦
u∗
4

)
+

(◦
u2,2 + ◦

u4

)( ◦
u∗
2,2 +

◦
u∗
4

)

+
(◦
u1,2 + ◦

u2,1

)( ◦
u∗
1,2 +

◦
u∗
2,1

)
+ ◦

u3,α

◦
u∗
3,α + ◦

u4,α

◦
u∗
4,α

]
dω,

. ‖◦
u‖2Yκ :=

ˆ

ω

xκ
2

[(◦
u1,1 + ◦

u4

)2 +
(◦
u2,2 + ◦

u4

)2 +
(◦
u1,2 + ◦

u2,1

)2

+ ◦
u23,1 + ◦

u23,2 + ◦
u24,1 + ◦

u24,2

]
dω.

If 

.ϑ2 ≤ min

{
μ

2ρl2
; ξ

ρ

}
(19) 

the coerciveness of the corresponding bilinear form and uniqueness and existence 
results for the variational problem can proved analogously. 

In view of the homogeneous Dirichlet boundary condition, if .κ > 1, the  
following Hardy inequality holds (see [13], p. 69, [10]) 

. 

ˆ l

ε

xκ−2
2 v2α0dx2 ≥ 4

(κ − 1)2

ˆ l

ε

xκ
2 (vα0,2)

2dx2, κ > 1.

Replacing in last inequality . κ by .κ + 2, we obtain 

.

ˆ l

ε

xκ
2 v2α0dx2 ≥ 4

(κ − 1)2

ˆ l

ε

xκ+2
2 (vα0,2)

2dx2, f or any κ > 0.
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Now, considering the limit procedure as .ε → 0+, since the limits of the last integrals 
exist for .vα0 ∈ Y κ , we immediately get the following 

. 

ˆ l

0
xκ
2 v2α0dx2 ≥ 4

(κ − 1)2

ˆ l

0
xκ+2
2 (vα0,2)

2dx2, f or any κ > 0.

Integrating by . x1 over .]x0
1 , x

1
1 [, we get 

. 

ˆ
ω

xκ
2 v2α0dω ≥ 4

(κ − 1)2

ˆ
ω

xκ+2
2 (vα0,2)

2dω, f or any κ > 0.

The linear spaces . Xκ and . Y κ as sets of vector function as coincide and the norms 
.‖ · ‖Xκ , .‖ · ‖Yκ are equivalent if (19) is fulfilled. 
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Solution of the Kirsch Problem for the 
Elastic Materials with Voids in the Case 
of Approximation .N = 1 of Vekua’s 
Theory 

Bakur Gulua, Roman Jangava, Tamar Kasrashvili, and Miranda Narmania 

Abstract In this paper we consider a boundary value problem for an infinite 
plate with a circular hole. The plate is the elastic material with voids. The hole 
is free from stresses, while unilateral tensile stresses act at infinity. The state 
of plate equilibrium is described by the system of differential equations that is 
derived from three-dimensional equations of equilibrium of an elastic material with 
voids (Cowin-Nunziato model) by Vekua’s reduction method. its general solution 
is represented by means of analytic functions of a complex variable and solutions 
of Helmholtz equations. The problem is solved analytically by the method of the 
theory of functions of a complex variable. 

1 Introduction 

The nonlinear and linear theories for the behaviour of porous solids, in which the 
skeletal or matrix material is elastic and the interstices are voids of the material, 
was developed by Nunziato and Cowin [1, 2]. Such materials include, in particular, 
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rocks and soils, granulated and some other manufactured porous materials. This 
theory differs essentially form the classical theory of elasticity in that the volume 
fraction function corresponding to the void volume is considered as an independent 
variable. In spite of a great number of works on the theory of elastic materials with 
voids or empty pores, only a limited number of them focus on the study of plates 
and shells. 

As is known, there exist many methods of reducing three-dimensional problems 
of equilibrium of elastic shells to two-dimensional problems. Some such general 
methods were proposed by famous mathematician and mechanician I. Vekua [3, 4]. 
He used the Cauchy. −Poisson method, which is based on the expansion of displace-
ments and stresses into series in terms of a system of functions with respect to 
the thickness coordinate. As basis functions Vekua used the Legendre polynomials, 
which make up a complete system on the considered interval, and for expansion 
coefficients he obtained a two-dimensional system of equilibrium equations for 
shells of variable thickness. According to Vekua’s method, in the expansions of 
the sought functions we can preserve only the first member (approximation N = 0), 
the first two members (N = 1), the first three members (N = 2) and so on. Thus, the 
models obtained by the method under consideration are often called the hierarchical 
models of elastic shells. 

2 Statement of the Problem 

Let .Ox1x2x3 be the rectangular Cartesian coordinate system. Let . Ω = ω×]−h, h[
be an infinite plate with a circular hole of radius R centred at the origin O. The  
plate thickness is assumed to be constant and equal to 2h. The plate is the isotropic 
material with voids. 

The governing equations of the theory of elastic materials with voids can be 
expressed in the following form [2]: 

• Equations of equilibrium 

.Tij,j + Фi = 0, j = 1, 2, 3, (1) 

.hi,i + g + Ψ = 0, (2) 

where . Tij is the symmetric stress tensor, . Фi are the volume force components, . hi

is the equilibrated stress vector, g is the intrinsic equilibrated body force and . Ψ
is the extrinsic equilibrated body force. 

• Constitutive equations 

.

Tij = λekkδij + 2μeij + βφδij , i, j = 1, 2, 3,
hi = αφ,i, i = 1, 2, 3,
g = −ξφ − βekk,

(3)
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where . λ and . μ are the Lamé constants; . α, . β and . ξ are the constants characterizing 
the body porosity; . δij is the Kronecker delta; .φ := ν − ν0 is the change of the 
volume fraction function from the matrix reference volume fraction . ν0 (clearly, 
the bulk density .ρ = νγ , .0 < ν ≤ 1, here . γ is the matrix density and . ρ is the 
mass density); . eij is the strain tensor and 

. eij = 1
2

(
ui,j + uj,i

)
, (4) 

where .ui, i = 1, 2, 3 are the components of the displacement vector.. 

The constitutive equations also meet some other conditions, following from 
physical considerations 

.
μ > 0, α > 0, ξ > 0,
3λ + 2μ > 0, (3λ + 2μ)ξ > 3β2.

(5) 

In [5] using Vekua’s dimension reduction method [3], linear two-dimensional 
(2D) governing equations were obtained from the above three-dimensional (3D) 
equations with respect to so-called r-th order moments of functions under consider-
ation, where the zero order moments (which are averaged along the thickness of the 
plate) and the first order moments are defined as 

. 

(
(0)
ui,

(0)
φ

)
= 1

2h

hˆ

−h

(ui, φ) dx3,

(
(1)
ui,

(1)
φ

)
= 3

2h2

hˆ

−h

x3 · (ui, φ) dx3.

Besides, In Section 7 under title .N = 0 Approximation for Porous Isotropic Elastic 
Shells of [5] it is shown that in the case of cusped prismatic shells, depending 
on the character of vanishing of the thickness at the lateral boundary of the shell 
the boundary conditions of 2D problems for displacements and volume fraction 
functions are non-classical, in general, and the criteria’s are given when the Dirichlet 
or the Keldysh type Boundary value problems are well-posed; The case of a plate of 
constant thickness is considered as well. 

In particular, in the .N = 1 approximation of I.Vekua’s theory it is assumed that 

.ui(x1, x2, x3) = (0)
ui(x1, x2) + x3

h

(1)
ui(x1, x2),

φ(x1, x2, x3) = (0)
φ (x1, x2) + x3

h

(1)
φ (x1, x2),



228 B. Gulua et al.

Similarly, for the stress tensor components, the components of the equilibrated 
stress vector and the intrinsic equilibrated volume force we will have the following 
zero and first order moments 

. 

(
(0)
Tij ,

(0)
hi ,

(0)
g

)
= 1

2h

h́

−h

(
Tij , hi, g

)
dx3,

(
(1)
Tij ,

(1)
hi ,

(1)
g

)
= 3

2h2

h́

−h

x3 · (
Tij , hi, g

)
dx3.

For .h = const the reduced system of equilibrium equations gets split into two 

independent systems: tension. −compression equations with unknowns . 
(0)
u1, . 

(0)
u2, . 

(1)
u3, . 

(0)
φ

and bending equations with unknowns . 
(1)
u1, . 

(1)
u2, . 

(0)
u3, . 

(1)
φ . In this paper we consider the 

system of tension. −compression equations. 
In the case .N = 1 approximation from [5] the basic relations of elastic isotropic 

plates with voids have the following form: 

.

∂α

(0)
Tαγ = 0, α, γ = 1, 2

∂α

(1)
Tα3 − 3

h

(1)
T33 = 0,

∂α

(0)
hα + (0)

g = 0,

(6) 

where 

.

(0)
Tαγ = λ

(
(0)
θ +(1)

u3

)
δαγ + μ

(
∂α

(0)
uγ + ∂γ

(0)
uα

)
+ β

(0)
φ δαγ ,

(0)
T33 = λ

(
(0)
θ +(1)

u3

)
+ 2μ

(1)
u3 + β

(0)
φ ,

(1)
Tγ 3 = μ∂γ

(1)
u3,

(0)
hγ = α∂γ

(0)
φ ,

(0)
g = −ξ

(0)
φ − β

(
(0)
θ +(1)

u3

)
,

(7) 

.
(0)
θ = ∂1

(0)
u1 + ∂2

(0)
u2.
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Substituting (7) into system (6), we obtain the following system of governing 

equations of statics with respect to the functions . 
(0)
u1, . 

(0)
u2, . 

(1)
u3, . 

(0)
φ

.

μ∆
(0)
u1 + (λ + μ)∂1

(0)
θ + λ∂1

(1)
u3 + β∂1

(0)
φ = 0,

μ∆
(0)
u2 + (λ + μ)∂2

(0)
θ + λ∂2

(1)
u3 + β∂2

(0)
φ = 0,

μ∆
(1)
u3 − 3

h

[
λ

(0)
θ + (λ + 2μ)

(1)
u3 + β

(0)
φ

]
= 0,

(α∆ − ξ)
(0)
φ − β

[
(0)
θ +(1)

u3

]
= 0,

(8) 

where .∆ := ∂11 + ∂22 is the two-dimensional Laplace operator. 
On the plane .Ox1x2, we introduce the complex variable . z = x1 + ix2 =

reiϑ , (i2 = −1) and the operators .∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), 
.z̄ = x1 − ix2, and .∆ = 4∂z∂z̄. 

In order to write system (8) in the complex form, we multiply the second equation 
of the system by i and sum the obtained with the first equation: 

.

2μ∂z̄∂z

(0)
u+ + (λ + μ)∂z̄

(0)
θ + λ∂z̄

(1)
u3 + β∂z̄

(0)
φ = 0,

μ∆
(1)
u3 − 3

h

[
λ

(0)
θ + (λ + 2μ)

(1)
u3 + β

(0)
φ

]
= 0,

(α∆ − ξ)
(0)
φ − β

[
(0)
θ +(1)

u3

]
= 0,

(9) 

where .
(0)
u+ =(0)

u1 + i
(0)
u2, .

(0)
θ = ∂z

(0)
u+ + ∂z̄

(0)
ū+. 

As the analogues of the Kolosov-Muskhelishvili formulas [6] for system (9) we  
have 

.

2μ
(0)
u+ = 𝜘1ϕ(z) − 𝜘2zϕ'(z) − ψ(z) − p1∂z̄χ1(z, z̄) − p2∂z̄χ2(z, z̄),

(1)
u3 = l11χ1(z, z̄) + l12χ2(z, z̄) − E1(ϕ

'(z) + ϕ'(z)),
(0)
φ = l21χ1(z, z̄) + l22χ2(z, z̄) − E2(ϕ

'(z) + ϕ'(z)),

(10) 

where .ϕ(z) and .ψ(z) are the arbitrary analytic functions of z, .χ1(z, z̄) and . χ2(z, z̄)

are the general solutions of the Helmholtz equations 

.∆χ − κ1χ = 0, ∆χ − κ2χ = 0,
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and . κ1, . κ2 are eigenvalues and .l11, l21, .l12, l22 are eigenvectors of the matrix C. 
.E1 = a11 + a12, .E2 = a21 + a22 and . aij are coefficients of the matrix .−C1D: 

. C =
( 12(λ+μ)

h(λ+2μ)
6β

h(λ+2μ)
2μβ

α(λ+2μ)
ξ
α
− β2

α(λ+2μ)

)

, D =
(

3λ
2hμ(λ+2μ)

0

0 β
2α(λ+2μ)

)

.

Also .𝜘1 = 1
2 + (λE1+βE2)μ

λ+2μ , .𝜘2 = 1
2 − (λE1+βE2)μ

λ+2μ , .p1 = 4(λl11+βl21)μ
κ1(λ+2μ)

, . p2 =
4(λl12+βl22)μ

κ2(λ+2μ)
. 

From (10) complex combinations of the stress tensor components are expressed 
by means of the formulas 

. 

(0)
T11 −(0)

T22 + 2i
(0)
T12 = −2𝜘2zϕ''(z) − ψ '(z) − 2p1∂

2
z̄z̄χ1(z, z̄) − 2p2∂

2
z̄z̄χ2(z, z̄),

(0)
T11 +(0)

T22 = E3(ϕ
'(z) + ϕ'(z)) + E4χ1(z, z̄) + E5χ2(z, z̄),

(1)
T+ = l11∂z̄χ1(z, z̄) + l12∂z̄χ2(z, z̄) − E1ϕ''(z)),
(0)
h+ = l21∂z̄χ1(z, z̄) + l22∂z̄χ2(z, z̄) − E2ϕ''(z)),

(11) 
where 

. E3 = λ + μ

μ
(𝜘1 + 𝜘2) − 2λE1 − 2βE2,

. E4 = 2λl11 + 2βl21 − λ + μ

μ
8p1κ1,

. E5 = 2λl12 + 2βl22 − λ + μ

μ
8p2κ2.

Now consider a boundary value problem for an infinite plate with a circular hole 
Fig. 1. We formulate the boundary value problem: find such a solution of system (9) 
that on the hole contour and at infinity satisfies respectively the following boundary 
conditions 

.

(0)
Trr + i

(0)
Trϑ = 0,

(1)
Tr3 = 0,

(0)
hr3 = 0,

(0)
T ∞
11 = p,

(0)
T ∞
12 =

(0)
T ∞
22 =

(0)
T ∞
13 =

(0)
T ∞
23 = 0,

(12)
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Fig. 1 An infinite plate with 
a circular hole 

where 

. 

(0)
Trr + i

(0)
Trϑ = 1

2

{
(0)
T11 +(0)

T22 +
[
(0)
T11 −(0)

T22 + 2i
(0)
T12

]
e−2iϑ

}
,

(1)
Tr3 = Re

{
(1)
T+e−iϑ

}
,

(1)
hr3 = Re

{
(0)
h+e−iϑ

}
.

3 Solution of the Problem 

Taking into account formula (11), the boundary conditions (12) take the form 

.

(0)
Trr + i

(0)
Trϑ = E3(ϕ

'(z) + ϕ'(z)) + E4χ1(z, z̄) + E5χ2(z, z̄)(
−2𝜘2zϕ''(z) − ψ '(z) − 2p1∂

2
z̄z̄χ1(z, z̄) − 2p2∂

2
z̄z̄χ2(z, z̄)

)
e−2iϑ ,

(1)
Tr3 =

(
l11∂z̄χ1(z, z̄) + l12∂z̄χ2(z, z̄) − E1ϕ''(z))

)
e−iϑ

+ (
l11∂zχ1(z, z̄) + l12∂zχ2(z, z̄) − E1ϕ

''(z))
)
eiϑ = 0,

(1)
hr3 =

(
l21∂z̄χ1(z, z̄) + l22∂z̄χ2(z, z̄) − E2ϕ''(z))

)
e−iϑ

+ (
l21∂zχ1(z, z̄) + l22∂zχ2(z, z̄) − E2ϕ

''(z))
)
e−iϑ .

(13)
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The analytic functions .ϕ'(z), .ψ '(z) and the metaharmonic functions .χ1(z, z̄) and 
.χ2(z, z̄) are represented as the series 

.

ϕ'(z) =
∞∑

n=0

anz
−n, ψ '(z) =

∞∑

n=0

bnz
−n,

χ1(z, z̄) =
+∞∑

−∞
αnKn(

√
κ1r)e

inϑ , χ2(z, z̄) =
+∞∑

−∞
βnKn(

√
κ2r)e

inϑ

(14) 

where .Kn(ζ r) is a modified Bessel function of n-th order. From (5) . κ1 and . κ2 are 
positive numbers. 

Bearing in mind conditions at infinity, from formulas (11) we define the 
coefficients . a0 and . b0

.a0 = E3

2
p, b0 = −p. (15) 

Substituting (14) into (13), comparing the coefficients of same exponents and 
bearing in mind the condition of uniqueness of displacements, which follows from 
formulas (11) 

. 𝜘1a1 + 𝜘2b̄1 = 0,

we obtain 

.

b2 = 2E2R
2a0,

E3

R2 ā2 +
(
E4K−2(

√
κ1R) − p1κ1

2
K0(

√
κ1R)

)
α2

+
(
E5K−2(

√
κ2R) − p2κ2

2
K0(

√
κ2R)

)
β2 − b̄0 = 0,

4E1

R3 ā2 − l11
√

κ1
(
K1(

√
κ1R) + K3(

√
κ1R)

)
α2

−l12
√

κ2
(
K1(

√
κ2R) + K3(

√
κ2R)

)
β2 = 0,

4E2

R3
ā2 − l21

√
κ1

(
K1(

√
κ1R) + K3(

√
κ1R)

)
α2

−l22
√

κ2
(
K1(

√
κ2R) + K3(

√
κ2R)

)
β2 = 0,

E3 − 2𝜘2
R2 ā2 − f rac14b̄4 +

(
E4K2(

√
κ1R) − p1κ1

2
K4(

√
κ1R)

)
α2

+
(
E5K2(

√
κ2R) − p2κ2

2
K4(

√
κ2R)

)
β2 = 0.

(16) 

So from (14) and (15) we find .a0, a2, b0, b2, b4, α2, β2. All other coefficients 
in series (14) are equal to zero.
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Thus, we have defined the sought functions .ϕ'(z), .ψ '(z), .χ1(z, z̄) and . χ2(z, z̄)

. ϕ'(z) = a0 + a2

z2
, ψ '(z) = b0 + b2

z2
+ b4

z4
,

. χ1(z, z̄) = 2K2(
√

κ1r)α2 cos 2ϑ, χ2(z, z̄) = 2K2(
√

κ2r)β2 cos 2ϑ.

Thus, the problem stated is solved. As we see from the solution obtained, stresses 
depend on the materials of which the body consists. 
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Analysis of BVP for Some Elliptic 
Systems on a Complex Plane 

Giorgi Makatsaria and Nino Manjavidze 

Abstract In the paper some special type elliptic systems of differential equations 
on the complex plane is studied. The correct BVP for these systems are considered. 
In some sense a unique class of solutions is effectively constructed for a sufficiently 
wide class of singular elliptic systems for which the Riemann-Hilbert problem can 
be correctly posed. The complete analysis of this problem is given. 

1 Introduction 

The boundary value problems for the first order elliptic systems on the complex 
plane were investigated extensively over the past years [4]. The first order linear 
system of partial differential equations 

. 
∂u

∂x
= A(x, y)

∂u

∂y
+ B(x, y)u(x, y) + F(x, y),

where .u = (u1, u2, . . . , un) is . 2n desired vector, .A,B are given real . 2n × 2n
matrices, depending on two variables .x, y, and . F is a given .2n-vector. This system is 
elliptic in some plane domain . D if and only if the matrix . A has no real characteristic 
numbers in . D. When .n = 1 in case of sufficient smoothness of the coefficients of 
the system, after corresponding change of variables this system can be reduced to 
one complex equation 

. ∂z̄w + Aw + Bw̄ = F

(
∂z̄ = 1

2

(
∂

∂x
+ i

∂

∂y

))
.

At present this equation is called Carleman-Vekua equation. 
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In this paper the Riemann-Hilbert boundary value problem 

. Re{λ(t)w(t)} = γ (t), t ∈ Γ, (R-H)

for the following Carleman-Vekua equation 

. 
∂w

∂z̄
+ A(z)w + B(z)w̄ = 0 (C-V)

with the polar singularities in the domain G is investigated. G is a finite .m + 1-
connected domain of the complex plane .z = x + iy with sufficiently smooth 
boundary provided that the given functions .λ(t) and .γ (t) are the Hölder continuous 
functions. It is well-known that the equation (C-V) in case of regular coefficients 
(i.e. .A(z), B(z) ∈ Lp(G) for some .p > 2 ) the condition . λ(t) /= 0, t ∈ Γ

provides the Noetherity of the problem (R-H) in the class of continuous functions 
in .Ḡ\ {z0} satisfying the equation (C-V) in .G\ {z0} and the asymptotic conditions 
.O (|z − z0|σ ) , z → z0. Here  . z0 is some point in the domain G and . σ is some real 
number. For the Carleman-Vekua equation with the polar singularities the situation 
is essentially different. It is known that there exists a sufficiently wide class of 
equations permitting only trivial solutions in the domain .G\ {z0} and satisfying 
the asymptotic conditions .O (|z − z0|σ ) , z → z0, where . z0 is the point of polar 
singularity of the equation (C-V), . σ is a real number. Therefore it makes no sense to 
consider the boundary value problems in this class. On the other hand if there are no 
restrictions on the solutions in the neighborhood of the singular point . z0 then it may 
occur that the homogeneous boundary problem has an infinite number of linearly 
independent solutions. 

In this work for the Riemann-Hilbert problem the Noetherity conditions in 
particular like asymptotic conditions .O

(
exp

{
δ0 |z − z0|−σ0

})
, z → z0 for a 

sufficiently wide class of the Carleman-Vekua equations are obtained. Here the 
constant parameters .δ0, σ0 are uniquely defined by means of the coefficients of 
the equation, are independent from the given boundary functions and characterize 
the polar singularities of the coefficients. These asymptotic conditions are in some 
sense exact since if we seek the solution of the Riemann-Hilbert problem in 
the class satisfying the asymptotic condition .O

(
exp

{
δ |z − z0|−σ

})
, z → z0, 

and if at least one from the equalities .δ = .δ0, σ = σ0 is not fulfilled then 
either the homogeneous problem has infinite number of linearly independent 
solutions or the non-homogeneous problem isn’t solvable for any right-hand 
side. 

In Sect. 2 the above mentioned asymptotic conditions are obtained; the general 
representation of the solutions of the Carleman-Vekua equations with the polar 
singularities satisfying these conditions are constructed. By means of these results 
the Riemann-Hilbert problem is correctly posed and is completely investigated in 
Sect. 3.
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2 The Carlemann-Vekua Equations with the Polar 
Singularities 

Let G be a bounded complex domain with the boundary . Γ consisting from closed 
non-intersecting Liapunov smooth .Γ0, Γ1, . . . , Γm contours and . Γ0 covers all the 
rest. Let . G∗ be some finite subset of the set G, 

. G∗ = {z1, z2, . . . , zN } , N ≥ 1.

Consider the Carlemann-Vekua equation 

.
∂w

∂z̄
+ A(z)w + B(z)w̄ = 0, (1) 

in the domain G, provided that the coefficient .B(z) ∈ Lp(G), p > 2 and the 
coefficient .A(z) admits the following representation 

.A(z) = g(z) +
N∑

k=1

Ak(z)

|z − zk||vk
(2) 

where the function .g(z) is holomorphic in .G\G∗ and has continuous boundary value 
on . Γ ; the function .Ak(z) admits the following representation 

.Ak(z) = ak(z) exp {ink arg (z − zk)} , (3) 

where 

. 
ak(z) − λk

|z − zk|vk
∈ Lp(G), p > 2;

the constants .λk, vk, nk are correspondingly complex, positive and entire numbers 
for every .k = 1, 2, . . . , N (cf. [2, 3]). 

Under the solution of Eq. (1) is understood the continuous generalized solution 
in .G\G∗; denote by .R (A,B,G\G∗) the set of all possible such solutions (cf. [6]). 

Everywhere below the fulfillment of the following condition 

.λk /= 0; |nk − 1| > 2 (vk − 1) > 0, k = 1, 2, . . . , N (4) 

is assumed. 
From (2) we have that the coefficient .A(z) has the polar singularities of the form 

.|z − zk|−vk and the singularities of the function .g(z) in the points . zk . Below it will 
be established that the structure of the solutions of the Carleman-Vekua equation 
depends on the relationship between the parameters .λk, vk, nk . Generally speaking,



238 G. Makatsaria and N. Manjavidze

if the required conditions do not hold, then the assumptions proved below are not 
valid. 

The following notations we need below 

. qk = Resg(z)

z=z'
k

, k = 1, 2, . . . , N;Qk = 1

2πi

ˆ
Γk

g(t)dt, k = 1, 2, . . . , m

Introduce an auxiliary function given by the formula 

. f (z) =
ˆ

Γζ0,z

g(t)dt −
m∑

k=1

Qk log (z̄ − τk) −
N∑

k=1

qk log (z̄ − zk) ,

in the domain .G\G∗, where . ζ0 is some fixed point in .G\G∗;Γζ0,z is a smooth 
contour connecting the points .ς0, z and lying in .G\G∗; τk is an arbitrary fixed point 
inside the contour .Γk, k = .1, 2, . . . , m. Consider also the function 

.F(z) = Λ(z) exp{2iImf (z)}χ(z), z ∈ G\G∗, (5) 

where 

.Λ(z) =
N∏

k=1

(z − zk)
−[2Reqk] (6) 

.χ(z) = exp

{
2

m∑
k=1

Qk log |z − τk| + 2
N∑

k=1

qk log |z − zk|
}

. (7) 

It follows from the conditions (4) that .2−vk−nk /= 0, k = 1, 2, . . . , N and therefore 
by the formulas 

.δ∗
k = 2λk

2 − vk − nk

, k = 1, 2, . . . , N (8) 

the definite non-zero numbers are given. Assume 

.R(z) ≡
N∑

k=1

δ∗
k

|z − zk|vk−1
· exp {i (nk − 1) · arg (z − zk)} , (9) 

.Ψ (z) ≡ F(z) exp{R(z)}. (10)
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Consider the following Carleman-Vekua equation 

.
∂w∗
∂z̄

+ A∗(z)w∗ + B∗(z)W∗ = 0, (11) 

where 

. A∗(z) =
N∑

k=1

ak(z) − λk

|z − zk|vk
eink arg(z−zk), B∗(z) = B(z)Ψ (z)

Ψ (z)
.

It is easy to see, that .A∗(z), B∗(z) ∈ Lp(G), p > 2 and hence (11) is the regular 
Carleman-Vekua equation. 

The following theorem takes place. 

Theorem 1 By the following relation 

. w∗(z) = Ψ (z)w(z), z ∈ G\G∗ (
w∗ ∈ R

(
A∗, B∗,G\G∗) , w ∈ R

(
A,B,G\G∗)) ,

(12) 

the bijective correspondence between the classes .R(A,B,G\G∗) and . R(A∗, B∗,
G\G∗) is established. 

Proof One can check directly the following equalities 

. 
∂F (z)

∂z̄
= F(z) · g(z),

∂ exp{R(z)}
∂z̄

= exp{R(z)}
N∑

k=1

λk

|z − zk|vk
· exp {ink · arg (z − zk)} ,

∂Ψ (z)

∂z̄
= Ψ (z)

[
N∑

k=1

λk

|z − zk|vk
· exp {ink · arg (z − zk)} + g(z)

]
.

⨅⨆
It is clear that by means of the relation (12) the bijective correspondence is also 

established between the classes 

. R
(
A∗, B∗,G\G∗) ∩ C

(
Ḡ\G∗) ,R

(
A,B,G\G∗) ∩ C

(
Ḡ\G∗) .

Let .δ = (δ1, δ2, . . . , δN ) and .σ = (σ1, σ2, . . . , σN) are given N -dimensional 
vectors with the nonnegative components. Denote by .Ω0[δ, σ ] the class of all 
possible functions from the set .R (A,B,G\G∗) satisfying the condition 

.w(z) = O
(
exp

{
δk |z − zk|−σk

})
, z → zk, k = 1, 2, . . . , N. (13)
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Denote by .Ω0[δ, σ ] the class of all possible functions from the set . Ω0[δ, σ ]
admitting the continuous extension in .

(
Ḡ\G∗). By  . δ∗ and . v∗ the following vectors 

are denoted 

. δ∗ ≡ (∣∣δ∗
1

∣∣ , ∣∣δ∗
2

∣∣ , . . . , ∣∣δ∗
N

∣∣) , v∗ ≡ (v1 − 1, v2 − 1, . . . , vN − 1) .

The class of the solutions .Ω0
[
δ∗, v∗] is very important class in what follows. 

The following theorem holds. 

Theorem 2 If for some k the inequality .δk <
∣∣δ∗

k

∣∣ is fulfilled then the class 
.Ω0

[
δ, v∗] is a trivial class (i.e., it contains only zero functions). 

The proof of the Theorem 2 follows from [5] and [1]. 
Theorem 2 directly implies that if for some k the inequality .σk < .vk − 1 is valid, 

then for every vector . δ the class .Ω0[δ, σ ] is a trivial class. 
Therefore, if .σk = vk − 1, k = 1, 2, . . . , N and for some . k0 the inequality 

.δk0 <

∣∣∣δ∗
k0

∣∣∣ is fulfilled or if for some . k0 the inequality .σk0 < vk0 − 1 is fulfilled then 

the class .Ω0[δ, σ ] is a trivial class. 
It is natural to investigate the class .Ω0[δ, σ ]. The following theorem gives us the 

representation of the solution of this class. 

Theorem 3 By means of the relation (13) the bijective correspondence between the 
classes .Ω0

[
δ∗, v∗] (

Ω0
[
δ∗, v∗]) ,R (A∗, B∗,G)

(
R (A∗, B∗,G) ∩ C(Ḡ)

)
is estab-

lished. 

3 Investigation of the Riemann-Hilbert Boundary Value 
Problem 

In order to pose correctly the Riemann-Hilbert boundary value problem it is clear 
from the above mentioned results that it is sufficient to require from the solution of 
Eq. (1) the fulfillment of the asymptotic condition of the form 

. w(z) = O
(
exp

{∣∣δ∗
k

∣∣ · |z − zk|−vk+1
})

, z → zk, k = 1, 2 . . . , N (∗).

In the present section the proof of sufficiency of asymptotic condition . (∗) is given 
and the boundary value problems are investigated. Consider the following boundary 
value problem: on the boundary . Γ the Hölder continuous functions .λ(t) and . γ (t)

are given, .γ (t) is a real function and .|λ(t)| = 1; find the function .w(z) ∈ . Ω0[δ, σ ]
satisfying the boundary equation 

.Re{λ(t)w(t)} = γ (t), t ∈ Γ. (14)
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From the Theorem 2 it follows that in case .γ (t) /= 0 the problem (14) isn’t solvable 
in the class .Ω0[δ, σ ] if .σk = vk − 1 for some k or if .σk = vk − 1, k = 1, 2, . . . , N , 
but .δk <

∣∣δ∗
k

∣∣ for some k. 
Let .δk /= 0, σk ≥ vk − 1, k = 1, 2, . . . , N . Denote by . H the set of all possible 

values k of the index for which .δk <
∣∣δ∗

k

∣∣. 
The following theorem takes place. 

Theorem 4 The homogeneous boundary value problem (14), .(γ (t) = 0), in the 
class .Ω0[δ, σ ] has infinite number of linearly independent solutions if and only if 
when one from the following conditions is fulfilled: 

1. .H = ∅;∑N
k=1 (δk + σk) >

∑N
k=1

(∣∣δ∗
k

∣∣ + vk − 1
)
; 

2. .H = ∅; σk > vk − 1, k ∈ H. 

Proof Let the first condition (1) be fulfilled. Then for all .k = 1, 2, . . . , N the 
following inequalities hold 

. δk ≥ ∣∣δ∗
k

∣∣ + vk − 1,

and there exists at least one .k = k0 for which the strict inequality is fulfilled 

.δk0 + σk0 >
∣∣δ∗

k0

∣∣ + vk0 − 1, (15) 

From this last inequality follows that one from the inequalities . δk0 ≥
∣∣∣δ∗

k0

∣∣∣ , σk0 ≥
vk0 − 1 is also strict. Let .δk0 >

∣∣∣δ∗
k0

∣∣∣ and let us fix an arbitrary number 

.S ≥ 0. Consider the solutions .w∗(z) from the class .R (A∗, B∗,G\G∗) which are 
representable in the form 

.w∗(z) = Φ(z)(
z − zk0

)s exp(ω(z)), (16) 

where .Φ(z) is a function, holomorphic in G and continuous in . Ḡ. It is easy to see 
that every function of the form (16) defines the solution .w(z) of Eq. (1) of the class 
.Ω0[δ, σ ] by means of the relation (12). Further on, we can see that by the relation 

.w∗(z) = ω0(z)(
z − zk0

)s (17) 

the bijective correspondence between the class of all functions of the form (16) and 
the class 

.ℜ
⎛
⎝A∗, B∗,

(
z − zk0

z − zk0

)S

,G

⎞
⎠ ∩ C(Ḡ)
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of the solutions of the equation 

.
∂ω0

∂z
+ A∗(z)ω0 + B∗

(
z − zk0

z̄ − zk0

)s

ω0 = 0. (18) 

is established. 
Together with the problem (14) consider the following boundary value problem: 

find the generalized solution of the problem (18) continuous in G and satisfying the 
boundary condition 

.Re

{
λ(t)(

t − zk0

)s
Ψ (t)

ω0(t)

}
= 0, t ∈ Γ. (19) 

It is clear that by the formulas (17), (12) every system of linearly independent 
solutions of the problem (19) defines the system of linearly independent solutions of 
homogeneous problem (14). On the other hand the number of linearly independent 
solutions of the problem (19) l satisfies the inequality 

.l ≥ 2 ind

(
λ(t)(

t̄ − z0
) sT

(t)

)
− m + 1, (20) 

by virtue of which we get 

. l ≥ 2

(
ind λ(t) + S +

N∑
k=1

[
2Reqk

]) − m + 1.

From here it follows that for an appropriate choice of S the number l will be 
arbitrarily large and therefore the homogeneous problem (14) has infinite number 
of linearly independent solutions. One can prove similarly that the set of linearly 
independent solutions of the homogeneous problem (14) is infinite in case . σk0 >

vk0 − 1, δk0 =
∣∣∣δ∗

k0

∣∣∣. Hence we obtain that if the condition (1) is fulfilled then 
the homogeneous problem (14) has the infinite number of linearly independent 
solutions. 

Let now the condition (2) be fulfilled. Then on the basis of the relation 

. Ω0

[
δ(1), σ (1)

]
⊂ Ω0

[
δ(2), σ (2)

]
,

which follows directly from the conditions 

.δ
(2)
k /= 0, k = 1, 2, . . . , N; σ

(2)
k > σ

(1)
k , k ∈ H,
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we get that the homogeneous problem (14) has infinite number of linearly indepen-
dent solutions. The sufficiency of one of the conditions (1), (2) is proved. Let us 
prove the necessity. 

Let the homogeneous problem (14) has infinite number of linearly independent 
solutions and the set .H /= ∅ then for every .k ∈ H we have .σk > vk − 1. Indeed, if 
for at least one .k0 ∈ H we have .σk0 > vk0 − 1 then on the basis of the Theorem 2 
the class .Ω0[δ, σ ] would consist from only zero elements; we get a contradiction 
and so when .H /= ∅ the condition (2) is fulfilled. Let now .H = ∅, then prove that 

.

N∑
k=1

(δk + σk) >

N∑
k=1

(∣∣δ∗
k

∣∣ + vk − 1
)

(21) 

Indeed, otherwise it would be 

.

N∑
k=1

(δk + σk) =
N∑

k=1

(∣∣δ∗
k

∣∣ + vk − 1
)

(22) 

and therefore .δk = ∣∣δ∗
k

∣∣ , σk = vk − 1, k = 1, 2, . . . , N . 
Hence we will obtain that the homogeneous problem (14) has infinite number of 

linearly independent solutions in the class .Ω0
[
δ∗, v∗], but this problem has finite 

number of linearly independent solutions. Indeed, by virtue of the Theorem 3, using  
the relation (12), the bijective correspondence is established between the solutions 
of the problem (14) and the following boundary value problem: find the generalized 
solution of the equation 

.
∂w∗
∂z̄

+ A∗(z)w∗(t) + B∗w∗ = 0, (23) 

continuous in the domain . Ḡ satisfying the boundary condition 

.Re

{
λ(t)

Ψ (t)
w∗(t)

}
= γ (t), t ∈ Γ. (24) 

The homogeneous problem (23) and (24), .(γ (t) = 0 ), on the basis of [6] has finite 
number of linearly independent solutions. That is why the homogeneous problem 
(14) has finite number of linearly independent solutions in the class .Ω0

[
δ∗, v∗]. 

Therefore the condition (22) isn’t fulfilled and thus (21) is fulfilled. Theorem 14 is 
completely proved. ⨅⨆
Consider the boundary value problem: find the generalized solution continuous in 
the class . Ḡ of the equation 

.
∂w'∗
∂z̄

− A∗(z)w'∗(t) − B∗(z)w'∗ = 0, (25)
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satisfying the boundary condition 

.Re

{
λ(t)

Ψ (t)
t '(s)w'∗(t)

}
= 0, t ∈ Γ. (26) 

It is easy to see that the number of linearly independent solutions of the problem 
(26), . l∗ is finite and it is clear that for the problem (23) to be solvable it is necessary 
and sufficient the fulfillment of the following equation 

.

ˆ
Γ

λ(t)

Ψ (t)
γ (t)w'∗(t)dt = 0 (27) 

for every solution of the problem (26). 
On the basis of above obtained results the following theorem becomes evident. 

Theorem 5 The homogeneous problem (14) in the class .Ω0
[
δ∗, v∗] has finite 

number of linearly independent solutions and the non-homogeneous problem is 
solvable if and only if the condition (27) is fulfilled. 

Let l be a number of linearly independent solutions of the homogeneous problem 
(14). By means of the following evident equality 

. ind

(
1

Ψ (t)

)
=

N∑
k=1

[2Reqk]

it follows the validity of the next theorem. 

Theorem 6 The following condition 

. l − l∗ = 2n + 2
N∑

k=1

[2Reqk] − m + 1

takes place, where . qk is a residue of the function .q(z) at a point . zk . 

From the results obtained above in particular we get the theorem. 

Theorem 7 For the problem (14) to be Noetherian in the class .Ω0[δ, σ ] it is 
necessary and sufficient the fulfillment of the condition 

. δ = δ∗, σ = v∗.

Based on all the above, it can be said that for a sufficiently wide class of 
singular elliptic systems, singularity is significant for the correct setting of boundary 
problems as well as for their analysis.



Analysis of BVP for Some Elliptic Systems on a Complex Plane 245

References 

1. Akhalaia, G., Giorgadze, G., Jikia, V., Makatsaria, G., Manjavidze, N.: Elliptic systems on 
Riemann surfaces. Tbilisi Int. Center Math. Inf. 13, 1–154 (2012) 

2. Begehr, H., Dai, D.-Q.: On the theory of a singular Vekua system. Oper. Theory Adv. Appl. 121, 
27–35 (2001) 

3. Begehr, H., Dai, D.-Q.: On continuous solutions of a generalized Cauchy-Riemann system with 
more than one singularity. J. Differential Equations 196, 67–90 (2004) 

4. Gilbert, R.P., Buchanan, J.L.: First order elliptic systems. A function theoretic approach. In: 
Mathematics in Science and Engineering. Academic Press, Orlando (1983) 

5. Makatsaria, G.: Singular points of solutions of some elliptic systems on the plane. J. Math.Sci. 
160(6), 737–744 (2009) 

6. Vekua, I.: Generalized Analytic Functions. Pergamon, Oxford (1962)



Second Order Differential Operators 
Associated to the Space of Holomorphic 
Functions 

Gian Rossodivita and Carmen Judith Vanegas 

Abstract Let . F be a given differential operator, then a function space . X is called 
an associated space to . F if . F transforms . X into itself. In this work we show the 
construction of all operators of second order with complex coefficients that are 
associated with the space of holomorphic functions. As an application the solvability 
of initial value problems involving these operators is shown. 

1 Introduction 

We say that a function space . X is called an associated space to a given differential 
operator . F if . F transforms . X into itself or we say that a pair . F, . G of differential 
operators are associated in case . F transforms solutions . u of .Gu = 0 again into 
solutions of this equation. 

Associated spaces are used to solve initial value problems of the type 

.∂tu = F(t, x, u, ∂ju), j = 0, . . . , n, . (1) 

u(0, x)  = ϕ(x), (2) 

where .ϕ(x) satisfies the partial differential equation .G(u) = 0, provided that the 
associated space . X of . F contains all the solutions for .G(u) = 0, and that the 
elements of . X satisfy an interior estimate, i.e., an estimate for the derivatives of 
the solutions near the boundary of a certain bounded domain (see [6]). 
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There are two basic problems in the theory of associated spaces. The first one is 
the direct problem, which consists on the construction of an associated space . X to a 
given operator . F. In other words, . F is given and one has to determine an associated 
equation .G(u) = 0 in which the initial value problem is solvable. The second one is 
the inverse problem, . G is given and one determines all . F for which solutions . ϕ of 
.G(u) = 0 are admissible initial functions. In this article, we have worked with the 
inverse problem: we showed a characterization of all linear second order complex 
partial differential operators with complex coefficients that are associated with the 
space of holomorphic functions. 

Necessary and sufficient conditions for evolution operators transforming holo-
morphic functions into themselves are given in [4], and [1] in the framework of 
complex analysis and elliptic complex analysis, respectively. Sufficient conditions 
for evolution operators transforming generalized analytic functions into themselves 
are given in [5]. Necessary and sufficient conditions for first order differential 
operators to be associated to the space of elliptic generalized analytic functions 
are given in [3]. In the framework of Clifford analysis we find in [7], necessary 
and sufficient conditions for linear first order partial differential operators . F with 
coefficients of Clifford values, to be associated to the meta-q-monogenic operator: 

.D(q,λ) =
n∑

i=0

qi∂i + λ , (3) 

where .q0 = 1, .qi ∈ An, .i = 0, 1, 2, . . . , n are constants and .λ ∈ R. 
The results in this article are the first in the direction of considering associated 

operators of higher order. As an application, we show the solvability of initial value 
problems involving such operators associated to the space of holomorphic functions. 

2 Associated Spaces 

Definition 2.1 ([6]) Let F be a given differential operator depending on t , x, u 
and ∂iu for i = 0, 1, · · ·  , n, while G is a differential operator with respect to the 
spacelike variables xi with coefficients not depending on time t . F is said to be 
associated with G if F maps solutions for the differential equation Gu = 0 into  
solutions of the same equation for a fixedly chosen t , i.e., 

. Gu = 0 ⇒ G(Fu) = 0.

The function space X containing all the solutions for the differential equation Gu = 
0 is called an associated space of F. ⨅⨆

Next we will determine necessary and sufficient conditions such that an second 
order operator F be associated to the Cauchy-Riemann operator.
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2.1 Necessary and Sufficient Conditions on the Coefficients of 
F 

We consider the following second order differential operator: 

. F2 ω = A2(z)∂
2
z ω + B2(z)∂

2
zz̄ω + C2(z)∂

2
z̄ ω + D2(z)∂2z ω

+E2(z)∂
2
zz̄ω + F2(z)∂

2
z̄ ω + F1ω,

where . F1 is defined by 

. F1 ω = A1(z)∂zω + B1(z)∂zω + C1(z)∂zω + D1(z)∂zω

+E1(z) ω + F1(z) ω + G1(z),

and all coefficients of . F2 and . F1 are complex valued. 
We will determine conditions over the coefficients of . F2 such that 

. ∂z̄ω = 0 ⇒ ∂z̄(F2ω) = 0,

So for an arbitrary holomorphic function . ω we have: 

. F2 ω = A2(z)∂
2
z ω + D2(z)∂2z ω

+A1(z)∂zω + B1(z)∂zω + E1(z) ω + F1(z) ω + G1(z). (1) 

Then assuming that the coefficients of (1) are continuously differentiable with 
respect to z and . ̄z and applying the Cauchy-Riemann operator to .F2 ω, we get 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + (∂zD2(z) + B1(z)) ∂z
2ω

+∂zA1(z)∂zω + (F1(z) + ∂zB1(z)) ∂zω + ∂zE1(z) ω

+∂zF1(z) ω + ∂zG1(z). (2) 

Therefore .∂z̄(F2ω) = 0 if the following sufficient conditions are satisfied: 

. D2(z) = 0, B1(z) = 0, F1(z) = 0,

∂zA2(z) = 0, ∂zA1(z) = 0, ∂zE1(z) = 0, and ∂zG1(z) = 0. (3) 

Thus second-order operators of the form 

.Fω = A2(z)∂
2
z ω + A1(z)∂zω + E1(z) ω + G1(z), (4)
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with the coefficients .A2(z), A1(z), E1(z) and G1(z) as holomorphic functions, are 
associated to the Cauchy-Riemann operator. 

Now we assume that .(F2, ∂z̄) is an associated pair, i.e., .∂z̄(F2ω) = 0 if only . ω is 
a holomorphic function. 

In order to obtain the conditions on the coefficients of operator . F2 given by (1) 
we will start by choosing special functions of the associated space, in this case 
special holomorphic functions, and we will write out the relations assuming that . F2
is holomorphic for those functions. 

Then choosing the function .ω = 0 in 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + T1(z)∂z
2ω

+∂zA1(z)∂zω + T2(z) ∂zω + ∂zE1(z) ω

+∂zF1(z) ω + ∂zG1,

where .T1(z) = ∂zD2(z) + B1(z) and .T2(z) = F1(z) + ∂zB1(z), we obtain 
.∂z̄(F2ω) = ∂zG1 = 0 and so . G1 is holomorphic and the term .∂zG1 can be omitted 
from .∂z̄(F2ω). 

We now choose the functions .ω = 1 and .ω = i in 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + T1(z)∂z
2ω

+∂zA1(z)∂zω + T2(z) ∂zω + ∂zE1(z) ω

+∂zF1(z) ω,

to get 

. ∂zE1(z) + ∂zF1(z) = 0, ∂zE1(z) − ∂zF1(z) = 0,

which implies .∂zE1(z) = ∂zF1(z) = 0 and .∂z̄F2(ω) reduces to 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + T1(z)∂z
2ω

+ ∂zA1(z)∂zω + T2(z) ∂zω.

Next we choose the holomorphic functions .ω = z, and .ω = iz. For these 
functions we obtain from 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + T1(z)∂z
2ω

+ ∂zA1(z)∂zω + T2(z) ∂zω

the equations 

.∂zA1(z) + T2(z) = 0, ∂zA1(z) − T2(z) = 0
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implying .∂zA1(z) = T2(z) = 0 and so 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + T1(z)∂z
2ω

Choosing the holomorphic functions .ω = z2, and .ω = iz2, we have that 

. ∂z̄(F2ω) = D2(z)∂z
3ω + ∂zA2(z)∂z

2ω + T1(z)∂z
2ω

implies 

. ∂zA2(z) + T1(z) = 0 and ∂zA2(z) − T1(z) = 0,

which in turn implies .∂zA2(z) = T1(z) = 0 and so .∂z̄(F2ω) = D2(z)∂z
3ω. 

Finally taking .ω = z3 in the above equation, we have .D2(z) = 0. 
Since .T1(z) = ∂zD2(z)+B1(z) and .T2(z) = F1(z)+∂zB1(z), we get . B1(z) = 0

and then .F1(z) = 0. 
Therefore the following statement is true: 

Theorem Suppose .D2, B1, F1, A2, A1, E1 and . G1 are continuously differ-
entiable with respect to z and . ̄z. Then second order partial differential operators 
given by 

. F2 ω = A2(z)∂
2
z ω + B2(z)∂

2
zz̄ω + C2(z)∂

2
z̄ ω + D2(z)∂2z ω

+E2(z)∂
2
zz̄ω + F2(z)∂

2
z̄ ω

+A1(z)∂zω + B1(z)∂zω + C1(z)∂zω + D1(z)∂zω

+E1(z) ω + F1(z) ω + G1(z),

are associated with the Cauchy-Riemann operator if and only if the following 
conditions are satisfied: 

. D2(z) = 0, B1(z) = 0, F1(z) = 0,

∂zA2(z) = 0, ∂zA1(z) = 0, ∂zE1(z) = 0, and ∂zG1(z) = 0.

3 Solution of Initial Value Problems via Associated Spaces 

We consider the initial value problem 

.∂tω(t, z) = Fω(t, z). (1) 

ω(0, z)  = ϕ(z), (2)
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where .t ∈ [0, T ] is the variable time, .z ∈ C, .ω(t, z) is a complex-valued function 
and .Fω(t, z) is as in (4). 

This problem can be rewritten as (see [2]) 

.ω(t, z) = ϕ(z) +
ˆ t

0
Fω(τ, z)dτ. (3) 

Consequently, the solution of the initial value problem (1), (2) is a fixed point of the 
operator 

.T ω(t, z) = ϕ(z) +
ˆ t

0
Fω(τ, z)dτ. (4) 

and vice versa. 
The existence and uniqueness of this problem can be showed using the contrac-

tion mapping principle. To apply such a principle, the operator (4) should map a 
certain Banach space B of holomorphic functions into itself. Since the operator 
. F also depends on the derivatives with respect to z of . ω, this map exists in case 
when the derivatives with respect to z of .(T ω(t, z)) do exist and can be estimated 
accordingly. Therefore, one has to restrict the operator to a space of holomorphic 
functions for which the derivatives with respect to z of a holomorphic function . ω can 
be estimated by . ω itself. Then the Lipschitz condition with respect to the function . ω

and their derivatives on . F is necessary. This sought space is the so-called associated 
space and the estimates for the derivatives with respect to z of . ω can be attained by 
using the so-called interior estimate. 

Interior estimates can be obtained via integral representations using the Cauchy 
kernel. 

In consequence, the method of associated operators is applied to solve initial 
value problems with initial holomorphic functions and we have the following 
theorem: 

Theorem Let . F be the operator defined in Theorem 2.1. Suppose . F and the 
operator . ∂z̄ form an associated pair of operators, for each fixed .t ∈ [0, T ], and 
the solutions of the corresponding equation .∂z̄ω = 0 satisfy an interior estimate of 
first order. Then the initial value problem (1), (2) is solvable provided that the initial 
function is a holomorphic function. ⨅⨆

4 Conclusions 

We have given necessary and sufficient conditions on the coefficients of the operator 
. F under which . F is associated with the Cauchy-Riemann operator . ∂z̄. It means that . F
transforms holomorphic functions into holomorphic functions, for a fixedly chosen 
t .
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Using the equation .∂z̄ω = 0 some derivatives could have been discarded 
from .∂z̄(Fω), and the sufficient conditions for .∂z̄(Fω) = 0 could have been 
obtained by comparison of the coefficients. On the other side, by substituting 
special holomorphic functions, we showed that these conditions are also necessary. 
Therefore, we have found all linear second order operators of the given form, which 
are associated to . ∂z̄ in . C. 

Theorem 3 implies that each initial value problem (1) and (2) is solvable provided 
that the initial function is a holomorphic function, i.e. if it belongs to an associated 
space to . F. The technique of associated spaces allowed us to solve the initial value 
problem of type (1) and (2). 
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Constructional Method for a Non-local 
Boundary and Initial Problem Raised 
from a Free Boundary Model of Cancer 

Jian-Rong Zhou, Heng Li, and Yongzhi Xu 

Abstract In this paper we investigate a parabolic partial differential equation with 
non-local boundary condition motivated by ductal carcinoma in situ (DCIS) model. 
Approximation solution of the present problem is implemented by Ritz-Galerkin 
method. Numerical experiment shows that the method is effective and accurate. 

1 Introduction 

Ductal carcinoma in situ (DCIS) refers to a special diagnosis of breast cancer. In 
our earlier papers [11, 14], we introduced a free boundary problem model of DCIS 
and four kinds of inverse problems related to different diagnosis methods. For more 
information, see [9–14, 19]. Among them, clinical data of the third model is obtained 
by a sequence of tomograph, which is related to a boundary and initial problem of 
parabolic equation. 

In this paper, we consider the following parabolic equation 

.
∂v

∂t
= ∂2v

∂x2
+ p(x, t), 0 < x < 1, 0 < t < 1, (1) 

with initial condition 

.v(x, 0) = f (x), 0 < x < 1, (2) 
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non-local boundary conditions 

.v(1, t) = g(t), 0 < t < 1, (3) 

.

ˆ b(t)

0
v(x, t)dx = m(t), 0 < t < 1, 0 < b(t) < 1, (4) 

and compatibility conditions 

.f (1) = v(1, 0) = g(0), (5) 

.

ˆ b(0)

0
f (x)dx = m(0) (6) 

The problem is to determine .v(x, t) for given .p(x, t), f (x), g(t), b(t) and .m(t). 
The presence of non-local boundary conditions can make the application of 

standard numerical methods complicated and affect the accuracy of result. Thus in 
this paper, we convert non-local boundary value problems to a desirable equivalent 
problem and solve it by using the Ritz-Galerkin method. This method is a powerful 
tool to solve differential equation by converting the non-linear problem into a set of 
linear equations. It has been widely used in many areas of mathematics, especially 
in the field of numerical analysis [2–4, 6, 15–18]. 

The remainder of this paper is organized as follows: In Sect. 2, we present 
equivalent forms of original problem. Then we introduce the properties of Bernstein 
polynomials in Sect. 3. The numerical schemes for the solution of equations are 
described in Sect. 4. Finally, one numerical experiment is exhibited in Sect. 5 to 
verify the accuracy and efficiency of the novel method. 

2 Equivalent Problems 

In this section, we introduce one transformation and an transition function . G(x, t)

to convert our problem (1)–(6) to two equivalent forms. 
Introduce the first transformation: 

.w(x, t) = v(x, t) − F(x, t), (7) 

where 

.F(x, t) = 2x − b(t)

2 − b(t)
g(t) + 2m(t)(1 − x)

b(t)(2 − b(t))
, (8)
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Under the first transformations (7), we obtain the first equivalent form of original 
problem(1)–(6) as following: 

.
∂w

∂t
= ∂2w

∂x2 + K(x, t), 0 < x < 1, 0 < t < 1, (9) 

with initial condition 

.w(x, 0) = ~f (x), 0 < x < 1, (10) 

boundary conditions 

.w(1, t) = 0, 0 < t < 1, (11) 

.

ˆ b(t)

0
w(x, t)dx = 0, 0 < t < 1, (12) 

and compatibility conditions 

.w(1, 0) = ~f (1) = 0, (13) 

.

ˆ b(0)

0
w(x, 0)dx =

ˆ b(0)

0

~f (x)dx = 0, (14) 

where 

. K(x, t) = p(x, t) + ∂2F(x, t)

∂x2
− ∂F (x, t)

∂t

= p(x, t) − (2x − b(t))(2 − b(t))g'(t) + 2g(t)b'(t)(x − 1)

(2 − b(t))2 (15)

− 2m'(t)b(t)(2 − b(t))(1 − x) − 4m(t)b'(t)(1 − b(t))(1 − x)

(b(t))2(2 − b(t))2 ,

. ~f (x) = f (x) − 2x − b(0)

2 − b(0)
g(0) − 2m(0)(1 − x)

b(0)(2 − b(0))
. (16) 

In order to convert non-local boundary condition to desirable form and apply 
Ritz-Galerkin method to it, we introduce transition function 

.G(x, t) =
ˆ x

b(t)

w(s, t)ds + (x2 − 2x) ·
ˆ 1

0
w(s, t)ds, (17)
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then we have 

.
∂G(x, t)

∂x
= w(x, t) + 2(x − 1)

ˆ 1

0
w(s, t)ds, . (18) 

∂2G(x, t) 
∂x2 = 

∂w(x, t) 
∂x 

+ 2 
ˆ 1 

0 
w(s, t)ds, (19) 

.
∂3G(x, t)

∂x3 = ∂2w(x, t)

∂x2 , . (20) 

∂w(x, t) 
∂t 

= 
∂2G(x, t) 

∂x∂t 
− 2(x − 1) 

ˆ 1 

0 

∂w(s, t) 
∂t 

ds. (21) 

.

ˆ 1

0
w(s, t)ds = G(b(t), t)

b(t)(b(t) − 2)
, (22) 

thus the second equivalent form of original problem is as follows: 

. 
∂G2

∂x∂t
=∂3G

∂x3 + K(x, t)+2(x−1) · d

dt

(

G(b(t), t)

b(t)(b(t)−2)

)

, 0 < x < 1, 0 < t < 1,

(23) 

with initial condition 

.G(x, 0) =
ˆ x

b(0)

~f (s)ds + (x2 − 2x)

ˆ 1

0

~f (s)ds, 0 < x < 1, (24) 

boundary conditions 

.
∂G

∂x
(1, t) = w(1, t) = 0, 0 < t < 1, (25) 

.G(0, t) = 0, 0 < t < 1, (26) 

and compatibility conditions 

.
∂G

∂x
(1, 0) = w(1, 0) = 0, (27) 

.G(0, 0) = 0, (28)
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Furthermore, we can obtain the relationship between .G(x, t) and .v(x, t) as 
following: 

. G(x, t) =
ˆ x

b(t)

v(s, t)ds + (x2 − 2x)

ˆ 1

0
v(s, t)ds

−
ˆ x

b(t)

F (s, t)ds − (x2 − 2x)

ˆ 1

0
F(s, t)ds (29)

=
ˆ x

b(t)

v(s, t)ds+(x2 − 2x)

ˆ 1

0
v(s, t)ds−m(t)(2x−x2−2b(t)+b2(t))

b(t)(2−b(t))

− g(t)x(x − b(t))

2 − b(t)
− (x2 − 2x)

(

g(t)(1 − b(t))

2 − b(t)
+ m(t)

b(t)(2 − b(t))

)

,

and 

. v(x, t) = ∂G

∂x
(x, t) − 2(x − 1)

G(b(t), t)

b(t)(b(t) − 2)
+ F(x, t) (30)

= ∂G

∂x
(x, t) − 2(x − 1)

G(b(t), t)

b(t)(b(t) − 2)
+ 2x − b(t)

2 − b(t)
g(t) + 2m(t)(1 − x)

b(t)(2 − b(t))
.

3 Bernstein Polynomials and Their Properties 

The general form of the Bernstein polynomials of mth degree proposed by Bhatti 
and Bracken [1] is defined on the interval .[0, 1] as 

.Bi,m(x) = m!
i!(m − i)!x

i(1 − x)m−i , 0 ≤ i ≤ m. (31) 

It can easily be shown that each of the Bernstein polynomials is positive and also 
the sum of all the Bernstein polynomials is unity for all real .x ∈ [0, 1], that is, 

.

m
∑

i=0

Bi,m(x) = 1, x ∈ [0, 1]. (32) 

Moreover, the Bernstein polynomials have the following properties: 

.Bi,m(x) = (1 − x)Bi,m−1(x) + xBi−1,m−1(x), (33) 

.Bi,m−1(x) = m − i

m
Bi,m(x) + i + 1

m
Bi+1,m(x), (34)
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.B
'
i,m(x) = m(Bi−1,m−1(x) − Bi,m−1(x)), (35) 

.

ˆ 1

0
Bi,m(x)dx = 1

m + 1
, i = 0, 1, · · · m. (36) 

Each kth degree Bernstein basis function can be expressed in the mth degree 
Bernstein basis as (see [7]) 

. Bi,k(x) =
m−k+i
∑

j=i

k!(m − k)!j !(m − j)!
i!(k − i)!(j − i)!(m − k − j + i)!m!Bj,m(x),

(i = 0, 1, · · · k), as k ≤ m. (37) 

A set of Legendre polynomials, denoted by .{Lk(x)} for .k = 0, 1, · · · , is  
orthogonal with respect to the weighting function .ω(x) = 1 over the interval . [0, 1].
These polynomials satisfy the recurrence relation [5] 

.(k + 1)Lk+1(x) = (2k + 1)(2x − 1)Lk(x) − kLk−1(x), k = 1, 2, · · · , (38) 

with 

.L0(x) = 1, L1(x) = 2x − 1. (39) 

It can be shown [8] that the Legendre polynomial .Lm(x) can be expressed in the 
mth degree Bernstein basis .B0,m(x), B1,m(x), · · · , Bm,m(x) as 

.Lm(x) =
m

∑

i=0

(−1)m+i m!
i!(m − i)!Bi,m(x). (40) 

Thus, from (37) and (40), we can obtain that any given polynomial .Pm(x) of 
degree m can be expanded in the mth degree Legendre and Bernstein base on . x ∈
[0, 1]

.Pm(x) =
m

∑

k=0

lkLk(x) =
m

∑

i=0

ciBi,m(x). (41) 

Let .V = L2[0, 1] is the vector space of real functions whose domain is the close 
interval .[0, 1] and all functions in .V = L2[0, 1] are assumed to be square integrable. 
We define the inner product of .f (x) and .g(x) as follows 

. < f (x), g(x) >=
ˆ 1

0
f (x)g(x)dx. (42)
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Remarks 

(1) Space . Span{L0(x), L1(x), · · · , Lm(x)} = Span{B0,m(x), B1,m(x), · · · , Bm,m

(x)} := Y ⊂ V and .B1,m(x), B2,m(x), · · · , Bm,m(x) are basis of subspace Y 
of . V.

(2) Suppose .f (x) ∈ V = L2[0, 1], then there exist a unique best approximation to 
.f (x) out of Y such as .y0(x) ∈ Y ; that is, if . y(x) ∈ Y,

. ‖ y0(x) − f (x) ‖ ≤ ‖ y(x) − f (x) ‖, (43) 

moreover 

. y0(x) =
m

∑

k=0

ckBk,m

= (c0, c1, · · · , cm)(B0,m(x), B1,m(x), · · · , Bm,m(x))T := CT φ, (44) 

where coefficient matrix .CT can be obtained by 

.CT =< f, φT >< φ, φT >−1 . (45) 

4 Bernstein Ritz-Galerkin Method for Our Problem 

In this section, we apply Ritz-Galerkin method to the second equivalent problem 
(23)–(28) in Sect. 2, then the approximate solution of original problem can be 
obtained easily by (29) and (30). 

Consider the second equivalent form as following: 

. 
∂G2

∂x∂t
= ∂3G

∂x3
+ K(x, t)+2(x−1) · d

dt

(

G(b(t), t)

b(t)(b(t)−2)

)

, 0 < x < 1, 0 < t < 1,

(46) 

with initial condition 

.G(x, 0) =
ˆ x

b(0)

~f (s)ds + (x2 − 2x)

ˆ 1

0

~f (s)ds, 0 < x < 1, (47) 

boundary conditions 

.
∂G

∂x
(1, t) = w(1, t) = 0, 0 < t < 1, (48) 

.G(0, t) = 0, 0 < t < 1, (49)
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and compatibility conditions 

.
∂G

∂x
(1, 0) = w(1, 0) = 0, (50) 

.G(0, 0) = 0, (51) 

where 

. K(x, t) = p(x, t) − (2x − b(t))(2 − b(t))g'(t) + 2g(t)b'(t)(x − 1)

(2 − b(t))2 (52)

− 2m'(t)b(t)(2 − b(t))(1 − x) − 4m(t)b'(t)(1 − b(t))(1 − x)

(b(t))2(2 − b(t))2
,

. ~f (x) = f (x) − 2x − b(0)

2 − b(0)
g(0) − 2m(0)(1 − x)

b(0)(2 − b(0))
. (53) 

Let 

.W(G) = ∂G2

∂x∂t
− ∂3G

∂x3
− K(x, t) − 2(x − 1) · d

dt

(

G(b(t), t)

b(t)(b(t) − 2)

)

= 0, (54) 

A Ritz-Galerkin approximation to (54) is constructed as follows. The approximation 
solution .~G(x, t) is sought in the form of the truncated series 

.~G(x, t) = G(x, 0) ·
⎛

⎝

N
∑

i=0

M
∑

j=0

ci,j t Bi,N (x)Bj,M(t) + 1

⎞

⎠ , (55) 

where .Bi,N (x), Bj,M(t) are Bernstein polynomials. From compatibility conditions 
(50) and (51), it is easy to see that the approximation solution .~G(x, t) satisfies the 
initial condition (47) and the boundary conditions (48) and (49). 

Now the expansion coefficients .ci,j are determined by the Galerkin equations 

. < W(~G(x, t)), Bi,N (x)Bj,M(t) >= 0, (i = 0, 1, · · · , N, j = 0, 1, · · · ,M),

(56) 

where .< . > denotes the inner product defined by 

. < W(~G(x, t)), Bi,N (x)Bj,M(t) >=
ˆ 1

0

ˆ 1

0
W(~G(x, t))Bi,N (x)Bj,M(t)dtdx.

(57) 

Galerkin equations (56) gives a system of .(N + 1)(M + 1) linear equations which 
can be solved for the elements .ci,j using mathematical software.
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5 Numerical Application 

In this section, a numerical example is exhibited to verify the efficiency and accuracy 
of our scheme. 

Example 1 Consider (1)–(6) with 

.p(x, t) = x + t + 2

(x + t + 1)2 , 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, (58) 

.f (x) = ln(x + 1), 0 ≤ x ≤ 1, (59) 

.g(t) = ln(t + 2), 0 ≤ t ≤ 1, (60) 

.b(t) = t + 1

2
, 0 ≤ t ≤ 1, (61) 

.m(t) = t + 1

2
(ln(t + 1) + 3 ln 3 − 3 ln 2 − 1) , 0 ≤ t ≤ 1, (62) 

which has the exact solution 

.v(x, t) = ln(x + t + 1), (63) 

From (23)–(28), we can obtain the following equivalent problem 

. 
∂G2

∂x∂t
= ∂3G

∂x3 +K(x, t)+8(x−1) · d

dt

(

G( t+1
2 , t)

(t + 1)(t − 3)

)

, 0 < x < 1, 0 < t < 1,

(64) 
with initial condition 

.G(x, 0) = (1 + x) ln(1 + x) − (1 − ln 2)x2 + (1 − 3 ln 2)x, 0 < x < 1, (65) 

boundary conditions 

.
∂G

∂x
(1, t) = 0, 0 < t < 1, (66) 

.G(0, t) = 0, 0 < t < 1, (67)
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where 

. K(x, t) = x + t + 2

(x + t + 1)2 − (4x − t − 1)(3 − t) + 4(x − 1)(t + 2) ln(t + 2)

(3 − t)2(t + 2)

−
4(1 − x)(t + 1)

(

ln(t + 1) + 3 ln 3
2

)

+ 8(1 − t)(1 − x)

(t + 1)(3 − t)2
, (68) 

From (7), (17) and (63), we can deduce that the problem (64)–(67) has the exact 
solution 

. G(x, t) = (x + t + 1) ln(x + t + 1) − (t + 1) ln(t + 1)

+ x(x − 2)(t + 1) ln
t + 2

t + 1
− x2 + x(1 − ln(t + 2)). (69) 

We applied the method presented in this paper with .N = 2,M = 4 and solved 
Eq. (64). 

From Galerkin equations (56), we have 

. 

⎧

⎨

⎩

c0,0 = 1.0600, c0,1 = 1.5023, c0,2 = 0.5983, c0,3 = 0.8410, c0,4 = 0.6442,

c1,0 = 1.0200, c1,1 = 1.1670, c1,2 = 0.7445, c1,3 = 0.7004, c1,4 = 0.6289,

c2,0 = 1.0267, c2,1 = 1.1064, c2,2 = 0.7069, c2,3 = 0.7022, c2,4 = 0.6049.

(70) 

From Eqs. (69), we can obtain the approximate solution .~G(x, t) of the problem 
(64)–(67) as following 

.~G(x, t) = G(x, 0) ·
⎛

⎝

N=2
∑

i=0

M=4
∑

j=0

ci,j t Bi,N (x)Bj,M(t) + 1

⎞

⎠ , (71) 

According to (30), we can get following corresponding approximate solution . ~v(x, t)

of the problem (1)–(6). 

. ~v(x, t) = ∂~G

∂x
(x, t) − 8(x − 1)~G( t+1

2 , t)

(t + 1)(t − 3)

+ (4x − t − 1) ln(t + 2)

3 − t
+ 4(1 − x)(ln(t + 1) + 3 ln 3

2 − 1)

3 − t
. (72)



Constructional Method for Non-local Boundary and Initial Problem 265

–0.002 

–0.004 

–0.006 

–0.008 

0 

0 

0.2 

0.4 

t x0.6 

0.8 0.8 

0.6 

0.4 

0.2 

0 

1 1 

Fig. 1 Exact (red) and approximate (green) solutions of .G(x, t) in Example 1 

In Fig. 1, the exact and approximate solutions of .G(x, t) with .N = 2,M = 4 are 
plotted. 

In Fig. 2, the exact and approximate solutions of .v(x, t) with .N = 2,M = 4 are 
plotted. 

Tables 1 and 2 present respectively absolute error for .G(x, t) and .v(x, t) with 
.N = 2 and .M = 4 in example one.
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Fig. 2 Exact (red) and approximate (green) solutions of .v(x, t) in Example 1 

Table 1 The absolute error 
for .G(x, t) in Example 1 

.(x, t) Absolute error for . G(x, t)

(0,0) 0 

(0.1,0.1) . −7.17 × 10−5

(0.2,0.2) . −1.98 × 10−5

(0.3,0.3) . 6.08 × 10−5

(0.4,0.4) . 6.85 × 10−5

(0.5,0.5) . 2.68 × 10−5

(0.6,0.6) . −8.84 × 10−6

(0.7,0.7) . −1.53 × 10−5

(0.8,0.8) . −5.30 × 10−6

(0.9,0.9) . 2.78 × 10−7

(1,1) 0
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Table 2 The absolute error 
for .v(x, t) in Example 1 

.(x, t) Absolute error for . v(x, t)

(0,0) 0 

(0.1,0.1) . 6.17 × 10−6

(0.2,0.2) . −1.63 × 10−5

(0.3,0.3) . −2.31 × 10−5

(0.4,0.4) . −7.55 × 10−6

(0.5,0.5) . −1.43 × 10−5

(0.6,0.6) . 2.84 × 10−5

(0.7,0.7) . 3.03 × 10−5

(0.8,0.8) . 2.23 × 10−5

(0.9,0.9) . 9.23 × 10−6

(1,1) . 0
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Part V 
Complex Variables and Potential Theory



A Perturbation Result for a Neumann 
Problem in a Periodic Domain 

Matteo Dalla Riva, Paolo Luzzini, and Paolo Musolino 

Abstract We consider a Neumann problem for the Laplace equation in a periodic 
domain. We prove that the solution depends real analytically on the shape of the 
domain, on the periodicity parameters, on the Neumann datum, and on its boundary 
integral. 

1 Introduction 

The aim of this paper is to prove the analytic dependence of the solution of a periodic 
Neumann problem for the Laplace equation, upon joint perturbation of the domain, 
the periodicity parameters, the Neumann datum, and its integral on the boundary. 
The domain is obtained as the union of congruent copies of a periodicity cell of 
edges of length .q11, . . . , qnn with a hole whose shape is the image of a reference 
domain through a diffeomorphism . φ. As Neumann datum we take the projection of 
a function g, defined on the boundary of the reference domain and suitably rescaled, 
on the space of functions with zero integral on the boundary. As it happens for 
non-periodic Neumann problems, in order to identify one solution, we impose that 
the integral of the solution on the boundary is equal to a given real constant k. 
By means of a periodic version of potential theory, we prove that the solution of 
the problem depends real analytically on the ‘periodicity-domain-Neumann datum-
integral’ quadruple .((q11, . . . , qnn), φ, g, k). 
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Many authors have investigated the behavior of the solutions to boundary value 
problems upon domain perturbations. We mention, e.g., Henry [7] and Sokolowski 
and Zolésio [18] for elliptic domain perturbation problems. Lanza de Cristoforis 
[10, 11] has exploited potential theory in order to prove that the solutions of 
boundary value problems for the Laplace and Poisson equations depend real 
analytically upon domain perturbation. Moreover, analyticity results for domain 
perturbation problems for eigenvalues have been obtained for example for the 
Laplace equation by Lanza de Cristoforis and Lamberti [8], for the biharmonic 
operator by Buoso and Provenzano [2], and for theMaxwell’s equations by Lamberti 
and Zaccaron [9]. 

In order to introduce our problem, we fix once for all a natural number 

. n ∈ N \ {0, 1}

that represents the dimension of the space. If .(q11, . . . , qnn) ∈]0,+∞[n we define 
a periodicity cell Q and a matrix .q ∈ D

+
n (R) as 

. Q ≡
n∏

j=1

]0, qjj [, q ≡

⎛

⎜⎜⎜⎝

q11 0 · · · 0
0 q22 · · · 0
...

...
. . .

...

0 0 · · · qnn

⎞

⎟⎟⎟⎠ ,

where .Dn(R) is the space of .n × n diagonal matrices with real entries and .D
+
n (R) is 

the set of elements of .Dn(R) with diagonal entries in .]0,+∞[. Here we note that we 
can identify .D+

n (R) and .]0,+∞[n. We denote by .|Q|n the n-dimensional measure 
of the cell Q, by . νQ the outward unit normal to . ∂Q, where it exists, and by .q−1 the 
inverse matrix of q. We find convenient to set 

. Q̃ ≡]0, 1[n , q̃ ≡ In ,

where . In denotes the identity .n×n matrix. Then we introduce the reference domain: 
we take 

.

α ∈]0, 1[ and a bounded open connected subset Ω of Rn

of class C1,α such that Rn \ Ω is connected ,
(1) 

where the symbol ‘. ·’ denotes the closure of a set. For the definition of sets and 
functions of the Schauder class .C1,α we refer, e.g., to Gilbarg and Trudinger [6]. 
In order to model our variable domain we consider a class of diffeomorphisms 

.AQ̃
∂Ω from .∂Ω into their images contained in . Q̃ (see (3) below). By the Jordan-

Leray separation theorem, if .φ ∈ AQ̃
∂Ω, the  set  .Rn \ φ(∂Ω) has exactly two open
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q22 

q11 

QSq[qI[φ]]− 

Sq[qI[φ]] 

qφ(∂Ω) 

Fig. 1 The sets .Sq [qI[φ]]− (in gray), .Sq [qI[φ]] (in white), and .qφ(∂Ω) (in black) in case . n = 2

connected components (see, e.g., Deimling [5, Thm. 5.2, p. 26]). We denote by 
.I[φ] the bounded open connected component of .Rn \ φ(∂Ω). Since .φ(∂Ω) ⊆ Q̃, a  
topological argument shows that .Q̃ \ I[φ] is also connected (cf., e.g., [3, Theorem 
A.10]). We are now in the position to introduce the following two periodic domains 
(see Fig. 1): 

. Sq [qI[φ]] ≡
⋃

z∈Zn

(qz + qI[φ]) , Sq [qI[φ]]− ≡ R
n \ Sq [qI[φ]] .

The set .Sq [qI[φ]]− will be the one where we shall set our Neumann problem. 
Clearly, a perturbation of q produces a modification of the whole periodicity 
structure of .Sq [qI[φ]]−, while a perturbation of . φ induces a change in the shape 
of the holes .Sq [qI[φ]].
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If .q ∈ D
+
n (R), .φ ∈ C1,α(∂Ω,Rn)∩AQ̃

∂Ω, .g ∈ C0,α(∂Ω) and .k ∈ R, we consider 
the following periodic Neumann problem for the Laplace equation: 

. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∆u = 0 in Sq [qI[φ]]− ,

u(x + qz) = u(x) ∀x ∈ Sq [qI[φ]]− ,∀z ∈ Z
n ,

∂
∂νqI[φ] u(x) = g

(
φ(−1)(q−1x)

)

− 1´
∂qI[φ] dσ

´
∂qI[φ] g

(
φ(−1)(q−1y)

)
dσy ∀x ∈ ∂qI[φ] ,´

∂qI[φ] u dσ = k .

(2) 
We note that the function 

. g
(
φ(−1)(q−1·)) − 1´

∂qI[φ] dσ

ˆ
∂qI[φ]

g
(
φ(−1)(q−1y)

)
dσy

clearly belongs to the space 

. C0,α(∂qI[φ])0 ≡
{
μ ∈ C0,α(∂qI[φ]) :

ˆ
∂qI[φ]

μdσ = 0
}

.

As a consequence, the solution of problem (2) in the space .C1,α
q (Sq [qI[φ]]−) of q-

periodic functions in .Sq [qI[φ]]− of class .C1,α exists and is unique and we denote it 
by .u[q, φ, g, k] (see [3, Thm. 12.23]). Our aim is to prove that .u[q, φ, g, k] depends, 
in a sense that we will clarify, analytically on .(q, φ, g, k) (see Theorem 1). Our 
work originates from Lanza de Cristoforis [10, 11] on the real analytic dependence 
of the solution of the Dirichlet problem for the Laplace and Poisson equations upon 
domain perturbations. Moreover, this paper can be seen as the Neumann counterpart 
of [15], where the authors have proved analyticity properties for the solution of a 
periodic Dirichlet problem. An analysis similar to the one of the present paper was 
also carried out for periodic problems related to physical quantities arising in fluid 
mechanics and in material science (see [4, 14, 16]). 

2 Preliminary Results 

In order to consider shape perturbations, we introduce a class of diffeomorphisms. 
Let . Ω be as in (1). Let  .A∂Ω be the set of functions of class .C1(∂Ω,Rn) which are 
injective and whose differential is injective at all points of . ∂Ω. The  set .A∂Ω is well-
known to be open in .C1(∂Ω,Rn) (see, e.g., Lanza de Cristoforis and Rossi [13, 
Lem. 2.5, p. 143]). Then we set 

.AQ̃
∂Ω ≡

{
φ ∈ A∂Ω : φ(∂Ω) ⊆ Q̃

}
. (3)
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In order to analyze our boundary value problem, we are going to exploit periodic 
layer potentials. To define these operators, it is enough to replace the fundamental 
solution of the Laplace operator by a q-periodic tempered distribution .Sq,n such that 
.∆Sq,n = ∑

z∈Zn δqz − 1
|Q|n , where . δqz is the Dirac measure with mass in qz (see 

e.g., [3, Chapter 12]). We can take 

. Sq,n(x) = −
∑

z∈Zn\{0}

1

|Q|n4π2|q−1z|2 e2πi(q−1z)·x

in the sense of distributions in . Rn (see e.g., Ammari and Kang [1, p. 53], [3, §12.1]). 
Moreover, .Sq,n is even, real analytic in .Rn \ qZn, and locally integrable in . Rn (see 
e.g., [3, Thm. 12.4]). We now introduce the periodic single layer potential. Let . ΩQ

be a bounded open subset of . Rn of class .C1,α for some .α ∈]0, 1[ such that .ΩQ ⊆ Q. 
We define the following two periodic domains: 

. Sq [ΩQ] ≡
⋃

z∈Zn

(
qz + ΩQ

)
, Sq [ΩQ]− ≡ R

n \ Sq [ΩQ]

and we set 

. vq [∂ΩQ,μ](x) ≡
ˆ

∂ΩQ

Sq,n(x − y)μ(y) dσy ∀x ∈ R
n

and 

. W ∗
q [∂ΩQ,μ](x) ≡

ˆ
∂ΩQ

νΩQ
(x) · DSq,n(x − y)μ(y) dσy ∀x ∈ ∂ΩQ

for all .μ ∈ L2(∂ΩQ). The symbol .νΩQ
denotes the outward unit normal field 

to .∂ΩQ, . dσ denotes the area element on .∂ΩQ and .DSq,n denotes the gradient 
of .Sq,n. The function .vq [∂ΩQ,μ] is called the q-periodic single layer potential. 
Now let .μ ∈ C0,α(∂ΩQ). As is well known, . v+

q [∂ΩQ,μ] ≡ vq [∂ΩQ,μ]|Sq [ΩQ]
belongs to .C1,α

q (Sq [ΩQ]) and .v−
q [∂ΩQ,μ] ≡ vq [∂ΩQ,μ]|Sq [ΩQ]− belongs to 

.C
1,α
q (Sq [ΩQ]−) (see [3, Thm. 12.8]). Moreover, the following jump formula 

for the normal derivative of the q-periodic single layer potential . vq [∂ΩQ,μ]
holds: 

. 
∂

∂νΩQ

v±
q [∂ΩQ,μ] = ∓1

2
μ + W ∗

q [∂ΩQ,μ] on ∂ΩQ.

For a proof of the above formula we refer to [3, Thm. 12.11].
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Since our approach will be based on integral operators, we need to understand 
how integrals behave when we perturb the domain of integration. Moreover, we need 
also to understand the regularity of the normal vector upon domain perturbations. 
For such reasons, we collect those results in the lemma below (for a proof, see Lanza 
de Cristoforis and Rossi [13, p. 166]). 

Lemma 1 Let . α, . Ω be as in (1). Then the following statements hold. 

(i) For each .ψ ∈ C1,α(∂Ω,Rn) ∩ A∂Ω, there exists a unique . σ̃ [ψ] ∈ C0,α(∂Ω)

such that .σ̃ [ψ] > 0 and 

. 

ˆ
ψ(∂Ω)

ω(s) dσs =
ˆ

∂Ω

ω ◦ ψ(y)σ̃ [ψ](y) dσy, ∀ω ∈ L1(ψ(∂Ω)).

Moreover, the map .σ̃ [·] from .C1,α(∂Ω,Rn)∩A∂Ω to .C0,α(∂Ω) is real analytic. 
(ii) The map from .C1,α(∂Ω,Rn)∩A∂Ω to .C0,α(∂Ω,Rn) which takes . ψ to . νI[ψ] ◦ψ

is real analytic. 

3 Analyticity of the Solution 

Our first goal is to transform problem (2) into an integral equation. In order to 
analyze the solvability of the obtained integral equation, we need the following 
lemma. 

Lemma 2 Let . α, . Ω be as in (1). Let .q ∈ D
+
n (R). Let .φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃

∂Ω. 
Let N be the map from .C0,α(∂qI[φ]) to itself, defined by 

. N [μ] ≡ 1

2
μ + W ∗

q [∂qI[φ], μ] ∀μ ∈ C0,α(∂qI[φ]).

Then N is a linear homeomorphism from .C0,α(∂qI[φ]) to itself. Moreover, N 
restricts to a linear homeomorphism from .C0,α(∂qI[φ])0 to itself. 
Proof By Dalla Riva et al. [3, Thm. 12.20], we deduce that N is a linear 
homeomorphism from .C0,α(∂qI[φ]) to itself. By Dalla Riva et al. [3, Prop. 12.15], 
we have that . 12μ+W ∗

q [∂qI[φ], μ] belongs to .C0,α(∂qI[φ])0 if and only if . μ belongs 

to .C0,α(∂qI[φ])0. As a consequence, we also have that N restricts to a linear 
homeomorphism from .C0,α(∂qI[φ])0 to itself. ⨅⨆

Then, in the following proposition, we show how to convert the Neumann 
problem into an equivalent integral equation.
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Proposition 1 Let . α, . Ω be as in (1). Let .q ∈ D
+
n (R). Let .φ ∈ C1,α(∂Ω,Rn)∩AQ̃

∂Ω. 
Let .g ∈ C0,α(∂Ω). Let .k ∈ R. Then the boundary value problem 

. 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∆u = 0 in Sq [qI[φ]]− ,

u(x + qz) = u(x) ∀x ∈ Sq [qI[φ]]− ,∀z ∈ Z
n ,

∂
∂νqI[φ] u(x) = g

(
φ(−1)(q−1x)

)

− 1´
∂qI[φ] dσ

´
∂qI[φ] g

(
φ(−1)(q−1y)

)
dσy ∀x ∈ ∂qI[φ] ,´

∂qI[φ] u dσ = k

(4) 

has a unique solution .u[q, φ, g, k] in .C
1,α
q (Sq [qI[φ]]−). Moreover, 

. 

u[q, φ,g, k](x) = v−
q [∂qI[φ], μ](x)

+ 1´
∂qI[φ] dσ

(
k −
ˆ

∂qI[φ]
v−
q [∂qI[φ], μ] dσ

)
∀x ∈ Sq [qI[φ]]−,

(5) 

where . μ is the unique solution in .C0,α(∂qI[φ])0 of the integral equation 

.

1

2
μ(x) + W ∗

q [∂qI[φ], μ](x) = g
(
φ(−1)(q−1x)

)

− 1´
∂qI[φ] dσ

ˆ
∂qI[φ]

g
(
φ(−1)(q−1y)

)
dσy ∀x ∈ ∂qI[φ] .

(6) 

Proof By Dalla Riva et al. [3, Thm. 12.23] we know that problem (4) has a 
unique solution. Moreover, by Lemma 2, equation (6) has a unique solution . μ
which belongs to .C0,α(∂qI[φ])0. Then by the properties of the periodic single layer 
potential (see, e.g., [3, Thm. 12.8]), we deduce that the right hand side of (5) solves 
problem (4). ⨅⨆

In Proposition 1, we have seen an integral equation on .∂qI[φ], namely equation 
(6), equivalent to problem (2). However, if we want to study the dependence of the 
solution of the integral equation on the parameters .(q, φ, g, k), it may be convenient 
to transform the equation on the .(q, φ)-dependent set .∂qI[φ] into an equation on a 
fixed domain. We do so in the lemma below.
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Lemma 3 Let . α, . Ω be as in (1). Let .q ∈ D
+
n (R). Let .φ ∈ C1,α(∂Ω,Rn) ∩ AQ̃

∂Ω. 
Let .g ∈ C0,α(∂Ω). Then the function .θ ∈ C0,α(∂Ω) solves the equation 

.

1

2
θ(t) +

ˆ
qφ(∂Ω)

νqI[φ](qφ(t)) · DSq,n(qφ(t) − y)θ
(
φ(−1)(q−1y)

)
dσy

= g(t) − 1´
∂Ω

σ̃ [qφ] dσ

ˆ
∂Ω

gσ̃ [qφ] dσ ∀t ∈ ∂Ω ,

(7) 

if and only if the function .μ ∈ C0,α(∂qI[φ]), with . μ delivered by 

.μ(x) = θ
(
φ(−1)(q−1x)

) ∀x ∈ ∂qI[φ], (8) 

solves the equation 

. 

1

2
μ(x) + W ∗

q [∂qI[φ], μ](x)

= g
(
φ(−1)(q−1x)

) − 1´
∂qI[φ] dσ

ˆ
∂qI[φ]

g
(
φ(−1)(q−1y)

)
dσy ∀x ∈ ∂qI[φ] .

Moreover, Eq. (7) has a unique solution . θ in .C0,α(∂Ω) and the function . μ delivered 
by (8) belongs to .C0,α(∂qI[φ])0. 
Proof It is a direct consequence of the theorem of change of variable in integrals, 
of Lemma 2, and of the obvious equality 

. 

ˆ
∂qI[φ]

(
g
(
φ(−1)(q−1x)

) − 1´
∂qI[φ] dσ

ˆ
∂qI[φ]

g
(
φ(−1)(q−1y)

)
dσy

)
dσx = 0 ,

which implies that 

. g
(
φ(−1)(q−1·)) − 1´

∂qI[φ] dσ

ˆ
∂qI[φ]

g
(
φ(−1)(q−1y)

)
dσy

is in .C0,α(∂qI[φ])0. ⨅⨆
Our next goal is to study the dependence of the solution of the integral equation 

(7) upon .(q, φ, g). We wish to apply the implicit function theorem in Banach spaces. 
Therefore, having in mind equation (7), we introduce the map . Λ from .D+

n (R) ×
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(
C1,α (∂Ω, Rn ) ∩AQ̃ 

∂Ω

)
× (

C0,α (∂Ω)
)2 to .C0,α(∂Ω) by setting 

. 

Λ[q, φ, g, θ ](t) ≡ 1

2
θ(t)

+
ˆ

qφ(∂Ω)

νqI[φ](qφ(t)) · DSq,n(qφ(t) − y)θ
(
φ(−1)(q−1y)

)
dσy

− g(t) + 1´
∂Ω

σ̃ [qφ] dσ

ˆ
∂Ω

gσ̃ [qφ] dσ ∀t ∈ ∂Ω,

for all .(q, φ, g, θ) ∈ D
+
n (R) ×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× (

C0,α(∂Ω)
)2. 

We are now ready to apply the implicit function theorem for real analytic maps in 
Banach spaces to equation .Λ[q, φ, g, θ ] = 0 and prove that the solution . θ depends 
analytically on .(q, φ, g). 

Proposition 2 Let . α, . Ω be as in (1). Then the following statements hold. 

(i) . Λ is real analytic. 

(ii) For each .(q, φ, g) ∈ D
+
n (R) ×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× C0,α(∂Ω), there 

exists a unique . θ in .C0,α(∂Ω) such that 

. Λ[q, φ, g, θ ] = 0 on ∂Ω,

and we denote such a function by .θ [q, φ, g]. 
(iii) The map .θ [·, ·, ·] from .D+

n (R) ×
(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× C0,α(∂Ω) to 

.C0,α(∂Ω) that takes .(q, φ, g) to .θ [q, φ, g] is real analytic. 
Proof By Luzzini et al. [17, Thm. 3.2 (ii)], Lemma 1, and standard calculus in 
Banach spaces, we deduce the validity of statement (i). Statement (ii) follows by 
Lemmas 2 and 3. In order to prove (iii), since the analyticity is a local property, 

it suffices to fix .(q0, φ0, g0) in . D+
n (R) ×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× C0,α(∂Ω)

and to show that .θ [·, ·, ·] is real analytic in a neighborhood of .(q0, φ0, g0) in the 

product space .D
+
n (R)×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
×C0,α(∂Ω). By standard calculus 

in normed spaces, the partial differential .∂θΛ[q0, φ0, g0, θ [q0, φ0, g0]] of . Λ at 
.(q0, φ0, g0, θ [q0, φ0, g0]) with respect to the variable . θ is delivered by 

.∂θΛ[q0, φ0, g0, θ [q0, φ0, g0]](ψ)(t)

=1

2
ψ(t) +

ˆ
q0φ0(∂Ω)

νq0I[φ0](q0φ0(t)) · DSq0,n(q0φ0(t) − y)ψ
(
φ

(−1)
0 (q−1

0 y)
)
dσy

∀t ∈ ∂Ω,
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for all .ψ ∈ C0,α(∂Ω). Lemma 2 together with a change of variable implies 
that .∂θΛ[q0, φ0, g0, θ [q0, φ0, g0]] is a linear homeomorphism from .C0,α(∂Ω) onto 
.C0,α(∂Ω). Finally, by the implicit function theorem for real analytic maps in Banach 
spaces (see, e.g., Deimling [5, Thm. 15.3]) we deduce that .θ [·, ·, ·] is real analytic 
in a neighborhood of .(q0, φ0, g0) in .D

+
n (R)×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
×C0,α(∂Ω). 

⨅⨆
Remark 1 By Lemma 1, Propositions 1 and 2, we have the following representation 
formula for the solution .u[q, φ, g, k] of problem (2): 

. u[q, φ, g, k](x) =
ˆ

∂Ω

Sq,n(x − qφ(s))θ [q, φ, g](s)σ̃ [qφ](s) dσs

+

(
k −´

∂Ω

´
∂Ω

Sq,n(q(φ(t) − φ(s)))θ [q, φ, g](s)σ̃ [qφ](s)dσsσ̃ [qφ](t)dσt

)

´
∂Ω

σ̃ [qφ]dσ

∀x ∈ Sq [qI[φ]]−,

for all .(q, φ, g, k) ∈ D
+
n (R) ×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× C0,α(∂Ω) × R. 

By exploiting the representation formula of Remark 1 and the analyticity result 
for .(q, φ, g) → θ [q, φ, g] of Proposition 2, we are ready to prove our main result 
on the analyticity of .u[q, φ, g, k] as a map of the variable .(q, φ, g, k). 

Theorem 1 Let . α, . Ω be as in (1). Let 

. (q0, φ0, g0, k0) ∈ D
+
n (R) ×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× C0,α(∂Ω) × R.

Let U be a bounded open subset of . Rn such that .U ⊆ Sq0[q0I[φ0]]−. Then there 
exists an open neighborhood . U of .(q0, φ0, g0, k0) in 

. D
+
n (R) ×

(
C1,α(∂Ω,Rn) ∩AQ̃

∂Ω

)
× C0,α(∂Ω) × R

such that the following statements hold. 

(i) .U ⊆ Sq [qI[φ]]− for all .(q, φ, g, k) ∈ U. 
(ii) Let .m ∈ N. Then the map from . U to .Cm(U) which takes .(q, φ, g, k) to the 

restriction .u[q, φ, g, k]|U of .u[q, φ, g, k] to . U is real analytic. 

Proof We first note that, by taking . U small enough, we can deduce the validity 
of (i). The validity of (ii) follows by the representation formula of Remark 1, by  
Lemma 1, by Proposition 2, by the regularity results of [12] on the analyticity of 
integral operators with real analytic kernels, and by standard calculus in Banach 
spaces. ⨅⨆
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On One Inequality for Non-overlapping 
Domains 

Iryna Denega 

Abstract In this paper, an approach which allowed to obtain new estimates of 
the products of the inner radii of mutually non-overlapping domains is proposed. 
Problem of the maximum of the product of inner radii of two non-overlapping 
multiconnected domains is considered. 

1 Preliminaries 

Let . N, . R be the sets of natural and real numbers, respectively, . C be the complex 
plane, .C = C

⋃{∞} be its one point compactification, U be the open unit disk, 
.R

+ = (0,∞). 

Definition 1 Let .B ⊂ C be a simply connected domain and .a ∈ B. According to 
the Riemann theorem on mapping, there exists a unique conformal mapping of the 
domain B onto the unit disk at which .f (a) = 0 ∈ U , .f ′(a) ∈ R

+. Consider inverse 
mapping . ϕ which maps a unit disk U onto domain B such that .ϕ(0) = a. Then 

. R(B, a) = 1

|f ′(a)| = |ϕ′(0)|

is called conformal radius of the simply connected domain .B ⊂ C relative to a point 
.a ∈ B. 

Conformal radius of the domain B with respect to an infinitely distant point is 
.r(B,∞) = r(ϕ(B), 0), where .ϕ(z) = 1/z. 
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Definition 2 A function .gB(z, a) which is continuous in . C, harmonic in . B\{a}
apart from z, vanishes outside B, and in the neighborhood of a has the following 
asymptotic expansion 

. gB(z, a) = − ln |z − a| + δ + o(1), o(1) → 0, z → a,

(if .a = ∞, then .gB(z,∞) = ln |z| + δ + o(1), .o(1) → 0, .z → ∞) is called the 
(classical) Green function of the domain B with pole at .a ∈ B. 

Denote by . eδ the inner radius .r(B, a) of the domain B with respect to a point a 
(see, for example, [1–3]). 

It is known [4], that the following inequality holds 

. |ϕ′(0)| ≤ r(B, a).

For compact .E ⊂ C its (logarithmic) capacity is determined by the following 
equalities 

. capE := 1

r(C\E,∞)
,

if the value .r(C\E,∞) is finite; .capE := 0 otherwise [2, 3]. 

Definition 3 Let G be a domain in . Cz. By a quadratic differential in G we mean 
the expression 

.Q(z)dz2, (1) 

where .Q(z) is a meromorphic function in G [2, 3, 5–7]. 

A finite point a in G is called a zero or a pole of order n of the differential (1) if  
it is a zero or a pole, respectively, of the function .Q(z). 

A circular domain G for .Q(z)dz2 contains a unique double pole a of . Q(z)dz2

and .G\{a} is filled by trajectories of .Q(z)dz2, which are closed Jordan curves, each 
separating a from the boundary of G. For a suitable choice of a purely imaginary 

constant . τ the function .w = exp
{
τ
´

(Q(z))
1
2 dz

}
, set equal to zero at a, maps G 

conformally onto a disc . |w| < R.

In 1934 Lavrentyev in paper [8], in particular, solved the problem of maximum of 
the product of conformal radii of two non-overlapping simply connected domains. 
Namely, the following result is true. 

Theorem 1 ([8]) Let . a1 and . a2 be some fixed points of the complex plane . C, . Bk , 
.ak ∈ Bk , .k ∈ {1, 2} be any non-overlapping simply connected domains on . C. Then 
the following inequality holds 

.R(B1, a1)R(B2, a2) ≤ |a1 − a2|2. (2)
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Equality in (2) occurs only in the case where the domains . B1 and . B2 are two half-
planes and the imaginary axis is their common boundary and points . a1, . a2 are 
symmetrical about their common boundary. 

Later (see, for example, [9]), Lavrentyev’s result was generalized to the case of 
meromorphic functions. Then, for any domains .B1 ⊂ C and .B2 ⊂ C the inequality 
(2) is valid and equality in (2) is attended if domains . B1 and . B2 have the following 
form 

. B1 =
{

w ∈ C :
∣
∣
∣
∣
w − a1

w − a2

∣
∣
∣
∣ < ρ

}

, B2 =
{

w ∈ C :
∣
∣
∣
∣
w − a1

w − a2

∣
∣
∣
∣ > ρ

}

or vice versa, .ρ ∈ R
+. An example of such configuration of the domains is the case 

where one domain is bounded by some circle and the other is unrestricted, that is, a 
complement to the first domain. It should be noted that in this case we have a whole 
continuum of extremals. 

In the Kolbina papers [10, 11] Lavrentyev’s result summarized by taking 
functions in fixed positive degrees: for any finite different points . a1 and . a2 maximum 

. J0 = 4α+βααββ

|α − β|α+β

∣
∣
∣
∣

√
α − √

β√
α + √

β

∣
∣
∣
∣

2
√

αβ

|a1 − a2|α+β

of the value .J = Rα(B1, a1)R
β(B2, a2), .α, β ∈ R

+, with respect to all possible 
pairs of the domains . B1, . B2 such that .a1 ∈ B1 ⊂ C, .a2 ∈ B2 ⊂ C, is attained for 
poles and circular domains of the following quadratic differential 

. Q(z)dz2 = − (a2 − a1)[z − a1 − α(a2 − a1)/(α − β)]
(z − a1)2(z − a2)2

dz2.

Further, generalization of the Theorem 1 was manifested by increasing the 
number of domains, refusing to fix the poles of the corresponding quadratic 
differentials, moving to an extended complex plane, expanding the object of study – 
domains that do not intersect replace some class of open sets or partially intersecting 
domains (see, for example, [2, 3, 12–18]). 

The method proposed in this paper originates in the work [19], which considered 
the problem of finding the maximum of the product of inner radii of three mutually 
disjoint domains under the additional condition of symmetry with respect to the unit 
circle of two of them and the degree .γ = 1 the inner radius of the domain relative 
to the origin. The ideas suggested in [19] were generalized in the works [20–25]. 

2 Estimates of Products of Inner Radii 

We have the following three results as well.
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Theorem 2 Let .n ∈ N. Then for any fixed system of different points .{ak}nk=1 and 
for any collection of mutually non-overlapping domains .{Bk}nk=0, .ak ∈ Bk ⊂ C, 
.k = 0, n, .a0 = 0, such that .r (B1, a1) = r (B2, a2) = . . . = r (Bn, an), the  
following inequality holds 

.r (B0, 0) r (Bk, ak) ≤ 1√
n

(
n∏

k=1

|ak|
) 2

n

. (3) 

Proof Consider the product 

. rn (B0, 0)
n∏

k=1

r (Bk, ak)

for any fixed system of different points .{ak}nk=1 and for any collection of mutually 
non-overlapping domains .{Bk}nk=0, .ak ∈ Bk ⊂ C, .k = 0, n, .a0 = 0. 

Let .d(E) be the transfinite diameter of a compact set .E ⊂ C. It is known [1, 2], 
that the logarithmic capacity .capE coincides with the transfinite diameter .d(E) of 
the set E 

. capE = d(E).

Since the inner radius of the domain containing an infinitely distant point is 
reciprocal to the transfinite diameter of the complement to this domain, then 

.r (B0, 0) = r
(
B+
0 ,∞) = 1

d
(
C \ B+

0

) . (4) 

Here, .B+ =
{
z : 1

z
∈ B

}
. By virtue of the well-known Polya theorem [1, 26], the 

inequality 

.μE ≤ πd2(E), (5) 

where .μE denotes the Lebesgue measure of a compact set E, holds. Then relation 
(5) yields 

. d(E) ≥
(
1

π
μE

) 1
2

.

Thus, 

.
1

d
(
C \ B+

0

) ≤ 1
√

1
π
μ

(
C \ B+

0

) .
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Using monotony and additivity of the Lebesgue measure 

. 
1

√
1
π
μ

(
C \ B+

0

) ≤ 1
√

1
π
μ

(
n⋃

k=1
B

+
k

) = 1
√

1
π

n∑

k=1
μB

+
k

.

Then from (4), we obtain 

.r (B0, 0) ≤
(
1

π

n∑

k=1

μB
+
k

)− 1
2

. (6) 

The area-minimization theorem [1] implies that 

. μ(B) ≥ πr2 (B, a) .

It follows from inequality (6) that 

. r (B0, 0) ≤
[

n∑

k=1

r2
(
B+

k , a+
k

)
]− 1

2

.

Taking into account an invariance of the Green function in conformal and univalent 
mapping we get 

. gBk
(z, ak) = gB+

k
(w+, a+

k ), w+ = 1

z
.

Using the asymptotic expansion 

. gB+
k
(w+, a+

k ) = gB+
k

(
1

z
,
1

ak

)

= ln
1

| 1
z

− a+
k | + ln r(B+

k , a+
k ) + o(1)

we obtain 

.r
(
B+

k , a+
k

) = r (Bk, ak)

|ak|2 (7) 

and the inequality 

.r (B0, 0) ≤ 1
[

n∑

k=1

r2(Bk,ak)

|ak |4
] 1

2

.
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From whence, the following estimate holds 

. rn (B0, 0)
n∏

k=1

r (Bk, ak) ≤

n∏

k=1
r (Bk, ak)

[
n∑

k=1

r2(Bk,ak)

|ak |4
] n

2
.

Then from the Cauchy inequality of arithmetic and geometric means, we have the 
assertion 

. 
1

n

n∑

k=1

r2 (Bk, ak)

|ak|4 ≥
(

n∏

k=1

r2 (Bk, ak)

|ak|4
) 1

n

.

It is clear that 

. 

(
n∑

k=1

r2 (Bk, ak)

|ak|4
) n

2

≥ n
n
2

n∏

k=1

r (Bk, ak)

|ak|2 .

Thus, it follows that 

.rn (B0, 0)
n∏

k=1

r (Bk, ak) ≤ n− n
2

(
n∏

k=1

|ak|
)2

. (8) 

Using inequality (8) and conditions of the Theorem 2 

. rn (B0, 0)
n∏

k=1

r (Bk, ak) = (r (B0, 0) r (Bk, ak))
n ≤ n− n

2

(
n∏

k=1

|ak|
)2

.

Taking from the left and right parts of the last inequality the root of degree n, the  
inequality (2) holds. Theorem 2 is proved. 
�
Corollary 1 Let .n ∈ N and a fixed system of different points .{ak}nk=1 such that 
.|ak| = ρ ∈ R

+, .k = 1, n. Then for all conditions of the Theorem 2, the inequality 

. r (B0, 0) r (Bk, ak) ≤ 1√
n

· ρ2, k = 1, n

is valid. 

Remark 1 On the other hand, for all conditions of the Corollary 1 from Lavrentyev’s 
result [8] (see also Theorem 1) the following inequality holds 

.r (B0, 0) r (Bk, ak) ≤ ρ2, k = 1, n.
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Theorem 3 Let .n ∈ N. Then for any fixed system of different points .{ak}nk=1 and for 
any collection of mutually non-overlapping domains . B∞, .{Bk}nk=1, .∞ ∈ B∞ ⊂ C, 
.ak ∈ Bk ⊂ C, .k = 1, n, such that .r (B1, a1) = r (B2, a2) = . . . = r (Bn, an), the  
following inequality holds 

.r (B∞,∞) r (Bk, ak) ≤ 1√
n
, k = 1, n. (9) 

Proof Consider the product 

. rn (B∞,∞)

n∏

k=1

r (Bk, ak)

for any fixed system of different points .{ak}nk=1 and for any collection of mutually 
non-overlapping domains . B∞, .{Bk}nk=1, .∞ ∈ B∞ ⊂ C, .ak ∈ Bk ⊂ C, .k = 1, n. 

The proof of the Theorem 3 is based on the constructions given above in the proof 
of the Theorem 2. Using inequalities (4), (5) and the area-minimization theorem 
[1, 2], the relation holds 

. r (B∞,∞) ≤ 1
[

n∑

k=1
r2 (Bk, ak)

] 1
2

.

Then from the Cauchy inequality of arithmetic and geometric means, we have 

. 

(
n∑

k=1

r2 (Bk, ak)

) 1
2

≥ n
1
2

[
n∏

k=1

r (Bk, ak)

] 1
n

and therefore 

. rn (B∞,∞) ≤ n− n
2

[
n∏

k=1

r (Bk, ak)

]−1

.

From here 

. rn (B∞,∞)

n∏

k=1

r (Bk, ak) ≤ n− n
2 .

Using last inequality and conditions of the Theorem 3 

.rn (B∞,∞)

n∏

k=1

r (Bk, ak) = (r (B∞,∞) r (Bk, ak))
n ≤ n− n

2 .
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Taking from the left and right parts of the last inequality the root of degree n, the  
inequality (9) holds. Theorem 3 is proved. 
�
Remark 2 For all conditions of the Theorem 3 from the Lavrentyev theorem, the 
inequality 

. r (B∞,∞) r (Bk, ak) ≤ 1, k = 1, n

is true. 

Theorem 4 Let .n ∈ N. Then for any fixed system of different points .{ak}nk=1 and 
for any collection of mutually non-overlapping domains . B0, . B∞, .{Bk}nk=1, . a0 =
0 ∈ B0 ⊂ C, .∞ ∈ B∞ ⊂ C, .ak ∈ Bk ⊂ C, .k = 1, n, such that . r (B1, a1) =
r (B2, a2) = . . . = r (Bn, an), the following inequality holds 

.r (B0, 0) r (B∞,∞) r (Bk, ak) ≤ (n + 1)−
n+1
2n

(
n∏

k=1

|ak|
) 1

n

. (10) 

Proof Consider the product 

. [r (B0, 0) r (B∞,∞)]n
n∏

k=1

r (Bk, ak)

for any fixed system of different points .{ak}nk=1 and for any collection of mutually 
non-overlapping domains . B0, . B∞, .{Bk}nk=1, .a0 = 0 ∈ B0 ⊂ C, .∞ ∈ B∞ ⊂ C, 
.ak ∈ Bk ⊂ C, .k = 1, n. 

Using the arguments in proving of the Theorem 2, inequalities (4), (5) and the 
area-minimization theorem [1, 2], it follows that 

. r (B0, 0) ≤
(

r2 (B∞,∞) +
n∑

k=1

r2
(
B+

k , a+
k

)
)− 1

2

.

From here, using the equality (7), we have 

. r (B0, 0) ≤
[

r2 (B∞,∞) +
n∑

k=1

r2 (Bk, ak)

|ak|4
]− 1

2

.

Similarly, 

.r (B∞,∞) ≤
[

r2 (B0, 0) +
n∑

k=1

r2 (Bk, ak)

]− 1
2

.



On One Inequality for Non-overlapping Domains 291

Taking into account the Cauchy inequality of arithmetic and geometric means 

. r (B0, 0) ≤

(
n∏

k=1
|ak|

) 2
n+1

(n + 1)
1
2 (r (B∞,∞))

1
n+1

(
n∏

k=1
r (Bk, ak)

) 1
n+1

and, analogically, 

. r (B∞,∞) ≤ 1

(n + 1)
1
2 (r (B0, 0))

1
n+1

(
n∏

k=1
r (Bk, ak)

) 1
n+1

.

Using simple transformations, we obtain the relation 

. r (B0, 0) r (B∞,∞) ≤

(
n∏

k=1
|ak|

) 2
n+2

(n + 1)
n+1
n+2

(
n∏

k=1
r (Bk, ak)

) 2
n+2

from which the inequality follows 

. [r (B0, 0) r (B∞,∞)]n
n∏

k=1

r (Bk, ak) ≤

. ≤ (n + 1)−
n(n+1)
n+2

(
n∏

k=1

r (Bk, ak)

)1− 2n
n+2

(
n∏

k=1

|ak|
) 2n

n+2

.

According to the Theorem 1 (see also Theorem 2.3.1 [3]), we get 

. r (B0, 0) r (B∞,∞) ≤ 1,

then 

. [r (B0, 0) r (B∞,∞)]n
n∏

k=1

r (Bk, ak) ≤

. ≤ (n + 1)−
n(n+1)
n+2

(

[r (B0, 0) r (B∞,∞)]n
n∏

k=1
r (Bk, ak)

) 2n
n+2−1

n∏

k=1

|ak| 2n
n+2 .
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From here there follows that 

. 

(

[r (B0, 0) r (B∞,∞)]n
n∏

k=1

r (Bk, ak))

) 2n
n+2

≤ (n + 1)−
n(n+1)
n+2

n∏

k=1

|ak| 2n
n+2 .

Therefore, 

. [r (B0, 0) r (B∞,∞)]n
n∏

k=1

r (Bk, ak) ≤ (n + 1)−
n+1
2

n∏

k=1

|ak|. (11) 

From conditions of the Theorem 4 

. [r (B0, 0) r (B∞,∞)]n
n∏

k=1

r (Bk, ak) = (r (B0, 0) r (B∞,∞) r (Bk, ak))
n .

Using inequality (11), it follows that 

. (r (B0, 0) r (B∞,∞) r (Bk, ak))
n ≤ (n + 1)−

n+1
2

n∏

k=1

|ak|.

Taking from the left and right parts of the last inequality the root of degree n, the  
inequality (10) holds. Theorem 4 is proved. 
�
Corollary 2 Let .n ∈ N and a fixed system of different points .{ak}nk=1 such that 
.|ak| = ρ ∈ R

+, .k = 1, n. Then for all conditions of the Theorem 4, the inequality 

. r (B0, 0) r (B∞,∞) r (Bk, ak) ≤ (n + 1)−
n+1
2n · ρ, k = 1, n

is valid. 
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Schwarz Lemma Type Estimates 
for Solutions to Nonlinear Beltrami 
Equation 

Bogdan Klishchuk, Ruslan Salimov, and Mariia Stefanchuk 

Abstract We continue to investigate the regular homeomorphic solutions to non-
linear Beltrami equation introduced in Golberg and Salimov (Complex Var Elliptic 
Equ 65(1):6–21, 2020). Schwarz Lemma type estimates are obtained involving the 
length-area method. The lower bounds for the inverses are also established. 

1 Introduction 

Let G be a domain in the complex plane . C and .μ : G → C be a measurable function 
with .|μ(z)| < 1 a.e. (almost everywhere) in . G. Recall that the Beltrami equation 
has a form 

.fz = μ(z)fz , (1) 

where .fz = (fx + ify)/2, fz = (fx − ify)/2, .z = x + iy, and . fx and . fy are the 
partial derivatives of f by x and . y, respectively. 

Various existence theorems for solutions of the Sobolev class .W 1,1
loc have been 

recently established applying the modulus approach for a quite wide class of linear 
and quasilinear degenerate Beltrami equations; see, e.g. [1–5]. 

Let .σ : G → C be a measurable function and .m ⩾ 0. We consider the following 
equation written in the polar coordinates . (r, θ) :

.fr = σ(reiθ ) |fθ |m fθ , (2) 
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where . fr and . fθ are the partial derivatives of f by r and . θ, respectively. Applying 
the relations between these derivatives and the formal derivatives . rfr = zfz + zfz ,

and .fθ = i(zfz − zfz) , see, e.g. [6, (21.25)], one can rewrite Eq. (2) in the form: 

.fz = z

z

σ (z) |z||zfz − zfz|m + i

σ (z) |z||zfz − zfz|m − i
fz (3) 

with the condition .z (σ (z) |z||zfz − zfz|m − i) /= 0 a.e. Under .m = 0 Eq. (3) 
reduces to the standard linear Beltrami equation (1). Picking .m = 0 and . σ = −i/|z|
in (3), we arrive at the classical Cauchy-Riemann system. For .m > 0 Eq. (3) 
provides a partial case of the general nonlinear system of equations (7.33) given 
in [6, Sect. 7.7]. Later on we assume that . m > 0.

The nonlinear equation (3) provides a partial case of the nonlinear system of 
two real partial differential equations; see (1) in [8, 9], cf. [10]. Note that various 
nonlinear systems of partial differential equations studied in a quite large specter of 
aspects can be found in [6–24]. 

A mapping .f : G → C is called regular at a point .z0 ∈ G, if f has the total 
differential at this point and its Jacobian .Jf = |fz|2 −|fz̄|2 does not vanish, cf. [25, 
I. 1.6]. A homeomorphism f of Sobolev class .W 1,1

loc is called regular, if .Jf > 0 a.e. 
By a regular solution of equation (3) we call a regular homeomorphism . f : G → C,

which satisfies (3) a.e. in . G.

Further we use the following notations 

. Br = {z ∈ C : |z| < r} , B = {z ∈ C : |z| < 1}

and 

. γr = {z ∈ C : |z| = r} , A(0, r1, r2) = {z ∈ C : r1 < |z| < r2}.

The area of set .f (Br) we denote by . S(r) = |f (Br)|.
The following statement provides a differential inequality for the function . S(r);

see Lemma 1 in [22]. 

Proposition 1 Let .m > 0 and .f : B → C be a regular homeomorphic solution to 
equality (3) of Sobolev class .W

1,2
loc normalized by .f (0) = 0. Then 

.S'(r) ⩾ 2m+2π
m
2 +1

⎛
⎜⎜⎝
ˆ

γr

ds

|z|
(

Im σ(z)
) 1

m+1

⎞
⎟⎟⎠

−(m+1)

S
m+2

2 (r) (4) 

for almost all .r ∈ [0, 1).
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2 Main Results 

In this section we provide a series of theorems related to the asymptotic behavior of 
regular homeomorphic solutions to nonlinear equation (3). 

The following result is an analogue of the well-known Ikoma-Schwartz lemma 
on estimating the lower bound [27, Theorem 2]. 

Theorem 1 Let .f : B → C be a regular homeomorphic solution to nonlinear 
equation (3) of Sobolev class .W

1,2
loc satisfying . f (0) = 0.

(a) If for some .ε0 ∈ (0, 1), .α > 0 and . C > 0

.

ε0ˆ

ε

dt

Im,σ (t)
∼ C ε−α as ε → 0 , (5) 

where .Im,σ (t) =
(´

γt

ds

|z|
(

Im σ(z)
)1/(m+1)

)m+1

, then the following estimate 

. lim inf
z→0

|f (z)|
|z|α/m

⩽ c0 C−1/m < ∞ (6) 

holds, where . c0 = (2π)−(m+1)/mm−1/m.

(b) If for some .ε0 ∈ (0, 1) and . α > 0

. lim
ε→0

εα

ε0ˆ

ε

dt

Im,σ (t)
= ∞ , (7) 

then 

. lim inf
z→0

|f (z)|
|z|α/m

= 0 . (8) 

Proof Proposition 1 implies 

.

(
S− m

2 (t)

−m
2

)'

= S
'
(t)

S
m+2

2 (t)
⩾ 2m+2π

m
2 +1

⎛
⎜⎜⎝
ˆ

γt

ds

|z|
(

Im σ(z)
) 1

m+1

⎞
⎟⎟⎠

−(m+1)
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for almost all .t ∈ (0, 1). Integrating the last inequality by .t ∈ (ε, ε0), . 0 < ε < ε0 <

1, we have 

.

ε0ˆ

ε

(
S− m

2 (t)

−m
2

)'

dt ⩾ 2m+2π
m
2 +1

ε0ˆ

ε

⎛
⎜⎜⎝
ˆ

γt

ds

|z|
(

Im σ(z)
) 1

m+1

⎞
⎟⎟⎠

−(m+1)

dt . (9) 

Note that .gm(t) = S
− m

2 (t)

− m
2

is nondecreasing. Then 

. 

ε0ˆ

ε

(
S− m

2 (t)

−m
2

)'

dt =
ε0ˆ

ε

g
'
m(t)dt ⩽ gm(ε0) − gm(ε) = 2

m

(
S− m

2 (ε) − S− m
2 (ε0)

)
;

(10) 

see [28, Theorem IV 7.4]). 
Combining estimates (9) and (10), one gets 

. S− m
2 (ε) ⩾ S− m

2 (ε) − S− m
2 (ε0) ⩾ 2m+1 m π

m
2 +1

ε0ˆ

ε

dt

Im,σ (t)
,

where .Im,σ (t) =
(´

γt

ds

|z|
(

Im σ(z)
)1/(m+1)

)m+1

. This yields the bound 

.S(ε) ⩽ 2− 2(m+1)
m m− 2

m π− m+2
m

⎛
⎝

ε0ˆ

ε

dt

Im,σ (t)

⎞
⎠

− 2
m

. (11) 

Letting .lf (ε) = min|z|=ε
|f (z)|, .ε ∈ (0, ε0), and since f is a homeomorphism 

satisfying . f (0) = 0,

. πl2
f (ε) ⩽ S(ε) ⩽ 2− 2(m+1)

m m− 2
m π− m+2

m

⎛
⎝

ε0ˆ

ε

dt

Im,σ (t)

⎞
⎠

− 2
m

.

Hence, 

.lf (ε)

⎛
⎝

ε0ˆ

ε

dt

Im,σ (t)

⎞
⎠

1
m

⩽ 2− m+1
m m− 1

m π− m+1
m .
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And thus, 

. lim inf
z→0

|f (z)|
⎛
⎜⎝

ε0ˆ

|z|

dt

Im,σ (t)

⎞
⎟⎠

1
m

= lim inf
ε→0

lf (ε)

⎛
⎝

ε0ˆ

ε

dt

Im,σ (t)

⎞
⎠

1
m

⩽ c0 , (12) 

where .c0 = 2− m+1
m m− 1

m π− m+1
m > 0 is a constant depending only on . m.

In view of the condition (5), 

. lim inf
z→0

|f (z)|
|z|α/m

= lim inf
z→0

|f (z)|
⎛
⎜⎝

ε0ˆ

|z|

dt

Im,σ (t)

⎞
⎟⎠

1
m

· lim
z→0

|z|− α
m

⎛
⎜⎝

ε0ˆ

|z|

dt

Im,σ (t)

⎞
⎟⎠

− 1
m

⩽

. ⩽ c0 C−1/m .

It is obvious that from condition (7) and from the last estimate statement b) 
follows. 

Letting in Theorem 1 .α = m, we derive the following statement. 

Corollary 1 If for . C > 0

.

ε0ˆ

ε

dt

Im,σ (t)
∼ C ε−m as ε → 0 , (13) 

then 

. lim inf
z→0

|f (z)|
|z| ⩽ c0 C−1/m < ∞ , (14) 

where . c0 = (2π)−(m+1)/mm−1/m.

As consequences of Theorem 1, we obtain the following statements. 

Theorem 2 Let .f : B → C be a regular homeomorphic solution to nonlinear 
equation (3) of Sobolev class .W 1,2

loc satisfying .f (0) = 0 and . Im σ(reiθ ) ⩾ λ(r)

for a.a. .r ∈ (0, ε0), .ε0 ∈ (0, 1), where .λ(r) : [0, 1) → [0,∞) is a measurable 
function. 

(a) If for .C > 0 and . α > 0

.

ε0ˆ

ε

λ(t) dt ∼ C ε−α as ε → 0 , (15)
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then 

. lim inf
z→0

|f (z)|
|z|α/m

⩽ (C m)−1/m < ∞ . (16) 

(b) If for .C > 0 and . α > 0

. lim
ε→0

εα

ε0ˆ

ε

λ(t) dt = ∞ , (17) 

then 

. lim inf
z→0

|f (z)|
|z|α/m

= 0. (18) 

Proof Indeed, the condition .Im σ(reiθ ) ⩾ λ(r) for a.a. .r ∈ (0, ε0) yields 

. Im,σ (t) =

⎛
⎜⎜⎝
ˆ

γt

ds

|z|
(

Im σ(z)
) 1

m+1

⎞
⎟⎟⎠

m+1

⩽ (2π)m+1

λ(t)

for a.a. .t ∈ (0, ε0). Hence the following bound 

. 

⎛
⎜⎝

ε0ˆ

|z|

dt

Im,σ (t)

⎞
⎟⎠

1
m

⩾ (2π)−
m+1
m

⎛
⎜⎝

ε0ˆ

|z|
λ(t) dt

⎞
⎟⎠

1
m

holds for all z such that . 0 < |z| < ε0.

Combining the last estimate and estimate (12) from the proof of Theorem 1, we  
obtain 

. lim inf
z→0

|f (z)|
⎛
⎜⎝

ε0ˆ

|z|
λ(t) dt

⎞
⎟⎠

1
m

⩽ (2π)
m+1
m lim inf

z→0
|f (z)|

⎛
⎜⎝

ε0ˆ

|z|

dt

Im,σ (t)

⎞
⎟⎠

1
m

⩽

. ⩽ (2π)
m+1
m c0 = m− 1

m ,

where .c0 = (2π)− m+1
m m− 1

m .
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Finally, in view of the condition (15), we get 

. lim inf
z→0

|f (z)|
|z|α/m

= lim inf
z→0

|f (z)|
⎛
⎜⎝

ε0ˆ

|z|
λ(t) dt

⎞
⎟⎠

1
m

lim
z→0

⎛
⎜⎝|z|α

ε0ˆ

|z|
λ(t) dt

⎞
⎟⎠

− 1
m

⩽

. ⩽ (C m)−1/m .

Letting in Theorem 2 .α = m, we derive the following statement. 

Corollary 2 If for . C > 0

.

ε0ˆ

ε

λ(t) dt ∼ C ε−m as ε → 0 , (19) 

then 

. lim inf
z→0

|f (z)|
|z| ⩽ (C m)−1/m < ∞ . (20) 

Consider the equation 

.fr = − αi

mkmrα+1
|fθ |m fθ , α > 0, k > 0, (21) 

in the unit disk . B.

It is easy to check that .f = k r
α
m eiθ is a regular homeomorphic solution to 

equation (21) of Sobolev class .W 1,2
loc (B). Further, we have 

. σ = − αi

mkmrα+1 ,
(

Im σ(z)
) 1

m+1 =
( α

m

) 1
m+1

(
1

k

) m
m+1 1

|z| α+1
m+1

and 

. Im,σ (t) =

⎛
⎜⎜⎝
ˆ

γt

ds

|z|
(

Im σ(z)
) 1

m+1

⎞
⎟⎟⎠

m+1

= (2π)m+1mkm

α
· tα+1.

We obviously get .
ε0´
ε

dt
Im,σ (t)

∼ C ε−α as .ε → 0 , where .C = 1
(2π)m+1kmm

. 

Thus, the conditions of Theorem 1(a) are satisfied. On the other hand, it is easy 
to see that . lim

z→0

|f (z)|
|z|α/m = k .
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Consider the equation 

.fr = − (m + α)i

mkm

1

r1+m+α
|fθ |m fθ , k > 0 , α > 0 , (22) 

in the unit disk . B.

It is easy to check that .f = k r1+ α
m eiθ is a regular homeomorphic solution to 

equation (22) of Sobolev class .W 1,2
loc (B). Further, we have 

. |z|
(

Im σ(z)
) 1

m+1 =
(

m + α

mkm

) 1
m+1 1

|z| α
m+1

and .Im,σ (t) = (2π)m+1 mkm

m+α
tα+m+1. Thus, . lim

ε→0
εα

ε0́

ε

dt
Im,σ (t)

= ∞. On the other 

hand, clearly . lim
z→0

|f (z)|
|z|α/m = 0 .

Proposition 2 Equation (2) with .σ = − i
m r

, 0 < m < 2, has a homeomorphic 

solution .f : B → C of Sobolev class .W 1,2
loc (B) satisfying .f (0) = 0, such that 

. lim
z→0

|f (z)|
|z|α/m = ∞ for all .α > 0 and, moreover, . lim

ε→0
εα

ε0́

ε

dt
Im,σ (t)

= 0.

Proof Consider the equation 

.fr = − i

mr
· |fθ |m · fθ (23) 

in the unit disk . B.

It is easy to check that .f = (
ln e

r

)−1/m
eiθ is a regular homeomorphic solution 

of equation (23). We show first that the mapping .f = (
ln e

r

)−1/m
eiθ belongs to 

Sobolev class .W 1,2
loc (B). Indeed, f is a diffeomorphism in .B \ {0}, and, therefore, 

.f ∈ W
1,2
loc (B\{0}). Let .Br0 = {z ∈ C : |z| ⩽ r0}, .r0 ∈ (0, 1). The partial derivatives 

of f by r and . θ are 

. fr = 1

m r

(
ln

e

r

)−1/m−1
eiθ , fθ =

(
ln

e

r

)−1/m

ieiθ ,

and using the formula [6, p. 611], we have 

. 

ˆ

Br0

(
|fz|2 + |fz|2

)
dxdy = 1

2

ˆ

Br0

(
|fr |2 + r−2|fθ |2

)
rdrdθ =

. = π

m2

r0ˆ

0

(
ln

e

r

)−2/m−2 dr

r
+ π

r0ˆ

0

(
ln

e

r

)−2/m dr

r
.
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Obviously, both integrals converge under .0 < m < 2. 
Further, we have 

. 

(
Im σ(z)

) 1
m+1 =

(
1

m

) 1
m+1 1

|z| 1
m+1

and .Im,σ (t) = (2π)m+1 m t. Obviously, . lim
ε→0

εα
ε0´
ε

dt
Im,σ (t)

= 0. On the other hand, 

clearly, that . lim
z→0

|f (z)|
|z|α/m = ∞ for all .α > 0. 

3 Consequences for Inverse Solves 

Here we formulate some results for the inverse mappings applying the statements 
of previous section. Obviously, the lower bounds will be derived instead of upper 
ones. 

Theorem 3 Let .f : B → C be a regular homeomorphic solution to nonlinear 
equation (3) of Sobolev class .W

1,2
loc satisfying . f (0) = 0.

(a) If for some .ε0 ∈ (0, 1), .α > 0 and . C > 0

. 

ε0ˆ

ε

dt

Im,σ (t)
∼ C ε−α as ε → 0 ,

where .Im,σ (t) =
(´

γt

ds

|z|
(

Im σ(z)
)1/(m+1)

)m+1

, then for .f −1 the following 

estimate 

. lim sup
w→0

|f −1(w)|
|w|m/α

⩾
(
C c−m

0

) 1
α

holds, where . c0 = (2π)−(m+1)/mm−1/m.

(b) If for some .ε0 ∈ (0, 1) and .α > 0 . lim
ε→0

εα
ε0́

ε

dt
Im,σ (t)

= ∞ , then 

. lim sup
w→0

|f −1(w)|
|w|m/α

= ∞ .
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Corollary 3 If for . C > 0

. 

ε0ˆ

ε

dt

Im,σ (t)
∼ C ε−m as ε → 0 ,

then .lim sup
w→0

|f −1(w)|
|w| ⩾ c−1

0 C1/m , where . c0 = (2π)−(m+1)/mm−1/m.

Theorem 4 Let .f : B → C be a regular homeomorphic solution of nonlinear 
equation (3) of Sobolev class .W 1,2

loc satisfying .f (0) = 0 and . Im σ(reiθ ) ⩾ λ(r)

for a.a. .r ∈ (0, ε0), .ε0 ∈ (0, 1), where .λ(r) : [0, 1) → [0,∞) is a measurable 
function. 

(a) If for .C > 0 and . α > 0

. 

ε0ˆ

ε

λ(t) dt ∼ C ε−α as ε → 0 ,

then . lim sup
w→0

|f −1(w)|
|w|m/α ⩾ (C m)1/α .

(b) If for .C > 0 and .α > 0 . lim
ε→0

εα
ε0´
ε

λ(t) dt = ∞ , then . lim sup
w→0

|f −1(w)|
|w|m/α = ∞ .

Corollary 4 If for . C > 0

. 

ε0ˆ

ε

λ(t) dt ∼ C ε−m as ε → 0 ,

then . lim sup
w→0

|f −1(w)|
|w| ⩾ (C m)1/m .
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On Conditions of Local Lineal Convexity 
Generalized to Commutative Algebras 

Tetiana M. Osipchuk 

Abstract The notion of lineally convex domains in the finite-dimensional complex 
space . Cn and some of their properties are generalized to the finite-dimensional space 
. An, .n ≥ 2, that is the Cartesian product of n commutative and associative algebras 
. A. Namely, a domain in . An is said to be (locally) .A-lineally convex if, for every 
boundary point of the domain, there exists a hyperplane in . An passing through the 
point but not intersecting the domain (in some neighborhood of the point). It is 
proved that .A3-lineal convexity of bounded domains with a smooth boundary in 
the space . An

3 follows from their local .A3-lineal convexity for a three-dimensional 
algebra . A3. 

1 Introduction 

The notion of lineal convexity that is studied in the theory of functions of many 
complex variables was coined in 1935 by Heinrich Behnke and Ernst F. Peschl [1], 
but it has been actively used only since the 60s due to the works of André Martineau 
[2, 3] and Lev A. Aizenberg [4, 5] who defined a lineally convex set in the finite-
dimensional complex space . Cn, .n ⩾ 2, independently in slightly different ways. 

Consider a complex hyperplane 

. ΠC(w) :=
⎧
⎨

⎩
(z1, . . . , zn) ∈ C

n :
n∑

j=1

cj

(
zj − wj

) = 0, (c1, . . . , cn) ∈ C
n \ {0}

⎫
⎬

⎭

passing through a point .w = (w1,w2 . . . ,wn) ∈ C
n. 

Definition 1 (A. Martineau [2]) A set  .E ⊂ C
n is said to be lineally convex in 

the sense of Martineau if its complement is a union of complex hyperplanes. 
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The lineal convexity of a set .E ⊂ C
n in the sense of Martineau is equivalent to the 

condition that, for any point .w ∈ C
n \ E, there is a complex hyperplane .ΠC(w) not 

intersecting E. 

Definition 2 (L. Aizenberg [4]) A domain .D ⊂ C
n is said to be lineally convex 

if, for every boundary point .w ∈ ∂D, there exists a complex hyperplane .ΠC(w) not 
intersecting D. 

A domain lineally convex in the sense of Martineau is obviously lineally convex by 
Aizenberg. In [6] it is proved that there exist domains lineally convex by Aizenberg 
and not lineally convex in the sense of Martineau. The notion of lineal convexity in 
the sense of the Aizenberg definition is also known as weak lineal convexity [7–9]. 

Definition 3 ([1, 10, 11]) A domain .D ⊂ C
n is said to be locally lineally convex 

if, for every boundary point .w ∈ ∂D, there exists a complex hyperplane . ΠC(w)

passing through . w but not intersecting D in some neighborhood of the point . w. 

There is also another definition of local lineal convexity: 

Definition 4 ([12]) An open set .D ⊂ C
n is said to be locally lineally convex in 

the sense of Kiselman if, for every point .w ∈ C
n, there exists a neighborhood U of 

. w such that .D ∩ U is lineally convex. 

Local lineal convexity in the sense of Kiselman implies local lineal convexity for all 
open sets. But there exists a bounded domain in . C2 with Lipschitz boundary which 
is locally lineally convex but not locally lineally convex in the sense of Kiselman 
(see Example 4.4 in [12]). 

H. Behnke and E. Peschl in [1] proved that the global lineal convexity follows 
from the local one for bounded domains with a smooth boundary in . C2. For the case 
of . Cn this result was obtained in 1971 by Alexander P. Yuzhakov and Viachelsav P. 
Krivokolesko [10]. The statement fails for domains with a non-smooth boundary. An 
example of a locally lineally convex domain that is not lineally convex is constructed 
in [10]. Moreover, Yuri B. Zelinskii showed that the condition of the boundedness 
of the domain is essential by constructing an example of an unbounded locally 
lineally convex domain with a smooth boundary that is not lineally convex [13]. 
Later an example of an unbounded Hartogs domain having these properties was 
also constructed by Christer O. Kiselman [12]. 

In the work [1], the separate necessary and sufficient analytical conditions of 
local lineal convexity of domains with a smooth boundary in . C2 were also obtained. 
In 1971 B. S. Zinoviev got a generalization of Behnke-Peschl conditions for the 
case . Cn, .n ⩾ 2, in terms of nonnegativity and positivity of the differential of the 
second order of a real function defining a domain with a boundary of the class . C2, 
respectively. Moreover, the sign of the differential is determined on the boundary of 
the domain and on the vectors of a complex hyperplane tangent to the domain [11]. 
In 1998 Christer O. Kiselman managed to obtain the criterion of lineal convexity 
of a bounded domain in the space . Cn with a boundary of the class . C2 in terms 
of nonnegativity of the differential of the second order of the function defining
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the domain [9]. In 2008 Lars Hörmander improved Kiselman’s result by loosening 
conditions imposed on the boundary of the domain [14]. 

In 1980s, the theory of lineally convex sets begins to be generalized to the spaces 
of hypercomplex numbers by Henzel A. Mkrtchyan and Yuri B. Zelinskii [15, 16]. In 
[15] it is proved that the global hypercomplex convexity follows from the local one 
for bounded domains with a smooth boundary in the multi-dimensional quaternion 
space. Conditions similar to those of Zinoviev were obtained for the algebra of 
real quaternions [17], the algebra of real generalized quaternions [18], and Clifford 
algebras [19]. 

Consider a commutative and associative algebra . A over the field of real numbers 
. R with identity . e. Let  .dimA = m and elements .{ek}mk=1 be a basis of . A. Consider 
the vector space . An, .n ⩾ 2, which is the Cartesian product of n algebras . A. Let  
.z = (z1, z2, . . . , zn) ∈ An, where 

. zj := x
j

1 e1 + x
j

2 e2 + · · · + x
j
mem ∈ A, x

j
q ∈ R, j = 1, n.

And let a neighbourhood .U(w) of a point .w = (w1,w2, . . . ,wn) ∈ An be an open 
ball with center at . w. Consider a hyperplane 

.ΠA(w) :=
{

z ∈ An :
n∑

j=1
cj

(
zj − wj

) = 0, (c1, c2, . . . , cn) ∈ An \ {0}
}

(1) 

which is called analytic. An analytic hyperplane .ΠA(w) is called (locally) support-
ing for a domain .Ω ⊂ An at a point .w ∈ ∂Ω if it does not intersect . Ω (in some 
neighborhood of the point . w). A domain .Ω ⊂ An is said to be (locally) .A-lineally 
convex if it has an analytic, (locally) supporting hyperplane .ΠA(w) at every point 
.w ∈ ∂Ω. 

Let .γ p
lk ∈ R be structure constants of . A defined as follows: 

.elek =
m∑

p=1

γ
p
lkep, l, k = 1,m. (2) 

Moreover, let the basis satisfy the following conditions: 

(1) there exist the inverse elements .e−1
k = 1

ek

, .k = 1,m; 

(2) there exists .p = p̃ such that the matrix .𝚪p̃ = (γ
p̃
lk) is non-degenerate.
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Consider the following matrices 

. Zj =

⎛

⎜
⎜
⎜
⎝

z1j
z2j
. . .

zm
j

⎞

⎟
⎟
⎟
⎠

, E =

⎛

⎜
⎜
⎜
⎝

e1 0 . . . 0
0 e2 . . . 0
...

...
. . .

...

0 0 . . . em

⎞

⎟
⎟
⎟
⎠

, Xj =

⎛

⎜
⎜
⎜
⎝

x
j

1

x
j

2
. . .

x
j
m

⎞

⎟
⎟
⎟
⎠

, j = 1, n,

and a non-degenerate .m × m matrix 

.𝚪 =

⎛

⎜
⎜
⎜
⎝

γ11 γ12 . . . γ1m

γ21 γ22 . . . γ2m
...

...
. . .

...

γm1 γm2 . . . γmm

⎞

⎟
⎟
⎟
⎠

, where γlq ∈ R. (3) 

And let 

.Zj = 𝚪EXj , (4) 

i. e., 

. zl
j := γl1x

j

1 e1 + γl2x
j

2 e2 + · · · + γlmx
j
mem, l = 1,m, j = 1, n.

We obtain from (4): 

. Xj = E−1𝚪−1Zj ,

where .𝚪−1 = (ηlp), .ηlp ∈ R, .l, p = 1,m. That is to say, 

.x
j
l = e−1

l

m∑

p=1

ηlpz
p
j , j = 1, n, l = 1,m. (5) 

Let .ρ(z) = ρ(z) = ρ(x1
1 , x

1
2 , . . . , x

n
m) : R

mn → R, .z ∈ An, .z ∈ R
mn. 

Substituting . xj
l , .j = 1, n, .l = 1,m, for their values (5) in the expression of the 

function .ρ(z), we get 

.ρ(z) = ρ(x1
1(z

1
1, z

2
1 . . . , zm

1 ), x1
2(z

1
1, z

2
1 . . . , zm

1 ), . . . , xn
m(z1n, z

2
n . . . , zm

n )). (6) 

Now consider a domain 

.Ω = {z ∈ An : ρ(z) = ρ(z1, z2, . . . , zm) < 0}, (7)
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where .zl = (zl
1, z

l
1, z

l
2 . . . zl

n), .l = 1,m, with the boundary . ∂Ω = {z ∈ An :
ρ(z) = 0}, where the function .ρ : An → R is k times continuously differentiable 
in a neighborhood of . ∂Ω with respect to its real variables and such that . gradρ /= 0
everywhere on . ∂Ω. If  .k = 1, then we say that . Ω has a smooth boundary. If  .k = 2, 
then such a domain is called regular. 

In the work [20] the conditions similar to those of Zinoviev were obtained for 
regular, locally .A-lineally convex domains and are presented in Sect. 2. 

In Sect. 3 the three-dimensional commutative algebra . A3 with the basis . {e1 =
1, e2 = ρ, e3 = ρ2} having the following multiplication table: 

.· 1 .e2 . e3

1 1 .e2 . e3

.e2 .e2 .e3 . −1

.e3 .e3 .−1 . −e2

is considered. It is proved that the .A3-lineal convexity of a bounded domain . Ω ⊂
An

3 with a smooth boundary follows from its local .A3-lineal convexity. 

2 Analytical Conditions of LocalA-Lineal Convexity 

We say that an analytic hyperplane .ΠA(w) lies in a real hyperplane 

. ΠRmn(w) :=
⎧
⎨

⎩

(
s11 , s

1
2 , . . . , s

n
m

)
∈ R

mn :
n∑

j=1

m∑

l=1

a
j
l s

j
l = 0,

(a11, a
1
2, . . . , a

n
m) ∈ R

mn \ {0}
}

, (8) 

if any vector .s = (s1, s2, . . . , sn) ∈ An, .sj =
m∑

l=1
s
j
l el =

m∑

l=1
(x

j
l −w

j
l )el = zj −wj , 

.j = 1, n, satisfying the equation of the hyperplane (1) satisfies the equation of the 
hyperplane (8). 

Lemma 1 Let a real hyperplane .ΠRmn(w) (8) be given and let .Πp̃
A(w) be the 

analytic hyperplane (1) such that 

.cj =
m∑

k,l=1

η
p̃
kla

j
l ek, j = 1, n, (9) 

where . η
p̃
kl are the elements of the matrix inverse to the matrix . 𝚪p̃ satisfying condition 

2). Then .Π
p̃
A(w) lies in .ΠRmn(w).
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Proof Substitute the constants . cj in (1) for their values (9) and, after multiplying 

by .sj =
m∑

p=1
s
j
pep, group together the terms with each basis element . ek , .k = 1,m, 

separately. Set the grouped expressions to zero. We obtain that the equation in (1) 
is equivalent to the system of m real equations defining real hyperplanes in the mn-
dimensional real space. Moreover, the equation obtained after grouping terms with 
the unit . ep̃ defines the real hyperplane .ΠRmn(w). The lemma is proved. ⨅⨆

By Lemma 1, for any . p̃ satisfying condition 2), the analytic hyperplane 

. T
p̃
A(w) :=

⎧
⎨

⎩
s = (s1, s2, . . . , sn) ∈ An :

n∑

j=1

m∑

k,l=1

η
p̃
kl

∂ρ(w)

∂x
j
l

ek sj = 0

⎫
⎬

⎭

lies in the real hyperplane tangent to a domain .Ω ⊂ An (7) with a smooth boundary 
at .w ∈ ∂Ω. 

If the function . ρ (6) is twice continuously differentiable with respect to its real 
variables . xj

l , .j = 1, n, .l = 1,m, at a point .w ∈ An, then, formally differentiating 
. ρ as a composite function with respect to the variables . zl

j , .j = 1, n, .l = 1,m, we  
obtain the following formulas for the formal partial derivatives: 

. 
∂ρ(w)

∂z
p
j

:=
m∑

l=1

ηlp

∂ρ(w)

∂x
j
l

e−1
l , j = 1, n, p = 1,m,

. 
∂2ρ(w)

∂z
p
j ∂z

q
i

:=
m∑

l,k=1

ηlpηkq

∂2ρ(w)

∂x
j
l ∂xi

k

e−1
l e−1

k , j, i = 1, n, p, q = 1,m.

Theorem 1 If a regular domain .Ω ⊂ An is locally .A-lineally convex and . T p̃
A(w)

is locally supporting for . Ω at any point .w ∈ ∂Ω, then, for . w and any vector . s ∈
T

p̃
A(w), .‖s‖ = 1, the following inequality is true 

.

n∑

i,j=1

m∑

k,l=1

∂2ρ(w)

∂zl
i∂zk

j

sl
j s

k
i ⩾ 0. (10) 

If, for any point .w ∈ ∂Ω and any vector .s ∈ T
p̃
A(w), .‖s‖ = 1, 

.

n∑

i,j=1

m∑

k,l=1

∂2ρ(w)

∂zl
i∂zk

j

sl
j s

k
i > 0, (11) 

then the regular domain .Ω ⊂ An is locally .A-lineally convex.
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Proof Sufficiency. Write the Taylor series formally for the function . ρ(z) =
ρ(z1, z2, . . . , zm), .zl = (zl

1, z
l
1, z

l
2 . . . zl

n), .l = 1,m, with respect to the variables 
. zl

j in the neighborhood .U(w) of any point .w ∈ ∂Ω. Notice that .ρ(w) = 0 at 

any boundary point . w. Since .s ∈ T
p̃
A(w), the second summand in the Taylor 

decomposition also vanishes. Then 

. ρ(z) = 1

2

⎛

⎝
n∑

i,j=1

m∑

k,l=1

∂2ρ(w)

∂zl
i∂zk

j

(zl
j − wl

j )(z
k
i − wk

i )

‖z − w‖2

⎞

⎠ ‖z − w‖2

+ o(‖z − w‖2), z → w, (12) 

for any point .z ∈ U(w) ∩ T
p̃
A(w). 

Thus, .ρ(z) ⩾ 0 for any point .z ∈ U(w) ∩ T
p̃
A(w) and any point .w ∈ ∂Ω by (11) 

and (12), which means local .A-lineal convexity of the domain . Ω. 

Necessity. Suppose a regular domain . Ω is locally .A-lineally convex and, for a 
point .w̃ = (w̃1, w̃2, . . . , w̃n) ∈ ∂Ω and for a vector .t = (t1, t2, . . . , tn) ∈ T

p̃
A(w̃), 

the following inequality is true 

.

n∑

i,j=1

m∑

k,l=1

∂2ρ(w̃)

∂zl
i∂zk

j

t l
j t

k
i < 0. (13) 

On the other hand, for the points .z ∈ U(w̃) ∩ T
p̃
A(w̃), the expansion (12) is valid.  

Thus, for the points .̃z = (̃z1, z̃2, . . . , z̃n) ∈ U(w̃) ∩ T
p̃
A(w̃) which correspond to 

the tangent vector . t , where correspondence is defined by the relation . t i = (̃zi −
w̃i )/‖̃z − w̃‖, .i = 1, n, the inequality .ρ(̃z) < 0 is true by (13), which contradicts 
the fact that the hyperplane .T

p̃
A(w̃) is locally supporting for . Ω at . ̃w. ⨅⨆

3 Properties of Locally A3-Lineally Convex Domains with a 
Smooth Boundary 

Lemma 2 Let Ω = {x = (x1, x2, . . . , xn) ∈ Rn : ρ(x) < 0} be a bounded domain 
in Rn with a smooth boundary. Suppose that x0 ∈ ∂Ω and L is an r-dimensional 
plane, 1 < r  < n, that passes through the point x0 and is not tangent to Ω. Then 
there exists a neighbourhood U(x0) such that ∂Ω ∩ U(x0) ∩ L is the graph of some 
smooth function. 

The statement of the lemma follows directly from the implicit-function theorem. 
Using Lemma 1, it can be proved that, for any real hyperplane ΠR3n(w), w ∈ 

R
3n, there is the unique analytic hyperplane ΠA3(w) lying in ΠR3n(w).
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For any a, b ∈ An 
3, the  set  

. L := {
z = (z1, z2, . . . , zn) ∈ An

3 : z = t (b − a) + a, t ∈ A3
}

is called the analytic line passing through the points a, b. 

Lemma 3 An analytic line L that is contained in a real hyperplane tangent to a 
locally A3-lineally convex domain Ω ⊂ An 

3 with a smooth boundary at a point w ∈ 
∂Ω, and passing through the point w does not intersect Ω in some neighborhood of 
w. 

Proof Since Ω is locally A3-lineally convex and has a smooth boundary, the unique 
analytic hyperplane TA3(w) locally supporting for Ω at w lies in the real hyperplane 
tangent to Ω at w. Since the analytic hyperplane and analytic line are of the real 
dimensions 3n−3 and 3, respectively, and they both are contained in the same 3n−1 
dimensional real hyperplane, they have the common 2-dimensional real plane. For 
all that, the analytic hyperplane and analytic line having a common point intersect 
only at this point or the line is completely contained in the hyperplane. Thus, in our 
case, L ⊂ TA3(w). Since TA3(w) ∩ Ω = ∅ in some neighborhood of the point w, 
therefore L ∩ Ω = ∅ in the same neighborhood of w. ⨅⨆
Lemma 4 An arbitrary analytic line L intersects a bounded locally A3-lineally 
convex domain with a smooth boundary Ω ⊂ An 

3 in at most one connected 
component. 

Proof Suppose z0, z1 ∈ L∩Ω be two arbitrary points of the intersection L∩Ω. Note  
that upper indices which are not in bold are the part of the notation of the points of 
the spaceAn 

3 and do not mean conjugation, as is customary above for upper indices 
in bold. Prove that z0, z1 belong to the same connected component of L∩Ω. SinceΩ

is connected, there exists a curve γ : [0, 1] → Ω, such that γ (0) = z0, γ (1) = z1. 
Let γ (s)  = zs , s ∈ [0, 1]. Without loss of generality, suppose z0 ≡ 0. Consider the 
analytic lines 

. Ls = {
z ∈ An

3 : z = tzs , t ∈ A3
}
, s ∈ (0, 1),

passing through the points z0, zs . Consider the following sets: 

• ∑1 := {s: points γ (0), γ (s)  are in the same component of Ls ∩ Ω}; 
• ∑2 := {s: points γ (0), γ (s)  are in the different components of Ls ∩ Ω}; 
• ∑3 := {s: points γ (0), γ (s)  are in the same component of Ls ∩ Ω and in the 

different components of Ls ∩ Ω}. 
It is easy to see that∑1∪∑2∪∑3 = (0, 1) and∑1∩∑2 = ∑1∩∑3 = ∑2∩∑3 = ∅. 

1. First, show that ∑3 = ∅. Without loss of generality, suppose that Ls ∩Ω, s ∈ ∑3, 
consists of one connected component. Assume that there exists a point x1 such 
that x1 ∈ Ls ∩ Ω, x1 /∈ Ls ∩ Ω. Then Lemma 2 is not fulfilled for the line Ls 
at the point x1. Thus, Ls is tangent to Ω at x1. Consider the set C of all points
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x ∈ Ls∩Ω, such that Ls is tangent toΩ at the points x. Since ρ ∈ C1, the  set  C is 
closed, nonempty by assumption, and such that C ∪ Ls ∩ Ω = Ls ∩Ω. Since the 
set Ls ∩Ω is connected, we have C∩Ls ∩ Ω /= ∅. Therefore, there exists a point 
x2 ∈ Ls ∩ Ω at which Ls is tangent to Ω and an arbitrary neighborhood of the 
point x2 contains points of Ω, which contradicts Lemma 3. Thus, the assumption 
is wrong, and the point x1 with indicated properties does not exist. By virtue of 
the connectedness of Ls ∩Ω, there exists a point x3 that is a point of the boundary 
common for two different components of Ls ∩Ω. Hence, according to Lemma 2, 
Ls is tangent to Ω at x3, which contradicts Lemma 3. Thus, the set ∑3 is empty. 

2. Show that the set ∑2 is open. Namely, prove that, for any s0 ∈ ∑2, there exists 
δ >  0 such that for any s ∈ (s0−δ, s0+δ) the intersection Ls∩Ω is disconnected. 
The intersection Ls ∩ Ω is isometric to the open set Ωs = {q : f (q, s)  = 
ρ(p(s)q) <  0} ⊂ A1 

3, where p(s) = γ (s)  
|γ (s)| , q ∈ A3, 0  < s  <  1, since z = p(s)q 

mapsA1 
3 homeomorphically onto Ls ⊂ An 

3 and |p(s)q − p(s)q '| = |p(s)| |q − 
q '| = |q − q '|. The points γ (s),  γ  (0) ∈ Ls ∩ Ω are associated with the points 
q(s) = |γ (s)|, 0 ∈ Ωs . Choose an arbitrary s0 ∈ (0, 1) such that the intersection 
Ls0 ∩ Ω is disconnected. Consider components D0 and D1 = (Ls0 ∩ Ω) \ D0 
of this intersection, and D'

0,D
'
1 ⊂ Ωs0 , respectively. The domain Ω is bounded. 

Hence, there exists a ball Vr such that Ωs0 ⊂ Vr . ThenA1 
3 contains open sets V , 

U such that D'
0 ⊂ V , D'

1 ⊂ U , V ∩ U = ∅, U ∪ V ⊂ Vr . We have  f (q, s0) >  0 
on the compact V r \ (U ∪ V ), since Ωs0 = {q : f (q, s0) ≤ 0} ⊂  U ∪ V . The  
function f (q, s)  is continuous for q ∈ A1 

3, 0  < s  <  1. Consequently, there exists 
δ >  0 such that, for all s such that |s − s0| < δ  and q ∈ V r \ (U ∪ V )  one has 
f (q, s)  >  0, i.e., Ωs ⊂ U ∪ V . Moreover, 0 ∈ D'

0 ⊂ V and q(s) ∈ D'
1 ⊂ U 

for sufficiently small δ. Thus, γ (0) and γ (s)  belong to different components of 
Ls ∩ Ω for s0 − δ <  s  ≤ s0 + δ. 

3. Show that the set ∑1 is also open. Taking into account that ∑1 /= ∅, choose 
s0 ∈ (0, 1) so that the intersection Ls0 ∩ Ω is connected. Prove that there exists 
ε >  0 such that, for any s ∈ (s0 − ε, s0 + ε), the intersection Ls ∩ Ω is also 
connected. 

Since the set Ls0 ∩Ω is connected and open in Ls0 , there exists a curve τ(l)  ⊂ 
Ls0 ∩ Ω, l ∈ [0, 1], τ(0) = γ (0), τ(1) = γ (s0). The distance r between the 
compact sets τ and ∂Ω is greater than zero. Consider the ballsB(τ(l), r) of radius 
r and centered at the points τ(l), and their union B = ⋃

l∈[0,1] 
B(τ(l), r) ⊂ Ω. 

Choose ε >  0 so that, for any s ∈ (s0−ε, s0+ε), the distance from γ (s0) to γ (s)  
is less than r . Then Ls intersects every ball B(τ(l), r). Construct a continuous 
curve τs ⊂ Ls ∩ Ω connecting the points τs(0) = γ (0) and τs(1) = γ (s)  as the 
union of the set of centers of the disks C(l) := Ls ∩ B(τ(l), r), l ∈ [0, 1], and 
the segment [C(1), γ (s)] that lies inside the ball Ls ∩ B(τ(1), r). It is obvious  
that the curve τs is completely contained in Ls ∩ Ω. Thus, the points γ (0) and 
γ (s)  lie in the same component of the intersection Ls ∩ Ω. 

Since ∑1∪∑2∪∑3 = (0, 1), ∑1∩∑2 = ∑1∩∑3 = ∑2∩∑3 = ∅, ∑3 = ∅, and 
both sets ∑1, ∑2 are open, we have either ∑1 = ∅ or ∑2 = ∅. Since the domain Ω
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is connected, the set ∑1 cannot be empty. Thus, ∑2 = ∅, moreover, ∑1 = (0, 1). 
Then L ∩ Ω is connected, otherwise, we will have the case 1 for L ∩ Ω, which 
contradicts Lemmas 2, 3. 

The lemma is proved. ⨅⨆
Lemma 5 Suppose that an analytic line L intersects a bounded locallyA3-lineally 
convex domain Ω ⊂ An 

3 with a smooth boundary. Then L ∩ Ω = L ∩ Ω. 

Proof By Lemma 4, L ∩ Ω is connected. We have L ∩ Ω ⊂ L ∩ Ω. Let  L ∩ Ω \ 
L ∩ Ω /= ∅. The case, where L ∩ Ω \ L ∩ Ω is not closed, is not possible (see case 
1, Lemma 4). Thus, L ∩ Ω \ L ∩ Ω is closed, i.e., L ∩ Ω is disconnected. Consider 
points z0, z1 such that z0 ∈ L∩Ω, z1 ∈ L ∩Ω \ L ∩ Ω ⊂ ∂Ω. Since ∂Ω is smooth, 
there exists a curve γ : [0, 1] → Ω such that γ (1) = z1, γ (s)  = zs ∈ Ω, 0 ≤ s <  1. 
Consider the analytic lines Ls passing through the points z0, zs , 0  ≤ s ≤ 1. Since 
z0, z1 belong to different components of L ∩ Ω, then z0, zs belong to different 
components of Ls ∩ Ω, therefore, to different components of Ls ∩ Ω, for  s close 
enough to 1 (see proof of the case 2, Lemma 4). This contradicts Lemma 4. Thus, 
L ∩ Ω = L ∩ Ω. ⨅⨆
Theorem 2 If a bounded domain Ω ⊂ An 

3 with a smooth boundary is locally A3-
lineally convex, then it isA3-lineally convex. 

Proof Suppose Ω is not A3-lineally convex. Then there is a point w ∈ ∂Ω and 
the analytic hyperplane ΠA3(w) passing through w, not intersecting Ω in some 
neighborhood U(w) of w, and such that ΠA3(w) ∩ Ω /= ∅. Take a point z0 ∈
ΠA3(w) ∩ Ω and draw the analytic line L ⊂ ΠA3(w) through the points w, z0. 
Then z0 ∈ L ∩ Ω and w ∈ L ∩ Ω. For all that, w /∈ L ∩ Ω, since U(w) ∩ Ω ∩ L ⊂ 
U(w) ∩ Ω ∩ ΠA3(w) = ∅. This contradicts Lemma 5. ⨅⨆
Remark 1 By Theorem 2, the analytical conditions (10), (11) of local A3-lineal 
convexity of a bounded regular domain in the space An 

3 are also the analytical 
conditions ofA3-lineal convexity of the domain. 
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On a Quadrature Formula for the Direct 
Value of the Double Layer Potential 

Igor O. Reznichenko, Pavel A. Krutitskii, and Valentina V. Kolybasova 

Abstract A quadrature formula for the direct value of the double layer potential 
with continuous density given on a closed or open surface is derived. The double 
layer potential for the Helmholtz equations are considered, the potential for the 
Laplace equation is a particular case. The proposed quadrature formula gives 
significantly higher accuracy than standard quadrature formula, which is confirmed 
by numerical tests. The derived quadrature formula can be used for numerical 
solving boundary value problems for the Laplace and Helmholtz equations by the 
method of potentials and boundary integral equations. 

1 Introduction 

The double layer potential is used in the numerical solution of boundary value 
problems for the Laplace and Helmholtz equations by the method of integral 
equations in [1, 2]. With the help of potentials, boundary value problems are 
reduced to integral equations. For the numerical solution of integral equations, it 
is necessary to have quadrature formulas that calculate with good accuracy the 
direct values of potentials on the surface, where the potential density is given. 
Engineering calculations use standard quadrature formulas for potentials [3], but 
their accuracy leaves much to be desired the best. An improved quadrature formula 
for the direct value of the potential of a simple layer is proposed in [4], and for the 
direct value of the normal derivative of the potential of a simple layerin [5]. In this 
paper, an improved quadrature formula is derived for the directvalue of the double 
layer potential. The improved formula gives significantly higher accuracy than the 
standard one, which is confirmed by numerical tests. 
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In the two-dimensional case, an improved quadrature formula for the simple-
layer potential with density given on open curves and having power-law singularities 
at the ends of the curves is constructed in [6, 7]. This formula can be used to find 
numerical solutions to boundary value problems for the Laplace and Helmholtz 
equations outside of sections and open curves on the plane. Such problems were 
studied in [8–14]. 

2 Problem Statement 

Here we define the properties of the given surface, the definition of the double layer 
potential for the Helmholtz equation and introduce the main objective of the paper. 

We use the Cartesian coordinate system .x = (x1, x2, x3) ∈ R3 in three-
dimensional space. Let . 𝚪 be either a simple closed .C2-smooth surface or a simple 
bounded open oriented .C2-smooth surface containing the limit points of itself [15, 
Sec. 14.1]. If the surface . 𝚪 is closed, then it must bound a spatially simply connected 
interior domain [16, p. 201]. Assume that . 𝚪 is parameterized in such a way that a 
rectangle is mapped onto it, 

. y = (y1, y2, y3) ∈ 𝚪, y1 = y1(u, v), y2 = y2(u, v), y3 = y3(u, v);

.u ∈ [0, A], v ∈ [0, B]; yj (u, v) ∈ C2([0, A] × [0, B]), j = 1, 2, 3. (1) 

The sphere, the surface of an ellipsoid, smooth surfaces of figures of revolution, 
the torus surface, and many other more complicated surfaces can be parameterized 
in this way. Let us introduce N points . un with step h on the interval .[0;A] and M 
points . vm with step H on the interval .[0;B] by the formulas 

. A = Nh, B = MH, un = (n + 1/2)h, n = 0, . . . , N − 1;

. vm = (m + 1/2)H, m = 0, . . . ,M − 1.

We divide the rectangle .[0, A] × [0, B] mapped onto the surface . 𝚪 into . N × M

small rectangles of size .h × H ; then the points .(un; vm) are the midpoints of these 
rectangles. 

It is well known [15, Sec. 14.1] that the components of a (not necessarily unit) 
normal vector .η(y) = (η1(y), η2(y), η3(y)) at a point .y = (y1, y2, y3) ∈ 𝚪 of the 
surface can be expressed via second-order determinants by the formulas 

.η1 =
∣
∣
∣
∣

(y2)u (y3)u

(y2)v (y3)v

∣
∣
∣
∣
, η2 =

∣
∣
∣
∣

(y3)u (y1)u

(y3)v (y1)v

∣
∣
∣
∣
, η3 =

∣
∣
∣
∣

(y1)u (y2)u

(y1)v (y2)v

∣
∣
∣
∣
. (2)



On a Quadrature Formula for the Direct Value of the Double Layer Potential 321

Set .|η(y)| = √

(η1(y))2 + (η2(y))2 + (η3(y))2. It is well known [15, Secs. 14.1 
and 14.2] that 

. 

ˆ
𝚪

F (y)dsy =
ˆ A

0
du

ˆ B

0
dvF (y(u, v))|η(y(u, v))|.

We require that the inequality 

.|η(y(u, v))| > 0, ∀ (u, v) ∈ ((0, A) × (0, B)). (3) 

be satisfied. It follows from condition (3) that .|η(y(u, v))| ∈ C1((0, A) × (0, B)). 
By . ny we denote the unit normal at a point .y ∈ 𝚪; i.e. .ny = η(y)/|η(y)|. The  

derivative along the normal ny has the form 

. 
∂

∂ny

= |η(y)|−1(η(y),∇y).

Set .|x − y(u, v)| = √

(x1 − y1(u, v))2 + (x2 − y2(u, v))2 + (x3 − y3(u, v))2 and 
note that 

. 
∂

∂ny

|x − y| = 1

|η(y)|
3

∑

j=1

ηj (y)
yj − xj

|x − y| .

The double layer potential is used to solve boundary value problems for the 
Helmholtz equation by the method of integral equations. Let .μ(y) ∈ C0(𝚪). 
Consider the direct value of the double layer potential at the point . x = y(un̂, vm̂) ∈
𝚪

. Wk[μ](x) = 1

4π

ˆ
𝚪

μ(y)
∂

∂ny

eik|x−y|

|x − y| dsy =

. = 1

4π

ˆ
𝚪

μ(y)
1

|η(y)|
exp(ik|x − y|)(ik|x − y| − 1)

|x − y|2
3

∑

j=1

ηj (y)(yj − xj )

|x − y| dsy =

. = 1

4π

ˆ A

0
du

ˆ B

0
dv μ(y(u, v)) exp(ik|x − y(u, v)|)(ik|x − y(u, v)| − 1)×

. ×
3

∑

j=1

ηj (y(u, v))(yj (u, v) − xj )

|x − y(u, v)|3 =
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. = 1

4π

N−1
∑

n=0

M−1
∑

m=0

ˆ un+h/2

un−h/2
du

ˆ vm+H/2

vm−H/2
dv μ(y(u, v))×

.×exp(ik|x−y(u, v)|)(ik|x−y(u, v)|−1)
3

∑

j=1

ηj (y(u, v))(yj (u, v) − xj )

|x − y(u, v)|3 , (4) 

where .k ≥ 0. It is well known that [17, Sec. 27.5] the direct value of the double 
layer potential under our assumptions is continuous function on the surface . 𝚪. Set 
.μnm = μ(y(un, vm)), then 

.μ(y(u, v)) = μnm + o(1), (5) 

for .u ∈ [un − h/2, un + h/2] and . v ∈ [vm − H/2, vm + H/2]. 
The same as in [4] it can be shown that with .u ∈ [un − h/2, un + h/2] and 

. v ∈ [vm − H/2, vm + H/2]

. |x − y(u, v)| = |x − y(un, vm)| + O(h + H),

. exp(ik|x − y(u, v)|) = exp(ik|x − y(un, vm)|) + O(h + H).

Constants in estimates of functions denoted as .O(h + H), do not depend on . n,m

and on the location of x in the nodes of . 𝚪. Therefore, 

. Wk[μ](x)|x=y(un̂,vm̂)∈𝚪 ≈

. ≈ 1

4π

N−1
∑

n=0

M−1
∑

m=0

μnm exp(ik|x − y(un, vm)|)(ik|x − y(un, vm)| − 1)×

. ×
ˆ un+h/2

un−h/2
du

ˆ vm+H/2

vm−H/2
dv

3
∑

j=1

ηj (y(u, v))(yj (u, v) − xj )

|x − y(u, v)|3 . (6) 

Thus, to obtain a quadrature formula for the direct value of the double layer potential 
at a point .x = y(un̂, vm̂) ∈ 𝚪, one must calculate the integral 

.

ˆ un+h/2

un−h/2
du

ˆ vm+H/2

vm−H/2
dv

3
∑

j=1

ηj (y(u, v))(yj (u, v) − xj )

|x − y(u, v)|3 , (7) 

which we refer to as the canonical integral.
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3 Calculation of the Canonical Integral When the Point x 
Lies in the Domain of Integration 

In this case, the integration is carried out on a rectangle with the center at the point 
.(un̂, vm̂), which corresponds to .y(un̂, vm̂) = x on the surface . 𝚪. Using the Taylor 
formula around the point .(un̂, vm̂), we obtain 

. |y(u, v) − x|2 = |y(u, v) − y(un̂, vm̂)|2 ≈
3

∑

j=1

((yj )
'
u(u − un̂) + (yj )

'
v(v − vm̂))2 =

. =
3

∑

j=1

(((yj )
'
u)

2(u − un̂)
2 + ((yj )

'
v)

2(v − vm̂)2 + 2(yj )
'
u(yj )

'
v(u − un̂)(v − vm̂)) =

. = α2(u − un̂)
2 + β2(v − vm̂)2 + 2δ(u − un̂)(v − vm̂),

. α2 =
3

∑

j=1

((yj )
'
u)

2, β2 =
3

∑

j=1

((yj )
'
v)

2, δ =
3

∑

j=1

(yj )
'
u(yj )

'
v,

where .(yj )
'
u and .(yj )

'
v are calculated at the point .(un̂, vm̂). Note that . α2β2 − δ2 =

|η(x)|2, according to [15, Sec. 14.1], therefore .α2 > 0 and .β2 > 0 by virtue of 
the condition (3). Applying the Taylor expansion centered at the point .(un̂, vm̂) with 
remainder in the Peano form [11, Sec. 10.5.3], we find that 

. yj − xj = (yj )
'
u(u − un̂) + (yj )

'
v(v − vm̂) + 1

2
(yj )

''
uu(u − un̂)

2+

. + 1

2
(yj )

''
vv(v − vm̂)2 + (yj )

''
uv(u − un̂)(v − vm̂) + o

(

(u − un̂)
2 + (v − vm̂)2

)

,

. ηj (y(u, v)) = ηj (y(un̂, vm̂)) + (ηj )
'
u(u − un̂) + (ηj )

'
v(v − vm̂)+

. + o

(√

(u − un̂)
2 + (v − vm̂)2

)

.

The derivatives with respect to u and v are taken at the point .(un̂, vm̂). 
It is easy to check that [15, Sec. 14.1 and 14.2] 

.

3
∑

j=1

ηj (y(un̂, vm̂))(yj )
'
u =

3
∑

j=1

ηj (y(un̂, vm̂))(yj )
'
v = 0,
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therefore 

. 

3
∑

j=1

ηj (y(u, v))(yj − xj ) ≈ ξ1(u − un̂)
2 + ξ2(v − vm̂)2 + ξ3(u − un̂)(v − vm̂),

. ξ1 =
3

∑

j=1

(
1

2
ηj (y(un̂, vm̂))(yj )

''
uu + (ηj )

'
u(yj )

'
u

)

,

. ξ2 =
3

∑

j=1

(
1

2
ηj (y(un̂, vm̂))(yj )

''
vv + (ηj )

'
v(yj )

'
v

)

,

. ξ3 =
3

∑

j=1

(

ηj (y(un̂, vm̂))(yj )
''
uv + (ηj )

'
u(yj )

'
v + (ηj )

'
v(yj )

'
u

)

.

The derivatives with respect to u and v are taken at the point .(un̂, vm̂). 
It follows from the above relations that in the case under consideration, the 

canonical integral (7) is approximately equal to the following integral, which we 
denote by . Jn̂m̂

. 

ˆ un̂+h/2

un̂−h/2
du

ˆ vm̂+H/2

vm̂−H/2
dv

× ξ1(u − un̂)
2 + ξ2(v − vm̂)2 + ξ3(u − un̂)(v − vm̂)

(

α2(u − un̂)
2 + β2(v − vm̂)2 + 2δ(u − un̂)(v − vm̂)

)3/2 =

. =
ˆ h/2

−h/2
dU

ˆ H/2

−H/2
dV

ξ1U
2 + ξ2V

2 + ξ3UV
(

α2U2 + β2V 2 + 2δUV
)3/2

= Jn̂m̂,

where .U = u − un̂, . V = v − vm̂. By calculating the integral .Jn̂m̂ and moving on 
to the new integration variable z, we find this integral explicitly 

. Jn̂m̂ = h

β3

(

− ξ2z
√

z2 + (α/β)2 − (δ/β2)2
+ ξ2 ln

∣
∣
∣
∣
z +

√

z2 + (α/β)2 − (δ/β2)2

∣
∣
∣
∣
−

. − ξ3 − 2ξ2δ/β2
√

z2 + (α/β)2 − (δ/β2)2
+

. +z
ξ2(δ/β

2)2 + ξ1 − ξ3δ/β
2

((α/β)2 − (δ/β2)2)
√

z2 + (α/β)2 − (δ/β2)2

)∣
∣
∣
∣
∣

H/h+δ/β2

−H/h+δ/β2

−
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. − H

α3

(

− ξ1z
√

z2 − (δ/α2)2 + (β/α)2
+ ξ1 ln

∣
∣
∣
∣
z +

√

z2 − (δ/α2)2 + (β/α)2)2

∣
∣
∣
∣
−

. − ξ3 − 2ξ1δ/α2
√

z2 − (δ/α2)2 + (β/α)2
+

. +z
ξ1(δ/α

2)2 + ξ2 − ξ3δ/α
2

(−(δ/α2)2 + (β/α)2)
√

z2 − (δ/α2)2 + (β/α)2

) ∣
∣
∣
∣

−h/H+δ/α2

h/H+δ/α2

.

4 Calculation of the Canonical Integral When the Point x 
Does Not Lie in the Domain of Integration 

Let x be a point not belonging to the small piece of . 𝚪 where the point . y = y(u, v)

ranges for .(u − un) ∈ [−h/2, h/2] and .(v − vm) ∈ [−H/2,H/2]. We expand 
the function .yj (u, v) by the Taylor formula around the point .(un, vm) and for . j =
1, 2, 3 we obtain 

. yj (u, v) = yj (un, vm) + Dj + O(H 2 + h2),

where 

. Dj = (yj )
'
u(u − un) + (yj )

'
v(v − vm).

Here and later the derivatives with respect to u and v are taken at the point.(un, vm). 
Set 

. r2 = |x − y(un, vm)|2 =
3

∑

j=1

r2j /= 0, rj = yj (un, vm) − xj , j = 1, 2, 3,

then 

.yj (u, v) − xj = rj + Dj + O(H 2 + h2), j = 1, 2, 3.
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Therefore, 

. |x − y(u, v)|2 =
3

∑

j=1

(xj − yj (u, v))2 ≈
3

∑

j=1

(r2j + 2rjDj + D2
j ) =

. = 2P(u−un)+2Q(v −vm)+α2(u−un)
2 +β2(v −vm)2 +2δ(u−un)(v −vm)+

. + r2 = β2(V + δU/β2 + Q/β2)2 − (δU + Q)2/β2 + α2U2 + 2PU + r2,

where .U = u − un, . V = v − vm, 

. P =
3

∑

j=1

rj (yj )
'
u, Q =

3
∑

j=1

rj (yj )
'
v, α2 =

3
∑

j=1

((yj )
'
u)

2,

. β2 =
3

∑

j=1

((yj )
'
v)

2, δ =
3

∑

j=1

(yj )
'
u(yj )

'
v.

It can be shown that [15, Sec. 14.1] 

.α2β2 − δ2 = |η(y(un, vm))|2. (8) 

Since .|η(y(un, vm))| > 0 for all possible .n, m by condition (3), we have 

.α2β2 − δ2 > 0. (9) 

It follows that .α2 > 0 and .β2 > 0. 
Applying the Taylor expansion centered at the point .(un, vm) with remainder in 

the Peano form [15, Sec. 10.5.3], we find that 

. ηj (y(u, v)) = ηj (y(un, vm)) + (ηj )
'
u(u − un) + (ηj )

'
v(v − vm)+

. + o
(√

(u − un)2 + (v − vm)2
)

.

The derivatives with respect to u and v are taken at the point .(un, vm). To compute 
the expression 

.

3
∑

j=1

ηj (y(u, v))(yj (u, v) − xj )
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with regard to the formulas 

. 

3
∑

j=1

ηj (y(un, vm))(yj )
'
u =

3
∑

j=1

ηj (y(un, vm))(yj )
'
v = 0,

meaning the orthogonality of the normal vector to tangent vectors to the surface 
[15, Sec. 14, § 1.2]), we use the Taylor expansion around the point .(un, vm) with 
remainder in the Peano form, 

. yj (u, v) − xj = rj + (yj )
'
u(u − un) + (yj )

'
v(v − vm) + 1

2
(yj )

''
uu(u − un)

2+

. + 1

2
(yj )

''
vv(v − vm)2 + (yj )

''
uv(u − un)(v − vm) + o

(

(u − un)
2 + (v − vm)2

)

,

then 

. 

3
∑

j=1

ηj (y(u, v))(yj (u, v) − xj ) ≈ R + ξ4U + ξ5V + ξ1U
2 + ξ2V

2 + ξ3UV,

where .U = u − un, . V = v − vm, 

. ξ1 =
3

∑

j=1

(
1

2
ηj (y(un, vm))(yj )

''
uu + (ηj )

'
u(yj )

'
u

)

,

. ξ2 =
3

∑

j=1

(
1

2
ηj (y(un, vm))(yj )

''
vv + (ηj )

'
v(yj )

'
v

)

,

. ξ3 =
3

∑

j=1

(

ηj (y(un, vm))(yj )
''
uv + (ηj )

'
u(yj )

'
v + (ηj )

'
v(yj )

'
u

)

,

. ξ4 =
3

∑

j=1

(ηj )
'
urj , ξ5 =

3
∑

j=1

(ηj )
'
vrj , R =

3
∑

j=1

ηj (y(un, vm))rj .

All the derivatives with respect to u and v are taken at the point .(un, vm).
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It follows from the above relations that the canonical integral (7) is approxi-
mately equal to the following integral, which we denote by . Knm(x)

. 

ˆ un+h/2

un−h/2
du

ˆ vm+H/2

vm−H/2
dv

1

|x − y(u, v)|3
3

∑

j=1

ηj (y(u, v))(yj (u, v) − xj ) ≈

. ≈
ˆ h/2

−h/2
dU

ˆ H/2

−H/2
dV ×

. × R + ξ4U + ξ5V + ξ1U
2 + ξ2V

2 + ξ3UV

β3((V + δU/β2 + Q/β2)2 − (δU + Q)2/β4 + (α2U2 + 2PU + r2)/β2)3/2
=

. = Knm(x). (10) 

The integral .Knm(x) is calculated explicitly in [18]. 

5 The Main Result 

Let us state the main result of the present paper. 

Theorem 1 Let . 𝚪 be either a simple .C2-smooth closed surface bounding a spatially 
simply connected interior domain or a simple .C2-smooth bounded open oriented 
surface containing the limit points of itself. Let . 𝚪 admit the parametrization (1) 
with the property (3), and let .μ(y) ∈ C0(𝚪). Then for the direct value of the double 
layer potential (4) for  .x = y(un̂, vm̂) ∈ 𝚪 and .k ≥ 0 we have the quadrature 
formula 

. Wk[μ](x)|x=y(un̂,vm̂)∈𝚪 ≈ − 1

4π
μn̂m̂Jn̂m̂+

. + 1

4π

n=N−1,m=M−1
∑

n=0, m=0
(n,m) /=(n̂,m̂)

μnm exp(ik|x − y(un, vm)|)(ik|x − y(un, vm)| − 1)Knm(x).

(11) 

where the integral .Jn̂m̂ is explicitly calculated in Sect. 3, and the integral . Knm(x)

from (10) is calculated explicitly in [18]. 

If .k = 0, then the potential of the double layer for the Helmholtz equation passes 
into the potential of the double layer for the Laplace equation, respectively, the 
quadrature formula (11) at  .k = 0 takes the form of a quadrature formula for the 
direct value of the harmonic potential of the double layer on the surface of . 𝚪.
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6 Numerical Tests 

Quadrature formula (11) is an alternative to the standard quadrature formula for the 
direct value of a double-layer potential on surface . 𝚪, commonly used in engineering 
calculations [3, Chapter 2] 

. Wk[μ](x)≈ 1

4π

n=N−1,m=M−1
∑

n=0, m=0
(n,m) /=(n̂,m̂)

μnm exp(ik|x−y(un, vm)|)(ik|x−y(un, vm)|−1)×

. × hH

|x − y(un, vm)|3
3

∑

j=1

ηj (y(un, vm))(yj (un, vm) − xj ). (12) 

Testing improved (11) and standard (12) quadrature formulas was carried out in the 
case when the surface . 𝚪 is a sphere of unit radius. In tests, the exact direct value of 
the double layer potential at the nodal points was compared with the approximate 
values calculated by quadrature formulas—by the improved formula (11) according 
to the Theorem and by the standard formula (12). At each nodal point, the absolute 
error was calculated for both formulas. Calculations were carried for different values 
of M and N . Values of steps are given by formulas .h = 2π/N,H = π/M. If 
.N/2 = M = 25, then .h = H ≈ 0.13; if .N/2 = M = 50, then . h = H ≈ 0.063;
if .N/2 = M = 100, then .h = H ≈ 0.031. The table for each test shows the 
maximum absolute calculation error for all nodal points of the sphere. The first line 
of the table contains the values of .N,M , in the subsequent lines—maximum errors 
for the standard and improved quadrature formulas in each test. 

Test 1 for quadrature formulas in the case of the Laplace equation. In this test, 
the potential density .μ(y(u, v)) = 1 was used, then the harmonic potential of the 
double layer and its direct value on the unit sphere have the form: 

. W0[μ](x) =
{

1 if |x| < 1
0 if |x| > 1

, W0[μ](x)||x|=1 = 1

2
.

Test 2 for quadrature formulas in the case of the Laplace equation. In this test, the 
potential density .μ(y(u, v)) = cos u sin v, was used, then the harmonic potential of 
the double layer and its direct value on the unit sphere have the form: 

.W0[μ](x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

2|x| cosϕ sinϑ

3
if |x| < 1,

−cosϕ sinϑ

3|x|2 if |x| > 1.

, W0[μ](x)||x|=1 = cosϕ sinϑ

6
,
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where . ϕ and . ϑ are azimuth and zenith angles in spherical coordinates with origin at 
the center of the sphere. 

Test 3 for quadrature formulas in the case of the Laplace equation. In this test, 
the potential density .μ(y(u, v)) = (3 cos2 v − 1)/2, was used, then the harmonic 
potential of the double layer and its direct value on the unit sphere have the form: 

. W0[μ](x)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3|x|2(3 cos2 ϑ − 1)

10
if |x| < 1

−3 cos2 ϑ − 1

5|x|3 if |x| > 1

, W0[μ](x)||x|=1 = 3 cos2 ϑ − 1

20
,

Test 4 for quadrature formulas in the case of the Helmholtz equation. In this test, 
the potential density .μ(y(u, v)) = μ(y(u, v)) = k, was used, then the harmonic 
potential of the double layer and its direct value on the unit sphere have the form: 

. Wk[μ](x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − ik) exp(ik)
sin(k|x|)

|x| if |x| < 1,

(sin k − k cos k)
exp(ik|x|)

|x| if |x| > 1,

,

. Wk[μ](x)||x|=1 = 1

2
((2 − ik) sin k − cos k) exp(ik),

where .k = 1 (Table 1). 
The results of the test calculations show that the improved quadrature for-

mula (11) has the first order of convergence, and the standard formula [3] converges 
more slowly. The error of calculations according to the improved quadrature formula 
proposed in the Theorem 1 is less than the error of calculations according to 

Table 1 Maximum absolute error of quadrature formulas in tests 1–4 

Number Quadrature 
of the test formula .M = N/2 = 25 .M = N/2 = 50 . M = N/2 = 100

1 Standard 0.019 0.0097 0.0062 

1 Improved 0.012 0.0063 0.0032 

2 Standard 0.019 0.0097 0.0049 

2 Improved 0.00050 0.00014 3.8E-5 

3 Standard 0.011 0.0089 0.0062 

3 Improved 0.011 0.0060 0.0031 

4 Standard 0.019 0.0097 0.0062 

4 Improved 0.012 0.0063 0.0032



On a Quadrature Formula for the Direct Value of the Double Layer Potential 331

the standard quadrature formula. Thus, the improved quadrature formula provides 
higher accuracy of calculations of the direct value of the potential of the double 
layer. 

The improved quadrature formula can find application in the numerical solution 
of boundary integral equations arising in the process of solving boundary value 
problems for the Laplace and Helmholtz equations by the method of potentials. 
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Menchov–Trokhimchuk Theorem 
Generalized for Monogenic Functions 
in a Three-Dimensional Algebra 

Maxim V. Tkachuk and Sergiy A. Plaksa 

Abstract The aim of this work is to prove an analog of Menchov–Trokhimchuk 
theorem on weakening conditions of monogeneity for functions given in a concrete 
three-dimensional commutative algebra over the field of complex numbers. The 
property of monogeneity of a function is understood as a combination of its 
continuity with the existence of its Gâteaux derivative. 

1 Introduction 

In the algebra of complex numbers . C, a function .F : C −→ C is called monogenic 
at the point .ξ0 ∈ C if there exists the following finite limit: 

. lim
ξ→ξ0

F(ξ) − F(ξ0)

ξ − ξ0
, (1) 

which is called the derivative of function F at the point . ξ0. A function, which is 
monogenic at all points of a domain .D ⊂ C, is called holomorphic in this domain 
(see [1]). 

An idea to weaken conditions of holomorphicity of complex-valued functions 
is developed in papers of H. Bohr [2], H. Rademacher [3], D. Menchov [4–6], 
V. Fedorov [7], G. Tolstov [8], Yu. Trokhimchuk [9, 10], G. Sindalovski [11], 
D. Teliakovski [12], E. Dolgenko [13], M. Brodovich [14]. 

Let us introduce one of Menchov‘s conditions denoted as .K ''': it is said that a 
function .F(ξ) satisfies the condition .K ''' at a point . ξ0 if the limit (1) exists for . ξ
belonging to the union of two noncollinear rays with origin at the point . ξ0. 

D. Menchov [4–6] showed that the fulfillment of condition .K ''' at every point of 
domain D, except an at most countable set of points, is sufficient for the mapping 
F to be conformal in the case where .F : D → C is continuous univalent function. 
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Yu. Trokhimchuk [9] removed the condition of univalence of the function F and 
proved the following theorem: 

Menchov–Trokhimchuk Theorem If a function .F : D → C is continuous in 
a domain D and the condition .K ''' is satisfied at any its point, except an at most 
countable set of points, then the function F is holomorphic in the domain D. 

A. Bondar [15] proved an analogue of this theorem for functions given in 
multidimensional complex space . Cn. More precisely, he proved that the continuity 
of function and the existence of its Fréche derivative along 2n specially chosen 
directions are sufficient for the holomorphy of such a function. For functions given 
in . Cn, A. Bondar [15] and V. Siryk [16] proved analogs of another Menchov– 
Trokhimchuk theorem using a certain condition of preservation of the angles. 
O. Gretskii [17] generalized the mentioned Bondar‘s results to the case of mappings 
of Banach spaces. 

Our aim is to weaken the monogeneity conditions for functions given in 
commutative algebras over the complex field. The property of monogeneity of a 
function is understood as a combination of its continuity with the existence of its 
Gâteaux derivative. 

In the paper [18], we proved an analog of Menchov–Trokhimchuk Theorem for 
functions given in a special real three-dimensional subspace of a three-dimensional 
commutative algebra .A3 over the complex field. In the present paper, we give a 
complete proof of a similar statement for a function given in a real subspace of 
dimension k, .2 ≤ k ≤ 6, of the algebra . A3, that was announced in the paper [18], 
where a sketch of its proof was only presented. 

2 Monogenic Functions in a Three-Dimensional 
Commutative Algebra with Two-Dimensional Radical 

Consider a three-dimensional commutative algebra . A3 with unit 1 over the complex 
field . C and with a basis .{1, ρ, ρ2} for which .ρ3 = 0. We define the Euclidean norm 
by the equality 

. ‖a + bρ + cρ2‖ :=
√

|a|2 + |b|2 + |c|2 , a, b, c ∈ C .

The algebra . A3 has a unique maximal ideal . I := {λ1ρ + λ2ρ
2 : λ1, λ2 ∈ C}

which is also a radical of the algebra. 
Consider a linear functional .f : A3 → C defined by the equality 

.f (a + bρ + cρ2) = a . (2) 

Since the kernel of f is the maximal ideal . I, one can conclude that f is a continuous 
multiplicative functional (see [19, p. 135]).
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Fix a real n-dimensional subspace . En := {ζ = x1e1 + x2e2 + . . . + xnen :
x1, x2, . . . , xn ∈ R} ⊂ A3, where .2 ≤ n ≤ 6 and the vectors .e1, e2, . . . , en are 
linearly independent over the field of real numbers . R but, generally speaking, they 
do not form a basis of the algebra . A3 . Impose only one restriction on the choice of 
the subspace . En: the image of . En under the mapping f must be the whole complex 
plane . C (see [20, 21]). 

As particular cases of such subspaces, we can mention subspaces constructed on 
the harmonic bases .{e1, e2, e3} of the algebra .A3 that satisfy the condition . e2

1 +e2
2 +

e2
3 = 0. These cases are important from the viewpoint of applications (see [22, 23]). 

The existence of harmonic bases is an essential prerequisite for the representation of 
solutions of the three-dimensional Laplace equation in the form of components of 
the expansions of differentiable functions with respect to the basis (see [22, 24, 25]). 

It is well known that there are different types of differentiability of mappings in 
linear normalized spaces. First of all, the concepts of strong Fréchet differentiability 
and weak Gâteaux differentiability are used for the mentioned mappings (see, e.g. 
[19]). Let us note that the corresponding Fréchet and Gâteaux derivatives are defined 
as linear operators. 

Formerly, for functions given in a domain of a finite-dimensional commutative 
associative algebra, G. Scheffers [26] considered a derivative, which is understood 
as a function given in the same domain. Generalizing such an approach to the case 
of mappings given in a domain of an arbitrary commutative associative Banach 
algebra, E. Lorch [27] introduced a strong derivative, which is also understood as a 
function given in the same domain. 

A function .Ф : Ω −→ A3 is called differentiable in the sense of Lorch in a 
domain .Ω ⊂ E3 if for every .ζ ∈ Ω there exists an element .Ф'

L(ζ ) ∈ A3 such 
that for any .ε > 0 there exists .δ > 0 such that for all .h ∈ E3 with .‖h‖ < δ the 
following inequality is fulfilled: 

.‖Ф(ζ + h) − Ф(ζ) − hФ'
L(ζ )‖ ≤ ‖h‖ε. (3) 

The Lorch derivative .Ф'
L(ζ ) is a function of the variable . ζ , i.e. .Ф'

L : Ω → A3. 
In this case, the mapping .Bζ : E3 → A3, defined by the equality .Bζ h = hФ'

L(ζ ), 
is a bounded linear operator. Therefore, a function . Ф, which is differentiable in the 
sense of Lorch in a domain . Ω, has the Fréchet derivative . Bζ at every point .ζ ∈ Ω. 
The converse statement is not true, see an example in [19, p. 116]. 

Using the Gâteaux differential, I. Mel’nichenko [25] suggested to consider the 
Gâteaux derivative as a function .Ф'

G : Ω −→ A3 too. 
If, for a function .Ф : Ω −→ A3 given in a domain .Ω ⊂ E3 and for every .ζ ∈ Ω, 

there exists an element .Ф'
G(ζ ) ∈ A3 such that 

. lim
δ→0+0

(Ф(ζ + δh) − Ф(ζ)) δ−1 = hФ'
G(ζ ) ∀h ∈ E3 , (4) 

then we say that the function .Ф'
G : Ω −→ A3 is the Gâteaux derivative of the 

function . Ф .
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It is clear that the existence of stronger Lorch derivative .Ф'
L(ζ ) implies the 

existence of weaker Gâteaux derivative .Ф'
G(ζ ) and the equality .Ф'

L(ζ ) = Ф'
G(ζ ). 

However, the existence of Fréchet derivative does not imply the existence of 
Gâteaux derivative .Ф'

G(ζ ) that is illustrated by the mentioned example in [19, 
p. 116]. 

We say that a function .Ф : Ω −→ A3 is monogenic in a domain .Ω ⊂ E3 if 
. Ф is continuous and has the Gâteaux derivative at every point of the domain . Ω
[23, 28, 29]. 

Despite the fact that the existence of the Gâteaux derivative does not imply the 
existence of the Lorch derivative, the monogenic functions .Ф : Ω −→ A3 in a 
domain .Ω ⊂ E3 are differentiable in the sense of Lorch in this domain. It follows 
from the representation of monogenic functions .Ф(ζ), .ζ ∈ Ω , via holomorphic 
functions of the complex variable .f (ζ ) that is established in [23]. 

In the paper [30] one of the monogeneity conditions is weakened in the case . n =
3, videlicet, it is proved that if the Gâteaux derivative of the function . Ф : Ω −→ A3
exists at all points of a domain .Ω ⊂ E3, then the continuity of the function . Ф can 
be replaced by its local boundedness in the domain . Ω . 

3 Analog of the Menchov–Trokhimchuk Theorem for 
Monogenic Functions in Domains of a Fixed Subspace En 
of the Algebra A3 

Let us introduce some notations and the terminology. 
First of all, note that the radical . I considered as a linear space over the field . R

has the dimension 4, that we shall call the real dimension. The intersection of the 
radical . I with the linear space . En is a set of noninvertable elements belonging to 
. En. This set is a plane .LEn of the real dimension .(n − 2) due to the assumption that 
the image of . En under the mapping f is the whole complex plane. In particular, . LE3

is a straight line and .LE2 = {0}. 
Preimage of an arbitrary point .ξ ∈ C under the mapping f is a plane . Lζ

En
:=

{ζ + η : η ∈ LEn}, where . ζ is an element from . En such that .ξ = f (ζ ). It is obvious  
that the planes .Lζ

En
and .LEn are parallel. 

Consider the following hypercomplex analog of the Menchov condition .K ''' in 
the algebra . A3 for functions .Ф : Ω → A3 given in a domain .Ω ⊂ En: 

Definition 1 We say that a function .Ф : Ω → A3 satisfies the condition .K '''
A3,En

at 
a point .ζ ∈ Ω ⊂ En if there exists an element .Ф∗(ζ ) ∈ A3 such that the equality 

. lim
δ→0+0

(Ф(ζ + δh) − Ф(ζ)) δ−1 = hФ∗(ζ ) (5) 

is fulfilled for n vectors .h1, h2, h3, . . . , hn, which form a basis in . En and, moreover, 
.h3, . . . , hn form a basis in the plane .LEn .
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Note that, in the case where the function .Ф : Ω → A3 satisfies the condition 
.K '''

A3,En
at different points of domain .Ω ⊂ En, the set of vectors .h1, h2, . . . , hn can 

be different at different points of this domain. 

Lemma 1 Let a domain .Ω ⊂ En have connected intersections with the planes 
.L

ζ
En

for all .ζ ∈ Ω and a function .Ф : Ω → A3 of the form .Ф(ζ) = ρ2Ф2(ζ ), 
where .Ф2(ζ ) ∈ C, be continuous in . Ω and satisfy the condition .K '''

A3,En
at all points 

.ζ ∈ Ω, except an at most countable set of points. Then .Ф2(ζ ) = F2(f (ζ )), where 

.F2 : D → C is a holomorphic function in the domain D, which is the image of 
domain . Ω under the mapping f . 

Proof Let .ζ ∈ Ω be an arbitrary point, where the function . Ф satisfies the condition 
.K '''

A3,En
. We rewrite equality (5) for the function .Ф(ζ) = ρ2Ф2(ζ ): 

. lim
δ→0+0

ρ2 (Ф2(ζ + δh) − Ф2(ζ )) δ−1 = hФ∗(ζ ), (6) 

and note that it is fulfilled for .h ∈ {h1, h2, . . . , hn}. 
Substituting .h = h1 in equality (6) and taking into account the fact that . h1 is an 

invertible element of the algebra . A3, we obtain 

.Ф∗(ζ ) = ρ2 h−1
1 lim

δ→0+0
(Ф2(ζ + δh1) − Ф2(ζ )) δ−1 =: ρ2 Ψ(ζ). (7) 

After the substitution of expression (7) for . Ф∗ in equality (6), we get: 

. lim
δ→0+0

ρ2 (Ф2(ζ + δh) − Ф2(ζ )) δ−1 = hρ2Ψ(ζ). (8) 

Now, after the substitution of values .h = h3, . . . , hn into (8), we obtain zero in 
the right-hand part of equality (8) because .{h3, . . . , hn} ⊂ I . Thus, the restriction 
of the function .Ф2 to the intersection of . Ω with the plane .Lζ

En
has the directional 

derivatives along the vectors .h = h3, . . . , hn that are equal to zero at all points, 
except for a countable set. Moreover, the intersection of . Ω with the plane .Lζ

En
is a 

connected set. Then, by Trokhimchuk’s Theorem 9 in the monograph [10, p. 103], 
the function . Ф2 is constant in the intersection of the domain . Ω with the plane .Lζ

En
. 

This implies that the function . Ф2 can be represented in the form .Ф2(ζ ) = F2(f (ζ )), 
where .F2 : D → C is a function continuous in the domain D. 

Let us prove that the function . F2 is holomorphic in the domain D. 
First, we note that the equality 

. ρ2 hΨ(ζ ) = ρ2 f (h)f (Ψ(ζ ))

follows from definition (2) of the functional f . We denote .ξ := f (ζ ) and rewrite 
equality (8) in the form 

.ρ2 lim
δ→0+0

(F2(ξ + δf (h)) − F2(ξ)) δ−1 = ρ2 f (h)f (Ψ(ζ )). (9)
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Since the multipliers next to . ρ2 on both sides of equality (9) take complex values, 
in view of the uniqueness of representation of an element of the algebra in the form 
of the linear combination of basis elements, we can conclude that the equality 

. lim
δ→0+0

(F2(ξ + δf (h)) − F2(ξ)) δ−1 = f (h)f (Ψ(ζ )),

is true for .h ∈ {h1, h2}. 
This yields the equalities 

. f (Ψ(ζ )) = lim
δ→0+0

(F2(ξ + δt1) − F2(ξ)) (δt1)
−1 =

= lim
δ→0+0

(F2(ξ + δt2) − F2(ξ)) (δt2)
−1,

where .t1 := f (h1), .t2 := f (h2). 
Thus, at any point .ξ ∈ D, except at most countably many points, the function 

. F2 has equal derivatives along two noncollinear rays with origin at the point . ξ . This  
means that the continuous function . F2 satisfies the Menchov condition .K ''' at the 
point . ξ . Therefore, by virtue of the Menchov–Trokhimchuk Theorem, the function 
. F2 is holomorphic in the domain D. ⨅⨆

Under the condition .a /= 0, every element .a + bρ + cρ2, .a, b, c ∈ C, has the 
inverse element, and its decomposition with respect to the basis .{1, ρ, ρ2} has the 
following form: 

. (a + bρ + cρ2)−1 = 1

a
− b

a2 ρ +
(

b2

a3 − c

a2

)
ρ2 .

Then 

.(t −a−bρ −cρ2)−1 = 1

t − a
+ b

(t − a)2 ρ +
(

c

(t − a)2 + b2

(t − a)3

)
ρ2 . (10) 

Using this decomposition, we can easily write the decomposition with respect to 
the basis .{1, ρ, ρ2} of the principal extension of a holomorphic function . F : D → C

into the domain .Π := {ζ ∈ En : f (ζ ) ∈ D}: 

. 
1

2πi

ˆ

γ

F (t)(t − ζ )−1 dt = F(f (ζ )) + (b1x1 + b2x2 + . . . + bnxn)F
'(f (ζ )) ρ+

+
(

(c1x1+c2x2+. . .+cnxn)F
'(f (ζ ))+ (b1x1 + b2x2 + . . . + bnxn)

2

2
F ''(f (ζ ))

)
ρ2

∀ ζ = x1e1 + x2e2 + . . . + xnen ∈ Π, (11)
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where i is the imaginary unit, the closed Jordan rectifiable curve . γ lies in the 
domain D and encloses the point .f (ζ ) = a1x1 +a2x2 + . . .+anxn, and the complex 
constants .ak, bk, ck , .k = 1, 2, . . . , n, are the coefficients of decompositions of the 
elements .e1, e2, . . . , en with respect to the basis .{1, ρ, ρ2}: 

. 

e1 = a1 + b1ρ + c1ρ
2,

e2 = a2 + b2ρ + c2ρ
2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

en = an + bnρ + cnρ
2.

Decomposition (11) generalizes a similar decomposition obtained in Theorem 1.7 
from [22] under the additional assumption that .e1 = 1. 

Lemma 2 Let a domain .Ω ⊂ En have connected intersections with the planes . L
ζ
En

for all .ζ ∈ Ω and a function .Ф : Ω → A3 be continuous in . Ω and satisfy the 
condition .K '''

A3,En
at all points .ζ ∈ Ω , except an at most countable set of points. 

Then for all .ζ ∈ Ω, the function . Ф can be represented in the form 

.Ф(ζ) = 1

2πi

ˆ

γ

(
F0(ξ) + F1(ξ)ρ + F2(ξ) ρ2

)
(ξ − ζ )−1 dξ , (12) 

where .F0, F1, F2 are functions holomorphic in the domain D, which is the image of 
the domain . Ω under the mapping f . 

Proof Consider the decomposition of .Ф(ζ) with respect to the basis .{1, ρ, ρ2}: 

. Ф(ζ) = Ф0(ζ ) + Ф1(ζ )ρ + Ф2(ζ )ρ2.

The function .ρ2Ф(ζ) = ρ2Ф0(ζ ) is continuous in . Ω and satisfies the condition 
.K '''

A3,En
at all points .ζ ∈ Ω, except an at most countable set of points. Then, by 

Lemma 1, .Ф0(ζ ) = F0(f (ζ )), where . F0 is a holomorphic function in the domain 
D, which is the image of the domain . Ω under the mapping f . 

It follows from equality (11) that the first components of decompositions with 
respect to the basis .{1, ρ, ρ2} of the functions .Ф(ζ) and . 1

2πi

´
γ

F0(ξ)(ξ − ζ )−1 dξ

coincide in the domain . Ω. This yields the equality 

.Ф(ζ) − 1

2πi

ˆ

γ

F0(ξ)(ξ − ζ )−1 dξ = Ф11(ζ ) ρ + Ф12(ζ ) ρ2 ∀ζ ∈ Ω, (13) 

where .Ф11, .Ф12 are complex-valued functions continuous in . Ω. 
Then the function .ρ(Ф11(ζ )ρ + Ф12(ζ )ρ2) = ρ2Ф11(ζ ) is continuous in . Ω and 

satisfies the condition .K '''
A3,E3

at all points .ζ ∈ Ω, except an at most countable set of 
points. By Lemma 1, .Ф11(ζ ) = F1(f (ζ )), where . F1 is a holomorphic function in 
the domain D.
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Further, as in the proof of equality (13), we obtain 

. Ф11(ζ ) ρ + Ф12(ζ ) ρ2 − ρ
1

2πi

ˆ

γ

F1(ξ)(ξ − ζ )−1 dξ = Ф22(ζ ) ρ2 ∀ζ ∈ Ω,

(14) 

where .Ф22 is a complex-valued function continuous in . Ω. 
As a consequence of equalities (13), (14), we get 

. Ф(ζ) − 1

2πi

ˆ

γ

F0(ξ)(ξ − ζ )−1 dξ−

− ρ
1

2πi

ˆ

γ

F1(ξ)(ξ − ζ )−1 dξ = Ф22(ζ )ρ2 ∀ζ ∈ Ω. (15) 

Now, by Lemma 1, we have the equality .Ф22(ζ ) = F2(f (ζ )), where . F2 is a 
holomorphic function in the domain D. This yields the equality 

.ρ2 Ф22(ζ ) = ρ2 F2(f (ζ )) = ρ2 1

2πi

ˆ

γ

F2(ξ)(ξ − ζ )−1 dξ ∀ζ ∈ Ω . (16) 

Finally, we obtain representation (12) as a consequence of equalities (15) 
and (16). ⨅⨆

The main result is the following statement: 

Theorem 1 Let a domain .Ω ⊂ En have connected intersections with the planes 
.L

ζ
En

for all .ζ ∈ Ω and a function .Ф : Ω → A3 be continuous in . Ω and satisfy the 
condition .K '''

A3,En
at all points .ζ ∈ Ω , except an at most countable set of points. 

Then: 

(1) the function . Ф is monogenic in the domain . Ω; 
(2) the function . Ф can be extended to a function monogenic in the domain . Π :=

{ζ ∈ En : f (ζ ) ∈ D}. This extension is unique and is represented by 
equality (12) for all .ζ ∈ Π; 

(3) the monogenic extension (12) of the function . Ф is differentiable in the sense of 
Lorch in the domain . Π. 

All assertions of Theorem 1 are obvious consequences of representation (12).
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Part VI 
Constructive Methods in the Theory of 

Composite and Porous Media



Monodromy of Pfaffian Equations 
for Group-Valued Functions on Riemann 
Surfaces 

Grigory Giorgadze 

Abstract We discuss several generalizations of Riemann-Hilbert monodromy 
problem formulated in terms of representations of compact Lie groups and moti-
vated by recent applications in mechanics and modern mathematical physics. 
Generalizations of Riemann-Hilbert monodromy problem are developed in the 
framework of principal bundles of compact Lie groups and meromorphic connec-
tions on Riemann surfaces. 

1 Introduction 

It is known that for any vector bundle there exists connection with regular singulari-
ties at the given points (Plemelj’s theorem) [2, 3]. This result can be generalized for 
holomorphic principal G-bundles [8]. To describe this generalization we consider a 
system of differential equations of the form .Df = αf , where . α is a .g-valued 1-form 
defined on Riemann surface X, and .f : X → G is a G-valued unknown function. 
Namely, let us define the operator 

.D : Λ0(X, g) → Λ1(X, g) (1) 

by the formula 

. Dx(f )(u) = dr−1
f (x)(df )x(u),

where .rg : G → G be right shift on the group G, .C(X,G) be the group of all 
smooth functions .f : X → G, .Λp(X,G), .p = 0, 1, 2, be the space of all .g-valued 
p-forms on X and . g be the Lie algebra of . G.
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An expression of the form 

.Df = ω, (2) 

where . ω is a .gC-valued 1-form on X and .f : X → GC is an unknown smooth 
function, is called a G-system of differential equations [8, 9, 12], where . gC and . GC
denotes the complexification of . g and . G.

For a G-system, it is possible to formulate Riemann-Hilbert monodromy problem 
(RHMP) as follows: 

(RHMP) prove that, for a given discrete set .S = {s1, . . . , sm} ⊂ X and for 
a given homomorphism .ρ : π1(X \ S, z0) → GC, there exists a G-system of the 
type (2) with a 1-form . ω which is holomorphic in .X \ S and monodromy of which 
coincides with . ρ.

The generalizations of Riemann-Hilbert monodromy problem, discussed below, 
are partially motivated by its many applications in geometry and mathematical 
physics, see, e.g. [1, 10–13]. 

It is known that solution of RHMP depends on group G [14]. In particular, 
1) if .G = U(n), then 

. Df = df · f −1

and . ω is a matrix of 1-forms on X, so that one obtains a usual system of the form 

. df = ωf.

2) If .n = 1, then .GC = C∗ and .Df = d log f , the logarithmic derivative of the 
function f . 

Let 

. ∗ : Λ1(X; g) → Λ1(X; g)

be the Hodge operator, then the complexification of de Rham complex .Λp

C(X; g), 
.p = 0, 1, 2, decomposes into the direct sum 

. Λ1
C(X; g) = Λ1,0(X; g) ⊕ Λ0,1(X; g)

by the requirement that .∗ = −i on .Λ1,0(X; g) and .∗ = i on .Λ0,1(X; g). The  
operator D decomposes into the direct sum .D = D' ⊕ D'', where 

. D' : Λ0(X; g) → Λ1,0(X; g), D'' : Λ0(X; g) → Λ0,1(X; g),

are determined by the formulæ 

.D'
x(f )(u) = d '

r−1
f (x)

(d 'f )x(u), D''
x (f )(u) = d ''r−1

f (x)(d
''f )x(u).
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A .GC-valued function .f : X → GC is called holomorphic (resp. antiholomorphic) 
if .D''f = 0 (resp. .D'f = 0). 

The operator D has the following properties: 
(1) it is a crossed homomorphism, i. e. 

. D(f · g) = (Df )x + (adf (x)) ◦ (Dg)x

for any .f, g ∈ C(X,G). Note that the operator .D'' is also a crossed homomorphism, 
(2) the kernel .kerD consists of constant functions. 

We will say that system (2) is  integrable if, for any .x0 ∈ X and .g0 ∈ G, there 
exists a solution f of this system in a neighborhood of . x0 satisfying .f (x0) = g0. 

A point . x0 is called an isolated singular point of a map .f : U → GC if there is 
a punctured neighborhood .Ux0 such that the map f is analytic in . Ux0 .

We also will say that a .GC-valued function .f ∈ Ω(Uϵ(x0)) has a polynomial 
growth at the point . x0 if for each sector 

. S = {z|θ0 ≤ arg z ≤ θ1, 0 ≤ |z| < ϵ},

where z denotes a local coordinate system on X, for sufficiently small . ϵ, there exist 
an integer .k > 0 and a constant .c > 0 such that the inequality 

. d(f (z), 1) < c|z|−k

holds. Here .d(_, 1) denotes the distance to the unit of group . GC. 
The properties (1), (2) of the operator D imply that if . f0 is some solution of 

system (2), then .f = f0h is also a solution for any . h ∈ kerD.

2 G-Systems on the Riemann Sphere 

Consider a G-system (2) on the Riemann sphere . CP1. Let . f0 be a solution of (2) in  
a neighborhood .U ⊂ CP1 of the point . z0 and suppose . f0 has the polynomial growth 
at the points from the set .S = {s1, . . . , sm}. After continuation of . f0 along a path 
.γi ∈ π1(CP1 \ S, z0) starting and ending in . z0 and circling once around a singular 
point . si , the solution . f0 transforms into another solution . f1: i.e. .γ ∗

i f0 = gif1 for 
some .gi ∈ G. Thus . f0 determines a representation 

.ρ : π1(CP1 \ S, z0) → GC. (3) 

The subgroup .Imρ ⊂ GC is called the monodromy group of G-system (2) and the 
representation (3) induces a principal .GC-bundle .P '

ρ → CP1 \ S. The form . ω being 
a holomorphic connection for this bundle [4–6].
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Consider an extension of the bundle .P '
ρ → CP1 \ S a holomorphic principal 

bundle .Pρ → CP1 [7, 18]. 
To extend the bundle .P '

ρ → CP1 \ S to some point .si ∈ S, consider a simple 
covering .{Uj } of .Xm = CP 1 \S, such that every intersection . Uα1 ∩Uα2 ∩ . . .∩Uαk

is simply connected. For each .Uα, we choose a point .zα ∈ Uα and join . z0 and . sα by 
a simple path . γα starting at . z0 and ending at . sα . For a point .z ∈ Uα ∩Uβ, we choose 
a path .τα ⊂ Uα which starts at . sα and ends at . z. Consider 

.gαβ (z) = ρ
(
γατα (z) τ−1

β (z) γ −1
β

)
. (4) 

It is clear that .gαβ (z) = g−1
βα (z) on .Uα ∩ Uβ and .gαβgβγ (z) = gαγ (z) on 

.Uα ∩ Uβ ∩ Uγ . 
The cocycle .

{
gαβ (z)

}
is constant [2]. Hence from (4) we obtain a flat principal 

bundle, which is denoted by . P '
ρ . 

Let .{tα (z)} be a trivialization of our bundle: 

. tα : p−1 (Uα) → GC.

Consider the . g valued 1-form 

. ωα = −t−1
α dtα.

The cocycle .
{
gαβ (z)

}
is constant on the intersection .Uα ∩ Uβ and . gαβ(z)tβ (z) =

tα (z), so the identity .ωα = ωβ holds on .Uα ∩Uβ . Indeed, replacing . tβ by .t−1
β gαβ in 

the expression .ωβ = −t−1
β dtβ , we obtain 

. ωβ = −t−1
α gαβ (z) dtαg−1

αβ (z) = −t−1
α dtα.

The 1-form .ω = {ωα} is holomorphic on .Xm and therefore it defines a connection 
1-form of the bundle .P '

ρ → Xm. The corresponding connection is denoted by . ∇'. 
We will extend the pair .

(
P '

ρ,∇') to . X.

As the required construction is of local character, we shall extend .P '
ρ → Xm to 

the bundle .P ''
ρ → Xm ∪ {si}, where .si ∈ S. 

Let a neighborhood .Vi of the point . si intersect each of the open sets 
.Uα1 , Uα2 , . . . , Uαk

having . si in its closure. 
As we noted when constructing the bundle from transition functions (4), only 

one of them is different from identity. Denote by .g1k nonconstant cocycle, then 
.g1k = Mi, where .Mi is the monodromy which corresponds to the singular point . si
and is obtained from representation (3). Mark a branch of the multi-valued function 

. (z̃ − si)
Ai
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containing the point .s̃i ∈ Ũi (where .2πi exp(Ai) = Mi). Thus the marked branch 
defines a function 

.g01 := exp(Aj ln(z − sj ). (5) 

Denote by .g02 the extension of .g01 along the path which goes around . si
counterclockwise, and similarly for other points. Hence on .Ui ∩ Uαk

∩ Uα1 we shall 
have: 

. g0k(z) = g01(z)Mi = g01(z)g0k(z).

The function .g0k : Vi → GC is defined at the point . si and takes there the value 
coinciding with the monodromy. 

In a neighborhood of . si one will have 

. ωi = dg0kg
−1
0k .

If we use the above construction of extension for all points from S we obtain a 
holomorphic principal bundle .Pρ → CP1 on the Riemann sphere . CP1.

The holomorphic sections of . Pρ are solutions of the equation 

.∇f = 0 ⇐⇒ Df = ω, (6) 

where . ω is the meromorhic 1-form of connection . ∇. It means that .Pρ → CP1 is 
induced by the system of the form (2) and the Atiyah class .a(Pρ) is nontrivial [4]. 
.Pρ → CP1 does not admit holomorphic connections and hence the system (2) must  
necessary have singular points. 

Here and in the sequel under singular points will be meant critical singular points, 
i. e. ramification points of the solution. 

The construction of extension of the bundle at the singular points of equation 
described above has local character. From this follows that this construction may be 
applied for any Riemann surface of higher genus. 

The Birkhoff stratum .Ωκ consists of the loops from .LpGC with fixed partial 
indices .K = (k1, . . . , kr ). Existence of a one-to-one correspondence between the 
Birkhoff strata .ΩK and holomorphic equivalence classes of principal bundles on 
.CP1 is a generalization of Birkhof-Grothendieck theorem for holomorphic vector 
bundles on Riemann sphere [6, 16]. 

Theorem 1 [4] Each loop .f ∈ ΩG determines a pair .(P, ξ), where P is 
a holomorphic principal .GC-bundle on .CP1 and . ξ is a smooth section of the 
bundle .P |X̄∞ holomorphic in . X∞, and if .(P ', ξ ') and .(P, ξ) are holomorphically 
equivalent bundles, then . f ' and f lie in the same Birkhoff stratum. 

The Theorem 1 implies that to each principal bundle with a fixed trivialization 
corresponds a tuple of integers .(k1, . . . , kr ) which completely determine holomor-
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phic type of the principal bundle and hence if the holomorphic principal G-bundle 
is induced by the system of the form (2) without singular points, then this bundle is 
trivial [4, 18, 19]. 

Theorem 2 If .Imρ is connected then the Riemann-Hilbert monodromy problem is 
solvable for any m points . s1, . . . , sm.

Indeed, let .γ1, . . . , γm be generators of .π1(Xm, z0). Suppose . ρ1 =
ρ(γ1), .., ρm = ρ(γm). If .Imρ is a connected subgroup then there exists a 
continuous path .ρj (t), such that .ρi(0) = 1 and .ρj (1) = ρj . From this follows 
that there exists homomorphism .χt : π1(Xm, z0) → G, such that . χt (γj ) = ρj (t).

Theorem 2 is proved. 
Here we use the following general result from homological algebra: if . G1 is some 

connected group, then the homomorphism .h : π1(Xm, z0) → G1 is the monodromy 
homomorphism of a G-system if and only if it is possible to connect h to 1 by  
continuous path in group of cochains .Z1(π1(M),G) [14]. 

Remark In general, . ω may have a pole at infinity whose order is more that 1. For 
example, see [3]. 

Theorem 3 [8, 12]. Suppose .ρ(γj ) ∈ T for some . j. Then .ρ : π1(X \ S) → G is 
the monodromy of a regular G-system. 

Theorem 3 is proved using the Plemelj’s scheme [18]. The properties . ρ(γj ) ∈ T
guarantee that the gauge transformation reduces the regular system to a system with 
singularities of first order at all singular points [2]. 

3 G-System on the Riemann Surfaces of Genus g ≥ 2 

As above suppose that G is a connected compact Lie group and .GC is its 
complexification; . g and . gC are the Lie algebras of the group G and .GC, respectively; 
Z is the centrum of the group . GC, and . Z0 is the connected component of the unit; X 
is a compact connected Riemann surface of genus . g ≥ 2. If .X̃ → X is a universal 
covering and .ρ : π1(X) → GC is a representation, then the corresponding principal 
bundle will be denoted . Pρ . 

Let .x0 ∈ X be a fixed point and .p : X̃ → X \ {x0} be a universal covering, then 
the triple .(X̃, p,X \ {x0}) is a principal bundle whose structure group . Γ is a free 
group on 2g generators, and if . γ is a loop circling around . x0 then .γ = ∏g

i=1[ai, bi], 
where .ai, bi are generators of .Γ ∼= π1(X \ {x0}) and .[_, _] denotes the commutator. 

Let .P '
ρ → X \ {x0} be the principal bundle corresponding to the representation 

.ρ : π1(X \ {x0}) → GC. Since by Theorem 1 each loop .f : S1
X → G determines a 

holomorphic principal .GC-bundle, using f one can extend the bundle . P '
ρ → X\{x0}

to X in the following way: let .Ux0 be a neighborhood of . x0 homeomorphic to a unit 
disc and consider the trivial bundles .Ux0 × GC → Ux0 and .P '

ρ → X \ {x0}. Let us 
glue these bundles over the intersection .(X \ {x0})∩Ux0 = Ux0 \ {x0} using the loop 
f . We thus obtain an extended bundle .Pρ → X.
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Consider the homomorphism of fundamental groups 

. f∗ : π1(S
1
X) → π1(GC)

induced by f and suppose that . γ is a generator of .π1(S
1
X) mapped to .+1 under the 

isomorphism .π1(S
1
X) ∼= Z. If .f ' : S1

X → GC is homotopic to f , then . f '∗ = f∗
and therefore f and . f ' corresponds to topologically equivalent .GC-bundles on X. 
Conversely, for any element .c ∈ π1(GC) there exists .f∗ : π1(S

1
X) → π1(GC) with 

.f∗(γ ) = c [17]. 
Let .P → X be a principal bundle and f the corresponding loop. The element 

. χ(P ) := f∗(γ ) ∈ π1(GC)

of the fundamental group is the characteristic class of the bundle P [17]. 
It is known that the map 

. χ : H 1(X;C∞(GC)) → π1(GC)

determined by the formula .χ(P ) = c for each .P ∈ H 1(X;C∞(GC)) is surjective. 
Here .C∞(GC) denotes the sheaf of germs of continuous maps .X → GC. 

Let .p : G̃C → GC be the universal cover of the group, with fibre . π1(GC) ∼=
kerp. The exact sequence of groups 

.1 → π1(GC) → G̃C → GC → 1 (7) 

induces the exact sequence of sheaves 

.1 → π1(GC) → C∞(G̃C) → C∞(GC) → 1. (8) 

Since .π1(GC) is contained in the center of the group . G̃, the sequences (7) and (8) 
yield the following commutative diagram 

.

δ : H 1(π1(X);GC) → H 2(π1(X);π1(GC))

↓ μ ↓ ν

δ : H 1(X;GC) → H 2(X;π1(GC))

↓i∗ ↓id

δ : H 1(X;C∞(GC)) → H 2(X;π1(GC))

(9) 

where .μ, ν are isomorphims and . i∗ is induced by the embedding . i : GC →ͨ
C∞(GC). The coboundary operator 

. δ : H 1(X;C∞(GC)) → H 2(X;π1(GC)) ∼= π1(GC)

from the last row of the diagram (9) equals . χ (see [17]).
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Let .ρ : π1(X \ x0) → GC be a representation such that .ρ(S1
X) = c ∈ Z0. If . Z̃0

is the Lie algebra of group . Z0, then .exp : Z̃0 → Z0 is a universal covering. Let us 
choose an element .α ∈ Z̃0 such that .exp α = c. Extend the bundle .P '

ρ → X \ x0 to 
X using the loop .f : S1

X → G, with 

. f (z) = exp(α ln(z − x0))

on . S1
X. Denote the obtained principal bundle by .Pρ,α → X. 

The space .H ⊂ G is called irreducible if 

. {Y ∈ g | ∀h ∈ H adh(Y ) = Y } = center g.

The representation .ρ : Γ → GC is called unitary if .ρ(Γ ) ⊂ G, and . ρ : Γ → G

is called irreducible, if .ρ(Γ ) is irreducible. The following theorem gives a useful 
criterion of holomorphic equivalence of G-bundles. 

Theorem 4 [17] Let . ρ and . ρ' be unitary representations of the group . Γ ∼= π1(X \
{x0}) in G. The bundles .Pρ,β and .Pρ',β ' are holomorphically equivalent if and only 
if . ρ and . ρ' are equivalent in a maximal compact subgroup of .GC and .β = β '. 

Let M be any connected smooth manifold (compact or not) and let . ρ : π1(M) →
GC be any homomorphism. Then from Theorem 4 follows, that 

1) if .π1(M) is a free group and .GC is connected, then . ρ is a monodromy 
homomorphism for a G-system (2) (see [12]). 

2) If .π1(M) is a free abelian group and G is a connected compact Lie group 
with torsion free cohomology, and if .Imρ ⊂ G, then . ρ is a monodromy 
homomorphism for some G-system of the type (2) (see [12]). 
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Introduction to Neoclassical Theory of 
Composites 

Simon Gluzman 

Abstract Brief review of main tenets of the neoclassical theory of composites is 
given. Several examples of its application are given, including two-dimensional 
conductivity of regular composites, three-dimensional superconductivity of random 
composites, conductivity of liquid foams in two-and-three dimensions, and perme-
ability for the viscous flow in three-dimensional channels. 

1 Introduction 

Classical theory of composites amounts to the celebrated Maxwell formula, also 
known as Clausius–Mossotti approximation. Actually all modern self-consistent 
methods are justified only for a dilute composites when interactions among inclu-
sions are neglected. Careful analysis shows their restriction to the first- or second-
order approximations in concentration. In the same time, exact and high-order 
formulae for special regular composites which go beyond self-consistent methods 
were derived, starting with Rayleigh and continued in particular by McPhedran et al. 

We are primarily concerned here with the effective properties of deterministic 
and random composites and porous media. The analysis leads to accurate analytical 
approximate solutions to the problems when it is impossible to find their exact 
solutions. Certain problems of micromechanics and their analogs such as boundary 
value problems for Laplace’s equation and bi-harmonic two-dimensional (2D) 
elasticity equations can be solved in analytical form. At least for an arbitrary 2D 
multiply connected domain with circular inclusions there are methods which yield 
analytical formulae for most of the important effective properties, such as con-
ductivity, permeability, effective shear modulus and effective viscosity [6, 16, 28]. 
Randomness for such problems is introduced through random locations of non-
overlapping disks. 
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Discrete numerical solutions such as finite elements rather powerful and their 
application makes sense when the geometries and the physical parameters are fixed. 
In this case the researcher can be fully satisfied with numerical solutions to various 
boundary value problems. But various numerical packages ought not to be viewed 
as a universal remedy, since a sackful of numbers is not as useful as an accurate 
analytical formulae. Pure numerical procedures fail as a rule for the situations with 
criticality, and analytical matching with asymptotic solutions can be useful even for 
the numerical computations. 

In other words, there is an unlimited belief in numerical methods and regretful 
underestimation of constructive analytical and asymptotic methods. The situation 
has to be drastically reconsidered. There are three major neoclassical developments 
which warrant such a view. 

1. Recent mathematical results devoted to explicit solutions to the Riemann–Hilbert 
and . R−linear problems for multiply connected domains [6, 16]. 

2. Significant progress in symbolic computations greatly extends our computational 
capacities. Symbolic computations operate on the meta-level of numerical 
computing. They transform pure analytical constructive formulae into com-
putable objects. Such an approach results in symbolic algorithms which often 
require optimization and detailed analysis from the computational point of view. 
Moreover, symbolic and numeric computations can be integrated [6, 16]. 

The former two developments allow to obtain the expressions for various 
physical quantities in the form of truncated series which could be treated as 
polynomials. They are supposed to reflect accurately enough on their respective 
infinite expansions, so that with the help of some additional resummation 
procedure one can extrapolate to the whole series. But even long truncated power 
series in concentration and contrast parameters are not sufficient because they 
won’t allow us to cover the high-concentration regime. Sometimes the series are 
short, in other cases they do not converge fast enough, or even diverge in the most 
interesting regime. Your typical answer to the challenges is to apply additional 
methods powerful enough to extract information from the series. But in addition 
to a traditional Padé approximants [2] applied in such cases, the practitioner 
would require a 

3. New post-Padé approximants for analysis of the divergent or poorly convergent 
series, including different asymptotic regimes as suggested in [6, 11, 16]. 

As to the engineering needs we recognize the need for an additional fourth 
step. We can safely assume that the engineer would like to have a convenient 
formula but also to incorporate in it all available information on the system, with 
a particular attention to the results of numerical simulations or known experimental 
values by applying, for instance, the method of “regression on approximants” 
suggested in book [16]. We present below several typical examples of neoclassical 
developments where the main neoclassical ideas and methods can be seen in action. 
The neoclassical approach dwells on classical Maxwellian, but adds three relatively 
modern ideas just presented above.
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2 Example of Crossover in Physics 

The techniques and ideas briefly discussed above are geared towards faithful 
description of various crossover phenomena. For instance, the low-concentration 
regimes are described by a truncated, sometimes long power series. In the high-
concentration regime one often encounters the power laws. In many problems 
of material sciences one encounters the so-called crossover phenomena, when a 
physical quantity qualitatively changes its behavior in different domains of its 
variable. To be more precise, one can specify a crossover as follows. Let a function 
represent a physical quantity of interest, with a variable x running through the 
interval .x1 ≤ x ≤ x2. Let also the behavior of this function be essentially different 
near the boundary points . x1 and . x2. Assume that the function varies continuously as 
x changes from . x1 to . x2. Then one may say that the function in the interval . [x1, x2]
undergoes a crossover between the two limiting behaviors. Brilliant work by Koiter 
[18] should be mentioned here. It warrants a fresh look in connection with recent 
advances. The approach advanced in [6, 16] allows, in addition to interpolation, also 
to calculate the critical indices, amplitudes and relaxation times [12]. 

Even when there are two known expressions at different boundaries, it may be 
not clear to connect them, say, with conventional splines. Yet, the approximants 
based on the requirements of asymptotic equivalence with the truncated series are 
able to smoothly connect the two apparently disconnected truncated expansions, as 
demonstrated by the example below. Lieb and Liniger [23] have considered a one-
dimensional Bose gas with contact interactions. The ground-state energy of the gas 
can be written as a weak-coupling expansion, with respect to the coupling parameter 
g [29, 31], as 

.E(g) ≃ g − 4

3π
g3/2 + 1.29

2π2 g2 − 0.017201g5/2 , (1) 

as .g → 0. In the strong-coupling limit, as .g → ∞, there is the following expression 
[29, 31] 

.E(g) ≃ π2

3
(1 − 4

g
+ 12

g2 ) . (2) 

In what follows the approximant .E∗
3+3(g) assimilates the three coefficients from 

weak and strong coupling expansions, while .E∗
4+3(g) is based on all four terms from 

the weak-coupling side. 
The accuracy of the root approximant [6, 16] 

.

E∗
3+3(g) = π2

3 5

√
√
√
√
√ 385.383

g5
+

⎛

⎝ 388.171
g4

+
(

164.914
g3

+
(

37.3454
g2

+
(
8.12698

g
+1

)3/2
)5/4

)7/6
⎞

⎠

9/8
,

(3)
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Fig. 1 The interpolation with root approximant (3) is shown with solid line, while the Padé 
approximant given by the formula A22 from [12], is shown with dotted line. The weak (dashed) 
and strong-coupling (dot-dashed) expansions are shown as well 

turns out to be good as it connected a known asymptotic expansion at the right 
boundary of the interval with a known asymptotic form at the left boundary. 

It should become completely clear from observing Fig. 1, that the problem of 
interpolation is neither simple, nor superficial. The asymptotic expressions for small 
and large couplings have little in common with each other. Although the expansions 
(1) and (2) appear to work only for very small and very large coupling constants, 
the deduced approximant works rather well everywhere. 

3 2D Conductivity: Dependence on Contrast Parameter 

Consider a classical problem of the effective conductivity (thermal, electric et.) of a 
2D regular composite. An accurate approximate formula can be deduced for a 2D, 
two-component composite made from a collection of non-overlapping, identical, 
ideally conducting circular disks, embedded regularly in an otherwise uniform, 
locally isotropic host. Let . σ denote the ratio of the conductivity of inclusions to 
the matrix conductivity. Usually, the conductivity of the matrix . σ0 is normalized to 
unity. Introduce the contrast parameter 

.ϱ = σ − 1

σ + 1
, (4) 

so that .|ϱ| ≤ 1.
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The exact formula for the effective conductivity tensor of an arbitrary regular 
array was written in the most general form [16, eq.(4.2.28)] as a power series in . ϱ
and concentration (volume fraction) of inclusions f . In the case of a square array of 
inclusions this series diverges as .f → fc = π

4 ≈ 0.7854 and .ϱ → 1. It is difficult to 
analytically investigate such singular behavior. However, the effective conductivity 
is known in the form of the other asymptotic formulas [16, 19, Chapter 6]. Consider 
the truncated expansion for the effective conductivity of the square array 

. σe ≈ 1+f ϱ
1−f ϱ

+ 0.611654f 5ϱ3 + 1.22331f 6ϱ4 + 1.83496f 7ϱ5 + 2.44662f 8ϱ6.

(5) 

For many years it was thought that Maxwell’s and Clausius-Mossotti approxima-
tion for the effective conductivity of 2D (3D) composites 

.σe = 1 + ϱf

1 − ϱf
+ O(f 2), (6) 

can be systematically and rigorously extended to higher orders in f by taking 
into account interactions between pairs of spheres, triplets of spheres, and so on. 
However, it was recently demonstrated by Mityushev that the field around a finite 
cluster of inclusions can yield a correct formula for the effective conductivity 
only for non-interacting clusters. The higher order term can be properly found 
only after a subtle study of the conditionally convergent series. The coefficients 
depend only on the parameter . ϱ. The expression (5) is expressed as a correction 
to the celebrated classical Maxwell’s, or Clausius-Mossotti formula (6). It is  
valid for small concentrations but respects the phase interchange symmetry [20], 
. [σe(σ )]−1 = σe

(

σ−1
)

.

We are interested in the case of highly conducting disks, with finite but large 
.σ ⪢ 1. Let us formulate some starting approximation in the vicinity of . fc to satisfy 
some known critical behaviours. 

In particular, as .σ → ∞, we have a singularity 

.σe ∼ 1
√

1 − f
fc

. (7) 

While for highly-conducting disks, as .f = fc, it is assumed that 

.σe ∼ √
σ , (8) 

following [9]. In order to perform calculations we start by choosing the starting 
approximation based on the two limit-cases (7) and (8), 

.σe (f, σ ) ≈
⎛

⎝

2
√

π
4 − f
√

π
+ 1√

σ

⎞

⎠

−1

,
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Fig. 2 Case of .σ = 50. The results are shown for the resistance, inverse to the effective conduc-
tivity. Our suggestion (9) is shown with a solid line. The Clausius-Mossotti approximation (6) is 
shown with a dashed line. Naive extrapolation of the formula (7) to the whole region is shown with 
a dotted line, for comparison. Numerical data from [26] are shown with dots 

which respects both cases of critical behaviour. Subsequently, it is going to be 
corrected by means of a diagonal Padé approximant, by achieving asymptotic 
equivalence with the expansion (5). 

In the high orders orders one can obtain closed-form expressions. However, they 
are too long to be brought up here. But for concrete parameters their derivation 
and final form are pretty simple. Assuming the form .P4,4 for the correcting Padé 
approximant, we obtain an accurate formula for .σ = 50, in excellent agreement 
with the numerical data of [26], 

.σe ≈ f (f (f (1.22393f +0.277621)+1.23975)−2.08275)−3.25763
(f (f (f (f −0.13819)−0.034015)+2.33313)−3.22041)(

√
0.785398−f +0.125331)

. (9) 

Various approximations are compared in Fig. 2. It is clear that correct qualitative 
incorporation of the critical regimes holds the key to accurate formula (9). In  
addition, formulas obtained in the same way as (9) work for .σ > 20, while for 
.σ < 20 plain Padé approximant becomes more accurate, signalling diminishing 
influence of the critical regime. 

Already at finite but large .σ = 106, the effective conductivity is well approxi-
mated by the following formula: 

. σe ≈ f (f (f (1.06191f +0.165179)+1.05256)−1.81366)−2.70478
(f (f (f (f −0.203144)−0.0950324)+2.11438)−3.04897)(

√
0.785398−f +0.000886227)

.

(10) 

In fact such a system is very close to a perfect conductor, as shown in Fig. 3. We can 
also see that Keller’s formula from [19], [16, Chapter 6], is asymptotic and doesn’t
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Fig. 3 Our suggestion (9) for  .σ = 50 is shown with dotted line, and similarly obtained results 
(10) for .σ = 106 are shown with a solid line. Keller’s formula from [19], [16, Chapter 6] is shown 
with a dashed line. Comparison is made with the numerical data from [26], as . σ → ∞

cover concentrations beyond an immediate vicinity of . fc. One can also conclude 
that silver (or copper) inclusions, embedded into a very weakly conducting matrix 
(vacuum, air, water, poly foam) can be considered as perfect conductors. 

4 3D Superconductivity Critical Index of Random Composite 

It was demonstrated in the book [6] that the classical Jeffrey formula for the effective 
conductivity of random composites [17] contains wrong . f 2 terms. Proper expansion 
in volume fraction of inclusions f for the random composite with superconducting 
(perfectly conducting) inclusions were obtained in [6]. The terms . f 2 and . f 3 could 
be written explicitly. In particular, the . f 3 term depends on the deterministic and 
random locations of inclusions. In the limiting case of a perfectly conducting 
inclusions, the effective conductivity . σe is expected to tend to infinity as a power-
law, as the concentration of inclusions f tends to . fc, the maximal value in 3D. 

General methodology of [6] can be applied to the numerical estimation of the 
effective conductivity of random macroscopically isotropic composites. For samples 
generation the Random Sequential Adsorption (RSA) protocol was employed. 
The consecutive objects were placed randomly in the cell, rejecting those that 
overlap with previously absorbed one. For macroscopically isotropic composites 
the expansion for scalar effective conductivity takes the following form 

.σe = 1 + 3f + 3f 2 + 4.80654f 3 + O(f
10
3 ). (11)
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It appears to be possible to extrapolate (11) to all f of interest, and calculate the 
critical index and amplitude from the truncated series. In addition, let us assume that 
the threshold is known and corresponds to random close packing (RCP), with the 
typical estimate .fc = 0.637 [28]. Then in the vicinity of RCP it is widely assumed 
that 

.σe ≃ A(fc − f )−s, (12) 

where the superconductivity critical index . s is expected to have the value of . 0.73 ±
0.01 [5]. There is also a slightly larger estimate, .s ≈ 0.76 [3]. 

Let us estimate the value of . s based on asymptotic information encapsulated in 
(11). There is a possibility to obtain for . σe, the simplest factor approximant [6, 16] 
with fixed position of singularity and floating critical index, from the requirement 
of asymptotic equivalence with (11). After some simple calculations we obtain the 
following result for the effective conductivity 

.σ ∗(f ) = F ∗
4 (f ) = (2.48123f + 1)0.766996

(1 − 1.56986f )0.698732
. (13) 

The expression (13) suggests the value of .0.7 for the superconductivity critical 
index. 

Assume that in the vicinity of threshold, 

. σ(f ) ∼ (0.637 − f )−(1+s'),

with unity to be expected from the usual contribution from the radial distribution 
function at the particles contact .G(2, f ), [4, 24], and the value of . s' coming from the 
particle interactions in the composite. One can suggest a simple root approximant 
[6, 16] 

. r∗(z) = 1 + b1z(1 + b2z)
s'
,

.z = f
fc−f

, which is able to take the unity contribution into account explicitly. After 
imposing the asymptotic equivalence with the truncated series, one can find all three 
parameters .b1, b2, s' with the final result for the effective conductivity 

.
σ ∗(f ) = 1 + 1.911f

(
0.709259f +0.637

0.637−f

)0.212373
(0.637−f )

. (14) 

The expression (14) allows us to estimate .s' ≈ −0.212. Total value of the critical 
index, .s ≈ 0.788 is still close enough to the expected values. 

Let us employ the more systematic methodology used to construct the table of 
indices extracted from the root approximants. It is based on considering iterated 
root approximants [6, 16] as functions of the critical index by itself. The index can 
be found by imposing optimization conditions in the form of minimal differences
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Table 1 Critical indices for the superconductivity sk obtained from the optimization conditions 
. ∆kn(sk) = 0

.sk .∆k,k+1(sk) = 0 . ∆k3(sk) = 0

.s1 0.725 0.721 

.s2 0.715 0.715 

.Δkn(sk) imposed on critical amplitudes [15]. The series (11) allows to get only three 
estimates for the critical index . s, see Table 1. All three results are fairly close to . 0.72
and to the expected value of .0.73. 

For possible applications, one can simply adjust the iterated root approximants 
to the most plausible value .0.73 for the critical exponent, 

.

R∗
2(f ) =

(
2.56706f 2+2.06109f +0.405769

(0.637−f )2

)0.365
,

R∗
3(f ) =

(
(
2.56706f 2+2.06109f +0.405769

(0.637−f )2

)3/2 − 0.372504f 3

(0.637−f )3

)0.243333

.

(15) 

The two expressions are very close numerically, and the critical amplitude can be 
found from (15). From the former approximant it follows that .A ≈ 1.449, and from 
the latter approximant one obtains .A ≈ 1.456, giving practically the same result. 
The 4th order coefficient found from .R∗

3(f ), equals .7.48. 
Thus, various techniques bring very close results, especially for the critical 

amplitude. For instance, one can simply extract the singularity first, and then apply 
the Padé technique, which brings the value of .A ≈ 1.44 close to other estimates, but 
the 4th order coefficient appears to be different and equal to .6.59. 

The error in Jeffreys series estimate of the second order coefficient manifests 
itself in the value of the critical index. In terms of the variable z defined above, after 
standard calculations, we obtain the two estimates for the critical index, .s1 = 0.96, 
.s2 = 1.12, and .s ≈ 1.04±0.08. The estimate is close to the effective medium result 
.s = 1. 

5 Liquid Foams 

Maxwell formula can still be useful for applications, in particular when some 
additional asymptotic information is available, It can be applied for various cases 
of highly conducting and non-conducting inclusions conditioned on percolating 
asymptotic behavior [1]. One of the successful applications is to the liquid foams 
used in their solidified form for electrical (thermal) insulation. 

Because of the modest proportion of liquid in a foam and the large fraction of 
gas which has a much lower (thermal) conductivity the effective conductivity of 
the foam is much less than that of a liquid body made of the same material. The 
gas bubbles are pressed together to form the foam and are separated by thin films.
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Where films meet, there is a liquid-filled interstitial channel called a Plateau border. 
In a real foam some liquid will collect within the edges at which the films meet. The 
amount of liquid available for these borders depends on the total amount of liquid 
left in the foam. 

Consider first the two-dimensional foam. For a dispersion of 2D bubbles of a 
non-conducting gas in a continuous liquid phase of very high liquid fraction (very-
wet regime) of .ϵ → 1 (.f = 1 − ϵ → 0), Maxwell’s expression could be written as 
follows (see, for example, Andrianov et al [1]), 

.σe(ϵ) = ϵ

2 − ϵ
≃ 1 − 2(1 − ϵ) + 2(1 − ϵ)2, (16) 

with .σe = σsample

σliquid
. At the other end of a very-dry regime, as .ϵ → 0, the  

foam structure is two-dimensional polygonal, and in the entire condensed phase 
comprises a network of slender randomly oriented channels, or Plateau borders. 

The conductivity of such a network as .ϵ → 0, is given by a simple power-law 

.σe(ϵ) = ϵ

2
+ O(

√
ϵ), (17) 

as explained in [7]. The leading correction term to the power-law (17) may be 
calculated more systematically. To this end let us construct and check all possible 
two-point Padé approximants of the type . ϵ2Pn,m(

√
ϵ). Just as later in the 3D case, 

we construct the Padé approximant .P3,2(
√

ϵ), with the following result for the 
conductivity 

.σe(ϵ) = ϵ
(

ϵ − 3
√

ϵ + 5
)

10 − 7
√

ϵ
(18) 

which behaves at small . ϵ as 

. σe(ϵ) ≃ ϵ

2
+ ϵ3/2

20
.

Remarkably, the conductivity formula corresponding to the approximant 
.P2,3(

√
ϵ) appears to be identical with Maxwell’s formula (16). And the numerical 

difference with another formula (18) is minuscule. We have here a quite unique 
case when the classic Maxwell theory and the neoclassical crossover formula 
interpolating between two regimes gives practically the same results for all volume 
fractions. 

Consider the corresponding 3D case. For a dispersion of bubbles of a non-
conducting gas in a continuous liquid phase of very high volume fraction (very-wet 
regime) .ϵ → 1, Maxwell’s expression could be adapted [17], 

.σe(ϵ) = 2ϵ

3 − ϵ
≃ 1 − 3(1 − ϵ)

2
+ 3

4
(1 − ϵ)2. (19)
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Here . ϵ stands for the volume fraction of the continuous liquid phase. 
In the very-dry regime, as .ϵ → 0, the foam structure is polyhedral, and 

the entire condensed phase comprises a network of slender randomly oriented 
channels (Plateau borders). The model network is one of straight borders of uniform 
cross-section, isotropic, i.e., uniformly distributed in orientation, and meeting at 
symmetric tetrahedral vertices [21, 27]. The conductivity in the limit of .ϵ → 0 is 
given as follows, 

.σe(ϵ) = ϵ

3
+ O(

√
ϵ), (20) 

as explained in [10, 21, 22, 27]. The leading term in (20) is shown to be an upper 
bound for the conductivity [8]. 

Between the two extremes the bubble shape varies from spherical to polyhedral 
as . ϵ decreases. The electrical conductivity in the intermediate regime can be 
deduced from the two asymptotic expressions. In fact, the data in the wet and dry 
regimes match smoothly, and can be described by a simple empirical formulae [10], 
which also respects (19) and (20), 

.σe(ϵ) = 3.8ϵ3/2 + ϵ

−2.8ϵ + 4.6
√

ϵ + 3
. (21) 

It expands at small . ϵ as 

. σe(ϵ) ≃ ϵ

3
+ 0.76ϵ3/2.

The sign of the leading correction to the linear term appears to be positive, while 
another estimate based on formulae from [10, 27] gives negative sign. 

The leading correction to the linear term may be calculated more systematically. 
To this end let us construct and check all possible two-point Padé approximants of 
the type . ϵ3Pn,m(

√
ϵ). It turns out that all of them give positive leading corrections 

to the linear term. The following approximant is closest to (21), with maximal 
percentage error around . 2%, 

.σe(ϵ) =
(−4ϵ + 3

√
ϵ + 3

)

ϵ

9 − 7
√

ϵ
, (22)
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and it behaves at small . ϵ as 

. σe(ϵ) ≃ ϵ

3
+ 16ϵ3/2

27
.

Formula (22) is also in good agreement with some other fit from [10], which 
includes only integer powers of . ϵ. Thus we constructed a good approximation to 
various experimental data relying only on asymptotic expressions (19) and (20), 
without resorting to fitting. 

6 Permeability of a Symmetric Sinusoidal 
Three-Dimensional Channel 

The effective quantity called permeability quantifies the amount of viscous fluid 
flow through a porous medium when a macroscopic pressure gradient is applied to 
the system. Precise definitions and general discussion of the critical properties of 
permeability in porous media, including flow in various channels can be found in 
Chapter 7 of the book [6] and in the paper [12]. 

Let us consider the three-dimensional channel restricted by the surfaces 

.z = ±b
(

1 + 1

2
ϵ
(

cos(x + y) + cos(x − y)
)
)

, (23) 

with .b = 0.3 as formulated in the paper [25]. The permeability is found as the 
expansion in . ϵ up to . O(ϵ14)

.
K14(ϵ) = 1 − 0.465674ϵ2 + 0.329218ϵ4 − 0.261666ϵ6 − 0.004467ϵ8−
0.0386987ϵ10 − 0.0177808ϵ12 − 0.0239319ϵ14.

(24) 

The case appears to be different from all two-dimensional examples studied in great 
detail in [6, 12]. For .ϵ = ϵc = 1, the surfaces (23) start touching but the permeability 
remains finite at . ϵc. The truncated series for permeability (24) is obtained with 
numerical precision of .10−3 for the values of . ϵ up to .0.61. The permeability at . ϵc

remains quite significant, .K14(ϵc) = 0.517, as is simply estimated from the series 
(24). 

One can simply apply the technique of diagonal Padé approximants to the 
polynomial (24). The Padé approximants bring the following close results 

. P6,6(ϵc) = 0.51277, P8,8(ϵc) = 0.490636.

The higher order Padé approximants are readily obtained as well, 

.
P6,6(ϵ) = −0.272534ϵ6+0.22825ϵ4−0.657553ϵ2+1

−0.0363255ϵ6−0.190321ϵ4−0.191879ϵ2+1
;

P8,8(ϵ) = −0.266547ϵ8−0.131478ϵ6−0.363105ϵ4+0.256413ϵ2+1
−0.0832011ϵ8−0.273346ϵ6−0.356065ϵ4+0.722087ϵ2+1

.
(25)
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One can deduce a reasonable bounds for the solution, such as the upper and lower 
Padé bounds [2]. They are are given by the non-diagonal Padé approximants [2], 

.
P6,4(ϵ) = −0.25985ϵ6+0.27733ϵ4−0.664548ϵ2+1

−0.144498ϵ4−0.198874ϵ2+1
;

P6,8(ϵ) = −0.354713ϵ6+0.280003ϵ4−0.721617ϵ2+1
−0.0476736ϵ8−0.0872062ϵ6−0.168401ϵ4−0.255943ϵ2+1

.
(26) 

With such guidance we can construct and evaluate the two factor approximants [6, 
16]. .F ∗

12(ϵ), is standard, while the second, .F
∗
12,s(ϵ), is “shifted”. The shift also can 

be calculated and employed to estimate the sought value, 

.

F ∗
12(ϵ) = (

1 − 0.867964ϵ2
)0.474676 ×

(

1 + (0.0821614 + 0.533783i)ϵ2
)1.35488+0.258822i ×

(

1 + (0.0821614 − 0.533783i)ϵ2
)1.35488−0.258822i ;

F ∗
12,s(ϵ) = 0.481814 + 0.518186

(

1 − ϵ2
)0.766642 ×

(

1 − (0.074165 + 0.649541i)ϵ2
)1.46148+0.0652476i ×

(

1 − (0.074165 − 0.649541i)ϵ2
)1.46148−0.0652476i

.

(27) 

Both approximants consume up to twelve-order terms from the expansion. 
We are looking for the permeability at .ϵ = 1. Thus, one can obtain three 

estimates for the sought quantity, 

. P6,6(1) = 0.51277, F ∗
12(1) = 0.50195, F ∗

12,s(1) = 0.481814,

all satisfying the expected bounds. Their average .Kav is equal to .0.498845, and 
corresponding margin of error can be estimated through the variance, which equals 
.0.0128272. Different formulas for the permeability together with bounds, are 
compared in Fig. 4. Close to . ϵc one finds 

. P6,6(ϵ) ≃ 0.51277 + 2.30175(1 − ϵ),

and the correction to constant is linear. As well, one can calculate from the shifted 
factor approximant, that 

. F ∗
12,s(ϵ) ≃ 0.481814 + 1.36825(1 − ϵ)0.766642.

Possibly, there is an indication here of a non-trivial subcritical index with the value 
of .0.767. 

To elaborate further, we would like to study in more detail the behavior of 
permeability in the vicinity of . ϵc. Let us also assume some deviations from linearity, 
motivated by the shifted factor approximant. 

Let us start with general-type initial approximation for the permeability, which 
holds in the vicinity of .ϵc = 1,
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Fig. 4 Bounds (26) for the permeability are shown with dashed lines. Comparison of the formulas 
in the vicinity of . ϵc: Padé approximant .P6,6 is shown with with dotted line, factor approximant . F ∗

12
from (27) is shown with solid line, and shifted factor approximant .F ∗

12,s from (27) is shown with 
dot-dashed line 

.K0(ϵ) ≃ A0 + A1(ϵ
2
c − ϵ2)λ0 , (28) 

To simplify the procedure of finding the unknowns, let us set from the start . A0 =
Kav . Now, to obtain the remaining unknowns, one can try to satisfy the expansion 
(24) in the second order. Then, it appears that .A1 = 0.501155, .λ0 = 0.929201. The  
expression (28) can be understood as a two-fluid model, reflecting on the fact that 
there are two components in the flow. One which is getting blocked by the obstacles 
to flow, and another, which can not be blocked. 

One ought to appreciate that (28) with its parameters is only a crude approxi-
mation. In what follows let us attempt to correct the formula .K0(ϵ), even further. 
To this end let us assume in place of . λ0, some more general functional dependence 
.Λ∗(ϵ). As  .ϵ → ϵc, .Λ∗(ϵ) → λc, the sought corrected value. The function . Λ∗(ϵ)
will be designed in such a way, that it smoothly interpolates between the initial value 
. λ0 valid at small . ϵ, and the sought value . λc valid as .ϵ → ϵc. The permeability . K∗(ϵ)
is getting “dressed" in such a way. It is now given as follows: 

.K∗(ϵ) = A0 + A1(ϵ
2
c − ϵ2)Λ

∗(ϵ). (29) 

It is valid now for all . ϵ. From  (29) one can express .Λ∗(ϵ) formally, bearing in mind 
that we do not have the expression for .K∗(ϵ). All we can do is to use its asymptotic 
form (24), then express .Λ∗(ϵ) as a truncated series for small . ϵ. And then we can 
apply to such obtained series some resummation procedure (e.g. Padé technique). 
Such resummation is expected to extend the series to the whole region of . ϵ. Finally,
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we are in a position to calculate the limit of the approximants as .ϵ → ϵc, and find 
the corrected value as .λc = Λ∗(ϵc). 

Let .p(ϵ) = K14(ϵ) stand for an asymptotic form of .K∗(ϵ) for small . ϵ. 
Corresponding asymptotic expression for . Λ∗, just called .Λ(ϵ), can be made explicit 
from the following relation, 

.Λ(ϵ) ≃ −
log

(
(A0−p(ϵ))

A1

)

log(ϵ2c − ϵ2)
. (30) 

.Λ(ϵ) can be presented as expansion in powers of . ϵ around the value of . λ0, 

.Λ(ϵ) = λ0 + Λ1(ϵ). (31) 

And only now one can construct a sequence of diagonal Padé approximants [2] 

.Λn(ϵ) = λ0 + PadeApproximant[Λ1[ϵ], n, n]), (32) 

and find the sought limit .Λ∗(ϵ). Finally, we estimate the critical index . λc = Λ∗(ϵc)

and also find the complete formula for permeability, returning to the expression (29). 
There is a good convergence within the approximations for the . λc generated by 

the sequence of Padé approximants, 

. λc,1 = 0.929201, λc,2 = 0.402904, λc,4 = 0.631631,

. λc,6 = 0.630229, λc,8 = 0.702766, λc,10 = 0.698385 λc,12 = 0.702563.

Remarkably, in the highest orders the value of index remains practically the same. 
The final estimate for . λc can be conjectured to be rational . 23 . 

The function .Λ∗(ϵ) is needed to reconstruct the permeability. It can be straight-
forwardly expressed as the Padé approximant. The approximant corresponding to 
.λc,6 has the following form, 

.K∗
6 (ϵ) = 0.498845 + 0.501155

(

1 − ϵ2
)−4.15886ϵ6+6.957ϵ4−7.18244ϵ2+0.929201

−1.56421ϵ6+2.06925ϵ4−6.98732ϵ2+1 . (33) 

Formula (33), as well as the higher-order approximant (34), corresponding to . λc,8, 

. K∗
8 (ϵ) = 0.498845 + 0.501155

(

1 − ϵ2
) 0.134578ϵ8−0.22113ϵ6+0.650924ϵ4−0.904689ϵ2+0.929201

−0.0295078ϵ8−0.199491ϵ6+0.298201ϵ4−0.23125ϵ2+1 ,

(34) 
are confidently located within the Padé-bounds (26). Formulas for the permeability 
including the subcritical regime, are shown together with the bounds in Fig. 5. 

We conclude that in various physical problems it is both possible and also quite 
handy to possess a general mathematical toolbox to derive asymptotic, typically
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Fig. 5 Bounds (26) for the permeability are shown with dashed lines. Comparison of the formulas 
in the vicinity of . ϵc: .K∗

6 (ϵ) is shown with dotted line, .K∗
8 (ϵ) is shown with solid line 

power laws, as well as to obtain explicit crossover formulas. The former, extrapo-
lation problems are more difficult to solve than the latter, interpolation problems. 
Various transformations of the original truncated expressions were suggested to 
enhance existing methods, based on Padé or self-similar approximants. Power 
transformation of the original series was developed in [13, 14]. Method of Borel 
summation was further developed recently and applied to direct calculation of 
critical indices at infinity [30]. Many cases of interpolation and extrapolation are 
presented in [6, 11, 12, 16]. 
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Analogues the Kolosov-Muskhelishvili 
Formulas for Isotropic Materials 
with Double Voids 

Bakur Gulua 

Abstract Analogues of the well-known Kolosov-Muskhelishvili formulas for 
homogeneous equations of statics in the case of elastic materials with double voids 
are obtained. It is shown that in this theory the displacement and stress vector 
components are represented by two analytic functions of a complex variable and 
two solutions of Helmholtz equations. The constructed general solution enables one 
to solve analytically a sufficiently wide class of plane boundary value problems of 
the elastic equilibrium with double voids. 

1 Introduction 

Theories of porous media are applied in many branches of engineering, technology, 
geomechanics and biomechanics. The theory of elasticity of porous materials with 
voids (empty pores) essentially differs from the classical theory of elasticity in that 
the volume fraction, which corresponds to the volume of empty pores, is meant as 
an independent variable. 

The nonlinear theory of porous materials with voids is described in Nunziato 
and Cowin [1], and the linear theory of porous materials with voids is presented by 
Cowin and Nunziato [2]. By using the mechanics of materials with voids the theories 
of elasticity and thermoelasticity for materials with double-porosity structure are 
presented by Ieşan and Quintanilla [3]. The basic equations of this theory involve 
the displacement vector field and the volume fraction fields associated with the 
pores and the fissures. Monograph of Ieşan [4] gives the main objectives of 
thermoelasticity for various models, which contain empty pores, as well as basic 
results obtained in the Cowin–Nunziato theory and felds of their application. The 
book by Straughan [5] gives the major results for the porous bodies of different 
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models and bibliographical data. Some results of the 2D and 3D theories of elasticity 
for materials with microstructures can be seen in [6–10]. 

The present paper deals with plane strain problem for linear elastic materials 
with double voids. In the spirit of N.I. Muskhelishvili the governing system of 
equations of the plane strain is rewritten in the complex form and its general solution 
is represented by means of two analytic functions of the complex variable and two 
solutions of Helmholtz equations. The constructed general solution enables us to 
solve analytically the problems for a circle. 

2 Basic Equations for Materials with Double Voids of the 3D 
Model 

Let .x = (x1; x2; x3) be a point of the Euclidean three dimensional space . R3. We  
assume that the subscripts preceded by a comma denote partial differentiation with 
respect to the corresponding Cartesian coordinate, repeated indices are summed over 
the range .(1; 2; 3). 

In what follows we consider an isotropic and homogeneous elastic solid with 
double voids occupying a region of .Ω ∈ R3. The governing equations of the theory 
of elastic materials with double voids can be expressed in the following form [3]: 

• Equations of equilibrium 

.

tj i,j + ρ0fi = 0, i, j = 1, 2, 3,
σj,j + ξ + ρ0g = 0,
τj,j + ζ + ρ0l = 0,

(1) 

where . tij is the symmetric stress tensor, . fi is the body force per unit mass, . ρ0
is the mass density, . σi and . τi are the equilibrated stress vectors, . ξ and . ζ are the 
intrinsic equilibrated body forces, g is the extrinsic equilibrated body force per 
unit mass associated to macro pores, l is the extrinsic equilibrated body force per 
unit mass associated to fissures. 

• Constitutive equations 

.

tij = λekkδij + 2μeij + bδijϕ + dδijψ,

σi = αϕ,i,+b1ψ,i,

τi = b1ϕ,i,+γψ,i,

ξ = −bekk − α1ϕ − α3ψ,

ζ = −dekk − α3ϕ − α2ψ,

(2) 

where . λ and . μ are the Lamé constants, . α, b, d , . b1, . α1, . α2 and . α3 are the constants 
characterizing the body porosity, . δij is the Kronecker delta, . ϕ is a changes of 
volume fraction corresponding to pores, . ψ is a a changes of volume fraction



Analogues the Kolosov-Muskhelishvili Formulas for Isotropic Materials with. . . 375

corresponding to fissures, . eij is the strain tensor and 

. eij = 1
2

(
ui,j + uj,i

)
, (3) 

where .ui, i = 1, 2, 3 are the components of the displacement vector. 

The constitutive equations also meet some other conditions, following from 
physical considerations 

.
μ > 0, 3λ + 2μ > 0, α2 > 0, α1α2 − α2

3 > 0,
(3λ + 2μ)(α1α2 − α2

3) > 3(α1d
2 + α2b

2 − 2α3bd), α > 0, αγ > b21.
(4) 

Substituting (2) and (3) into (1) we obtain equations with respect to the 
components of the displacement and the functions . ϕ and . ψ

. 

μ∆̃ui + (λ + μ)∂iΘ + b∂iϕ + d∂iψ = 0, j = 1, 2, 3
(α∆̃ − α1)ϕ + (b1∆̃ − α3)ψ − bΘ = 0,
(b1∆̃ − α3)ϕ + (γ ∆̃ − α2)ψ − dΘ = 0,

where .∂i ≡ ∂
∂xi

, .Θ = ∂kuk , .∆ ≡ ∂11 + ∂22 + ∂33 is the three-dimensional Laplace 
operator. 

3 Basic (Governing) Equations of the Plane Strain 

From the basic three-dimensional equations we obtain the basic equations for the 
case of plane strain. Let . Ω be a sufficiently long cylindrical body with generatrix 
parallel to the .Ox3-axis. Denote by V the crosssection of this cylindrical body, thus 
.V ⊂ R2. In the case of plane deformation .u3 = 0 while the functions . u1, . u2, . ϕ and 
. ψ do not depend on the coordinate . x3. 

As it follows from formulas (2) and (3), in the case of plane strain 

. tk3 = t3k = 0, σ3 = 0, τ3 = 0, k = 1, 2.

Assuming .Фi ≡ 0 and .Ψ ≡ 0. Therefore the system of equilibrium Eq. (1) takes 
the form 

.

∂1t11 + ∂2t21 = 0,
∂1t12 + ∂2t22 = 0,
∂kσk + ξ = 0,
∂kτk + ζ = 0.

(5)
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Now, Relations (2) are rewritten as 

.

t11 = λθ + 2μ∂1u1 + bϕ + dψ,

t22 = λθ + 2μ∂2u2 + bϕ + dψ,

t12 = t21 = μ(∂1u2 + ∂2u1),

t33 = σ(t11 + t22),

σk = α∂kϕ + b1∂kψ, k = 1, 2,
τk = b1∂kϕ + γ ∂kψ, k = 1, 2,
ξ = −bθ − α1ϕ − α3ψ,

ζ = −dθ − α3ϕ − α2ψ,

(6) 

where . σ is the Poisson ratio, .θ = ∂1u1 + ∂2u2. 
If relations (6) are substituted into system (5) then we obtain the following system 

of governing equations of statics with respect to the functions . u1, . u2 and . ϕ, . ψ

.

μ∆uk + (λ + μ)∂kθ + b∂kϕ + d∂kψ = 0, k = 1, 2
(α∆ − α1)ϕ + (b1∆ − α3)ψ − bθ = 0,
(b1∆ − α3)ϕ + (γ∆ − α2)ψ − dθ = 0,

(7) 

Note that .∆ ≡ ∂11 + ∂22 is the two-dimensional Laplace operator. 
On the plane .Ox1x2, we introduce the complex variable . z = x1 + ix2 =

reiϑ , (i2 = −1) and the operators .∂z = 0.5(∂1 − i∂2), ∂z̄ = 0.5(∂1 + i∂2), 
.z̄ = x1 − ix2, and .∆ = 4∂z∂z̄. 

To write system (5) in the complex form, the second equation of this system we 
multiplied by i and sum up with the first equation 

.

∂z(t11 − t22 + 2it12) + ∂z̄(t11 + t22) = 0,
∂zσ+ + ∂z̄σ̄+ + ξ = 0,
∂zτ+ + ∂z̄τ̄+ + ζ = 0,

(8) 

where .σ+ = σ1 + iσ2, .τ+ = τ1 + iτ2 and formulas (6) we rewrite as follows 

.

t11 − t22 + 2it12 = 4μ∂z̄u+,

t11 + t22 = 2(λ + μ)θ + 2bϕ + 2dψ,

σ+ = 2α∂z̄ϕ + 2b1∂z̄ψ,

τ+ = 2b1∂z̄ϕ + 2γ ∂z̄ψ,

ξ = −bθ − α1ϕ − α3ψ,

ζ = −dθ − α3ϕ − α2ψ,

(9) 

.θ = ∂zu+ + ∂z̄ū+, u+ = u1 + iu2.
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Substituting relations (9) into system (8), we rewrite system (7) in the complex 
form 

.

2μ∂z̄∂zu+ + (λ + μ)∂z̄θ + b∂z̄ϕ + d∂z̄ψ = 0,
(α∆ − α1)ϕ + (b1∆ − α3)ψ − bθ = 0,
(b1∆ − α3)ϕ + (γ∆ − α2)ψ − dθ = 0.

(10) 

4 Kolosov-Muskhelishvili Formulas for (10) System 

Now we construct the analogues to the Kolosov-Muskhelishvili formulas for system 
(10) [11–13]. 

We take the operator . ∂z̄ out of the brackets in the left-hand part of the first 
equation of system (10) 

.∂z̄(2μ∂zu+ + (λ + μ)θ + bϕ + dψ) = 0. (11) 

Since (11) is a system of Cauchy-Riemann equations, we have 

.2μ∂zu+ + (λ + μ)θ + bϕ + dψ = Af '(z), (12) 

where .f (z) is an arbitrary analytic function of z and A an arbitrary constant. 
A conjugate equation to (12) has the form 

.2μ∂z̄ū+ + (λ + μ)θ + bϕ + dψ = Af '(z), (13) 

Summing up Eqs. (12) and (13) and taking into account that 

. θ = ∂zu+ + ∂z̄ū+

we obtain 

.θ = A

2(λ + μ)
(f '(z) + f '(z)) − b

λ + 2μ
ϕ − d

λ + 2μ
ψ. (14) 

Substituting formula (14) into the second and third equations of system (10), we 
have 

. 

(
α∆ − α1 + b2

λ+2μ

)
ϕ +

(
b1∆ − α3 + bd

λ+2μ

)
ψ = Ab

2(λ+μ)
(f '(z) + f '(z)),

(
b1∆ − α3 + bd

λ+2μ

)
ϕ +

(
γ∆ − α2 + d2

λ+2μ

)
ψ = Ad

2(λ+μ)
(f '(z) + f '(z)).

(15)
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Equation (15) system rewrite in matrix form 

.∆Ψ − CΨ = DF, (16) 

where 

. C =
(

α b1

b1 γ

)−1

·
(

α1 − b2

λ+2μ α3 − bd
λ+2μ

α3 − bd
λ+2μ α2 − d2

λ+2μ

)

,

. D =
(

α b1

b1 γ

)−1

·
(

Ab
2(λ+2μ)

0

0 Ad
2(λ+2μ)

)

,

. Ψ =
(

ϕ

ψ

)
, F =

(
f '(z) + f '(z)
f '(z) + f '(z)

)
.

The general solutions of system (15) we may write in the form 

.
ϕ = l11χ1(z, z̄) + l12χ2(z, z̄) − AE1(f

'(z) + f '(z)),
ψ = l21χ1(z, z̄) + l22χ2(z, z̄) − AE2(f

'(z) + f '(z)), (17) 

where .χ1(z, z̄) and .χ2(z, z̄) are a general solutions of the Helmholtz equations 

. ∆χ(z, z̄) − κ1χ(z, z̄) = 0, ∆χ(z, z̄) − κ1χ(z, z̄) = 0.

where . κα are eigenvalues and .(l11, l21), .(l12, l22) are eigenvectors of the matrix C 
and from (4) its are positive numbers, 

. E1 = bα2 − dα3

2((α1α2 − α2
3)(λ + 2μ) − α1d2 − α2b2 + 2α3bd)

,

. E2 = dα1 − bα3

2((α1α2 − α2
3)(λ + 2μ) − α1d2 − α2b2 + 2α3bd)

.

Substituting formulas (14) and (17) into Eq. (12), we obtain 

. 2μ∂zu+ = λ + 3μ

2(λ + 2μ)
(1+bE1+dE2)Af '(z)−λ + μ−(λ + 3μ)(bE1 + dE2)

2(λ + 2μ)
f '(z)

. − (bl11 + dl21)(λ + 3μ)

2(λ + 2μ)
χ1(z, z̄) − (bl12 + dl22)(λ + 3μ)

2(λ + 2μ)
χ2(z, z̄).
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Now, let .A := 2(λ+2μ)
λ+μ−(λ+3μ)(bE1+dE2))

than we get 

. 2μu+ = κf (z) − zf '(z) − g(z) − p1∂z̄χ1(z, z̄) − p2∂z̄χ2(z, z̄),

where .κ = (λ+3μ)(1+bE1+dE2)
λ+μ−(λ+3μ)(bE1+dE2)

, .p1 = 2(bl11+dl21)(λ+3μ)
κ1(λ+2μ)

, .p2 = 2(bl12+dl22)(λ+3μ)
κ2(λ+2μ)

, 
.g(z) is an arbitrary analytic function of z. 

Thus, we have proved 

Theorem 1 The general solution of the system (10) is represented as follows: 

. 2μu+ = κf (z) − zf '(z) − g(z) − p1∂z̄χ1(z, z̄) − p2∂z̄χ2(z, z̄),

.ϕ = l11χ1(z, z̄) + l12χ2(z, z̄) − E1(f
'(z) + f '(z)), (18) 

. ψ = l21χ1(z, z̄) + l22χ2(z, z̄) − E2(f
'(z) + f '(z)).

where .E1 = AE1, .E2 = AE2. 

From (9) we have  

. 

t11 − t22 + 2it12 = −2zf ''(z) − 2g'(z) − p1∂z̄∂z̄χ1(z, z̄) − p2∂z̄∂z̄χ2(z, z̄),

t11 + t22 = A(λ + μ) − 2bμE1 − 2dμE2

λ + 2μ

(
f '(z) + f '(z)

)

+2μ(bl11 + dl21)

λ + 2μ
χ1(z, z̄) + 2μ(bl12 + dl22)

λ + 2μ
χ2(z, z̄),

σ+ = 2(dl11 + b1l21)∂z̄χ1(z, z̄) + 2(dl12 + b1l22)∂z̄χ2(z, z̄)

−2(dE1 + b1E2)f ''(z),
τ+ = 2(b1l11 + γ l21)∂z̄χ1(z, z̄) + 2(b1l12 + γ l22)∂z̄χ2(z, z̄)

−2(b1E1 + γE2)f ''(z),

ξ =
(

b2l11 + bdl21

λ + 2μ
− α1l11 − α3l21

)
χ1(z, z̄)

+
(

b2l12 + bdl22

λ + 2μ
− α1l12 − α3l22

)
χ2(z, z̄)

+
(

α1E1 + α3E2 − Ab + 2b2E1 + 2bdE2

2(λ + 2μ)

)

(f '(z) + f '(z)),

.

ζ =
(

bdl11 + d2l21

λ + 2μ
− α3l11 − α2l21

)
χ1(z, z̄)

+
(

bdl12 + d2l22

λ + 2μ
− α3l12 − α2l22

)
χ2(z, z̄)

+
(

α3E1 + α2E2 − Ad + 2bdE1 + 2d2E2

2(λ + 2μ)

)

(f '(z) + f '(z)).
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5 A Problem for a Circle 

Let the origin of coordinates be at the centre of the circle with radius R Fig. 1. On  
the boundary of the considered domain the values of . ϕ, . ψ and the displacement 
vector are given. Analogous problems of plane elasticity for materials with single 
voids are considered in [13–15]. 

We consider the following problem 

.

2μu+|r=R = 2μ(G1 + iG2) =
+∞∑

−∞
Ane

inϑ ,

ϕ|r=R = G3 =
+∞∑
−∞

Bne
inϑ ,

ψ |r=R = G4 =
+∞∑
−∞

Cne
inϑ .

(19) 

The analytic functions .f (z), .g(z) and the metaharmonic functions .χ1(z, z̄) and 
.χ2(z, z̄) are represented as the series 

. f (z) =
∞∑

n=1

anz
n, g(z) =

∞∑

n=0

bnz
n,

. χ1(z, z̄) =
+∞∑

−∞
αnIn(

√
κ1r)e

inϑ , χ2(z, z̄) =
+∞∑

−∞
βnIn(

√
κ2r)e

inϑ

Fig. 1 The circle with radius 
R
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where .In(
√

κ1r) and .In(
√

κ2r) are the modified Bessel function of the first kind of 
n-th order. After substituting into the boundary conditions (19) we have  

. κ

∞∑

n=1

anR
neinϑ − ā1Reiϑ −

∞∑

n=0

(n + 2)ān+2R
n+2e−inϑ −

∞∑

n=0

b̄nR
ne−inϑ

. − p1
√

κ1

2

+∞∑

−∞
αnIn+1(

√
κ1R)ei(n+1)ϑ

− p2
√

κ2

2

+∞∑

−∞
αnIn+1(

√
κ2R)ei(n+1)ϑ =

+∞∑

−∞
Ane

inϑ ,

. l11

+∞∑

−∞
αnIn(

√
κ1R)einϑ + l12

+∞∑

−∞
βnIn(

√
κ2R)einϑ

. − E1

∞∑

n=1

(
nanR

n−1ei(n−1)ϑ + nānR
n−1e−i(n−1)ϑ

)
=

+∞∑

−∞
Bne

inϑ ,

. l21

+∞∑

−∞
αnIn(

√
κ1R)einϑ + l22

+∞∑

−∞
βnIn(

√
κ2R)einϑ

. − E2

∞∑

n=1

(
nanR

n−1ei(n−1)ϑ + nānR
n−1e−i(n−1)ϑ

)
=

+∞∑

−∞
Cne

inϑ .

Comparing the coefficients of members with equal degrees, we obtain the 
following systems of equation 

. 

κRa1 − Rā1 − p1
√

κ1

2
I1(

√
κ1R)α0 − p2

√
κ2

2
I1(

√
κ2R)β0 = A1,

κRnan − p1
√

κ1

2
In(

√
κ1R)αn−1 − p2

√
κ2

2
In(

√
κ2R)βn−1 = An, n > 1,

−(n + 2)Rn+2ān+2 − Rnb̄n − p1
√

κ1

2
In(

√
κ1R)α−n−1

−p2
√

κ2

2
In(

√
κ2R)β−n−1 = A−n, n ≥ 0,

. 
l11I0(

√
κ1R)α0 + l12I0(

√
κ2R)β0 − E1(a1 + ā1) = B0,

l21I0(
√

κ1R)α0 + l22I0(
√

κ2R)β0 − E2(a1 + ā1) = C0,

. 
l11In(

√
κ1R)αn + l12In(

√
κ2R)βn − E1(n + 1)Rnan+1 = Bn, n > 0,

l21In(
√

κ1R)αn + l22In(
√

κ2R)βn − E2(n + 1)Rnan+1 = Cn, n > 0.

All coefficients are determined by these equations.
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It is easily seen the absolute and uniform convergence of the series obtained in 
the circle (including the contours) when the functions prescribed on the boundary 
are sufficiently smooth. 

The procedure of solving a boundary value problem remains the same when 
stresses and change in volume fractions on the domain boundary are given, but the 
condition that the principal vector and the principal moment of external forces are 
equal to zero is fulfilled. 
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Schwarz-Christoffel Mapping and 
Generalised Modulus of a Quadrilateral 

Giorgi Kakulashvili 

Abstract In this work we analyze Schwarz-Christoffel (SC) transformation for 
polygonal quadrilaterals and by its geometric properties introduce generalised mod-
ulus. The function holds many interesting properties and allows to algorithmically 
solve parameter problem for quadrilaterals. 

1 Introduction 

Parameters problem for Schwarz-Christoffel (SC) mapping and computation of 
modulus of quadrilaterals are the most famous and old problems in geometric theory 
of complex analysis. In last decade, investigation of these problems had led to many 
deep and interesting works from different point of view [1–3]. In [4–6] is given an 
overview of the modern theoretical and numerical achievements in this field. 

A conformal modulus of a generalised quadrilateral [1, 6] is a non-negative 
real number which divides quadrilaterals into conformal equivalence classes. For 
a rectangle conformal modulus is ratio of its neighbors sides or its proportion. 
Therefore, to find conformal modulus of polygonal quadrilateral, we need to map it 
conformally to rectangle and for this we use SC mapping. 

2 Schwarz-Christoffel Mapping for Quadrilaterals 

The classical Schwarz-Christoffel formula allows us to conformally map half-plane 
onto domains whose boundaries consist of a finite number of line segments. In our 
considerations we use the following version of the SC-theorem. 

Theorem 1 [7] Let P be the interior of a polygon . Γ with clockwise ordered 
vertices . w1, . . . . , . wn in the complex plane and with external angles . πβ1, . . . . , . πβn.
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Let f be a conformal map from the lower half-plane .H− to P with .f (∞) = wn. 
Then 

.f (x) = A + C

xˆ

−∞

n−1∏

j=1

(
1 − ζ

zj

)−βj

dζ, (1) 

for some complex constants A and C, where .wk = f (zk) and the preimages of 
vertices . zj , for .j = 1, . . . . , .n − 1 satisfy the conditions . 1 = z1 < z2 < · · · <

zn−1 < zn = +∞.

Consider particular case of this theorem. Namely, let Q be a simple quadrilateral 
with inner angles .πτj enumerated in clockwise order. Suppose 

. z1 = 1 z2 = 1 + θ z3 = 1 + θ + rθ,

where .θ, r > 0 parametrization of preimages of vertices of quadrilateral . Q, i.e., the 
inequality 

. 1 = z1 < z2 < z3

is satisfied without loss of generality. Then the Schwarz-Christoffel transformation 
is given by 

.

f (x) = A

+ C

xˆ

−∞
(1 − ζ )τ1−1

(
1 − ζ

1 + θ

)τ2−1 (
1 − ζ

1 + θ + rθ

)τ3−1

dζ.
(2) 

If .A = 0 and .C = 1, then f function from expression 2 maps lower half plane 
onto clockwise oriented quadrilateral, with .w4 = 0 and .w1 > 0 vertices. 

Orientation of the quadrilateral depends how we define argument of a complex 
number. For example, we use 

. arg

(
1 − ζ

z

)
=

{
0, ζ < z,

π, ζ > z
and arg

(
1 − ζ

z

)−β

=
{

0, ζ < z,

−πβ, ζ > z

therefore 

. arg

(
3∏

k=1

(
1 − ζ

zk

)−βk
)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, ζ < z1,

−πβ1, z1 < ζ < z2,

−π(β1 + β2), z2 < ζ < z3,

−π(β1 + β2 + β3), ζ > z3.



Schwarz-Christoffel Mapping 385

Theorem 2 Let Q be a simple quadrilateral with inner angles .πτ1, πτ2, πτ3 such 
that 

. f (x) =
xˆ

−∞
(1 − ζ )τ1−1

(
1 − ζ

1 + θ

)τ2−1 (
1 − ζ

1 + θ + rθ

)τ3−1

dζ

maps the lower half-plane onto Q. Then the side lengths of Q are 

. 

l1 = cB(τ4, τ1)2F1 (τ4, 1 − τ3; τ4 + τ1;−r) ,

l2 = rτ3−1cB(τ1, τ2)2F1

(
τ2, 1 − τ3; τ1 + τ2;−1

r

)
,

l3 = rτ2+τ3−1cB(τ2, τ3)2F1 (τ2, 1 − τ1; τ2 + τ3;−r) ,

l4 = r−τ4cB(τ3, τ4)2F1

(
τ4, 1 − τ1; τ3 + τ4;−1

r

)

where 

. c = θ−τ4(1 + θ)1−τ2(1 + θ + rθ)1−τ3

and the ratio of the adjacent sides of a quadrilateral are independent of . θ . 

For proof of this theorem we use the following proposition. 

Proposition 1 We have: 

1. The following equality 

.

1ˆ

0

ua−1(1 − u)b−1(1 − zu)c−1du = B(a, b)2F1 (a, 1 − c; a + b; z) (3) 

holds for .z < 1, when .a, b > 0, .c ∈ R, and for .z = 1, when .a > 0 and .b+c > 0. 
2. If .r > 0 and .k = √

1/(1 + r) then we have the following equalities 

.

+∞ˆ

0

ua−1 (1 + u)b−1 (1 + r + u)c−1 du

= B(2 − a − b − c, a)2F1 (2 − a − b − c, 1 − c; 2 − b − c;−r)

(4)
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and 

.

+∞ˆ

0

ua−1 (1 + u)b−1
(

1 + k2u
)c−1

du

= B(2 − a − b − c, a)2F1

(
a, 1 − c; 2 − b − c; 1 − k2

)
,

(5) 

when .a + b + c < 2, .a > 0, and .c ∈ R. 

Proof The equality (3) can be obtained by Euler’s integral representation 

. 

B(a, b)2F1 (a, 1 − c; a + b; z) = B(a, (a + b) − a)2F1 (1 − c, a; a + b; z)

=
1ˆ

0

ua−1(1 − u)b−1(1 − zu)c−1du,

when .a + b > a > 0. 
To prove second part of the proposition we use the change of variable . u = t − 1

and . t = 1/v

. 

+∞ˆ

0

ua−1 (1 + u)b−1 (1 + r + u)c−1 du =
1ˆ

0

v1−a−b−c (1 − v)a−1 (1 + rv)c−1 dv

= B(2 − a − b − c, a)2F1 (2 − a − b − c, 1 − c; 2 − b − c;−r) .

If we multiply both sides by .(1 + r)1−c and apply Pfaff’s transform we obtain 

. 

+∞ˆ

0

ua−1 (1 + u)b−1
(

1 + u

1 + r

)c−1

du

= B(2 − a − b − c, a)2F1

(
a, 1 − c; 2 − b − c; r

1 + r

)
.

The Proposition is proved. ��
Now we can prove Theorem 2.
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Proof By changing the variable of integration .ζ = 1 + uθ we get 

. 

l2 = |f (1 + θ) − f (1)|

=
∣∣∣∣∣∣

1+θˆ

1

(1 − ζ )τ1−1
(

1 − ζ

1 + θ

)τ2−1 (
1 − ζ

1 + θ + rθ

)τ3−1

dζ

∣∣∣∣∣∣

=
1+θˆ

1

(ζ − 1)τ1−1
(

1 − ζ

1 + θ

)τ2−1 (
1 − ζ

1 + θ + rθ

)τ3−1

dζdu

= (1 + r)τ3−1θ−τ4

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

1ˆ

0

uτ1−1 (1 − u)τ2−1
(

1 − u

1 + r

)τ3−1

.

Below, for computing . l3 and . l4 we use change of variables .ζ = 1 + θ + urθ and 
.ζ = 1 + θ + vrθ, respectively: 

. 

l3 = |f (1 + θ + rθ) − f (1 + θ)|

=
1+θ+rθˆ

1+θ

(ζ − 1)τ1−1
(

ζ

1 + θ
− 1

)τ2−1 (
1 − ζ

1 + θ + rθ

)τ3−1

dζ

= rτ2+τ3−1θ−τ4

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

1ˆ

0

uτ2−1 (1 − u)τ3−1 (1 + ru)τ1−1 du

.

l4 = |f (+∞) − f (1 + θ + rθ)|

=
+∞ˆ

1+θ+rθ

(ζ − 1)τ1−1
(

ζ

1 + θ
− 1

)τ2−1 (
ζ

1 + θ + rθ
− 1

)τ3−1

dζ

= rτ2+τ3−1θ−τ4

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

+∞ˆ

1

vτ2−1 (v − 1)τ3−1 (1 + vr)τ1−1 dv

= r−τ4θ−τ4

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

1ˆ

0

uτ4−1 (1 − u)τ3−1
(

1 + u

r

)τ1−1
du.
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By (3) from Proposition 1 we have 

. l2 = (1 + r)τ3−1cB(τ1, τ2)2F1

(
τ1, 1 − τ3; τ1 + τ2; 1

1 + r

)
,

. l3 = rτ2+τ3−1cB(τ2, τ3)2F1 (τ2, 1 − τ1; τ2 + τ3;−r) ,

. l4 = r−τ4cB(τ3, τ4)2F1

(
τ4, 1 − τ1; τ3 + τ4;−1

r

)
,

where 

. c = θ−τ4(1 + θ)1−τ2(1 + θ + rθ)1−τ3 .

If we use the Pfaff transformation for expression of . l2 we obtain 

. l2 = rτ3−1cB(τ1, τ2)2F1

(
τ2, 1 − τ3; τ1 + τ2;−1

r

)
.

For . l1 we use formula (4) from Proposition 1 and the change of variables . t = 1−ζ :

. 

l1 =
1ˆ

−∞
(1 − ζ )τ1−1

(
1 − ζ

1 + θ

)τ2−1 (
1 − ζ

1 + θ + rθ

)τ3−1

dζ

=
∞̂

0

tτ1−1
(

1 − 1 − t

1 + θ

)τ2−1 (
1 − 1 − t

1 + θ + rθ

)τ3−1

dt

= θ(τ1−1)+(τ2−1)+(τ3−1)

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1 ×

×
∞̂

0

(
t

θ

)τ1−1 (
1 + t

θ

)τ2−1 (
1 + r + t

θ

)τ3−1

dt.

Change of variables .t = θv and .w = 1/u gives 

. 
θ(τ1−1)+(τ2−1)+(τ3−1)+1

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

∞̂

0

vτ1−1 (1 + v)τ2−1 (1 + r + v)τ3−1 dv

. = θ−τ4

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

∞̂

1

wτ2−1 (w − 1)τ1−1 (r + w)τ3−1 dw

. = θ−τ4

(1 + θ)τ2−1 (1 + θ + rθ)τ3−1

1ˆ

0

uτ4−1 (1 − u)τ1−1 (1 + ru)τ3−1 du.
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The first part of the theorem is proved. 
The proof of the second statement directly follows from calculation. Indeed, 

. 
l1

l2
= r1−τ3

B(τ4, τ1)

B(τ1, τ2)

2F1 (τ4, 1 − τ3; τ4 + τ1;−r)

2F1 (τ2, 1 − τ3; τ1 + τ2;−1/r)
,

. 
l2

l3
= r−τ2

B(τ1, τ2)

B(τ2, τ3)

2F1 (τ2, 1 − τ3; τ1 + τ2;−1/r)

2F1 (τ2, 1 − τ1; τ2 + τ3;−r)
,

. 
l3

l4
= r1−τ1

B(τ2, τ3)

B(τ3, τ4)

2F1 (τ2, 1 − τ1; τ2 + τ3;−r)

2F1 (τ4, 1 − τ1; τ3 + τ4;−1/r)
,

. 
l4

l1
= r−τ4

B(τ3, τ4)

B(τ4, τ1)

2F1 (τ4, 1 − τ1; τ3 + τ4;−1/r)

2F1 (τ4, 1 − τ3; τ4 + τ1;−r)
.

The theorem is proved. ��
The SC-mapping f from Theorem 2 defines quadrilateral Q with .w4 = 0 and 

.w1 > 0 vertices and the positive number r from the expression we call r-invariant 
of the quadrilateral Q. 

Remark 1 Since translation, rotation, and uniform scaling are conformal trans-
formations, by adding and multipling by A, C complex numbers any arbitrary 
quadrilateral can be transformed, so that it vertices are mapped like .w4 = 0 and 
.w1 > 0. 

3 Generalised Modulus of Quadrilaterals 

In this section we define generalised modulus . ϕ of quadrilateral, which holds impor-
tant properties on how conformal modulus changes when quadrilateral propositions 
are changed. 

Definition 1 For given 

. τ1, τ2, τ3 > 0, τ1 + τ2 + τ3 < 2, τ4 = 2 − (τ1 + τ2 + τ3)

we define the function . ϕ as 

.ϕ(x; τ1, τ2, τ3) = x1−τ1
B(τ2, τ3)

B(τ3, τ4)

2F1 (τ2, 1 − τ1; τ2 + τ3;−x)

2F1 (τ4, 1 − τ1; τ3 + τ4;−1/x)
(6) 

for .x > 0 and call it the generalised modulus of quadrilateral with inner angles . πτj ,

.j = 1, 2, 3, 4.
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Theorem 3 Let Q be a simple quadrilateral with side lengths . lj and inner angles 
.πτj , .j = 1, 2, 3, 4. Then 

. ϕ (r; τ1, τ2, τ3) = l3

l4
, ϕ

(
1

r
; τ2, τ3, τ4

)
= l4

l1
,

. ϕ (r; τ3, τ4, τ1) = l1

l2
, ϕ

(
1

r
; τ4, τ1, τ2

)
= l2

l3
.

where r is r-invariant of . Q.

Proof By Remark 1 we can map Q without changing its properties and apply 
Theorem 2. We prove only the last identity, the other ones are obtained by similar 
way. By the Euler’s transformations we obtain 

. 

ϕ

(
1

r
; τ4, τ1, τ2

)
= rτ4−1 B(τ1, τ2)

B(τ2, τ3)

2F1 (τ1, 1 − τ4; τ1 + τ2;−1/r)

2F1 (τ3, 1 − τ4; τ2 + τ3;−r)

= rτ4−1 B(τ1, τ2)

B(τ2, τ3)

× (1 + 1/r)τ2+τ4−1
2F1 (τ2, 1 − τ3; τ1 + τ2;−1/r)

(1 + r)τ2+τ4−1
2F1 (τ2, 1 − τ1; τ2 + τ3;−r)

= r−τ2
B(τ1, τ2)

B(τ2, τ3)

2F1 (τ2, 1 − τ3; τ1 + τ2;−1/r)

2F1 (τ2, 1 − τ1; τ2 + τ3;−r)
= l2

l3
.

The theorem is proved. ��
Corollary 1 Suppose .τ1 = τ2 = τ3 = 1/2, then 

.ϕ

(
x; 1

2
,

1

2
,

1

2

)
= K′ (√1/(1 + x)

)

K
(√

1/(1 + x)
) , (7) 

where .K(x) is complete elliptic integral and . K′
(x) = K

(√
1 − x2

)
.

Proof The proof of (7) we obtain from the Pfaff’s transformation and from the chain 
of following identities: 

. 2F1

(
1

2
,

1

2
; 1; 1

1 + x

)
=

(
1 + 1

x

)1/2

2F1

(
1

2
,

1

2
; 1;− 1

x

)
,

.K
(√

1

1 + x

)
= π

2
2F1

(
1

2
,

1

2
; 1; 1

1 + x

)
= π

2

(
1 + 1

x

)1/2

2F1

(
1

2
,

1

2
; 1;− 1

x

)
,



Schwarz-Christoffel Mapping 391

. K′
(√

1

1 + x

)
= K

(√
x

1 + x

)
= π

2
2F1

(
1

2
,

1

2
; 1; x

1 + x

)

= π

2
2F1

(
1

2
,

1

2
; 1; 1

1 + 1/x

)
= π

2
(1 + x)1/2

2F1

(
1

2
,

1

2
; 1;−x

)
.

Finally, 

. 
K′ (√1/(1 + x)

)

K
(√

1/(1 + x)
) = √

x
2F1 (1/2, 1/2; 1;−x)

2F1 (1/2, 1/2; 1;−1/x)
.

and corollary is proved. ��
From Theorem 3 we find that for given Q quadrilateral there exists only one 

.r > 0 variable and by formula (7) we get connection with MQ conformal modulus 

. MQ = K′ (√1/(1 + r)
)

K
(√

1/(1 + r)
) .

Theorem 4 Generalised modulus . ϕ for given inner angles .πτi of simple quadrilat-
eral is increasing when .τ1 < 1 and decreasing .τ1 > 1. 

Proof By using Pfaff transform we get the following equality 

. ϕ(r; τ1, τ2, τ3) = B(τ2, τ3)

B(τ3, τ4)

2F1
(
1 − τ1, τ3; τ2 + τ3; 1 − k2

)

2F1
(
1 − τ1, τ3; τ3 + τ4; k2

)

where .k = √
1/(1 + r). By Eq. (3) we can find that 

. 2F1

(
1 − τ1, τ3; τ2 + τ3; 1 − k2

)
is decreasing τ1 < 1 and increasing τ1 > 1,

. 2F1

(
1 − τ1, τ3; τ3 + τ4; k2

)
is increasing τ1 < 1 and decreasing τ1 > 1,

and hense 

. ϕ

(
1

k2 − 1; τ1, τ2, τ3

)

as respect to k is decreasing when .τ1 < 1 and increasing .τ1 > 1. Therefore, . ϕ
respect r is increasing and decreasing accordingly. ��
Corollary 2 For Q clockwise oriented simple quadrilateral with sides . lj and inner 
angles . τj conformal modulus is 

.
K′ (√1/(1 + r)

)

K
(√

1/(1 + r)
)



392 G. Kakulashvili

where r is solution to 

. ϕ (r; τ1, τ2, τ3) = l3

l4
.
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Dimension Reduction in the Periodicity 
Cell Problem for Plate Reinforced by a 
Unidirectional System of Fibers 

Alexander G. Kolpakov and Sergei I. Rakin 

Abstract We reduce 3-D periodicity cell problem (PCP) for plate reinforced by 
a unidirectional system of fibers to several 2-D problems. Numerical solutions to 
some 2-D problems are presented. Numerical solutions to some 2-D problems are 
presented. 

1 Introduction 

We consider a plate reinforced by a periodic system of fibers. Let us assume that the 
fibers are parallel to the Oy-axis and form a periodic structure with the periodicity 
cell (PC) as displayed in Fig. 1. 

The structure of the plate is invariant with respect to translation in the direction 
along the fibers. Them there is a reason to look for a two-dimensional model 
for this plate. The procedure of dimension reduction is well known for the 
solids reinforced by periodic systems of fibers (for discussion of the pertinent 
literature before the 1970s see [1], for the recent literature see [2–4]) and plates 
of complex geometry made of homogeneous materials [5, 6]. In this paper, we 
consider an inhomogeneous plate. The characteristic features of plate PC are the free 
surfaces and the bending/torsion modes of deformation. These features drastically 
distinguish the plates from the solids. 

An attempt of dimension reduction in a model problem of bending of the fiber-
reinforced plate was done in [7] by using the double periodic function of complex 
variables. We call the problem considered in [7] the model because it corresponds 
to the bending of a plate of infinite thickness. The method of [7] may be useful to 
compute the strain-stress state (SSS) inside the plate but not near the free surfaces. 
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Fig. 1 Periodicity cell of 3-D of fiber-reinforced plate and its 2-D cross-section 

We use the homogenization theory [8, 9] as the starting point of the research. The 
homogenization theory [10] periodicity cell problem (PCP) for plate is 

.

⎧
⎪⎨

⎪⎩

(aijkl(x, z)N
ABμ

(k,l) + (−1)μaijAB(x, z)zμ),j = 0 in P,

(aijkl(x, z)N
ABμ

(k,l) + (−1)μaijAB(x, z)zμ)nj = 0) on 𝚪,

NABμ(y) periodic in x, y.

(1) 

The variables notation correspondence is the following: .x ↔ 1, .y ↔ 2, .z ↔ 3. 
The index .μ = 0.1. 

The PC is invariant with respect to translation in the direction and the elastic 
constants .aijkl(x, z) in (1) do not depend on variable. One can assume that solution 
to (1) has the form .bf NABμ = NABμ(x, z). Substituting into (1), we arrive at the 
following boundary-value problem: 

.

⎧
⎪⎨

⎪⎩

(aiαkβ(x, z)N
ABμ

(k,β) + (−1)μaiαAB(x, z)zμ),α = 0 in P,

(aiαkβ(x, z)N
ABμ

(k,β) + (−1)μaiαAB(x, z)zμ)nα = 0) on 𝚪,

NABμ(y) periodic in x, y.

(2) 

Hereafter .α, β = 1, 3; .A,B = 1, 1; . 2, 2; . 1, 2; . 2, 1. In (2) 

. aiαkβ(y)N
ABμ
k,β (y) + (−1)μaiαAB(x, z)z =

= aiαθβ(x, z)N
ABμ
θ,β (x, z) + aiα2β(x, z)N2,β)ABμ(x, z) + (−1)μaiαAB(x, z)zμ

(3) 

We consider the problem (2) for .i = 2 and .i = 1, 3 separately.
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2 Problem (2) with Index i = 2 

We assume the fibers and matrix are isotropic. In this case, .a2αθβ = 0, . a2αAB = 0
[11] and expression in RHP (3) takes the form . (α = 1, 3)

. a2α2α(y)N
ABμ

(2,α (x, z) +
{

(−1)μa2121(x, z)zμ if AB = 21, 12,
0 else.

If .AB /= 21 , then .NABν
2 (x, z) = 0 . For .AB = 21 , problem (2) takes the following 

form: 

.

⎧
⎪⎨

⎪⎩

(a2α2α(x, z)N
21μ
2,α + (−1)μa2121(x, z)zμδα1),α = 0 in P,

(a2α2α(x, z)N
21μ
2,α + (−1)μa2121(x, z)zμδα1)nα = 0 on 𝚪,

N
21μ
2 (x, z) periodic in x.

(4) 

Problem (4) corresponds to in-plane shift (if .μ = 0 ) or torsion (if .μ = 1 ), see 
Fig. 2a. 

2.1 Investigation of the Problem (4) 

We eliminate the mass and surface forces in (4). We demonstrate that there exists a 
function w, such that (.ν = 0, 1) 

.a2δ2δw,δ = (−1)νa2121z
ν. (5) 

For .δ = 2 and .δ = 3 , we obtain from (5) .a2121w,1 = (−1)νa2121zν and . a2323w,3 =
0. From these equalities, we obtain the following system of ordinary differential 
equations: 

.w,1 = (−1)νzν, w,3 = 0. (6) 

Fig. 2 Shift along the fibers—(a), tension and bending perpendicular to the fibers—(b)
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2.2 In-Plane Shift 

For .ν = 0 , the system (6) takes the form .w,1 = 1, .w,3 = 0. This system 
is integrable, and its solution is .w(x, z) = x. Introducing function . M(x, z) =
N120
1 (x, z) + x, we rewrite (4) in the form of the boundary-value problem without 

mass and surface forces (corresponding to .a2121(x, z)zνδα1 in (4)): 

.

⎧
⎨

⎩

(∆M = 0 in P0,
∂M
∂n = 0 on 𝚪0,

M(x, z) − x periodic in x ∈ [−L,L].
(7) 

2.3 Torsion 

For .ν = 1 the system (6) takes form .w,1 = −z, .w,3 = 0. This system is 
not integrable. Really, the necessary integrability condition is not satisfied for this 
system because .w,13 = −z,3 = −1 /= w,31 = 0. 

For .ν = 1, (4) takes the form 

.

⎧
⎪⎨

⎪⎩

(a2α2α(x, z)N211
2,α − a2121(x, z)zδα1)(, α) = 0 in P,

(a2α2α(x, z)N211
2,α − a2121(x, z)zδα1)nα = 0 on 𝚪,

N211
2 (x, z) periodic in x.

(8) 

We introduce function .ϕ(x, z) as 

.ϕ,3 = a2121(x, z)(N211
2,1 − z), ϕ,1 = −a2323(x, z)N211

2,3 . (9) 

Equations (9) are similar to the formulas introducing the conjugate function [12]. 
The equality . ϕ,31 − ϕ,13 = (a2121(x, z)(N211

2,1 − z)),1 + (a2323(x, z)N211
2,3 ),3 =

0 follows from (8) and ensures the existence of this function .ϕ(x, z). Express 
.N211

2 (x, z) from (9) 

.N211
2,1 = 1

a2121(x, z)
ϕ,3 + z, N211

2,3 = − 1

a2121(x, z)
ϕ,1. (10) 

Differentiation of (10) yields . 0 = N211
2,13 − N211

2,31 =
(

1
a2121(x,z)

ϕ,3)z
)

,3
+

(
1

a2121(x,z)
ϕ,1

)

,1
. Thus 

.

(
1

a2121(x, z)
ϕ,3

)

,3
+

(
1

a2121(x, z)
ϕ,1

)

,1
= 1 (11)
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Consider the boundary conditions on the free (upper and lower) surfaces . 𝚪+ and 
. 𝚪− in (4). With the use of the function .ϕ(x, z) , these conditions can be written as 

. (a2121(x, z)N21ν
2,1 − a2121(x, z)z)n1 + a2323(x, z)N21ν

2,3 n3

= ϕ,3n1 − ϕ,1n3 = ∂ϕ

∂s
= 0 (12) 

on . 𝚪, where . ∂
∂s

is the derivative along the upper or lower boundaries . 𝚪+ and . 𝚪−. 
Because of (12), the function .ϕ(x, z) is constant on the upper and lower 

boundaries .𝚪+ and . 𝚪−. Without the loss of generality, we can assume that at 

the lower boundary . 𝚪−, .ϕ(x, z) = 0. Function .
∂N211

2
∂n

(x, z) = ∂N211
2

∂x
(x, z) is 

periodic in . By virtue of (10), .
∂N211

2
∂x

− 1
a2121(x,z)

ϕ,3 = z . Since z is periodic in 

x, .
∂N211

2
∂x

− 1
a2121(x,z)

ϕ,3 is periodic in x. Integrating the last equality over . Sl and 
using (9), we can write 

. ϕ(z,−L) = ϕ(−h,−L) +
ˆ z

−h

ϕ,3dz = ϕ(−h,−L)

+
ˆ z

−h

a2121(x, z)(N211
2,1 − z)dz (13) 

For .z = h (on . 𝚪+) 

. ϕ(h,−L) = ϕ(−h,−L) +
ˆ

−hha2121(x, z)N211
2,1 dz

−
ˆ h

−h

zdz = S1
2121 −

ˆ h

−h

zdz (14) 

.S2121 is the asymmetric (out-of-plane) stiffness. 
As a result, we arrive at the following boundary-value problem: 

.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1

a2121(x,z)
ϕ,3

)

,3
+

(
1

a2121(x,z)
ϕ,1

)

,1
= 1 in P0,

ϕ = 0 on 𝚪−,

ϕ = S1
2121 + ´ h

−h
zdz on 𝚪+,

ϕ(x, z) periodic in x ∈ [−L,L].

(15)
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3 Problem (2) with Indices i = 1, 3 

We change notation i for . ξ . In this case, .aξα2β(y) = 0 and (3) takes the form 
(.α, β, θ, ξ = 1, 3) 

. aiαkβ(y)NABμ
k,β (y) + (−1)μaξαAB(y)zμ = aξαθβ(y)NABμ

θ,β (y) + (−1)μaξαAB(y)zμ.

Here .A,B = 1, 1; 2, 2; 1, 2; 2, 1. Then the PCP (2) takes the form 

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
aξαθβ(x, z)NA

θ,βBμ + (−1)μaξαAB(x, z)zμ
)

,α
= 0 in P,

(
aξαθβ(x, z)N

ABμ
θ,β + (−1)μaξαAB(x, z)zμ

)
nα = 0 on 𝚪,

(
N

ABμ
1 , N

ABμ
3

)
(x, z) periodic in x.

(16) 

Note that .aξα12 = 0 and .aξα21 = 0 for .i = ξ = 1, 3 [11], then . 
(
N

21Bμ
1 , N

21μ
3

)
=

(
N

12Bμ
1 , N

12μ
3

)
= 0. For  .AB = 1, 1; 2, 2 , the problem (16) has non-trivial 

solutions. 
In some cases, there exist deformations .eABμ

θβ = v(θ, β)ABμ
.(μ = 0, 1), such 

that 

.aξαAB(x, z)zν = aξαθβ(x, z)eABν
θβ . (17) 

3.1 Index AB = 22: Tension-Compression and Bending 
Along the Fibers (in the Oyz-Plane) 

Equation (17) takes the form .aξαθβeθβ = aξα22(x, z)zν . Having written out 
coordinatewise, we get 

.

a1111e11 + a1133e33 = −a1122z
μ,

a3311e11 + a3333e33 = −a3322z
μ,

a1313e13 = −a1322z
μ = 0,

a3131e31 = −a3122z
μ = 0.

(18) 

Write the elastic constants in the terms of Young E modulus and Poisson ratio . ν
[11] 

.a1111 = a3333 = E(1 − ν)

(1 + ν)(1 − 2ν)
, a1133 = a3311 = a1122

= a3322 = Eν

(1 + ν)(1 − 2ν)
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Substituting into (18), we obtain 

.

{
(1 − ν)e11 + νe33 = −ν(x, z)zμ,

νe11 + (1 − ν)e33 = −ν(x, z)zμ.
(19) 

Solution to (19) is  .e11 = e33 = −ν(x, z)zν . In addition .e13 = e31 = 0. In many  
cases the difference between the Poisson ratios of the fibers and the matrix may be 
ignored: .ν(x, z) = ν = const . Then 

.
∂ν1

∂x
= −νzμ,

∂ν3

∂z
= −νzμ,

∂ν1

∂z
+ ∂ν3

∂x
= 0. (20) 

The problem (20) may be solved in the explicit form. Index .μ = 0. From the first 
two equations in (20), we have .ν1 = −νx+f (z) and .ν3 = −νz+g(x). Substituting 
into the third equation in (20), we arrive at .f '(z) + g'(x) = 0, then .f (z) = 0 and 
.g(x) = 0. Index .μ = 1. We have  .ν1 = −νzx + f (z) and .ν3 = −ν/2z2 + g(x) . 
Substituting into the third equation in (20), we arrive at .−νx + f '(z) + g'(x) = 0, 
and obtain .f '(z) = 0, g'(x) = νx. Then .f (z) = 0 and .g(x) = ν

2x2. Finally, 

.ν221 =
{−νx if μ = 0,

−νzx if μ = 1,
ν223 =

{−νx if μ = 0,
−ν/2z2 + ν/2x2 if μ = 1

. (21) 

Introduce .(M
ABμ
1 ,M

ABμ
3 ) = (N

ABμ
1 , N

ABμ
3 ) + (ν

ABμ
1 , ν

ABμ
3 ). For . (M

22μ
1 ,M

22μ
3 )

, the third condition in (16) may be written in the form .[M22ν
1 ]x = −νzμ[x]x , 

.[M22ν
3 ]x = 0, where .μ = 0, 1 . Then the problem (16) takes the form 

.

⎧
⎪⎨

⎪⎩

(aξαθβ(x, z)M22ν
θ,β ),α = 0 in P,

aξαθβ(x, z)M22ν
θ,β nα = 0 on 𝚪,

[
M22ν

1

]

x
= −νzμ [x]x ,

[
M22ν

3

]

x
= 0.

(22) 

3.2 Index AB = 11: Tension-Compression and Bending 
Perpendicular to the Fibers (in the Oxz-Plane) 

In this case, Eq. (17) takes the form .aξαθβeθβ = aξα11(x, z)zν or, in the coordinate 
form 

.

a1111e11 + a1133e33 = −a1111z
ν,

a3311e11 + a3333e33 = −a3311z
ν,

a1313e13 = −a1311z
ν = 0,

a3131e31 = −a3111z
ν = 0.

(23)
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Express in (23) the elastic tensor components in the terms of the Young modulus 
and Poisson ratio. The first and the second equations form the following system: 

. 

{
(1 − ν)e11 + νe33 = −(1 − ν)zν,

νe11 + (1 − ν)e33 = −νzν.

Its solution is .e11 = −zν , .e33 = 0. In addition .e13 = e31 = 0 . Then, we arrive at 

.
∂ν1

∂x
= −zμ,

∂ν3

∂z
= 0,

∂ν1

∂z
+ ∂ν3

∂x
= 0. (24) 

From the first two equations in (24), we have .ν1 = −zμx + f (z), .ν3 = g(x). 
Substituting into the third equation in (24), we have . −μz(μ−1)x+f '(z)+g'(x) =
0. Then .f '(z) = 0, .g'(x) = μz(μ − 1)x and .f (z) = 0, .g(x) = μz(μ − 1)x2/2. 
Finally, 

.ν221 =
{ −x if μ = 0,

−zx if μ = 1,
v223 =

{
0 if μ = 0,
x2/2 if μ = 1

(25) 

The third condition for .(M11ν
1 ,M11ν

3 ) in (16) takes the form: . (M11ν
1 −

ν111 ,M11ν
3 − ν112 ) periodic in x. With regard to (25), it can be written as 

.[M11ν
1 ]x = −νzμ[x]x, [M11ν

3 ]x = 0 . Then (16) takes the form 

.

⎧
⎪⎨

⎪⎩

(aξαθβ(x, z)M11ν
θ,β ),α = 0 in P,

aξαθβ(x, z)M11ν
θ,β nα = 0 on 𝚪,

[
M11ν

1

]

x
= −zμ [x]x ,

[
M11ν

3

]

x
= 0.

(26) 

The boundary displacements in (26) are similar to one displayed in Fig. 2b. 

3.3 Index AB = 12;21 

For .AB = 12, Eq. (17) takes the form .aξα12(x, z)zν = 0, .ξ, α = 1, 2. Its solution is 
.eθβ = 0. Then .ν121 = ν123 = 0 and solution to (16) is .(M12ν

1 ,M12ν
3 ) = 0. 

We have reduced the original 3-D plate PCP to 2-D problems (7), (15), (22), (26). 
The problems (7) and (15) are anti-plane elasticity problems, and (22) and (26) are  
planar elasticity theory problems. The advantage of dimension reduction is evident. 
For example, the full processing power of a typical engineering computer is used 
to solve 3-D PCP for 5–10 layer plate if a fine finite element mesh is used. The 
corresponding 2-D PCPs may be solved with fine mesh for 100 and more layers.
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4 Some Numerical Computations 

We present several illustrative examples interesting from the mechanical point of 
view. We present solution to the problem (26), corresponding to the tension and 
bending perpendicular to the fibers. In computations, the fibers Young’s modulus 
GPa and Poisson’s ratio ; the matrix Young’s modulus GPa and Poisson’s ratio. 
These values correspond to carbon/epoxy composite. The Young ratio. Such type 
composites are referred to as stiff fibers in the soft matrix. Most models of the fiber-
reinforced materials were developed for composites of this type (see, e.g., [1, 10, 
13, 14] and references in these books). 

In the computations, the periodicity cell dimensions are .h1 = 1.1, .h2 = 2, 
.h3 = 1.1; .h = 0.1 and .2H = 0.1; .R = 0.45. The values are indicated in 
the non-dimensional “fast” variables . y . The corresponding dimensional values are 
computed by multiplying by the characteristic size . ε . The programs we developed 
by using the APDL programming language of the ANSYS FEM software [15]. 
The finite elements PLANE183 are used both for the fibers and the matrix. The 
characteristic size of the finite elements is 0.03. The total number of finite elements 
is about 11,000. 

4.1 Fibers 

Solutions to PCPs for the periodic system of free fibers may be found in [10]. 
The local SSS in such the system are uniform for the PCPs corresponding to in-
plane deformations along the fibers. For the PCPs corresponding to bending/torsion 
deformations, the SSS in the fibers is similar to the SSS in the classical plate 
theory, and cannot be accepted as uniform. If the radii of the fibers are small as 
compared with the thickness of the plate, the SSS in the fibers may be accepted 
as (approximately) uniform. In the lastr case the method developed in [16] may be 
useful. For the tension of composite in the direction perpendicular to the fibers (this 
deformation mode is impossible in the periodic system of free fibers) the local SSS 
is not homogeneous (von Mises stress variation is about 50%), see Fig. 3a. 

4.2 The Matrix and Multi-Continuum Behavior of Composite 

We see that the local SSS in the matrix is vary not uniform for all PCPs. Also, we 
observe significant differences between the SSSs in the fiber and the matrix. The 
difference is so large that the fibers and the matrix may be qualified as two different 
media. Based on our numerical computations, we conclude that the stiff fibers in the 
soft matrix composites demonstrate the multi-continuum behavior predicted for the 
high-contrast composites theoretically by Panasenko in [17, 18].
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Fig. 3 Local von Mises stress in the tension—(a) and the bending—(b) modes. 5-layer plate 

4.3 The Boundary Layers 

We see edge effects near the top and the bottom surfaces of the plate in Fig. 3. The  
boundary layer thickness is less the thickness of one structural layer .2R + h (fiber 
+ surrounding matrix). If the plate is thick, these boundary layers do not influence 
the effective stiffness of the plate. But they influence the local SSS, as result, the 
strength of the plate. In the tension mode, the maximum von Mises stress occurs 
not in the boundary layers, but in the core of the plate, Fig. 3a. In the bending, the 
maximum von Mises stress occurs in the boundary layers at some distance from the 
top and the bottom surfaces of the plate, Fig. 3b. 

4.4 The Densely Packed Fibers 

In our computations, the interparticle distances and is 0.22. The corresponding 
volume fraction of fibers is 0.53 (the maximum possible value for circular fibers is 
0.79). It is the case of densely packed fibers. We meet the effects of the concentration 
and localization [19] of SSS in the necks between the closely placed fibers. Earlier, 
these effects were numerically investigated in [20–23] (see [19] for the additional 
references) for problems close but not identical to the problem investigated in this 
paper. 

5 Conclusion 

The original 3-D PCP (1) is reduced to four to 2-D problems: anti-plane elasticity 
problems (7) and (15) and planar elasticity theory problems (22) and (26). There are 
open problems, among them the reduction procedure for arbitrary in Sect. 3.1 and 
detailed numerical analysis of the obtained 2-D problems.
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Self-Consistent Approximations in the 
Theory of Composites and Their 
Limitations 

Vladimir Mityushev 

Much Ado About Nothing 

— William Shakespeare 

Abstract Many attempts were undertaken to modify Maxwell’s approach in the 
theory of composites. Self-consistent methods (effective medium approximation, 
mean field, Mori-Tanaka methods, reiterated homogenization etc) were advanced to 
determine the effective properties of composites. It is demonstrated by an example 
that these extensions are methodologically misleading. They lead to a plenty of 
illusory different formulas reduced to the Maxwell type, lower order estimation for 
dilute composites. 

1 Introduction 

Self-consistent (SC) approach has different meanings in various fields of science. 
We pay a particular attention to Maxwell’s approach in the theory of composites 
[7, p.365]. Many attempts were applied to extend this approach, see [4] and 
others. Usually, the authors do not associate their study with Schwarz’s method [6] 
and, basing on Eshelby’s inclusion problem invent various approximations known 
as effective medium, Mori-Tanaka method etc. Various justified and unjustified 
physical arguments and empirical observations have been applying to find a plenty 
of correct and wrong analytical formulas for the effective properties of composites. 
It was proved in [10, 12, 13] that such an extension of Maxwell’s approach to a finite 
cluster of inclusions may give at most the effective properties of dilute clusters. In 
the present paper, we give a rigorous explanation why a SC method does not give 
more than Maxwell’s formula for dilute composites. We consider a 2D conductivity 
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problem. Of course, analogous application of SC method to 3D, to elastic and 
viscous problems has the same shortcomings. The main culprit is the corresponding 
numerical procedure which contains a conditionally convergent series. Different 
methods of summations yield different results misleadingly considered as different 
models. 

2 R-Linear Problem 

Let .z = x1 + ix2 stand for a complex variable on the plane .R2 ≡ C. Consider a 
smooth domain .Q ⊂ C bounded by a piece-wise Lyapunov simple closed curve 
.∂Q which divides the complex plane onto two domains. Let non-overlapping disks 
.Dk = {|z − ak| < rk} (.k = 1, 2, . . . , N ) lie in Q as shown in Fig. 1. Introduce the 
disconnected domain, the union of all the disks .D+ = ∪n

k=1Dk . Let  D denote the 
complement of .D+ ∪ ∂D+ to the domain Q. 

Let the disks be occupied by a material of conductivity . σ and the conductivity of 
the host D be normalized to unity. The domain Q is considered as representative vol-
ume element (RVE) in the theory of composites. Introduce the complex potentials 
.ϕ(z) and .ϕk(z) analytic in D and . Dk , respectively, and continuously differentiable 
in the closures of considered domains except at a finite number of points of . ∂Q, 
where the derivatives .ψ(z) = ϕ'(z) and .ψk(z) = ϕ'

k(z) belong to Muskhelishvili’s 
class H [15]. The functions .ϕ'

k(z) belong to the Banach space .H(D+) consisting of 
functions analytic in .D+ = ∪n

k=1Dk and Hölder continuous in the closure of . D+. 
The perfect contact between the components is written as the .R-linear problem 

[3, 11] 

.ϕ(t) = ϕk(t) − ρϕk(t), |t − ak| = rk (k = 1, 2, . . . , N). (1) 

a) b) c) 

Fig. 1 Various types of cells Q: (a) Circular cell; (b) Square cell; (c) Double periodic square cell. 
Blue and green pieces of disks form the same two disks, respectively, in the torus topology
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The Riemann-Hilbert boundary conditions are given on the boundary of Q 

.Re λ(t)ϕ(t) = g(t), t ∈ ∂Q, (2) 

where .λ(t) and .g(t) are given Hölder continuous functions. 
The proper statement of homogenization [1] leads to a periodic boundary value 

problem for the unit square cell Q as illustrated in Fig. 1c. The cell Q with welded 
opposite sides is a plane torus without boundary. The function .ϕ(z) satisfies the 
quasi-periodicity conditions with an undetermined real constant d 

.ϕ(z + 1) = ϕ(z) + 1, ϕ(z + i) = ϕ(z) + id. (3) 

The stated problems illustrated in Figs. 1b and 1c can be reduced to each other in 
the following way. Consider for simplicity a macroscopically isotropic composite. 
Then, the double periodic problem shown in Fig. 1c is equivalent to a boundary 
value problem for the quadruple cell . Q which consists of a rectangle Q and its 
three adjusted symmetric with respect to the vertical and horizontal axes shown by 
dashed lines in Fig. 2. The effective conductivity of . Q coincides with the effective 
conductivity of the quarters Q, . Q∗, . Q∗, . Q∗∗. Due to symmetry we have the mixed 
boundary value problem for the domain . Q. The Dirichlet conditions .u = ±1 are 
given on the vertical lines of .∂Q and the Neumann conditions . ∂u

∂x2
= 0 on the 

Fig. 2 Rectangular symmetric cells. The whole structure is symmetric with respect to dashed lines
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horizontal lines of . ∂Q. These conditions on u correspond to the coefficients . λ(t) = 1
and .λ(t) = i in (2). 

3 Self-Consistent Approach 

Consider a boundary value problem for medium displayed in Fig. 1a. Let the 
Dirichlet condition is given on . ∂Q

.Re ϕ(t) = t, |t | = 1. (4) 

We are looking for the functions .ϕ(z) and .ϕk(z) analytic in D and . Dk , respectively, 
and continuously differentiable in the closures of the considered domains. These 
function satisfy the boundary conditions (4) and (1). It is assumed for definiteness 
that the point .z = 0 belongs to the domain D. 

Such a problem for the infinite plane, i.e., without contour . ∂Q, was solved in 
[8]. The exact solution was obtained for an arbitrary radii and arbitrary contrast 
parameters in the form of the modified Poincaré series. The problem with vortices in 
the disk Q was solved in [2]. We now combine the modified Poincaré series [8] and 
the asymptotic method of functional equations [2] in order to solve the problem (4) 
and (1) up to .O(r4). It will be sufficient to analyze a self-consistent approximation. 

Consider the complex flux introduced in Sect. 2 

.ψ(z) = ϕ'(z) ≡ ∂u

∂x1
− i

∂u

∂x2
, z = x1 + ix2 ∈ D, (5) 

.ψk(z) = ϕ'
k(z) ≡ σ + 1

2

⎛
∂u

∂x1
− i

∂u

∂x2

⎞
, |z − ak| ≤ r (k = 1, 2, . . . , N). (6) 

The functions (5)–(6) satisfy the .R-linear conditions which express the perfect 
contact between the components [6] 

.ψ(t) = ψk(t) + ϱ

⎛
r

t − ak

⎞2

ψk(t), |t − ak| = r (k = 1, 2, . . . , N). (7) 

Introduce the fictitious potential .ψ0(z) analytic in .|z| > R and continuous in 
.|z| ≥ R following [6] in such a way that 

.ψ(t) = ψ0(t) +
⎛

R

t

⎞2

ψ0(t) + 1, |t | = R. (8) 

Equation (8) is equivalent to (4) as demonstrated in [6].
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The .R-linear problem (7)–(8) is reduced to the system of functional equations 
[6] 

.
ψk(z) = ϱr2 ∑N

m/=k
1

(z−am)2 ψm

⎛
r2

z−am
+ am

⎞
+

⎛
R
z

⎞2
ψ0

⎛
R2

z

⎞
+ 1,

|z − ak| ≤ r (k = 1, 2, . . . , N),
(9) 

.ψ0(z) = ϱr2 ∑N
m=1

1
(z−am)2 ψm

⎛
r2

z−am
+ am

⎞
, |z| ≥ R. (10) 

It follows from [6, 11] that the above system has a unique solution in the space 
.H(D+). This solution can be found by a method of successive approximations. The 
function .ψ(z) is expressed through the solution of the system (9)–(10) as follows 

. ψ(z)=ϱr2
N∑

m=1

1

(z − am)2 ψm

⎛
r2

z − am

+ am

⎞
+

⎛
R

z

⎞2

ψ0

⎛
R2

z

⎞
+1, z ∈ D.

(11) 

We find .ψk(z) and .ψ0

⎛
R2

z

⎞
up to .O(r4). The function .ψk(z) up to .O(r2) has 

the form 

.ψ
(0)
k (z) = 1, (12) 

since .ψ0(z) is of order .O(r2) by (10). Substitute (12) into (10) to determine . ψ0(z)

up to . O(r4)

.ψ
(1)
0 (z) = ϱr2

N∑
m=1

1

(z − am)2 , |z| ≥ R. (13) 

We now proceed to calculate the next approximation .ψ(1)
k (0) using (11). It  

follows from (13) that 

.ψ
(1)
0 (z) = ϱr2

N∑
m=1

⎛
1

z2 + α

z3 . . .

⎞
, |z| > R. (14) 

Hence, 

.

⎛
R

z

⎞2

ψ
(1)
0

⎛
R2

z

⎞
= ϱr2

N∑
m=1

⎛
1

R2 + αz

R4 . . .

⎞
, |z| > R. (15)
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Using the approximations (12) and (15) we calculate 

.ψ(1)(0) = 1 + ϱf + ϱf
R2

N

N∑
m=1

1

a2
m

, (16) 

where .f = r2N
R2 denote the concentration of inclusions in the cell Q. Let the  

concentration f be properly defined and oscillate near the same value as N tends to 
infinity; .R2 ∼ N up to a multiplier. 

In the framework of a self-consistent method it is suggested that the local flux 
calculated for a finite N approximates the local flux in the considered infinite 
composite when .N → ∞. However, it is not true. The limit sum from (16) is 
reduced up to a multiplier to the conditionally convergent series discussed in [9] 

.S2 =
∞∑

m=1

1

a2
m

. (17) 

It is worth noting that the function .ψ(1)(z) is calculated only at one point . z = 0. It  
is sufficient to demonstrate a shortage of the SC approach. 

In the case of the regular rectangular array, this sum coincides with the famous 
lattice sum introduced by Rayleigh [16]. The Eisenstein summation [6, 17] was used 
in order to properly define . S2. The same approach was employed in plane elastic 
problems in [5, 14]. 

4 Conclusion and Discussion 

Some authors think that by increasing the number of inclusions in a finite cell 
one can numerically approach to the proper local field in inclusions and to the 
effective constants. This pipe dream is based on the following misleading assertion: 
“One can systematically correct such dilute-limit formulas by taking into account 
interactions between pairs of spheres, triplets of spheres, and so on.” However, 
the conditionally convergent series (17) can lead to nothing, more precisely, to 
everything, since the series can be arranged in a permutation so that the resulting 
series will converge to any complex number including infinity. This is the false trick 
used in SC manipulations which leads to illusory different formulas called models 
for the effective constants.



Self-Consistent Approximations in the Theory of Composites and Their Limitations 411

References 

1. Bakhvalov, N., Panasenko, G.: Homogenisation: Averaging Processes in Periodic Media: 
Mathematical Problems in the Mechanics of Composite Materials. Kluwer Academic Pub-
lishers, Dordrecht (1989) 

2. Berlyand, L., Mityushev, V., Ryan, S.D.: Multiple Ginzburg-Landau vortices pinned by 
randomly distributed small holes. IMA J. Appl. Math. 83, 977–1006 (2018) 

3. Bojarski, B., Mityushev, V.: R-linear problem for multiply connected domains and alternating 
method of Schwarz. J. Math. Sci. 189, 68–77 (2013) 

4. Choy, T.C.: Effective Medium Theory. Clarendon Press, Oxford (1999) 
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On Electromagnetic Wave Equations for 
a Nonhomegenous Microperiodic 
Medium 

Ryszard Wojnar 

Abstract We consider the equations of the electromagnetic field in a heterogeneous 
microperiodic medium, using the representation of the field by the vector potential 
and the scalar potential. The wave equation for scalar potential is separated from 
the equation for vector potential, but not vice versa. Thus, the system of equations 
loses the beautiful symmetry known for the case of a homogeneous medium. The 
homogenized equations and the expressions for the effective material coefficients 
are given. A special case of Oersted’s experiment in axially nonhomogeneous 
medium was considered more closely. 

1 Introduction 

The direct integration of Maxwell’s equations is not easy. A serious obstacle is the 
fact that in these equations the different components of the vectors get mixed up. 
In the case when the material coefficients of the medium are constant, it is possible 
to simplify the solution of the electromagnetism problem by introducing potentials, 
[1, 2]. We will see what a role the potentials play when material coefficients are 
functions of spatial variables. 

There are many works that deal with the interaction of electromagnetic fields 
with heterogeneous matter, and determine the effective coefficients of the matter. 
In this paper, we are going to deal with the propagation of electromagnetic waves 
in a microperiodic material, it is in a medium whose electrical and magnetic 
susceptibility coefficients are periodic position functions, the size of the period 
being small in relation to the size of the medium, [3–9]. 

To determine the effective coefficients of the medium, we will use the asymptotic 
homogenization method, which is widely applied for similar issues [10]. 
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It is known that the introduction of scalar . ϕ and vector . A potentials allows to 
separate the equations of electrodynamics, as long as these equations describe the 
situation in a homogeneous isotropic medium. In a non-homogeneous case, the 
situation is more difficult, and even the introduction of potentials does not allow 
for the full separation. Nevertheless, thanks to Lorentz’s focus on potentials, it is 
possible to simplify equations and homogenize the medium. 

It turned out that, unlike in the case of a homogeneous medium, the homogenized 
equations do not completely separate. More precisely, the equation for the scalar 
potential . ϕ is separated, while the equation for the vector potential . A also includes 
the scalar potential. Apart from that, the wave operators (d’Alembert operators) are 
not identical for the field . A and for the field . ϕ . 

As a specific example, the Oersted law for microperiodic inhomogeneous 
medium was homogenised. Unlike the case of a homogeneous medium (when three 
Cartesian components of vector . A are described by three Poisson equations), in the 
case of heterogeneous medium equations for the components of vector A, they are 
not separable. 

2 System of Maxwell’s Equations 

The full system of Maxwell’s equations (in Gaussian units) is as follows, [1, 2], 

.

ϵsabEb,a = −1

c
Ḃs

ϵsabHb,a = −1

c
Ḋs + 4π

c
js

(Da),a = 4πρ

(Ba),a = 0

(1) 

Here . E and . H are electric and magnetic fields, . ρ and . j—electric charge and 
current densities, while . D and . B are electric and magnetic inductions, respectively. 
Moreover, we have 

.Ds = εEs and Bs = μHs (2) 

where respectively, . ε and . μ are dielectric and magnetic permeabilities. The material 
coefficients . ε and . μ are independent of time, but can be any functions of space 
coordinates. In this paper micro-periodic inhomogeneity wiill be treated. The top 
dot denotes a partial time derivative, .∂/∂t , and as usualy, the letter . c denotes the 
speed of light in a vacuum.
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3 Vector and Scalar Potentials 

In order to solve the field problems, electromagnetic potentials are introduced, the 
vector potential . A and the scalar potential . ϕ, as follows 

.
Bk = ϵkab Ab,a

Ek = −1

c
Ȧk − ϕ,k

(3) 

It can be seen that in time-dependent problems the potentials of electric and 
magnetic fields are not independent. These potentials are not determined uniquely 
through the relationships, for example, we can assume the divergence of vector . A
arbitrarily. Mostly, the Lorentz condition is applied to potentials 

.Ak,k + εμ

c
ϕ̇ = 0 (4) 

By (2). 2 and (3). 1, the vector . H can be expressed as 

. Hk = 1

μ
ϵkab Ab,a

After substituting the potentials, Maxwell’s equations read 

. 

(
1

μ
Ak,l

)
,l

− ε

c2 Äk +
(

1

μ

)
,k

Al,l −
(

1

μ

)
,l

Al,k +
(ε

c

)
,k

ϕ̇ = −4π μ

c
jk

(
εϕ,k

)
,k

− ε2μ

c2 ϕ̈ +
(ε

c

)
,k

Ȧk = − 4π ρ

(5) 

and the following two relationships resulting from the Lorentz condition were used 

.

1

μ
Al,lk + ε

c
ϕ̇,k = −

(
1

μ

)
,k

Al,l −
(ε

c

)
,k

ϕ̇

Ȧk,k = −εμ

c
ϕ̈

(6)
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If the . ε and . μ material coefficients do not depend on spatial variables, then the 
system (5) reduces to equations 

.

Ak,ll − εμ

c2
Äs = −4π μ

c
jk

ϕ,kk − εμ

c2
ϕ̈ = − 4π

ε
ρ

(7) 

in which the fields . A and . ϕ are separated. 

4 Homogenization 

Let .𝚪 = ∂G denote the boundary of the domain .G ⊂ R
3. We introduce a parameter 

. λ = l/L,

where l and L are typical length scales associated with micro-inhomogeneities and 
the region G, respectively. According to the asymptotic two-scale method, instead 
of one spatial variable . x, we introduce two variables, the macroscopic . x and the 
microscopic . y, where .y = x/λ, and instead of the function .f (x) we consider the 
function .f (x, y). 

Consequently, instead of the domain G, we consider the domain .G × Y , where 
.Y = Y1 × Y2 × Y3 is a basic cell (a rectangular parallelepiped) of micro-periodicity. 
We use the formula for the total derivative 

. 
∂f (x, y)

∂x
→ ∂f (x, y)

∂x
+ 1

λ

∂f (x, y)

∂y
where y = x

λ

In line with the two-scale asymptotic expansions method we assume 

. f λ = f λ(x) = f (0)(x, y) + λ1 f (1)(x, y) + λ2f (2)(x, y) + · · ·
where the functions .f (i)(x, y), . i = 0, 1, 2, . . . are Y - periodic. The superscript . λ
indicates the micro-periodicity of the respective quantities. 

It is tacitly assumed that all derivatives appearing in the procedure of asymp-
totic homogenisation make sense. The effect of micro-structural heterogeneity is 
described by periodic functions, the so-called local functions on the cell. 

In our case, according to the method of two-scale homogenization, we assume 
expansions 

.
Aλ

k = A
(0)
k (x, y) + λA

(1)
k (x, y) + λ2A

(2)
k (x, y) + . . .

ϕλ = ϕ(0)(x, y) + λϕ(1)(x, y) + λ2ϕ(2)(x, y) + . . .

(8) 

For simplicity, we have omitted the argument t in the expansions.
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Performing homogenisation or passing with .λ → 0 one obtains the homogenised 
(effective) coefficients of the material. 

After substitution expressions (8) into Eq. (5) one obtains for field equations 

. 

(
∂

∂xl

+ 1

λ

∂

∂yl

)
·

[ 1

μ

(
∂

∂xl

+ 1

λ

∂

∂yl

)
(A

(0)
k (x, y) + λA

(1)
k (x, y) + λ2A

(2)
k (x, y) + . . . )

]

− ε

c2 (Ä
(0)
k (x, y) + λÄ

(1)
k (x, y) + λ2Ä

(2)
k (x, y) + . . . )

+
(

1

μ

)
,k

(
∂

∂xl

+ 1

λ

∂

∂yl

)
(A

(0)
l (x, y) + λA

(1)
l (x, y) + λ2A

(2)
l (x, y) + . . . )

−
(

1

μ

)
,l

(
∂

∂xk

+ 1

λ

∂

∂yk

)
(A

(0)
l (x, y) + λA

(1)
l (x, y) + λ2A

(2)
l (x, y) + . . . )

+
(ε

c

)
,k

(
∂

∂xk

+ 1

λ

∂

∂yk

)
(ϕ̇(0)(x, y) + λϕ̇(1)(x, y) + λ2ϕ̇(2)(x, y) + . . . )

]

= − 4π

c
jk(

∂

∂xk

+ 1

λ

∂

∂yk

)
[
ε

(
∂

∂xk

+ 1

λ

∂

∂yk

)
(ϕ(0)(x, y) + λϕ(1)(x, y) + λ2ϕ(2)(x, y) + . . . )

]

− ε2μ

c2 (ϕ̈(0)(x, y) + λϕ̈(1)(x, y) + λ2ϕ̈(2)(x, y) + . . . )

+
(ε

c

)
,k

(Ȧ
(0)
k (x, y) + λȦ

(1)
k (x, y) + λ2Ȧ

(2)
k (x, y) + . . . ) = − 4πρ

(9) 
and for Lorentz’ condition 

.

(
∂

∂xk

+ 1

λ

∂

∂yk

)
·
(
A

(0)
k + λA

(1)
k + λ2A

(2)
k + · · ·

)
+

+ εμ

c

(
ϕ̇(0) + λϕ̇(1) + λ2ϕ̇(2) + · · ·

)
= 0

(10) 

Comparing to zero the coefficients at successive negative powers of . λ one finds: 
At . λ−2

.
∂

∂yl

(
1

μ

∂

∂yl

)
A

(0)
k (x, y) = 0 and

∂

∂yk

(
1

μ

∂

∂yk

)
ϕ(0)(x, y) = 0 (11)
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Multiply tha last equation by .ϕ(0)(x, y) and integrate by over the basic cell Y . One  
gets 

. 

ˆ
Y

∂

∂yk

(
ϕ(0)(x, y)

1

μ

∂ϕ(0)(x, y)

∂yk

)
dY −

ˆ
Y

1

μ

∂ϕ(0)(x, y)

∂yk

∂ϕ(0)(x, y)

∂yk

dY = 0

The first integral vanishes by the divergence theorem and the periodic boundary 
conditions, and, to satisfy the equality one must assume 

.
∂ϕ(0)(x, y)

∂yk

= 0 (12) 

In similar manner one gest 

.
∂ A

(0)
k (x, y)

∂yk

= 0 (13) 

The last two equations testify that neither .A(0) nor .ϕ(0) depend on y, 

.A
(0)
k = A

(0)
k (x) and ϕ(0) = ϕ(0)(x) (14) 

but they can be also functions of time t . 
At .λ−1 we find 

. 
∂

∂yl

[ 1

μ

(
∂ A

(0)
k

∂xl

+ ∂ A
(1)
k

∂yl

) ]
= 0 and

∂

∂yk

[
ε

(
∂ ϕ(0)

∂xk

+ ∂ ϕ(1)

∂yk

) ]
= 0

(15) 

Now, we assume 

.A
(1)
k (x, y) = akab(y)

∂ A
(0)
a (x)

∂ xb

and ϕ(1)(x, y) = fa(y)
∂ ϕ(0)(x)

∂ xa

(16) 

and, after substitution into Eqs.(15) we get the equations for local functions . akab(y)

and .fa(y), 

. 
∂

∂yl

[ 1

μ(y)

(
δakδbl+ ∂akab(y)

∂yl

) ]
=0 and

∂

∂yk

[
ε(y)

(
δak + ∂ fa(y)

∂yk

)]
= 0 (17)
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Finally, at . λ0

. 

∂

∂xl

[ 1

μ

(
∂A

(0)
k (x)

∂xl

+ ∂A
(1)
k (x, y)

∂yl

) ]

+ ∂

∂yl

[ 1

μ

(
∂A

(1)
k (x, y)

∂xl

+ ∂A
(2)
k (x, y)

∂yl

) ]
− ε

c2 Ä
(0)
k (x)

+
(

1

μ

)
,k

(
∂A

(0)
l (x)

∂xl

+ ∂A
(1)
l (x, y)

∂yl

)
−

(
1

μ

)
,l

(
∂A

(0)
l (x

∂xk

+ ∂A
(1)
l (x, y)

∂yk

)

+
(ε

c

)
,k

(
∂ϕ̇(0)(x)

∂xk

+ ∂ϕ̇(1)(x, y)

∂yk

)
= − 4π

c
jk

∂

∂xk

[
ε

(
∂ϕ(0)(x)

∂xk

+ ∂ϕ(1)(x, y)

∂yk

)]
+ ∂

∂yk

[
ε

(
∂ϕ(1)(x, y)

∂xk

+ ∂ϕ(2)(x, y)

∂yk

)]

− ε2μ

c2 ϕ̈(0)(x) +
(ε

c

)
,k

Ȧ
(0)
k (x) = − 4πρ

and what concerns Lorentz’ condition 

. 
∂A

(0)
k (x)

∂xk

+ ∂A
(1)
k (x, y)

∂yk

+ εμ

c
ϕ̇(0)(x) = 0

Introduce the average 

.〈(· · · )〉 = 1

Y

ˆ
Y

(· · · ) dY (18) 

to the last three equations and obtain 

. 

∂

∂xl

〈
1

μ

(
∂A

(0)
k (x)

∂xl

+ ∂A
(1)
k (x, y)

∂yl

)〉
−

〈 ε

c2

〉
Ä

(0)
k (x)

+
〈(

1

μ

)
,k

(
∂A

(0)
l (x)

∂xl

+ ∂A
(1)
l (x, y)

∂yl

)〉
−

〈(
1

μ

)
,l

(
∂A

(0)
l (x)

∂xk

+ ∂A
(1)
l (x, y)

∂yk

)〉

+
〈(ε

c

)
,k

(
∂ϕ̇(0)(x)

∂xk

+ ∂ϕ̇(1)(x, y)

∂yk

)〉
= −4π

c
〈jk〉

∂

∂xk

〈
ε

(
∂ϕ(0)(x)

∂xk

+ ∂ϕ(1)(x, y)

∂yk

)〉
−

〈
ε2μ

c2

〉
ϕ̈(0)(x)+

(ε

c

)
,k

Ȧ
(0)
k (x)=− 4π〈ρ〉

(19) 
and (Lorentz’ condition) 

.

〈
1

μ

[∂A
(0)
k (x)

∂xk

+ ∂A
(1)
k (x, y)

∂yk

]〉
+

〈ε
c

〉
ϕ̇(0)(x) = 0 (20)
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Integrating by parts inside the averaging signs in the second row of formula (19) we  
observe that both components compensate to zero, because 

. 

〈(
1

μ

)
,k

(
∂A

(0)
l (x)

∂xl

+ ∂A
(1)
l (x, y)

∂yl

)〉
= −

〈
1

μ

∂2A
(1)
k (x, y)

∂yk∂yl

〉

. 

〈(
1

μ

)
,l

(
∂A

(0)
l (x

∂xk

+ ∂A
(1)
l (x, y)

∂yk

)〉
= −

〈
1

μ

∂2A
(1)
k (x, y)

∂yl∂yk

〉

Moreover 

. 

〈(ε

c

)
,k

(
∂ϕ̇(0)(x)

∂xk

+ ∂ϕ̇(1)(x, y)

∂yk

)〉
= − 1

c

〈
ε
∂2fa(y)

∂yk∂yk

〉
∂ϕ̇(0)(x)

∂xa

and 

. 

〈(ε

c

)
,k

〉
= 0

Finally, we insert the functions .A
(1)
k and . ϕ(1), cf. Eqs.(16), into Eqs.(19) and (20), 

and get 

. 

(
1

μ

)
akbl

∂2A
(0)
a

∂xl∂xb

−
〈 ε

c2

〉
Ä

(0)
k (x) − 1

c

〈
ε
∂2fa(y)

∂yk∂yk

〉
∂ϕ̇(0)(x)

∂xa

= − 4π

c
〈jk〉

εeff
ak

∂2ϕ(0)(x)

∂xk∂xa

−
〈
ε2μ

c2

〉
ϕ̈(0)(x) = − 4π〈ρ〉

(21) 
and (Lorentz’ condition) 

.

(
1

μ

)eff

akbk

∂A
(0)
a (x)

∂xb

+
〈ε
c

〉
ϕ̇(0)(x) = 0 (22) 

where 

.

(
1

μ

)eff

akbl

=
〈

1

μ

(
δakδbl + ∂akab

∂yl

)〉
and εeff

ak =
〈
ε

(
δak + ∂fa

∂yk

)〉
(23) 

In particular, 

.

(
1

μ

)eff

akbk

=
〈

1

μ

(
δab + ∂akab

∂yk

)〉
(24)
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The homogenized equations (21) can be compared with the homogeneous medium 
equations (7). We have still four second order differential equations. One can see 
that the equation for scalar potential . ϕ is separated from the equation for vector 
potential . A, although the separation is not complete: there is a scalar potential in the 
equation for vector potential. The d’Alembert operator in the equation for the vector 
. A, however, differs from the corresponding operator for the scalar . ϕ. 

Also Lorentz’ condition (22) does not have its original simplicity given by Eq.(4). 

5 Oersted’s Experiment in a Nonhomogeneous Medium 

Oersted’s law is stating that an electric current creates a magnetic field in the 
following manner 

.ϵsabHb,a = 4π

c
js (25) 

Maxwell’s second equation (1). 1 is a generalization of this law. In this case the 
current density . j is steady. The vector . H of magnetic field can be expressed by 
the vector potential . A as 

.Hk = 1

μ
ϵkab Ab,a (26) 

The coefficient of magnetic permeability . μ is a microperiodic function of space 
position. Substituting (26) into (25) we get 

. 

(
1

μ
Ak,l

)
,l

+
(

1

μ

)
,k

Al,l −
(

1

μ

)
,l

Al,k = −4π

c
jk

We can always choose a vector potential such that 

.Ak,k = 0 (27) 

Then we get 

.

(
1

μ
Ak,l

)
,l

−
(

1

μ

)
,l

Al,k = −4π

c
jk (28) 

If the mediumt is homogeneous (. μ = constant) we get three Poisson equations for 
three Cartesian components of the vector . A, 

.Ak,ll = −4π μ

c
jk (29)



422 R. Wojnar

Proceeding with Eq.(28) in the manner described in the previous point we get 

.

(
1

μ

)
akbl

∂2A
(0)
a

∂xl∂xb

= − 4π

c
〈jk〉 (30) 

where the tensor .(1/μ)akbl is given by Eq.(24). 
Now, the condition (27) reads 

.

(
1

μ

)eff

akbk

∂A
(0)
a (x)

∂xb

= 0 (31) 

Remark In 1802 Gian Domenico Romagnosi (1761–1835) observed in Trento the 
deviation of the magnetic needle induced by an electric current. Joseph Hamel has 
pointed out, Romagnosi’s discovery was documented in the book by Joseph Izarn, 
Manuel du Galvanisme (1805), where a galvanic current is explicitly mentioned. It 
was also mentioned on page 340 of the book by Giovanni Aldini, Essai théorique 
et expérimental sur le Galvanisme (1804). Aldini was also communicating with 
Oersted at the time, Hamel notes, [11, 12] (https://en.wikipedia.org/wiki/Gian_ 
Domenico_Romagnosi). 

In cylindrical co-ordinates .(r, ϑ, z) the curl formula reads 

.B = ∇ × A = 1

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

er r eϑ ez

∂

∂r

∂

∂ϑ

∂

∂z

Ar Aϑ Az

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(32) 

We consider the case in which the components .Br and .Bz vanish. Thus . B =
(0, Bϑ, 0) and Oersted’s law takes the form 

. 
4π

c
j = ∇ × H = ∇ ×

(
1

μ
B

)
= ∂Bϑ

∂r
ez = − ∂

∂r

(
1

μ
r

∂Az

∂r

)
ez

We have additionally assumed here that neither . μ nor .Bϑ and . Ar depend on the 
variable z. Thus we have 

.
∂

∂r

(
1

μ
r

∂Az

∂r

)
= − 4π

c
j (33) 

We have accepted that the current density . j has only one component, .j = (0, 0, j).

https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
https://en.wikipedia.org/wiki/Gian_Domenico_Romagnosi
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We are now using the asymptotic homogenization method. We put 

. Az = A(0)
z + λA(1)

z + λ2A(2)
z + · · ·

and 

. 
∂

∂r
→

(
∂

∂r
+ 1

λ

∂

∂s

)

where r is a macroscopic and s is a microscipic independent variable. 
To avoid the singularity at .λ−2, λ → 0, we have to put  

.
∂

∂s

(
1

μ

∂A
(0)
z

∂s

)
= 0 and μ = μ(s) > 0 (34) 

Hence, .A(0)
z does not depend on s, and depends at most on the macroscipic variable 

. r , .A(0)
z = A

(0)
z (r) only. 

On the other hand, the vanishing of the coefficient at .λ−1 means that the 
following equality holds 

. 
∂

∂s

[ 1

μ

(
∂A

(0)
z

∂r
+ ∂A

(1)
z

∂s

) ]
= 0

which can be satisfied by substituting 

.A(1)
z (r, s) = ψ(s)

∂A
(0)
z (r)

∂r
(35) 

The function .ψ = ψ(s) is found from the equation 

.
d

ds

[ 1

μ(s)

(
1 + d ψ(s)

ds

)]
= 0 (36) 

At . λ0 we get after the averaging 

.
1

r

∂

∂r

[
r

〈
1

μ(s)

(
1 + d ψ(s)

ds

)〉
∂A

(0)
z

∂r

]
= − 4π

c
〈j 〉 (37) 

or 

.

(
1

μ

)eff 1

r

d

dr

(
r

dA
(0)
z

dr

)
= − 4π

c
〈j 〉 (38)
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where the effective (homogenized) coefficient is 

.

(
1

μ

)eff

=
〈

1

μ(s)

(
1 + d ψ(s)

ds

)〉
= 1

Y

ˆ Y

0

1

μ(s)

(
1 + d ψ(s)

ds

)
ds (39) 

For example, consider a medium made of coaxial cylinders, with alternating 
magnetic properties. Thus, the basic cell has the property 

.μ = μ(s) =

⎧⎪⎨
⎪⎩

μ0 if 0 ≤ s < α Y

μ1 if α Y ≤ s ≤ Y

(40) 

The coefficient . α is positive and less than 1. Integrating Eq.(39) with the coefficient 
(40), and remembering about periodic boundary conditions on the function . ψ we 
get 

.

(
1

μ

)eff

= 1

α μ0 + (1 − α)μ1
= 1

μarith
(41) 

where .μarith = α μ0 +(1−α)μ1 is the arithmetic average. Now, Oersted’s equation 
(38) can be written as 

.
1

r

d

dr

(
r

dA
(0)
z

dr

)
= − 4π

c
μarith 〈j 〉 (42) 

This is a Poisson equation on a component .A(0)
z of the vector potential. 

6 Conclusions 

Introduction of vector and scalar potentials to Maxwell’s equations for a medium 
with microperiodic heterogeneous material coefficients leads to two partial dif-
ferential equations of the second order that can still be simplified by Lorentz’ 
condition for potentials. After carrying out the homogenization, the equation for 
scalar potential is separated. 

Homogenization of the equation describing Oersted’s experiment in a heteroge-
neous mediumr leads to the equation similar as in a homogeneous case, except that 
the homogenized coefficient appears.
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Part VII 
Generalized Functions and Applications



A Note on Composition Operators 
Between Weighted Spaces of Smooth 
Functions 

Andreas Debrouwere and Lenny Neyt 

Abstract For certain weighted locally convex spaces X and Y of one real variable 
smooth functions, we characterize the smooth functions .ϕ : R → R for which the 
composition operator .Cϕ : X → Y, f |→ f ◦ ϕ is well-defined and continuous. 
This problem has been recently considered for .X = Y being the space . S of 
rapidly decreasing smooth functions (Galbis and Jordá, Rev Mat Iberoam 34:397– 
412, 2018) and the space .OM of slowly increasing smooth functions (Albanese et 
al., J Math Anal Appl 54:126303, 2022). In particular, we recover both these results 
as well as obtain a characterization for .X = Y being the space . OC of very slowly 
increasing smooth functions. 

1 Introduction 

One of the most fundamental questions in the study of composition operators is to 
characterize when such an operator is well-defined and continuous in terms of its 
symbol. The goal of this article is to consider this question for weighted locally 
convex spaces of one real variable smooth functions. 

Let .ϕ : R → R be smooth. In [1] Galbis and Jordá showed that the composition 
operator .Cϕ : S → S , f |→ f ◦ ϕ, with . S the space of rapidly decreasing 
smooth functions [2], is well-defined (continuous) if and only if 

. ∃N ∈ Z+ : sup
x∈R

1 + |x|
(1 + |ϕ(x)|)N < ∞

A. Debrouwere () 
Department of Mathematics and Data Science, Vrije Universiteit Brussel, Brussels, Belgium 
e-mail: andreas.debrouwere@vub.be 

L. Neyt 
Department of Mathematics, Analysis, Logic and Discrete Mathematics, Ghent University, 
Ghent, Belgium 
e-mail: lenny.neyt@UGent.be 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
U. Kähler et al. (eds.), Analysis, Applications, and Computations, 
Research Perspectives, https://doi.org/10.1007/978-3-031-36375-7_33

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36375-7protect T1	extunderscore 33&domain=pdf

 885 51863 a 885 51863 a
 
mailto:andreas.debrouwere@vub.be
mailto:andreas.debrouwere@vub.be
mailto:andreas.debrouwere@vub.be

 885 56845 a 885 56845
a
 
mailto:lenny.neyt@UGent.be
mailto:lenny.neyt@UGent.be
mailto:lenny.neyt@UGent.be
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33
https://doi.org/10.1007/978-3-031-36375-7_33


430 A. Debrouwere and L. Neyt

and 

. ∀p ∈ Z+ ∃N ∈ N : sup
x∈R

|ϕ(p)(x)|
(1 + |ϕ(x)|)N < ∞.

Albanese et al. [3] proved that the composition operator .Cϕ : OM → OM , with . OM

the space of slowly increasing smooth functions [2], is well-defined (continuous) if 
and only if .ϕ ∈ OM . In [3, Remark 2.6] they also pointed out that the corresponding 
result for the space .OC of very slowly increasing smooth functions [2] is false,  
namely, they showed that .sin(x2) /∈ OC , while, obviously, .sin x, x2 ∈ OC . 

Inspired by these results, we study in this article the following general question: 
Given two weighted locally convex spaces X and Y of smooth functions, when 
is the composition operator .Cϕ : X → Y well-defined (continuous)? We shall 
consider this problem for X and Y both being Fréchet spaces, .(LF)-spaces, or 
.(PLB)-spaces. 

We now state a particular instance of our main result that covers many well-
known spaces. We need some preparation. Given a positive continuous function v 
on . R, we write . Bn

v , .n ∈ N, for the Banach space consisting of all .f ∈ Cn(R) such 
that 

. ‖f ‖v,n = max
p≤n

sup
x∈R

|f (p)(x)|
v(x)

< ∞.

For .v ≥ 1 we consider the following three weighted spaces of smooth functions 

. Kv = lim←−
N∈N

BN
1/vN ,

OC,v = lim−→
N∈N

lim←−
n∈N

Bn
vN ,

OM,v = lim←−
n∈N

lim−→
N∈N

Bn
vN .

Theorem 2 below implies the following result: 

Theorem 1 Let .v,w : R → [1,∞) be continuous functions such that 

. sup
x,t∈R,|t |≤1

v(x + t)

vλ(x)
< ∞ and sup

x,t∈R,|t |≤1

w(x + t)

wμ(x)
< ∞,

for some .λ,μ > 0. Let .ϕ : R → R be smooth. Then, 

.(I ) The following statements are equivalent: 

.(i) .Cϕ(Kv) ⊆ Kw. 
.(ii) .Cϕ : Kv → Kw is continuous. 

.(iii) . ϕ satisfies the following two properties
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.(a) .∃λ > 0 : sup
x∈R

w(x)

vλ(ϕ(x))
< ∞. 

.(b) .∀p ∈ Z+ ∃λ > 0 : sup
x∈R

|ϕ(p)(x)|
vλ(ϕ(x))

< ∞. 

.(II ) The following statements are equivalent: 

.(i) .Cϕ(OC,v) ⊆ OC,w. 
.(ii) .Cϕ : OC,v → OC,w is continuous. 

.(iii) . ϕ satisfies the following two properties 

.(a) .∃μ > 0 : sup
x∈R

v(ϕ(x))

wμ(x)
< ∞. 

.(b) .∀p, k ∈ Z+ : sup
x∈R

|ϕ(p)(x)|
w1/k(x)

< ∞. 

.(III ) The following statements are equivalent: 

.(i) .Cϕ(OM,v) ⊆ OM,w. 
.(ii) .Cϕ : OM,v → OM,w is continuous. 

.(iii) . ϕ satisfies the following two properties 

.(a) .∃μ > 0 : sup
x∈R

v(ϕ(x))

wμ(x)
< ∞. 

.(b) .∀p ∈ Z+ ∃μ > 0 : sup
x∈R

|ϕ(p)(x)|
wμ(x)

< ∞. 

By setting .v(x) = w(x) = 1 + |x| in Theorem 1 we recover the above results 
about . S and .OM from [1, 3] as well as the following characterization for the space 
.OC of very slowly increasing smooth functions: .Cϕ : OC → OC is well defined 
(continuous) if and only if 

. ∃N ∈ N : sup
x∈R

|ϕ(x)|
(1 + |x|)N < ∞ and ∀p, k ∈ Z+ : sup

x∈R
|ϕ(p)(x)|

(1 + |x|)1/k
< ∞.

For .v = w = 1, Theorem 1 gives the following result for the Fréchet space . B of 
smooth functions that are bounded together will all their derivatives [2]: . Cϕ : B →
B is well defined (continuous) if and only if .ϕ' ∈ B. Another interesting choice is 
.v(x) = w(x) = e|x|, for which Theorem 2 characterizes composition operators on 
spaces of exponentially decreasing/increasing smooth functions [4, 5]. We leave it 
to the reader to explicitly formulate this and other examples.
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2 Statement of the Main Result 

A pointwise non-decreasing sequence .V = (vN)N∈N of positive continuous 
functions on . R is called a weight system if .v0 ≥ 1 and 

. ∀N ∃M ≥ N : sup
x,t∈R,|t |≤1

vN(x + t)

vM(x)
< ∞.

We shall also make use of the following condition on a weight system . V =
(vN)N∈N: 

.∀N,M ∃K ≥ N,M : sup
x∈R

vN(x)vM(x)

vK(x)
< ∞. (1) 

Example 1 Let .v : R → [1,∞) be a continuous function satisfying 

. sup
x,t∈R,|t |≤1

v(x + t)

vN(x)
< ∞.

for some .N ∈ N (cf. Theorem 1). Then, 

. Vv = (vN)N∈N

is a weight system satisfying (1). ⨅⨆
Recall that for a positive continuous function v on . R and .n ∈ N, we write . Bn

v

for the Banach space consisting of all .f ∈ Cn(R) such that 

. ‖f ‖v,n = max
p≤n

sup
x∈R

|f (p)(x)|
v(x)

< ∞.

Let .V = (vN)N∈N be a weight system. We shall be concerned with the following 
weighted spaces of smooth functions 

. KV = lim←−
N∈N

BN
1/vN

,

OC,V = lim−→
N∈N

lim←−
n∈N

Bn
vN

,

OM,V = lim←−
n∈N

lim−→
N∈N

Bn
vN

.

Note that .KV is a Fréchet space, .OC,V is an .(LF)-space, and .OM,V is a .(PLB)-
space. Furthermore, we have the following continuous inclusions 

.D(R) ⊂ KV ⊂ OC,V ⊂ OM,V ⊂ C∞(R),
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where .D(R) denotes the space of compactly supported smooth functions. The 
spaces .KV were introduced and studied by Gelfand and Shilov [6], while we refer 
to [7] for more information on the spaces .OC,V . For  .N, n ∈ N fixed we will also 
need the following spaces 

. BvN
= lim←−

n∈N
Bn

vN
, On

M,V = lim−→
N∈N

Bn
vN

.

The goal of this article is to show the following result. 

Theorem 2 Let .V = (vN)N∈N and .W = (wM)M∈N be two weight systems and let 
.ϕ : R → R be smooth. 

.(I ) Suppose that V satisfies (1). The following statements are equivalent: 

.(i) .Cϕ(KV ) ⊆ KW . 
.(ii) .Cϕ : KV → KW is continuous. 

.(iii) . ϕ satisfies the following two properties 

.(a) .∀M ∃N : sup
x∈R

wM(x)

vN(ϕ(x))
< ∞. 

.(b) .∀p ∈ Z+ ∃N : sup
x∈R

|ϕ(p)(x)|
vN(ϕ(x))

< ∞. 

.(II ) Suppose that W satisfies (1). The following statements are equivalent: 

.(i) .Cϕ(OC,V ) ⊆ OC,W . 
.(ii) .Cϕ : OC,V → OC,W is continuous. 

.(iii) .∀N ∃M such that .Cϕ : BvN
→ BwM

is continuous. 
.(iv) . ϕ satisfies the following two properties 

.(a) .∀N ∃M : sup
x∈R

vN(ϕ(x))

wM(x)
< ∞. 

.(b) .∃M ∀p, k ∈ Z+ : sup
x∈R

|ϕ(p)(x)|
w

1/k
M (x)

< ∞. 

.(III ) Suppose that W satisfies (1). The following statements are equivalent: 

.(i) .Cϕ(OM,V ) ⊆ OM,W . 
.(ii) .Cϕ : OM,V → OM,W is continuous. 

.(iii) .Cϕ : On
M,V → On

M,W is continuous for all .n ∈ N. 
.(iv) . ϕ satisfies the following two properties 

.(a) .∀N ∃M : sup
x∈R

vN(ϕ(x))

wM(x)
< ∞. 

.(b) .∀p ∈ Z+ ∃M : sup
x∈R

|ϕ(p)(x)|
wM(x)

< ∞.
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The proof of Theorem 2 will be given in the next section. The spaces . Kv , . OC,v

and .OM,v from the introduction can be written as 

. Kv = KVv , OC,v = OC,Vv , OM,v = OM,Vv ,

where .Vv = (vN)N∈N is the weight system from Example 1. Hence, Theorem 1 is a 
direct consequence of Theorem 2 with .V = Vv and .W = Vw. 

3 Proof of the Main Result 

Throughout this section we fix a smooth symbol .ϕ : R → R. We need two lemmas 
in preparation for the proof of Theorem 2. For .n ∈ N we set 

. ‖f ‖n = ‖f ‖1,n = max
p≤n

sup
x∈R

|f (p)(x)|.

Lemma 1 Let .v,~v,w be three positive continuous functions on . R such that 

. C0 = sup
x,t∈R,|t |≤1

v(x + t)

~v(x)
< ∞.

Let .p, n ∈ N be such that 

.‖Cϕ(f )‖w,p ≤ C1‖f ‖
~v,n, ∀f ∈ D(R), (2) 

for some .C1 > 0. Then, 

. sup
x∈R

v(ϕ(x))

w(x)
< ∞, (3) 

and, if .p ≥ 1, also  

. sup
x∈R

v(ϕ(x))|ϕ'(x)|p
w(x)

< ∞, (4) 

and 

. sup
x∈R

v(ϕ(x))|ϕ(p)(x)|
w(x)

< ∞. (5)
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Proof Given .f ∈ D(R) with .supp f ⊆ [−1, 1], we set  .fx = f ( · − ϕ(x)) for 
.x ∈ R. Note that 

.‖fx‖~v,n ≤ C0‖f ‖n

v(ϕ(x))
, x ∈ R. (6) 

We first show (3). Choose .f ∈ D(R) with .supp f ⊆ [−1, 1] such that .f (0) = 1. 
For all .x ∈ R it holds that 

. ‖Cϕ(fx)‖w,p ≥ |Cϕ(fx)(x)|
w(x)

= 1

w(x)
.

Hence, by (2) and (6), we obtain that 

. 
v(ϕ(x))

w(x)
≤ C0C1‖f ‖n, ∀x ∈ R.

Now assume that .p ≥ 1. We prove (4). Choose .f ∈ D(R) with . supp f ⊆ [−1, 1]
such that .f (j)(0) = 0 for .j = 1, . . . , p−1 and .f (p)(0) = 1. Faà di Bruno’s formula 
implies that for all . x ∈ R

. ‖Cϕ(fx)‖w,p ≥ |Cϕ(fx)
(p)(x)|

w(x)
= |ϕ'(x)|p

w(x)
.

Similarly as in the proof of (3), the result now follows from (2) and (6). Finally, 
we show (5). Choose .f ∈ D(R) with .supp f ⊆ [−1, 1] such that .f '(0) = 1 and 
.f (j)(0) = 0 for .j = 2, . . . , p. Faà di Bruno’s formula implies that for all . x ∈ R

. ‖Cϕ(fx)‖w,p ≥ |Cϕ(fx)
(p)(x)|

w(x)
= |ϕ(p)(x)|

w(x)
.

As before, the result is now a consequence of (2) and (6). ⨅⨆
Lemma 2 Let v and w be positive continuous functions on . R. Then, 

.(i) If 

. sup
x∈R

v(ϕ(x))

w(x)
< ∞,

then .Cϕ : B0
v → B0

w is well-defined and continuous. 
.(ii) Let .n ∈ Z+. If  

. sup
x∈R

v(ϕ(x))

w(x)

n
Π

p=1

|ϕ(p)(x)|kp < ∞

for all .(k1, . . . , kn) ∈ N
n with .

∑p

j=1 jkj ≤ p for all .p = 1, . . . , n, then 
.Cϕ : Bn

v → Bn
w is well-defined and continuous.
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Proof 
. (i) Obvious. 
.(ii) This is a direct consequence of . (i) and Faà di Bruno’s formula. ⨅⨆
Proof of Theorem 2 .(I ) (i) ⇒ (ii): Since .Cϕ : C∞(R) → C∞(R) is continuous, 
this follows from the closed graph theorem for Fréchet spaces. 
.(ii) ⇒ (iii): For all .p,M ∈ N there are .n,L ∈ N such that 

. ‖Cϕ(f )‖p,1/wM
≤ C‖f ‖n,1/vL

, ∀f ∈ KV .

Choose .N ≥ L such that 

. sup
x,t∈R,|t |≤1

vL(x + t)

vN(x)
= sup

x,t∈R,|t |≤1

1/vN(x + t)

1/vL(x)
< ∞.

Lemma 1 with .w = 1/wM , .v = 1/vN and .~v = 1/vL yields that 

. sup
x∈R

wM(x)

vN(ϕ(x))
< ∞

and (recall that .wM ≥ 1) 

. sup
x∈R

|ϕ(p)(x)|
vN(ϕ(x))

< ∞.

.(iii) ⇒ (i): As  V satisfies (1), this follows from Lemma 2. 

.(II ) (i) ⇒ (ii): Since .Cϕ : C∞(R) → C∞(R) is continuous, this follows from De 
Wilde’s closed graph theorem. 
.(ii) ⇒ (iii): This is a consequence of Grothendieck’s factorization theorem. 
.(iii) ⇒ (iv): Fix an arbitrary .N ∈ N. Choose .L ≥ N such that 

. sup
x,t∈R,|t |≤1

vN(x + t)

vL(x)
< ∞.

Choose .K ∈ N such that .Cϕ : BvL
→ BwK

is continuous. For all .m ∈ Z+ there 
are .n ∈ Z+ and .C > 0 such that 

. ‖Cϕ(f )‖m,wK
≤ C‖f ‖n,vL

, ∀f ∈ BvL
.

Lemma 1 with .w = wK , .v = vN and .~v = vL yields that 

. sup
x∈R

vN(ϕ(x))

wK(x)
< ∞ (7)
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and (recall that .vN ≥ 1) 

. sup
x∈R

|ϕ'(x)|
w

1/m
K (x)

< ∞ and sup
x∈R

|ϕ(m)(x)|
wK(x)

< ∞. (8) 

Equation (7) shows . (a). We now prove . (b). To this end, we will make use of the 
following Landau-Kolmogorov type inequality due to Gorny [8]: For all . j ≤ m ∈
Z+ there is .C > 0 such that 

.‖g(j)‖ ≤ C‖g‖1−j/m
⎛

max{‖g‖, ‖g(m)‖}
⎞j/m

, ∀g ∈ C∞([−1, 1]), (9) 

where .‖ · ‖ denotes the sup-norm on .[−1, 1]. Choose .M ≥ K such that 

. sup
x,t∈R,|t |≤1

wK(x + t)

wM(x)
< ∞.

Let .p, k ∈ Z+ and .x ∈ R be arbitrary. Equation (8) yields that for all .m ∈ Z+ there 
is .C > 0 such that 

. ‖ϕ'(x + · )‖ ≤ Cw
1/m
M (x) and ‖ϕ(m)(x + · )‖ ≤ CwM(x).

By applying (9) to .g = ϕ'(x + · ) and .m ≥ p such that 

. 

⎛

1 − p − 1

m

⎞

1

m
+ p − 1

m
≤ 1

k

we find that (recall that .wM ≥ 1) 

. |ϕ(p)(x)| ≤ ‖ϕ(p)(x + · )‖

≤ C‖ϕ'(x + · )‖1−(p−1)/m
⎛

max{‖ϕ'‖, ‖ϕ(m+1)‖}
⎞(p−1)/m

≤ C'w1/k
M (x).

.(iv) ⇒ (i): As  W satisfies (1), this follows from Lemma 2. 

.(III ) (iii) ⇒ (ii) ⇒ (i): Obvious. 

.(i) ⇒ (iv): Fix arbitrary .p ∈ Z+ and .N ∈ N. Choose .L ≥ N such that 

. sup
x,t∈R,|t |≤1

vN(x + t)

vL(x)
< ∞.

Since .BvL
⊂ OM,V and .OM,W ⊂ O

p
M,W , we obtain that .Cϕ(BvL

) ⊂ O
p
M,W . As  

.Cϕ : C∞(R) → Cp(R) is continuous, De Wilde’s closed graph theorem implies
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that .Cϕ : BvL
→ O

p
M,W is continuous. Grothendieck’s factorization theorem yields 

that there is .M ∈ N such that .Cϕ : BvL
→ B

p
wM

is well-defined and continuous, 
and thus that 

. ‖Cϕ(f )‖p,wM
≤ C‖f ‖n,vL

, ∀f ∈ BvL
,

for some .n ∈ N and .C > 0. Lemma 1 with .w = wM , .v = vN and .~v = vL yields 
that 

. sup
x∈R

vN(ϕ(x))

wM(x)
< ∞

and (recall that .vN ≥ 1) 

. sup
x∈R

|ϕ(p)(x)|
wM(x)

< ∞.

.(iv) ⇒ (iii): As  W satisfies (1), this follows from Lemma 2. ⨅⨆
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1D Hyperbolic Systems with Nonlinear 
Boundary Conditions II: Criteria for 
Finite Time Stability 

Irina Kmit 

Abstract We investigate the finite time stability property of one-dimensional 
nonautonomous initial boundary value problems for linear decoupled hyperbolic 
systems with nonlinear boundary conditions. We establish sufficient and necessary 
conditions under which continuous or .L2-generalized solutions stabilize to zero in 
a finite time. Our criteria are expressed in terms of a propagation operator along 
characteristic curves. 

1 Introduction 

1.1 Problem 

Established in the middle of the 50th, the Finite Time Stability (FTS) concept 
attracts growing attention in view of its applications in control and system engineer-
ing [4, 5, 13, 14, 17, 18], output-feedback stabilization [6–8, 19], inverse problems 
[15, 16]), ATM networks [1], car suspension systems [2], and robot manipulators 
[3]. This concept is used in two ways. Quantitatively, it describes a restrained 
behavior of the dynamical system over a specified time interval. Qualitatively, it 
characterizes asymptotically stable dynamical systems whose trajectories reach an 
equilibrium point in a finite time. In this paper we characterize FTS hyperbolic 
systems using the qualitative notion of FTS. 

In [10] we gave a comprehensive FTS analysis of a class of linear initial-
boundary value problems with reflection boundary conditions for decoupled nonau-
tonomous hyperbolic systems, providing algebraic and combinatorial criteria. In the 
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autonomous setting, we provided also a spectral criterion. Asymptotic properties 
of solutions to perturbed FTS problems were studied in [12]. In the present paper, 
we establish FTS criteria for a class of nonlinear boundary value problems. These 
results can be applied to solving inverse problems for hyperbolic systems with FTS 
boundary conditions (as we demonstrate in Sect. 3.1). 

Let .n ≥ 2. Our stability results concern the decoupled nonautonomous hyper-
bolic system 

.∂tu + A(x, t)∂xu + B(x, t)u = 0, 0 < x < 1, t > 0, (1) 

where .u = (u1, . . . , un) is a vector of real-valued functions and the diagonal 
matrices .A = diag(a1, . . . , an) and .B = diag(b1, . . . , bn) have real entries. 

Set .Π = {(x, t) : 0 ≤ x ≤ 1, t ≥ 0}. Suppose that 

. inf
(x,t)∈Π

aj ≥ a for all j ≤ m and sup
(x,t)∈Π

aj ≤ −a for all j > m (2) 

for some .a > 0 and .0 ≤ m ≤ n. The system (1) is subjected to the initial conditions 

.u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, (3) 

and the homogeneous nonlinear boundary conditions 

.uout (t) = h(t, uin(t)), t ≥ 0, (4) 

where .h = h(t, ξ) = (h1(t, ξ), . . . , hn(t, ξ)), with .ξ ∈ R
n, is a real valued function, 

.h(t, 0) = 0 for all t ≥ 0, (5) 

and 

. 
uout (t) = (u1(0, t), . . . , um(0, t), um+1(1, t), . . . , un(1, t)),

uin(t) = (u1(1, t), . . . , um(1, t), um+1(0, t), . . . , un(0, t)).

1.2 Preliminaries on Continuous and L2-Generalized 
Solutions 

Let 

.
ϕout = (ϕ1(0), . . . , ϕm(0), ϕm+1(1), . . . , ϕn(1)),

ϕin = (ϕ1(1), . . . , ϕm(1), ϕm+1(0), . . . , ϕn(0)).
(6)
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We say that a function . ϕ satisfies the zero order compatibility conditions between 
(3) and (4) if  

.ϕout = h(0, ϕin). (7) 

We consider the set .Ch(Π)n of functions .u ∈ C(Π)n such that . uout (0) =
h(0, uin(0)). Note that, if .u ∈ Ch(Π)n, then .u(x, 0) satisfies the zero order 
compatibility conditions between (3) and (4) with .ϕ = u(x, 0). Let .Ch([0, 1])n be a 
closed subset of a Banach space .C([0, 1])n that consists of functions . ϕ ∈ C([0, 1])n
fulfilling the condition (7). Furthermore, .C1

h([0, 1])n = Ch([0, 1])n ∩ C1([0, 1])n. 
Let us introduce solution concepts, that will be used in the paper. To this end, we 

first define characteristics of (1) as follows. For given .j ≤ n, .x ∈ [0, 1], and .t > 0, 
the j -th characteristic of (1) passing through the point .(x, t) ∈ Π is the solution 
.ωj (ξ) = ωj (ξ, x, t) : [0, 1] → R to the initial value problem 

. ∂ξωj (ξ, x, t) = 1

aj (ξ, ωj (ξ, x, t))
, ωj (x, x, t) = t.

Let a continuous function .u : Π → R
n be continuously differentiable in . Π

excepting at most a countable number of characteristic curves of (1). If u satisfies 
(1), (3), and (4) in  . Π except the aforementioned characteristic curves, then it is 
called a piecewise continuously differentiable solution to the problem (1), (3), (4). 

If the initial function . ϕ is sufficiently smooth, then using integration along 
characteristics, we can transform the problem (1), (3), (4) to a system of integral 
equations. The characteristic curve .τ = ωj (ξ, x, t) reaches the boundary of . Π in 
two points with distinct ordinates. Let .xj (x, t) denote the abscissa of that point 
whose ordinate is smaller. Note that the value of .xj (x, t) does not depend on x and 
t if .t > 1/a, where .a > 0 satisfies (2). More precisely, if .t > 1/a, then 

. xj (x, t) = xj =
⎧
0 if 1 ≤ j ≤ m

1 if m < j ≤ n.

Set 

. cj (ξ, x, t) = exp
ˆ ξ

x

⎛
bj

aj

⎞
(η, ωj (η, x, t)) dη.

Define a linear operator .S : C(R+)n → C(Π)n by 

. [Sv]j (x, t) = cj (xj (x, t), x, t)vj (ωj (xj (x, t), x, t)), j ≤ n,

and a nonlinear operator .R : C(Π)n → C(R+)n by 

. [Ru]j (t) = hj (t, u
in(t)), j ≤ n.
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As it follows from the method of characteristics, any piecewise continuously 
differentiable solution u to the problem (1), (3), (4) satisfies the following system of 
functional equations: 

.uj (x, t) = [Qu]j (x, t) (8) 

where the affine operator .Q : D(Q) ⊂ Ch(Π)n → Ch(Π)n is defined by 

. [Qu]j (x, t) =
⎧
[SRu]j (x, t) if xj (x, t) = 0 or xj (x, t) = 1
cj (xj (x, t), x, t)ϕj (xj (x, t)) if xj (x, t) ∈ (0, 1),

(9) 

and 

. D(Q) = {u ∈ Ch(Π)n : u(x, 0) = ϕ(x)}.

Note that the definition of Q depends on the choice of the function . ϕ. We will write 
.Q = Qϕ when we want to specify this dependence explicitly. 

Vice versa, if a C-map .u : Π → R
n is piecewise continuously differentiable 

excepting at most a countable number of characteristic curves of (1) and satisfies (8) 
pointwise, then it is a piecewise continuously differentiable solution to (1), (3), (4). 
This motivates the following definition. 

Definition 1 A continuous function .u : Π → R
n satisfying (8) in  . Π is called a 

continuous solution to (1), (3), and (4). 

For a Banach space X, the  n-th Cartesian power .Xn is considered to be a 
Banach space of vectors .u = (u1, . . . , un) normed by .‖u‖Xn = maxi≤n ‖ui‖X. Let 
.‖ · ‖max = maxjk |mjk| denote the .max-matrix norm of .M = (mjk) in the space of 
matrices . Mn. 

Below we will use our result from [9, Theorem 3.1] about the existence and 
uniqueness of global regular solutions. 

Theorem 1 Let the condition (2) be fulfilled. Moreover, assume that 

.
for all j, k ≤ n the functions aj , bj , and hj

are continuously differentiable in all their arguments
(10) 

and for each .T > 0 there exists a positive real .C(T ) and a polynomial H such that 

.
⎨||||∇ξ h(t, ξ)

||||
max

: 0 ≤ t ≤ T , ξ ∈ R
n
} ≤ C(T ) (log logH(‖ξ‖))1/4 . (11) 

Then the following is true. 

1. For every .ϕ ∈ Ch([0, 1])n, the problem (1), (3), (4) has a unique continuous 
solution in . Π.
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2. For every .ϕ ∈ C1
h([0, 1])n, the problem (1), (3), (4) has a unique piecewise 

continuously differentiable solution in . Π. 

We now define an .L2-generalized solution to the problem (1), (3), (4) similarly 
to [11, Definition 2]. 

Definition 2 Assume that the conditions of Theorem 1 are fulfilled. Let . ϕ ∈
L2(0, 1)n. A function .u ∈ C

([0,∞), L2(0, 1)
)n

is called an .L2-generalized 
solution to the problem (1), (3), (4) if, for any sequence .ϕl ∈ C1

h([0, 1])n with . ϕl

converging to . ϕ in .L2(0, 1)n, the sequence of piecewise continuously differentiable 
solutions .ul(x, t) to the problem (1), (3), (4) with . ϕ replaced by . ϕl fulfills the 
convergence condition 

.‖ul(·, t) − u(·, t)‖L2(0,1)n → 0 as l → ∞, (12) 

uniformly in t varying in the range .0 ≤ t ≤ T , for each .T > 0. 

Here the norm in .L2(0, 1)n is defined as usual by . ‖u‖2
L2(0,1)n

= ´ 10 (u, u) dx =´ 1
0

∑n
i=1 u2i dx, where .(·, ·) here and below denotes the scalar product in . Rn. 

The following existence and uniqueness result is obtained in [11, Theorem 2]. 

Theorem 2 Let the conditions (2), (5), and (10) be fulfilled. Moreover, assume that 
for each .T > 0 there exists a positive real .C(T ) such that 

. sup
⎨‖∇ξ h(t, ξ)‖max : 0 ≤ t ≤ T , ξ ∈ R

n
} ≤ C(T ). (13) 

Then, for every .ϕ ∈ L2(0, 1)n, the problem (1), (3), (4) has a unique .L2-generalized 
solution. 

1.3 Our Results 

If the problem (1), (3), (4), (11) has an .L2-generalized solution, then it is unique 
just by Definition 2. If this problem has a continuous solution, it is also unique as 
shown in [9] (see the proof of [9, Theorem 3.1]). 

Definition 3 Assume that, for every .ϕ ∈ L2(0, 1)n (resp., .ϕ ∈ Ch([0, 1])n), 
the problem (1), (3), (4), (11) has an .L2-generalized solution (resp., a continuous 
solution). We say that this problem is Finite Time Stabilizable (FTS) if there exists 
a positive real T such that, for every .ϕ ∈ L2(0, 1)n (resp., .ϕ ∈ Ch([0, 1])n), the 
.L2-generalized solution (resp., a continuous solution) is a constant zero function 
for .t > T . The infimum of all T with the above property is called the optimal 
stabilization time and is denoted by .Topt . 

Since the operator Q operates with functions on shifted domains and, thus, 
captures propagation from the boundary .∂Π into the domain . Π, the stabilization
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properties heavily depend on the powers of the operator Q. We start with a useful 
property of the operator Q. Given .T > 0, set . ΠT = {(x, t) ∈ Π : t ≤ T }.
Theorem 3 For every .T > 0 there exists .k ∈ N such that the following is true. If, 
for .w ∈ Ch(Π)n, the problem (1), (3), (4), (11) with .ϕ(x) = w(x, 0) has a unique 
continuous solution u in . Π, then .u(x, t) = [Qkw](x, t) in .ΠT where .Q = Qϕ for 
.ϕ(x) = w(x, 0). 

Now we formulate our stabilization criterion in the nonautonomous setting. 

Theorem 4 Let the condition (5) be fulfilled. Assume that, for every . ϕ ∈ L2(0, 1)n

(resp., .ϕ ∈ Ch([0, 1])n), the problem (1), (3), (4), (11) has an .L2-generalized 
solution (resp., a continuous solution). Then this problem is FTS if and only if 

.
there is T > 0 and k ∈ N such that, for all w ∈ Ch(Π)n and x ∈ [0, 1],⎡
Qkw

┐
(x, T ) ≡ 0 where Q = Qϕ for ϕ(x) = w(x, 0).

(14) 

In the autonomous setting a stabilization criterion is formulated in a stronger 
form. 

Theorem 5 Assume that the coefficient matrices A and B do not depend on t and 
the boundary function h does not explicitely depend on t , that is, .h(t, ξ) ≡ h(ξ). 
Moreover, let the condition (5) be fulfilled. Assume also that, for every . ϕ ∈ L2(0, 1)n

(resp., .ϕ ∈ Ch([0, 1])n), the problem (1), (3), (4), (11) has an .L2-generalized 
solution (resp., a continuous solution). Then this problem is FTS if and only if 

. 
there is T > 0 and q ∈ N such that, for all k ∈ N, w ∈ Ch(Π)n, and x ∈ [0, 1],⎡
Qkqw

┐
(x, kT ) = 0 where Q = Qϕ for ϕ(x) = w(x, 0).

(15) 

Theorems 3–5 assume the existence of .L2-generalized or continuous solutions 
(recall that those are always unique). While some sufficient conditions for the 
existence of solutions to the problem (1), (3), (4), (11) are given in Theorems 1 
and 2, we want to emphasize that Theorems 3–5 are not restricted to these particular 
conditions and are more general. 

The rest of the paper is organized as follows. The FTS-criteria of Theorems 4 
and 5 are proved in Sect. 2. Discussion of our stabilization criteria are provided in 
Sect. 3, where we also show how our Theorem 3 can be applied to solving inverse 
hyperbolic problems.
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2 Stabilization Criteria 

2.1 Proof of Theorem 3 

Fix an arbitrary .T > 0. Since Q is a down-shift operator along characteristic curves 
up to the boundary of . Π in the direction of time decrease, there exists an integer 
.q = q(T ) such that all iterations of the operator Q starting from the q-th iteration 
stabilize, namely for every .w ∈ Ch(Π)n it holds in .ΠT that 

.
⎡
Qqw

┐
(x, t) =

⎡
Qq+1w

┐
(x, t), (16) 

where in the definition (9) of the operator Q we set .ϕ(x) = w(x, 0). 
Fix a function .w ∈ Ch(Π)n fulfilling the conditions of Theorem 3. Then the 

problem (1), (3), (4), (11) with .ϕ = w(x, 0) has a unique continuous solution. Set 
.u = Qqw. Hence, .u ∈ Ch(Π)n, and (16) implies that in .ΠT we have 

. [Qu](x, t) = [Qq+1w](x, t) = [Qqw](x, t) = u(x, t).

It follows that the function .u = Qqw is the continuous solution in .ΠT to the 
problem (1), (3), (4), (11) with .ϕ = w(x, 0). The proof of Theorem 3 is complete. 

2.2 Nonautonomous Case: Proof of Theorem 4 

Sufficiency Let .T > 0 and .k ∈ N be numbers satisfying the condition (14). Fix an 
arbitrary .ϕ ∈ L2(0, 1)n. Suppose that the problem (1), (3), (4), (11) has a unique 
.L2-generalized solution u. 

First note that C1 
h([0, 1])n is densely embedded into L2(0, 1)n . Indeed, since 

the boundary conditions (4) are homogeneous (see 5), C∞
0 ([0, 1])n is a subset of 

C1 
h([0, 1])n. As ususal, by C∞

0 ([0, 1]) we denote a subspace of C∞([0, 1]) that 
consists of functions having support within (0, 1). Now, we fix an arbitrary sequence 
ϕl ∈ C1 

h([0, 1])n such that ϕl converges to ϕ in L2(0, 1)n and let ul (x, t) be the 
piecewise continuously differentiable solution to the problem (1), (3), (4), (11) with 
ϕ replaced by ϕl (see Theorem 1). 

By Definition 2, the sequence ul (x, t) converges as in (12). Using integration 
along characteristics, we see that 

.ul(x, t) = [Qul](x, t) for all x ∈ [0, 1] and t ∈ [0, T ].
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This means that the function ul (x, t) is a fixed point of the operator Q and, hence, 
of any power of Q. Combining this with the condition (14), we conclude that 

. ul(x, T ) =
⎡
Qkul

┐
(x, T ) = 0 for all x ∈ [0, 1] and l ∈ N.

Since the initial boundary value problem (1), (4), (11) with the zero initial data at 
t = T has a unique piecewise continuously differentiable solution for t ≥ T (see 
Theorem 1), we conclude that ul ≡ 0 for  t ≥ T . The identity u ≡ 0 for  t >  T  
follows from the convergence (12). The FTS property is therewith proved. 

If the problem (1), (3), (4), (11) has a unique continuous solution, the proof goes 
along the same lines as above with obvious simlifications. 

Necessity Consider first the case when the problem (1), (3), (4), (11) is FTS and all 
L2-generalized solutions stabilize to zero in a finite time. Fix an arbitrary T >  Topt 
and an integer q = q(T ) fulfilling the condition (16) in ΠT . Fix an arbitrary w ∈ 
Ch(Π)n and put ϕ(x) = w(x, 0) ∈ Ch([0, 1]). Then, by assumption, the problem 
(1), (3), (4), (11) has a unique L2-generalized solution. Moreover, as ϕ ∈ Ch([0, 1]), 
then by Theorem 1, this problem has a unique continuous solution. We, therefore, 
fall into the conditions of Theorem 3. As shown in the proof of Theorem 3, the  
function u = Qq w ∈ Ch(Π)n is a continuous solution inΠT to the problem (1), (3), 
(4), (11). Since any continuous solution is an L2-generalized solution, then using the 
FTS property for the L2-generalized solutions, we conclude that [Qq w] (x, T ) = 0 
for all x ∈ [0, 1], as desired. 

If the problem (1), (3), (4), (11) is FTS and all continuous solutions stabilize to 
zero in a finite time, the argument is similar and even simpler than in the case we 
considered. 

The proof of Theorem 4 is complete. 

2.3 Autonomous Case: Proof of Theorem 5 

Sufficiency Since the condition (15) implies (14), this part immediately follows 
from the sufficiency part of Theorem 4. 

Necessity Consider two cases. 

Case 1: the problem (1), (3), (4), (11) is FTS and all continuous solutions stabilize 
to zero in a finite time. Fix T >  Topt and q ∈ N fulfilling both the condition (14) 
with k = q and the equality (16) in Π2T . For any continuous solution u we have 

.0 = ⎡
Qqu

┐
(x, t) = ⎡

(SR)qu
┐
(x, t) for all x ∈ [0, 1] (17) 

and for all t ≥ T , where the second equality can be proved as follows. We 
first prove that this equality is fulfilled for all t ∈ [T , 2T ]. By the  way of
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contradiction, assume that this is not true for some continuous solution u. Then 
there exist x ∈ [0, 1], t ∈ [T , 2T ], and j ≤ n such that the value [Qq u]j (x, t) 
can be expressed in terms of the values of u at points lying on the initial axis. 
Straightforward calculations show that there exist positive integers q1, . . . , qn as 
well as C1-functions F : Rq1+···+qn |→ R and ~F : Rq1 × · · · ×  Rqn |→ R, and 
pairwise distinct reals xsr ∈ [0, 1] such that 

. [Qqu]j (x, t) = ~F(v̄u
1 , . . . , v̄

u
n), (18) 

where 

. ~F(v̄u
1 , . . . , v̄

u
n)

= F(vu
1 , v

u
2 , . . . , v

u
q1

, vu
q1+1, . . . , v

u
q1+q2

, vu
q1+q2+1, . . . , v

u
q1+···+qn

)

and the vector-function v̄u 
s for all s ≤ n is given by 

. ̄vu
s =

⎛
vu
q1+q2+···+qs−1+1, . . . , v

u
q1+q2+···+qs

⎞
= (

us(xs1, 0), . . . , us(xsqs , 0)
)
.

(19) 

Since u is a solution, we have ϕ(x) = u(x, 0). It follows that ~F is a composition 
of two homogeneous operators, namely the multiplication-shift operator S and 
the nonlinear boundary operator R. This implies that ~F(0, . . . , 0) = 0. Note 
that, due to (16) in Π2T , the representation (18) is unique. 
Equality (16) considered in Π2T implies that u(x, t) = [Qq u] (x, t). Combined 
with (18), this gives the equality 

. 

uj (x, t) = [Qqu]j (x, t) = ~F(v̄u
1 , . . . , v̄

u
n) = ~F(v̄u

1 , . . . , v̄
u
n) − ~F(0, . . . , 0)

=
q1+···+qn∑

i=1

vi

ˆ 1

0
∂iF (γ vu

1 , γ vu
2 , . . . , γ vu

q1+···+qn
) dγ,

(20) 

where ∂i here and in what follows denotes the partial derivative with respect to 
the i-th argument. Define 

. 

I =
⎧
(s, r) ∈ N

2 : 1 ≤ s ≤ n, 1 +
s−1∑
j=1

qj ≤ r ≤
s∑

j=1

qj ,

ˆ 1

0
∂rF (γ vu

1 , γ vu
2 , . . . , γ vu

q1+···+qn
) dγ /= 0

⎞
,

where the sum over the empty set equals zero. Note that the set I is not empty, 
for else the representation (18)–(19) is impossible and we immediately get a 
contradiction to our assumption. Then, for an arbitrarily fixed (s0, r0) ∈ I , one



448 I. Kmit

can choose the initial function ϕ such that ϕs0

(
xs0r0

) /= 0 while ϕs (xsr ) = 0 for  
all other (s, r) ∈ I . On account of (19), the equality (20) now reads 

. uj (x, t) = ϕs0(xs0r0)

ˆ 1

0
∂r0F(γ vu

1 , γ vu
2 , . . . , γ vu

q1+···+qn
) dγ /= 0,

contradicting the FTS property of our problem. We, therefore, proved that the 
condition (17) is true for all t ∈ [T ,  2T ]. 
Now we show that (17) is true for all t ≥ 2T . To this end, observe that in the 

autonomous case the following formulas are true: 

.
ωj (ξ, x, t + T ) = ωj (ξ, x, t) + T , t ≥ 0,

[Sv]j (x, t) = cj (xj , x, t)vj (ωj (xj , x, T ) + t − T ), t ≥ T ,
(21) 

for all v ∈ C(R+)n. Given  w ∈ Ch(Π)n, set  z(x, t) = w(x, t + T ). It follows that 

.
⎡
(SR)qz

┐
(x, t) = ⎡

(SR)qw
┐
(x, t + T ), t ≥ T . (22) 

Using the above argument for (17) for  t ∈ [T , 2T ] once again, we see that 
T >  Topt > 1/a. On account of (21), we then have ωj (xj (x, t), x, t) = 
ωj (xj (x, t), x, t − T )  + T >  T  for all t >  2T , x ∈ [0, 1], and j ≤ n. Combining 
this with the FTS property, we conclude that u(·, t)  = [Qu](·, t)  = [SRu](·, t)  ≡ 0 
for all t >  2T . Summarizing, the condition (17) stays true for all t ≥ T , as desired. 

Let q be now chosen such that (17) holds for t ≥ T and, additionally, the equality 
(16) is fulfilled in Π3T . Let  w ∈ Ch(Π)n be arbitrarily fixed. Similarly to the proof 
of Theorem 3, the function [Qq w](x, t) is a continuous solution to (1), (3), (4), (11) 
with ϕ(x) = w(x, 0) in the domain Π3T . By (17), we have [Qq w] (·, T  )  ≡ 0 and, 
hence the function z1(x, t) = [Qq w] (x, t + T )  = [(SR)q w] (x, t + T )  belongs to 
Ch(Π)n and is a continuous solution to (1), (3), (4), (11) with ϕ(x) = 0 in Π2T . It  
follows from (17) that 

. 0 =
⎡
Qqz1

┐
(x, t) =

⎡
(SR)qz1

┐
(x, t) for t ∈ [T , 2T ].

Similarly to (22), we have 

. 

⎡
(SR)qz1

┐
(x, t) = ⎡

(SR)qQqw
┐
(x, t + T ) =

⎡
Q2qw

┐
(x, t + T ).

Therefore,
⎡
Q2q w

┐
(·, t)  ≡ 0 for  t ∈ [2T , 3T ]. In the next step we set z2(x, t) =⎡

Q2q w
┐
(x, t+2T ). Due to the previous step, z2(·, 0) ≡ 0 and, therefore, z2 belongs
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to Ch (Π)n and is a continuous solution to (1), (3), (4), (11) with ϕ(x) = 0 in Π2T . 
Similarly, for t ∈ [T , 2T ], it holds 

. 0 =
⎡
Qqz2

┐
(x, t) =

⎡
(SR)qz2

┐
(x, t) =

⎡
(SR)qQ2qw

┐
(x, t + 2T )

=
⎡
Q3qw

┐
(x, t + 2T )

and, hence
⎡
Q3q w

┐
(·, t)  ≡ 0 for  t ∈ [3T , 4T ]. Proceeding further by induction, 

where on the k-th step we set  zk (x, t) = ⎡
Qkq w

┐
(x, t + kT ), k ≥ 3, we conclude 

that the desired condition (15) is true. The proof of Case 1 is therewith complete. 

Case 2: the problem (1), (3), (4), (11) is FTS and all L2-generalized solutions 
stabilize to zero in a finite time. Let q be as in Case 1. Using the same argument 
as in the proof of the necessity part of Theorem 4 in the same L2-case, fix an 
arbitrary w ∈ Ch(Π)n, put ϕ(x) = w(x, 0), and conclude that the function u = 
Qq w ∈ Ch(Π)n is a continuous solution to the problem (1), (3), (4), (11) in the  
domain Π3T . Since any continuous solution is an L2-generalized solution, then 
using the FTS property for the L2-generalized solutions and (17), we conclude 
that [Qq w] (x, T ) = 0 for all x ∈ [0, 1]. The proof is completed by repeating the 
argument used at the end of Case 1. 

3 Examples 

3.1 Solving Inverse Problems 

Let the boundary conditions (4) be linear, namely 

.uout (t) = Puin(t), t ≥ 0, (23) 

where .P = (pjk) is an .n × n-matrix with constant entries. We assume that the 
matrix .Pabs = (|pjk|) is nilpotent. Then, due to [10, Theorem 1.10], the problem 
(1), (3), (23) is robust FTS, with respect to perturbations of the coefficients . aj and 
. bj . 

Fix an arbitrary .r > 0 and consider the following abstract setting of the 
autonomous problem (1), (3), (23) on .L2(0, 1)n (as studied, e.g., in [15, 16]): 

.
d

dt
u(t) = Au(t) + f, (0 ≤ t ≤ r). (24) 

u(0) = u0, u(r)  = ur, (25)
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where the operator .A : D(A) ⊂ L2(0, 1)n → L2(0, 1)n is defined by 

. 
(Av) (x) = −A(x)v' − B(x)v,

D(A) = ⎨
v ∈ L2(0, 1)n : v' ∈ L2(0, 1)n, vout = Pvin

}
,

and .u0, ur ∈ D(A) are known functions. Here . vout , .vin are defined similarly 
to (6). Solving the inverse problem (24)–(25), we are looking for a couple of 
functions .(u, f ) such that .u ∈ C1([0, r], L2(0, 1))n, .u(t) ∈ D(A) for all .t ∈ [0, r], 
and .f ∈ L2(0, 1)n. 

Since the problem (24)–(25) is autonomous, then, due to [12, Theorem 2.3], the 
operator . A generates a .C0-semigroup .S(t). Since the problem (24)–(25) is FTS,  
the semigroup .S(t) is nilpotent. Hence, there exists .T > 0 such that . S(t) = 0
for all .t ≥ T . Accordingly to [16, Theorem 4], for any .u0, ur ∈ D(A), there is a 
unique function .f ∈ L2(0, 1)n solving the inverse problem (24)–(25). Moreover, 
this function admits the representation 

. f =

⎧⎪⎨
⎪⎩

−Aur if r ≥ T

−Aur + A

n0∑
k=1

S(kr)(u0 − ur) if r < T ,

where .n0 = ⎾T/r⏋ − 1. Recall that .⎾x⏋ denotes the integer nearest to x from above. 
The unknown function .u(t) is then given by the formula 

. u(t) = S(t)u0 +
ˆ t

0
S(s)f ds, 0 ≤ t ≤ r.

Now, using Theorem 3, we conclude that there exists .k = k(T ) ∈ N such that 
for all .x ∈ [0, 1] it holds that 

. [S(t)u0](x) =
⎧⎡

Qkw
┐
(x, t) if t ≤ T

0 if t > T ,

the formula being true for any .w ∈ Ch(Π)n such that .w(x, 0) = u0(x). 

3.2 Nonlinear Boundary Conditions and FTS Property 

In the domain . Π we consider the .2 × 2-decoupled system 

.∂tu1 + ∂xu1 = 0, ∂tu2 − ∂xu2 = 0 (26)
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with the nonlinear boundary conditions 

.u1(0, t) = r(t) sin(u2(0, t)), u2(1, t) = sin2(s(t)u1(1, t)) (27) 

and the initial conditions 

.u1(x, 0) = ϕ1(x), u2(x, 0) = ϕ2(x). (28) 

Here r and s are smooth and uniformly bounded functions for .t ≥ 0. Note that 
the boundary conditions are of the type (13). Our aim is, using Theorem 4, to find 
conditions on the functions r and s such that the problem (26)–(28) is FTS.  

The operator Q defined by (9) is now specified to 

. [Qu]1(x, t) =
⎧

ϕ1(x − t) if x > t

r(t − x) sin(u2(0, t − x)) if t − x ≥ 0,

[Qu]2(x, t) =
⎧

ϕ2(x + t) if t + x < 1
sin2(s(t + x − 1)u1(1, t + x − 1)) if t + x ≥ 1.

The second power of Q is then given by 

. [Q2u]1(x, t)

=
⎧⎨
⎩

ϕ1(x − t) if x > t

r(t − x) sin(ϕ2(t − x)) if 0 ≤ t − x < 1
r(t − x) sin

(
sin2(s(t − x − 1)u1(1, t − x − 1))

)
if 1 ≤ t − x,⎡

Q2u
┐
2
(x, t)

=
⎧⎨
⎩

ϕ2(x + t) if t + x < 1
sin2 (s(t + x − 1)ϕ1(2 − (t + x))) if 1 ≤ t + x < 2
sin2 (s(t + x − 1)r(t + x − 2) sin(u2(0, t + x − 2))) if 2 ≤ t + x.

It follows that if there exist reals .T1 > 0 and .T2 > 0 with 

.T2 − T1 ≥ 1 and
⎛
r(t) = 0 and s(t) = 0 for T1 ≤ t ≤ T2

⎞
, (29) 

then the condition (14) is true with .k = 1. If there exist reals .T1 > 0 and . T2 > 0
with 

.T2 − T1 ≥ 2 and
⎛
r(t) = 0 or s(t) = 0 for T1 ≤ t ≤ T2

⎞
, (30) 

then the condition (14) is true with .k = 2. In other words, (29) and (30) are  two  
sufficient conditions for the problem (26)–(28) to be FTS.
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3.3 Theorem 4 Does not Extend for Nonhomogeneous 
Boundary Conditions 

In the domain . Π, we consider the .2 × 2-decoupled system (26) with the initial 
conditions (28) and the boundary conditions 

.u1(0, t) = g(t), u2(1, t) = u1(1, t). (31) 

Fix g to be a smooth bounded function such that 

. g(t) =
⎧
0 if 0 ≤ t ≤ 4
/= 0 if 4 < t.

The formula (9) then reads 

. [Qu]1(x, t) =
⎧

ϕ1(x − t) if x > t

g(t − x) if t − x ≥ 0,

[Qu]2(x, t) =
⎧

ϕ2(x + t) if t + x < 1
u1(1, t + x − 1) if t + x ≥ 1,

implying that 

. 

⎡
Q2u

┐
1
(x, t) = [Qu]1 (x, t),

⎡
Q2u

┐
2
(x, t) =

⎧⎨
⎩

ϕ2(x + t) if t + x < 1
ϕ1(2 − (t + x)) if 1 ≤ t + x < 2
g(t + x − 2) if 2 ≤ t + x.

It follows that .
⎡
Q2u

┐
(x, 3) ≡ 0, while the problem (26), (28), (31) is not FTS. 
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1D Hyperbolic Systems with Nonlinear 
Boundary Conditions I: .L2-Generalized 
Solutions 

Natalya Lyul’ko 

Abstract We consider 1D nonautonomous initial boundary value problems for 
general linear first-order hyperbolic systems with nonlinear boundary conditions. 
For initial .L2-data, we prove existence and uniqueness of .L2-generalized solutions 
if the nonlinearities are Lipschitz continuous. 

1 Our Setting and Results 

Following the general idea of [9, §29], the notion of an .L2-generalized solution of 
initial-boundary value problems for linear first-order hyperbolic systems with linear 
boundary conditions was introduced in [8]. A number of interesting properties of 
such solutions, such as smoothing property, asymptotic stability, and finite time 
stabilization were investigated in [7] and [8] for wide classes of hyperbolic prob-
lems. Studying .L2-generalized solutions, it is natural to focus on their qualitative 
properties as we do not need to take into account compatibility conditions, which 
would be necessary in the case of classical solutions. 

A generalized solution concept depends usually on the regularity properties of 
the coefficients as well as on the initial and the boundary data, cf. [4]. For linear 
hyperbolic systems of the first order, a natural generalized solution concept can 
be introduced in the form of integrable function satisfying a system of integral 
equations obtained by multiplying the differential system by test functions [2]. 
Another way to define a generalized solution is to see it as a function satisfying 
an integral system of equations obtained by integration along the characteristics of 
a hyperbolic system (see [1], [5, 6]). The definition of an .L2-generalized solution in 
[8] relies on the method of continuation of smooth solutions, analogous to that used 
in [3, 9], and [5] for linear hyperbolic systems. In the present paper we extend our 
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results obtained in [8] for linear hyperbolic systems with linear boundary conditions 
to the case of nonlinear boundary conditions. 

Let .n ≥ 2. We consider the following nonautonomous hyperbolic system: 

.∂tu + A(x, t)∂xu + B(x, t)u = f (x, t), 0 < x < 1, t > 0, (1) 

where .u = (u1, . . . , un) and .f = (f1, . . . , fn) are vectors of real-valued functions, 
and the diagonal matrix .A = diag(a1, . . . , an) and the .n×n-matrix .B = (bjk) have 
real entries. Set 

. Π = {(x, t) : 0 ≤ x ≤ 1, t ≥ 0}.
Suppose that 

. inf
(x,t)∈Π

aj ≥ a for all j ≤ m and sup
(x,t)∈Π

aj ≤ −a for all j > m (2) 

for some .a > 0 and .0 ≤ m ≤ n. The system (1) is endowed with the initial 
conditions 

.u(x, 0) = ϕ(x), 0 ≤ x ≤ 1, (3) 

and the nonlinear boundary conditions 

.uout (t) = h(t, uin(t)), t ≥ 0, (4) 

where .h = h(t, ξ) = (h1(t, ξ), . . . , hn(t, ξ)) with .ξ ∈ R
n is a real valued function, 

and 

. 
uout (t) = (u1(0, t), . . . , um(0, t), um+1(1, t), . . . , un(1, t)),

uin(t) = (u1(1, t), . . . , um(1, t), um+1(0, t), . . . , un(0, t)).

We assume that 

.
for all j, k ≤ n the functions aj , fj , bjk, and hj

are continuously differentiable in all their arguments.
(5) 

Let 

. 
ϕout = (ϕ1(0), . . . , ϕm(0), ϕm+1(1), . . . , ϕn(1)),

ϕin = (ϕ1(1), . . . , ϕm(1), ϕm+1(0), . . . , ϕn(0)).

We say that a function . ϕ satisfies the zero order compatibility conditions between 
(3) and (4) if  

.ϕout = h(0, ϕin). (6)
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For a Banach space X, the  n-th Cartesian power . Xn is considered to be a Banach 
space of vectors .u = (u1, . . . , un) with .ui ∈ X normed by . ‖u‖Xn = maxi≤n ‖ui‖X.

If .X = L2(0, 1) is a real valued Hilbert space, then the norm in . Xn is defined in a 
usual way as 

. ‖u‖2
L2(0,1)n =

ˆ 1

0
(u, u) dx =

ˆ 1

0

n∑

i=1

u2i dx,

where .(·, ·) here and below denotes the scalar product in . Rn. 
We also consider the set .Ch(Π)n of functions .u ∈ C(Π)n such that 

. uout (0) = h(0, uin(0)).

Note that, if .u ∈ Ch(Π)n, then .u(x, 0) satisfies the zero order compatibility 
conditions between (3) and (4) with .ϕ = u(x, 0). Let .Ch([0, 1])n be a closed subset 
of a Banach space .C([0, 1])n that consists of functions .ϕ ∈ C([0, 1])n fulfilling the 
condition (6). Furthermore, .C1

h([0, 1])n = Ch([0, 1])n ∩ C1([0, 1])n. 
We now introduce two solution concepts exploited below, for piecewise continu-

ously differentiable and .L2-generalized solutions. 
As usual, for given .j ≤ n, .x ∈ [0, 1], and .t > 0, we define the j -th characteristic 

of (1) passing through the point .(x, t) ∈ Π as the solution . ωj (·, x, t) : [0, 1] → R

to the problem 

. ∂ξωj (ξ, x, t) = 1

aj (ξ, ωj (ξ, x, t))
, ωj (x, x, t) = t.

Definition 1 Let a continuous function .u : Π → R
n be continuously differentiable 

in . Π excepting at most a countable number of characteristic curves of (1). If u 
satisfies (1), (3), and (4) in . Π except the aforementioned characteristic curves, then it 
is called a piecewise continuously differentiable solution to the problem (1), (3), (4). 

The derivatives of a piecewise continuously differentiable solution restricted to a 
compact subset of . Π have at most a finite number of discontinuities (of first order) 
on certain characteristic curves. 

Let .‖ · ‖max = maxjk |mjk| denote the .max-matrix norm of .M = (mjk) in the 
space of matrices . Mn. The following existence and uniqueness result is proved in 
[6, Theorem 3.1]. 

Theorem 1 Let the conditions (2) and (5) be fulfilled. Moreover, assume that for 
each .T > 0 there exists a positive real .C(T ) such that 

. sup
{‖∇ξ h(t, ξ)‖max : 0 ≤ t ≤ T , ξ ∈ R

n
} ≤ C(T ). (7) 

Then, for every .ϕ ∈ C1
h([0, 1])n, the problem (1), (3), (4) has a unique piecewise 

continuously differentiable solution in . Π.
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For a function h in (4), we will suppose that 

.C1
h([0, 1])n is densely embedded into L2(0, 1)n. (8) 

Note that, if the boundary conditions (4) are homogeneous, namely . h(t, 0) = 0
for all .t ≥ 0, then the condition (8) is fulfilled automatically, since in this case 
.C∞
0 ([0, 1])n is a subset of .C1

h([0, 1])n. By  .C∞
0 ([0, 1]) we denote a subspace of 

.C∞([0, 1]) that consists of functions having support within .(0, 1). 
Analogously to [8, Definition 4.3], we introduce a notion of the .L2-generalized 

solution. 

Definition 2 Let .ϕ ∈ L2(0, 1)n and the conditions of Theorem 1 be fulfilled. A 
function .u ∈ C

([0,∞), L2(0, 1)
)n

is called an .L2-generalized solution to the 
problem (1), (3), (4) if, for any sequence .ϕl ∈ C1

h([0, 1])n with . ϕl converging to . ϕ in 
.L2(0, 1)n, the sequence of piecewise continuously differentiable solutions . ul(x, t)

to the problem (1), (3), (4) with . ϕ replaced by . ϕl fulfills the convergence condition 

.‖u(·, t) − ul(·, t)‖L2(0,1)n → 0 as l → ∞, (9) 

uniformly in t varying in the range .0 ≤ t ≤ T , for each .T > 0. 

In this paper we prove that the problem (1), (3), (4) has a unique .L2-generalized 
solution for every .L2-initial function . ϕ whenever the boundary function .h(t, ξ) is 
Lipschitz continuous in . ξ . 

Theorem 2 Let the conditions (2), (5), (7), and (8) be fulfilled. Then, for every 
.ϕ ∈ L2(0, 1)n, the problem (1), (3), (4) has a unique .L2-generalized solution. 

Note that, if the condition (7) is fulfilled, then the existence of a continuous and 
piecewise continuously differentiable solution to the problem (1), (3), (4) follows 
from Theorem 1. 

The uniqueness of the generalized solution follows from Definition 2. 

2 Proof of Theorem 2 

Let .ϕ ∈ L2(0, 1)n. Due  to  (8), there exists a sequence .ϕl ∈ C1
h([0, 1])n with . ϕl → ϕ

in .L2(0, 1)n. By the definition of .C1
h([0, 1])n, the functions . ϕl satisfy the zero order 

compatibility conditions (6). By Theorem 1, for every .l ≥ 1, the problem (1), (3), (4) 
with . ϕ replaced by . ϕl has a unique piecewise continuously differentiable solution, 
say . ul . According to Definition 2, we have to show that the sequence . ul converges to 
an .L2-generalized solution to the problem (1), (3), (4) in the sense of (9). This will 
be done if we show that for any .T > 0 there exists a positive constant .K(T ) such 
that for all .ϕ, ϕ̄ ∈ C1

h[0, 1]n the piecewise continuously differentiable solutions u
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and . ̄u to the problem (1), (3), (4) with the initial functions . ϕ and . ϕ̄, respectively, 
satisfy the estimate 

.‖u(·, t) − ū(·, t)‖L2(0,1)n ≤ K(T )‖ϕ − ϕ̄‖L2(0,1)n for all t ∈ [0, T ]. (10) 

To prove (10), we exploit a general approach described in [3]. Let .T > 0 be 
arbitrary fixed and .ΠT = {(x, t) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T }. Due to the definition 
of a piecewise continuously differentiable solution, the function .u − ū satisfies the 
system 

.∂t (u − ū) + A(x, t)∂x(u − ū) + B(x, t)(u − ū) = 0. (11) 

almost everywhere in . ΠT . Taking a scalar product of (11) with .u− ū and integrating 
the resulting equality over the domain . Πt for .t ≤ T , we get the equality 

. 

ˆ ˆ
Πt

[
∂

∂θ
(u − ū, u − ū) + ∂

∂x
(A (u − ū) , u − ū)

]
dxdθ

=
ˆ ˆ

Πt

(
(∂xA − 2B) (u − ū), u − ū

)
dxdθ.

Applying Green’s formula to the left hand side, we conclude that 

. I (t) +
ˆ t

0
G(θ) dθ = ‖ϕ − ϕ̄‖2

L2(0,1)n

+
ˆ ˆ

Πt

(
(∂xA − 2B) (u − ū), u − ū

)
dx dθ, (12) 

where 

. 

I (t) = ‖u(·, t) − ū(·, t)‖2
L2(0,1)n ,

G(θ) =
n∑

j=1

[
aj (1, θ)(uj (1, θ) − ūj (1, θ))2 − aj (0, θ)(uj (0, θ) − ūj (0, θ))2

]
.

The following upper bound for the second summand in the right hand side of (12) 
is obvious: 

.

ˆ ˆ
Πt

∣∣∣
(
(∂xA − 2B) (u − ū), u − ū

)∣∣∣dx dθ ≤ d(T )

ˆ t

0
I (θ) dθ, (13) 

where .d(T ) = nmax{||(∂xA − 2B)||max : (x, t) ∈ ΠT }.
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On account of (4), the function .G(θ) admits the representation 

.

G(θ) =
m∑

j=1

aj (1, θ)
[
uj (1, θ) − ūj (1, θ)

]2

+
n∑

j=m+1

aj (1, θ)
[
hj (θ, uin(θ)) − hj (θ, ūin(θ))

]2

−
m∑

j=1

aj (0, θ)
[
hj (θ, uin(θ)) − hj (θ, ūin(θ))

]2

−
n∑

j=m+1

aj (0, θ)
[
uj (0, θ) − ūj (0, θ)

]2
.

(14) 

Let 

. αj (t) =
{

aj (1, t) if 1 ≤ j ≤ m

−aj (0, t) if m < j ≤ n,
βj (t) =

{−aj (0, t) if 1 ≤ j ≤ m

aj (1, t) if m < j ≤ n.

(15) 

Due to (2), there exists positive reals . α∗, . α∗, and . β∗ such that for all .j ≤ n and 
.t ≥ 0 it holds 

.α∗ ≤ αj (t) ≤ α∗, −β∗ ≤ βj (t) ≤ −α∗. (16) 

Using the notation (15), the formula (14) reads 

. G(θ) =
n∑

j=1

αj (θ)(uin
j − ūin

j )2 +
n∑

j=1

βj (θ)
[
hj (θ, uin(θ)) − hj (θ, ūin(θ))

]2
.

By the mean value theorem, for every .θ > 0 there exists a real number .η(θ) such 
that .0 < η(θ) < 1 and 

.

G(θ) =
n∑

j=1

αj (θ)(uin
j − ūin

j )2

+
n∑

j=1

βj (θ)
(
∇ξ hj (θ, uin(θ) + η(θ)ūin(θ)), uin(θ) − ūin(θ)

)2
.

(17) 

Note that .G(θ) is a quadratic form with respect to the vector-function .uin − ūin. 
Assume first that this quadratic form is nonnegative for .0 ≤ θ ≤ T , that is the 
boundary conditions (4) are dissipative. Then, combining (12) and (13), we arrive 
at the inequality 

.I (t) ≤ ‖ϕ − ϕ̄‖2
L2(0,1)n + d(T )

ˆ t

0
I (θ) dθ.
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Applying Gronwall’s argument, we obtain the desired inequality (10) with the 
constant .K(T ) = eT d(T )/2. Note that the constant .K(T ) depends on A, B, and 
h, but not on the initial data . ϕ and . ϕ̄. 

In the rest of the proof we consider the case that the form is not nonnegative 
and show that it can be made nonnegative by appropriately changing the unknown 
functions (and, hence, the same argument as above applies). Let .μj (x, t) be 
arbitrary smooth functions satisfying the conditions 

. inf
ΠT

|μj | > 0 and sup
ΠT

|μj | < ∞ for all j ≤ n.

Changing of each variable . uj to .vj = μjuj , we bring  the system (1) to  

.∂tvj +aj (x, t)∂xvj − ∂tμj + aj ∂xμj

μj

vj +
n∑

k=1

bjk

μj

μk

vk = μjfj , j ≤ n, (18) 

the initial conditions (3) to  

.vj (x, 0) = μj (x, 0)ϕj (x), j ≤ n, (19) 

and the boundary conditions (4) to  

.vout (t) = h̃(t, vin(t)), (20) 

where for . ζ ∈ R
n

. ̃hj (t, ζ ) = μj (xj , t)hj

(
t,

ζ1

μ1(1, t)
, . . . ,

ζm

μm(1, t)
,

ζm+1

μm+1(0, t)
, . . . ,

ζn

μn(0, t)

)

(21) 

and 

. xj =
{
0 if 1 ≤ j ≤ m

1 if m < j ≤ n.

Changing each variable . ̄uj to .v̄j = μj ūj , we get the system (18)–(20) with . v =
(v1, . . . , vn) replaced by .v̄ = (v̄1, . . . , v̄n). The new system (18)–(20) is again  of  
the form (1), (3), (4). Therefore, the equality (12) with .u− ū replaced by .v− v̄ reads 

.I (t) +
ˆ t

0
G(θ) dθ = ‖Ф‖2

L2(0,1)n

+
ˆ ˆ

Πt

(
(∂xA − 2(B̃ − M))(v − v̄), v − v̄

)
dxdθ,
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where 

. Ф(x) = (μ1(x, 0)(ϕ1 − ϕ̄1), . . . , μn(x, 0)(ϕn − ϕ̄n))

and 

. 

B̃(x, t) =
(
bjk

μj

μk

)n

j,k=1
,

M(x, t) = diag

(
∂tμ1 + a1∂xμ1

μ1
, . . . ,

∂tμn + an∂xμn

μn

)
,

I (t) = ‖v(·, t) − v̄(·, t)‖2
L2(0,1)n

,

G(θ) =
n∑

j=1

αj (θ)
(
vin
j − v̄in

j

)2

+
n∑

j=1

βj (θ)
(
∇ζ h̃j (θ, vin(θ) + η̃(θ)v̄in(θ)), vin(θ) − v̄in(θ)

)2
,

(22) 

and .0 < η̃(θ) < 1 for all .θ ∈ [0, T ]. 
Therefore, our objective is reduced to show that there exist smooth functions 

.μj (x, t), .j ≤ n, such that the quadratic form in the formula (22) for  . G(θ)

is nonnegative for all .0 ≤ θ ≤ T . To this end, introduce the vector-function 
.y(θ) = (y1(θ), . . . yn(θ)) ≡ vin(θ) + η̃(θ)v̄in(θ). Taking into account (21), for 
.j ≤ n we compute 

. 

(
∇ζ h̃j (θ, y(θ)), vin(θ) − v̄in(θ)

)2 =

=
[
μj (xj , θ)

{
∂ξ1hj

(
θ,

y1(θ)

μ1(1, θ)
, . . . ,

ym(θ)

μm(1, θ)
,

ym+1(θ)

μm+1(0, θ)
, . . . ,

yn(θ)

μn(0, θ)

)

vin
1 − v̄in

1

μ1(1, θ)
+ · · · + ∂ξmhj

(
θ,

y1(θ)

μ1(1, θ)
, . . . ,

ym(θ)

μm(1, θ)
,

ym+1(θ)

μm+1(0, θ)
, . . . ,

yn(θ)

μn(0, θ)

)
×

vin
m − v̄in

m

μm(1, θ)
+ ∂ξm+1hj

(
θ,

y1(θ)

μ1(1, θ)
, . . . ,

ym(θ)

μm(1, θ)
,

ym+1(θ)

μm+1(0, θ)
, . . . ,

yn(θ)

μn(0, θ)

)
vin
m+1 − v̄in

m+1

μm+1(0, θ)
×

+ · · · + ∂ξnhj

(
θ,

y1(θ)

μ1(1, θ)
, . . . ,

ym(θ)

μm(1, θ)
,

ym+1(θ)

μm+1(0, θ)
, . . . ,

yn(θ)

μn(0, θ)

)

vin
n − v̄in

n

μn(0, θ)

}]2
.

(23)
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Set 

. μ = max
0≤t≤T

{
max

1≤j≤m
|μj (0, t)|, max

m<j≤n
|μj (1, t)|

}
,

ν = min
0≤t≤T

{
min

1≤j≤m
|μj (1, t)|, min

m<j≤n
|μj (0, t)|

}
.

Taking into account (16), (22), and (23), we get 

. 

n∑

j=1

αj (θ)(vin
j − v̄in

j )2 +
n∑

j=1

βj (θ)

×
(
∇ζ h̃j (θ, vin(θ) + η̃(θ)v̄in(θ)), vin(θ) − v̄in(θ)

)2

≥ α∗‖vin − v̄in‖2
Rn − nβ∗μ

ν
max

t≤T ,ξ,j
‖∇ξ hj (t, ξ)‖2

Rn‖vin − v̄in‖2
Rn .

Finally, we choose smooth functions . μj such that 

. 
μ

ν
<

α∗

β∗(nC(T ))2
,

where the constant .C(T ) is defined in (7). The quadratic form becomes nonnegative 
and the proof of the theorem is complete. 
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On Classification of Semigroups 
Associated to Levy Processes 

Irina V. Melnikova and Vadim A. Bovkun 

Abstract The work is devoted to the study of properties of operator semigroups 
with kernels that are, in the general case, random process generalized densities 
of transition probabilities. The semigroup technique and the technique of the 
generalized Fourier transform underlie the classification of the generators of these 
semigroups. 

1 Introduction 

The study of numerous phenomena and processes, taking into account random 
disturbances that arise in various fields of natural science, social and biosystems, 
leads to models that can be described in terms of stochastic differential equations. At 
the present stage of research, along with taking into account “continuous” random 
perturbations formalized with help of Wiener processes, it becomes necessary to 
take into account “discontinuous” , in particular jump-like, random perturbations. 
The most suitable random processes that allow reflecting various types of random 
perturbations are Levy processes. 

Levy processes form an important subclass of time-homogeneous Markov 
processes. Homogeneity and the Markov property allow describe their behavior 
at time .t > 0 using the transition probability .P(0, x; t, B) and language of 
operator theory. Namely, each Levy process corresponds to a transition semigroup 
of operators .{U(t), t ≥ 0}, defined on the space .C0(R

n), continuous functions 
tending to zero at infinity: 

.U(t)f (x) =
ˆ
Rn

f (y)P (0, x; t, dy) = 〈f (·), p(0, x; t, ·)〉. (1) 
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Here .p(0, x; t, y) is the (generalized) density of transition probability .P(0, x; t, B). 
The indicated connection of Levy processes with semigroups of a special form and 
their generators turns out to be productive in both directions. On the one hand, it 
allows to find various probabilistic characteristics of these processes as solutions 
to deterministic problems, using methods for solving partial differential equations 
and pseudo-differential equations. On the other hand, it allows one to find exact 
or approximate solutions to deterministic problems containing generators of these 
processes with help of a probabilistic interpretation of the solution. 

The paper is devoted to the study of the possibility inclusion of Cauchy 
problems containing generators of Levy processes into extension of Gelfand–Shilov 
classification and semigroup classification. 

Section 2 specifies properties of semigroups corresponding to Levy processes. 
Examples of semigroups corresponding to basic Levy processes are given. Based 
on the technique of the generalized Fourier transform, it is shown how symbols 
of their generators, which in the general case are pseudo-differential operators, are 
arranged. 

Section 3 is devoted to the embedding of Levy semigroups with zero Levy 
measure in the scheme of connections between the Gelfand-Shilov classification 
and the semigroup classification. It is important to note here that the Gelfand-Shilov 
classification based on the generalized Fourier transform takes place for Cauchy 
problems with differential operators, while the semigroup classification, defined in 
terms of the spectral properties of generators, takes place for Cauchy problems with 
a wider class of operators. 

Section 4 constructs a partial extension of the Gelfand–Shilov classification to the 
case of problems with generators containing integral terms corresponding to Levy 
processes. It is shown that problems with Levy process generators are Petrovsky 
correct in the constructed extension. 

2 Levy Processes, Their Generators, and Associated 
Semigroups 

Let’s start with the definition of Levy processes. Let .B(Rn) be the Borel .σ -algebra 
of sets in . Rn. 

Definition ([1]) Let the probability space .(Ω,F ,Ft ,P) be given. The Levy 
process .X = {X(t), t ≥ 0} is a random process taking values in the measurable 
space .(Rn,B(Rn)) and satisfies the following conditions: 

.• .X(0) = 0 a.s.; 

. • is homogeneous in time : .P((X(s + t)−X(s)) ∈ B), .s, t ≥ 0, .B ∈ B(Rn), does 
not depend on s; 

. • is stochastically continuous : for any .ε > 0 P( |X(s + t) − X(s)| > ε ) →
0 at t → 0.
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There is a modification for Levy processes whose trajectories are a.s. continuous 
on the right and have finite limits on the left (see, e.g., [2]). In this paper, we will 
assume that Levy processes have trajectories with the indicated property. 

Levy processes form a subclass of Markov processes. The process X taking 
values in the measurable space .(Rn,B(Rn)), is Markov if for any . f ∈ Bb(R

n)

and .0 ≤ s ≤ t the equality [1] holds: 

. E[f (X(t))
∣
∣Fs] = E[f (X(t))

∣
∣X(s)].

The key characteristic of such processes is the transition probability 
.P(s, x; t, B) := P(X(t) ∈ B|X(s) = x), the probability that at time . t ≥ s

the process X is at an arbitrary point y of .B ∈ B(Rn) if at time . s it was at x. For  the  
transition probabilities of Markov processes, we have the Kolmogorov–Chapman 
equality (see, e.g., [1]): 

. P(s, x; t, B) =
ˆ
Rn

P (s, x; r, dy)P (r, y; t, B), 0 ≤ s ≤ r ≤ t, x ∈ R
n.

For time-homogeneous processes . P(s, x; t, B) = P(0, x; t − s, B).

Due to the Kolmogorov theorem the homogeneous Markov process X, up  
to the distribution of .X(0), is determined by the set of transition probabilities 
.P(0, x; τ, B), τ ≥ 0. Consequently, for such processes, along with the transition 
probability, the key characteristic is the family of the form (1), which, by virtue 
of the Kolmogorov–Chapman equation, have the semigroup property: . U(t + s) =
U(t)U(s), t, s ≥ 0.

Among homogeneous Markov processes, a subclass of processes is singled out 
whose semigroups map .C0(R

n) into itself and are strongly continuous on this space. 
Such processes are called Feller processes, and the corresponding semigroups are 
called Feller semigroups. Adding independence of increments to these properties 
allows to single out Levy processes among Feller processes. This leads to the fact 
that, along with the homogeneity in time, Levy processes have the property of spatial 
homogeneity, i.e. the transition probability of the Levy process is invariant under the 
shift of spatial variables (see, e.g., [3]): 

. P(s, x; t, B) = P(s, 0; t, B − x), 0 ≤ s ≤ t, x ∈ R
n.

As examples, consider semigroups and generators associated with basic pro-
cesses: shift, Wiener, and Poisson. For clarity, we will consider .R-valued processes. 

1. The semigroup .{U1(t), t ≥ 0} associated with the shift process .{X1(t), t ≥ 0}, 
where .X1(t) := x + bt, b ∈ R. 

The shift process is a deterministic process, it has the properties of stochastic 
continuity, temporal and spatial homogeneity. Therefore, the equality 

.P1(0, x; t, (−∞; y)) =: P1(0, x; t, y) = P1(0, 0; t, y − x)
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and .X1 − x is the Levy process. On the basis of these properties, for the shift 
process . X1 one can set the generalized transition probability density1 in the 
following way: 

. p1(0, x; t, y) = δx+bt (y) = δ(y − (x + bt) ).

Then the corresponding to . X1 the shift semigroup has the form 

. U1(t)f (x) = 〈f (·), p1(0, x; t, ·)〉 = 〈f, δx+bt 〉 = f (x + bt).

It is easy to verify that the semigroup is strongly continuous on .C0(R), and its 
generator is the operator .A1 = b ∂

∂x
. 

2. Semigroup .{U2(t), t ≥ 0} corresponding to the Wiener process . {X2(t), t ≥ 0}
with transition probability density 

. p2(0, x; t, y) = 1

a
√
2πt

e
− (x−y)2

2a2t ,

defined as follows: 

. U2(t)f (x) = 1

a
√
2πt

ˆ
R

f (y)e
− (x−y)2

2a2t dy.

This semigroup is strongly continuous on .C0(R), and its generator is . A2 =
a2

2
∂2

∂x2
. 

3. Consider a Poisson process .{X(t), t ≥ 0} with jumps q, intensity . λ, and . X(0) =
0. Define .X3(t) = X(t) + x. Such a process can be specified using the transition 
probability 

. P3(0, x; t, y) := P3(0, x; t, (−∞; y)) =
cq

∑

k=0

(λt)k

k! e−λt ,

where .cq =
[

y−x
q

]

for .
[

y−x
q

]

/= y−x
q

, and .cq = y−x
q

− 1, otherwise. Then the 

generalized transition probability density is defined as follows 

.p3(0, x; t, y) =
cq

∑

k=0

(λt)k

k! e−λt δx+kq(y).

1 The functional .p(0, x; t, ·) such that for any .f ∈ C0(R), . ́
R

f (y)P (0, x; t, dy) =
〈f (·), p(0, x; t, ·)〉 is called the generalized transition probability density of the process . {X(t), t ≥
0}. In the case when the transition probability has a derivative in the sense of Radon–Nikodim, 
.p(0, x; t, ·) is a regular generalized function. 
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For the semigroup corresponding to the process we get the equality 

. U3(t)f (x) = 〈f (·), p3(0, x; t, ·)〉 =
∞
∑

k=0

(λt)k

k! e−λtf (x + kq).

The semigroup . U3 is strongly continuous on .C0(R), and by the definition of the 
generator for this semigroup, we obtain 

. A3f (x) = lim
t→0

1

t
[U3(t) − I ] f (x) = λ(f (x + q) − f (x)), f ∈ C0(R).

Thus, in contrast to the differential operators .A1, A2, the generator of the 
semigroup . U3 is a difference operator. 

Before proceeding to the next process, we recall the notation, used below, 
related to the characteristic function and the Fourier transform from the measure 
. μ on .B(Rn), from .f ∈ L1(R

n), and from the distribution .g ∈ S '(Rn): 

. F [μ](α) =
ˆ
Rn

e−i(α,y)μ(dy) = μ̂(α),

F−1[μ](α) = 1

(2π)n

ˆ
Rn

ei(α,y)μ(dy),

. F [f ](α) =
ˆ
Rn

e−i(α,y)f (y)dy = f̂ (α),

F−1[f ](α) = 1

(2π)n

ˆ
Rn

ei(α,y)f (y)dy,

. 〈ϕ,Fg〉 := (2π)n〈F−1ϕ, g〉, ϕ ∈ S (Rn).

For the characteristic function of the random variable . ξ , defined by the probabil-
ity measure . μξ , we will use the following notation: 

.Фξ(α) := E

[

ei(α,ξ)
]

=
ˆ
Rn

ei(α,y)μξ (dy), α ∈ R
n. (2) 

4. Consider the semigroup .{U4(t), t ≥ 0}, corresponding to the process . {X4(t), t ≥
0}, which is defined by the equality: .X4(t) = x + Xπ(t), where . {Xπ(t), t ≥ 0}
is the compound Poisson process, defined as follows. Let .{zk} be a sequence of 
independent identically distributed .R-valued random variables with a common 
distribution . μz and .{N(t), t ≥ 0} be the standard Poisson process with intensity 
. λ and .q = 1. Then by definition, the process .Xπ(t) := z1 + . . . + zN(t) is a 
compound Poisson process with intensity . λ. 

In the general case, without explicitly having either a transition probability 
density or a transition probability for such a process, we use the technique of
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characteristic functions to describe the semigroup corresponding to . X4. For  the  
characteristic function of the random variable .Xπ(t) for every fixed .t ≥ 0 we 
have 

. ФXπ(t)(α) =
∞
∑

k=0

E

(

eiα(z1+···+zN(t))
∣
∣N(t) = k

)

P(N(t) = k)

=
∞
∑

k=0

Фk
z(α)

(tλ)k

k! e−tλ = etλ(Фz(α)−1). (3) 

By virtue of the obtained equality (3) and the properties of random variables . zk , 
we obtain that for any .t ≥ 0 the random variable .Xπ(t) is infinitely divisible. 
Therefore, the process .Xπ = X4 − x (as well as the processes .X1 − x, .X2 − x, 
.X3 − x ) is the Levy process. 

Since for .Xπ we have the equality .Pπ(0, 0; t, dy) = μXπ(t)(dy), then, due to 
(2) and (3), in [13] the following representation for the transition semigroup of the 
process . X4 is obtained 

. U4(t)f (x) = F−1
[

f̂ (σ )etλ(Фz(σ )−1)
]

(x), f ∈ S (R),

which can be extended to the space .C0(R). 
In order to obtain a representation for the generator of semigroup . U4, we use  

the connection between the generators of Levy processes and pseudo-differential 
operators (.ΨD-operators). A .ΨD-operator (on a class of functions f ) is an operator 
of the form 

.Kf (x) = 1

(2π)n

ˆ
Rn

ei(α,x)s(x, α)f̂ (α)dα, x ∈ R
n, (4) 

where the function .s = s(x, α) : Rn × R
n → R is called the .ΨD-operator symbol. 

Depending on the specifics of problems solved with the help of .ΨD-operators, 
different classes of symbols are distinguished. 

On the function class .f ∈ S (Rn) for operators with symbols locally bounded in 
x and polynomially bounded in . α we have 

.Kf (x) = F−1[s(x, ·)f̂ (·)](x), x ∈ R
n. (5) 

Such operators generalize differential operators .K = ∑n
k=0 ak(x) dk

dxk , x ∈ R, with 
bounded variables coefficients, since the K can be represented as: 

.Kf (x) = 1

2π

ˆ
R

eiαxs(x, α)f̂ (α)dα, where s(x, α) =
n

∑

k=0

ak(x)(iα)k.
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Hence it follows that the semigroup generators . A1 and . A2 are .ΨD-operators with 
power (in . α) symbols, but the generators . A3 and . A4 are not differential operators. 
Further we will see that . A3 and . A4 belong to the class of .ΨD-operators. To do 
this, we need a representation of the characteristic function of the Levy process, the 
Levy–Khinchin formula. It is known that if .{X(t), t ≥ 0} is a Levy process with 
values in the space . Rn, then for any .t ≥ 0 the characteristic function of the random 
variable .X(t) has the form .ФX(t)(α) = etη(α), where .η = η(α), α ∈ R

n, is defined 
by the Levy–Khinchin formula (see, e.g., [1]): 

. η(α) = i(b, α) − 1

2
(α ,Qα) +

ˆ
Rn\{0}

(

ei(α,y) − 1 − i(α, y)χ|y|≤1(y)
)

ν(dy).

(6) 

In this equality, .b ∈ R
n, Q is a positive-definite symmetric .n × n-matrix, . ν is the 

Levy measure on .B(Rn). The Levy triple .(b,Q, ν) is uniquely determined by the 
process X. Moreover, the real part of the function . η satisfies the inequality 

.Re(η(α)) ≤ 0, α ∈ R
n, (7) 

and for . |η| a polynomial estimate holds: .|η(α)| ≤ C(1 + |α|)2 (see, e.g., [5]). 
Consider the operator semigroup U corresponding to the process .X + x, where 

X is the Levy process, and write its representation in terms of the Fourier transform: 

. U(t)f (x) = E(f (X(t) + x)) = 1

(2π)n
E

(ˆ
Rn

ei(α, x+X(t))f̂ (α)dα

)

= 1

(2π)n

ˆ
Rn

ei(α,x)etη(α)f̂ (α)dα, f ∈ S (Rn).

Further, using the representation, by the definition of the generator for arbitrary 
.f ∈ S (Rn) we have 

. Af (x) = lim
t→0

1

t
[U(t) − I ] f (x) = 1

(2π)n
lim
t→0

ˆ
Rn

ei(α,x) e
tη(α) − 1

t
f̂ (α)dα

= 1

(2π)n

ˆ
Rn

ei(α,x)η(α)f̂ (α)dα, x ∈ R
n. (8) 

By virtue of the polynomial estimate for . η, the equality (8) correctly defines the 
operator A on .S (Rn), and the generator is a .ΨD-operator on the space . S (Rn)

with polynomially bounded symbol .s(x, α) = η(α). 
Using this fact, we find the generator of the semigroup corresponding to process 

.{X4(t), t ≥ 0}. From representation (3) for the characteristic function of . Xπ(t), t ≥
0, it follows that 

.η(α) =
ˆ
R

λ(eiαβ − 1)μz(dβ).
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Then, taking into account (8), using the Fubini theorem and the Fourier transform 
formulas for .f ∈ S , we obtain . A4: 

. A4f (x) = 1

2π

ˆ
R

eiαx

ˆ
R

(eiαβ − 1)λμz(dβ)f̂ (α)dα

=
ˆ
R

(f (x + β) − f (x)) λμz(dβ),

which can be extended to the space .C0(R). 
Next, we present a scheme for comparing the classifications of Cauchy problems, 

Gelfand–Shilov and semigroup classification, and indicate the place in this scheme 
occupied by transition semigroups corresponding to Levy processes with zero Levy 
measure. 

3 Generators of the Levy Semigroup in the Framework of 
Two Classifications 

Before proceeding to the construction of a scheme illustrating the relationship 
between the two classifications, we briefly present each of them. We start with 
the Gelfand–Shilov classification constructed for Cauchy problems with differential 
operators. 

Let the Cauchy differential problem be given: 

.
∂

∂t
u(t, x) = A

(

i
∂

∂x

)

u(t, x), t ≥ 0, x ∈ R
n, u(0, x) = f (x), (9) 

where .A
(

i ∂
∂x

) = {

Aj,k

(

i ∂
∂x

)}m

j,k=1, .Aj,k

(

i ∂
∂x

)

are linear differential operators of 
order at most l. The solution to the problem (9) for any fixed .x ∈ R

n and .t ≥ 0 is an 
m-dimensional vector .u(t, x) = (u1(t, x), . . . , um(t, x)). The approach proposed in 
[6] for solving this problem is based on applying the generalized Fourier transform 
to the problem (9) and solving the transformed Cauchy problem. In this case, the 
Fourier transform of .f = (f1, . . . , fm) with .fj ∈ L1(R

n) is defined as follows: 

. f̃ = (f̃1, . . . , f̃m), f̃j (α) =
ˆ
Rn

ei(α,x)fj (x)dx, α ∈ R
n, j = 1, . . . , m.

From the problem (9), we pass to the Fourier-transformed Cauchy problem, the 
solution of which is: 

.̃u(t, α) = etA(α)f̃ (α), α ∈ R
n,
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where .A(α) is the matrix multiplication operator .
{

Aj,k(α)
}m

j,k=1 with elements that 
are polynomials of degree at most l. The key role in studying the properties of the 
. ̃u, solution to the dual problem, is played by the operator .etA(α) and its extension to 
the complex plane .etA(γ ), .γ = α + iτ, α, τ ∈ R

n. Based on the estimate 

. etΛ(γ ) ≤
∥
∥
∥etA(γ )

∥
∥
∥
Rm

≤ C(1 + |γ |)l(m−1) · etΛ(γ ), t ≥ 0,

the classification of the Fourier-transformed problem (and, consequently, of the 
original one) is built in [6] according to the behavior of .Λ(α), where . Λ(γ ) =
maxRe λk(γ ), .λk(γ ) are characteristic roots of .A(γ ). 

The system (9) is called  
. • correct in the sense of Petrovsky if there exists a constant .C > 0 such that 

.Λ(α) ≤ C, in particular, parabolic if 

. ∃C1, h, C2 > 0 : Λ(α) ≤ −C1|α|h + C2

and hyperbolic if for any .γ ∈ C
n, 

. ∃C1, C2 > 0 : Λ(γ ) ≤ C1|γ | + C2;

. • conditionally correct if 

. ∃C1, C2 > 0, 0 < h < 1 : Λ(α) ≤ C1|α|h + C2;

. • incorrect if an evaluation with the reduced order .l0 (l0 ≥ 1) is performed: 

. ∃C1, C2 > 0 : Λ(α) ≤ C1|α|l0 + C2,

but stronger bounds do not hold. 
Depending on the type to which the system belongs, spaces of test and general-

ized functions are determined, in which the Fourier-transformed problem is correct. 
Further, due to the connection between the spaces found and spaces of their inverse 
Fourier transforms, the space of test and generalized functions is determined in 
which the original problem is well-posed (see, e.g., [6, 7]) 

Now we give a brief summary of results on the theory of semigroups and the 
well-posedness of the abstract Cauchy problem 

.u'(t) = Au(t), t ∈ [0; τ), τ ≤ ∞, u(0) = f, (10) 

classifying its solution operators in terms of the behavior of the A-resolvent. A 
detailed exposition can be found in [8, 9]. 

Let E be a Banach space, A be a closed linear operator in E. By the solution of 
(10) on .[0; T ], T < τ, we mean .u ∈ C ([0; T ], domA) ∩ C1 ([0; T ], E).
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1. Strongly continuous semigroups. 
Let A be densely defined in E. The operator A generates a strongly continuous 

semigroup (.C0-semigroup) in E if and only if any of the (equivalent) conditions 
is satisfied: 

• problem (10) is uniformly well-posed on .domA, i.e. for any .T > 0 and . f ∈
domA

(a) there is a unique solution on the interval .[0; T ]; 
(b) the solution is stable with respect to changes in the initial data, uniformly 

in .t ∈ [0; T ]: . supt∈[0;T ] ‖u(t)‖ ≤ CT ‖f ‖;
• the resolvent of A is defined in some right half-plane .Reλ > ω and 

.∃C > 0 :
∥
∥
∥R(k)(λ)

∥
∥
∥
L (E)

≤ Ck!
(Reλ − ω)k+1 , Reλ > ω, k ∈ N0. (11) 

2. Integrated semigroups. 
Let the operator A be densely defined in E and the set of its regular points 

be non-empty. The operator A generates a (non-degenerate) n times integrated 
exponentially bounded semigroup of operators in E if and only if any of the 
following conditions is satisfied: 

• problem (10) is uniformly .(n, ω)-well-posed for .t ≥ 0, i.e. for any .T > 0 and 
.f ∈ domAn+1 there is a unique solution on the segment .[0; T ], stable with 
respect to changes in the initial data in the graph-norm of the operator A: 

. ‖u(t)‖ ≤ Ceωt‖f ‖n, t ≥ 0, ‖f ‖n := ‖f ‖ + ‖Af ‖ + . . . + ‖Anf ‖;

• . ∃C > 0, ω ∈ R :
∥
∥
∥
∥

dk

dλk

(
R(λ)

λn

)∥
∥
∥
∥

L (X)

≤ Ck!
(Reλ − ω)k+1

, Reλ > ω, k ∈
N0;

• problem (10) is well-posed in the space of exponentially bounded distributions 
.S '

ω(E), which is defined as follows: .f ∈ S '
ω(E) if and only if . f e−ωt ∈

S '(E) := L (S , E). 

3. Convoluted semigroups. 
Let .K(t), .t ≥ 0 be an exponentially bounded function and its Laplace 

transform satisfies the condition: .
∣
∣K̃(λ)

∣
∣ = O

(

e−M(κ|λ|)) for .|λ| → ∞, where 
.M(ξ) is a positive function of the variable .ξ ≥ 0 increasing as .ξ → ∞ no faster 
than . ξp, .p < 1.
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The operator A generates on .[0; τ) a K-convoluted semigroup in E if and 
only if any of the following conditions is satisfied: 

• . ∃C > 0, ω ∈ R : ‖R(λ)‖L (E) ≤ CeβM(γ |λ|), λ ∈ {C : Reλ > αM(γ |λ|)+
ω};

• problem (10) is well-posed in the space of abstract Roumier ultradistributions 

. 

(

D {Mk},B
a

)'
(E) := L (D {Mk},B

a , E),

where {. Mk} is a sequence with an associated function .M(ξ). 

4. R-semigroups. 
Let .R ∈ L(E). Let  A be densely defined in E, commute with R on its 

domain, and satisfy the condition .A|R(domA) = A. The operator A generates 
on .[0; τ) a local R-semigroup in E if and only if any of the following conditions 
is satisfied: 

• problem (10) is  R-correct on .[0; τ), i.e. for any .f ∈ R (domA), .T < τ , there 
is a unique solution on the segment .[0; T ] and 

. ∃CT > 0 : sup
t∈[0;T ]

‖u(t)‖ ≤ CT ‖R−1f ‖;

• for any .t ∈ [0; τ) there is an asymptotic R-resolvent .Rt (λ) of A that satisfies 
for some .Ct > 0 the condition 

. 

∥
∥
∥
∥

dk

dλk
Rt (λ)

∥
∥
∥
∥

L (X)

≤ Ctk!
|λ|k+1 ,

k

λ
∈ [0; t], λ > 0, k ∈ N0.

In [10], these classifications are compared in the case when the problem (10) 
is considered with a differential operator .A = A

(

i ∂
∂x

)

in the space of vector 
functions .f ∈ E = Lm

2 (Rn) = L2(R
n) × . . . × L2(R

n). The results of the 
comparison are clearly illustrated by the scheme, see Fig. 1. 

Since the generators of Levy processes in the general case are .ΨD-operators, 
from the point of view of this scheme, we should restrict ourselves to semigroups 
corresponding to Levy processes with zero Levy measure whose generators are 
differential operators. As shown in [1], the transition semigroups corresponding to 
Levy processes are strongly continuous in the space .L2(R

n). Therefore, the problem 
(10) with the generator of the Levy process in the space .L2(R

n) is the problem with 
the generator of the semigroup of class . C0. In the scheme, such semigroups are 
marked as “transition semigroups” .
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Fig. 1 Comparison scheme 

4 Partial Extension of the Gelfand–Shilov Classification 

As already noted, the semigroup classification takes place for problems with a wider 
class of operators than differential ones. In this section, we propose an extension of a 
part of the Gelfand–Shilov classification to problems relevant from the point of view 
of applications related to Levy processes. Namely, consider the Cauchy problem 

. 
∂

∂t
u(t, x) =

(

A
(

i
∂

∂x

)

+ K
)

u(t, x), t ≥ 0, x ∈ R
n, u(0, x) = f (x).

(12) 

Here .A
(

i ∂
∂x

)

is the operator defined in problem (9), .K = {Kj,k}mj,k=1, where . Kj,k

are .ΨD-operators defined (according to equality (4)) by symbols 

.sj,k(α) =
ˆ
Rn\{0}

(

ei(α,y) − 1 − i(α, y)χ|y|≤1(y)
)

νj,k(dy),

j, k = 1, . . . , m, α ∈ R
n.
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With respect to .νj,k we assume that for all .j, k = 1, . . . , m the measures .νj,k are 
Levy measures on .B(Rn) and, as mentioned above, .|sj,k(α)| ≤ Cj,k(1 + |α|)2. 
With this definition, the operators .Kj,k, j, k = 1, . . . , m, have the form 

. Kj,kfk(x) =
ˆ
Rn\{0}

(

fk(x + y) − fk(x) − (∇fk(x), y)χ|y|≤1(y)
)

νj,k(dy),

x ∈ R
n.

Next, from the problem (12), we pass to the Fourier-transformed problem. Due 
to the linearity of the Fourier transform, the solution of the transformed problem has 
the form 

. ̃u(t, α) = et(A(α)+K̃(α))f̃ (α),

where .̃K(α) is the operator of multiplication by a matrix whose elements are the 
Fourier transforms of the operators .Kj,k , i.e. .̃K(α) = {sj,k(−α)}mj,k=1. Note that for 
the functions .sj,k(α) and .sj,k(−α), as Fourier transforms with arguments that differ 
in signs, the same estimates take place: 

. |sj,k(−α)| ≤ Cj,k(1 + |α|)2.

Hence it follows that the norm of the matrix .̃K(α) considered as a linear operator in 
the space . Rm satisfies the following estimate: 

.‖K̃(α)‖2
Rm ≤

m
∑

j=1

m
∑

k=1

|sj,k(−α)|2 ≤ C2
K(1 + |α|)4, CK > 0, α ∈ R

n. (13) 

The estimate (13) implies an estimate for the norm of the operator of multiplication 
by the matrix exponent .etK̃(α) for any .t ≥ 0: 

. ‖etK̃(α)‖Rm =
∥
∥
∥
∥
∥
∥

∞
∑

j=0

tj

j ! K̃
j
(α)

∥
∥
∥
∥
∥
∥
Rm

≤
∞
∑

j=0

tj

j ! ‖K̃(α)‖j

Rm ≤ eCK(1+|α|)2t .

This estimate implies estimates for solution operators of Fourier transformed prob-
lem (12) and the possibility of extending part of the classification for the specified 
class of .ΨD-operators. For problem (12), the following cases are possible. 

. • If the operator . A defines a parabolic problem with parameter .h > 2, then the 
estimate 

. 

∥
∥
∥et(A(α)+K̃(α))

∥
∥
∥
Rm

≤ Cet(−C1|α|h+C2+CK(1+|α|)2) ≤ Cet(−C4|α|h−2+C5), t ≥ 0,

and such a problem (12) should be called parabolic.
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. • If the operator . A defines a parabolic problem with the parameter .h = 2, then, 
depending on the relationship between the constants . C1 and . CK , the problem 
(12) should be called parabolic (for .C1 > CK ) or incorrect for (.C1 ≤ CK ). 

. • If the operator . A defines a parabolic problem with parameter .h < 2, then 

. 

∥
∥
∥et(A(α)+K̃(α))

∥
∥
∥
Rm

≤ Cet(−C1|α|h+C2+CK(1+|α|)2) ≤ Cet(C4|α|2−h+C5), t ≥ 0,

and such a problem (12) should be called conditionally well-posed (for .h > 1) 
or ill-posed (for .0 ≤ h ≤ 1). 

. • If . A defines an incorrect system with parameter . l0, then we obtain the estimate 

. 

∥
∥
∥et(A(α)+K̃(α))

∥
∥
∥
Rm

≤ Cet(C1|α|l0+C2+CK(1+|α|)2) ≤ Cet(C4|α|r+C5), t ≥ 0,

where .r = max{l0, 2}. Such a problem (12) should be called ill-posed. 

Now, among the considered operators .A
(

i ∂
∂x

) + K, we single out the operators 
related to the generators of Levy processes. Namely, consider the Cauchy problem 
with the operator .A

(

i ∂
∂x

) + K, the generator of the semigroup corresponding to the 
Levy process , which, by virtue of the Levy-Khinchin formula, is determined by the 
equality 

. 

(

A
(

i
∂

∂x

)

+ K
)

f (x) = (b,∇f (x)) + 1

2
div(Q∇f (x))

+
ˆ
Rn\{0}

(

f (x + y) − f (x) − (∇f (x), y)χ|y|≤1(y)
)

ν(dy). (14) 

From the problem (12) with the operator (14), we pass to the Fourier-transformed 
problem, whose properties are determined by the behavior of the function 

. F(α) := A(α) + K̃(α) = −i(b, α) − 1

2
(α ,Qα)

+
ˆ
Rn\{0}

(

e−i(α,y) − 1 + i(α, y)χ|y|≤1(y)
)

ν(dy).

According to the formula (6), the function .F(α) coincides with the function .η(−α). 
Hence, by virtue of the estimate (7), we obtain 

. 

∣
∣
∣e

t(A(α)+K̃(α))
∣
∣
∣ ≤ 1, t ≥ 0, α ∈ R

n.

Therefore, the Cauchy problem (12) for an equation with a generator (14) of a  
semigroup corresponding to a Levy process is well-posed in the sense of Petrovsky. 

Note 1 An important fact follows from Theorems XIII.52 and XIII.53 [11]: . etF (α)

for every .t ≥ 0 is a positive-definite, in the general case, generalized function. Then
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it follows from the Bochner–Schwarz [12] theorem that when constructing solutions 
in spaces of generalized functions for Cauchy problems with the operator (14) it  
suffices to consider these problems in the space of slowly growing distributions 
. S '. This means that, in contrast to the original Gelfand–Shilov classification for 
problems with differential operators, the study of the distinguished class of problems 
when passing to Fourier-transformed problems does not require access to spaces of 
generalized functions with complex arguments. 

Note 2 The construction of a partial extension of the Gelfand–Shilov classification 
for the class of problems with operators containing generators of Levy processes 
leads to the idea of comparing this extension with the semigroup classification, 
since the latter takes place for operators that include, along with differential, pseudo-
differential operators. However, the proofs of connections in the scheme [10] rely  
heavily on the behavior of .Λ(γ ), the key characteristic of the matrix of differential 
operators. Therefore, comparing the obtained extension with the semigroup classi-
fication is the problem of a separate study, which requires qualitatively new ideas. 
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The Index of Toeplitz Operators on 
Compact Lie Groups and on Simply 
Connected Closed 3-Manifolds 

Duván Cardona 

Abstract In this note we use the notion of an operator-valued symbol in the 
sense of Ruzhansky and Turunen in order to compute the index of Toeplitz 
operators on compact Lie groups. Our approach combines the Connes index theorem 
and the infinite-dimensional operator-valued symbolic calculus of Ruzhansky-
Turunen. We also give applications to the index of Toeplitz operators on simply 
connected closed 3-manifolds .M ≃ S

3 ≃ SU(2) by using the Poincaré theo-
rem (Perelman, Spaces with curvature bounded below. In: Proceedings of ICM 
1994, pp. 517–525. Birkhäuser, Basel (1995). MR1403952 (97g:53055); Perelman, 
The entropy formula for the Ricci flow and its geometric applications (2002). 
arXiv.math.DG/0211159; Perelman, Ricci flow with surgery on three-manifolds 
(2003). arXiv.math.DG/0303109; Perelman, Finite extinction time for the solutions 
to the Ricci flow on certain three-manifolds (2003). arXiv.math.DG/0307245). 

1 Introduction 

Using the interplay between the Connes index theorem for Fredholm modules and 
the operator-valued symbolic calculus of Ruzhansky and Turunen, in this paper we 
compute the index of Toeplitz operators acting on functions in compact Lie groups. 
Although, the point of departure of the index theory is the Atiyah-Singer index 
theorem, proved in 1963 in [2] (see also, the historical references [1, 3–9]) the 
analysis for the index of Toeplitz operators started with the classical formula of 
Noether-Gohberg-Krein (see [30]) 

.ind(PMf P ) = −wn(f ) := − 1

2πi
∫
S1

f −1df . (1) 
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In the index formula (1), the function .f ∈ C∞(G) is invertible everywhere, .Mf is 
the multiplication operator by . f, and P is the projection from .L2(S1) into the Hardy 
space .H 1(S1), consisting of those functions in . L2 with negative Fourier coefficients 
vanishing. The main feature in (1) is that the left hand side is of analytical nature, 
but the right hand side has topological information given by minus the winding 
number of f around of zero. This result was extended by V. Venugopalkrishna [45] 
to the unit ball in . Cn and by L. Boutet de Monvel to arbitrary strictly pseudoconvex 
domains [10]. A similar formula for boundaries of strictly pseudo-convex domains 
in . Cn was announced by Dynin [21]. For the spectral properties of Toeplitz operators 
and its index theory in several complex variables, we refer the reader to the 
references Douglas [19], Guillemin [22], Boutet de Monvel and Guillemin [13], 
Boutet de Monvel [11, 12], Murphy [27–29] as well as the monograph Upmeier[44]. 
The index theory in the operator-valued context can be found in Cardona [14]. We 
refer the reader to Hong [24] for a Lie-algebraic approach to the local index theorem 
on compact Lie groups and general compact homogeneous spaces. 

In this paper we want to compute the index of Toeplitz operators on compact Lie 
groups by using the recent notion of operator valued symbol [40, 41] in the sense of 
Ruzhansky and Turunen. Our main theorem can be announced as follows. Here G is 
a compact Lie group, . ̂G is its unitary dual, . eG is the identity element of . G, and for 
every irreducible representation .[ξ ] ∈ ̂G, .dξ := dim[ξ : G → hom(Cdξ )] denotes 
the dimension of the representation space. 

Theorem 1 (Index of Toeplitz Operators) Let G be a compact Lie group. Let us 
consider a smooth and invertible function f on . G. Let .Π : L2(G) → Π' be the 
orthogonal projection of a closed subspace .Π' ⊂ L2(G). If  .Tf = ΠMf Π is the 
Toeplitz operator with symbol . f, then . Tf extends to a Fredhlom operator on . L2(G)

and its analytical index is given by 

. ind(Tf ) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x)ξ(eG)]dx,

IΠ,f := f −1 [Π,f ][Π,f −1] · · · [Π,f ]
︸ ︷︷ ︸

n+2−t imes

(2) 

if n is odd, or 

. ind(Tf ) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x)ξ(eG)]dx,

IΠ,f := f −1 [Π,f ][Π,f −1] · · · [Π,f ]
︸ ︷︷ ︸

n+1−t imes

, (3)
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if n is even, where 

• .σIΠ,f
is the Ruzhansky-Turunen operator valued symbol associated to .IΠ,f , and 

• .[A,B] := AB − BA is the commutator operator defined by the operators A and 
. B.

It is important to mention that from Theorem 1, we can derive index formulae 
for Toeplitz operators on 3-dimensional closed manifolds. In fact, if . M is a simply 
connected closed 3-manifold, the Poincaré conjecture/theorem proved by Perelman 
provides a diffeomorphism .M ≃ S

3 ≃ SU(2), (see Ruzhansky and Turunen [40], 
pag. 578, and Perelman [31–34]) that allows us to construct a global (operator-
valued) pseudo-differential calculus on . M. This implies that the analysis employed 
for Toeplitz operators on .SU(2) gives a similar construction for Toeplitz operators 
on . M. So, if .Tω = ΠMωΠ is a Toeplitz operator with symbol . ω, such that . ω−1 ∈
C∞(M), we will prove the following algebraic index formula (see Corollary 1), 

. ind(Tω) = ∫
M

∑

𝓁∈ 1
2N0

(2𝓁 + 1)Tr[σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](x)ξ𝓁(eM))]dx,

(4) 

where . eM = Ф (eSU(2)).

This paper is organized as follows. In Sect. 2 we present some basics on the 
matrix valued and operator valued quantizations procedure for (global) pseudo-
differential operators on compact Lie groups. In Sect. 3 we study the index of 
Toeplitz operators on compact Lie groups. Finally, in Sect. 4 we investigate the index 
of Toeplitz operators on simply connected closed 3-manifolds. 

2 Global Operators on Compact Lie Groups: Preliminaries 

In this section we consider the pseudo-differential calculus of Ruzhansky and 
Turunen on compact Lie groups. Here, a Lie group is a group G that at the same 
time is a finitedimensional manifold of differentiability class . C2, in such a way that 
the two group operations of G, .x 	→ x−1, and .(x, y) 	→ x · y are .C2-mappings, 
(see Duistermaat and Kolk [20]). Theorem 1.6.1 of [20] shows that every . C2 Lie 
group . G, in the sense of the previous remark, can be provided with the structure of 
a real-analytic manifold for which it becomes a real-analytic Lie group.
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2.1 Operator-Valued Quantization of Global Operators on 
Compact Lie Groups 

In this subsection we present the Ruzhansky-Turunen operator valued quantization 
procedure for global operators on compact Lie groups. Throughout of this paper G 
is a compact Lie group endowed with its normalised Haar measure dg. Our  main  
tool is the Fourier analysis carried by a global Fourier transform. It can be defined 
as follows. 

Definition 1 (Operator-Valued Fourier Transform) Let G be a compact Lie 
group. For .f ∈ D '(G), the respective right-convolution operator . r(f ) : C∞(G) →
C∞(G) is defined by 

.r(f )g = g ∗ f, g ∈ C∞(G). (5) 

If .f ∈ L2(G), the (right) global Fourier transform is defined by 

. ̂f ≡ r(f ) = ∫
G

f (y)πR(y)∗dy, (6) 

where . πR is the right regular representation on . G, defined by . πR(x)f (y) = f (yx)

and .πR(x)∗ = πR(x−1), . x ∈ G.

In terms of the Fourier transform, the Fourier inversion formula can be 
announced as follows. 

Theorem 2 (Fourier Inversion Formula) Let G be a compact Lie group. Let us 
assume that .f ∈ C∞(G). Then .r(f )πR(x) is a trace class operator on .L2(G), and 
the indentity 

.f (x) = Tr(r(f )πR(x)), f ∈ C∞(G), (7) 

holds true for every . x ∈ G.

Definition 2 (Ruzhansky-Turunen Operator Valued Quantization) Let G be a 
compact Lie group. If .ρ : G → B(C∞(G)) is a continuous operator, the pseudo-
differential operator A associated to . ρ, is defined by 

.Af (x) = Tr(ρ(x)r(f )πR(x)), f ∈ C∞(G). (8) 

Conversely we have the following theorem due to Ruzhansky and Turunen. 

Theorem 3 If .A : C∞(G) → C∞(G) is a continuous linear operator, then there 
exists an unique .σA : G → B(C∞(G)) (called the operator-valued symbol of A) 
satisfying 

.Af (x) = Tr(σA(x)r(f )πR(x)), f ∈ C∞(G). (9)
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Proof The symbol . σA is defined as follows. Let .KA ∈ C∞(G)̂⊗D '(G) be the 
distributional Schwartz kernel of A and .RA(x, y) = K(x, y−1x) is the right-
convolution kernel associated to . A. If .x ∈ G, and .RA(x) ∈ D '(G) is defined 
by .(RA(x))(y) = RA(x, y) for every .y ∈ G, the (right) operator-valued symbol 
.ρ = σA associated to A is defined by .σA(x) := r(RA(x)), x ∈ G. It can be proved 
that this operator valued operator satisfies (9) (see Ruzhansky and Turunen [40], 
pag. 583) ⨅⨆

2.2 Matrix-Valued Quantization of Global Operators on 
Compact Lie Groups 

In this subsection we will present the matrix-valued quantization of global operators 
on compact Lie groups. There are two notions of continuous operators on smooth 
functions on compact Lie groups we can use. Namely, the one used in the case of 
general manifolds (based on the idea of local symbols as in Hörmander [23]) and, 
in a much more recent context, the one of global operators on compact Lie groups 
as defined by M. Ruzhansky and V. Turunen [38, 39] (from full symbols, for  which  
the notations and terminologies are taken from [41]). 

Let us consider for every compact Lie group G its unitary dual . ̂G, that is the 
set of continuous, irreducible, and unitary representations on . G. As is the operator-
valued quantization, the main tool in the matrix-valued quantization is a suitable 
notion of Fourier transform. We define it as follows. 

Definition 3 (Matrix-Valued Fourier transform) Let G be a compact Lie group. 
Let us assume that .ϕ ∈ C∞(G). Then, the matrix-valued Fourier transform of . ϕ at 
.[ξ ], is defined by 

. FGϕ(ξ) := ∫
G

ϕ(x)ξ(x)∗dx.

The Peter-Weyl theorem on compact Lie groups implies the following inversion 
formula. 

Theorem 4 (Fourier Inversion Formula) Let G be a compact Lie group. Let us 
assume that .f ∈ L1(G). Then, we have 

. ϕ(x) =
∑

[ξ ]∈̂G

dξTr(ξ(x)FGϕ(ξ)),

for all .x ∈ G. In this case, the Plancherel identity on .L2(G) is given by, 

.‖ϕ‖2
L2(G)

=
∑

[ξ ]∈̂G

dξTr(ϕ̂(ξ)ϕ̂(ξ)∗) = ‖ϕ̂‖2
L2(̂G)

.
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Notice that, since .‖A‖HS = √
Tr(AA∗), the term within the sum is the Hilbert-

Schmidt norm of the matrix .ϕ̂(ξ). The matrix-valued quantization procedure of 
Ruzhansky-Turunen can be introduced as follows. Any linear operator A on G 
mapping .C∞(G) into .D'(G) gives rise to a  matrix-valued symbol . σA(x, ξ) ∈
C

dξ ×dξ given by 

.σA(x, ξ) ≡ ξ(x)∗(Aξ)(x) := ξ(x)∗[Aξij (x)]i,j=1,··· ,dξ , (10) 

which can be understood from the distributional viewpoint. Then it can be shown 
that the operator A can be expressed in terms of such a symbol as [41] 

.Af (x) =
∑

[ξ ]∈̂G

dξTr[ξ(x)σA(x, ξ) ̂f (ξ)]. (11) 

We will denote by .σA(·) and .σA(·, ·) to the operator-valued symbol and the matrix-
valued symbol associated to A respectively. 

Lemma 1 (Matrix Symbols vs Operator-Valued Symbols) Theorem 10.11.16 in 
Ruzhansky and Turunen [40] gives the identity 

. σA(x, ξ) = σσA(x)(y, ξ) := ξ(y)∗(σA(x)ξ)(y),

for all .y ∈ G. In particular, if .y = eG is the identity element in . G,

.σA(x)ξ(eG) = σA(x, ξ), x ∈ G, [ξ ] ∈ ̂G. (12) 

Now, we want to introduce Sobolev spaces and, for this, we give some basic tools. 
Let .ξ ∈ Rep(G) := ∪̂G, if .x ∈ G is fixed, .ξ(x) : Cdξ → C

dξ is an unitary operator 
and .dξ := dimC

dξ < ∞. There exists a non-negative real number .λ[ξ ] depending 
only on the equivalence class .[ξ ] ∈ Ĝ, but not on the representation . ξ, such that 
.−LGξ(x) = λ[ξ ]ξ(x); here . LG is the Laplacian on the group G (in this case, defined 
as the Casimir element on G). Let . 〈ξ 〉 denote the function .〈ξ 〉 = (1 + λ[ξ ])

1
2 . 

Definition 4 Let G be a compact Lie group. For every .s ∈ R, the Sobolev space 
.Hs(G) on the Lie group G is defined by the condition: .f ∈ Hs(G) if only if 
.〈ξ 〉s ̂f ∈ L2(̂G). 

The Sobolev space .Hs(G) is a Hilbert space endowed with the inner product 

. 〈f, g〉Hs(G) = 〈J sf, J sg〉L2(G)

where, for every .r ∈ R, .J s : Hr(G) → Hr−s(G) is the bounded pseudo-
differential operator (Bessel potential) with symbol .σJ s (x, ξ) := 〈ξ 〉sIξ . 

Remark In this paper the notion of Sobolev spaces .Hs(G) is essential, we will use 
this spaces in the proof of Lemma 2 and for description of global operators. An
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important fact is that every global operator T of order m is a bounded operator from 
.Hs(G) into .Hs−m(G) (see Ruzhansky and Turunen [38]). ⨅⨆
Now we introduce, for every .m ∈ R, the Hörmander class .Ψm(G) of pseudo-
differential operators of order m on the compact Lie group G. As a compact 
manifold we consider .Ψm(G) as the set of those operators which, in all local 
coordinate charts, give rise to pseudo-differential operators in the Hörmander class 
.Ψm(U) for an open set .U ⊂ R

n, characterized by symbols satisfying the usual 
estimates [23] 

.|∂α
x ∂

β
ξ σ (x, ξ)| ≤ Cα,β〈ξ〉m−|β|, (13) 

for all .(x, ξ) ∈ T ∗U ∼= R
2n and .α, β ∈ N

n. This class contains, in particular, 
differential operator of degree .m > 0 and other well-known operators in global 
analysis such as heat kernel operators. The class The Hörmander classes . Ψm(G)

where characterized in [40, 42] by the condition: .A ∈ Ψm(G) if only if its matrix-
valued symbol .σA(x, ξ) satisfies the inequalities 

.‖∂α
x D

βσA(x, ξ)‖op ≤ Cα,β〈ξ〉m−|β|, (14) 

for every .α, β ∈ N
n. For a rather comprehensive treatment of this global calculus 

we refer to [40]. 

2.3 Fredholm Operators on Hilbert Spaces, Fredholm Modules 
on Associative Algebras and the Connes Index Theorem 

The index is defined for a broad class of operators called Fredholm operators. Now, 
we introduce this notion in more detail. For .X, Y normed spaces .B(X, Y ) is the set 
of bounded linear operators from X into . Y. In particular, if .X = Y = H, . B(H) ≡
B(H,H) denotes the algebra of bounded operators on . H. Here, we consider . H =
L2(G).

Definition 5 If . H1 and . H2 are Hilbert spaces, the closed and densely defined 
operator .A : H1 → H2 is Fredholm if only if .Ker(A) is finite dimensional and 
.A(H1) = Rank(A) is a closed subspace of . H2 with finite codimension. In this case, 
the index of A is defined by .Ind(A) = dimKer(A) − dimCoker(A). The index 
formula also can be written as 

. ind(A) = dimKer(A) − dimKer(A∗).

In our analysis we use the Connes index theorem for odd Fredholm modules on 
associative algebras. We recall this definition as follows.
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Definition 6 Let A be an associative algebra over . C. An odd Fredholm module over 
A is a triple .(A, π, F ) consisting of: 

• a Hilbert space . H,

• a representation . π of A as bounded operators on . H,

• a self-adjoint operator F such that .F 2 = I and .[F, π(a)] is a compact operator 
on H for all . a ∈ A.

Additionally, if there exist p such that . [F, π(a)] ∈ Lp(H) = {T ∈ B(H,H) :
∑

ν[sν(T )]p < ∞}, (here, .{sν(T )}ν denotes the sequence of singlular values of T ) 
we say that the module .(A, π, F ) is p-summable. The corresponding Connes index 
theorem is the following (see A. Connes, [15]). 

Theorem 5 (Connes Index Theorem) Let .(A, π, F ) be a p-summable odd Fred-
holm module and P given by 

.P = 1

2
(F + I ). (15) 

Then, for every invertible element .u ∈ A, the operator .PuP : PH → PH is 
Fredholm and its analytical index is given by 

.ind(PuP ) = (−1)2k+1

22k+1
Tr[a0[F, a1] · · · [F, a2k+1]], (16) 

where p is the smallest odd integer larger than . n, .ai = u−1 for i even, and . ai = u

for i odd. 

In the next section we compute the index of a Toeplitz operator .Tf = PMf P. In 
order to use the Connes theorem, we use (the well know fact) that . (C∞(G), π, 2P −
I ) is a odd Fredholm module, where . π is the representation .π(g) = Mg defined 
from .C∞(G) into the algebra of bounded operators on . L2(G).

3 The Index of Toeplitz Operators on Compact Lie Groups 

In this section, we compute the index of Toeplitz operators by using trace formulae 
for global operators of trace class and the index theorem of Connes mentioned 
above. The corresponding statement for trace class global operators is the following 
(for the proof, we refer the reader to Cardona [14]. The proof is based in the 
arguments developed by Delgado and Ruzhansky [16–18]).
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Theorem 6 Let G be a compact Lie group. Let A be a pseudo-differential operator 
on .Ψm(G), .m < − dim(G). Then A is trace class on .L2(G) and 

. Tr(A) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σA(x, ξ)]dx,

where .σA(x, ξ) is the matrix-valued symbol of . A.

Remark 1 The inequality .m < − dim(G) in Theorem 6 is sharp. Indeed, if . B−m :=
(1+LG)

m
2 with .m ≥ −n, then is easy to see that .B−m is of order . m, and its system 

of eigenvalues is not summable. So, the order restriction .m ≥ −n, implies that . B−m

is not of trace class. 

In order to apply the Connes theorem, we need the following well known lemma. 
For completeness we provide a proof. 

Lemma 2 Let G be a compact Lie group. The triple .(C∞(G), π, 2P − I ) where 
.π : C∞(G) → B(L2(G)) is the representation defined at g by . π(g) = Mg

(multiplication operator by . g,) is a  p-summable odd Fredholm module for all 
.p > n := dim(G). 

Proof We only need to prove that .F = 2P − I is self-adjoint, that .F 2 = I and the 
compactness of every commutator .[F, π(g)]. Because .P 2 = P and P is orthogonal, 
we deduce that F is self-adjoint and .F 2 = 4P 2 − 4P + I = I. Now, if . g ∈ C∞(G)

the operators .MgP and .PMg have in local coordinates same principal symbol and 
the order of the commutator .T = [P,Mg] is .−1. This implies that . |T | ∈ Lp(L2(G))

for . p > n = dim(G). ⨅⨆
Now, with the machinery presented above, we can give a short argument for proving 
our main theorem. 

Theorem 7 (Index of Toeplitz Operators) Let G be a compact Lie group. Let 
us consider a smooth and invertible function f on . G. Let . Π : L2(G) → Π'
be the orthogonal projection determined by a closed subspace .Π' ⊂ L2(G). If  
.Tf = ΠMf Π is the Toeplitz operator with symbol . f, then . Tf extends to a Fredhlom 
operator on .L2(G) and its index is given by 

. ind(Tf ) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x)ξ(eG)]dx,

IΠ,f := f −1 [Π,f ][Π,f −1] · · · [Π,f ]
︸ ︷︷ ︸

n+2−t imes

(17) 

if n is odd, or 

. ind(Tf ) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x)ξ(eG)]dx,

IΠ,f := f −1 [Π,f ][Π,f −1] · · · [Π,f ]
︸ ︷︷ ︸

n+1−t imes

, (18)
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if n is even, where .σIΠ,f
is the Ruzhansky-Turunen operator valued symbol 

associated to . IΠ,f .

Proof Let us observe that the index of T can be computed as, 

.ind(Tf ) = ind(Πf Π) = (−1)2k+1

22k+1 Tr[a0[F, a1] · · · [F, a2k+1]], (19) 

where .p = 2k + 1 > n := dim(G), is the smallest odd integer larger that .n, . ai =
f −1 for i even, and .ai = f for i odd. Here we have used that . (C∞(G),Mf , 2Π−I )

is a p-summable odd Fredholm module as well as the Connes index Theorem. Since 
.F = 2P − I, we have 

.[F, a1] · · · [F, a2k+1] = 22k+1[Π, a1] · · · [Π, a2k+1], (20) 

and 

.ind(Tf ) = ind(Πf Π) = −Tr[a0[Π, a1] · · · [Π, a2k+1]]. (21) 

Nowwe need to compute the trace of the operator . IΠ,f = a0[Π, a1] · · · [Π, a2k+1] ∈
S−p(G), .p = 2k + 1 > n, using its operator-valued symbol. This can be done with 
Theorem 6. Using  (12), we have the following matrix identity 

.σIΠ,f
(x)ξ(eG) = σIΠ,f

(x, ξ), x ∈ G, [ξ ] ∈ ̂G. (22) 

From Theorem 6, we have  

. ind(Tf ) = ind(Πf Π) = −Tr[IΠ,f ] = − ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x, ξ)]dx.

So, we have proved that 

. ind(Tf ) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x)ξ(eG)]dx,

IΠ,f := f −1 [Π,f ][Π,f −1] · · · [Π,f ]
︸ ︷︷ ︸

n+2−t imes

(23) 

if n is odd, or 

. ind(Tf ) = ∫
G

∑

[ξ ]∈Ĝ

dξTr[σIΠ,f
(x)ξ(eG)]dx,

IΠ,f := f −1 [Π,f ][Π,f −1] · · · [Π,f ]
︸ ︷︷ ︸

n+1−t imes

, (24) 

if n is even. Thus, we finish the proof.
⨅⨆
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4 The Index of Toeplitz Operators on Closed 3-Manifolds 

4.1 Ruzhansky-Turunen Construction 

Let us consider the compact Lie group .SU(2) ∼= S
3 consisting of those orthogonal 

matrices A in .C
2×2, with .det(A) = 1. We recall that the unitary dual of .SU(2) (see 

[40]) can be identified as 

.ŜU(2) ≡ {[ξl] : 2l ∈ N, dl := dim ξl = (2l + 1)}. (25) 

Let us assume that . M is a simply connected closed 3-manifold, (this means that 
every simple closed curve within the manifold can be deformed continuously to a 
point). By the Poincaré conjecture (c.f. [35]) proved by Perelman (see Perelman 
[31–34] and Morgan[26]), . M is diffeomorphic to .S3 ≃ SU(2). Every topological 
3-manifold admits a differentiable structure and every homeomorphism between 
smooth 3-manifolds can be approximated by a diffeomorphism. Thus, classification 
results about topological 3-manifolds up to homeomorphism and about smooth 3-
manifolds up to diffeomorphism are equivalent (see Morgan [26]). 

Let .Ф : SU(2) → M be a diffeomorphism. By following Ruzhansky and 
Turunen, [40], pag. 578, . M can be endowed with the natural Lie group structure 
induced by . Ф . In fact, if .x, y are coordinate points in . M we can define 

.x · y := Ф (Ф −1(x) × Ф −1(x)), (26) 

where . × denotes the product of matrices on .SU(2). We have a Frechet isorphism 
.C∞(SU(2)) ≃ C∞(M) defined by 

. Ф ∗ : C∞(SU(2)) → C∞(M), Ф ∗(f ) := f ◦ Ф −1; Ф ∗ : C∞(M) → C∞(SU(2)),
(27) 

where .Phi∗(g) := g ◦ Ф . Since .L2(M) = Ф ∗(L2(SU(2))), and the Lie group 
structure on . M provides a Peter-Weyl theorem on . M, we have . ̂SU(2) = 1

2N0 ≃ ̂M

in the sense that 

.Ф ∗ : ŜU(2) → ̂M, Ф ∗[ξ𝓁] = [Ф ∗ξ𝓁], Ф ∗ξ𝓁 := ξ𝓁 ◦ Ф ≡ [ξ𝓁,ij ◦ Ф ]𝓁i,j=−𝓁, (28) 

for .𝓁 ∈ 1
2N0, is a well defined isomorphism. We have used that . Ф ∗ : C∞(SU(2)) →

C∞(M) extends to a linear unitary bijection from .L2(SU(2)) into .L2(M), via 

.〈g, h〉L2(M) = 〈g ◦ Ф ,h ◦ Ф 〉L2(SU(2)) = 〈Ф ∗(g),Ф ∗(h)〉L2(SU(2)). (29) 

As it was pointed out in [40], this immediately implies that the whole construction 
of matrix-valued symbols on . M is equivalent to that on .SU(2). Because we can
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endowed to . M with a Lie group structure, Theorem 1 can be used to analise the 
index of Toeplitz operators on . L2(M).

4.2 Toeplitz Operators 

Theorem 7 implies the following result. 

Corollary 1 Let us consider a smooth function and invertible function . ω on . M. Let 
.Π : L2(M) → Π' be the orthogonal projection of a closed subspace .Π' ⊂ L2(M). 
If .Tω = ΠMωΠ is the Toeplitz operator with symbol . ω, then . Tω extends to a extends 
to a Fredhlom operator on .L2(M) and its index is given by 

. ind(Tω) = ∫
M

∑

𝓁∈ 1
2N0

(2𝓁 + 1)Tr[σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](x)ξ𝓁(eM))]dx,

(30) 

where . eM = Ф (eSU(2)).

Proof With the product defined in (26), . M has the Lie group structure diffeo-
morphic to that on .SU(2). The previous Ruzhansky-Turunen construction gives 
.̂M ≃ 1

2N0, and every unitary and strongly continuous unitary representation on 
. ̂M has the form .Ф ∗ξ𝓁 : M → U(Cdξ𝓁 ), .𝓁 ∈ 1

2N0, .dim(Ф ∗ξ𝓁) = dξ𝓁
= 2𝓁 + 1. So, 

the proof now follows from Theorem 1. ⨅⨆
Now, we study the previous formula in local coordinates. 

Remark By using the diffeomorphism .� : M ≃ SU(2) → S
3, defined by 

.�(z) = x := (x1, x2, x3, x4), for z =
[

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

]

, (31) 

we have 

. ind(Tω)

= ∫
M

∑

𝓁∈ 1
2N0

(2𝓁 + 1)Tr[σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](z)ξ𝓁(eM))]dz,

= ∫
S3

∑

𝓁∈ 1
2N0

(2𝓁 + 1)Tr[σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](x)ξ𝓁(eM))]dτ(x),

where 

.σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](�−1(x)) =: σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](x),
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and .z = �−1(x). If we use the parametrization of . S3 defined by . x1 := cos( t
2 ),

.x2 := ν, .x3 := (sin2( t
2 ) − ν2)

1
2 cos(s), .x4 := (sin2( t

2 ) − ν2)
1
2 sin(s), where 

. (t, ν, s) ∈ D := {(t, ν, s) ∈ R
3 : |ν| ≤ sin(

t

2
), 0 ≤ t, s ≤ 2π},

then .dτ(x) = sin( t
2 )dνdtds, and 

. ind(Tω) = 2π∫
0

2π∫
0

sin(t/2)
∫

− sin(t/2)

∑

𝓁∈ 1
2N0

(2𝓁 + 1)Tr[σω−1[Π,ω][Π,ω−1][Π,ω][Π,ω−1][Π,ω](ν, t, s)]

× sin(
t

2
)dνdtds.

Thus, we have obtained an explicit index formula for Toeplitz operators on compact 
3-manifolds (with trivial fundamental group). ⨅⨆
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Partial Differential Equations on Curved 

Spacetimes



Lorentzian Spectral Zeta Functions 
on Asymptotically Minkowski Spacetimes 

Nguyen Viet Dang and Michał Wrochna 

Abstract In this note, we consider perturbations of Minkowski space as well 
as more general spacetimes on which the wave operator .  □g is essentially self-
adjoint. We review a recent result which gives the meromorphic continuation of 
the Lorentzian spectral zeta function density, i.e. of the trace density of complex 
powers .α �→ (  □g − iε)−α . In even dimension .n ≥ 4, the residue at .n2 − 1 is shown 
to be a multiple of the scalar curvature in the limit .ε → 0+. This yields a spectral 
action for gravity in Lorentzian signature. 

1 Main Result 

1.1 Motivation 

Suppose .(M, g) is a compact Riemannian manifold of dimension n, and let . ∆g

be the Laplace–Beltrami operator. A classical result in analysis, dating back to 
Minakshisundaram–Pleijel [23] and Seeley [26], states that for .Re α > n

2 the trace 
density of .(−∆g)

−α , defined as the on-diagonal restriction 

.(−∆g)
−α(x, x) (1) 

of the Schwartz kernel .(−∆g)
−α(x, y), exists for all .x ∈ M . Furthermore 

(1) extends to a density-valued meromorphic function of the complex variable 
. α. Its integral over M is the celebrated spectral zeta function of .−∆g (or 
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Minakshisundaram–Pleijel zeta function), which has attracted widespread attention 
due to its relationships with the geometry of .(M, g). 

In fact, the residues of (1) are given by local geometric quantities: in particular if 
.n ≥ 4 is even, one finds 

. res
α= n

2 −1
(−∆g)

−α(x, x) = Rg(x)

6(4π)
n
2 𝚪(n

2 − 1)
, (2) 

where .Rg(x) is the scalar curvature of .(M, g) at .x ∈ M . This identity, often 
attributed to Kastler [20] and Kalau–Walze [19], and announced previously by 
Connes, is a consequence of classical theorems in elliptic theory (the heat kernel 
based argument can be found in [7, Thm. 1.148]; see [16, §1.7] for an approach 
in the spirit of Atiyah–Bott–Patodi [1]). Its importance in physics stems from the 
fact that the variational equation .δgRg = 0 for g is equivalent to the Einstein 
equations in Riemannian signature. Therefore, the l.h.s. of (2) yields a spectral 
action for Euclidean gravity. Relationships of this type have also been used to justify 
definitions of curvature in non-commutative geometry [7, 8]. 

However, it is the Einstein equations in Lorentzian signature which have a direct 
physical meaning. This means that .(M, g) should be replaced by a Lorentzian 
manifold (typically not compact), but then the problem is that the corresponding 
Laplace–Beltrami operator .  □g (or wave operator), is not elliptic nor bounded from 
below. In consequence, it is not at all clear if .  □g has a self-adjoint extension and 
even less clear if the arguments from elliptic theory can be somehow replaced (for 
instance, it is difficult to imagine that the heat kernel could be usefully generalized 
to the Lorentzian setting). 

Nevertheless, it was demonstrated by Vasy [33] (followed by a generalization 
by Nakamura–Taira [25]) that if .(M, g) is well-behaved at infinity, .   □g is essentially 
self-adjoint in .L2(M, g). Consequently, complex powers .(  □g−iε)−α can be defined 
by functional calculus for any .ε > 0. The question is then if this global, spectral 
theoretical object has anything to do with the local geometry of .(M, g), in particular 
with the Lorentzian scalar curvature .Rg(x). 

1.2 Main Theorem 

In [9] we consider Vasy’s framework and provide an affirmative answer in the form 
of an identity largely analogous to (2). Namely, we prove the following theorem. 

Theorem 1 ([9, Thm. 1.1])  Assume .(M, g) is a globally hyperbolic, non-trapping 
Lorentzian scattering space of even dimension .n ≥ 4. For all .ε > 0, the Schwartz 
kernel of .(  □g − iε)−α has for .Re α > n

2 a well-defined on-diagonal restriction
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.(  □g − iε)−α(x, x), which extends as a meromorphic function of .α ∈ C with poles 
at .{n

2 , .
n
2 − 1, .n2 − 2, . . . . , . 1}. Furthermore, 

. lim
ε→0+ res

α= n
2 −1

(
  □g − iε

)−α
(x, x) = Rg(x)

i6(4π)
n
2 𝚪

(
n
2 − 1

) , (3) 

where .Rg(x) is the scalar curvature at .x ∈ M . 

The meromorphic continuation of .α �→ ζg,ε(α)(x) := (
  □g − iε

)−α
(x, x) is 

called the Lorentzian spectral zeta function density of .(M, g). 
Let us briefly discuss the assumptions of Theorem 1. The class of non-trapping 

Lorentzian scattering spaces introduced by Vasy [33] can be thought of having 
asymptotically the same structure as Minkowski space at spacetime infinity . |x| →
+∞, with the extra requirement that there are no trapped null geodesics. It is 
worth emphasizing that this is a somewhat more general class than what one would 
typically call “asymptotically Minkowski spacetime” in that the definition refers to 
the bicharacteristic flow (the null geodesic flow lifted to the cotangent bundle) and 
to its asymptotic properties, rather than to the precise form of the metric coefficients 
at infinity, see [9, 33]. Global hyperbolicity is a standard assumption which provides 
a general setting for well-posedness of the Cauchy problem for .  □g and is unlikely 
to entail significant loss of generality (in fact, it automatically follows from the non-
trapping assumption for a large class of asymptotically Minkowski spacetimes, see 
[14, §4.2]). 

The most essential feature of these assumptions is that they allow for per-
turbations of Minkowski space without assuming any particular symmetries or 
analyticity. This means there are sufficiently many variations of the metric to derive 
Einstein equations from the r.h.s. of (3). Consequently, the l.h.s. gives a spectral 
action for gravity in Lorentzian signature. 

1.3 Further Results 

Let us also briefly mention several of our further results related to Theorem 1. 
In [9] we show an expansion in the spirit of the Chamseddine–Connes spectral 

action [5, 6]. Namely, for any Schwartz function f with Fourier transform . f̂
supported in .]0,+∞[ and any .N ∈ N⩾0, we have for .ε > 0 the large . λ > 0
expansion 

.f
(
(  □g + iε)/λ2)(x, x) =

N∑

j=0

λn−2jCj (f ) aj (x) + O(ε, λn−2N−1), (4)
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where each .Cj (f ) depends only on .j ∈ N⩾0, the space-time dimension n and f , 
and .aj (x) are directly related to the Hadamard coefficients, in particular 

. a0(x) = (4π)−
n
2 , a1(x) = −(4π)−

n
2

1

6
Rg(x),

with .C0(f ) = i−1e
inπ

4
´∞

0 f̂ (t)t
n
2 −1dt and .C1(f ) = i−1e

i(n−2)π
4
´∞

0 f̂ (t)t
n
2 −2dt . 

Furthermore, we show that the identities (3)–(4) remain valid in the case of 
ultrastatic spacetimes .(M, g), meaning that .M = R × Y and .g = dt2 − h for 
some t-independent complete Riemannian manifold .(Y, h). In this setting essential 
self-adjointness is due to Dereziński–Siemssen [11] and the proofs are significantly 
simpler because the spectral theory of .−∆h can then be used. We remark that in the 
related and more general case of stationary spacetimes the scalar curvature can be 
recovered in a different spectral-theoretical way through a Gutzwiller–Duistermaat– 
Guillemin trace formula due to Strohmaier–Zelditch [30]. 

Finally, in a further work [10] we define a dynamical notion of “residue” which 
generalizes the Guillemin-Wodzicki residue density [17, 34] of pseudo-differential 
operators. More precisely, given a Schwartz kernel, our definition refers to the 
Pollicott–Ruelle resonances for the dynamics of scaling towards the diagonal in . M×
M . We apply this formalism to complex powers .(  □g − iε)−α and we demonstrate 
that residues of Lorentzian spectral zeta functions .ζg,ε(α) are dynamical residues 
indeed. This provides a Lorentzian version of the fact that the residue (2) can be 
expressed as a Guillemin–Wodzicki residue or, in physicists’ terminology, a “scaling 
anomaly”. 

2 Sketch of Proof 

2.1 From Resolvent to Complex Powers 

Let us now give a sketch of the proof of Theorem 1. Let .P =   □g be the wave 
operator, i.e., using the notation .|g| = |det g|, P is the differential operator 

.
P = |g(x)|− 1

2 ∂xj |g(x)| 1
2 gjk(x)∂xk

= ∂xj gjk(x)∂xk + bk(x)∂xk

(5) 

where we sum over repeated indices, and .bk(x) = |g(x)|− 1
2 gjk(x)(∂xj |g(x)| 1

2 ). 
We use the same notation P for the closure of .   □g acting on test functions . C∞

c (M) ⊂
L2(M, g).
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2 

Re 

Im 

Fig. 1 The contour . γε used to express .(P − iε)−α as an integral of the resolvent . (P − z)−1

For .ε > 0 and .Re α > 0, the power .(P − iε)−α can be expressed as a contour 
integral of the form 

.(P − iε)−α = 1

2πi

ˆ
γε

(z − iε)−α(P − z)−1dz, (6) 

convergent in the strong operator topology (see e.g. [9, App. B]). The contour of 
integration . γε is represented in Fig. 1 and can be written as .γε = γ̃ε + iε, where 

.γ̃ε = ei(π−θ)
]−∞, ε

2

] ∪ { ε
2eiω | π − θ < ω < θ} ∪ eiθ

[
ε
2 ,+∞[

(7) 

goes from .Re z ⪡ 0 to .Re z ⪢ 0 in the upper half-plane (for some fixed .θ ∈ ]
0, π

2

[
). 

The strategy is then to construct a sufficiently explicit parametrix for the 
resolvent .(P − z)−1. When estimating error terms, a significant difficulty is the 
necessity to control what happens uniformly in z, with an appropriate decay rate 
along the infinite contour . γε. We remark that retarded and advanced propagators for 
.P − z are not expected to have this kind of decay, so in practice it is not possible 
to use various techniques from hyperbolic PDEs related to solving a retarded or 
advanced problem or a Cauchy problem for .P − z.
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2.2 Uniform Hadamard Parametrix 

In contrast to the heat kernel, the Hadamard parametrix for the Laplace–Beltrami 
operator generalizes well to the Lorentzian case. Furthermore, it is known to have 
similar local geometric content. So, the main question is whether the Hadamard 
parametrix approximates the resolvent .(P − z)−1 in a reasonable sense, uniformly 
in z along the contour . γε. 

Before answering this question, let us recall the construction of the Hadamard 
parametrix for .P − z. 

As expected from explicit formulae on Minkowski space and from the theory of 
Fourier integral operators, there are actually four different Hadamard parametrices 
with different singularities. In the case of the resolvent .(P − z)−1 with . Im z >

0, one expects that the Feynman Hadamard parametrix is the correct choice, see 
e.g. [21] for the general definition. Here we use a construction directly adapted 
from earlier works in the Riemannian or Lorentzian time-independent case [18, 29, 
35, 36] (cf. [2] for a unified treatment of even and odd dimensions), supplemented 
by new estimates that are uniform in z (cf. [3, 12, 28] for uniform estimates in the 
Riemannian case). As expected, their proof is significantly complicated by light-
cone singularities not present in the Riemannian analogue of the problem. 

Step 1 

Let .η = dx2
0 − (dx2

1 + · · · + dx2
n−1) be the Minkowski metric on . Rn, and consider 

the corresponding quadratic form 

. |ξ |2η = −ξ2
0 + ∑n−1

i=1 ξ2
i ,

defined for convenience with a minus sign. For .α ∈ C and .Im z > 0, the distribution 

.

(
|ξ |2η − z

)−α

is well-defined by pull-back from . R. More generally, for .Im z ⩾ 0, the  

limit .
(
|ξ |2η − z − i0

)−α = limε→0+
(
|ξ |2η − z − iε

)−α

from the upper half-plane 

is well defined as a distribution on .Rn \ {0}. If .z /= 0 it can be extended to a family 
of homogeneous1 distributions on . Rn, holomorphic in .α ∈ C. We introduce special 
notation for its appropriately normalized inverse Fourier transform, 

.Fα(z, |x|η) := 𝚪(α + 1)

(2π)n

ˆ
ei〈x,ξ 〉 (

|ξ |2η − i0 − z
)−α−1

dnξ. (8)

1 Homogeneity refers here to rescaling simultaneously the . ξ variables by .λ > 0 and the complex 
number z by . λ2. 
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Step 2 

Next, one pull-backs the distribution .Fα(z, |.|η) to a neighborhood . U of the diagonal 

.∆ ⊂ M × M using the exponential map. In view of the .O(1, n − 1)
↑
+-invariance of 

.Fα(z, |.|η) there is a canonical way to define this pull-back (see [9, §5.1]), denoted 
in the sequel by .Fα(z, .). The Hadamard parametrix (or rather its Schwartz kernel) 
is constructed in normal charts using the family .Fα(z, .). Namely, for fixed .x0 ∈ M , 
one expresses the distribution .x �→ Fα(z, x0, x) in normal coordinates centered at 
. x0, defined on some .U ⊂ Tx0M . By abuse of notation we continue to write . Fα(z, .)

instead of .Fα(z, x0, expx0
(·)) ∈ D'(U). One then defines for large N a parametrix 

.HN(z, .) by setting 

.HN(z, .) =
N∑

k=0

ukFk(z, .) ∈ D'(U), (9) 

where .(uk)
∞
k=0 is a sequence of functions in .C∞(U) that solves the hierarchy of 

transport equations 

.2kuk + bi(x)ηij x
juk + 2xi∂xi uk + 2Puk−1 = 0 (10) 

with initial condition .u0(0) = 1 (by convention, .uk−1 = 0 for .k = 0, we sum over 
repeated indices, and we recall that .bi(x) is defined in (5)). The transport equations 
imply that .HN(z, .) solves 

. (P − z)HN(z, .) = |g|− 1
2 δ0 + (PuN)FN, (11) 

on U , where .(PuN)FN is interpreted as an error term. 

Step 3 

In the final step one takes into account the dependence on . x0 to obtain a parametrix 
on the neighborhood . U of the diagonal. Here we make this step implicitly by 
sticking to the same notation .Fα(z, .) for the corresponding distribution on . U . 
Finally, one uses a cutoff function .χ ∈ C∞(M2) supported in . U (with . χ = 1
near the diagonal) to extend the definition of .HN(z, .) to . M2: 

. HN(z, .) =
N∑

k=0

χukFk(z, .) ∈ D'(M × M).

The Hadamard parametrix extended to .M2 satisfies 

. (P − z)HN(z, .) = |g|− 1
2 δ∆ + (PuN)FN(z, .)χ + rN(z, .), (12)



508 N. V. Dang and M. Wrochna

where .|g|− 1
2 δ∆(x1, x2) is the Schwartz kernel of the identity map and . rN(z, .) ∈

D'(M × M) is an error term supported in a punctured neighborhood of . ∆ which is 
due to the presence of the cutoff . χ . 

In order to conclude a relationship between the resolvent .(P − z)−1 and the 
Hadamard parametrix .HN(z, .), the natural next step is to apply .(P − z)−1 to both 
sides of (12). The objective is then to show that the composition of . (P − z)−1

with the two error terms on the r.h.s. exists, decreases in z in a suitable sense along 
the contour . γε, and is sufficiently regular (so that its on-diagonal restriction always 
exists and the corresponding integral on . γε is holomorphic in . α). 

It turns out that by choosing N sufficiently high we can make . (PuN)FN(z, .)χ

decaying in z and of arbitrarily high Hölder regularity. The proof is quite technical 
as it uses oscillatory integral representations, but most of the analysis is carried out 
on the level of the explicit model family .Fα(z, |.|η). In combination with regularity 
properties of .(P − z)−1 obtained as a corollary of Vasy’s proof of essential self-
adjointness, this yields an easily controllable error term. 

On the other hand, the error term .rN(z, .) (although it can be arranged to be 
supported away from the diagonal) is always singular regardless of the choice of N . 
This stands in sharp contrast with analogous constructions in the Riemannian case 
and is the most significant obstacle in the proof: a priori it is not even clear if the 
composition .(P − z)−1rN makes sense. 

A way out is possible thanks to a remarkable property shared by the Feynman 
Hadamard parametrix and .(P − z)−1 when .Im z > 0. Their Schwartz kernels 
are singular, but in a special way which allows operator composition nevertheless, 
and which implies that the compositions have singularities of the same type. 
Microlocally, they behave as the Feynman propagator on Minkowski space, i.e. the 
Fourier multiplier by .(−ξ2

0 + ξ2
1 + · · · + ξ2

n−1 − i0)−1. This condition can be 

formulated in terms of an operatorial Sobolev wavefront set .WF
'(s)((P − z)−1

)
for 

large .s ∈ R: by definition, a pair of points .(q1, q2) ∈ (T ∗M \ o)×2 does not belong 
to .WF

'(s)((P − z)−1
)

if there exists pseudo-differential operators .B1, B2 ∈ Ψ0(M), 
elliptic at respectively .q1, q2, such that 

. B1(P − z)−1B∗
2 : Hm

c (M) → Hm+s
loc (M)

is bounded for all .m ∈ R. A uniform version particularly well adapted to our needs 

can be defined by requiring that the operator semi-norms are .O(〈z〉− 1
2 ) in z along 

the contour . γε. 
For fixed z, it is relatively easy to find the wavefront set of .HN(z), and one could 

try various existing techniques to estimate the wavefront set of .(P −z)−1. However, 
estimates on the uniform wavefront set are needed to control the contributions of 
the error terms after integration. The uniform wavefront set of . rN is obtained from 
a detailed Hölder regularity analysis of oscillatory integral representations with 
the help of dyadic decompositions. The uniform wavefront set of .(P − z)−1 is 
estimated in several steps outlined in the next paragraphs, with a central role played 
by microlocal propagation estimates including radial estimates. Uniform regularity
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of the composition .(P − z)−1rN is then deduced from the two uniform wavefront 
sets and the property that . rN is supported away from the diagonal in .M × M . 

2.3 Uniform Microlocal Resolvent Estimates 

In the estimation of the uniform wavefront set of .(P − z)−1, the first step is to 
construct a parametrix .Gz = G+

z + G−
z for .(P − z)−1, which consists of two terms 

.G±
z that correspond each to solving an evolution problem of first order in time. This  

parametrix is used as reference operator with more easily computable wavefront set. 
The construction relies on an approximate factorization of .P − z. Namely, we 

show that after a suitable coordinate change . ϕ and a conformal transformation by 
some smooth factor .c > 0 (this step uses global hyperbolicity), .P −z can be written 
in the form 

. 
−c2(ϕ∗(P − z)) = (Dt − A(t, z))(Dt + B(t, z)) + R(t, z)

= (Dt + B̃(t, z))(Dt − Ã(t, z)) + R̃(t, z),

where .A(t, z), B(t, z), Ã(t, z), B̃(t, z) ∈ Ψ1(M) are smooth (in t) families of 
pseudo-differential operators which are elliptic with parameter in the sense of 
Shubin’s parameter-dependent calculus [27], with positive principal symbols, and 
.R(t, z), R̃(t, z) are smooth families of operators with arbitrarily good regularity 
properties, uniformly in z. The operators .G∓

z are defined through an expression 
which uses the retarded problem of .Dt − Ã(t, z), resp. advanced problem for 
.Dt + B(t, z) (these are the only two that are well-behaved for large .Im z > 0). 
As such, their uniform wavefront sets can be estimated by arguments closely related 
to Egorov’s theorem. 

The problem is then how to demonstrate that .Gz = G+
z + G−

z and . (P − z)−1

have the same uniform wavefront set. Since the wavefront sets of .G+
z and .G−

z are 
disjoint (they propagate singularities in the two different components .Σ∓ of the 
characteristic set of P ), it actually suffices to estimate the wavefront set of . (P −
z)−1 − G±

z . The key ingredient are microlocal propagation estimates, which can be 
applied if we have some microlocal regularity of .(P − z)−1 − G±

z to start with. 
It turns out that there is indeed a significant property shared by . (P − z)−1

and . G±
z . Let us first explain it in the case of the resolvent . (P − z)−1. Its  

mapping properties are best understood in the framework of anisotropic scattering 
Sobolev spaces .Hs,𝓁

sc (M): these spaces generalize the weighted Sobolev spaces 
.(1+|x|2)−𝓁/2Hs(Rn) in a way that allows the weight orders . 𝓁 to vary in phase space 
(more specifically, on Melrose’s scattering bundle .

scT ∗M [22], which in our context
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provides the natural framework for microlocal analysis on the compactification of 
M). The key ingredient in Vasy’s proof of essential self-adjointness is a Fredholm 
estimate of the form 

.‖u‖s,𝓁 + (Im z)‖u‖
s− 1

2 ,𝓁+ 1
2
 ⩽ C(‖(P − z)u‖s−1,𝓁+1 + ‖u‖S,L), (13) 

uniformly for .z ∈ γε (with .‖u‖S,L representing a negligible error term). Here, . 𝓁
is chosen monotone along the bicharacteristic flow, in such a way that . 𝓁 > − 1

2
at sources at infinity (from which bicharacteristics are assumed to originate), and 
.𝓁 < − 1

2 at sinks at infinity (to which bicharacteristics tend). One can think of this 
condition as imposing boundary conditions at infinity: solving .(P − z)u = f in 
the corresponding spaces is then a Feynman problem [13, 15, 31, 33]. The estimate 
(13) is responsible for the fact that if .f = (P − z)u is compactly supported then 
it decays at a rate faster than the threshold value .− 1

2 microlocally at the sources. 
This statement can be improved in various ways, and .(P −z)−1f has of course even 
better decay properties. The key point is that within .Σ∓, .G±f is decaying at the 
same source as .(P − z)−1f . Therefore, .((P − z)−1 − G±

z )f decays at the sources 
microlocally in the respective component, and this property enables the use of radial 
estimates in Melrose’s scattering calculus .Ψsc(M) [22, 32, 33], to get high regularity 
of .A((P − z)−1 − G±

z )f if .A ∈ Ψ
0,0
sc (M) is microsupported near sources in the 

respective component (incidentally, these are the same estimates which are used to 
prove (13)). Then, propagation of singularities and elementary manipulations with 
operatorial wavefront sets are used to deduce that .(P − z)−1 − G±

z is (everywhere) 
smoothing. Crucially, in each step of this proof, the uniformity in z is under control. 

This proves the desired estimate on the uniform wavefront set of .(P − z)−1, and 
as explained in Sect. 2.2, concludes the proof that .(P − z)−1 equals the Feynman 
Hadamard parametrix .HN(z) modulo inessential terms. 

2.4 Extraction of the Scalar Curvature 

From that point on we can effectively replace the resolvent .(P − z)−1 with the 
Hadamard parametrix .HN(z). In fact, if we integrate .(z − iε)−αHN(z) over the 
contour . γε instead of .(z − iε)−α(P − z)−1, the result will differ from . (P − iε)−α

merely by a term whose trace density is holomorphic in . α. 
The integral turns out to be of the same form as the Hadamard expansion. More 

precisely, .(P − iε)−α equals 

.

N∑

k=0

χuk

(−1)k𝚪(−α + 1)

𝚪(−α − k + 1)𝚪(α + k)
Fk+α−1(−iε, .). (14)



Lorentzian Spectral Zeta Functions on Asymptotically Minkowski Spacetimes 511

plus the irrelevant error term. The meromorphic properties of the on-diagonal 
restriction of (14) can be deduced from an analysis on .Rn thanks to the identity 
.Fα(z, x, x) = Fα(z, |0|η), valid for every .x ∈ M . 

A toy example illustrating what happens in Euclidean signature is provided by 
the integral 

. 

ˆ
Rn

(‖ξ‖2 − z)−αdnξ = 1

𝚪(α)

ˆ ∞

0

(ˆ
Rn

e−t (‖ξ‖2−z)dnξ

)
tα−1dt,

assuming for simplicity .z < 0 for the moment. It has the same poles as 

. 

1

𝚪(α)

ˆ 1

0

(ˆ
Rn

e−t (‖ξ‖2−z)dnξ

)
tα−1dt

= (2π)n

𝚪(α)(4π)
n
2

∞∑

k=0

zk

k!
ˆ 1

0
tα− n

2 +k−1dt = π
n
2

𝚪(α)

∞∑

k=0

zk

k!(α − n
2 + k)

.

In consequence, we see that the residue at .α = k, .k ∈ {1, . . . , n
2 − 1} is 

. resα=k

ˆ
Rn

(‖ξ‖2 − z)−αdnξ = z
n
2 −kπ

n
2

( n
2 − k)!𝚪(k)

. (15) 

In our problem, we need to deal with integrals involving the Minkowski quadratic 
form rather than the Euclidean one. To that end we consider the complex valued n-
form 

. ωα =
( n∑

i=1

ξ2
i − z

)−α

dξ1 ∧ · · · ∧ dξn ∈ Ωn,0

for z in the upper half-plane. We show that it is closed, and that Stokes’ theorem 
can be applied to deform the signature from Euclidean to Lorentzian in integrated 
expressions, which eventually yields 

. resα=k

ˆ
Rn

(
−ξ2

1 +
n∑

i=2

ξ2
i −z−i0

)−α

dnξ = i resα=k

ˆ
Rn

( n∑

i=1

ξ2
i −z

)−α

dnξ,

where the r.h.s. is computed using (15). 
By taking into account the . 𝚪 function factors in (14) we get the location of 

the poles of .(P − iε)−α , and the remaining ingredient in the computation of the 
residues are the on-diagonal restrictions .uk(x, x) of the coefficients .uk(x, y). These 
coefficients can be found for instance by observing that the transport equations 
for . uk are analogous to transport equations in the Riemannian setting, so they are 
given by analogous expressions in terms of the metric g and its derivatives, with



512 N. V. Dang and M. Wrochna

obvious sign changes to account for the switch of signature [4, 24]. The Riemannian 
transport equations are in turn directly related to transport equations for the more 
familiar heat kernel coefficients. 

We are particularly interested in the residue at .α = n
2 − 1 which comes from the 

coefficient .u1(x, x), and this coefficient can also be found by an inspection of the 
first two transport equations, directly in Lorentzian signature. In normal coordinates 
(also denoted by x) centered around an arbitrary point .x0 ∈ M (so . x0 is .x = 0 in 
normal coordinates), we have the identity 

. P = ∂xkgkj (x)∂xj + gjk(x)(∂xj log |g(x)| 1
2 )∂xk .

This can be used to express the transport equations in a more convenient form and 
one finds after a short computation that they imply 

. u1(0) = −Pu0(0) = −P(|g(0)| 1
4 |g(x)|− 1

4 )|x=0.

In normal coordinates, .|g(0)| 1
4 = 1 and 

. gij (x) = ηij + 1

3
Rikjlx

kxl+O(|x|3), |g(x)|− 1
4 = 1+ 1

12
Rickl(0)xkxl+O(|x|3),

where .Rickl is the Ricci tensor. This implies that 

. − P |g(x)|− 1
4 = −1

6
gklRickl(0) + O(|x|),

where .gklRickl = Rg(0) is the scalar curvature at . x0. Since . x0 was arbitrary, we 
conclude .u1(x, x) = − 1

6Rg(x). 
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Aspects of Non-associative Gauge Theory 

Sergey Grigorian 

Abstract A smooth loop is the direct non-associative generalization of Lie group. 
In this paper, we review the theory of smooth loops and smooth loop bundles. This 
is then used to define a non-associative analog of the Chern-Simons functional. 

1 Introduction 

One of highly successful areas at the intersection of differential geometry, analysis, 
and mathematical physics is gauge theory. As it is well-known, this is the study of 
connections on bundles with particular Lie groups as the structure groups. In [5], 
the author initiated a theory of smooth loops, which are non-associative analogs 
of Lie groups, and began the development of gauge theory based on loops, i.e. a 
non-associative gauge theory. The purpose of this note is to review the theory of 
smooth loops and loop bundles, and to provide a more rigorous construction of a 
non-associative Chern-Simons functional on 3-manifolds. In particular, the affine 
space of connections in a standard gauge theory is replaced by an affine space . T
of torsions, modelled on 1-forms with values in a loop algebra (the tangent space 
to a loop at identity). We define a 1-form on . T, show that it is a closed form, and 
show that it is the exterior derivative of a function on . T, which we define to be the 
Chern-Simons functional. Finally, we show how this functional is affected by gauge 
transformations. 
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2 Smooth Loops 

For a detailed discussion of concepts related to smooth loops, the reader is referred 
to [5]. The reader can also refer to [6, 7, 9, 11, 12] for a discussion of these concepts. 

Definition 1 A loop . L is a set with a binary operation .p · q with identity . 1, and 
compatible left and right quotients .p\q and .p/q, respectively. 

In particular, existence of quotients is equivalent to saying that for any . q ∈ L,

the left and right product maps . Lq and . Rq are invertible maps. Restricting to the 
smooth category, we obtain the definition of a smooth loop. 

Definition 2 A smooth loop is a smooth manifold . L with a loop structure such that 
the left and right product maps are diffeomorphisms of . L.

Definition 3 A pseudoautomorphism of a smooth loop . L is a diffeomorphism . h :
L −→ L for which there exists another diffeomorphism .h' : L −→ L, known as 
the partial pseudoautomorphism corresponding to . h, such that for any .p, q ∈ L, 

.h (pq) = h' (p) h (q) . (1) 

In particular, .h' = R−1
h(1) ◦ h. The element .h (1) ∈ L is the companion of . h'. As 

shown in [5], given h and . h', we have the following properties 

. h (pq) = h' (p) h (q) h (q\p) = h' (q) \h (p) h' (p/q) = h (p) /h (q) .

(2) 

It is then easy to see that the sets of pseudoautomorhisms and partial pseudoauto-
morphisms are both groups. Denote the former by . Ψ and the latter by . Ψ '. We also  
see that the automorphism group of . L is the subgroup .H ⊂ Ψ which is the stabilizer 
of .1 ∈ L. We will use . L to denote . L with the action of . Ψ and . L' to denote . L with 
the action of . Ψ ', if a distinction between the G-sets is needed. 

Let .r ∈ L, then we may define a modified product . ◦r on . L via . p ◦r q =
(p · qr)/r , so that . L equipped with product . ◦r will be denoted by .(L, ◦r ) , the 
corresponding quotient will be denoted by . /r . We have the following properties 
[5]. 

Lemma 1 Let .h ∈ Ψ. Then, for any . p, q, r ∈ L,

.h' (p ◦r q) = h' (p) ◦h(r) h' (q) h' (p/rq) = h' (p) /h(r)h
' (q) . (3) 

Consider the tangent space .l :=T1L at .1 ∈ L. By analogy with Lie groups, for 
any .ξ ∈ l, define the fundamental vector field .ρ (ξ) by pushing forward . ξ by right 
translation, so that for any .q ∈ L, . ρ (ξ)q = (

Rq

)
∗ ξ.

Definition 4 ([5]) The Maurer-Cartan form . θ is an .l-valued 1-form on . L, such that 

.θ (ρ (ξ)) = ξ. Equivalently, for any vector field X, .θ (X)|p =
(
R−1

p

)

∗ Xp ∈ l.
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This allows us to define brackets on . l. For each .p ∈ L define the bracket 
.[·, ·](p) given for any .ξ, η ∈ l by .[ξ, η](p) = − θ ([ρ (ξ) , ρ (η)])|p . We will 
denote . l equipped with the bracket .[·, ·](p) by .l(p). Define the bracket function 
.b : L −→ l ⊗ Λ2l∗ to be the map that takes .p 	→ [·, ·](p) ∈ l ⊗ Λ2l∗, so that 
.b (θ, θ) is an .l-valued 2-form on . L, i.e. .b (θ, θ) ∈ Ω2 (l). 

Theorem 1 ([5, Theorem 3.10]) The form . θ satisfies .dθ = 1
2db (θ, θ) . 

With respect to the action of . Ψ, the bracket satisfies the following property. 

Lemma 2 If .h ∈ Ψ (L) and .q ∈ L, then, for any .ξ, η, γ ∈ l, . h'∗ [ξ, η](q) =
[
h'∗ξ, h'∗η

]h(q)
.

We will assume that . Ψ is a finite-dimensional Lie group, and suppose the Lie 
algebras of . Ψ and .Hs = Aut (L, ◦s) are . p and . hs , respectively. In particular, . hs is a 
Lie subalgebra of . p. Also, we will assume that . Ψ acts transitively on . L. The action 
of . Ψ on . L induces an action of the Lie algebra . p on . l, which we will denote by . ·.
Definition 5 Define the map .ϕ : L −→ .l ⊗ p∗ such that for each .s ∈ L and .γ ∈ p, 

.ϕs (γ ) = d

dt
(exp (tγ ) (s))/s

∣∣
∣∣
t=0

∈ l. (4) 

Lemma 3 ([5]) The map . ϕ as in (4) is equivariant with respect to corresponding 
actions of .Ψ (L) , in particular for .h ∈ Ψ, .s ∈ L, .γ ∈ p, we have 

.ϕh(s) ((Adh)∗ γ ) = (
h')

∗ ϕs (γ ) . (5) 

Moreover, the image of . ϕs is . l(s) and the kernel is . hs , and hence, .p ∼= hs ⊕ l(s). 

Lemma 4 ([5]) Suppose .ξ ∈ p and .η, γ ∈ l, then 

.ξ · [η, γ ](s) = [ξ · η, γ ](s) + [η, ξ · γ ](s) + as (η, γ, ϕs (ξ)) . (6a) 

ξ · ϕs (η) = η · ϕs (ξ) + ϕs

(
[ξ,  η]p

) + [ϕs (ξ) , ϕs (η)](s) . (6b) 

Similarly as for Lie groups, we may define a Killing form .K(s) on . l(s). For . ξ, η ∈
l, we have  

.K(s) (ξ, η) = Tr
(
ad(s)

ξ ◦ ad(s)
η

)
, (7) 

where . ◦ is just composition of linear maps on . l and .ad(s)
ξ (·) = [ξ, ·](s). Clearly . K(s)

is a symmetric bilinear form on . l. In [5] it is shown that for .h ∈ Ψ, and .ξ, η ∈ l it 
satisfies .K(h(s))

(
h'∗ξ, h'∗η

) = K(s) (ξ, η) . 
Suppose now .K(s) is nondegenerate and .p-invariant, so that the action of . p is 

skew-adjoint with respect to .K(s). Moreover suppose . p is semisimple itself, so that 
it has a nondegenerate, invariant Killing form .Kp. We will use .〈·, ·〉(s) and .〈·, ·〉p
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to denote the inner products using .K(s) and .Kp, respectively. Then, given the map 
.ϕs : p −→ l(s), we can define its adjoint with respect to these two bilinear maps. 

Definition 6 Define the map .ϕt
s : l(s) −→ p such that for any .ξ ∈ l(s) and .η ∈ p, 

.
〈
ϕt

s (ξ) , η
〉
p

= 〈ξ, ϕs (η)〉(s) . (8) 

Since .hs
∼= kerϕs , we have .p ∼= hs ⊕ Imϕt

s , so that . h
⊥
s = Imϕt

s .

Lemma 5 ([5, Lemma 3.43]) Suppose . Ψ acts transitively on .L, . l is an irreducible 
representation of . h, and suppose the base field of . p is .F = R or . C. Then, there exists 
a .λ ∈ . F such that for any .s ∈ L, .ϕsϕ

t
s = λ idl and .ϕt

sϕs = λπh⊥
s
. 

Thus, given our prior assumption of the transitivity of the action of . Ψ, the maps 
. ϕs and . ϕt

s are isomorphisms between . l and .h⊥
s . If .s ∈ L is fixed, and there is no 

ambiguity, we will use the following notation. Given .ξ ∈ p, .ξ̂ = ϕs (ξ) ∈ l and 
given .η ∈ l, .η̌ = 1

λs
ϕt

s (η) ∈ h⊥
s . We can also use . ϕt

s to define a new bracket . [·, ·]ϕs

on . l, such that for . ξ, η ∈ l,

. [ξ, η]ϕs
= ϕs

([
ξ̌ , η̌

]

p

)
. (9) 

Lemma 6 ([5, Lemma 3.50]) Let .s ∈ L, then under the assumptions of Lemma 5, 
the bracket .[·, ·]ϕs

satisfies the following properties. Suppose .ξ, η, γ ∈ l, then 

1. . 
〈
[ξ, η]ϕs

, γ
〉(s) = − 〈

η, [ξ, γ ]ϕs

〉(s)
.

2. For any .h ∈ Ψ, . [ξ, η]ϕh(s)
= (

h')
∗
[(

h')−1
∗ ξ,

(
h')−1

∗ η
]

ϕs

.

3 Loop Bundles 

Let M be a smooth, finite-dimensional manifold with a .Ψ-principal bundle . π :
P −→ M.

Definition 7 Let .s : .P −→ L be an equivariant map. In particular, the equivalence 
class .

⌊
p, sp

⌋
Ψ
defines a section of the bundle .Q = P × ΨL. We will refer to s as 

the defining map (or section). 

We will define several associated bundles related to . P. As it is well-known, 
sections of associated bundles are equivalent to equivariant maps. With this in mind, 
we also give properties of equivariant maps that correspond to sections of these 
bundles. Let .h ∈ Ψ and, as before, denote by . h' the partial action of h.
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.

Bundle Equivariant map Equivariance property
P k : P −→ Ψ kph = h−1kp

Q' = P×Ψ ' L' q : P −→ L
' qph = (

h')−1
qp

Q = P×Ψ L r : P −→ L rph = h−1
(
rp

)

A = P×Ψ '∗ l η : P −→ l ηph = (
h')−1

∗ ηp

pP = P×(Adξ )∗ p ξ : P −→ p ξph =
(
Ad−1

h

)

∗ ξp

Ad (P) = P×AdΨ Ψ u : P −→ Ψ uph = h−1uph

(10) 

Given equivariant maps .q, r : P −→ L
', define an equivariant product using s, 

given for any .p ∈ P by 

. q ◦s r|p = qp ◦sp rp. (11) 

Due to Lemma 1, the corresponding map .q ◦s r : P −→ L
' is equivariant, and hence 

. ◦s induces a fiberwise product on sections of . Q. Analogously, we define fiberwise 
quotients of sections of . Q. Similarly, we define an equivariant bracket .[·, ·](s) and 
the equivariant map . ϕs . Other related objects such as the Killing form .K(s) and the 
adjoint . ϕt

s to . ϕs are then similarly also equivariant. 
Suppose the principal .Ψ-bundle . P has a principal Ehresmann connection given 

by the decomposition .TP = HP ⊕ VP and the corresponding vertical .p-valued 
connection 1-form . ω. Given an equivariant map .f : P −→ S, define 

.dωf := f∗ ◦ proj
H

: TP −→ HP −→ T S. (12) 

This is then a horizontal map since it vanishes on any vertical vectors. The map . dωf

is moreover still equivariant, and hence induces a covariant derivative on sections of 
the associated bundle .P × ΨS. If  S is a vector space, then this reduces to the usual 
definition of the exterior covariant derivative of a vector bundle-valued function and 
.dωf is a vector-bundle-valued 1-form. Note that due to our initial assumption that 
.K(s) is .p-invariant, we also see that . dω is metric-compatible with respect to . 〈·, ·〉(s) .

Following [5], let us define the torsion of the defining map s with respect to the 
connection . ω. 

Definition 8 The torsion .T (s,ω) of the defining map s with respect to . ω is a 
horizontal .l-valued 1-form on . P given by .T (s,ω) = (s∗θ)◦projH, where . θ is Maurer-
Cartan form of . L. Equivalently, at .p ∈ P, we have  

. T (s,ω)
∣∣
∣
p

=
(
R−1

sp

)

∗ dωs
∣
∣
p

. (13) 

Thus, .T (s,ω) is the horizontal component of .θs = s∗θ. We also easily see that 
it is .Ψ-equivariant. Thus, .T (s,ω) is a basic (i.e. horizontal and equivariant) .l-valued 
1-form on . P, and thus defines a 1-form on M with values in the associated vector 
bundle .A = P×Ψ '∗ l. We have the following properties.
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Theorem 2 Suppose .s : P −→ L , then 

.dωϕs = idp ·T (s,ω) −
[
ϕs, T

(s,ω)
](s)

. (14a) 

dω ϕt 
s = ϕt 

s

(
Ť · idl

)
−

[
Ť ,  ϕt 

s

]

p 
, (14b) 

where . idp and . idl are the identity maps of . p and . l, respectively, and . · denotes the 
action of the Lie algebra . p on . l. 

Proof Equation (14a) follows from [5, Theorem 4.11]. However to obtain (14b), 
suppose . ξ is an .l-valued map and . η is a .p-valued map. Then, 

. 
〈(
dωϕt

s

)
(ξ) , η

〉(s) = 〈
ξ,

(
dωϕs

)
η
〉(s)

.

Using (14a) and (6b), we obtain (14b). 

Recall that the curvature .F (ω) ∈ Ω2 (P, p) of the connection . ω on . P is given by 

.F (ω) = dω ◦ projH = dω + 1

2
[ω,ω]p , (15) 

where wedge product is implied. Given the defining map s, define . F̂ (s,ω) ∈ Ω2 (P, l)

to be the projection of the curvature .F (ω) to . l with respect to s, such that for any 
. Xp, Yp ∈ TpP,

.F̂ (s,ω) = ϕs

(
F (ω)

)
. (16) 

Theorem 3 ([5, Theorem 4.19]) .F̂ (s,ω) and .T (s,ω) satisfy the following structure 
equation 

.F̂ (s,ω) = dωT (s,ω) − 1

2

[
T (s,ω), T (s,ω)

](s)

, (17) 

where a wedge product between the 1-forms .T (s,ω) is implied. 

In the case of an octonion bundle over a 7-dimensional manifold, this relationship 
between the torsion and a curvature component has been shown in [2]. Using . ϕs and 
. ϕt

s, let us define an adapted covariant derivative as a map from the space of .l-valued 
equivariant functions .Ω0

basic (P, l) to the space of horizontal .l-valued equivariant 
(i.e. basic) 1-forms .Ω1

basic (P, l): 

.dω
ϕs

= 1

λ
ϕs ◦ dω ◦ ϕt

s : Ω0
basic (P, l) −→ Ω1

basic (P, l) . (18) 

We can see that this covariant derivative is metric-compatible as long as . dω is.
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Lemma 7 Suppose .ξ, η ∈ Ω0
basic (P, l) , then . dω is metric-compatible if and only 

if 

. d 〈ξ, η〉s = 〈
dω
ϕs

ξ, η
〉
s
+ 〈

ξ, dω
ϕs

η
〉
s
.

Proof This can be shown by explicitly expanding . dω
ϕs

and noting that since . ϕsϕ
t
s =

λ idl, . (dωϕs) ϕt
s = −ϕs

(
dϕt

s

)
.

Theorem 4 .F̂ (s,ω) satisfies the following Bianchi identity 

.dω
ϕs

F̂ (s,ω) = Fhs
∧̇T (s,ω), (19) 

where .Fhs
= πhs

F and . ∧̇ denotes the action of . p on . l combined with the wedge 
product of p-forms. 

Proof We can write .F = Fhs
+ 1

λ
ϕt

s

(
F̂

)
, so applying .ϕs ◦ dω, the left-hand side 

vanishes due to the standard Bianchi identity, and we are left with 

. dω
ϕs

F̂ = −ϕs

(
dωFhs

) = (
dωϕs

) ∧ Fhs
.

Using (14a), we obtain (19). 

3.1 Gauge Theory 

As discussed earlier, equivariant horizontal forms on . P give rise to sections of 
corresponding associated bundles over the base manifold . M. So let us now switch 
perspective, and work in terms of sections of bundles. Recall that the space of 
connections on . P is an affine space modelled on .Ω1 (pP) . Thus, any connection 
.ω̃ = ω + A for some .A ∈ Ω1 (pP). Then, 

.T (s,ω̃) = T (s,ω) + ϕs (A) (20) 

The space of possible torsions of s therefore comes from deformations by elements 
of .ϕt

s

(
Ω1 (A)

)
. So define the torsion space .Ts

∼= Ω1 (A) . Therefore, for any . ξ ∈
Ω1 (A) , the torsion and curvature of .ωξ = ω + ξ̌ are given by 

.T (s,ωξ ) = T (s,ω) + ξ . (21a) 

F̂ (s,ωξ ) = F̂ (s,ω) + dω 
ϕs ξ + 

1 

2 
[ξ,  ξ ]ϕs . (21b) 

Since our prior assumption of transitivity of the action of . Ψ implies that . ϕs is 
surjective, we can find a reference connection . ω0 for which .T (s,ω0) = 0. In
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particular, . ω0 will have curvature with values in . hs , and in particular . F̂ (s,ω0) =
0. The torsion will unchanged if we add to . ω an .hs-valued 1-form, hence the 
equivalence .Ts

∼= Ω1 (A) is independent of the choice of a particular . ω0. 
Suppose h is a section of the associated bundle .Ad (P) , then it defines a gauge-

transformation and the gauge transformed connection is .h∗ω. In particular, for the 
section .s ∈ 𝚪 (Q) , we have 

.dh∗ωs = (h∗)−1 dω (h (s)) . (22) 

Since the torsion is determined by the covariant derivative of . s, transformations of 
the connection and the defining section s are very closely related. Indeed, as shown 
in [5], the corresponding transformation of torsion is given by 

. T (h(s),ω) = (
Rh(s)

)−1
∗ dω (h (s))

= h'∗ ◦ (Rs)
−1∗ ◦ (h∗)−1 dω (h (s))

= h'∗T (s,h∗ω), (23) 

which follows from Definition 8 and properties of h (2). Recall that we assumed 
that . Ψ acts transitively on . L, so that, for a fixed connection . ω, all the possible 
torsions are obtained by the action of . Ψ on . s, with the non-trivial transformations 
given by cosets of .Ψ/Hs, where .Hs = Stab (s) . On the other hand, as (23) shows,  
transformations of s correspond to gauge transformations of the connection. Since, 

.dh∗ωs = dωs + (h)−1∗
(
dωh

) · s, (24) 

we obtain 

.T (s,h∗ω) = T (s,ω) + ϕs

(
(h∗)−1 (

dωh
))

. (25) 

We will define loop gauge transformations to be precisely those that act non-trivially 
on . s. Infinitesimally this corresponds to taking .h = exp

(
η̌
)
for .η ∈ Ω0 (A), so that 

.T (s,u∗ω) = T (s,ω) + dω
ϕs

η, (26) 

hence at .T (s,ω) ∈ Ts , the tangent vectors to . Ts in the directions of loop gauge 
transformations correspond precisely to the image of .dω

ϕs
. Although this is beyond 

the scope of this note, the .L2-norm of T may be considered as a functional on gauge 
orbits in . Ts . Critical points then become analogues of the Coulomb gauge condition 
in gauge theory [1–5, 8]. 

The above considerations allow us to consider analogues of various functionals 
defined in gauge theory [5]. The key difference of course is that . F̂ does not satisfy 
the standard Bianchi identity.
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Let us now specialize to the case of M being a smooth compact 3-dimensional 
manifold. Following the standard theory, as in [10], let us define a 1-form . ρ on . Ts , 
for .χ ∈ Ω1 (A) , which is also interpreted as an element of .TωT, by  

. ρ (χ)|ω =
ˆ

M

〈
F̂ (s,ω), χ

〉(s)
. (27) 

Theorem 5 Suppose M is a smooth compact 3-dimensional manifold, then . ρ =
dϑ , where . ϑ is a functional on .Ts

∼= Ω1 (A) given by 

.ϑ (ξ) = 1

2

ˆ
M

〈
dω
ϕs

ξ + 1

3
[ξ, ξ ]ϕs

, ξ

〉(s)

dt. (28) 

The critical points of . ϑ correspond to .ωξ = ω0 + ξ̌ for which . F̂ (s,ωξ ) = 0.

Proof Consider .ωξ = ω + ξ̌ , then using Stokes’ Theorem, to first order we get 

. ρ (χ)|ωξ
− ρ (χ)|ω =

ˆ
M

〈
dω
ϕs

ξ, χ
〉(s) + O

(
|ξ |2

)

=
ˆ

M

d 〈ξ, χ〉(s) +
ˆ

M

〈
ξ, dω

ϕs
χ

〉(s) + O
(
|ξ |2

)

=
ˆ

M

〈
ξ, dω

ϕs
χ

〉(s) + O
(
|ξ |2

)

Using the same argument as in [10], we see that .dρ = 0. Since . Ts is a contractible 
space, by Poincare lemma, .ρ = dϑ for some function . ϑ on .Ts . Consider now a 
path .ω (t) = ω0 + t ξ̌ from . ω0 to .ω = ω0 + ξ̌ , where . ω0 is such that .T (s,ω0) = 0. 
Integrating it explicitly, and noting that since . ρ is closed, this is path-independent, 
we get, 

.ϑ (ξ) − ϑ (0) =
ˆ 1

0
ρω(t) (ϕs (ω̇ (t))) dt

=
ˆ 1

0

ˆ
M

〈
F̂ (s,ω(t)), ξ

〉(s)
dt

=
ˆ 1

0

ˆ
M

〈
tdω

ϕs
ξ + 1

2
t2 [ξ, ξ ]ϕs

, ξ

〉(s)

dt

= 1

2

ˆ
M

〈
dω
ϕs

ξ + 1

3
[ξ, ξ ]ϕs

, ξ

〉(s)

dt.
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Setting .ϑ (0) = 0, and noting that .ξ = T (s,ξ) and .dω
ϕs

ξ = F̂ (s,ξ) − [ξ, ξ ]ϕs
, we 

recover 

.ϑ (ξ) = 1

2

ˆ
M

(〈
T , F̂

〉(s) − 1

6λ2
〈
T , [T , T ]ϕs

〉(s)
)

, (29) 

which (up to a factor of . 12 ), is the Loop Chern-Simons Functional defined in [5]. In 

particular, we see that .dϑ |ω = 0 if and only if .F̂ (s,ω) = 0, that is, connections for 
which this holds are critical points of the functional . ϑ.

Unlike in the case of the standard Chern-Simons Functional, . ρ does not 
necessarily vanish along orbits of the non-associative gauge action. As we see from 
(26), vectors tangent to the orbits are given by .dω

ϕs
η for some .η ∈ Ω0 (A) . Using 

(19), we find 

. ρ
(
dω
ϕs

η
)∣∣

ω
=
ˆ

M

〈
Fω
hs

∧̇T (s,ω), η
〉(s)

. (30) 

Now let us consider how . ϑ is affected by gauge transformations. Consider a 
path .t ∈ [0, 1] connecting .T (s,ω) to .T (s,u∗ω). In particular, this is equivalent to a 
path .ξ (t) ∈ Ω1 (A) such that .ξ (0) = 0 and .ξ (1) = ϕs (u∗ω − ω) . Then, define 
.ω (t) = ω + ξ̌ (t) , so that 

. ϑ (ξ (1)) − ϑ (0) =
ˆ 1

0
ρω(t) (ϕs (ω̇ (t))) dt

=
ˆ 1

0

ˆ
M

〈
F̂ (s,ω(t)), ξ̇ (t)

〉(s)
dt. (31) 

As in the standard gauge theory [10], we may extend . P, and all the associated 
bundles, to a bundle over .M̃ = M × [0, 1] . In a local trivialization, let us define 
the connection .A = A0dt + Aidxi on . M̃ with .A0 = 0 and .(Ai)(p,t) = ωi (t)p. 
Then, we see that the curvature . FA of this connection is given by . (FA)0i = Ȧi (t)

and .(FA)ij = (
F (ω)

)
ij
. Hence 

.F̂A = ξ̇i (t) dt ∧ dxi +
(
F̂ (s,ω)

)

ij
dxi ∧ dxj = −ξ̇ (t) ∧ dt + F̂ (s,ω), (32) 

so that .
〈
F̂A, F̂A

〉
= −2

〈
F̂ (s,ω(t)), ξ̇ (t)

〉(s) ∧ dt, and thus (31) becomes 

.ϑ (ξ (1)) − ϑ (0) = −2
ˆ

M̃

〈
F̂A, F̂A

〉
. (33)
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This shows that there is a relation between Chern-Simons and a Chern-Weil-like 
functionals, similar to standard gauge theory. However, the .4-form .

〈
F̂A, F̂A

〉
on a 

4-manifold is not necessarily independent of the choice of connection, so it is not 
a topological invariant. On the other hand, the above discussion shows that in this 
particular case, it is independent of the path .ω (t) , so it is important to understand 
if there is an invariant theory that is related to this non-associative gauge theory. 

Acknowledgments This work was supported by the National Science Foundation grant DMS-
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Remarks on Global Smoothing Effect of 
Solutions to Nonlinear Elastic Wave 
Equations with Viscoelastic Term 

Yoshiyuki Kagei and Hiroshi Takeda 

Abstract The aim of this paper is to give the precise statement and proof of 
smoothing effect and asymptotic profiles of the small global solutions to quasilinear 
elastic wave equations with viscoelastic terms, which were already announced in 
Kagei and Takeda (Nonlinear Anal 219, Paper No. 112826, 36 pp., 2022). Here 
the nonlinear terms in this paper include time derivative. The proof is based on the 
estimates for the fundamental solutions. The difference between spatial derivative 
and time derivative in nonlinear terms is remarked. 

1 Introduction 

This paper studies the Cauchy problem of the following nonlinear elastic wave 
equations with viscoelastic term: 

.

{
∂2t u − μ∆u − (λ + μ)∇divu − ν∆∂tu = F(u), t > 0, x ∈ R

3,

u(0, x) = f0(x), ∂tu(0, x) = f1(x), x ∈ R
3,

(1) 

where .u = t(u1, u2, u3) is the unknown function; and .fj = t(fj1, fj2, fj3) . (j =
0, 1) are initial data. Here the superscript . t· stands for the transpose of the matrix. 
Throughout the paper we assume that the Lamé constants satisfy 

. μ > 0, λ + 2μ > 0,
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and the viscosity parameter . ν is positive. 
The aim of this paper is to give the precise statement and proof of the large time 

behavior of the global solutions to (1), which were announced in [3] without proof. 
For this reason, our nonlinear term is restricted to the form 

. F(u) = ∇u∇∂tu,

where . ∇ is the spatial gradient. Concerning the physical background of the system 
(1) and related results on mathematical analysis, see [3] and references therein. 

We begin with the existence of global solutions to (1) for small initial data. 

Theorem 1 Suppose that .F(u) = ∇u∇∂tu. Let . (f0, f1) ∈ Y := {Ḣ 3 ∩ Ẇ 1,1}3 ×
{H 2 ∩L1}3. If .ϵ := ‖f0, f1‖Y is sufficiently small, then there exists a unique global 
solution to (1) in the class 

. {C([0,∞); Ḣ 3 ∩ Ḣ 1) ∩ C1([0,∞);H 2)}3

satisfying the estimates 

.

‖∇αu(t)‖2 ≤ Cϵ(1 + t)−
1
4− α

2 , 1 ≤ α ≤ 3,

‖∂t∇αu(t)‖2 ≤ Cϵ(1 + t)−
3
4− α

2 , 0 ≤ α ≤ 2
(2) 

for .t ≥ 0, where the norm of .f ∈ Lp(R3) is defined by .‖f ‖p for .1 ≤ p ≤ ∞ and 
for .k ≥ 0 and .1 ≤ p ≤ ∞, .Wk,p(R3) is defined as the usual Sobolev spaces 

. Wk,p(R3) :=
{
f : R3 → R; ‖f ‖Wk,p(R3) := ‖f ‖p + ‖∇k

xf ‖p < ∞
}

with the notation .Wk,2(R3) = Hk(R3). 

Theorem 2 The global solution .u(t) constructed in Theorem 1 satisfies 

. u∈{C1((0,∞;W 2,6) ∩ Ẇ 1,∞(0,∞;W 1,∞)∩C2([0,∞);L2) ∩ C2((0,∞);L6)}3

and the estimates, 

.‖∇αu(t)‖∞ ≤ Cϵ(1 + t)−
3
2− α

2 , 0 ≤ α ≤ 1. (3)

‖∂tu(t)‖∞ ≤ Cϵ(1 + t)−2, (4) 

for .t ≥ 0 and 

.‖∇2∂tu(t)‖p ≤ Cϵ(1 + t)
− 9

4+ 1
p t

− 3
4+ 3

2p , 2 ≤ p ≤ 6, . (5)

‖∇∂tu(t)‖∞ ≤ Cϵ(1 + t)−
9 
4 t−

1 
4 , . (6)

‖∂2 t u(t)‖p ≤ Cϵ(1 + t)−
7 
4+ 1 

p t
− 3 

2 ( 
1 
2− 1 

p ) , 2 ≤ p ≤ 6 (7)
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for .t ≥ 0 with .p = 2 and .t > 0 with .p /= 2. 

Finally we mention the asymptotic profiles of the global solution u as .t → ∞. 
For this purpose, following [3], we introduce some notations. The diffusion waves 
.G

(β)
j (t) for .j = 0, 1 depending on the parameter .β > 0 are denoted by 

. G
(β)
j (t, x) := F−1[G(β)

j (t, ξ)],

where 

. G(β)
0 (t, ξ) := e− ν|ξ |2

2 t cos(β|ξ |t), G(β)
1 (t, ξ) := e− ν|ξ |2

2 t sin(β|ξ |t)
β|ξ | .

We also denote the identity matrix by .I3 ∈ M(R; 3) and define 

. P := ξ

|ξ | ⊗ ξ

|ξ | .

The 3-d valued constant vectors depending on the initial data and the nonlinear term 
are defined by 

. mj = t(mj1,mj2,mj3), M[u] := t(M1[u],M2[u],M3[u]),

where 

. m0k :=
ˆ
R3

∇f0k(x)dx, m1k :=
ˆ
R3

f1k(x)dx

and 

. Mk[u] :=
ˆ ∞

0

ˆ
R3

Fk(u)(τ, y)dy dτ

for .k = 1, 2, 3. Using the above notation, we denote the functions G, H and . G̃ by 

. 

G(t, x) :=∇−1F−1
⎾(
G(

√
λ+2μ)

0 (t, ξ)−G(
√

μ)

0 (t, ξ)
)
P+G(

√
μ)

0 (t, ξ)
⏋
m0

+F−1
⎾(
G(

√
λ+2μ)

1 (t, ξ)−G(
√

μ)

1 (t, ξ)
)
P+G(

√
μ)

1 (t, ξ)
⏋
(m1+M[u]),

.

H(t, x) :=
∇−1F−1

⎾(
(λ + 2μ)G(

√
λ+2μ)

1 (t, ξ) − μG(
√

μ)

1 (t, ξ)
)
P+ μG(

√
μ)

1 (t, ξ)
⏋
m0

+ F−1
⎾(
G(

√
λ+2μ)

0 (t, ξ) − G(
√

μ)

0 (t, ξ)
)
P+ G(

√
μ)

0 (t, ξ)
⏋
(m1 + M[u])
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and 

. 

G̃(t, x) :=
− ∆∇−1F−1

⎾(
(λ + 2μ)G(

√
λ+2μ)

0 (t, ξ) − μG(
√

μ)

0 (t, ξ)
)
P+ μG(

√
μ)

0 (t, ξ)
⏋
m0

− ∆F−1
⎾(

(λ + 2μ)G(
√

λ+2μ)

1 (t, ξ) − μG(
√

μ)

1 (t, ξ)
)
P+ μG(

√
μ)

1 (t, ξ)
⏋

(m1 + M[u]),

respectively, where .F−1 represents the Fourier inverse transform. Now we formulate 
the approximation formulas of the global solutions by G, H and . G̃ as . t → ∞.

Theorem 3 The global solution .u(t) of (1) constructed in Theorem 1 satisfies the 
estimates 

. ‖∇α(u(t) − G(t))‖2 = o(t−
1
4− α

2 ), 1 ≤ α ≤ 3,

‖∇α(u(t) − G(t))‖∞ = o(t−
3
2− α

2 ), 0 ≤ α ≤ 1,

‖∇α(∂tu(t) − H(t))‖2 = o(t−
3
4− α

2 ), 0 ≤ α ≤ 2,

‖∇2(∂tu(t) − H(t))‖p = o(t
− 5

2 (1− 1
p

)− 1
2 ), 2 ≤ p ≤ 6,

‖∇α(∂tu(t) − H(t))‖∞ = o(t−2− α
2 ), 0 ≤ α ≤ 1,

‖∂2t u(t) − G̃(t)‖p = o(t
− 5

2 (1− 1
p

)
), 2 ≤ p ≤ 6

as .t → ∞. 

It is worth pointing out that as is seen in Theorem 2, we conclude that 

.u ∈ {C1((0,∞);W 2,6) ∩ C2((0,∞);L6)}3, (8) 

while we only have 

. 
u ∈ {C1((0,∞);

⋃
2≤p<6

Ẇ 2,p) ∩ W 1,∞(0,∞;W 1,∞) ∩ C2((0,∞);
⋃

2≤p<6

Lp)}3

for .F(u) = ∇u∇2u, which is the reason why we separate the results corresponding 
to the nonlinear terms .F(u) = ∇u∇2u (cf. [3]) and .F(u) = ∇u∇∂tu in this 
paper. In other words, when we deal with the nonlinear term .F(u) = ∇u∇2u, it  
seems difficult for us to obtain the smoothing effect (8), even if we assume the extra 
regularity .f1 ∈ H 2 as in Theorem 1–3. Indeed, the crucial point of the derivation 
of (8) is the estimation of .‖∇u∇2Du‖p0 for some .p0 ∈ (2, 6), where D is the t , x
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gradient. When .F(u) = ∇u∇∂tu, it is easy to see that 

. ∇F(u) = ∇2u∇∂tu + ∇u∇2∂tu.

Therefore taking .p0 = 3 and applying the Höloder inequality, the Sobolev 
inequality: 

.‖g‖6 ≤ C‖∇g‖2 (9) 

and the Gagliardo-Nirenberg inequality: 

.‖g‖∞ ≤ C‖g‖
1
4
2 ‖∇2g‖

3
4
2 , (10) 

we have 

.

‖∇F(u)‖3 ≤ ‖∇2u‖6‖∇∂tu‖6 + ‖∇u‖∞‖∇2∂tu‖3
≤ C‖∇3u‖2‖∇2∂tu‖2 + C‖∇u‖

1
4
2 ‖∇3u‖

3
4
2 ‖∇2∂tu‖3.

(11) 

Here we note that the estimate of .‖∇2∂tu‖3 for the case .F(u) = ∇u∇∂tu is obtained 
independently from (8) (see Proposition 1 later). On the other hand, for the case 
.F(u) = ∇u∇2u, direct calculation gives 

. ∇F(u) = (∇2u)2 + ∇u∇3u,

which implies we cannot expect the estimate .‖∇u∇3u‖p0 for .p0 > 2, when u is a 
global solution in .Ḣ 3 ∩ Ḣ 1 as constructed in Theorem 1.1 in [3]. 

In the remainder part of this paper, we only prove the estimate (5). Indeed, it is 
also announced in [3] that Theorem 1 is obtained in a similar manner to the proof of 
Theorem 1.1 in [3] and that, once we have Theorem 2, Theorem 3 can be verified 
by the same way as in the proof of Theorem 1.6 in [3]. Moreover the estimate (7) is 
proved in the similar way to estimate (5). And we easily have the other estimates in 
Theorem 2, applying the same argument in [3]. 

2 Preliminaries 

At first, we recall the decay properties of the Cauchy problem of the strong damped 
wave equations: 

.

{
∂2t w − β2∆w − ν∆∂tw = 0, t > 0, x ∈ R

3,

w(0, x) = w0(x), ∂tw(0, x) = w1(x), x ∈ R
3,

(12)
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where .w = w(t, x) : (0,∞) × R
3 → R and .β > 0. For this purpose, we 

introduce the evolution operators .K(β)
j (t)g for .j = 0, 1, where the solutions of 

(12) is expressed by 

.w(t) = K
(β)
0 (t)w0 + K

(β)
1 (t)w1. (13) 

The decay properties of .K
(β)
j (t)g for .j = 0, 1 are summarized as follows: 

Lemma 1 ([3–6]) Let .1 ≤ p ≤ ∞, .1 ≤ q ≤ p, .𝓁 ≥ 𝓁1 ≥ 0, .𝓁 ≥ 2𝓁2 ≥ 0 and 
.α ≥ α̃ ≥ 0. Then it holds that 

. 

∥∥∥∂𝓁
t ∇αK

(β)
0 (t)g

∥∥∥
p

≤ C(1 + t)
− 5

2 ( 1
q
− 1

p
)+ 1

2− 𝓁−𝓁1+α−α̃

2 ‖∇ α̃+𝓁1g‖q

+ Ce−ct (‖∇α1g‖p + t
− 3

2 ( 1
q
− 1

p
)− α−α̃

2 −(𝓁− 𝓁2
2 )+1‖∇ α̃+𝓁2g‖q)

(14) 

for .α1 ≥ α and 

. 

∥∥∥∂𝓁
t ∇αK

(β)
1 (t)g

∥∥∥
p

≤ C(1 + t)
− 5

2 ( 1
q
− 1

p
)+1− 𝓁−𝓁1+α−α̃

2 ‖∇ α̃+𝓁1g‖q

+ Ce−ct (‖∇α1g‖p + t
− 3

2 ( 1
q
− 1

p
)− α−α̃

2 −(𝓁− 𝓁2
2 )+1‖∇ α̃+𝓁2g‖q)

(15) 

for .α1 ≥ max{α − 2, 0}. 
Using the notation .K(β)

j (t)g for .j = 0, 1, we also have the expression of the 
solutions to (1) by the integral form: 

Lemma 2 ([3]) Let u be a solution of (1). Then it holds that 

. u(t) = ulin(t) + uN(t),

where 

.

ulin(t) := (K
(
√

λ+2μ)

0 (t) − K
(
√

μ)

0 (t))F−1[Pf̂0] + K
(
√

μ)

0 (t)f0

+ (K
(
√

λ+2μ)

1 (t) − K
(
√

μ)

1 (t))F−1[Pf̂1] + K
(
√

μ)

1 (t)f1
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and 

. 

uN(t) :=
ˆ t

0
(K

(
√

λ+2μ)

1 (t − τ) − K
(
√

μ)

1 (t − τ))F−1[PF̂ (u)(τ )]dτ

+
ˆ t

0
K

(
√

μ)

1 (t − τ)F (u)(τ )dτ.

The following lemma is well-known the .Lp-. Lp boundedness of the Riesz transform: 

Lemma 3 Let .1 < p < ∞. There exists .C > 0 such that 

. ‖Rag‖p ≤ C‖g‖p, (16) 

where 

. Rag := F−1
⎾

ξa

|ξ | ĝ
⏋

for .a = 1, 2, 3. 

For the proof, see e.g. [2]. 

3 Proof of Main Results 

In this section, as mentioned above, we prove the estimate (5) in Theorem 2. To do  
so, we split the proof into two steps. Firstly we deal with the case .2 ≤ p < 6, which 
is formulated as follows: 

Proposition 1 The solution .u(t) constructed in Theorem 1 satisifies 

. u(t) ∈ {C1((0,∞); Ẇ 2,p)}3

(5) for .2 ≤ p < 6. 

Proof Our proof starts with the observation of the smoothing effect of the linear 
solution. The estimates (14), (15) and (16) immediately lead to 

. ‖∇2∂tulin(t)‖Lp(R3) ≤ Cϵ(1 + t)
− 9

4+ 1
p t

− 3
4+ 3

2p (17) 

for .2 ≤ p ≤ 6 and .t > 0, where .ϵ := ‖f0, f1‖Y and . Y := {Ḣ 3 ∩ Ẇ 1,1}3 × {H 2 ∩
L1}3. For the nonlinear term, we firstly have 

.‖F(u)‖1 ≤ C‖∇u‖2‖∇∂tu‖2 ≤ Cϵ(1 + t)−2, (18) 

.‖F(u)‖2 ≤ C‖∇u‖∞‖∇∂tu‖2 ≤ Cϵ(1 + t)−
11
4 , (19)
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.

‖∇F(u)‖2 ≤ C‖∇2u‖4‖∇∂tu‖4 + C‖∇u‖∞‖∇2∂tu‖2
≤ C‖∇u‖

1
2∞‖∇3u‖

1
2
2 ‖∂tu‖

1
2∞‖∇2∂tu‖

1
2
2 + C‖∇u‖∞‖∇2∂tu‖2

≤ Cϵ(1 + t)−
13
4

(20) 

by (2)–(4), (10), where we used the well-known fact (cf. [1]) 

. ‖∇g‖2p ≤ C‖g‖
1
2∞‖∇2g‖

1
2
p , 1 ≤ p < ∞

for (20). Hence we also obtain 

.

‖F(u)(τ )‖p ≤ ‖F(u)(τ )‖
3
p

− 1
2

2 ‖F(u)(τ )‖3(
1
2− 1

p
)

6

≤ C‖F(u)(τ )‖
3
p

− 1
2

2 ‖∇F(u)(τ )‖3(
1
2− 1

p
)

2 ≤ Cϵ(1 + τ)
− 7

2+ 3
2p

(21) 

for .2 ≤ p ≤ 6 by the Höloder inequality, (9), (19) and (20). Now we note that 

.

∥∥∥∥∇2∂t

ˆ t

0
K

(β)
1 (t − τ)RaRbF (u)(τ )dτ

∥∥∥∥
p

≤ C

∥∥∥∥∇2∂t

ˆ t

0
K

(β)
1 (t − τ)F (u)(τ )dτ

∥∥∥∥
p

(22) 

by (16) for .2 ≤ p ≤ 6. Therefore it follows from (22), (15), (18), (20) and (21) that 

.

∥∥∥∇2∂tuN(t)

∥∥∥
p

≤ C

ˆ t
2

0
(1 + t − τ)

− 5
2 (1− 1

p
)− 1

2 ‖F(u)(τ )‖1dτ

+ C

ˆ t

t
2

(1 + t − τ)
− 5

2 ( 12− 1
p

)‖∇F(u)(τ )‖2dτ

+ C

ˆ t

0
e−c(t−τ){‖F(u)(τ )‖p + (t − τ)

− 3
2 ( 12− 1

p
)− 1

2 ‖∇F(u)(τ )‖2}dτ

≤ Cϵ

ˆ t
2

0
(1 + t − τ)

− 5
2 (1− 1

p
)− 1

2 (1 + τ)−2dτ

+ Cϵ

ˆ t

t
2

(1 + t − τ)
− 5

2 ( 12− 1
p

)
(1 + τ)−

13
4 dτ

+ Cϵ

ˆ t

0
e−c(t−τ){(1 + τ)

− 7
2+ 3

2p + (t − τ)
− 3

2 ( 12− 1
p

)− 1
2 (1 + τ)−

13
4 }dτ

≤ Cϵ(1 + t)
− 5

2 (1− 1
p

)− 1
2

(23)
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for .2 ≤ p < 6, since we used the fact that .0 > − 3
2 (

1
2 − 1

p
) − 1

2 > −1. Combining 
the estimates (17) and (23), we arrive at the desired estimate (5) for .2 ≤ p < 6, 
which proves the proposition. ⨅⨆

Finally, we show the estimate (5) with .p = 6. In the proof of Proposition 1, we  
already have the linear estimate (17) for .p = 6. Then what is left is to show the 
estimate for the nonlinear term. For this aim, we observe that 

. ‖∇F(u)(t)‖3 ≤ Cϵ(1 + t)−
7
2 + Cϵ(1 + t)−

11
3 t−

1
2 ≤ Cϵ(1 + t)−3t−

1
2 , (24) 

where we used (11), (5) with .p = 3 and (21) with .p = 6. Then we apply the 
estimates (22), (15), (18), (20), (21) and (24) to see that 

. 

∥∥∥∇2∂tuN(t)

∥∥∥
6

≤ C

ˆ t
2

0
(1 + t − τ)−

31
12 ‖F(u)(τ )‖1dτ

+ C

ˆ t

t
2

(1 + t − τ)−
5
6 ‖∇F(u)(τ )‖2dτ

+ C

ˆ t

0
e−c(t−τ)(‖F(u)(τ )‖6 + (t − τ)−

3
4 ‖∇F(u)(τ )‖3)dτ

≤ Cϵ

ˆ t
2

0
(1 + t − τ)−

31
12 (1 + τ)−2dτ + Cϵ

ˆ t

t
2

(1 + t − τ)−
5
6 (1 + τ)−

13
4 dτ

+ Cϵ

ˆ t

0
e−c(t−τ){(1 + τ)−

13
4 + (t − τ)−

3
4 (1 + τ)−3τ− 1

2 }dτ

≤ Cϵ(1 + t)−
7
3 t−

1
4 ,

(25) 

since 

. 

ˆ t

0
e−c(t−τ)(t − τ)−

3
4 (1 + τ)−3τ− 1

2 dτ

≤ Ce−ct t−
3
4

ˆ t
2

0
τ− 1

2 dτ + C(1 + t)−3t−
1
2

ˆ t

t
2

(t − τ)−
3
4 dτ

≤ Ct−
1
4 (e−ct + (1 + t)−3).

Summing up the estimates (17) with .p = 6 and (25), we conclude the estimate (5). 
We complete the proof.
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Local and Global Solutions for the 
Semilinear Proca Equations in the de 
Sitter Spacetime 

Makoto Nakamura 

Abstract Local and global solutions for the semilinear Proca equations are con-
sidered in the de Sitter spacetime with spatially flat curvature. This paper briefly 
introduces some results in Nakamura (J Differ Equ 270:1218–1257, 2021) with their 
proofs. Based on these results, the effects of the spatial expansion on the existence 
of solutions of the equations are considered. Especially, it is remarked that global 
solutions for small data are shown based on the dissipative effect caused by the 
spatial expansion of exponential order. 

1 Introduction 

The Proca equations (see [6]) are the extension of the Maxwell equations with the 
massive terms taken into account, and they describe the massive vector boson with 
spin 1. The semilinear Proca equations are derived in the Minkowski spacetime 
in [5] as the Euler-Lagrange equation from a Lagrangian density. We consider the 
equations in the de Sitter spacetime with spatially flat curvature. The de Sitter 
spacetime is the solution of the Einstein equations with the cosmological constant 
in the vacuum under the cosmological principle. It describes the spatial expansion 
or contraction of exponential order. 

We use the following convention. The Greek letters .α, β, γ, · · · run from 0 to n, 
and the Latin letters .j, k, 𝓁, · · · run from 1 to n. We use  the Einstein rule for  the sum  
of indices, namely, the sum is taken for the same upper and lower repeated indices, 
for example, .∂jφ

j :=  ∑n
j=1 ∂jφ

j , .∂j ∂
j :=  ∑n

j=1 ∂j ∂
j , .T α

α :=  ∑n
α=0 T α

α and 

.T j
j :=  ∑n

j=1 T j
j for any tensors . φα and .T α

β . 

Put .x := (x0, x1, · · · , xn) ∈ R
1+n, .t := x0. Let  .c > 0, .H > 0, .m > 0, . ̄h > 0

denote the speed of the light, the Hubble constant, the mass, the reduced Planck 
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constant, respectively. The de Sitter spacetime is the spacetime with a metric . {gαβ}
given by 

. − c2(dτ)2 = gαβdxαdxβ := −c2(dx0)2 + e2Hx0
n∑

j=1

(dxj )2, (1) 

where we have put the spatial curvature as 0, the variable . τ denotes the proper time 
(see e.g., [1, 2]). When .H = 0, the spacetime with (1) reduces to the Minkowski 
spacetime. 

Let .gαβ be defined such that the matrix .(gαβ) is the inverse matrix of the 
matrix .(gαβ). Put .∂α := gαβ∂β for .0 ≤ α ≤ n. Put .∇ := (∂1, · · · , ∂n), 
.∆ :=  ∑

1≤j≤n ∂2/(∂xj )2. Put 

.Q := − (n − 2)2H 2

4c2
+ m2c2

h̄2
(2) 

which is called “curved mass.” We consider the semilinear Proca equations in the 
de Sitter spacetime given by 

. c−2∂2t φj − e−2Ht∆φj + Qφj − μ0e
(n+2)H t/2J j + e−n(p−1)H t/2f (φ)j = 0

(3) 

with the gauge condition 

.divφ := ∂jφ
j = 0 (4) 

for initial data 

.φj (0, ·) = φ
j

0 (·), ∂0φ
j (0, ·) = φ

j

1 (·) (5) 

for .1 ≤ j ≤ n, where .φ := (φ1, · · · , φn), .φ0 := (φ1
0 , · · · , φn

0 ), . φ1 :=
(φ1

1 , · · · , φn
1 ), .μ0 > 0 is a constant, .J = (J 1, · · · , J n) is an electric current tensor, 

and we have put 

. f (φ)j := λ

(
n∑

k=1

|φk|2
)(p−1)/2

φj

for .λ ∈ C, .p = 1+2𝓁 .(𝓁 = 0, 1, 2, · · · ). When the current J has a potential K with 
.J j := ∂jK , Eq. (3) with the condition (4) is rewritten as 

.c−2∂2t φj − e−2Ht∆φj + Qφj + e−n(p−1)H t/2Hf (φ)j = 0 (6)
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for .1 ≤ j ≤ n, where . H is the Helmholtz projection defined by 

.Hf (φ)j := f (φ)j − ∂j (∂k∂
k)−1∂𝓁f (φ)𝓁 (7) 

and .−∂j (∂k∂
k)−1∂𝓁 = RjR𝓁 for the Riesz transform .Rj := ∂j /

√−∆ (see [7, 
Chapter VI] for the property of the Riesz transform). So that, the Cauchy problem 
(3), (4) and (5) is rewritten as 

.

⎧
⎪⎪⎨

⎪⎪⎩

(
c−2∂2t φ − e−2Ht∆φ + Qφ + e−n(p−1)H t/2Hf (φ)

)
(t, x) = 0,

divφ = 0,

φ(0, x) = φ0(x), ∂0φ(0, x) = φ1(x)

(8) 

for .(t, x) ∈ [0, T ) × R
n. The condition (4) with .J j = 0 for .1 ≤ j ≤ n is known 

as the radiation gauge condition, which is the special case of the Coulomb gauge 
condition and the Lorenz gauge condition. 

We use the Sobolev space .Hμ(Rn) and the homogeneous Sobolev space . Ḣμ(Rn)

of order .μ ≥ 0. For simplicity, .φ = (φ1, · · · , φn) ∈ Hμ(Rn) denotes . φj ∈ Hμ(Rn)

for .1 ≤ j ≤ n in the following. 
For .0 ≤ μ0 ≤ μ, .T > 0, .0 < R0 ≤ R and .H ≥ 0, we put 

. Xμ(T ) := {φ; ‖φ‖Xμ(T ) < ∞},
Xμ0,μ(T , R0, R) :=

{
φ ∈ Xμ(T ); ‖φ‖Ẋμ0 (T ) ≤ R0, ‖φ‖Xμ(T ) ≤ R

}

with .d(φ,ψ) := ‖φ − ψ‖X0(T ), where we have put 

. ‖φ‖Ẋμ(T ) := 1

c
‖∂0φ‖L∞((0,T ),Ḣμ(Rn)) + ‖e−Ht∇φ‖L∞((0,T ),Ḣμ(Rn))

+ √
Q‖φ‖L∞((0,T ),Ḣμ(Rn)) + √

H‖e−Ht∇φ‖L2((0,T ),Ḣμ(Rn)), (9) 

and its inhomogeneous version with . Ẋ, . Ḣ replaced by X, H , respectively. 

Definition 1 (Well-Posedness) For given .μ ≥ 0, we consider the local and global 
well-posedness as follows. 

(i) We say that the Cauchy problem (8) is locally well-posed if the following results 
hold. For any .φ0 ∈ Hμ+1(Rn) and .φ1 ∈ Hμ(Rn) with . divφ0 = divφ1 =
0, there exist .T > 0 and a unique solution . φ ∈ C([0, T ),Hμ+1(Rn)) ∩
C1([0, T ),Hμ(Rn)) ∩ Xμ(T ) of the Cauchy problem (8). Moreover, the 
solution depends on the initial data continuously in the sense that . d(φ,ψ) →
0 as .ψ0 → φ0 in .H 1(Rn) and .ψ1 → φ1 in .L2(Rn), where . ψ is the 
solution of the problem (8) for the initial data .ψ0(·) = ψ(0, ·) and . ψ1(·) =
∂0ψ(0, ·).
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(ii) We say that the Cauchy problem (8) is globally well-posed if T can be taken as 
.T = ∞ in (i). 

Firstly, we consider the Cauchy problem (8) in the Minkowski spacetime (i.e., 
.H = 0), which is compared with the case .H > 0 in the following Theorem 2 to 
remark the effects by the spatial expansion. For .μ0 ≥ 0, . φ0 and . φ1 in (8), we put 

. Dμ0 := ‖∇φ0‖Ḣμ0 (Rn) + √
Q‖φ0‖Ḣμ0 (Rn) + 1

c
‖φ1‖Ḣμ0 (Rn).

Theorem 1 (Local Well-Posedness for .H = 0) Let .n ≥ 2, .H = 0, .Q > 0. 
Let .μ0, μ ∈ {0, 1, 2, 3, · · · } with .μ0 ≤ μ and .μ0 < n/2. Let .p = 1 + 2𝓁, . 𝓁 =
1, 2, 3, · · · , and 

.p

{
≤ 1 + 2

n−2(μ0+1) if μ0 < n−2
2 ,

< ∞ if μ0 ≥ n−2
2 .

(10) 

Then the Cauchy problem (8) is locally well-posed. Here, there exists a constant 
.C > 0 which is independent of the data . φ0 and . φ1 such that T can be arbitrarily 
taken under the condition 

.0 < T ≤ C

D
p−1
μ0

. (11) 

Secondly, we consider the Cauchy problem (8) in the de Sitter spacetime with 
.H > 0. We define .p0(μ0) and . q∗0 by 

.p0(μ0) := 1 + 4

n − 2μ0
,

1

q∗0
:= 1 − (p − 1)(n − 2μ0)

4
. (12) 

Theorem 2 (Well-Posedness for .H > 0) Let .n ≥ 2. Let .H > 0 satisfy . (n −
2)h̄H/2 < mc2. Let .μ0, μ ∈ {0, 1, 2, 3, · · · } with .μ0 ≤ μ and .μ0 < n/2. Let 
.p = 1 + 2𝓁, .𝓁 = 1, 2, 3, · · · , and p satisfy (10). 

(i) (Local well-posedness for .μ0 = 0.) Let .μ0 = 0. The Cauchy problem (8) is 
locally well-posed, where T can be arbitrarily taken under the condition 

.0 < T ≤
(

C

D
p−1
0

)q∗
, (13) 

for some constant .C > 0 which is independent of . D0. Here,  . q∗ is arbitrarily 
fixed number which satisfies .1/q∗0 ≤ 1/q∗ ≤ 1 and .1/q∗ > 0. 

(ii) (Global well-posedness for .μ0 = 0.) Let .μ0 = 0 and .1 + 4/n ≤ p. If  . D0 is 
sufficiently small, then the Cauchy problem (8) is globally well-posed.
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(iii) (Local and global well-posedness for .μ0 > 0.) Let .μ0 > 0. The Cauchy 
problem (8) is locally well-posed, where T can be arbitrarily taken under the 
condition 

.0 < T ≤ − 1

Hμ0(p − 1)
log

(

1 − μ0(p − 1)q∗H
(

C

D
p−1
μ0

)q∗)

(14) 

for some constant .C > 0 which is independent of .Dμ0 , when 

. Dμ0 >
{
C (μ0(p − 1)q∗H)1/q∗

}1/(p−1) =: D∗.

Here, . q∗ is arbitrary number which satisfies .1/q∗0 ≤ 1/q∗ ≤ 1 and .1/q∗ > 0. 
When .Dμ0 ≤ D∗, the Cauchy problem (8) is globally well-posed. 

(iv) (Global well-posedness for .μ0 > 0 and .p ≥ p0(μ0).) Let .μ0 > 0 and . p ≥
p0(μ0). There exists a constant .C > 0 such that if .Dμ0 ≤ CH 1/(p−1), then the 
Cauchy problem (8) is globally well-posed. 

(v) (Asymptotic behaviors of global solutions.) The global solution . φ obtained 
above satisfies 

. ‖φ(t) − φ+(t)‖Hμ−1(Rn) → 0 and ‖∂t (φ(t) − φ+(t)) ‖Hμ−1(Rn) → 0

as .t → ∞, where . φ+ is defined by 

. φ+(t) :=K0(t)

(

φ0 + c2
ˆ ∞

0
K1(s)h(s)ds

)

+ K1(t)

(

φ1 − c2
ˆ ∞

0
K0(s)h(s)ds

)

for .h(s) := e−n(p−1)Hs/2Hf (φ)(s), and . K0, . K1 are defined by (18), below. 

In Theorem 2, we obtain the global solutions for small data which follow from the 
dissipative terms .

√
H‖e−Ht∇φ‖L2Ḣμ in (9) by the energy estimate when .H > 0. 

The spatial expansion yields the dissipative effects to the Proca equations, and it 
strongly diminishes the nonlinear property of the semilinear equations. This is the 
first result on the semilinear Proca equations in the de Sitter spacetime. Theorem 2 
plays as a toy model to study the effect by the spatial expansion for the Cauchy 
problem, and it will be useful for the study of the coupled equations in [3, 8, 9]. We 
denote the inequality .A ≤ CB by .A ≲ B for some constant .C > 0 which is not 
essential.
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2 Proof of Theorem 1 

We give the proof for general .H ≥ 0 without the restriction .H = 0 until (30), 
below, since we use the argument to prove Theorem 2. Let  n, . μ0, . μ and p satisfy 
the assumption in Theorem 1. Put 

.
1

r∗
:= n − 2μ0

2np
,

1

r∗∗
:= 1

r∗
+ μ0

n
, θ := (n − 2μ0)(p − 1)

2p
. (15) 

Then .1 < r∗ < ∞ and .1 < r∗∗ < ∞ by .0 ≤ μ0 < n/2 and .p ≥ 1. And . 0 ≤ θ ≤ 1
by .0 ≤ μ0 < n/2 and (10). Let .p0(μ0) and . q∗0 be defined by (12). We take . q∗ such 
that 

.max

{
1

q∗0
, 0

}

≤ 1

q∗
≤ 1. (16) 

Thus, we can take . q0 and q such that 

.0 ≤ 1

q0
≤ 1

2
, 0 ≤ 1

q
≤ 1

2
and

1

q∗
= 1 − θ(p − 1)

q0
− θ

q
(17) 

since .q∗ = 1 for .q0 = q = ∞ and .q∗ = q∗0 for .q0 = q = 2 in (17). 
We regard the solution of the Cauchy problem (8) as the solution of the integral 

equation given by 

. φ(t) = Ψ(φ)(t) := K0(t)φ0 + K1(t)φ1 −
ˆ t

0
K(t, s)e−n(p−1)Hs/2Hf (φ)(s)ds,

(18) 

where . K0 and . K1 denote the free propagator of the linear Proca equations, and K 
denotes the propagator for the inhomogeneous term. So that, the solution is obtained 
as the fixed point of the operator . Ψ. 

We show that . Ψ is a contraction mapping on .Xμ0,μ(T , R0, R) for some .T > 0, 
.R0 > 0 and .R > 0. Since .f (φ) is a polynomial of order p, we have  

. f (φ) =
∑

1≤j1,··· ,jp≤n

C(j1, · · · , jp)φj1 · · · φjp

for .φ = (φ1, · · · , φn) and some constants .{C(j1, · · · , jp)}1≤j1,··· ,jp≤n, where we 
only consider the case . φ is real-valued since the case . φ is complex-valued follows
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similarly. For any .μ > 0 and any multi-index . μ∗ with .|μ∗| = μ, we have  

. ∂μ∗f (φ) =
∑

1≤j1,··· ,jp≤n
μ1+···+μp=μ∗

C(j1, · · · , jp, μ1, · · · , μp)

p∏

k=1

∂μkφjk .

Put 

.
1

rk
:= 1 − |μk|/μ

r∗
+ |μk|

μr∗∗
(19) 

for .1 ≤ k ≤ p. Then .1 < rk < ∞ holds by .1 < r∗, r∗∗ < ∞ and .0 ≤ |μk|/μ ≤ 1. 
We have 

. ‖∂μ∗f (φ)‖L2 ≲
∑

1≤j1,··· ,jp≤n
μ1+···+μp=μ∗

p∏

k=1

‖∂μkφjk‖Lrk

by the Hölder inequality. Since we have the interpolation inequality 

. ‖∂μkφjk‖Lrk ≲ ‖φjk‖1−|μk |/μ
Lr∗ ‖φjk‖|μk |/μ

Ḣμ,r∗∗

by (19), we obtain 

. 
1

2
= 1

r1
+ · · · + 1

rp
= p − 1

r∗
+ 1

r∗∗
, ‖∂μ∗f (φ)‖L2 ≲ ‖φ‖p−1

Lr∗ ‖φ‖Ḣμ,r∗∗ .

(20) 

This inequality also holds when .μ = μ∗ = 0 since 

. ‖f (φ)‖L2 ≲ ‖φ‖p

L2p and ‖φ‖L2p ≤ ‖φ‖1−1/p
Lr∗ ‖φ‖1/pLr∗∗

hold by (20). Moreover, since . r∗, . r∗∗ and . θ satisfy 

. 0 <
1

r∗∗
= 1

2
− θ

n
= 1 − θ

2
+ θ

(
1

2
− 1

n

)

< 1, 0 <
1

r∗
= 1

r∗∗
− μ0

n
< 1,

0 ≤ θ ≤ 1

by (15), we have the interpolation inequalities 

.‖φ‖Lr∗ ≲ ‖φ‖Ḣμ0,r∗∗ ≲ ‖φ‖1−θ

Ḣμ0
‖φ‖θ

Ḣμ0+1 (21)



544 M. Nakamura

and 

.‖φ‖Ḣμ,r∗∗ ≲ ‖φ‖1−θ

Ḣμ ‖φ‖θ

Ḣμ+1 . (22) 

By these inequalities and (20), we have  

.‖f (φ)‖Ḣμ ≲ ‖φ‖(1−θ)(p−1)
Ḣμ0

‖φ‖θ(p−1)
Ḣμ0+1 ‖φ‖1−θ

Ḣμ ‖φ‖θ

Ḣμ+1 . (23) 

Put .h(φ) := Hf (φ)e−n(p−1)H t/2. By  (23), we have  

. ‖h(φ)‖Ḣμ ≲ ‖f (φ)‖Ḣμe−n(p−1)H t/2

≲ ‖φ‖(1−θ)(p−1)
Ḣμ0

·
∥
∥
∥e−Htφ

∥
∥
∥

θ(p−1)

Ḣμ0+1
·
∥
∥
∥e−Htφ

∥
∥
∥

θ

Ḣμ+1
· ‖φ‖1−θ

Ḣμ · I,

(24) 

where we have used the boundedness of the Helmholtz projector . H on .L2(Rn) and 
we have put 

. I := e(θp−n(p−1)/2)H t .

By the Hölder inequality for the time variable, we have 

. ‖h(φ)‖L1Ḣμ ≲ ‖φ‖(1−θ)(p−1)
L∞Ḣμ0

·
∥
∥
∥e−Htφ

∥
∥
∥

θ(p−1)

Lq0 Ḣμ0+1
· ‖φ‖1−θ

L∞Ḣμ ·
∥
∥
∥e−Htφ

∥
∥
∥

θ

LqḢμ+1

· ‖I‖Lq∗ ,

where . q0, q, . q∗ satisfy (16) and (17). So that, we have 

.‖h(φ)‖L1Ḣμ ≲ R
p−1
0 R‖I‖Lq∗ (25) 

for .φ ∈ Xμ0,μ(T , R0, R). Analogously, we have 

.‖h(φ) − h(ψ)‖L1L2 ≲ R
p−1
0 ‖I‖q∗d(φ,ψ) (26) 

for .φ,ψ ∈ Xμ0,μ(T , R0, R). 
We prepare the following standard energy estimates. 

Lemma 1 (Energy Estimates for .H ≥ 0) Let . μ be a real number, and let . h =
(h1, · · · , hn) ∈ L1((0,∞), Ḣμ(Rn)). Let Q be the constant defined in (2). Let 
.φ = (φ1, · · · , φn) be the solution of the Cauchy problem 

.

{
−∂α∂αφj (t, x) + Qφj(t, x) + hj (t, x) = 0,

φj (0, x) = φ
j

0 (x), ∂tφ
j (0, x) = φ

j

1 (x)
(27)
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for .t ≥ 0, .x ∈ R
n and .1 ≤ j ≤ n. If .H ≥ 0 and .Q ≥ 0, then the solution . φ satisfies 

. 
1

c
‖∂0φj‖L∞((0,T ),Ḣμ(Rn)) + ‖e−Ht∇φj‖L∞((0,T ),Ḣμ(Rn))

+√
Q‖φj‖L∞((0,T ),Ḣμ(Rn)) + √

H‖e−Ht∇φj‖L2((0,T ),Ḣμ(Rn))

≲ 1

c
‖φj

1‖Ḣμ(Rn) + ‖∇φ
j

0‖Ḣμ(Rn) + √
Q‖φj

0‖Ḣμ(Rn) + ‖hj‖L1((0,T ),Ḣμ(Rn))

for .0 < T ≤ ∞ and .1 ≤ j ≤ n. 

By Lemma 1 and (25), we have  

. ‖Ψ(φ)‖Ẋμ ≲ Ḋμ + ‖h(φ)‖L1Ḣμ ≲ Ḋμ + R
p−1
0 R‖I‖q∗ ,

namely, 

. ‖Ψ(φ)‖Ẋμ ≤ C0Ḋ
μ + CR

p−1
0 R‖I‖q∗

for some constants .C0 > 0 and .C > 0, where we have put 

. Ḋμ := 1

c
‖φ1‖Ḣμ + ‖∇φ0‖Ḣμ + √

Q ‖φ0‖Ḣμ .

So that, we obtain 

.‖Ψ(φ)‖Ẋμ0 ≤ R0 and ‖Ψ(φ)‖Xμ ≤ R (28) 

if 

.R0 ≥ 2C0Ḋ
μ0 , R ≥ 2C0 max{Ḋ0, Ḋμ} and 2CR

p−1
0 ‖I‖q∗ ≤ 1 (29) 

for .μ ≥ 0. Analogously, by Lemma 1 and (26), we have  

.d(Ψ(φ),Ψ(ψ)) ≤ 1

2
d(φ,ψ) (30) 

under (29). 
When .H = 0, we have  .Q = (mc/h̄)2 by (2). We take  .q0 = q = ∞ and 

.q∗ = 1 which satisfy (16) and (17). Since we have .‖I‖1 = T , the condition 

.2CR
p−1
0 ‖I‖q∗ ≤ 1 in (29) is rewritten as 

.T ≤ 1

2CR
p−1
0

.
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So that, . Ψ is a contraction mapping under (11) taking .R0 = 2C0Ḋ
μ0 in (29). From  

this, we obtain the local solution under the condition (11). The continuity of the 
solution follows from the continuity of the free propagators and (25). We refer to 
[4] for proofs of the uniqueness of the solution, and the continuous dependence of 
solutions on initial data. 

3 Proof of Theorem 2 

We are able to use the same argument in the proof of Theorem 1 until (30). We note 
that the continuity of the solution, the uniqueness of the solution, and the continuous 
dependence of the solution on the initial data follow from the same arguments in the 
proof of Theorem 1. When .H > 0 and .(n − 2)H < 2mc2/h̄, we have  .Q > 0 by 
(2). We have  

.‖I‖q∗ = (2H)1/q∗−1 ‖e−μ0(p−1)H t‖L
q∗
t ((0,T )) (31) 

and 

. ‖e−μ0(p−1)H t‖L
q∗
t ((0,T ))

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if q∗ = ∞, Hμ0 ≥ 0,

e−Hμ0(p−1)T (≥ 1) if q∗ = ∞, Hμ0 < 0,

T 1/q∗ if q∗ < ∞, Hμ0 = 0,
{

1
Hμ0(p−1)q∗

(
1 − e−Hμ0(p−1)q∗T )}1/q∗

if q∗ < ∞, Hμ0 /= 0.

(32) 

(i) When .μ0 = 0 and p satisfies (10), we take . q∗ such that 

. 1 − n(p − 1)

4
≤ 1

q∗
≤ 1 and 0 <

1

q∗
.

The condition .2CR
p−1
0 ‖I‖q∗ ≤ 1 in (29) is rewritten as 

. T ≲ R
−(p−1)q∗
0

by (32). So that, . Ψ is a contraction mapping under (13), and we obtain the local 
solution of the Cauchy problem. 

(ii) When .μ0 = 0 and p satisfies (10) and .(p0(0) =) 1 + 4/n ≤ p, we are  able to  
take .q∗ = ∞ by (12) and (16). Then we have .‖I‖q∗ ≲ 1 by (32), by which the 
condition (29) holds for sufficiently small . Ḋ0 and . Ḋμ. Namely, we obtain the 
global solutions for small data.
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(iii) When .μ0 > 0 and p satisfies (10), we take . q∗ such that 

. 
1

q∗0
≤ 1

q∗
≤ 1,

1

q∗
> 0,

where . q∗0 is defined by (12). Then we have 

. ‖e−Hμ0(p−1)t‖L
q∗
t ((0,T )) =

{
1

Hμ0(p − 1)q∗

(
1 − e−Hμ0(p−1)q∗T

)}1/q∗
→ 0

as .T ↘ 0, and 

. ‖I‖q∗ ≤ (2H)1/q∗−1
{

1

Hμ0(p − 1)q∗

}1/q∗

by (31). Put 

. II := Hμ0(p − 1)q∗
(2CR

p−1
0 )q∗(2H)1−q∗

.

The condition .2CR
p−1
0 ‖I‖q∗ ≤ 1 in (29) is rewritten as 

. 1 − II ≤ e−Hμ0(p−1)q∗T ,

namely, 

.

{
T ≤ − 1

Hμ0(p−1) log(1 − II ) if II < 1,

T < ∞ if II ≥ 1.
(33) 

We note .II < 1 is rewritten as 

. R∗ :=
{(

μ0(p − 1)q∗
2

)1/q∗ H

C

}1/(p−1)

< R0.

So that, . Ψ is a contraction mapping when .R∗ < R0 and T satisfies (33), or  
when .R∗ ≥ R0 and .T < ∞. Therefore, we obtain local solutions under the 
condition (14), where we take a different C if necessary, and we also obtain 
global solutions if initial data are sufficiently small. 

(iv) When .μ0 > 0 and p satisfies (10) and .p0(μ0) ≤ p, we are able to take . q∗ =
∞. Then we have 

.‖I‖q∗ = 1

2H
.
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The conditions in (29) are satisfied if the initial data are sufficiently small such 
that 

. 2C0Ḋ
μ0 ≤ R0 ≤

(
H

C

)1/(p−1)

.

(v) The required result follows since .h(φ) ∈ L1((0,∞),Hμ(Rn)) holds by (25). 
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Numerical Simulations of Semilinear 
Klein–Gordon Equation in the de Sitter 
Spacetime with Structure-Preserving 
Scheme 

Takuya Tsuchiya and Makoto Nakamura 

Abstract We perform some simulations of the semilinear Klein–Gordon equation 
in the de Sitter spacetime. We reported the accurate numerical results of the equation 
with the structure-preserving scheme (SPS) in an earlier publication (Tsuchiya and 
Nakamura, J Comput Appl Math 361:396–412, 2019). To investigate the factors 
for the stability and accuracy of the numerical results with SPS, we perform 
some simulations with three discretized formulations. The first formulation is the 
discretized equations with SPS, the second one is with SPS that replaces the second-
order difference as the standard second-order central difference, and the third one 
is with SPS that replaces the discretized nonlinear term as the standard discretized 
expression. As a result, the above two replacements in SPS are found to be effective 
for accurate simulations. On the other hand, the ingenuity of replacing the second-
order difference in the first formulation is not effective for maintaining the stability 
of the simulations. 

1 Introduction 

Stable and accurate numerical simulations are necessary for understanding natural 
and social phenomena in detail. To realize this, numerical methods such as dis-
cretizations should be in a mathematically guaranteed format because the numerical 
errors mainly occur during the processes of discretizations. For numerical schemes 
of partial differential equations, there are several well-known methods such as 
the Crank–Nicolson and Runge–Kutta schemes. However, it is difficult to perform 
stable and accurate numerical simulations for nonlinear partial differential equations 
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since there are large numerical errors and vibrations in the solutions caused by 
nonlinearity. Thus, suitable schemes have been suggested to perform successful 
simulations. One of the schemes is the structure-preserving scheme (SPS) [1, 2]. 
This scheme conserves some structures at the continuous level, and thus enables 
stable and accurate numerical simulations. 

In this paper, we review the discretized equations of the semilinear Klein– 
Gordon equation in the de Sitter spacetime with SPS and perform some simulations 
to investigate their stability and accuracy. For investigating the semilinear Klein– 
Gordon equation in the de Sitter spacetime, analytical [3–7] and numerical [8, 9] 
research studies have been conducted. In [9], we reported some accurate numerical 
results of the semilinear Klein–Gordon equation with SPS. There are some differ-
ences between the standard discretized equation and the discretized equation with 
SPS. In this paper, we investigate the factors for the stability and accuracy of the 
simulations. Here, stability means that the solution does not have vibrations in the 
simulations, and accuracy means the conservation of constraints in the simulations. 
In general, the accuracy of the simulations would be determined by examining 
the numerical solution of the equations. However, for the nonlinear differential 
equations, it is often difficult to investigate the accuracy because of the complexities. 
Thus, we adopt the constraints of the system as the criteria of the accuracy in this 
paper. 

The structure of this paper is as follows. We review the canonical formulation of 
the semilinear Klein–Gordon equation in the de Sitter spacetime in Sect. 2 and the 
discretized equation with SPS in Sect. 3. In Sect. 4, we perform some simulations for 
investigating their stability and accuracy. We summarize this paper in Sect. 5. In this  
paper, indices such as .(i, j, k, · · · ) run from 1 to 3. We use the Einstein convention 
of summation of repeated up–down indices. 

2 Canonical Formulation of Semilinear Klein–Gordon 
Equation in the de Sitter Spacetime 

The semilinear Klein–Gordon equation in the de Sitter spacetime is given by 

.∂2
t φ + 3H∂tφ − e−2Htδij (∂i∂jφ) + m2φ + λ|φ|p−1φ = 0, (1) 

where . φ is the field variable, H is the Hubble constant, . δij denotes the Kronecker 
delta, m is the mass, . λ is a Boolean parameter, and p is an integer of 2 or more. 
In performing the simulations of Eq. (1), we often recast first-order system. In 
this paper, we adopt the canonical formulation as the first-order system. This 
is because the canonical formulation has the total Hamiltonian, and we can 
treat this value as a criterion for investigating the accuracy since the value is a 
constraint.
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The Hamiltonian density of Eq. (1) is defined as 

. H := 1

2
e−3Htψ2 + 1

2
eHt δij (∂iφ)(∂jφ) + 1

2
m2e3Htφ2 + λ

p + 1
e3Ht |φ|p+1,

(2) 

where . ψ is the conjugate momentum of . φ. Then, using the canonical equations of 
. H, we obtain the evolution equations as 

.∂tφ := δH
δψ

= e−3Htψ, . (3) 

∂tψ := −δH 
δφ 

= eHt  δij (∂j ∂iφ) − m2e3Ht  φ − λe3Ht |φ|p−1φ. (4) 

The total Hamiltonian .HC is defined as 

.HC :=
ˆ
R3
Hd3x, (5) 

and the time derivative of .HC with the evolution Eqs. (3) and (4) is 

. ∂tHC = H

ˆ
R3

d3x

⎰ 
− 3

2
e−3Htψ2 + 1

2
eHtδij (∂iφ)(∂jφ) + 3

2
m2e3Htφ2

+ 3λ

p + 1
e3Ht |φ|p+1

⎱
+
ˆ
R3

∂j {e−3Htδijψ(∂iφ)}d3x. (6) 

Note that H is the Hubble constant and .HC is the total Hamiltonian. If .H = 0 and 
we set the boundary conditions under which the last term on the right-hand side of 
Eq. (6) is zero on the boundary, then .∂tHC = 0. Thus, .HC is treated as a conserved 
quantity. On the other hand, in the case of .H /= 0, .HC is not a conserved quantity 
in general. In the case of .H /= 0, we define the value as 

.H̃C(t) := HC(t) −
ˆ t

0
∂sHC(s)ds. (7) 

.H̃C identically satisfies .∂t H̃C = 0. We call the value .H̃C as the modified total 
Hamiltonian hereafter. In the case of .H /= 0, we adopt the value .H̃C as a criterion 
for the accuracy of the simulations. To investigate the accuracy of the simulations, 
we monitor .HC in a flat spacetime such as .H = 0, and .H̃C in a nonflat spacetime 
such as .H = 10−3. If the changes in .HC in the flat spacetime or .H̃C in the nonflat 
spacetime against the initial values are sufficiently small during the evolution, we 
determine that the simulations are successful. That is, the smaller the change in . HC

or .H̃C in the evolution, the more accurate the numerical calculations.
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3 Discretizations of Semilinear Klein–Gordon Equation in 
the de Sitter Spacetime 

The main factor for the numerical errors occurs during the processes of the 
discretizations of the equations. In this section, we review the discretized equations 
of the semilinear Klein–Gordon equation in the de Sitter spacetime. 

The discretized Hamiltonian density is defined as 

. H(𝓁)
(k)

:= 1

2
e−3Ht(𝓁) (ψ

(𝓁)
(k)

)2 + 1

2
eHt(𝓁)δij (δ̂

〈1〉
i φ

(𝓁)
(k)

)(δ̂
〈1〉
j φ

(𝓁)
(k)

)

+1

2
m2e3Ht(𝓁) (φ

(𝓁)
(k)

)2 + λ

p + 1
e3Ht(𝓁) |φ(𝓁)

(k)
|p+1. (8) 

By using SPS, we can rewrite the discretized Eqs. (3) and (4) as 

.
φ

(𝓁+1)
(k)

− φ
(𝓁)
(k)

∆t
= 1

4
(e−3Ht(𝓁+1) + e−3Ht(𝓁) )(ψ

(𝓁+1)
(k)

+ ψ
(𝓁)
(k)

), . (9) 

ψ (𝓁+1) 
(k) − ψ (𝓁) 

(k)

∆t
= 

1 

4 
(eHt(𝓁+1) + eHt(𝓁) )δij δ̂

〈1〉
i δ̂

〈1〉
j (φ (𝓁+1) 

(k) + φ (𝓁) 
(k) ) 

−m2 

4 
(e3Ht(𝓁+1) + e3Ht(𝓁) )(φ (𝓁+1) 

(k) + φ (𝓁) 
(k) ) 

− λ 
2(p + 1) 

(e3Ht(𝓁+1) + e3Ht(𝓁) )
|φ (𝓁+1) 

(k) |p+1 − |φ (𝓁) 
(k)

|p+1 

φ (𝓁+1) 
(k) − φ (𝓁) 

(k) 
, 

(10) 

respectively. The upper index . (𝓁) in parentheses is the time index, and the lower 
index . (k) in parentheses is the spatial grid index, where .k = (k1, k2, k3) and . k1, 

. k2, and . k3 are x, y, and z indices, respectively. .̂δ〈1〉
i is the discrete operator defined 

as 

.̂δ
〈1〉
i u

(𝓁)
(k)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u
(𝓁)
(k1+1,k2,k3)

− u
(𝓁)
(k1−1,k2,k3)

2∆x
, (i = 1)

u
(𝓁)
(k1,k2+1,k3)

− u
(𝓁)
(k1,k2−1,k3)

2∆y
, (i = 2)

u
(𝓁)
(k1,k2,k3+1) − u

(𝓁)
(k1,k2,k3−1)

2∆z
. (i = 3)

(11) 

There are two features in Eq. (10). First, the second-order difference is expressed as 
.̂δ

〈1〉
i δ̂

〈1〉
j . In general, the discrete operator of the second-order difference is usually
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defined as 

.̂δ
〈2〉
ij u

(𝓁)
(k)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u
(𝓁)
(k1+1,k2,k3)

− 2u
(𝓁)
(k)

+ u
(𝓁)
(k1−1,k2,k3)

(∆x)2 , (i = j = 1)

u
(𝓁)
(k1,k2+1,k3)

− 2u
(𝓁)
(k)

+ u
(𝓁)
(k1,k2−1,k3)

(∆y)2
, (i = j = 2)

u
(𝓁)
(k1,k2,k3+1) − 2u

(𝓁)
(k)

+ u
(𝓁)
(k1,k2,k3−1)

(∆z)2
, (i = j = 3)

δ̂
〈1〉
i δ̂

〈1〉
j u

(𝓁)
(k)

. (i /= j)

(12) 

In the case of .i = j , .̂δ〈2〉
ij u

(𝓁)
(k)

/= δ̂
〈1〉
i δ̂

〈1〉
j u

(𝓁)
(k)

. Second, the expression of the 
nonlinear term, which is the last term on the right-hand side in Eq. (10), 
is not usual. In general, the discretized expression expected from Eq. (4) 
is .−λe3Ht(𝓁) |φ(𝓁)

(k)
|p−1φ

(𝓁)
(k)

. These differences in the simulations are shown in 
Sec. 4. 

The discretized total Hamiltonian .H(𝓁)
C is defined as 

.H
(𝓁)
C :=

∑
1≤k1≤n1
1≤k2≤n2
1≤k3≤n3

H(𝓁)
(k)

∆x∆y∆z, (13) 

where . n1, . n2, and . n3 are the grid numbers for x, y, and z, respectively. The 
difference quotient for .H(𝓁)

C using Eqs. (9) and (10) is calculated as 

. 
H

(𝓁+1)
C − H

(𝓁)
C

∆t

= H
∑

1≤k1≤n1
1≤k2≤n2
1≤k3≤n3

⎾
− 3

4
{e−3Ht(𝓁+1)

(ψ
(𝓁+1)
(k)

)2 + e−3Ht(𝓁) (ψ
(𝓁)
(k)

)2}

+1

4
δij {eHt(𝓁+1)

(δ̂
〈1〉
i φ

(𝓁+1)
(k)

)(δ̂
〈1〉
j φ

(𝓁+1)
(k)

) + eHt(𝓁) (δ̂
〈1〉
i φ

(𝓁)
(k)

)(δ̂
〈1〉
j φ

(𝓁)
(k)

)}

+3

4
m2{e3Ht(𝓁+1)

(φ
(𝓁+1)
(k)

)2 + e3Ht(𝓁) (φ
(𝓁)
(k)

)2}

+ 3λ

2(p + 1)
(e3Ht(𝓁+1) |φ(𝓁+1)

(k)
|p+1 + e3Ht(𝓁) |φ(𝓁)

(k)
|p+1)

⏋

+[Boundary Terms] + O(∆t), (14) 

where we use the relation such that 

.eat(𝓁+1) = eat(𝓁) + aeat(𝓁)∆t + O((∆t)2). (∀a ∈ R) (15)
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The boundary terms in Eq. (14) are eliminated under the periodic boundary 
condition. In addition, if .H = 0, then .H(𝓁+1)

C is consistent with .H(0)
C in the order of 

. ∆t . Then we define the discretized modified total Hamiltonian .H̃ (𝓁)
C as 

. H̃
(𝓁)
C := H

(𝓁)
C −H

∑
0≤m≤𝓁−1

∑
1≤k1≤n1
1≤k2≤n2
1≤k3≤n3

⎾
−3

4
{e−3Ht(m+1)

(ψ
(m+1)
(k)

)2+e−3Ht(m)

(ψ
(m)
(k)

)2}

+1

4
δij {eHt(m+1)

(δ̂
〈1〉
i φ

(m+1)
(k)

)(δ̂
〈1〉
j φ

(m+1)
(k)

)+eHt(m)

(δ̂
〈1〉
i φ

(m)
(k)

)(δ̂
〈1〉
j φ

(m)
(k)

)}

+3

4
m2{e3Ht(m+1)

(φ
(m+1)
(k)

)2+e3Ht(m)

(φ
(m)
(k)

)2}

+ 3λ

2(p+1)
(e3Ht(m+1) |φ(m+1)

(k)
|p+1+e3Ht(m) |φ(m)

(k)
|p+1)

⏋
∆t∆x∆y∆z. (16) 

We adopt this value as a criterion of the accuracy of the simulations in the case of 
.H /= 0. 

4 Numerical Simulations 

In this section, we perform some simulations with SPS to investigate their stability 
and accuracy. We perform simulations with three formulations of the discretized 
semilinear Klein–Gordon equation in the de Sitter spacetime. The first formulation 
is that for Eqs. (9), (10), and (13). We call this formulation Form I. As shown in Eq. 
(14), Form I is SPS. The details are shown in [9]. The second formulation is that for 
Eqs. (9), (13), and the following Eq. (17). 

. 
ψ

(𝓁+1)
(k)

− ψ
(𝓁)
(k)

∆t
= 1

4
(eHt(𝓁+1) + eHt(𝓁) )δij δ̂

〈2〉
ij (φ

(𝓁+1)
(k)

+ φ
(𝓁)
(k)

)

−m2

4
(e3Ht(𝓁+1) + e3Ht(𝓁) )(φ

(𝓁+1)
(k)

+ φ
(𝓁)
(k)

)

− λ

2(p + 1)
(e3Ht(𝓁+1) + e3Ht(𝓁) )

|φ(𝓁+1)
(k)

|p+1 − |φ(𝓁)
(k)

|p+1

φ
(𝓁+1)
(k)

− φ
(𝓁)
(k)

(17) 

We call this formulation Form II. The difference between Eqs. (10) and (17) is the 
second-order difference term. The third formulation is that for Eqs. (9), (13), and
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the following Eq. (18). 

. 
ψ

(𝓁+1)
(k)

− ψ
(𝓁)
(k)

∆t
= 1

4
(eHt(𝓁+1) + eHt(𝓁) )δij δ̂

〈1〉
i δ̂

〈1〉
j (φ

(𝓁+1)
(k)

+ φ
(𝓁)
(k)

)

−m2

4
(e3Ht(𝓁+1) + e3Ht(𝓁) )(φ

(𝓁+1)
(k)

+ φ
(𝓁)
(k)

)

−λ

8
(e3Ht(𝓁+1) + e3Ht(𝓁) )|φ(𝓁+1)

(k)
+ φ

(𝓁)
(k)

|p−1(φ
(𝓁+1)
(k)

+ φ
(𝓁)
(k)

)

(18) 

We call this formulation Form III. The difference between Eqs. (10) and (18) is the 
expression of the discretized nonlinear term, which is the last term on the right-hand 
side of each of these equations. 

The simulation settings are as follows.

. Initial conditions: .φ0 = A cos(2πx), .ψ0 = 2πA sin(2πx), and .A = 4

. Numerical domains: .0 ≤ x ≤ 1, .0 ≤ t ≤ 1000

. Boundary condition: periodic

. Grids: .∆x = 1/200 and .∆t = 1/1000

. Mass: .m = 1

. Boolean parameter of the nonlinear term: .λ = 1

. Number of exponents in the nonlinear term: .p = 2, 3, 4, 5, and 6

. Hubble constant: .H = 0 and . 10−3

Forms I, II, and III are expressed in three dimensions. On the other hand, the 
initial conditions are one-dimensional. Even if the spatial dimension of the initial 
conditions is one-dimensional, the differences exist in the second-order difference 
term and the discretized nonlinear term. Thus, the numerical simulations are 
expected to show differences in the one-dimensional initial conditions. 

4.1 Flat Spacetime 

We perform some simulations of the three formulations in the flat spacetime, which 
is in the case of .H = 0. In Fig. 1, we show the relative errors of the total Hamiltonian 
.HC against the initial values .HC(0) for each value of the exponent p in the nonlinear 
term. The left panel is drawn with Form I, the center panel with Form II, and the right 
panel with Form III. The values of .|(HC − HC(0))/HC(0)| indicate the numerical 
errors because .HC is a constraint. In the right panel, we see that the value of . p = 2
with Form III is smaller than those of the other exponents in the panel. This result 
indicates that the numerical errors caused by the nonlinear term are small in the case 
of .p = 2. We see that the values of the center and right panels are larger than that of
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Fig. 1 Relative errors of the total Hamiltonian .HC against the initial value .HC(0) for each p in the 
case of .H = 0. The horizontal axis is time, and the vertical axis is .log10 |(HC − HC(0))/HC(0)|. 
The left panel is drawn with Form I, the center panel with Form II, and the right panel with Form 
III 
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Fig. 2 . φ with .p = 5 and 6. The left panels are drawn with Form I, the center panels with Form II, 
and the right panels with Form III. The top panels are drawn for .p = 5 and the bottom panels for 
.p = 6. The vibrations occur at .t ≥ 700 in the top-left panel, .t ≥ 100 in the bottom-left panel, and 
.t ≥ 100 in the right panels 

the left panel for each p. Thus, the simulations with Form I are more accurate than 
those with the other forms. 

Then we show . φ with . p = 5 and 6 in Fig. 2 to investigate the stability of the 
simulations. The left panels are drawn with Form I, the center panels with Form 
II, and the right panels with Form III. The top panels are drawn with the exponent 
.p = 5 and the bottom panels with .p = 6. We see that the simulations of the 
top-left panel at .t ≥ 700, the bottom-left panel at .t ≥ 100, and the right panels 
at .t ≥ 100 are unstable because of the generated vibrations. On the other hand, 
the simulations shown in the center panels are stable until .t = 1000. Thus, we  
determine that the simulations with Form II are more stable than those with the 
other formulations.
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Fig. 3 Relative errors of the modified total Hamiltonian .H̃C against the initial value .H̃C(0) for 
each p in the case of .H = 10−3. The horizontal axis is time, and the vertical axis is . log10 |(H̃C −
H̃C(0))/H̃C(0)|. The left panel is drawn with Form I, the center panel with Form II, and the right 
panel with Form III 
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Fig. 4 The same as in Fig. 2 except for the value of the Hubble constant, which is . 10−3

4.2 Curved Spacetime 

Here, we perform some simulations with the same settings as in Sec. 4.1 except for 
the Hubble constant. This time, we set the Hubble constant .H = 10−3. 

We show the relative errors of the modified total Hamiltonian .H̃C against the 
initial value .H̃C(0) in Fig. 3. Note that .H̃C is calculated approximately using Eq. 
(16) via the numerical solutions in time evolution. The left panel is drawn with 
Form I, the center panel with Form II, and the right panel with Form III. We see that 
the value of .p = 2 with Form III is smaller than those in the other cases in the right 
panel. This tendency is consistent with the case of .H = 0. 

Figure 4 is the same as Fig. 2 except for the value of the Hubble constant. In 
the comparison between Figs. 2 and 4, no vibrations appear in the top-left panel in 
Fig. 4 and also in the bottom-left panel in Fig. 4 until .t = 100. The other patterns 
of behavior are almost the same. These results indicate that the vibrations of the 
waveform of the solutions decrease in comparison with the case of .H = 0. That 
is, the positive Hubble constant makes the simulation stable. This is also noted in 
[9].
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5 Summary 

We investigated the factors affecting the stability and accuracy of simulations of 
the semilinear Klein–Gordon equation in the de Sitter spacetime using SPS. We 
reviewed the canonical formulation of the equation and that of the discretized 
equation with SPS. To investigate the terms affecting the stability and accuracy in 
the discretized equations, we compared some simulations using three discretized 
formulations. The first formulation consists of the discretized equations with 
SPS, which is called Form I. This formulation was reported in [9]. The second 
formulation consists of the discretized equations with SPS, in which the second-
order difference was replaced with a standard discretized second-order difference, 
which is called Form II. The third formulation consists of the discretized equations 
with SPS, in which the nonlinear term was replaced with a standard discretized term, 
which is called Form III. We monitored the total Hamiltonian or the modified one 
to see the accuracy of the simulations. As a result, we found that the stability and 
accuracy of the simulations using Form III are worse than those with Form I. This 
result indicates that the discretizations of the nonlinear term affect on the stability 
and accuracy of the simulations. In addition, the accuracy of the simulations with 
Form I is better than those with the other forms. On the other hand, the stability of 
the simulations with Form II is higher than those with the other forms. Moreover, 
we confirmed that the simulations with positive values of the Hubble constant are 
more stable than those in the flat spacetime. 

The numerical stability of the simulations using Form I is lower than those using 
Form II. However, there are degrees of freedom in the selection of the discretized 
terms for Form I. Therefore, it seems that the formulation that enables stable and 
accurate numerical simulation can be constructed, which we will report in the near 
future. 
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8. Yazici, M., Şengül, S.: Approximate solutions to the nonlinear Klein-Gordon equation in de 
Sitter spacetime. Open Phys. 14(1), 314–320 (2016) 

9. Tsuchiya, T., Nakamura, M.: On the numerical experiments of the Cauchy problem for semi-
linear Klein-Gordon equations in the de Sitter spacetime. J. Comput. Appl. Math. 361, 396–412 
(2019)



Part X 
Recent Progress in Evolution Equations



Global Small Data Solutions for an 
Evolution Equation with Structural 
Damping and Hartree-Type Nonlinearity 

Marcello D’Abbicco 

Abstract In this paper, we consider an evolution equation with structural damping 
and nonlocal nonlinearity of Hartree type, and we prove the existence of global 
small data solutions for supercritical powers. 

1 Introduction 

We consider a structurally damped evolution equation with a nonlocal nonlinearity 

. 

⎧
⎪⎪⎨

⎪⎪⎩

utt + (−Δ)σ u + (−Δ)
σ
2 ut = c

(|x|−(n−α) ∗ f (u)
)
g(u), t > 0, x ∈ R

n,

u(0, x) = u0(x),

ut (0, x) = u1(x),

(1) 
where .c /= 0, .α ∈ (0, n) and 

.|f (u) − f (v)| ≤ C |u − v| (|u|p−1 + |v|p−1), for some p ≥ 1, . (2) 

|g(u) − g(v)| ≤  C |u − v| (|u|q−1 + |v|q−1), for some q ≥ 1. (3) 

A nonlinearity as in (1) generalizes Hartree-type nonlinearities [13–15] which 
appear in several physical models. We address the interested reader to [1, 3, 16] 
and the references therein. 

We stress that, with no loss of generality, we may fix 

. c = cn,α = π
n
2 2α 𝚪(α/2)

𝚪((n − α)/2)
,
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in (1), so that 

. cn,α|x|−(n−α) ∗ f = Iαf

where . Iα denotes the Riesz potential applied to f . The equation in (1) is then 
obtained by the following system: 

.

{
utt + (−Δ)σ u + (−Δ)

σ
2 ut = U g(u),

(−Δ)
α
2 U = f (u) .

(4) 

By the Hardy-Littlewood-Sobolev theorem, for any .f ∈ Lr∗
, with .r∗ ∈ (1, n/α), it  

holds 

.Iαf ∈ Lr, ‖Iαf ‖Lr ≤ C ‖f ‖Lr∗ ,
1

r∗ = 1

r
+ α

n
. (5) 

In this paper, we prove that global-in-time solutions to (1) exist, for suffi-
ciently small data in a suitable space, if 

.p + q > 1 + 2σ + α

n − σ
. (6) 

It remains open to determine if the existence exponent .1+(2σ +α)/(n−σ) in (6) 
is critical, that is, global-in-time solutions in general do not exist for subcritical 
powers. In [12], R. Filippucci and M. Gherghu studied the nonexistence exponent 
for quasilinear parabolic inequalities with a nonlinearity of type .(K ∗ up)uq . In  
particular, for the parabolic m-Laplacian equation 

. ut − Δmu = (|x|−(n−α) ∗ up)uq,

where .Δmu = ∇ · (|∇u|m−2∇u), with .0 < n − α < m/2, they proved the  
nonexistence of nonnegative nontrivial smooth solutions for 

.p + q < m − 1 + m + α

2n − α
.
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The critical exponent for structurally damped evolution equations with power 
nonlinearities 

.

⎧
⎪⎪⎨

⎪⎪⎩

utt + (−Δ)σ u + (−Δ)θut = g(u), t > 0, x ∈ R
n,

u(0, x) = u0(x),

ut (0, x) = u1(x),

(7) 

has been well-investigated recently, and it has been highlighted how it depends 
on the strength of damping. If the damping is effective, i.e., .0 < 2θ < σ , the  
critical exponent is .1 + 2σ/(n − 2θ), the same of the corresponding parabolic 
equation (see [6], see also [2] and the references therein), as it happens for the 
classical damped wave equation [18] (see also [11] for a deeper analysis of critical 
nonlinearities of type .g(u)), i.e., .θ = 0 and .σ = 1. In the noneffective case . θ ∈
(σ/2, σ ], oscillations come into play [9, 17] in the asymptotic profile of the solution, 
and it has been recently shown [7] that the critical exponent becomes .1+2σ/(n−σ), 
the same of the undamped evolution equation [10], that is, the same in (6) when 
.α = 0. 

At the threshold of effectiveness, i.e., .θ = σ/2, the equation in (7) has the 
simplest structure, since oscillations are very slow, and the critical exponent is 
.1 + 2σ/(n − σ) as in the case of noneffective damping. If the power nonlinearity is 
replaced by a nonlocal-in-time power nonlinearity as 

. g(t, u) =
ˆ t

0
(t − s)−(1−α) |u(s, x)|q ds,

with .α ∈ (0, 1), then the critical exponent becomes (see [4], see also [8]) 

. max{q̃, (1 − α)−1}, q̃ = 1 + (2 + α)σ

n − (1 + α)σ
.

In this paper, we show that the influence from a nonlocal-in-space nonlinearity is 
quite different. 

Solutions in . C([0,∞), Lp0)

In our first result, for any given supercritical value .p + q, we look for the 
less restrictive assumption on the regularity of initial data, such that we may 
construct a global-in-time solution to (1) in .C([0,∞), Lp0), for some . p0.
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Theorem 1 Let .n ≥ 1 and .σ ∈ (0, n). Assume that .p, q in (2) and (3) verify the 
following: 

.
α

n
p < q <

n

α
p, (8) 

and that (6) holds. Moreover, if .n > 2σ we also assume that 

.p + q < 1 + 2σ + α

n − 2σ
. (9) 

Fix 

. p0 = n

n + α
(p + q),

1

p∗
0

= 1

p0
+ σ

n
.

Then there exists .ε > 0 such that for any 

.(u0, u1) ∈ A = (
Lm0 ∩ Lp0

) × (
Lm1 ∩ Lp∗

0
)
, ‖(u0, u1)‖A ≤ ε, (10) 

where .1 ≤ m1 ≤ m0 verify 

.p + q ≥ 1 + 2σ + α

(n/m1) − σ
,

n

σ

(
1

m1
− 1

m0

)

≤ 1, (11) 

there is a unique global-in-time solution .u ∈ C([0,∞), Lm0 ∩ Lp0). Moreover, the 
following long-time decay estimate holds 

.‖u(t, ·)‖Lp0 ≤ C (1 + t)
1− n

σ

(
1

m1
− 1

p0

)

‖(u0, u1)‖A, (12) 

and the following estimate holds 

.‖u(t, ·)‖Lm0 ≤ C (1 + t)
1− n

σ

(
1

m1
− 1

m0

)

‖(u0, u1)‖A. (13) 

Remark 1 We stress that condition (11) follows as a consequence of (6) if .m1 = 1. 
In particular, in this case, (12) reads as 

.‖u(t, ·)‖Lp0 ≤ C (1 + t)
1− n

σ

(
1− 1

p0

)

‖(u0, u1)‖A, (14) 

Moreover, if .m0 = 1, then (13) reads as: 

.‖u(t, ·)‖L1 ≤ C (1 + t) ‖(u0, u1)‖A. (15)
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Remark 2 We stress that .m1 < p∗
0 in (10), as a consequence of the fact that the 

exponent in the estimate in (12) is negative due to (11), that is, 

. 
1

m1
>

1

p0
+ σ

n
= 1

p∗
0
.

An analogous reasoning shows that .m0 < p0 in (10). 

Solutions in . C([0,∞), L1 ∩ L∞)

We may remove assumptions (8) and (9) by strengthening the regularity 
assumption on the initial data. In particular, we may easily construct solutions 
in .L1 ∩ L∞, proceeding as in [5]. 

Theorem 2 Let .n ≥ 1 and .σ ∈ (0, n). Assume that .p, q in (2) and (3) verifies (6). 
Then there exists .ε > 0 such that for any 

.(u0, u1) ∈ A = (
L1 ∩ L∞) × (

L1 ∩ L
n
σ
)
, ‖(u0, u1)‖A ≤ ε, (16) 

there is a unique global-in-time solution .u ∈ C([0,∞), L1 ∩ L∞). Moreover, the 
following long-time decay estimate holds 

.‖u(t, ·)‖L∞ ≤ C (1 + t)1− n
σ ‖(u0, u1)‖A, (17) 

and estimate (15) holds. 

Is the Exponent Critical? 
Following the same approach in this paper, one may clearly study a large 
class of evolution equations with Hartree-type nonlinearity . c

(|x|−(n−α) ∗
f (u)

)
g(u). For instance, the existence exponent for the heat equation with 

that nonlinearity is obtained by the solution of the following equation: 

. 1 = n

2

(

1 − 1

p0

)

(p + q) = n

2
(p + q − 1) − α

2
.

That is, the existence exponent is a shifted Fujita exponent corresponding to 
the equation 

. n(p + q − 1) = 2 + α.

(continued)
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We stress that a gap remains open, comparing this result with the nonexistence 
exponent obtained in [12]. The question naturally arising is then: “Is this 
shifted Fujita exponent critical?” 

The case . q = p − 1
A model case is when .f (u) = |u|p and .g(u) = |u|p−2u, that is, .q = p−1 for 
some .p ≥ 2. In this case, condition (8) holds if, and only if, .p > n/(n − α). 
Condition (6) reads as 

. p > 1 + σ + α/2

n − σ
,

and .p0 = (2p − 1)n/(n + α). In particular, .p = 2 in the classical Hartree 
type inequality, so that our result applies for .α < 2(n − 2σ) if .n < 4σ , and 
for any .α ∈ (0, n) if .n ≥ 4σ . 

2 Proof of Theorem 1 

In order to prove our results, we consider the linear problem 

.

⎧
⎪⎪⎨

⎪⎪⎩

utt + (−Δ)σ u + (−Δ)
σ
2 ut = 0, t > 0, x ∈ R

n,

u(0, x) = u0(x),

ut (0, x) = u1(x).

(18) 

We address the reader to [6] and the references therein for the proof of the following 
estimates for the solution to (18): 

.‖u(t, ·)‖Lq2 ≤ C0 t
− n

σ

(
1
q0

− 1
q2

)

‖u0‖Lq0 + C1 t
1− n

σ

(
1
q1

− 1
q2

)

‖u1‖Lq1 , (19) 

where .q2 ∈ [1,∞] and .q0, q1 ∈ [1, q2], with . Cj independent of .t > 0 and .‖uj‖L
qj , 

.j = 0, 1. 

Lemma 1 Let .p0,m0,m1 as in the statement of Theorem 1. Then the solution 
to (18) verifies the long-time decay estimate (12) and the estimate (13). 

Proof For .t ≤ 1, we apply (19) with .q2 = q0 = p0 and .q1 = p∗
0 , so that we obtain 

.‖u(t, ·)‖Lp0 ≤ C0 ‖u0‖Lp0 + C1 ‖u1‖
L

p∗
0
,
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whereas, for .t ≥ 1, we apply (19) with .q2 = p0, .q0 = m0 and .q1 = m1, so that we 
obtain 

. ‖u(t, ·)‖Lp0 ≤ t
1− n

σ

(
1

m1
− 1

p0

)
(
C0 ‖u0‖Lm0 + C1 ‖u1‖Lm1

)
,

thanks to the second half of (11). Summing the previous two estimates, we 
derive (12). On the other hand, if we apply (19) with .q2 = q0 = m0 and .q1 = m1, 
we obtain 

. ‖u(t, ·)‖Lm0 ≤ C0 ‖u0‖Lm0 + C1 t
1− n

σ

(
1

m1
− 1

m0

)

‖u1‖Lm1 ,

from which we get (13), thanks to the second half of (11). ⨅⨆

The Interplay Between Integrability and Desired Decay 
In Lemma 1, the assumption of .u0 ∈ Lp0 and .u1 ∈ Lp∗

0 comes into play 
to guarantee that we may find a solution with .u(t, ·) ∈ Lp0 for any .t ≥ 0, 
whereas the assumption .u0 ∈ Lm0 and .u1 ∈ Lm1 provides the desired decay 
rate as .t → ∞ for the solution. The assumption that .u(t, ·) ∈ Lp0 and that 
.‖u(t, ·)‖Lp0 has a certain decay rate, will be crucial to treat the nonlinear 
problem. On the other hand, as a bonus consequence, the previous assumption 
that .u0 ∈ Lm0 and .u1 ∈ Lm1 guarantees “for free” that also .u(t, ·) ∈ Lm0 for 
any .t ≥ 0. 

We define the solution space 

. X = u ∈ C([0,∞), Lm0 ∩ Lp0),

equipped with the norm 

. ‖u‖X = sup
t∈[0,∞)

(
(1 + t)

−1+ n
σ

(
1

m1
− 1

p0

)

‖u(t, ·)‖Lp0

+ (1 + t)
−1+ n

σ

(
1

m1
− 1

m0

)

‖u(t, ·)‖Lm0

)
.

In particular, for any .u ∈ X, the following estimate holds 

.‖u(t, ·)‖Lp0 ≤ (1 + t)
1− n

σ

(
1

m1
− 1

p0

)

‖u‖X. (20) 

As a consequence of Lemma 1, the solution .ulin to (18) is in X and 

.‖ulin‖X ≤ C1 ‖(u0, u1)‖A. (21)
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We now consider the operator 

. N : X → X, Nu =
ˆ t

0
K(t − s, ·)(Iαf (u(s, ·)))g(u(s, ·)) ds,

where .K(t, ·) is the fundamental solution to (18), that is, the solution with . u0 = 0
and .u1 = δ. 

By Duhamel’s principle, a function .u ∈ C([0,∞), Lm0 ∩ Lp0) is the solution 
to (1) if, and only if, 

.u(t, x) = ulin(t, x) + Nu(t, x), for any t ≥ 0 and for a.e. x, (22) 

where .ulin is the solution to (18). 

Lemma 2 Let .u, v ∈ X. Then 

.‖Nu − Nv‖X ≤ C ‖u − v‖X (‖u‖p+q−1
X + ‖v‖p+q−1

X ). (23) 

Proof Let .r ∈ (n/(n − α),∞) and let .r ' = r/(r − 1), its Hölder conjugate. Also, 
.p' = p/(p − 1) and .q ' = q/(q − 1). Then, using Hölder inequality, (2), (3) and (5), 
we may estimate the . L1 norm of 

. h(u, v) = (Iαf (u)) g(u) − (Iαf (v)) g(v)

= (Iα(f (u) − f (v)) g(u) + (Iαf (v)) (g(u) − g(v))

as follows: 

. ‖h(u, v)‖L1 ≤ ‖Iα(f (u) − f (v))‖Lr ‖g(u)‖
Lr'

+ ‖Iαf (v)‖Lr ‖g(u) − g(v)‖
Lr'

≤ C1 ‖f (u) − f (v)‖Lr∗ ‖g(u)‖
Lr'

+ C1 ‖f (v)‖Lr∗ ‖g(u) − g(v)‖
Lr'

≤ C2 ‖u − v‖Lr∗p ‖|u|p−1 + |v|p−1‖
Lr∗p' ‖|u|q‖

Lr'

+ C2 ‖|v|p‖Lr∗ ‖u − v‖
Lr'q ‖(|u|q−1 + |v|q−1)‖

Lr'q'

≤ C3 ‖u − v‖Lr∗p

(‖u‖p−1
Lr∗p

+ ‖v‖p−1
Lr∗p

) ‖u‖q

Lr'q

+ C3 ‖v‖p

Lr∗p
‖u − v‖

Lr'q
(‖u‖q−1

Lr'q + ‖v‖q−1
Lr'q

)
.

We fix 

.r = n

np − αq
(p + q),
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so that 

. r∗p = r 'q = p0.

We notice that .r ∈ (n/(n − α),∞), thanks to (8). 
Now, using that .u, v ∈ X, by (20), replacing .p0 = n(p + q)/(n + α), we obtain 

the estimate 

. ‖h(u, v)(t, ·)‖L1

≤ C ‖u − v‖X

(‖u‖p+q−1
X + ‖v‖p+q−1

X

)
(1 + t)

p+q− n(p+q)
σ

(
1

m1
− 1

p0

)

= C ‖u − v‖X

(‖u‖p+q−1
X + ‖v‖p+q−1

X

)
(1 + t)

(p+q)
(

1− n
σm1

)
+ n+α

σ ,

for any . t ≥ 0. Using  (19) with .u0 = 0, .q2 = p0 and .q1 = 1, we get 

. ‖(Nu − Nv)(t, ·)‖Lp0 ≤ C

ˆ t

0
(t − s)

1− n
σ

(
1− 1

p0

)

‖h(u, v)(s, ·)‖L1 ds

≤ C ‖u − v‖X

(‖u‖p+q−1
X + ‖v‖p+q−1

X

)
I (t),

where 

. I (t) =
ˆ t

0
(t − s)

1− n
σ

(
1− 1

p0

)

(1 + s)
(p+q)

(
1− n

σm1

)
+ n+α

σ ds .

We notice that, thanks to (9), 

. 1 − n

σ

(

1 − 1

p0

)

> −1.

We now distinguish two cases. If .m1 = 1, then, using (6) we may estimate 

. (p + q)
(

1 − n

σ

)
+ n + α

σ
< −1.

Therefore (see, for instance, [7, Lemma 3.1]), we get 

.I (t) ≈ (1 + t)
1− n

σ

(
1− 1

p0

)

.
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If .m1 > 1, thanks to the first half of (11), we may estimate 

. (p + q)

(

1 − n

σm1

)

+ n + α

σ
≤ −n + σm1 + αm1

σm1
+ n + α

σ

= n

σ

(

1 − 1

m1

)

− 1.

Therefore (see, for instance, [7, Lemma 3.1]), we get 

. I (t) ≤ C(1 + t)
1− n

σ

(
1

m1
− 1

p0

)

.

We proceed similarly to estimate .‖(Nu−Nv)(t, ·)‖Lm0 , and we conclude the proof. 
⨅⨆

We may now conclude the proof of Theorem 1. 

Proof (Theorem 1) We now define 

. R = 2C1 ‖(u0, u1)‖A,

where . C1 is as in (21). For sufficiently small data, .2CRp+q−1 ≤ 1/2, where C is 
as in (23). Then, by (21) it follows that the operator .ulin(t, x) + N maps the ball 
.BR = {u : ‖u‖X ≤ R} in itself. Due to (23), it is a contraction. Therefore, there 
is a unique fixed point for .ulin(t, x) + F in . BR , that is, a unique solution to (22). 
Moreover, .‖u‖X ≤ 2C1 ‖(u0, u1)‖A, that is, we get (12) and (13). This concludes 
the proof. ⨅⨆

3 Proof of Theorem 2 

To prove Theorem 2, we follow the proof of Theorem 1, with some modifications. 

Lemma 3 Let .m0,m1 as in the statement of Theorem 1. Then the solution to (18) 
verifies the long-time decay estimate (17) and the estimate (15). 

Proof The proof is as the proof of Lemma 1, formally setting .p0 = ∞, and with 
.m0 = m1 = 1. ⨅⨆
We define the solution space 

. X = u ∈ C([0,∞), L1 ∩ L∞),

equipped with the norm 

.‖u‖X = sup
t∈[0,∞)

(
(1 + t)−1+ n

σ ‖u(t, ·)‖L∞ + (1 + t)−1 ‖u(t, ·)‖L1

)
.
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In particular, by interpolation, for any .u ∈ X, the following estimate holds 

.‖u(t, ·)‖Lm ≤ (1 + t)
1− n

σ

(
1− 1

m

)

‖u‖X, ∀m ∈ [1,∞]. (24) 

As a consequence of Lemma 3, the solution .ulin to (18) is in X and (21) holds. We 
now look for .u ∈ C([0,∞), L1 ∩ L∞) verifying (22). 

The proof of Lemma 2 is now modified. 

Proof (Lemma 2) Letting .r ∈ (n/(n−α),∞), .r ' = r/(r − 1), .p' = p/(p − 1) and 
.q ' = q/(q − 1), and proceeding as in the proof in Sect. 2, we get 

. ‖h(u, v)‖L1 ≤ C3 ‖u − v‖Lr∗p

(‖u‖p−1
Lr∗p

+ ‖v‖p−1
Lr∗p

) ‖u‖q

Lr'q

+ C3 ‖v‖p

Lr∗p
‖u − v‖

Lr'q
(‖u‖q−1

Lr'q + ‖v‖q−1
Lr'q

)
.

Since we did not assume (8), we cannot fix 

. r = n

np − αq
(p + q),

in general, as we did in the proof in Sect. 2. However, thanks to (24) it is now not 
important to fix a specific value for r , and we may choose any .r ∈ (n/(n − α),∞). 
Indeed, independently on the choice of r , we obtain the estimate 

. ‖h(u, v)(t, ·)‖L1

≤ C ‖u − v‖X

(‖u‖p+q−1
X + ‖v‖p+q−1

X

)
(1 + t)(p+q)(1− n

σ )+ n+α
σ ,

for any .t ≥ 0. Similarly, we may derive 

. ‖h(u, v)(t, ·)‖
L

n
σ

≤ C ‖u − v‖X

(‖u‖p+q−1
X + ‖v‖p+q−1

X

)
(1 + t)(p+q)(1− n

σ )+ α
σ .

Using (19) with .u0 = 0, .q2 = ∞ and .q1 = 1 if .s ∈ [0, t/2] and .q1 = n/σ if 
.s ∈ [t/2, t], we get 

.‖(Nu − Nv)(t, ·)‖L∞ ≤ C

ˆ t/2

0
(t − s)1− n

σ ‖h(u, v)(s, ·)‖L1 ds

+ C

ˆ t

t/2
‖h(u, v)(s, ·)‖

L
n
σ

ds

≤ C ‖u − v‖X

(‖u‖p+q−1
X + ‖v‖p+q−1

X

) (
I1(t) + I2(t)

)
,
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where 

. I1(t) =
ˆ t/2

0
(t − s)1− n

σ (1 + s)(p+q)(1− n
σ )+ n+α

σ ds,

I2(t) =
ˆ t

t/2
(1 + s)(p+q)(1− n

σ )+ α
σ ds .

Thanks to (6), that is, 

. (p + q)
(

1 − n

σ

)
+ n + α

σ
< −1,

we may estimate: 

. I1(t) ≤ C (1 + t)1− n
σ

ˆ t/2

0
(1 + s)(p+q)(1− n

σ )+ n+α
σ ds

≤ C' (1 + t)1− n
σ ,

I2(t) ≤ C (1 + t)1+(p+q)(1− n
σ )+ α

σ ≤ C (1 + t)1− n
σ .

We proceed similarly to estimate .‖(Nu − Nv)(t, ·)‖L1 , and we conclude the proof. 
⨅⨆

The conclusion of the proof of Theorem 2 is as the conclusion of the proof of 
Theorem 1. 
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A Note on Continuity of Strongly 
Singular Calderón-Zygmund Operators 
in Hardy-Morrey Spaces 

Marcelo de Almeida, Tiago Picon, and Claudio Vasconcelos 

Abstract In this note we address the continuity of strongly singular Calderón-
Zygmund operators on Hardy-Morrey spaces .HMλ

q(Rn), assuming weaker integral 
conditions on the associated kernel. Important examples that falls into this scope are 
pseudodifferential operators on the Hörmander classes .OpSm

σ,μ(Rn) with . 0 < σ ≤
1, .0 ≤ μ < 1, .μ ≤ σ and .m ≤ −n(1 − σ)/2. 

1 Introduction 

J. Álvarez and M. Milman [1] introduced a new class of Calderón-Zygmund 
operators, called strongly singular Calderón-Zygmund operator and established 
the continuity of these operators in real Hardy spaces .Hq(Rn). More precisely, a 
continuous function .K ∈ C(R2n\ Δ), where . Δ = {(x, x) : x ∈ R

n} is a .δ-kernel of 
type . σ , if there exists some .0 < δ ≤ 1 and .0 < σ ≤ 1 such that 

.|K(x, y) − K(x, z)| + |K(y, x) − K(z, x)| ≤ C
|y − z|δ

|x − z|n+ δ
σ

, (1) 

for all .|x − z| ≥ 2|y − z|σ . A bounded and linear operator . T : S(Rn) → S'(Rn)

is called a strongly singular Calderón-Zygmund operator, if it is associated to a 
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.δ-kernel of type . σ in the sense .〈Tf, g〉 = ´ ´
K(x, y)f (y)g(x)dydx, for all . f, g ∈

S(Rn) with disjoint supports; it has bounded extension from .L2(Rn) to itself and in 
addition T and . T ∗ extend to a continuous operator from .Lp(Rn) to .L2(Rn), where 

.
1

p
= 1

2
+ β

n
for some .(1 − σ)

n

2
≤ β <

n

2
. When .σ = 1 and .β = 0 we recover the 

standard non-convolution Calderón-Zygmund operators (see [3]). 
The authors in [1, Theorem 2.2] established the continuity of those classes of 

operators in real Hardy spaces .Hq(Rn) as follows: under the condition .T ∗(1) = 0, 
strongly singular Calderón-Zygmund operators associated to a kernel satisfying (1) 
are bounded from .Hq(Rn) to itself for every .q0 < q ≤ 1 where 

.
1

q0
:= 1

2
+ β

(
δ
σ

+ n
2

)

n
(

δ
σ

− δ + β
) . (2) 

The case .q = q0 is still open, however the conclusion continues to hold replacing 
the target space by .Lq0(Rn) (see [2, Theorem 3.9]). 

In this note, we establish results on continuity of strongly singular Calderón-
Zygmund operators on Hardy-Morrey spaces .HMλ

q(Rn) assuming weaker integral 
conditions on the kernel, introduced by the second and third authors in [12]. Let 
.0 < σ ≤ 1, .r ≥ 1 and .δ > 0. We say that .K(x, y), associated to T , is a .Dδ,r kernel 
of type . σ if 

. 

(ˆ

Cj (z,ℓ)

|K(x, y) − K(x, z)|r + |K(y, x) − K(z, x)|rdx

) 1
r

≲|Cj (z, ℓ)| 1
r
−1 2−jδ

(3) 

for .ℓ ≥ 1 and 

. 

(ˆ

Cj (z,ℓρ)

|K(x, y) − K(x, z)|r + |K(y, x) − K(z, x)|rdx

) 1
r

≲ |Cj (z, ℓ
ρ)| 1

r
−1+ δ

n

(
1
ρ
− 1

σ

)

2− jδ
ρ (4) 

for .ℓ < 1, where .z ∈ R
n, .|y − z| < ℓ, .0 < ρ ≤ σ and . Cj (z, η) := {x ∈ R

n :
2j η < |x − z| ≤ 2j+1η}. These conditions also covers the standard case . σ = 1, by  
choosing .ρ = σ in (4), and in that case both conditions are the same. It is easy to 
check that .Dδ,r1 condition is stronger than .Dδ,r2 for .r1 > r2 and any .δ > 0 and . 0 <

σ ≤ 1. Moreover, . δ−kernels of type . σ satisfying (1) also satisfies .Dδ,r condition 
for all .r ≥ 1. It has also been shown in [12, Proposition 5.3] that pseudodifferential 
operators associated to symbols in the Hörmander classes .Sm

σ,μ(Rn) with .0 < σ ≤ 1, 
.0 ≤ μ < 1, .μ ≤ σ and .m ≤ −n(1−σ)/2, satisfy the .D1,r condition for .1 ≤ r ≤ 2. 
We refer to [12] for more details. In particular, the continuity of operators associated
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to symbols given by .ei|ξ |σ |ξ |−m away from the origin are also examples of this type 
of operators and have been extensively studied, for instance in [4, 6, 8, 13]. 

Our main result is the following: 

Theorem 1 Let T to be a strongly singular Calderón-Zygmund operator associated 
to a .Dδ,r kernel of type . σ for some .1 ≤ r ≤ 2. Under the assumption that . T ∗(xα) =
0 for every .|α| ≤ ⎣δ⎦ , T can be extended to a bounded operator from .HMλ

q(Rn) to 
itself for any .0 < q ≤ λ < r and .q0 < q ≤ 1, where . q0 is given by (2). 

The proof relies on showing that T maps atoms into molecules and a molecular 
decomposition in .HMλ

q(Rn) for .0 < q ≤ 1 and .q ≤ λ < ∞ under restriction . λ < r

(see Theorem 3 and the Remark 2). As an immediate consequence of previous 
theorem, we also obtain the continuity of standard non-convolution Calderón-
Zygmund operators (.σ = 1) associated to kernels satisfying integral conditions. 
The corresponding result in the convolution setting for kernels satisfying derivative 
conditions can be found in [10, Section 2.2]. 

Corollary 1 Under the same hypothesis of the previous theorem, if T is a standard 
Calderón-Zygmund operator, then it is bounded from .HMλ

q(Rn) to itself provided 
that .n/(n + δ) < q ≤ 1. 

The organization of the paper is as follows. In Sect. 2 we recall some basic 
definitions and a general atomic and molecular decomposition of Hardy-Morrey 
spaces. In particular, in Sect. 2.1 we present an atomic decomposition in terms 
of .Lr−atoms by showing the equivalence with classical .L∞ atomic space and in 
Sect. 2.2 we show an appropriate molecular decomposition of Hardy-Morrey spaces. 
Finally, in Sect. 3 we present the proof of Theorem 1 showing that T maps atoms 
into molecules. 

Notation throughout this work, the symbol .f ≲ g means that there exist a constant 
.C > 0, not depending on f nor g, such that .f ≤ C g. By a dyadic cube we mean 
cubes on . Rn, open on the right whose vertices are adjacent points of the lattice 
.(2−k

Z)n for some .k ∈ Z. Given a set .A ⊂ R
n we denote by .|A| its Lebesgue 

measure. Given a cube Q (dyadic or not), we will always denote its center and side-
length by . xQ and . ℓQ respectively. By .Q∗ we mean the cube with same center as Q 
and side-length .2ℓQ. We also denote by .

ffl
Q

f (x)dx := 1
|Q|

´
Q

f (x)dx. 

2 Hardy-Morrey Spaces HMλ 
q(Rn ) 

In this section, we recall and present some properties of Hardy-Morrey spaces. For 
.0 < q ≤ λ < ∞, the Morrey spaces, denoted by .Mλ

q(Rn), are defined to be the set
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of measurable functions .f ∈ L
q
loc(R

n) such that 

. ‖f ‖Mλ
q

:= sup
J

|J | 1
λ
− 1

q

(ˆ

J

|f (y)|qdy

) 1
q

< ∞,

where the supremum is taken over all cubes .J ⊂ R
n. 

For any tempered distribution .f ∈ S'(Rn) and any fixed .ϕ ∈ S(Rn) with . 
´

ϕ /=
0, consider the smooth maximal function .Mϕf (x) = supt>0 |(ϕt ∗ f )(x)|, where 
.ϕt (x) = t−nϕ(x/t). For any .0 < q ≤ λ < ∞, we say that .f ∈ S'(Rn) belongs to 
Hardy-Morrey space .HMλ

q(Rn) if the smooth maximal function .Mϕf ∈Mλ
q(Rn). 

The functional .‖f ‖HMλ
q

:= ‖Mϕf ‖Mλ
q

defines a quasi-norm as .0 < q < 1 and a 

norm if .q ≥ 1. 
In the same way as Hardy spaces, the Hardy-Morrey spaces have also equivalent 

maximal characterizations (see [9, Section 2]). Clearly, Hardy-Morrey spaces cover 
the classical Hardy spaces .Hp(Rn) when .λ = q and Morrey spaces .Mλ

q(Rn) if 
.1 < q ≤ λ < ∞. 

2.1 Atomic Decomposition in Hardy-Morrey Spaces 

Definition 1 [10, Definiton 2.2]. Let 0 < q  ≤ 1 ≤ r ≤ ∞  with q <  r  and 
q ≤ λ <  ∞. A measurable function aQ is called a (q, λ, r)−atom if it is supported 

on a cube Q ⊂ R
n and satisfies: (1) ‖aQ‖Lr ≤ |Q| 1 

r − 1 
λ and (2) 

´ 
Rn x

α aQ(x)dx = 0 
for all α ∈ Nn 

0 such that |α| ≤  Nq := ⎣n (1/q − 1)⎦ , where ⎣·⎦ denotes the floor 
function. 

The following lemma is an extension of [5, Proposition 2.5] and the proof will 
be presented for completeness. 

Proposition 1 Let 0 < q  ≤ 1 ≤ r ≤ ∞  with q <  r  and q ≤ λ <  ∞ with λ ≤ r . If  
f is a compactly supported function in Lr (Rn ) satisfying the moment condition 

.

ˆ

Rn

xαf (x)dx = 0 for all |α| ≤ Nq, (5) 

then it belongs to HMλ 
q(Rn ) and moreover ‖f ‖HMλ 

q
≲ ‖f ‖Lr |Q|1/λ−1/r for all 

cube Q ⊇ supp (f ). In particular, if f = aQ, then ‖aQ‖HMλ 
q
≲ 1 uniformly. 

Proof Let J ⊂ Rn be an arbitrary cube and Q a cube such that supp (f ) ⊆ Q. 
Split the integral over J into J ∩ Q∗ and J \ Q∗. Since the maximal function Mϕ is 
bounded from Lr (Rn ) to itself for every 1 < r  ≤ ∞, it follows that 

.

ˆ

J∩Q∗
|Mϕf (x)|qdx ≤ ‖Mϕf ‖q

Lr |J ∩ Q∗|1− q
r ≲ ‖f ‖q

Lr |J ∩ Q∗|1− q
r .
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For r = 1 and 0 < q  <  1, setting R = ‖f ‖L1 |J ∩Q∗|−1 and using that Mϕ satisfies 
weak (1, 1) inequality we get the analogous inequality: 

. 

ˆ

J∩Q∗
|Mϕf (x)|qdx ≃

ˆ ∞

0
ωq−1

∣∣{x ∈ J ∩ Q∗ : |Mϕf (x)| > ω}∣∣ dω

≲ |J ∩ Q∗|
ˆ R

0
ωq−1dω + ‖f ‖L1

ˆ ∞

R

ωq−2dω ≲ ‖f ‖q

L1 |J ∩ Q∗|1−q .

(6) 

If |Q| < |J |, since q/λ − 1 ≤ 0 and 1 − q/r > 0 for all 1 ≤ r <  ∞, one 
has |J |q/λ−1|J ∩ Q∗|1−q/r ≤ |Q|q/λ−q/r . On the other hand, if |J | < |Q|, using  

that λ ≤ r it follows |J | q 
λ
−1|J ∩ Q∗|1− q 

r = |J | q 
λ
− q 

r

( |J ∩ Q∗| 
|J |

)1− q 
r ≤ |Q|1− q 

r . 

Hence |J | q 
λ
−1 ´ 

J∩Q∗ |Mϕf (x)|q dx ≲ ‖f ‖q 
Lr |Q|q/λ−q/r . 

To estimate the integral on J\Q∗, using the moment condition (5) we write ϕt ∗ 
f (x)  = ´ 

f (y)
(
ϕt (x − y) − Pϕt (y)

)
dy, where Pϕt (y) =

∑

|α|≤Nq 

Cα ∂
α ϕt (x) (−y)α 

denotes the Taylor polynomial of degree Nq of the function y �→ ϕt (x − 
y). The standard estimate of the remainder term (see [11, p. 106]) yields∣∣ϕt (x − y) − Pϕt (y)

∣∣ ≲ |y − xQ|Nq+1|x − xQ|−(n+Nq+1) and since supp (f ) ⊆ Q, 
we have the pointwise control 

. 
∣∣Mϕf (x)

∣∣ ≲
ℓ
Nq+1
Q

|x − xQ|n+Nq+1

ˆ

Q

|f (y)|dy ≲
ℓ
Nq+1
Q

|x − xQ|n+Nq+1
‖f ‖Lr |Q|1− 1

r .

If |Q| < |J |, since Nq + 1 > n  (1/q − 1), we estimate |J | q 
λ
−1 ´ 

J\Q∗ |Mϕf (x)|q dx 
by 

. ‖f ‖q
Lr |Q|q

(
1
λ
− 1

r
+ Nq

n
+ 1

n
+1

)
−1

ˆ

(Q∗)c
|x − xQ|−q(n+Nq+1)dx ≲ ‖f ‖q

Lr |Q| q
λ
− q

r .

Finally, if |J | < |Q| 

. |J | q
λ
−1

ˆ

J\Q∗
|Mϕf (x)|qdx≲‖f ‖q

Lr |J | q
λ
−1|Q|q− q

r ℓ
−nq
Q |J\Q∗|≲‖f ‖q

Lr |Q| q
λ
− q

r ,

which concludes the proof. ⨅⨆
Given 1 ≤ r ≤ ∞, we denote the atomic space atHMλ,r 

q (Rn ) by the collection 
of f ∈ S'(Rn ) such that f = ∑

Q : dyadic sQaQ in S'(Rn ), where {aQ}Q are
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(q, λ, r)-atoms and {sQ}Q is a sequence of complex scalars satisfying 

. ‖{sQ}Q‖λ,q := sup
J

⎧
⎪⎨

⎪⎩

⎛

⎝|J | q
λ
−1

∑

Q⊆J

(
|Q| 1

q
− 1

λ |sQ|
)q

⎞

⎠

1
q

⎫
⎪⎬

⎪⎭
< ∞.

The functional ‖f ‖atHMλ,r 
q 

:= inf
{
‖{sQ}Q‖λ,q : f = ∑

Q sQaQ

}
, where the 

infimum is taken over all such atomic representations, defines a quasi-norm in 
atHMλ,r 

q (Rn ). Clearly, if 1 ≤ r1 < r2 ≤ ∞  then atHMλ,r2 
q (Rn ) is continuously 

embedded in atHMλ,r1 
q (Rn ). The converse of this simple embedding is the content 

of the next result. 

Lemma 1 Let 0 < q  ≤ 1 ≤ r with q <  r  and q ≤ λ <  ∞. Then atHMλ,r 
q (Rn ) = 

atHMλ,∞
q (Rn ) with comparable quasi-norms. 

Proof The proof is based on the corresponding theorem for Hardy spaces (see [7, 
Theorem 4.10]). Let aQ to be a (q, λ, r)−atom and we show that aQ = ∑

j sQj aQj
, 

where {aQj
}j are (q, λ,∞)−atoms and ‖{sQj

}j‖q,λ ≤ C independently. Consider 
bQ = |Q|1/λ aQ and since 

´ 
Q

|bQ(x)|r dx ≤ |Q|, from Calderón-Zygmund decom-

position applied for |bQ|r ∈ L1(Q) at level αr > 0, there exists a sequence {Qj }j 
of disjoint dyadic cubes (subcubes of Q) such that |bQ(x)| ≤  α, ∀ x /∈ ⋃

j Qj , 
αr ≤ 

ffl 
Qj 

|bQ(x)|r dx ≤ 2n αr and
∣
∣⋃

j Qj

∣
∣ ≤ α−r ´ 

Q
|bQ(x)|r dx ≤ |Q| α−r . 

Let PNq to be the space of polynomials in Rn with degree at most Nq and PNq,j its 
restriction to Qj . SincePNq,j is a subspace of the Hilbert space L2(Qj ), let  PQj b ∈ 
PNq,j to be the unique polynomial such that 

´ 
Qj

[bQ(x)−PQj (b)(x)]xβ dx = 0 for  
all |β| ≤  Nq . 

Now we write bQ = g0 + ∑
j hj , where hj (x) = [bQ(x) − PQj (b)(x)]1Qj (x) 

and g0(x) = bQ(x) if x /∈ ⋃
j Qj and g0(x) = PQj (b)(x) if x ∈ Qj . Clearly 

´ 
hj (x)xβ dx = 0 and since |g0(x)| ≤  cα almost everywhere (see [11, Remark 

2.1.4 p. 104]), this implies 

. 

( 

Qj

|hj (x)|rdx

)1/r

≤
( 

Qj

|bQ(x)|rdx

)1/r

+
( 

Qj

|g0(x)|rdx

)1/r

≤ cα.

For each j0 ∈ N, let  bj0(x) := (cα)−1hj0(x) and write bQ(x) = g0(x) + 
(cα)

∑
j0 

bj0(x), where 
´ 
Qj0 

|bj0(x)|r dx ≤ |Qj0 |. Applying the previous argument 

for each bj0 we obtain the identity 

.bQ = g0 + (cα)
∑

j0

bj0 = g0 + cα
∑

j0

gj0 + (cα)2
∑

j0,j1

bj0,j1 ,
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where 
´ 
Qj0,j1 

|bj0,j1(x)|r dx ≤ |Qj0,j1 | and {Qj0,j1}j1 is a sequence of 

disjoint dyadic cubes (subcubes of Qj0 ) such that |gj0(x)| ≤  cα a.e., 

αr ≤
 

Qj0,j1 

|bj0(x)|r dx ≤ 2n αr and
∣∣⋃

j1 
Qj0,j1

∣∣ ≤ c α−r ´ 
Qj0 

|bj0(x)|r dx ≤ 

c|Qj0 | α−r . Employing an induction argument, we can find a family {Qik−1,j }j := 
{Qj0,··· ,jk−1,j }j of disjoint dyadic subcubes of Qik−1 := Qj0,··· ,jk−1 for k = 1, 2, · · ·  
with ik−1 = {j0, j1, · · ·  , jk−1} such that 

. bQ = gi0 + cα
∑

i1

gi1 + (cα)2
∑

i2

gi2 + · · · + (cα)k−1
∑

ik−1

gik−1 + (cα)k
∑

ik

hik ,

(7) 

in which gik−1 and hik , for every ik = (j0, j1, · · ·  , jk−1, j), satisfy |gik−1(x)| ≤ cα 

a.e. x ∈ Rn, αr ≤
 

Qik−1,j 
|hik (x)|r dx ≤ 2n αr and

∣
∣
⋃

j 
Qik−1,j

∣
∣ ≤ c|Qik−1 | α−r . 

The sum at (7) is interpreted as
∑

ik−1 
gik−1 := ∑

j0∈N · · ·
∑

jk−1∈N gj0,··· ,jk−1 

(analogously to
∑

ik 
hik ). We claim that the reminder term (cα)k

∑
ik 

hik in (7) goes 

to zero in L1(Rn ) as k → ∞. Indeed, writing Qik := Qik−1,j for some fixed j we 

have 
´ 
Rn |hik (x)|dx = ´ 

Qik 
|hik (x)|dx ≤

( ´ 
Qik 

|hik (x)|r dx
) 1 

r |Qik |1− 1 
r ≤ cα|Qik | 

and iterating (k + 1)-times the previous argument one has 

.

∑

ik

|Qik | ≤
( c

αr

)k+1 |Q|. (8) 

Thus, 
ˆ ∣∣

∣(cα)k
∑

ik 
hik (x)

∣∣
∣ dx ≤ (cα)k+1 ∑

ik 
|Qik | ≤ (c2α1−r ) (k+1)|Q|. That 

means, (cα)k
∑

ik 
hik (x) goes to 0 in L1(Rn ) as k → ∞, provided that c2α1−r < 1. 

Therefore, 

. bQ=gi0+cα
∑

i1

gi1+(cα)2
∑

i2

gi2+ · · · +(cα)k−1
∑

ik−1

gik−1+(cα)k
∑

ik

gik+ · · ·

in L1(Rn ), where |gik (x)| ≤  cα a.e. and for all |β| ≤  Nq we have 
´ 

xβ gik (x)dx =´ 
xβ bik (x)dx + ∑

j 
´ 
Qik−1,j 

xβ PQik,j b(x)dx = 
´ 

xβ bik (x)dx = 0. From the 

above considerations it is clear that ai0 := (cα)−1 |Q|−1/λ gi0 and aik := 
(cα)−1 |Qik |−1/λ gik are (q, λ,∞)−atoms for all k = 1, 2, · · · . Moreover, we can 
write 

.aQ = si0ai0 +
∑

i1

si1ai1 +
∑

i2

si2ai2 + · · · +
∑

ik

sik aik + · · · (9)
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where each coefficient {sik } is defined by sik = (cα)k+1|Q|−1/λ|Qik |1/λ. It remains 
to show that ‖{sik }k‖λ,q ≤ C, uniformly. Fixed J ⊂ Rn a dyadic cube, we may 
estimate 

. 

|J | q
λ
−1

∞∑
k=0

∑

Qik
⊆J

|sik |q |Qik |1− q
λ = |J | q

λ
−1 |Q|− q

λ

∞∑
k=0

(cα)q(k+1)
( ∑

Qik
⊆J

|Qik |
)

≲ |J | q
λ
−1|Q|− q

λ |J ∩ Q|
∞∑

k=0
(cα)q(k+1)

(
c
αr

)k+1

≤ C

provided cq+1αq−r < 1 (weaker than the previous one) and q ≤ λ. Note that here 
we have used a refinement of (8) given by

∑
ik : Qik

⊆J |Qik | ≲
(

c 
αr

)k+1 |J ∩ Q| and 

the uniform control |J |q/λ−1|Q|−q/λ|J ∩ Q| ≲ 1. ⨅⨆
The previous lemma allows us to study Hardy-Morrey spaces HMλ 

q(Rn ) with 

any of the atomic spaces atHMλ,r 
q (Rn ) for 1 ≤ r ≤ ∞  provided that q <  r . In  

addition, we announce an atomic decomposition in terms of (q, λ, r)−atoms, which 
is a direct consequence of the one proved in [9, p. 100] for (q, λ,∞)−atoms and 
Lemma 1, since they are in particular (q, λ, r)−atoms. 

Theorem 2 Let 0 < q  ≤ 1 ≤ r ≤ ∞  with q <  r  and q ≤ λ <  ∞. Then, 
f ∈ HMλ 

q(Rn ) if and only if there exist a collection of (q, λ, r)−atoms {aQ}Q and 
a sequence of complex numbers {sQ}Q such that f = ∑

Q sQaQ in S'(Rn ) and
‖f ‖atHMλ 

q 
≈ ‖f ‖HMλ 

q 
. 

2.2 Molecular Decomposition in Hardy-Morrey Spaces 

Definition 2 Let 0 < q  ≤ 1 ≤ r <  ∞ with q <  r , q ≤ λ <  ∞, and s >  
n (r/q − 1). A function m(x) is called a (q, λ, s, r)−molecule in HMλ 

q(Rn ) , or  
simply an Lr−molecule, if there exist a cube Q such that 

. (M1)

ˆ

Rn

|m(x)|rdx ≲ ℓ
n(1− r

λ )
Q (M2)

ˆ

Rn

|m(x)|r |x − xQ|sdx ≲ ℓ
s+n(1− r

λ )
Q

and also satisfies the cancellation condition (M3) 
ˆ 

Rn 
m(x)xα dx = 0 for all |α| ≤  

Nq . 

Remark 1 Equivalently, we can replace the previous global estimates by (M1) on 
2Q and (M2) on (2B)c. 

Lemma 2 Let m(x) to be an Lr−molecule. Then m = ∑
Q dQ aQ +∑

Q tQ bQ in 
Lr (Rn ), where each {aQ}

Q are (q, λ, r)−atoms and {bQ}
Q are (q, λ,∞)−atoms, 

for a suitable sequence of scalars {dQ}Q and {tQ}Q.
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Proof The proof follows from the corresponding result for Hardy spaces [7, 
Theorem 7.16]. Let m to be a (q, λ, s, r)−molecule centered in the cube Q. For  
each j ∈ N, let  Qj := Q(xQ, ℓj ) in which ℓj = 2j ℓQ. Consider the collection 
of annulus {Ej }j∈N0 given by E0 = Q and Ej = Qj\Qj−1 for j ≥ 1, and let 
mj(x) := m(x) 1Ej (x). By the same arguments presented in the proof of Lemma 1, 

there exist polynomials {φ j γ (x)}|γ |≤Nq uniquely determined in Ej such that 

.(2j ℓQ)|γ ||φj
γ (x)| ≲ 1 and

1

|Ej |
ˆ

Ej

φj
γ (x)xβdx =

{
1, γ = β

0, γ /= β
(10) 

where the implicit constant is uniformly on Ej . Let  m j γ =
ffl 
Ej 

mj(x)xγ dx and 

consider Pj (x) = ∑
|γ |≤Nq m j γ φ j γ (x). Splitting m = ∑∞ 

j=0

(
mj − Pj

)+∑∞ 
j=0 Pj , 

with convergence in Lr (Rn ), we claim that for each j , mj − Pj is multiple of a 
(q, λ, r)-atom and Pj is a finite linear combination of (q, λ,∞)-atoms. 

For the first sum, since mj and Pj are supported on Ej , so is  mj − Pj and by 
definition one has the desired vanish moments up to the order Nq . It remains to show 
that mj − Pj satisfies the size estimate. Indeed, from conditions (M1) and (M2) it 
follows that for every j ∈ N0 

.‖mj‖Lr ≲ |Ej | 1
r
− 1

λ (2j )
− s

r
+n

(
1
λ
− 1

r

)

. (11) 

Also, from (10) it follows |Pj (x)| ≤
(∑

|β|≤Nq |φ j β(x)|2j |β|
) ffl 

Ej 
|mj(x)|dx ≲

|Ej |− 1 
r ‖mj‖Lr , where the implicit constants are independent of j . Hence, if we 

write (mj − Pj )(x) = dj aQj (x) for dj = ‖mj − Pj‖Lr |Qj | 1 
λ
− 1 

r and aQj = 
mj −Pj

‖mj −Pj ‖Lr |Qj | 1 
r − 1 

λ , for each j ∈ N0, it is clear that {aQj
}j is a sequence of 

(q, λ, r)-atoms supported on Qj . Moreover, from (11) we have ‖mj − Pj‖Lr ≲

‖mj‖Lr ≲ |Qj | 1 
r − 1 

λ (2j )
− s 

r
+n

(
1 
λ
− 1 

r

)

. Hence, since s >  n  (r/q − 1) 

. 

∞∑

j=0

|dj |q |Qj |1− q
λ ≲ |Q|1− q

λ

∞∑

j=0

(2j )
q
[
− s

r
+n

(
1
q
− 1

r

)]

≲ |Q|1− q
λ .

For the second sum, let ψ j γ (x) := N j+1 
γ

[
|Ej+1|−1φ j+1 

γ (x) − |Ej |−1φ j γ (x)
]
, 

where N j γ = ∑∞ 
k=j m

k 
γ |Ek| = ∑∞ 

k=j 
´ 
Ek 

mQ(x)xγ dx. Then, we can repre-

sent Pj (using the vanish moments (M3)) as 
∞∑

j=0 

Pj (x) = 
∞∑

j=0

∑

|γ |≤Nq 

ψj 
γ (x). The  

function ψ j α is supported on Ej+1 and by construction also satisfies vanishing 
moments conditions up to the order Nq . It remain to check the size condition.



586 M. de Almeida et al.

Since |γ | ≤  n(1/λ − 1) and s >  n(r/q  − 1), |N j+1 
γ | ≤ |Qj |1−1/λ (2j ℓQ)|γ | 

(2j )−s/r+n(1/λ−1/r). The previous estimate and (2j ℓQ)|γ ||φ j γ (x)| ≤  C yields for all 
x ∈ Ej 

. 

∣∣∣Nj+1
γ |Ej |−1φj

γ (x)

∣∣∣ ≤ C|Qj |− 1
λ (2j )

− s
r
+n

(
1
λ
− 1

r

)

.

Let ψ j γ = tj b j γ , where tj = (2j )−s/r+n(1/λ−1/r) and b j γ (x) = (2j )s/r−n(1/λ−1/r) 

ψ j γ (x). Hence, we can write
∑∞ 

j=0 Pj (x) = ∑∞ 
j=0

∑
|γ |≤Nq tj b j γ (x), and for each 

j ∈ N0 the function b j γ (x) is a (q, λ,∞)−atom, since is supported on Ej+1 and 

satisfies |b j γ (x)| ≲ |Qj |− 1 
λ , as desired. Moreover from s >  n  (r/q − 1) one has 

. 

∞∑

j=0

|tj |q |Qj |1− q
λ = |Q|1− q

λ

∞∑

j=0

(2j )
q
(
− s

r
+n

(
1
q
− 1

r

))

≲ |Q|1− q
λ .

⨅⨆
Now we ready to announce a molecular decomposition in Hardy-Morrey spaces. 

Theorem 3 Let
{
mQ

}
Q be a collection of L

r−molecules and
{
sQ

}
Q be a sequence 

of complex numbers such that ‖{sQ}Q‖λ,q < ∞. If the  series  f = ∑
Q sQmQ 

converges in S'(Rn ) and λ < r , then f ∈ HMλ 
q(Rn ) and moreover, ‖f ‖HMλ 

q
≲

‖{sQ}Q‖λ,q with implicit constant independent of f . 

Proof Suppose f = ∑
Q sQmQ in S'(Rn ) and ‖{sQ}Q‖λ,q < ∞. Since 0 < q  ≤ 1, 

for a fixed dyadic cube J ⊂ Rn we may estimate 
´ 
J |Mϕf (x)|q dx by 

. 
∑

Q⊆J

|sQ|q
ˆ

J

|MϕmQ(x)|qdx +
∑

J⊂Q

|sQ|q
ˆ

J

|MϕmQ(x)|qdx := I1 + I2.

Estimate of I1 From Lemma 2, write mQ = ∑∞ 
j=0 dj aQj (convergence in Lr ) 

where
{
aQj

}
j are (q, λ, r)−atoms and moreover

∑∞ 
j=0 |dj |q |Qj |1− q 

λ ≲ |Q|1− q 
λ . 

It follows from analogous estimates of Proposition 1 that 

.I1 ≲
∑

Q⊆J

|sQ|q
∞∑

j=0

|dQj
|q
ˆ

J

|MϕaQj
(x)|qdx ≲

∑

Q⊆J

|sQ|q
∞∑

j=0

|dQj
|q |Qj |1− q

λ

≲
∑

Q⊆J

|sQ|q |Q|1− q
λ ≲ |J |1− q

λ ‖{sQ}Q‖q
λ,q .
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Estimate of I2 Since 1 < r  <  ∞ and Mϕ is bounded on Lr (Rn ), it follows 

. |J | q
λ
−1

ˆ

J

|MϕmQ(x)|qdx

≤ |J |q
(

1
λ
− 1

r

)
⎛

⎝
∞∑

j=0

(2j ℓQ)−s

ˆ

Ej

|mQ(x)|r |x − xQ|sdx

⎞

⎠

q
r

≲ |J |q
(

1
λ
− 1

r

)

|Q|q
(

1
r
− 1

λ

)
⎛

⎝
∞∑

j=0

2−js

⎞

⎠

q
r

≃
( |J |

|Q|
)q

(
1
λ
− 1

r

)

.

If r = 1 and 0<q<1, we proceed like in (6) and then |J | q 
λ
−1 ´ 

J |MϕmQ(x)|q dx≲

. |J | q
λ
−1

⎡

⎣|J |
ˆ |Q|1− 1

λ |J |−1

0
ωq−1dω + |Q|−1+ 1

λ

ˆ ∞

|Q|1− 1
λ |J |−1

ωq−2dω

⎤

⎦

≲
( |J |

|Q|
)q

(
1
λ
−1

)

.

Fixed a dyadic cube J , we point out that there exists a subset N ⊆ N such that each 
cube J ⊂ Q is uniquely determined by a dyadic cube Qk,J ∈ {

Q dyadic : J ⊂ 

Q and ℓQ = 2kℓJ

}
. Hence, we can write

∑

J⊂Q 
|sQ|q

( |J | 
|Q|

)γ 
=

∑

k∈N 
|sQk,J

|q 2−knγ 

with γ := 1/λ − 1/r > 0. Then, 

. |J | q
λ
−1

∑

J⊂Q

|sQ|q‖Mϕ(aQ)‖q

Lq(J ) ≲
∑

k∈N

(
|sQk,J

|q |Qk,J |1− q
λ

)
|Qk,J | q

λ
−12−knγ q

≤
∑

k∈N

⎛

⎝
∑

Q⊆Qk,J

|sQ|q |Q|1− q
λ

⎞

⎠ |Qk,J | q
λ
−12−knγ q

≲ ‖ {sQ
}
Q

‖q
λ,q

∑

k∈N

2−knγ q ≲ ‖ {sQ
}
Q

‖q
λ,q .

⨅⨆
Remark 2 The Theorem 3 covers [10, Theorem 2.6] when r = 2 where the natural 
restriction λ <  2 was omitted (see also Proposition 1).
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3 Proof of Theorem 1 

Proof Let a be a (q, λ, r)-atom supported in the cube Q. From Theorem 3, it  
suffices to show that T a  is a (q, λ, s, r)− molecule associated to Q. Suppose first 
that ℓQ ≥ 1. Since T is bounded in L2(Rn ) to itself and 1 ≤ r ≤ 2, condition (M1) 
follows by 

. 

ˆ

2Q

|T a(x)|rdx ≤ |2Q|1− r
2 ‖T a‖r

L2 ≲ |Q|1− r
2 ‖a‖r

L2 ≲ |Q|1− r
λ ≃ ℓ

n(1− r
λ )

Q .

(12) 

For (M2) using the moment condition of the atom a, Minkowski inequality and (3), 
we estimate 

´ 
2Qc |T a(x)|r |x − xQ|s dx by 

. 

∞∑

j=1

ˆ

Cj (xQ,ℓQ)

∣∣∣
∣

ˆ

Q

[K(x, y) − K(x, xQ)]a(y)dy

∣∣∣
∣

r

|x − xQ|sdx

≤
∞∑

j=1

(2j ℓQ)s

⎧
⎨

⎩

ˆ

Q

|a(y)|
 Гˆ

Cj (xQ,ℓQ)

|K(x, y) − K(x, xQ)|rdx

⏋ 1
r

dy

⎫
⎬

⎭

r

≲
∞∑

j=1

(2j ℓQ) s−n(r−1) 2−jrδ ℓ
rn

(
1− 1

λ

)

Q

≃ ℓ
r+n(1− r

λ )
Q

∞∑

j=1

2j [s−n(r−1)−rδ] ≃ ℓ
s+n(1− r

λ )
Q ,

assuming s <  n(r−1)+rδ. We remark that for the case r = 1, one needs to consider 
(q, λ, s, 1)−molecules and hence 0 < q  ≤ λ <  1. Suppose now that ℓQ < 1. Since 
T is a bounded operator from Lp (Rn ) to L2(Rn ) and 1 < r  ≤ 2, condition (M1) 
follows by 

. 

ˆ

2Q

|T a(x)|rdx ≤ |2Q|1− r
2 ‖T a‖r

L2 ≲ |Q|1− r
2 ‖a‖r

Lp ≲ |Q|1− r
λ
+r

(
1
p

− 1
2

)

≲ |Q|1− r
λ .

To estimate the global (M2) condition, we consider 0 < ρ  ≤ σ ≤ 1 a parameter 
that will be chosen conveniently later, denote by 2Qρ := Q(xQ, 2ℓ

ρ 
Q) and split 

the integral over Rn into 2Qρ and (2Qρ )c. For 2Qρ we use the boundedness from
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Lp (Rn ) to L2(Rn ) again and obtain 

. 

ˆ

2Qρ

|T a(x)|r |x − xQ|sdx ≲ ℓ
sρ
Q |4Qρ |1− r

2 ‖T a‖r
L2 ≲ ℓ

ρs+nρ(1− r
2 )

Q ‖a‖r
Lp

≲ ℓ
ρs+n

[
ρ− rρ

2 +r
(

1
p

− 1
λ

)]

Q ≲ ℓ
s+n(1− r

λ )
Q ,

assuming s ≤ −n
(
1 − r 2

) + nr 
1−ρ

(
1 
p − 1 

2

)
. For  (2Qρ )c, we use  (4) to estimate 

´ 
(2Qρ)c |T a(x)|r |x − xQ|s dx by 

. 

∞∑

j=1

(2j ℓ
ρ
Q)s

⎧
⎨

⎩

ˆ

Q

|a(y)|
 Гˆ

Cj (xQ,ℓ
ρ
Q)

|K(x, y) − K(x, xQ)|rdx

⏋ 1
r

dy

⎫
⎬

⎭

r

≲
∞∑

j=1

(2j ℓ
ρ
Q)s

(
|Cj (xQ, ℓ

ρ
Q)| 1

r
−1+ δ

n

(
1
ρ
− 1

σ

)

2− jδ
ρ

)r

ℓ
rn

(
1− 1

λ

)

Q

≃ ℓ
ρs+n

[
r+ rδ

n
−rρ

(
1− 1

r
+ δ

nσ

)
− r

λ

]

Q

∞∑

j=1

2
j
[
s−n(r−1)− rδ

σ

]

≲ ℓ
ρs+n

[
ρ(1− r

2 )+r
(

1
p

− 1
λ

)]

Q ≤ ℓ
s+n(1− r

λ )
Q ,

where the convergence follows assuming s <  n(r  − 1) + rδ 
σ and we choose ρ to be 

such that r + 
rδ 
n 

− ρ
(

r − 1 + 
rδ 
nσ

)
= ρ

(
1 − 

r 
2

)
+ 

r 
p 

⇔ ρ := 
n
(

1 − 1 
p

)
+ δ 

n 
2 + δ 

σ 
. 

By the choice of ρ we have 

. − n
(

1 − r

2

)
+ nr

1 − ρ

(
1

p
− 1

2

)
< n(r − 1) + rδ < n(r − 1) + rδ

σ
.

In particular, collecting the restrictions on s we get 

. n

(
r

q
− 1

)
< s ≤ −n

(
1 − r

2

)
+ nr

1 − ρ

(
1

p
− 1

2

)

⇒ 1

q
<

1

2
+ β

(
δ
σ

+ n
2

)

n
(

δ
σ

− δ + β
) = 1

q0
.

We point out that when σ = 1, only condition s <  n(r −1)+rδ is imposed to verify 
(M1) and (M2). Condition (M3), given formally by T ∗(xα ) = 0 for all |α| ≤  Nq , is  
trivially valid, since n/(n + δ) < q0 < q  ≤ 1 implies Nq ≤ ⎣δ⎦ . ⨅⨆
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Remark 3 The previous proof remains the same if one consider integral conditions 
incorporating derivatives of the kernel. For a complete discussion and the precise 
definition of such conditions we refer [12, Section 4.2]. 
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The Asymptotic Estimates of the 
Solutions to the Linear Damping Models 
with Spatial Dependent Coefficients 

Pham Trieu Duong 

Abstract We study the Cauchy problem 

. 
utt + a1(x)(−Δ)σ u + a2(x)ut = 0, t > 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
n,

with .σ ∈ (0, 1), where the coefficients .a1(x), a2(x) are continuous functions of the 
spatial variable x. We will derive the decay estimates for the solutions for this linear 
problem, as well as for the solution of the corresponding Cauchy - Dirichlet problem 
in the exterior domain .Ω ⊂ R

n. 

1 Introduction 

The damping models of the form 

. utt + (−Δ)σ u + μ(−Δ)δut = F(u, |D|αu, ut ), u(0, x) = u0(x),

ut (0, x) = u1(x),

have been studied by many authors (see [6, 11]). The diffusion phenomenon for 
damped wave equations with time dependent coefficient .a(t) was obtained by 
Wirth in [14, 15]. In [5] D’Abbicco and Ebert study the asymptotic profiles of 
the solution to the Cauchy problem for the linear plate equation with a decreasing 
coefficient . λ(t). Recently, in [10], the authors considered the following Cauchy-
Dirichlet problem 

. utt + a1(x)(−Δ)σ u + aut = 0, t > 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω, (1) 

u(0, x)  = u0(x), ut (0, x)  = u1(x), x ∈ Ω, 
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where .a = const > 0, . Ω is the exterior domain in . Rn: .Ω ≡ R
n \ K , and obtained 

the linear estimates for both cases, when .K = ∅ and .K /= ∅. In the above models, 
the fractional Laplacian .(−Δ)σ for .σ ∈ (0, 1) can be defined as 

. (−Δ)σ u(x) = C

ˆ
Rn

u(x) − u(y)

|x − y|n+2σ dy

for sufficiently smooth u with a positive normalization constant 

. C := Cn,σ = 22σ σ𝚪( n
2+σ)

π
n
2 𝚪(1−σ)

.

The main tools for deriving decay estimates of the model (1) is construction 
of the diffusion phenomenon and transferring the decay rate of the solution of the 
evolution equation 

.

⎧
⎪⎪⎨

⎪⎪⎩

ρ(x)vt + (−Δ)σ v = 0, t > 0, x ∈ Ω

v(t, x) = 0, t > 0, x ∈ ∂Ω

vt (0, x) = v0(x), x ∈ Ω

(2) 

with suitable .ρ(x) and .v0(x), to the corresponding rate of the solution of problem 
(1). It should be noted that the condition .a = const is quite essential in [10] in order 
to get the desired diffusion phenomenon. 

This article is devoted to the study of the models 

.

{
utt + a1(x)(−Δ)σ u + a2(x)ut = 0, (t, x) ∈ [0,∞) × R

n,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R
n,

(3) 

and 

.

⎧
⎪⎪⎨

⎪⎪⎩

utt + a1(x)(−Δ)σ u + a2(x)ut = 0, (t, x) ∈ [0,∞) × Ω

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ Ω,

(4) 

where both .a1(x) and .a2(x) are depending on x variables. We will show that some 
reasonable decay rates of solutions for problems (3) and (4) are still available and 
they can be obtained by the notion of the generalized diffusion phenomenon that has 
been introduced by Radu et al. in [13].
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2 Main Results 

We study the linear Cauchy problem (3) in .[0,∞) ×R
n, where the coefficient . a1 =

a1(x), a2 = a2(x) are continuous functions on . Rn. Moreover, we assume that there 
exist positive constants .ci, i = 1, 2, 3, 4, such that 

.c1 ≤ a1(x) ≤ c2, c3 ≤ a2(x) ≤ c4, ∀x ∈ R
n. (5) 

The linear estimates of the solution for problem (3) are stated in the following. 

Theorem 1 Consider the linear problem (3) in  .(0,∞) × R
n with .σ ∈ (0, 1), 

.(u0, u1) ∈ (
Hσ (Rn) ∩ L1(Rn)

) × (
L2(Rn) ∩ L1(Rn)

)
. Assume that .n > 2σ , 

.ai = ai(x), i = 1, 2 satisfy (5). Let u be the unique weak solution to (3). Then 
the following estimates 

. ‖u(t)‖2 ≲
(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q

)
(t+1)−

n
2σ (1/q−1/2)−1+

+(‖u0‖2+‖u1‖2+‖u0‖1+‖u1‖1
)
(t+1)−

n
4σ , . (6)

‖∂tu(t)‖ ≲ (‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖1+‖u1‖1)(t+1)− n 
4σ −1 

+(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q)(t+1)− n 
2σ (1/q−1/2)−3/2 

, . 

(7)

‖u(t)‖Ḣ σ ≲ (‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖1+‖u1‖1)(t+1)− n 
4σ −1 

+(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q)(t+1)− n 
2σ (1/q−1/2)−3/2 

. 
(8) 

hold for .q ∈ (1, 2] and for all .t > 0. 

We also are interested in the decay estimates of solutions for the Cauchy-
Dirichlet problem (4) in .[0,∞)×Ω. In this problem the exterior domain . Ω is defined 
as .Ω = R

n \ K , where K is a compact with sufficiently smooth . ∂K . The linear 
estimates of the solution for problem (4) are contained in the following theorem. 

Theorem 2 Consider the linear Cauchy-Dirichlet problem (4) with .σ ∈ (0, 1) and 
.n > 2σ with the compactly supported data (. (u0, u1) ∈ (

Ḣ σ (Ω) ∩ L1(Ω)
) ×

(
L2(Ω) ∩ L1(Ω)

)
. Assume that the coefficients .ai = ai(x), i = 1, 2, satisfy (5). 

Let .(u, ∂tu) ∈ C
(
(0,∞), Ḣ σ (Ω) × L2(Ω)

)
be the unique weak solution to (4) and 

B be the self-adjoint operator defined through (19)–(23) and the Dirichlet condition. 
Then the following estimates 

.‖u(t)‖2 ≲
(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q

)
(t+1)−

n
2σ (1/q−1/2)−1
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+(‖u0‖2+‖u1‖2+‖u0‖1+‖u1‖1
)
(t+1)− n 

4σ , . (9)

‖∂tu(t)‖2 ≲(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖1+‖u1‖1)(t+1)− n 
4σ −1 

+(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q)(t+1)− n 
2σ (1/q−1/2)−3/2 

, . 

(10)

‖√Bu(t)‖2 ≲(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖1+‖u1‖1)(t+1)− n 
4σ −1 

+(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q)(t+1)− n 
2σ (1/q−1/2)−3/2 

, 
(11) 

hold for .q ∈ (1, 2] and for all .t > 0. 

3 The Generalized Diffusion Phenomenon 

In this section we recall the notion of the generalized diffusion phenomenon that 
has been well studied by Radu et al. in [13] in the abstract setting with two non-
commuting self-adjoin operators. 

Let .B : D(B) → H and .C : H → H be two self-adjoint nonnegative definite 
operators on the real Hilbert space .(H, ‖ · ‖). We consider the Cauchy problem in 
. (0,∞)

.C∂2t u + ∂tu + Bu = 0, u(0) = u0, ∂tu(0) = u1, (12) 

where .(u0, u1) ∈ D(
√

B)×H. The generalized diffusion phenomenon is described 
by the approximation . u(t) ≈ e−tB(u0 + Cu1), t → ∞.

In more details, let us introduce the following conditions on operators B and C. 

. (H1) D(B) is dense inH and C is a bounded operator onH;
(H2) 〈Bu, u〉 > 0 for u ∈ D(B) and u /= 0; (13) 

(H3) C1‖u‖2 ≥ 〈Cu, u〉 ≥  C0‖u‖2 for u ∈ H, where C1 ≥ C0 > 0. 

In [13] it was proved that conditions (H1)–(H3) are sufficient to ensure the 
existence and uniqueness of mild solutions .(u, ∂tu) ∈ C(R+,D(B) × H) for 
problem (12) (see Appendix A in [13]). 

Let .H = L2(Ω,μ), where .(Ω,μ) is a .σ− finite measure space. To obtain the 
generalized diffusion phenomenon for problem (12), we assume further that the next
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conditions on B and C are satisfied. 

. (H4) − B generates a Markov semigroup {e−tB}t≥0 on Lq(Ω,μ), q ∈ [1, 2].
(H5) ∃m > 0 such that ‖e−tBg‖2 ≤ cqt−m/2(1/q−1/2)(‖g‖q + ‖g‖2),

for g ∈ Lq(Ω,μ) ∩ L2(Ω,μ), t > 0, q ∈ [1, 2]. (14) 

(H6) Cis a bounded operatorLq (Ω, μ) → Lq (Ω, μ)for all q ∈ [1, 2]. 

Recall that the semigroup .{e−tB}t>0 on .L1(X, μ), where .(X,A, μ) is a .σ -finite 
measure space, is said to be Markov if 

.f ∈ L1(X, μ), f ≥ 0 implies e−tBf ≥ 0 and ‖e−tBf ‖L1 ≤ ‖f ‖L1 (15) 

for all .t > 0. The property (15) will be called also the Markov property of the 
semigroup. The norm .‖ ·‖1 is the norm in .L1(X, μ), meanwhile .f ≥ 0 holds almost 
everywhere with respect to the measure . μ. 

We introduce the energy .Ev(s) associated with .(v, ∂sv) ∈ C(R+,D(B) ×H): 

. Ev(s) = 1

2

(‖√C∂sv(s)‖2 + ‖√Bv(s)‖2), s ≥ 0.

The decay rates of the solution for problem (12) obtained by the generalized 
diffusion phenomenon are described as follows. 

Proposition 1 (Corollary 1.5 in [13]) Assume that (H1)–(H6) are satisfied and let 
.(u, ∂tu) ∈ C(R+,D(

√
B) ×H) be the unique mild solution of (12). If  .q ∈ (1, 2], 

then 

. ‖u(t)−e−tB(u0+Cu1)‖2
≲ (‖u0‖2+‖√Bu0‖2+‖u1‖2+‖u0‖q+‖u1‖q)(t+1)−m/2(1/q−1/2)−1, . 

(16)

‖u(t)‖2 ≲ (‖u0‖2+‖u1‖2+‖u0‖1+‖u1‖1)(t+1)−m/4 

+(‖u0‖2+‖√Bu0‖2+‖u1‖2+‖u0‖q+‖u1‖q)(t+1)−m/2(1/q−1/2)−1, . 

(17) 

E
1/2 
u (t) ≲ (‖u0‖2+‖√Bu0‖2+‖u1‖2+‖u0‖1+‖u1‖1)(t+1)−m/4−1 

+(‖u0‖2+‖√Bu0‖2+‖u1‖2+‖u0‖q+‖u1‖q)(t+1)−m/2(1/q−1/2)−3/2. 
(18)
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4 Proofs of Theorems 1 and 2 

Since the proofs Theorems 1 and 2 will follow almost exactly same ways, if we 
consider the case .Ω = R

n as a special case of the exterior domain .Ω = R
n \ K , 

with .K = ∅, we will present below the proof of Theorem 2. In order to apply 
the generalized diffusion phenomenon in the abstract setting, we will construct the 
Hilbert space . H and the corresponding self-adjoint operators B and C as follows. 

We denote .ρ(x) := a2(x)

a1(x)
. Let  . H be the space .L2(Ω, ρ(x)dx). Thanks to the 

condition (5) on  .ai(x), i = 1, 2, the norm .‖ · ‖q in .Lq
ρ := Lq(Ω, ρ(x)dx) is 

equivalent to the usual .Lq− norm in .Lq(Ω), for all .q ∈ [1,∞]. Thus for simplicity, 
we will omit . ρ in the notation of . L

q
ρ , whenever the norms .‖ · ‖q are involved. 

The self-adjoint operator C is chosen as .C := 1

a2(x)
, that means .Cu = 1

a2(x)
u. 

As for the operator B, we will chose it to be 

.B = a1(x)

a2(x)
(−Δ)σ . (19) 

More precisely, consider .B0u := a1(x)

a2(x)
(−Δ)σ u for .u ∈ C∞

0 (Ω). We will show that 

. B0 is a symmetric nonnegative operator in . H. Indeed, for .u, v ∈ C∞
0 (Ω) we have 

. (B0u, v)H = ((−Δ)σ u, v)L2(Ω) = C

ˆ

Ω

ˆ

Rn

u(x) − u(y)

|x − y|n+2σ v(x)dydx

= C

ˆ

Ω

ˆ

Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2σ dydx + C

ˆ

Ω

ˆ

Rn

u(x) − u(y)

|x − y|n+2σ v(y)dydx

= C

ˆ

Ω

ˆ

Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2σ dydx + C

ˆ

Ω

ˆ

Ω

u(x) − u(y)

|x − y|n+2σ v(y)dydx,

(20) 

due to .v ∈ C∞
0 (Ω). 

Renaming the variables .x, y by .y, x in the last double integral we obtain 

.(B0u, v)H = C

ˆ

Ω

ˆ

Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2σ dydx

− C

ˆ

Ω

ˆ

Ω

u(x) − u(y)

|x − y|n+2σ v(x)dydx
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= C 
ˆ

Ω

ˆ 

Rn 

(u(x) − u(y))(v(x) − v(y)) 
|x − y|n+2σ dydx 

− C 
ˆ

Ω

ˆ 

Rn 

u(x) − u(y) 
|x − y|n+2σ v(x)dydx 

+ C 
ˆ

Ω

ˆ 

Rn\Ω

u(x) − u(y) 
|x − y|n+2σ v(x)dydx. (21) 

Again, thanks to .u ∈ C∞
0 (Ω), from (21) it follows that 

. (B0u, v)H= C

2

[ˆ

Ω

ˆ

Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+2σ dydx

+
ˆ

Ω

dx

ˆ

Rn\Ω

u(x)v(x)

|x − y|n+2σ
dy

]
, (22) 

which implies .(B0u, v)H = (u, B0v)H and .(B0u, u)H ≥ 0 for all .u, v ∈ C∞
0 (Ω). 

Now we define B as the Friedrichs extension for the densely defined symmetric 
nonnegative operator . B0 in . H. Then B itself is a nonnegative self-adjoint operator, 
with 

.D(B) = V ∩ {u ∈ H : B0u ∈ H}, (23) 

where V is the completion of .C∞
0 (Ω) with respect to the norm 

. u �→
((

B0u, u)H + ‖u‖2H
) 1

2
.

The square root .
√

B of B and other powers . Bk are defined by operator calculus. 
Now, let us verify the validation of conditions .(H1)–(H6). 
Conditions .(H1)–(H3) and .(H6) are obviously satisfied, thanks to the bounded-

ness assumptions on coefficients .ai(x), i = 1, 2. 
Condition .(H4) can be verified by the well-known approach proposed in [2, 7, 

12] to apply the realization of the fractional Laplacian .(−Δ)σ through the . 2σ−
harmonic extension to the upper half-space. Indeed, the Markov property of the 
semigroup .{e−tB}t≥0, that is condition .(H4), follows from Propositions 5.12 and 
5.18 in [10] that summarize the most important properties of solutions, including



598 P. T. Duong

positivity and .L1
ρ-contraction, to the evolution model 

.

⎧
⎪⎪⎨

⎪⎪⎩

ρ(x)vt + (−Δ)σ v = 0, (t, x) ∈ (0,∞) × Ω,

v(0, x) = v0(x), x ∈ Ω,

v(t, x) = 0, (t, x) ∈ (0,∞) × ∂Ω,

(24) 

under the following assumptions on the density .ρ = ρ(x) and the initial condition 
. v0 = v0(x)

.

⎧
⎪⎪⎨

⎪⎪⎩

ρ ∈ C(Rn), ρ > 0 in R
n,

v0 ∈ L∞(Rn) ∩ L+
ρ (Rn),

0 < σ < 1,

(A0) 

where .L+
ρ (Rn) :=

{
f ∈ L1

ρ(Rn) : f ≥ 0
}
. 

Since .{e−tB}t≥0 is also a symmetric semigroup of contraction in .L2
ρ(Ω), by  

interpolation between 

. ‖e−tBf ‖L2
ρ

≤ ‖f ‖L2
ρ
, and ‖e−tBf ‖L1

ρ
≤ ‖f ‖L1

ρ
,

a standard duality argument allows the possibility to extend the semigroup . {e−tB}t≥0
to all .Lq

ρ(Ω) with .q ≥ 1, such that 

. ‖e−tBf ‖L
q
ρ

≤ ‖f ‖L
q
ρ
.

Hence we obtain a symmetric Markov semigroup .{e−tB}t≥0 on .L
q
ρ(Ω), for all . q ∈

[1,∞). Thus condition .(H4) is verified. 
The validity of condition .(H5) is a consequence of the following lemmas. 

Lemma 1 For all functions .f ∈ L1(Ω) ∩ Hσ
0 (Ω) the following estimate holds: 

.‖f ‖2+
4σ
n

L2 ≲ (Bf, f )L2
ρ
‖f ‖

4σ
n

L1 . (25) 

Proof In the case .Ω ≡ R
n the statement of this result follows from Hölder’s and 

the fractional Sobolev inequalities. Indeed, by Hölder’s inequality 

.‖f ‖2
L2 ≤ ‖f ‖

1
p

L1‖f ‖
2p−1

p

L
2p−1
p−1

,
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choosing the parameter .p = n+2σ
4σ and then raising the last inequality to .1+ 2σ

n
, we  

derive 

. ‖f ‖2+
4σ
n

L2 ≤ ‖f ‖
4σ
n

L1 ‖f ‖2
L

2n
n−2σ

.

In order to estimate the norm .‖f ‖
L

2n
n−2σ

by the scalar product .(Bf, f )
1
2
L2

ρ
, we apply 

the following well-known Sobolev inequality (see [8]) 

. ‖f ‖p

Lp⋆
(Rn)

≤ C1

ˆ

Rn

ˆ

Rn

|f (x) − f (y)|p
|x − y|n+sp

dxdy,

that is valid for .s ∈ (0, 1), p ≥ 1, sp < n and .p⋆ = np
n−sp

, with a constant . C1 =
C1(n, s, p). If we chose .s = σ, p = 2, then the above fractional Sobolev inequality 

with .p⋆ = 2n
n−2σ implies .‖f ‖

L
2n

n−2σ
≲ (Bf, f )

1
2
L2

ρ
from the definition of B. 

The case when .K /= ∅ requires an attention, since we are working with the non-
local fractional Laplacian .(−Δ)σ , that means we need to estimate the following 
scalar product in . L2

ρ(Ω)

.(Bf, f )H = C

ˆ

Ω

ˆ

Rn

(f (x) − f (y))f (x)

|x − y|n+2σ dydx, (26) 

where .C = const, for .f ∈ D(B). 

Let us denote .I =
ˆ

Ω

ˆ

Rn

(f (x) − f (y))f (x)

|x − y|n+2σ
dydx. By (22) we obtain 

. 2I =
ˆ

Ω

ˆ

Rn\Ω

f 2(x)

|x − y|n+2σ dydx +
ˆ

Ω

ˆ

Rn

(f (x) − f (y))(f (x) − f (y))

|x − y|n+2σ dydx

≥
ˆ

Ω

ˆ

Rn

(f (x) − f (y))(f (x) − f (y))

|x − y|n+2σ
dydx

≥
ˆ

Ω

ˆ

Ω

(f (x) − f (y))(f (x) − f (y))

|x − y|n+2σ
dydx, (27) 

since all integrands are non-negative. 
Now we apply the following version of fractional Sobolev inequalities for 

domains (see Thm. 1.1 in [9] and Thm. 6.7 in [8] for reference) 

.

¨
Ω×Ω

|f (x) − f (y)|p
|x − y|n+2σ dydx ≥ Cn,p,σ

(ˆ
Ω

|f (x)|p⋆

dx
)p/p⋆

,
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that is valid for all open .Ω ⊂ R
n, p ≥ 2, n ≥ 2, 0 < σ < 1, n > pσ and 

.f ∈ ◦
Wσ

p(Ω). With the choice .p = 2, the above inequality combined with (27) 
implies the estimate for .(Bf, f ), and thus, the statement of Lemma 1 in the case 
.Ω /= R

n as well, after applying Hölder’s inequality as in the case .Ω ≡ R
n. 

The following ultracontractivity result is classical and can be found in [1, 3, 4] 

Lemma 2 Assume that .{e−tB}t≥0 is a symmetric Markov semigroup on 
.Lq(Ω,μ), q ∈ [1,∞], where .(Ω,μ) is a .σ - finite measure space. If the following 
condition 

.‖f ‖2+
4
m

L2 ≲ (Bf, f )L2 ‖f ‖
4
m

L1 , ∀f ∈ D(B) ∩ L1(Ω,μ), (28) 

holds with .m > 0, then 

i) .‖e−tBf ‖p ≤ Cp.q t−m/2(1/q−1/p)‖f ‖q, t > 0, 

ii) .‖f ‖p ≤ Cp‖f ‖1−m/k(1/2−1/p)

2 ‖Bk/2f ‖m/k(1/2−1/p)

2 , 

for all .p ∈ [2,∞], q ∈ [1, p] and .k > m(1/2 − 1/p). 

From Lemma 1 it follows that condition (28) is satisfied for .m = n
σ
. The estimate 

. i) with .p = 2 in Lemma 2 implies the validity of condition .(H5) for the operator 
B. 

Thus we have checked conditions .(H1)–(H6) for operators B and C. By  
Proposition 1 we obtain the diffusion phenomenon 

. ‖u(t) − e−tB(u0 + Cu1)‖2
≲ (‖u0‖2 + ‖√Bu0‖2 + ‖u1‖2 + ‖u0‖q + ‖u1‖q)(t + 1)−m/2(1/q−1/2)−1,

(29) 

for .q ∈ (1, 2]. Nowwewill transfer the decay rate from .e−tB(u0+Cu1) on the decay 
of . u(t). Recalling condition .(H5) for .q = 1 and the assumptions on .ai(x), i = 1, 2, 
we can estimate 

.‖e−tB(u0 + Cu1)‖2 ≲ t
− n
4σ

(‖u0‖2 + ‖u1‖2 + ‖u0‖1 + ‖u1‖1
)
. (30) 

Combining estimates (29) and (30) we obtain 

. ‖u(t)‖2 ≲
(‖u0‖2 + ‖u0‖Ḣ σ + ‖u1‖2 + ‖u0‖q + ‖u1‖q

)
(t + 1)−

n
2σ (1/q−1/2)−1+

+ (‖u0‖2 + ‖u1‖2 + ‖u0‖1 + ‖u1‖1
)
(t + 1)−

n
4σ , (31) 

for .q ∈ (1, 2].
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Thanks to the assumptions on .ai(x), i = 1, 2 and the construction of B and C, 
we have an obvious approximation 

. Ev(s) = 1

2

(‖√C∂sv(s)‖2 + ‖√Bv(s)‖2) ≈
(
‖∂sv(s)‖2 + ‖√Bv‖2

)2
.

Hence, by Proposition 1, we get 

. ‖∂tu(t)‖2+‖√Bu(t)‖2 ≲ (‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖1+‖u1‖1)(t+1)−
n
4σ −1

+(‖u0‖2+‖u0‖Ḣ σ +‖u1‖2+‖u0‖q+‖u1‖q)(t+1)−
n
2σ (1/q−1/2)−3/2

, (32) 

for .q ∈ (1, 2]. The proof of Theorem 2 thus is complete. 
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A Klein-Gordon Model with 
Time-Dependent Coefficients and a 
Memory-Type Nonlinearity 

Giovanni Girardi 

Abstract In this paper we consider a nonlinear Klein-Gordon model with a 
constant dissipation, a time-dependent positive mass term and a memory type 
nonlinearity, assuming the initial data to be small in the energy space and in . Lm, 
for some .m ∈ (1, 2]. We investigate how the presence of the mass term influences 
the critical exponent compared with the one found in the purely dissipative case, 
in low space dimension .n = 1, 2. Such critical exponent arises from the interplay 
between the additional decay rate produced by the presence of the mass term and the 
loss of decay rate due to the presence of the nonlinear memory and to the assumption 
of initial data in . Lm instead of . L1. 

1 Introduction 

In this paper, we look for global (in time) small data energy solutions to the Cauchy 
problem 

.

{
utt − ∆u + ut + δ2

1+t
u = F(t, u), t ≥ 0, x ∈ R

n,

u(0, x) = u0(x), ut (0, x) = u1(x),
(1) 

where .δ ≥ 0 and the right-hand side is defined by 

.F(t, u) =
ˆ t

0
(t − s)−γ |u(s, x)|p ds, (2) 
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for some .γ ∈ (0, 1) and .p > 1. In order to do that, we first collect suitable decay 
estimates for solutions to the corresponding linear Cauchy problem 

.

{
utt − ∆u + ut + δ2

1+t
u = 0,

u(0, x) = u0(x), ut (0, x) = u1(x),
(3) 

and then, we apply a contraction argument to construct the solution to (1). Problem 
(3) is a special case of a more general Klein-Gordon model with time-dependent 
coefficients 

.

{
vtt − ∆v + b(t)vt + m2(t)v = 0,

v(0, x) = v0(x), vt (0, x) = v1(x).
(4) 

Decay estimates for the solution to wave models of the form (4) have been 
investigated by many authors, under different assumptions on the coefficients . b(t)

and .m(t). One could refer to the survey articles [22] and [28] for an overview of 
results; the case of zero mass, .m(t) ≡ 0, is deeply studied in [24] and [25]; here, the 
author has introduced a classification of the dissipation term .b(t)ut as non-effective 
or effective, which distinguishes the dissipation terms according to their strength and 
influence on the large-time behaviour of solutions. The constant dissipation term . ut

is an instance of effective damping; in this case the solution .v = v(t, x) to the 
classical damped wave model behaves asymptotically like the solution . w = w(t, x)

to the heat equation .b(t)wt − ∆w = 0 with suitable initial condition . w(0, ·)
depending on . v0, . v1 and .b(0), i.e. .v(t, x) ∼ w(t, x) in an appropriate .Lp-sense. 
This can be made precise in the form of the so-called diffusion phenomenon for 
damped waves (see [20, 21, 26]). 

In [10] the authors studied the Cauchy problem (4) assuming that the damping 
term is effective and dominates the mass term .m2(t)u, i.e. .m(t) = o(b(t)) as . t →
∞, under control assumptions on the oscillations of the coefficients. In that paper 
it has been proved that under simple conditions on the interaction between . b(t)

and .m(t), the solutions to (4) satisfies the estimate 

.‖v(t, ·)‖L2 ≤ C ω(t) ‖(v0, v1)‖H 1×L2 , (5) 

where 

.ω(t) = exp

(
−
ˆ t

0

m2(τ )

b(τ )
dτ

)
. (6) 

The decreasing function .ω = ω(t) in (6) describes how the interplay between the 
damping term and the mass term influences the energy decay estimates. In particular,
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if we introduce the parameter 

.β = lim inf
t→∞

( ˆ t

0

1

b(τ)
dτ

)
m(t)2, (7) 

as a consequence of (5), we get 

.‖v(t, ·)‖L2 ≤ C

(
1 +
ˆ t

0

1

b(τ)
dτ

)−α

‖(v0, v1)‖H 1×L2 , (8) 

for any .α ∈ [0, β). Estimate (8) shows that the presence of the mass term produces 
an additional polynomial decay which becomes faster as the mass term becomes 
more influent; in particular, if .β = ∞ in (7), one can obtain a polynomial decay as 
fast as you want. Moreover, if the mass term is assumed to be dominant with respect 
to the damping term, the solution decays exponentially, that is 

.‖u(t, ·)‖L2 ≤ C exp

(
−δ

ˆ t

0
b(τ) dτ

)
‖(u0, u1)‖H 1×L2 , (9) 

provided that .lim inft→∞ m(t)/b(t) > 1/4 (see [13]). In all the cited papers some 
conditions on derivatives of the coefficients are assumed to avoid a bad influence of 
oscillations. However, some long time decay estimates for wave models of the form 
(4) can be still derived if one considers time periodic coefficients, without further 
assumptions on derivatives (see [15, 27]). 

The decay estimates obtained for the solution to the linear model (4) may be 
applied to investigate global (in time) existence results for the associated nonlinear 
problem 

.

{
vtt − ∆v + b(t)vt + m2(t)v = |v|p;
v(0, x) = v0(x), vt (0, x) = v1(x).

(10) 

In [11], the model without mass has been considered, 

.

{
vtt − ∆v + b(t)vt = |v|p
v(0, x) = v0(x), vt (0, x) = v1(x),

(11) 

and it has been proved that if .b(t) is effective the critical exponent for global (in time) 
small data energy solutions to (11) remains the same as for the Cauchy problem 
with .b = 1 (see [16–19, 23, 29]). In particular, global existence holds for . p >

1 + 2/n if initial data are assumed to be small in exponentially weighted energy 
spaces. In the subcritical and critical range, .1 < p ≤ 1 + 2/n, no global in time 
small data Sobolev solutions exist, under a suitable sign assumption for the data (for 
example, see [9]). If smallness of the data is assumed only in the standard energy 
space .H 1 × L2 and in . L1, then the same result holds in space dimension .n = 1, 2.
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If the additional . L1 smallness is replaced by an additional . Lm regularity, then the 
critical exponent becomes .1 + 2m/n. 

The presence of the mass term in problem (10) can influence the critical exponent 
with respect to the purely dissipative case (11); indeed, if the effective damping 
term in (10) dominates the mass term .m2(t)u, i.e. .m(t) = o(b(t)), then estimate (8) 
holds for any .α ∈ [0, β) with . β defined as in (7); assuming small initial data in the 
energy space .H 1 × L2 and in . Lm for some .m ∈ [1, 2], the additional decay factor 
.(1+´ t

0 1/b(τ) dτ)−α allows to find a scale of critical exponents, which continuously 
move from .1 + 2m/n to 1, as the mass becomes more influent, with respect to the 
damping term. In particular, the global (in time) existence of small data solutions 
can be proved for any .p > pβ,m(n) where 

. pβ,m(n) =
{
1 + 2m

n+2mβ
if β ∈ [0,∞),

1 if β = ∞

assuming that .β > −1 + n/4 if .n ≥ 4 and .p < n/(n − 2) if .n ≥ 3 (see Theorem 3 
in [10]). 

Such result applies to the case in which b and m are defined as in our problem 
(1): for any .δ ≥ 0 the Cauchy problem 

.

{
vtt − ∆v + vt + δ2

1+t
v = |v|p,

v(0, x) = v0(x), vt (0, x) = v1(x),
(12) 

admits a global (in time) solution for any .p > pδ(n) where 

.pδ,m(n) := 1 + 2m

n + 2mδ2
, (13) 

assuming small initial data .(v0, v1) in .(H 1 ∩ Lm) × (L2 ∩ Lm); in particular, in 
this special case the function . ω introduced in (6) corresponds to .(1 + t)−δ2 and the 
parameter in (7) take value .β = δ2 (see Theorem 3). We remark that, the nonlinear 
term in (10) may be replaced by a more general power nonlinearity of the form 
.h(t, u) = (1 + ´ t

0 1/b(τ) dτ)ω|u(t, ·)|p with .ω ∈ [−1,∞) (see [4] and [14]). 
Finally, we mention that problem (10) has been recently deeply investigated in the 
scale invariant case .b(t) = μ1(1 + t)−1 and .m(t) = μ2(1 + t)−1 (see, for instance, 
[2] and [12]). 

In this work we consider the memory type nonlinearity defined in (2). Recently, 
many authors investigated fractional PDEs from different points of view, since 
they are particularly interesting for the real world applications and they are useful 
to describe memory and hereditary processes. In particular, it is of interest to 
understand how to treat nonlinear evolution problems in which the nonlinearity is 
represented by some memory term like .F(t, u) defined in (2).
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In [1] the authors have considered the Cauchy problem for the heat equation 

.

{
ut − ∆u = F(t, u), x ∈ R

n, t > 0,

u(0, x) = u0(x),
(14) 

and they have proved that the critical exponent for (14) is given by 

.p̄1 := max
{
γ −1, pγ (n)

}
, pγ (n) := 1 + 2(2 − γ )

n − 2(1 − γ )
. (15) 

In [6] the author studied the nonlinear Cauchy problem 

.

{
utt − ∆u + μut = F(t, u), x ∈ R

n, t > 0,

u(0, x) = 0, ut (0, x) = u1(x); (16) 

he has proved the existence of global (in time) solutions again for .p > p̄1 with . p1
as in (15), as for the Cauchy problem (14), for  .n ≤ 5; this is reasonable due to the 
diffusion phenomena discussed above. In particular, as .γ → 1 the critical exponent 
. p̄1 for problems (14) and (16) tends to .1 + 2/n which is the critical exponent for 
corresponding problem with power nonlinearity . |u|p. 

On the other hand, if one assumes the initial data to be in . Lm instead of . L1, a new  
critical exponent appears for problems (14) and (16), whose shape is quite different 
from the one of the critical exponent for . Lm theory for the corresponding problem 
with power nonlinearity .|u|p (see [7]); in particular, in space dimension . n = 1, 2
the critical exponent becomes 

.p̄0(n) :=
⎧⎨
⎩

pγ (n), if 0 < γ < 1 − n
2

(
1 − 1

m

)
,

p0,m(γ, n), if 1 − n
2

(
1 − 1

m

)
< γ < 1,

(17) 

where .pγ (n) is defined in (15) and 

.p0,m(γ, n) := 1 + 2m(2 − γ )

n
; (18) 

this means that, if . γ is sufficiently small, the loss of decay due to the assumption 
of .Lm smallness of the initial data becomes irrelevant with respect to the loss of 
decay rate related to the presence of the nonlinear memory term. In this case, one 
may easily prove the global existence of solutions for .p > p̄1 even replacing the . L1

assumption of the data by the . Lm assumption. 
In this paper we want to study the critical exponent for the Cauchy problem (1). 

In particular, we will investigate how the mass term in (1) influences the critical 
exponent compared with the one found in the purely dissipative case (16), that is 
.p̄0(n) defined by (17), in low space dimension .n = 1, 2.
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2 Main Results 

For .n = 1, 2 and .γ ∈ (0, 1), assuming the initial data in the energy space . H 1 × L2

with additional regularity . Lm for some .m ∈ (1, 2], we prove the global existence of 
small data solutions to problem (1) for any .p > p̄, 

. p̄ := max{pγ (n), pδ,m(γ, n)},

where .pγ (n) is defined by (15) and 

. pδ,m(γ, n) := 1 + 2m(2 − γ )

n + 2mδ2
.

We note that .p̄ = p̄1 = pγ (n) if, and only if, . γ is sufficiently small, namely, 

.0 < γ < 1 − n

2

(
1 − 1

m

)
+ δ2; (19) 

indeed in this case, on the one hand the presence of the nonlinear memory destroys 
the benefits which derive by the additional decay factor .(1+t)−δ2 related to the mass 
term (see Theorem 3; a technical motivation is given in Remark 3); on the other 
hand, the loss of decay resulting from the assumption of . Lm regularity of the initial 
data becomes negligible with respect to the loss of decay rate related to the presence 

of the nonlinear memory term: explicitly, it holds .(1+ t)
−δ2+ n

2

(
1− 1

m

)
≤ (1+ t)1−γ . 

In particular, we note that if .2δ2 > n(1 − 1/m), then condition (19) is always 
satisfied, and then the critical exponent .p̄ = p̄1 is independent of both the mass 
term coefficient .δ2/(1 + t) and the . Lm regularity. 

In the following we give our main results; here and hereafter, we denote by . A
the space of initial data, i.e. 

. A := (H 1 ∩ Lm) × (L2 ∩ Lm).

Theorem 1 Let .n = 1, 2 and .m ∈ (1, 2]. Assume that 

.1 − n

2

(
1 − 1

m

)
+ δ2 < γ < 1, δ2 <

n

2

(
1 − 1

m

)
, (20) 

and that .p ≥ pδ,m(γ, n). Then, there exists .ε > 0 such that for any initial data 

. (u0, u1) ∈ A, ‖(u0, u1)‖ ≤ ε,

there exists a unique global (in time) solution to (1) 

.u ∈ C([0,∞),H 1) ∩ C1([0,∞), L2).
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Moreover, the solution satisfies the following decay estimates 

. ‖u(t, ·)‖L2 ≤ C(1 + t)
−δ2− n

2

(
1
m

− 1
2

)
‖(u0, u1)‖A;

additionally, its derivatives satisfies 

. ‖ux(t, ·)‖L2 ≤ C(1 + t)−δ2− 1
2m − 1

4 ‖(u0, u1)‖A, if n = 1,

‖∇u(t, ·)‖L2 ≤ C(1 + t)−δ2− 1
m ln(e + t) ‖(u0, u1)‖A, if n = 2,

‖ut (t, ·)‖L2 ≤ C(1 + t)
−δ2+ n

2

(
1− 1

m

)
−1 ‖(u0, u1)‖A, if n = 1, 2.

Remark 1 We notice that .pδ,m(γ, n) > 2 for .n = 1, 2, if one considers . δ2 as in 
(20). This allows to prove the desired results working only with energy solutions, 
without the need to use .L1−Lp estimates with .p < 2; one may do this to investigate 
the same problem in higher dimension .n = 3, 4. 

Theorem 2 Let .n = 1, 2, .m ∈ [1, 2] and .δ2 > 0. Assume that 

.1 − n

2
< γ < 1 − n

2

(
1 − 1

m

)
+ δ2 (21) 

and that .p > pγ (n). Then, there exists .ε > 0 such that for any initial data 

. (u0, u1) ∈ A, ‖(u0, u1)‖ ≤ ε,

there exists a unique global solution to (1) 

. u ∈ C([0,∞),H 1) ∩ C1([0,∞), L2).

Moreover, the solution satisfies the following decay estimates 

. ‖u(t, ·)‖L2 ≤ C(1 + t)−
n
4+1−γ ‖(u0, u1)‖A;

additionally, its derivatives satisfies 

. ‖ux(t, ·)‖L2 ≤ C(1 + t)−γ+ 1
4 ‖(u0, u1)‖A, if n = 1,

‖∇u(t, ·)‖L2 ≤ C(1 + t)−γ ln(e + t) ‖(u0, u1)‖A, if n = 2,

‖ut (t, ·)‖L2 ≤ C(1 + t)−γ ‖(u0, u1)‖A if n = 1, 2.

Remark 2 The assumption .γ > 1 − n/2 in (21) guarantees that .pγ (n) < ∞.
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3 Open Problems 

It would be interesting to prove the sharpness of the global existence results: the 
presence of a time-dependent mass term .m2(t)u in Cauchy problem (1) makes very 
difficult the application of a test function method to investigate some non existence 
results for .p < p̄. 

Also, the study of analogous results for different Cauchy problems with nonlinear 
memory with not integrable data would be of interest. We recall, for instance, that 
in [5] the author considers the Cauchy problem 

.

{
utt − ∆u + μ(−∆)

1
2 ut = F(t, u), x ∈ R

n, t > 0,

u(0, x) = 0, ut (0, x) = u1(x),
(22) 

and he proves that global (in time) small data energy solutions exist for 

.p > max
{
γ −1, 1 + 3 − γ

n + γ − 2

}
, (23) 

for any .n ≥ 2, under . L1 smallness assumption for the initial data; the same problem 
(22), with .|ut |p in place of .|u|p in the nonlinear memory term, was studied in [8]. 
One may study how the obtained critical exponents change if the . L1 regularity of 
the initial data is replaced by . Lm regularity. 

4 Proof of the Main Results 

In order to prove our main results, it is useful to recall the following decay estimates 
for the solution to the associated linear problem (see [10]): 

Theorem 3 Let .(u0, u1) ∈ A. Then, the solution .u(t, ·) to the linear Cauchy 
problem (3) satisfies the following decay estimates: 

. ‖u(t, ·)‖L2 ≤ C(1 + t)
−δ2− n

2

(
1
m

− 1
2

)
‖(u0, u1)‖A,

‖∇u(t, ·)‖L2 ≤ C(1 + t)
−δ2− n

2

(
1
m

− 1
2

)
− 1

2 ‖(u0, u1)‖A,

‖ut (t, ·)‖L2 ≤ C(1 + t)
−δ2− n

2

(
1
m

− 1
2

)
−1 ‖(u0, u1)‖A;

here, the constant C is independent of t . 

Due to the presence of time-dependent coefficients, the equation in (3) is not 
invariant by time translations. Having in mind to apply the Duhamel’s principle, we 
need the decay estimates for the solution to a family of parameter-dependent Cauchy
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problems 

.

{
utt − ∆u + ut + δ2

1+t
u = 0, t ≥ s,

u(s, x) = 0, ut (s, x) = g(s, x),
(24) 

where .s ≥ 0, obtaining decay rates which depend on both t and s (see Lemma 3.1 
in [10]): 

Lemma 1 Let .g(s, ·) ∈ L1∩L2. Then, the solution to Cauchy problem (24) satisfies 
the following estimates: 

. ‖u(t, ·)‖L2 ≤ C(1 + t − s)−
n
4

(
1 + s

1 + t

)δ2

‖g(s, ·)‖L1∩L2 ,

‖∇u(t, ·)‖L2 ≤ C(1 + t − s)−
n
4− 1

2

(
1 + s

1 + t

)δ2

‖g(s, ·)‖L1∩L2 ,

‖ut (t, ·)‖L2 ≤ C(1 + t − s)−
n
4−1

(
1 + s

1 + t

)δ2

‖g(s, ·)‖L1∩L2 ,

where the constant C is independent of s. 

Remark 3 We notice that in the decay estimates for the solution to the parameter 
dependent Cauchy problem (24), the influence of the mass term .δ2(1 + t)−1u is 
described by the additional factor .(1+ s)δ

2
/(1+ t)δ

2
; when . δ2 becomes sufficiently 

large, namely condition (19) holds, such influence becomes irrelevant with respect 
to the influence of the nonlinear memory term. 

In the proof of each theorem we will introduce the solution space . X(T ) :=
C([0, T ],H 1) ∩ C([0, T ], L2), equipped with an appropriate norm. Then, we may 
introduce the operator 

. N : u ∈ X(T ) → ulin+Gu, Gu(t, x) :=
ˆ t

0
Ф(t, s, ·)∗(x)F (s, u(s, ·))(x)ds,

where .u lin is the solution to the linear Cauchy problem (3), and by . Ф(t, s, ·) ∗(x)

F (s, u(s, ·))(x) we are denoting the solution to problem (24) with . g(s, ·) =
F(s, u(s, ·)). According to the Duhamel’s principle, we will prove the existence 
of a unique global (in time) solution to (1) as the fixed point of the operator N . 
Hence, in order to get the global (in time) existence and uniqueness of the solution 
in .X(T ), we need to prove the following two crucial estimates: 

.‖Nu‖X(T ) ≤ C ‖(u0, u1)‖A + ‖u‖p

X(T ), . (25)

‖Nu  − Nv‖X(T ) ≤ C ‖u − v‖X(T )
(
‖u‖p−1 

X(T ) + ‖v‖p−1 
X(T )

)
, (26)
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with .C > 0, independent of T , where . A denotes the space of the data. As 
a consequence of Banach’s fixed point theorem, the conditions (25) and (26) 
guarantee the existence of a uniquely determined solution .u ∈ X(T ) to the integral 
equation .u = u lin + Gu, provided that .‖(u0, u1)‖A is sufficiently small., i.e. there 
exists a uniquely determined solution to Cauchy problem (1), in  .X(T ), for small 
initial data. Since the constants in (25) and (26) do not depend on T , the solution is 
globally defined (in time). 

In the proof of our result, it will be useful to apply the following straightforward 
estimates (see, for instance, [3]). 

Lemma 2 For any .γ ∈ (0, 1), .δ > 1 and .ω ∈ R it holds 

. 

ˆ t

0
(1+ t −s)−ω

ˆ s

0
(s−τ)−γ (1+τ)−δ dτ ds ≲

⎧⎪⎪⎨
⎪⎪⎩

(1 + t)−γ+1−ω if ω < 1,

(1 + t)−γ if ω > 1,

(1 + t)−γ ln(e + t) if ω = 1.

Lemma 3 For any .γ, δ ∈ (0, 1) and .ω ∈ R it holds 

. 

ˆ t

0
(1 + t − s)−ω

ˆ s

0
(s − τ)−γ (1 + τ)−δ dτ ds ≲

⎧⎪⎪⎨
⎪⎪⎩

(1 + t)−γ+2−δ−ω if ω < 1,

(1 + t)−γ+1−δ if ω > 1,

(1 + t)−γ+1−δ ln(e + t) if ω = 1;

Proof of Theorem 1 For any .T > 0, we define the Banach spaces 

. X(T ) = C([0, T ],H 1) ∩ C1([0, T ], L2)

equipped with the norm 

. ‖u‖X(T ) := sup
0≤t≤T

(1 + t)δ
2+ 1

2m − 1
4

{
‖u(t, ·)‖L2

+ (1 + t)
1
2 ‖ux(t, ·)‖L2 + (1 + t)

3
4 ‖ut (t, ·)‖L2

}
,

if .n = 1 and 

.‖u‖X(T ) := sup
0≤t≤T

{
sup

q∈[2,∞)

(1 + t)
δ2+ 1

m
− 1

q ‖u(t, ·)‖Lq

+ (1 + t)δ
2+ 1

m
(
ln(e + t)−1‖∇u(t, ·)‖L2 + ‖ut (t, ·)‖L2

)}
,
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if .n = 2. Since .γ > n/(2m) − n/2 + 1 + δ2, as an immediate consequence of 
Theorem 3, we obtain 

.‖u lin ‖X(T ) ≤ C‖(u0, u1)‖A, (27) 

where C is independent of T . By the definition of .‖ · ‖X(T ), using the Gagliardo-
Nirenberg inequality we get 

.‖u(t, ·)‖Lq ≲ (1 + t)
− n

2

(
1
m

− 1
q

)
−δ2‖u‖X(T ), (28) 

for any .q ∈ [2,∞] if .n = 1 and .q ∈ [2,∞) if .n = 2. For .j + k = 0, 1 we have 

. ‖∂k
t ∇jGu(t, ·)‖L2 ≤

ˆ t

0

∣∣∣∣∂k
t ∇j

(
Ф(t, s, ·) ∗(x) F (s, u(s, x))

)∣∣∣∣
L2 ds,

where .F(s, u) is defined by (2): 

. F(s, u(s, x)) =
ˆ s

0
(s − τ)−γ |u(τ, x)|p dτ.

In order to prove estimate (25) we apply Lemma 1 to get: 

. ‖∂k
t ∇jGu(t, ·)‖L2

≲ (1+t)−δ2
ˆ t

0
(1+t−s)−

n
4− j

2−k(1+s)δ
2
ˆ s

0
(s−τ)−γ ‖u(τ, ·)‖p

Lp∩L2p dτ ds;
(29) 

By estimate (28), for any .p ≥ pδ,m(γ, n) it holds 

. ‖u(τ, ·)‖p
Lp ≲ (1 + τ)−

n
2 (

p
m

−1)−δ2p‖u‖p

X(T ) ≲ (1 + τ)
− n

2

(
1
m

−1
)
−2+γ−δ2‖u‖p

X(T );
(30) 

and 

. ‖u(τ, ·)‖p

L2p ≲ (1 + τ)
− n

2

(
p
m

− 1
2

)
−δ2p‖u‖p

X(T ) ≲ (1 + τ)
− n

2

(
1
m

−1
)
−2+γ−δ2‖u‖p

X(T );
(31) 

indeed, .p ≥ pδ,m(γ, n) and .pδ,m(γ, n) ≥ 2 for .n = 1, 2 as a consequence of the 
assumption .δ2 ≤ n/2(1 − 1/m).
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Then, being .1 + s ≤ 1 + t for any .s ∈ [0, t] and applying Lemma 3, we get: 

. ‖Gu(t, ·)‖Lq

≲
ˆ t

0
(1+t−s)

− n
2

(
1− 1

q

) ˆ s

0
(s−τ)−γ (1+τ)

− n
2

(
1
m

−1
)
−2+γ−δ2‖u‖p

X(T ) dτ ds,

≲ (1+t)
− n

2

(
1
m

− 1
q

)
−δ2‖u‖p

X(T )

for any .q ∈ [2,∞) if .n = 1, and .q ∈ [2,∞) if .n = 2; moreover, we have 

. ‖∂xGu(t, ·)‖L2 ≲
ˆ t

0
(1+t−s)−

3
4

ˆ s

0
(s−τ)−γ (1+τ)−

1
2m − 3

2+γ−δ2‖u‖p

X(T ) dτ ds

≲ (1+t)−δ2− 1
2m − 1

4 ‖u‖p

X(T ),

if .n = 1, and similarly 

. ‖∇Gu(t, ·)‖L2

≲
ˆ t

0
(1 + t − s)−1

ˆ s

0
(s − τ)−γ (1 + τ)−

1
m

−1+γ−δ2‖u‖p

X(T ) dτ ds

≲ (1 + t)−δ2− 1
m ln(e + t)‖u‖p

X(T ),

if .n = 2. Finally, we find 

. ‖∂tGu(t, ·)‖L2

≲
ˆ t

0
(1 + t − s)−

n
4−1
ˆ s

0
(s − τ)−γ (1 + τ)

− n
2

(
1
m

−1
)
−2+γ−δ2‖u‖p

X(T ) dτ ds

≲ (1 + t)
−δ2+ n

2

(
1− 1

m

)
−1‖u‖p

X(T ).

Summarizing estimate (25) follows for any .p ≥ pδ,m(γ, n). 
We proceed similarly to prove estimate (26). In particular, we replace (30) by 

.‖|u(τ, ·)|p − |v(τ, ·)|p‖L1

≲ ‖|u(τ, ·) − v(τ, ·)| (|u(τ, ·)|p−1 + |v(τ, ·)|p−1)‖L1

≲ ‖u(τ, ·) − v(τ, ·)‖Lp

(
‖u(τ, ·)‖p−1

Lp + ‖v(τ, ·)‖p−1
p

)
≲ (1 + τ)−

n
2 (p−1)+p−γp‖u − v‖X(T )

(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
,
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and, likewise, we replace (31) by 

. ‖|u(τ, ·)|p − |v(τ, ·)|p‖L2 ≲ (1 + τ)−
n
2 (p− 1

2 )+p−γp‖u − v‖X(T )(
‖u‖p−1

X(T ) + ‖v‖p−1
X(T )

)
.

This concludes the proof. 

Proof of Theorem 2 For any .T > 0, we equip the Banach spaces 

. X(T ) = C([0, T ],H 1) ∩ C1([0, T ], L2)

equipped with the norm 

. ‖u‖X(T )

:= sup
0≤t≤T

(1+t)γ
(
(1+t)−

3
4 ‖u(t, ·)‖L2+(1+t)−

1
4 ‖ux(t, ·)‖L2+‖ut (t, ·)‖L2

)
,

if .n = 1 and 

. ‖u‖X(T ) := sup
0≤t≤T

{
(1+t)γ

(
sup

q∈[2,∞)

(1+t)
− 1

q ‖u(t, ·)‖Lq

+ ln(e+t)−1‖∇u(t, ·)‖L2+‖ut (t, ·)‖L2

)}
,

if .n = 2. As a consequence of Theorem 3, being .γ < n/(2m) − n/2 + 1 + δ2 we 
immediately get 

.‖u lin ‖X(T ) ≤ C‖(u0, u1)‖A (32) 

where .C > 0 does not depend on T . By applying the Gagliardo-Nirenberg 
inequality we get 

.‖u(t, ·)‖Lq ≲ (1 + t)
− n

2

(
1− 1

q

)
+1−γ ‖u‖X(T ), (33) 

for any .q ∈ [2,∞] if .n = 1, and .q ∈ [2,∞) if .n = 2. In order to prove estimate 
(25) we apply Lemma 1 to get: 

.‖Gu(t, ·)‖Lq

≲ (1+t)−δ2
ˆ t

0
(1+t−s)

− n
2

(
1− 1

q

)
(1+s)δ

2
ˆ s

0
(s−τ)−γ ‖u(τ, ·)‖p

Lp∩L2p dτ ds;
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for any .q ∈ [2,∞] if .n = 1, and .q ∈ [2,∞) if .n = 2; moreover, for .j + k = 1 we 
have 

. ‖∂k
t ∇jGu(t, ·)‖L2

≲ (1+t)−δ2
ˆ t

0
(1+t−s)−

n
4− j

2−k(1+s)δ
2
ˆ s

0
(s−τ)−γ ‖u(τ, ·)‖p

Lp∩L2p dτ ds.

By estimate (33), for any .p > pγ (n) we have 

. ‖u(τ, ·)‖p

Lp∩L2p ≲ (1 + τ)−
n
2 (p−1)+p−γp‖u‖p

X(T ),

indeed, it holds .pγ (n) ≥ 2 for .n = 1, 2. As a consequence, since .1 + s ≤ 1 + t for 
any .s ∈ [0, t], we get 

. ‖Gu(t, ·)‖Lq

≲
ˆ t

0
(1 + t − s)

− n
2

(
1− 1

q

) ˆ s

0
(s − τ)−γ (1 + τ)−

n
2 (p−1)+p−γp‖u‖p

X(T ) dτ ds

for any .q ∈ [2,∞] if .n = 1, and .q ∈ [2,∞) if .n = 2; furthermore, we find 

. ‖∂k
t ∇jGu(t, ·)‖L2

≲
ˆ t

0
(1+t−s)−

n
4− j

2−k

ˆ s

0
(s−τ)−γ (1+τ)−

n
2 (p−1)+p−γp‖u‖p

X(T ) dτ ds,

for .j + k = 1. For any .p > pγ (n) it holds 

. 
n

2
(p − 1) − p + γp > 1;

thus, we can apply Lemma 2 to conclude 

. ‖Gu(t, ·)‖Lq ≤ (1 + t)
− n

2

(
1− 1

q

)
+1−γ ‖u‖p

X(T ),

for any .q ∈ [2,∞] if .n = 1, and .q ∈ [2,∞) if .n = 2; similarly, we get 

. ‖∂xGu(t, ·)‖L2 ≤ (1 + t)
1
4−γ ‖u‖p

X(T ),

if .n = 1, and 

.‖∇Gu(t, ·)‖L2 ≤ (1 + t)−γ ln(e + t)‖u‖p

X(T ),
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if .n = 2. Finally, we obtain 

. ‖∂tGu(t, ·)‖L2 ≤ (1 + t)−γ ‖u‖p

X(T ).

Thus, estimate (25) follows for any .p > pγ (n). As in the proof of Theorem 1, one 
can proceed similarly to prove that (26) holds. 

Remark 4 We notice that in Theorems 1 and 2 the estimates obtained for 
.‖∂k

t ∇j u(t, ·)‖L2 have in some cases a loss of decay with respect to the 
corresponding linear estimates (see Theorem 3). Indeed, in the proof of the estimates 
for the solution to the nonlinear problem (1), there is a competition between the 
benefit which derive by the application of the .L1 ∩ L2 − L2 estimate (see, for 
instance, (29)) and the drawbacks due to the presence of the singularity .(s − τ)−γ . 
More precisely, in the proof of each theorem, for any .u ∈ X(T ) we estimate 

. ‖u(τ, ·)‖Lp ≲ (1 + τ)−βp‖u‖X(T ),

where . βp is given by (28) in Theorem 1 and (33) in Theorem 2; then, applying 
Lemmas 2 and 3 we obtain 

. ‖∂k
t ∇jGu(t, ·)‖L2 ≲ (1 + t)

(
1− n

4− j
2−k

)
+−γ+(1−pβp)+𝓁(t)‖u‖p

X(T ),

where 

. 𝓁(t) =
{
ln(e + t) if n

4 + j
2 + k = 1,

1 otherwise;

thus, if . γ and . δ satisfy (20) we are able to prove our global existence result for any 
.p ≥ pδ,m(γ, n); moreover, if .n/4+ j/2+ k < 1 we obtain for .‖∂k

t ∇j u(t, ·)‖L2 the 
same estimate as for the solution to the linear problem; instead, if . n/4+j/2+k ≥ 1

the loss .(1 + t)
n
4+ j

2+k−1𝓁(t) appears. 
On the other hand, if . γ is small, namely (21) holds, we can prove the existence 

of global (in time) small data solutions only for .p > pγ (n) and the estimate of 
.‖∂k

t ∇j u(t, ·)‖L2 always contains a loss of decay with respect to the estimate for the 

solution to the linear problem; such loss of decay is given by . (1+ t)
δ2+ n

2

(
1
m

−1
)
+1−γ

if .n/4 + j/2 + k < 1, and .(1 + t)
δ2+ n

2

(
1
m

− 1
2

)
+ j

2+k−γ
𝓁(t) if .n/4 + j/2 + k ≥ 1. 

Acknowledgments The author is “Titolare di un Assegno di Ricerca dell’Istituto Nazionale di 
Alta Matematica (INdAM)”.



618 G. Girardi

References 

1. Cazenave, T., Dickstein, F., Weissler, F.B.: An equation whose Fujita critical exponent is not 
given by scaling. Nonlinear Anal. 68, 862–874 (2008) 

2. Chiarello, F.A., Girardi, G., Lucente, S.: Fujita modified exponent for scale invariant damped 
semilinear wave equations. J. Evol. Equations 21, 2735–2748 (2021). https://doi.org/10.1007/ 
s00028-021-00705-2 

3. Cui, S.: Local and global existence of solutions to semilinear parabolic initial value problems. 
Nonlinear Anal. 43, 293–323 (2001) 

4. D’Abbicco, M.: Small data solutions for semilinear wave equations with effective damping. 
Discrete Contin. Dyn. Syst., 183–191 (2013) 

5. D’Abbicco, M.: A wave equation with structural damping and nonlinear memory. Nonlinear 
Differential Equations Appl. 21(5), 751–773 (2014). ISSN: 1021-9722. https://doi.org/10. 
1007/s00030-014-0265-2 

6. D’Abbicco, M.: The influence of a nonlinear memory on the damped wave equation. Nonlinear 
Anal. 95, 130–145 (2014). https://doi.org/10.1016/j.na.2013.09.006 

7. D’Abbicco, M.: A new critical exponent for the heat and damped wave equations with 
nonlinear memory and not integrable data. In: Cicognani, M., Del Santo, D., Parmeggiani, 
A., Reissig, M. (eds.) Anomalies in Partial Differential Equations. Springer INdAM Series, 
vol. 43. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-61346-4-9 

8. D’Abbicco, M., Girardi, G.: A structurally damped σ -evolution equation with nonlinear 
memory. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6633 

9. D’Abbicco, M., Lucente, S.: A modified test function method for damped wave equations. Adv. 
Nonlinear Stud. 13, 867–892 (2013) 

10. D’Abbicco, M., Girardi, G., Reissig, M.: A scale of critical exponents for semilinear waves 
with time-dependent damping and mass terms. Nonlinear Anal. 179, 15–40 (2019). https://doi. 
org/10.1016/j.na.2018.08.006 

11. D’Abbicco, M., Lucente, S., Reissig, M.: Semilinear wave equations with effective damping. 
Chinese Ann. Math. 34B(3), 345–380 (2013). https://doi.org/10.1007/s11401-013-0773-0 

12. do Nascimento, W.N., Palmieri, A., Reissig, M.: Semi-linear wave models with power non-
linearity and scale invariant time-dependent mass and dissipation. Math. Nachr. 290, 1779– 
1805 (2017) 

13. Girardi, G.: Semilinear damped Klein-Gordon models with time-dependent coefficients. In: 
D’Abbicco, M., Ebert, M., Georgiev, V., Ozawa, T. (eds.) New Tools for Nonlinear PDEs and 
Application. Trends in Mathematics. Birkhäuser, Cham (2019). https://doi.org/10.1007/978-3-
030-10937-0-7 

14. Girardi, G.: Small data solutions for semilinear waves with time-dependent damping and mass 
terms. In: Boggiatto, P., et al. (eds.) Advances in Microlocal and Time-Frequency Analysis. 
Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2020). https://doi.org/10.1007/ 
978-3-030-36138-9-14 

15. Girardi, G., Wirth, J.: Decay estimates for a Klein–Gordon model with time-periodic coef-
ficients. In: Cicognani, M., Del Santo, D., Parmeggiani, A., Reissig, M. (eds.) Anomalies in 
Partial Differential Equations. Springer INdAM Series, vol. 43. Springer, Cham (2021). https:// 
doi.org/10.1007/978-3-030-61346-4-14 

16. Ikehata, R., Ohta, M.: Critical exponents for semilinear dissipative wave equations in RN . J.  
Math. Anal. Appl. 269, 87–97 (2002) 

17. Ikehata, R., Mayaoka, Y., Nakatake, T.: Decay estimates of solutions for dissipative wave 
equations in RN with lower power nonlinearities. J. Math. Soc. Jpn. 56(2), 365–373 (2004) 

18. Li, T.T., Zhou, Y.: Breakdown of solutions to □u + ut = |u|1+α . Discrete Contin. Dyn. Syst. 
1, 503–520 

19. Matsumura, A.: On the asymptotic behavior of solutions of semi-linear wave equations. Publ. 
RIMS. 12, 169–189 (1976)

https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00028-021-00705-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1007/s00030-014-0265-2
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1016/j.na.2013.09.006
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1007/978-3-030-61346-4-9
https://doi.org/10.1002/mma.6633
https://doi.org/10.1002/mma.6633
https://doi.org/10.1002/mma.6633
https://doi.org/10.1002/mma.6633
https://doi.org/10.1002/mma.6633
https://doi.org/10.1002/mma.6633
https://doi.org/10.1002/mma.6633
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1016/j.na.2018.08.006
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/s11401-013-0773-0
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-10937-0-7
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-36138-9-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14
https://doi.org/10.1007/978-3-030-61346-4-14


A Klein-Gordon Model with a Memory-Type Nonlinearity 619

20. Narazaki, T.: Lp − Lq estimates for damped wave equations and their applications to semi-
linear problem. J. Math. Soc. Jpn. 56(2), 585–626 (2004) 

21. Nishihara, K.: Lp − Lq estimates for damped wave equation in 3-dimensional space and their 
application. Math. Z. 244, 631–649 (2003) 

22. Reissig, M.: Lp − Lq decay estimates for wave equations with time-dependent coefficients. J. 
Nonlin. Math. Phys. 11/4, 534–548 (2004) 

23. Todorova, G., Yordanov, B.: Critical exponent for a nonlinear wave equation with damping. J. 
Differential Equations 174, 464–489 (2001) 

24. Wirth, J.: Wave equations with time-dependent dissipation I. Non-effective dissipation. J. 
Differential Equations 222/2, 487–514 (2006) 

25. Wirth, J.: Wave equations with time-dependent dissipation II. Effective dissipation. J. Differ-
ential Equations 232/1, 74–103 (2007) 

26. Wirth, J.: Scattering and modified scattering for abstract wave equations with time-dependent 
dissipation. Adv. Differential Equations 12(10), 1115–1133 (2007) 

27. Wirth, J.: On the influence of time-periodic dissipation on energy and dispersive estimates. 
Hiroshima Math. J. 38(3), 397–410 (2008). https://doi.org/10.32917/hmj/1233152777 

28. Wirth, J.: Energy inequalities and dispersive estimates for wave equations with time-dependent 
coefficients. Rend. Istit. Mat. Univ. Trieste 42(suppl.), 205–219 (2010) 

29. Zhang, Q.S.: A blow-up result for a nonlinear wave equation with damping: the critical case. 
C. R. Acad. Sci. Paris Sér. I Math. 333, 109–114 (2001)

https://doi.org/10.32917/hmj/1233152777
https://doi.org/10.32917/hmj/1233152777
https://doi.org/10.32917/hmj/1233152777
https://doi.org/10.32917/hmj/1233152777
https://doi.org/10.32917/hmj/1233152777
https://doi.org/10.32917/hmj/1233152777
https://doi.org/10.32917/hmj/1233152777


Intrinsic Polynomial Squeezing for 
Balakrishnan-Taylor Beam Models 

Eduardo H. Gomes Tavares, Marcio A. Jorge Silva, Vando Narciso, 
and André Vicente 

Abstract We explore the energy decay properties related to a model in extensible 
beams with the so-called energy damping. We investigate the influence of the 
nonlocal damping coefficient in the stability of the model. We prove, for the first 
time, that the corresponding energy functional is squeezed by polynomial-like 
functions involving the power of the damping coefficient, which arises intrinsically 
from the Balakrishnan-Taylor beam models. As a consequence, it is shown that such 
models with nonlocal energy damping are never exponentially stable in its essence. 

1 Introduction 

In 1989 Balakrishnan and Taylor [3] derived some prototypes of vibrating extensible 
beams with the so-called energy damping. Accordingly, the following one dimen-
sional beam equation is proposed 

.∂ttu − 2ζ
√

λ∂xxu + λ∂xxxxu − α

[ˆ L

−L

(
λ|∂xxu|2 + |∂tu|2)dx

]q

∂xxtu = 0, (1) 

where .u = u(x, t) represents the transversal deflection of a beam with length . 2L >

0 in the rest position, .α > 0 is a damping coefficient, . ζ is a constant appearing 
in Krylov-Bogoliubov’s approximation, .λ > 0 is related to mode frequency and 

E. H. Gomes Tavares () · M. A. Jorge Silva  
State University of Londrina, Londrina, PR, Brazil 
e-mail: marcioajs@uel.br 

V. Narciso 
State University of Mato Grosso do Sul, Dourados, MS, Brazil 
e-mail: vnarciso@uems.br 

A. Vicente 
Western Paraná State University, Cascavel, PR, Brazil 
e-mail: andre.vicente@unioeste.br 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
U. Kähler et al. (eds.), Analysis, Applications, and Computations, 
Research Perspectives, https://doi.org/10.1007/978-3-031-36375-7_47

621

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36375-7protect T1	extunderscore 47&domain=pdf

 885
49096 a 885 49096 a
 
mailto:marcioajs@uel.br
mailto:marcioajs@uel.br

 885 52970 a 885 52970 a
 
mailto:vnarciso@uems.br
mailto:vnarciso@uems.br

 885 56845
a 885 56845 a
 
mailto:andre.vicente@unioeste.br
mailto:andre.vicente@unioeste.br
mailto:andre.vicente@unioeste.br
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47
https://doi.org/10.1007/978-3-031-36375-7_47


622 E. H. Gomes Tavares et al.

spectral density of external forces, and .q = 2(n+β)+1 with .n ∈ N and .0 ≤ β < 1
2 . 

We still refer to [3, Sect. 4] for several other beam equations taking into account 
nonlocal energy damping coefficients, as well as [2, 4, 6, 7, 12, 17, 18] for associated 
models. A normalized n-dimensional equation corresponding to (1) can be seen as 
follows 

.∂ttu − κΔu + Δ2u − α

[ˆ
Ω

(
|Δu|2 + |∂tu|2

)
dx

]q

Δ∂tu = 0, (2) 

where we denote .λ = 1 and .κ = 2ζ ; . Ω may represent an open bounded of . Rn; and 
the symbols . Δ and . Δ2 stand for the usual Laplacian and Bi-harmonic operators, 
respectively. Additionally, in order to see the problem within the frictional context 
of dampers, we rely on materials whose viscosity can be essentially seen as friction 
between moving solids. In this way, besides reflecting on a more challenging model 
(at least) from the stability point of view, one may metaphysically supersede the 
viscous damping in (2) by a nonlocal frictional one so that we cast the model 

.∂ttu − κΔu + Δ2u + α

[ˆ
Ω

(
|Δu|2 + |∂tu|2

)
dx

]q

∂tu = 0. (3) 

The main goal of this paper is to explore the influence of the nonlocal damping 
coefficient in the stability of problem (3). Unlike the existing literature on extensible 
beams with full viscous or frictional damping, we are going to see for the first time 
that the feature of the energy damping coefficient 

.Eq(t) := Eq(u, ut )(t) =
[ˆ

Ω

(
|Δu(t)|2 + |∂tu(t)|2

)
dx

]q

, q > 0, (4) 

not only prevents exponential decay, but also gives us a polynomial range in terms 
of q whose energy is squeezed and goes to zero polynomially when time goes to 
infinity. More precisely, by noting that the corresponding energy functional is given 
by 

. Eκ(t) := Eκ(u, ut )(t) =
ˆ

Ω

(
|Δu(t)|2 + |∂tu(t)|2 + κ|∇u(t)|2

)
dx, κ ≥ 0,

(5) 
then it belongs to an area of variation between upper and lower polynomial limits as 
follows 

.c0 t
− 1

q ≲ Eκ(t) ≲ C0 t
− 1

q , t → +∞, (6) 

for some constants .0 < c0 ≤ C0 depending on the initial energy .Eκ(0), κ ≥ 0. 
Indeed, such a claim corresponds to an intrinsic polynomial range of (uniform) 
stability and will follow as a consequence of a more general result that is rigorous 
stated in Theorem 2. See also Corollary 1. In particular, we can conclude that (3) is
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not exponentially stable when dealing with weak initial data, that is, with solution 
in the standard energy space. See Corollary 2. 

In conclusion, Theorem 2 truly reveals the stability of the associated energy 
.Eκ(t), which leads us to the concrete conclusions provided by Corollaries 1 and 2, 
being pioneering results on the subject. Due to technicalities in the well-posedness 
process, we shall work with .q ≥ 1/2. In Sect. 2 we prepare all notations and initial 
results. Then, all precise details on the stability results shall be given in Sect. 3. 

1.1 Previous Literature, Comparisons and Highlights 

In what follows, we are going to highlight that our approach and results are different 
or else provide generalized results, besides keeping more physical consistency in 
working exactly with (4) instead of modified versions of it. Indeed, there are at 
least three mathematical ways of attacking the energy damping coefficient (4) along 
Eq. (3) (or (2)), namely: 

1. Keeping the potential energy in (4), but neglecting the kinetic one; 
2. Keeping the kinetic energy in (4), but neglecting the potential one; 
3. Keeping both potential and kinetic energies, but considering them under the 

action of a strictly (or not) positive function .M(·) as a non-degenerate (or 
possibility degenerate) damping coefficient. 

In the first case, equation (3) becomes to 

.∂ttu − κΔu + Δ2u + α

[ˆ
Ω

|Δu|2dx

]q

∂tu = 0 in Ω × (0,∞). (7) 

This is, for sure, the most challenging case once the damping coefficient becomes 
now to a real degenerate coefficient. In [5, Theorem 3.1], working on a bounded 
domain . Ω with clamped boundary condition, it is proved the following with . q = 1
in (7): for every .R > 0, there exist constants .CR = C(R) > 0 and . γR = γ (R) > 0
depending on R such that 

.Eκ(t) ≤ CR Eκ(0) e−γRt , t > 0, (8) 

only holds for every regular solution u of (3) with initial data .(u0, u1) satisfying 

.‖(u0, u1)‖(H 4(Ω)∩H 2
0 (Ω))×H 2

0 (Ω) ≤ R. (9) 

We stress that (8) only represents a local stability result since it holds on every ball 
with radius .R > 0 in the strong topology .(H 4(Ω) ∩ H 2

0 (Ω)) × H 2
0 (Ω), but they 

are not independent of the initial data. Moreover, as observed by the authors in [5], 
the drawback of (8) and (9) is that it could not be proved in the weak topology
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.H 2
0 (Ω) × L2(Ω), even taking initial data uniformly bounded in . H 2

0 (Ω) × L2(Ω).

Although we recognized that our results for (3) can not be fairly compared to such a 
result, we do can conclude by means of the upper and lower polynomial bounds (6) 
that the estimate (8) will never be reached for weak initial data given in . H 2

0 (Ω) ×
L2(Ω). Therefore, our results act as complementary conclusions to [5] by clarifying 
such drawback raised therein, and yet giving a different point of view of stability by 
means of (6) and its consequences concerning problem (3). 

In the second case, Eq. (3) falls into 

.∂ttu − κΔu + Δ2u + α

[ˆ
Ω

|∂tu|2dx

]q

∂tu = 0 in Ω × (0,∞). (10) 

Unlike the first case, here we have an easier setting because the kinetic damping 
coefficient provides a kind of monotonous (polynomial) damping whose computa-
tions to achieve (6) remain unchanged (and with less calculations). This means that 
all results highlighted previously still hold for this particular case. In addition, they 
clarify what is precisely the stability result related to problems addressed in [19, 20], 
which in turn represent particular models of abstract damping given by Aloui et al. 
[1, Section 8]. In other words, in terms of stability, our methodology provides a way 
to show the existence of absorbing sets with polynomial rate (and not faster than 
polynomial rate depending on q) when dealing with generalized problems relate to 
(10), subject that is not addressed in [19, 20]. 

Finally, in the third case let us see Eqs. (2) and (3) as follows 

. ∂ttu − κΔu + Δ2u + M

(ˆ
Ω

(
|Δu|2 + |∂tu|2

)
dx

)
A∂tu = 0 in Ω × (0,∞),

(11) 

where operator A represents the Laplacian operator .A = −Δ or else the identity 
one .A = I . Thus, here we clearly have two subcases, namely, when . M(·) ≥ 0
is a non-degenerate or possibly degenerate function. For instance, when . M(s) =
αsq, s ≥ 0, and .A = −Δ, then we go back to problem (2). For this (degenerate) 
nonlocal strong damping situation with .q ≥ 1, it is considered in [11, Theorem 3.1] 
an upper polynomial stability for the corresponding energy, which also involves a 
standard nonlinear source term. Nonetheless, we call the attention to the following 
prediction result provided in [11, Theorem 4.1] for (2) addressed on a bounded 
domain . Ω with clamped boundary condition and .q ≥ 1: By taking finite initial 
energy .0 < Eκ(0) < ∞, then .Eκ(t) given in (5) satisfies 

.Eκ(t) ≤ 3Eκ(0)e−δ
´ t
0 ‖u(s)‖2qds, t > 0, (12) 

where .δ = δ( 1
Eκ(0) ) > 0 is a constant proportional to .1/Eκ(0). 

Although the estimate (12) provides a new result with an exponential face, it  
does not mean any kind of stability result. Indeed, it is only a peculiar estimate
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indicating that prevents exponential decay patterns as remarked in [11, Section 4]. 
In addition, it is worth pointing out that our computations to reach the stability result 
for problem (3) can be easily adjusted to (2), even for .q ≥ 1/2 thanks to a inequality 
provided in [1, Lemma 2.2]. Therefore, through the polynomial range (6) we provide 
here a much more accurate stability result than the estimate expressed by (12), by  
concluding indeed that both problems (2) and (3) are never exponentially stable in 
the topology of the energy space. 

On the other hand, in the non-degenerate case .M(s) > 0, s ≥ 0, but still taking 
.A = −Δ, a generalized version of (11) has been recently approached by Sun and 
Yang [16] in a context of strong attractors, that is, the existence of attractors in the 
topology of more regular space than the weak phase space. In this occasion, the 
.C1-regularity for .M > 0 brings out the non-degeneracy of the damping coefficient, 
which in turn allowed them to reach interesting results on well-posedness, regularity 
and long-time behavior of solutions over more regular spaces. Such assumption of 
positiveness for the damping coefficient has been also addressed by other authors for 
related problems, see e.g. [8–10]. From our point of view, in spite of representing a 
nice case, the latter does not portray the current situation of this paper so that we do 
not provide more detailed comparisons with such a non-degenerate problems, but 
we refer to [5, 8–11, 16] for a nice survey on this kind of non-degenerate damping 
coefficients. Additionally, we note that the suitable case of non-degenerate damping 
coefficient .M(s) > 0, s ≥ 0, and .A = I in (11) has not been considered in the 
literature so far and shall be concerned in another work by the authors in the future. 

At light of the above statements, one sees e.g. when . M(s) = αsq, s ≥ 0,
and .A = I , then problem (11) falls into (3), being a problem not yet addressed 
in the literature that brings out a new branch of studies for such a nonlocal (possibly 
degenerate) damped problems, and also justifies all new stability results previously 
specified. 

2 The Problem and Well-Posedness 

Let us consider again the beam model with energy damping 

.∂ttu+Δ2u−κΔu+α

[ˆ
Ω

(
|∂tu|2 + |Δu|2

)
dy

]q

∂tu = 0 in Ω×(0,∞), (13) 

with clamped boundary condition 

.u = ∂u

∂ν
= 0 on ∂Ω × [0,∞), (14) 

and initial data 

.u(x, 0) = u0(x), ∂tu(x, 0) = u1(x), x ∈ Ω. (15)
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To address problem (13)–(15), we introduce the Hilbert phase space (still called 
energy space) 

. H := H 2
0 (Ω) × L2(Ω),

equipped with the inner product .
〈
z1, z2

〉
H := 〈

Δu1,Δu2
〉 + 〈

v1, v2
〉
for . zi =

(ui, vi) ∈ H, i = 1, 2, and norm .‖z‖H = (‖Δu‖2 + ‖v‖2)1/2 , for . z = (u, v) ∈
H, where .〈u, v〉 :=

ˆ
Ω

uv dx, .‖u‖2 := 〈u, u〉 and .‖z‖2H := 〈z, z〉H. 
In order to establish the well-posedness of (13)–(15), we define the vector-valued 

function .z(t) := (u(t), v(t)), .t ≥ 0, with .v = ∂tu. Then we can rewrite system 
(13)–(15) as the following first order abstract problem 

.

{
∂t z = Az +M(z), t > 0,
z(0) = (u0, u1) := z0,

(16) 

where .A : D(A) ⊂ H→ H is the linear operator given by 

.Az = (v,−Δ2u), D(A) := H 4(Ω) ∩ H 2
0 (Ω), (17) 

and .M : H→ H is the nonlinear operator 

.M(z) = (0, κΔu − α‖z‖2qH v), z = (u, v) ∈ H. (18) 

Therefore, the existence and uniqueness of solution to the system (13)–(15) relies 
on the study of problem (16). Accordingly, we have the following well-posedness 
result. 

Theorem 1 Let .κ, α ≥ 0 and .q ≥ 1
2 be given constants. If .z0 ∈ H, then (16) has a 

unique mild solution z in the class . z ∈ C([0,∞),H).

In addition, if .z0 ∈ D(A), then z is a regular solution lying in the class 

. z ∈ C([0,∞),D(A)) ∩ C1([0,∞),H).

Proof To show the local version of the first statement, it is enough to prove that . A
given in (17) is the infinitesimal generator of a .C0-semigroup of contractions . eAt

(which is very standard) and . M set in (18) is locally Lipschitz on . H which will be 
done next. Indeed, let .r > 0 and .z1, z2 ∈ H such that .max{‖z1‖H, ‖z2‖H} ≤ r . We  
note that 

. 

∥∥∥‖z1‖2qH v1 − ‖z2‖2qH v2
∥∥∥ ≤

[
‖z1‖2qH + ‖z2‖2qH

]
‖v1 − v2‖

+
∣∣∣‖z1‖2qH − ‖z2‖2qH

∣∣∣ ‖v1 + v2‖. (19)



Intrinsic Polynomial Squeezing for Balakrishnan-Taylor Beam Models 627

The first term on the right side of (19) can be estimated by 

. 

[
‖z1‖2qH + ‖z2‖2qH

]
‖v1 − v2‖ ≤ 2r2q‖z1 − z2‖H.

Now, from a suitable inequality provided in [1]1 we estimate the second term as 
follows 

. 

∣∣∣‖z1‖2qH − ‖z2‖2qH
∣∣∣ ‖v1 + v2‖ ≤ 4qr2q‖z1 − z2‖H.

Plugging the two last estimates in (19), we obtain 

. 

∥∥∥‖z1‖2qH v1 − ‖z2‖2qH v2
∥∥∥
H

≤ 2(2q + 1)r2q‖z1 − z2‖H.

Thus, 

. ‖M(z1) −M(z2)‖H ≤
(
κ + 2(2q + 1)αr2q

)
‖z1 − z2‖H,

and . M is locally Lipschitz in . H. 
Hence, according to Pazy [15, Chapter 6], if .z0 ∈ H (.z0 ∈ D(A)), there exists a 

time .tmax ∈ (0,+∞] such that (16) has a unique mild (regular) solution 

. z ∈ C([0, tmax),H) (z ∈ C([0, tmax),D(A)) ∩ C1([0, tmax),H)).

Moreover, such time .tmax satisfies either the conditions .tmax = +∞ or else . tmax <

+∞ with 

. lim
t→t−max

‖z(t)‖H = +∞. (21) 

In order to show that .tmax = +∞, we consider .z0 ∈ D(A) and the corresponding 
regular solution z of (16). Taking the inner product in . H of (16) with z, we obtain 

.
1

2

d

dt

[
‖z(t)‖2H + κ‖∇u(t)‖2

]
+ α‖z(t)‖2qH ‖∂tu(t)‖2 = 0 t ∈ [0, tmax). (22) 

Integrating (22) over .(0, t), t ∈ [0, tmax), we get 

. ‖z(t)‖H ≤ (1 + c'κ)1/2‖z0‖H, t ∈ [0, tmax).

1 See [1, Lemma 2.2]: Let X be a normed space with norm .‖ · ‖X . Then, for any .s ≥ 1 we have 

.
∣∣‖u‖s

X − ‖v‖s
X

∣∣ ≤ s max{‖u‖X, ‖v‖X}s−1‖u − v‖X, ∀ u, v ∈ X. (20)
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Here, the constant .c' > 0 comes from the embedding .H 2
0 (Ω) →ͨ H 1

0 (Ω). The  
last estimate contradicts (21). Hence, .tmax = +∞. Using a limit process, one can 
conclude the same result for mild solutions. 

The proof of Theorem 1 is then complete. 

3 Lower-Upper Polynomial Energy’s Bounds 

By means of the notations introduced in Sect. 2, we recall that the energy functional 
corresponding to problem (13)–(15) can be expressed by 

.Eκ(t) = 1

2

[
‖(u(t), ∂tu(t))‖2H + κ‖∇u(t)‖2

]
, t ≥ 0. (23) 

Our main stability result reveals that .Eκ(t) is squeezed by decreasing polynomial 
functions as follows. 

Theorem 2 Under the assumptions of Theorem 1, there exists an increasing 
function .J : R+ → R

+ such that the energy .Eκ(t) satisfies 

. 

[
2q+1αqt + [

Eκ(0)
]−q

]−1/q ≤Eκ(t)≤
[

q

J (Eκ(0))
(t − 1)+ + [

Eκ(0)
]−q

]−1/q

,

(24) 

for all .t > 0, where we use the standard notation .s+ := (s + |s|)/2. 
Proof Taking the scalar product in .L2(Ω) of (13) with . ∂tu, we obtain 

.
d

dt
Eκ(t) = −α||(u(t), ∂tu(t))||2qH ‖∂tu(t)‖2, t > 0. (25) 

Let us prove the lower and upper estimates in (24) in the sequel. 

Lower Bound We first note that 

. ||(u(t), ∂tu(t))||2qH ‖∂tu(t)‖2 ≤ 2q+1 [Eκ(t) ]q+1 ,

and replacing it in (25), we get 

.
d

dt
Eκ(t) ≥ −2q+1α [Eκ(t) ]q+1 , t > 0. (26)
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Thus, integrating (26) and proceeding a straightforward computation, we reach the 
first inequality in (24). 

Upper Bound Now, we are going to prove the second inequality of (24). To do so,  
we provide some proper estimates and then apply a Nakao’s result (cf. [13, 14]). 

We start by noting that 

.||(u(t), ∂tu(t)||2qH ‖∂tu(t)‖2 ≥ ‖∂tu(t)‖2(q+1), (27) 

and replacing (27) in (25), we get 

.
d

dt
Eκ(t) + α‖∂tu(t)‖2(q+1) ≤ 0, t > 0, (28) 

which implies that .Eκ(t) is non-increasing with .Eκ(t) ≤ Eκ(0) for every .t > 0. 
Also, integrating (28) from t to .t + 1, we obtain 

.α

ˆ t+1

t

‖∂tu(s)‖2(q+1) ds ≤ Eκ(t) − Eκ(t + 1) := [ D(t) ]2. (29) 

Using Hölder’s inequality with .
q

q+1 + 1
q+1 = 1 and (29), we infer 

.

ˆ t+1

t

‖∂tu(s)‖2ds ≤ 1

α
1

q+1

[ D(t) ] 2
q+1 . (30) 

From the Mean Value Theorem for integrals, there exist .t1 ∈ [t, t + 1
4 ] and . t2 ∈

[t + 3
4 , t + 1] such that 

.‖∂tu(ti)‖2 ≤ 4
ˆ t+1

t

‖∂tu(s)‖2ds ≤ 4

α
1

q+1

[ D(t) ] 2
q+1 , i = 1, 2. (31) 

On the other hand, taking the scalar product in .L2(Ω) of (13) with u and 
integrating the result over .[t1, t2], we have  

. 

ˆ t2

t1

Eκ(s) ds =
ˆ t2

t1

‖∂tu(s)‖2 ds + 1

2
[(∂tu(t1), u(t1)) − (∂tu(t2), u(t2))]

−α

2

ˆ t2

t1

||(u(s), ∂tu(s))||2qH (∂tu(s), u(s)) ds. (32)
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Let us estimate the terms in the right side of (32). Firstly, we note that through 
Hölder’s inequality, (31) and Young’s inequality, we obtain 

. |(∂tu(t1), u(t1)) − (∂tu(t2), u(t2))| ≤ d

2∑
i=1

‖∂tu(ti)‖‖Δu(ti)‖

≤ 8d

α
1

2(q+1)

[ D(t) ] 1
q+1 sup

t1≤s≤t2

[Eκ(s)]1/2

≤ 128 d2

α
1

q+1

[ D(t) ] 2
q+1 + 1

8
sup

t1≤s≤t2

Eκ(s),

where the constant .d > 0 comes from the embedding .H 2
0 (Ω) →ͨ L2(Ω). 

Additionally, using that .Eκ(t) ≤ Eκ(0), we have  

. ‖(u(t), ∂tu(t))‖2qH ≤ 2q [Eκ(t) ]q ≤ 2q [Eκ(0) ]q .

From this and (30) we also get 

. 

∣∣∣∣
ˆ t2

t1

||(u(s), ∂tu(s))||2qH (∂tu(s), u(s)) ds

∣∣∣∣ ≤ 22q+3d2 [Eκ(0) ]2q

α
− q

q+1
[ D(t) ] 2

q+1

+ 1

8α
sup

t1≤s≤t2

Eκ(s).

Regarding again (30) and replacing the above estimates in (32), we obtain 

.

ˆ t2

t1

Eκ(s) ds ≤ K (Eκ(0)) [ D(t) ] 2
q+1 + 1

8
sup

t1≤s≤t2

Eκ(s), (33) 

where we set the function . K as 

. K(s) :=
[
64 d2 + 1

α
1

q+1

+ 2(q+1)d2α
2q+1
q+1 s2q

]
> 0.

Using once more the Mean Value Theorem for integrals and the fact that . Eκ(t)

is non-increasing, there exists .ζ ∈ [t1, t2] such that 

.

ˆ t2

t1

Eκ(s) ds = Eκ(ζ )(t2 − t1) ≥ 1

2
Eκ(t + 1),
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and then 

. sup
t≤s≤t+1

Eκ(s) = Eκ(t) = Eκ(t + 1) + [D(t) ]2 ≤ 2
ˆ t2

t1

Eκ(s) ds + [D(t) ]2.

Thus, from this and (33), we arrive at 

. sup
t≤s≤t+1

Eκ(s) ≤ [ D(t) ]2 + 2
ˆ t2

t1

Eκ(s)ds

≤ [ D(t) ]2 + 2K (Eκ(0)) [ D(t) ] 2
q+1 + 1

4
sup

t≤s≤t+1
Eκ(s),

and since .0 < 2
q+1 ≤ 2, we obtain 

. sup
t≤s≤t+1

Eκ(s) ≤ 4

3
[ D(t) ] 2

q+1

[
[ D(t) ] 2q

q+1 + 2K (Eκ(0))

]
. (34) 

Observing that .[ D(t) ] 2q
q+1 ≤ [Eκ(t) + Eκ(t + 1)]

q
q+1 ≤ 2

q
q+1 [Eκ(0) ]

q
q+1 , and 

denoting by 

.J(s) :=
(
4

3

)q+1 [
(2s)

q
q+1 + 2K(s)

]q+1
> 0, (35) 

and also recalling the definition of .[D(t)]2 in (29), we obtain from (34) that 

. sup
t≤s≤t+1

[Eκ(s)]q+1 ≤ J (Eκ(0)) [ Eκ(t) − Eκ(t + 1) ].

Hence, applying e.g. Lemma 2.1 of [14] with .Eκ = φ, .J (Eκ(0)) = C0, and .K = 0, 

we conclude .Eκ(t) ≤
[

q
J(Eκ (0)) (t − 1)+ + 1[

Eκ(0)
]q

]−1/q

, which ends the proof of 

the second inequality in (24). 
The proof of Theorem 2 is therefore complete. 

Remark 1 It is worth point out that we always have 

. 

[
22q+1αqt + [

Eκ(0)
]−q

]−1/q ≤
[

q

J (Eκ(0))
(t − 1)+ + [

Eκ(0)
]−q

]−1/q

,

(36) 

so that it makes sense to express .Eκ(t) between the inequalities in (24). Indeed, 
from the definition . J in (35) one easily sees that .J (Eκ(0)) ≥ 1

22q+1α
, from where 

one concludes (36) promptly.
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Corollary 1 (Polynomial Range of Decay) Under the assumptions of Theorem 2, 
the energy functional .Eκ(t) defined in (23) decays squeezed as follows 

.c0 t
− 1

q ≲ Eκ(t) ≲ C0 t
− 1

q as t → +∞, (37) 

for some constants .0 < c0 ≤ C0 depending on the initial energy . Eκ(0).
In other words, .Eκ(t) decays polynomially at rate .t−1/q (.q ≥ 1/2) as .t → +∞.

⨅⨆
Corollary 2 (Non-exponential Stability) Under the assumptions of Theorem 2, 
the energy .Eκ(t) set in (23) never decays exponentially as .e−at (.a > 0) as .t → +∞.

⨅⨆
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On the Wave-Like Energy Estimates of 
Klein-Gordon Type Equations with Time 
Dependent Potential 

Kazunori Goto and Fumihiko Hirosawa 

Abstract We consider the conditions for the time dependent potential in which 
the energy of the Cauchy problem of Klein-Gordon type equation asymptotically 
behaves like the energy of the wave equation. The conclusion of this paper is that 
the condition is not always given by the order of the potential itself, but should be 
given by “generalized zero mean condition”, which is represented by the integral 
of the potential. We also introduce “generalized modified energy conservation” in 
order to describe the appropriate energy for our problem. 

1 Introduction 

Let us consider the following Cauchy problem for Klein-Gordon type equation with 
time dependent potential: 

.

{(
∂2
t − ∆ + M(t)

)
u(t, x) = 0, (t, x) ∈ (0,∞) × R

n,

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ R
n,

(1) 

where . ∆ denotes the Laplace operator in . Rn and the potential M is real valued but 
not necessarily a definite sign. It may be natural that M is positive from the point 
of view of the physical model, but we study it as a mathematical model and remove 
the restriction. 

It is well known that the energy conservation holds if M is a non-negative 
constant, and in the case of general M , the following property of generalized energy 
conservation of Klein-Gordon type is proved in [1, 2]: 

.q(t)2EKG(u;p)(0) ≲ EKG(u;p)(t) ≲ EKG(u;p)(0) (2) 
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for positive decreasing functions p and q under appropriate conditions to M , where 

. EKG(u;p) := ‖∇u(t, ·)‖2
L2 + ‖∂tu(t, ·)‖2

L2 + p(t)‖u(t, ·)‖2
L2 .

More precisely, if .M = μ2(1 + t)−2ν with .μ > 0 and .0 ≤ ν ≤ 1, then p and 
q are given by .p = (1 + t)−ν1 with .ν1 < 2 and .q = (1 + t)−ν2 , respectively, 
where . ν1 and . ν2 are determined by . μ and . ν. On the other hand, if .ν > 1, that 
is, .

√|M| ∈ L1([0,∞)), then the solution has more wave-like property. In [7], the 
following model is studied as a perturbation problem of [2]: 

.M = μ2(1 + t)−2 + δ(t). (3) 

A conclusion of [7] is that the same estimate from above in (2) as in the case . δ = 0
is valid under some suitable assumptions to .δ(t) which permit . lim supt→∞(1 +
t)2δ(t) = ∞. The main purposes of this paper is to determine the conditions for 
.δ(t) of (3) with .μ = 0 that the generalized modified energy conservation of wave 
type defined later, is established. From another point of view, we will determine 
generalized zero mean condition for M that (1) has wave-like property in spite of 
.
√|M| /∈ L1([0,∞)). 

2 Main Theorem 

For .b ∈ C0([0,∞)) satisfying .limt→∞ b(t) = 0 and large T , we define the modified 
energy of the wave type .E(u; b) and generalized modified energy conservation by 

. E(u; b)(t) := ‖∇u(t, ·)‖2
L2 + ‖∂tu(t, ·) − b(t)u(t, ·)‖2

L2

and 

.E(u; b)(t) ≃ E(u; b)(T ) (t ≥ T ). (4) 

For M , we introduce the following properties with parameters . α, . β and . γ : 

(M1) For .α ≤ 1: 

.

ˆ t

0

∣∣∣∣
ˆ ∞

s

ˆ ∞

σ

M(τ) dτ dσ

∣∣∣∣ ds ≲ (1 + t)α (α ≥ 0) (5) 

.

ˆ ∞

t

∣∣∣∣
ˆ ∞

s

ˆ ∞

σ

M(τ) dτ dσ

∣∣∣∣ ds ≲ (1 + t)α (α ≤ 0). (6)
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(M2) For .β < 1: 

. |M(t)| ≲ (1 + t)−2β. (7) 

(M3) For .γ > 0: 

.

∣∣∣∣
ˆ ∞

t

M(s) ds

∣∣∣∣ ≲ (1 + t)−γ , (8) 

.

ˆ ∞

t

(ˆ ∞

s

M(σ) dσ

)2

ds ≲ (1 + t)−γ (9) 

and 

.

ˆ ∞

0

ˆ ∞

t

(ˆ ∞

s

M(σ) dσ

)2

ds dt < ∞. (10) 

Remark 1 

(i) The following estimate is implicitly assumed in (5): 

.

∣∣∣∣
ˆ ∞

0

ˆ ∞

t

M(s) ds dt

∣∣∣∣ < ∞. (11) 

(ii) If (9) holds for .γ > 1, then (5) with .α = −γ + 2 is trivial . Moreover, if .γ > 2, 
then (6) with .α = −γ + 2 is trivial. 

Theorem 1 Let .u0 ∈ H 1 and .u1 ∈ L2. If (M1), (M2) and (M3) are valid for 

.γ ≥ β

{
≥ (α + 1)/2 for α /= 0,

> 1/2 for α = 0,
(12) 

and the following estimate holds: 

. sup
t≥0

{
(1 + t)α

ˆ ∞

t

ˆ ∞

s

(ˆ ∞

σ

M(τ) dτ

)2

dσ ds

}
< ∞, (13) 

then there exist .T > 0 and .b ∈ C0([0,∞)) satisfying .b(t) ≲ (1 + t)−γ such that 
(4) is established. Moreover, the following estimate is established for any .t ≥ 0: 

.E(u; b)(t) ≲ EKG(u; 1)(0). (14)
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In [7], .β ≥ (−γ + 3)/2 is assumed instead of (12) without assuming (M1), that 
is, only the trivial case .α = −γ + 2 in Remark 1 (ii), is considered. The following 
M is an example of the non-trivial case .α < −γ + 2. 

Example 

Let .M(t) := d
dt

(sin((1 + t)κ )(1 + t)−2β−κ+1) with .β ≤ 1/2 and . κ > 2(1 −
β). Noting the estimates .|M(t)| ≲ (1 + t)−2β , . ́ ∞

t
M(s) ds = sin((1 + t)κ )(1 +

t)−2β−κ+1 and .| ´∞
t

´∞
s

M(σ) dσ ds| ≲ (1 + t)−2β−2κ+2, (M1), (M2) and (M3) 
are valid for .γ = 2β + κ − 1 and .α = −2β − 2κ + 3 = −γ − κ + 2, it follows that 
.α < −γ + 2. Moreover, (12) and (13) are valid by . γ > 1 > β = (α + 1)/2 + 2β +
κ − 2 > (α + 1)/2 and .α − 2γ + 2 = −6β − 4κ + 7 < 2β − 1 ≤ 0. 

The conditions (M1)–(M3) seem to be artificial, but they can be actually natural 
from the viewpoint of previous studies. (M1) and (M2) correspond to stabilization 
property and .C2-property with very fast oscillation, respectively, which were 
introduced in [4, 5] for the energy estimate of the wave equation with time dependent 
propagation speed. Equations (9) and (11) are corresponding to generalized zero 
mean condition, which was introduced in [8]. Moreover, (10) is considered to be 
related to the classification of scale invariant potential for the Klein-Gordon type 
equation in [2]. 

3 Proof of the Theorem 

The proof of the theorem is based on the methods introduced in [3, 6, 7] that 
the Klein-Gordon type equation is reduced to a dissipative wave equation or a 
wave equation with time dependent propagation speed. Then, solutions of the 
equations are estimated in a particular zones of time-frequency space by the method 
introduced in [5, 8] after the Fourier transformation with respect to spatial variables. 

3.1 Reduction to a Dissipative Wave Equation 

For .t ≥ T with a large T , we reduce the Klein-Gordon type equation of (1) to the 
dissipative wave equation .(∂2

t − ∆ + 2b(t)∂t )w = 0 by the transformation 

. w(t, x) := exp

(ˆ ∞

t

b(s) ds

)
u(t, x),

where b is a solution of the following Riccati equation 

.b'(t) + b(t)2 + M(t) = 0. (15)
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Let us derive the representation of a particular solution of (15). We define . {qk(t)}∞k=1
and .{Qk(t)}∞k=1 on .[T ,∞) by 

. q1(t) := M(t), qk(t) :=
k−1∑
j=1

Qj(t)Qk−j (t) (k = 2, 3, . . .)

and 

. Qk(t) := −
ˆ ∞

t

qk(s) ds (k = 1, 2, . . .).

Lemma 1 A particular solution of (15) is represented by .b(t) := ∑∞
k=1 Qk(t). 

Proof The proof is straightforward calculation. ⨅⨆
The following lemmas ensure the convergence of .b(t) on .[T ,∞) for large T . 

Lemma 2 .Q2(t) ≤ 0 and the following estimate is established for any . k ≥ 2 :

.|Qk(t)| ≤ 4k−1(−Q2(t))φ(t)
k−2

2 , φ(t) := −
ˆ ∞

t

Q2(s) ds. (16) 

Proof .Q2(t) ≤ 0 is trivial from the definition, and .limt→∞ Q2(t) = 0 by (9). 
Equation (16) is trivial for . k = 2. If  (16) is valid for .k = 3, . . . , l, then by Cauchy-
Schwarz inequality, integration by parts, noting .φ'(t) = Q2(t) and . d

dt
Q2(t) =

q2(t) ≥ 0, we have  

. 

∣∣∣∣
ˆ ∞

t

Q1(s)Ql(s) ds

∣∣∣∣ ≤ 4l−1
(ˆ ∞

t

Q1(s)
2 ds

) 1
2
(ˆ ∞

t

Q2(s)
2φ(s)l−2 ds

) 1
2

= 4l−1

(l − 1)
1
2

(−Q2(t))
1
2

(ˆ ∞

t

Q2(s)
d

ds
φ(s)l−1 ds

) 1
2

≤ 4l−1(−Q2(t))φ(t)
l−1

2 .

Moreover, for .2 ≤ j ≤ l we have 

.

∣∣∣∣
ˆ ∞

t

Qj (s)Ql+1−j (s) ds

∣∣∣∣ ≤ 4l−1
ˆ ∞

t

Q2(s)
2φ(s)

l−3
2 ds

= 4l

2(l − 1)

ˆ ∞

t

Q2(s)
d

ds
φ(s)

l−1
2 ds

≤ 4l (−Q2(t))φ(t)
l−1

2

2(l − 1)
.
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Therefore, we obtain 

. |Ql+1(t)| ≤ 2

∣∣∣∣
ˆ ∞

t

Q1(σ )Ql(σ ) dσ

∣∣∣∣ +
l−1∑
j=2

∣∣∣∣
ˆ ∞

t

Qj (σ )Ql+1−j (σ ) dσ

∣∣∣∣

= 4l (−Q2(t))φ(t)
l−1

2

⎛
⎝1

2
+

l−1∑
j=2

1

2(l − 1)

⎞
⎠ ≤ 4l (−Q2(t))φ(t)

l−1
2 ,

it follows that (16) is also valid for any .k ≤ l + 1. Thus (16) is valid for any .k ≥ 2. 
⨅⨆

Lemma 3 There exist positive constants T , .b0 = b0(T ), .b1 = b1(T ) and . b2 =
b2(T ) such that the following estimates are established for any .t ≥ T : 

.

∞∑
k=2

|Qk(t)| ≤ 3

2
|Q2(t)|, (17) 

.

∣∣∣∣
ˆ ∞

t

b(s) ds

∣∣∣∣ ≤ b0, (18) 

.|b(t)| ≤ b1(1 + t)−γ (19) 

and 

.|b'(t)| ≤ b2(1 + t)−2β. (20) 

Proof By (8), (10) and (11) there exists .T > 0 such that 

.

∣∣∣∣
ˆ ∞

t

Q1(s) ds

∣∣∣∣ ≤ 1 and φ(t) ≤ 1

64 (21) 

for any .t ≥ T . Then, by Lemma 2, we have  

. 

∣∣∣∣∣
∞∑

k=3

Qk(t)

∣∣∣∣∣ ≤ |Q2(t)|
∞∑

k=3

4k−1φ(t)
k−2

2 ≤ 1

2
|Q2(t)|,

which gives (17). By (10), (11) and (17), we have  

.

∣∣∣∣
ˆ ∞

t

b(s) ds

∣∣∣∣ ≤
∣∣∣∣
ˆ ∞

t

Q1(s) ds

∣∣∣∣ +
∞∑

k=2

ˆ ∞

t

|Qk(s)| ds ≤ b0. (22)
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By (8), (9) and (17), we have  

. |b(t)| ≤ |Q1(t)| + 3

2
|Q2(t)| ≤ b1(1 + t)−γ .

By (7), (12), (15) and (19), we have  

. |b'(t)| ≤ |M(t)| + b2
1(1 + t)−2γ ≤ b2(1 + t)−2β.

Thus the proof is concluded. ⨅⨆
Lemma 3 ensures that the solution of (1) is represented by the solution of the 

following dissipative wave equation: 

.(∂2
t − ∆ + 2b(t)∂t )w(t, x) = 0 (23) 

for .t ≥ T . By carrying out partial Fourier transformation with respect to spatial 
variables and denoting the Fourier image of .w(t, x) as .ŵ(t, ξ), (23) is represented 
as follows: 

.(∂2
t + |ξ |2 + 2b(t)∂t )ŵ(t, ξ) = 0. (24) 

Moreover, (24) is represented by the following first order system: 

.∂tW = AW, A :=
(−2b(t) i|ξ |

i|ξ | 0

)
, W :=

(
∂tw

i|ξ |w
)

. (25) 

We estimate the solution of (25) in different ways in the following two zones of the 
time-frequency space .[T ,∞) × R

n: 

. 

{
ZH := {(t, ξ) ∈ [T ,∞) × R

n ; (1 + t)α|ξ | ≥ N} ,

ZΨ := {(t, ξ) ∈ [T ,∞) × R
n ; (1 + t)α|ξ | ≤ N} ,

where N is a positive constant which will be chosen later. Denoting 

. tξ := max
{
T , (N |ξ |−1)

1
α − 1

}
for .α /= 0 and .|ξ | > 0, we see that .ZH = {t ≥ tξ } and .ZΨ = {T ≤ t ≤ tξ } for 
.α > 0, and that .ZH = {T ≤ t ≤ tξ } and .ZΨ = {t ≥ tξ } for .α < 0.
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3.2 Estimate in ZH 

Proposition 1 There exist positive constants N and K1 such that the following 
estimates are established in ZH : 

. 

{
K−1

1 |W(tξ , ξ)| ≤ |W(t, ξ)| ≤ K1|W(tξ , ξ)| (α > 0),

K−1
1 |W(T, ξ)| ≤ |W(t, ξ)| ≤ K1|W(T, ξ)| (α ≤ 0).

Proof Let (t, ξ) ∈ ZH . Setting N ≥ 2b1, by  (12) and (19) we have |b(t)| ≤  b1(1 + 
t)−γ ≤ b1(1 + t)−α ≤ b1N

−1|ξ | ≤ |ξ |/2. Since the eigenvalues and the respective 
eigenvectors of A are given by {λ, λ} and {t (1, iδ),  t (−iδ, 1)}, where λ = −b(t) − 
i
√|ξ |2 − b2 and δ = λ|ξ |−1, and noting the inequalities 

.
√

3 ≤ |1 − δ2| = 2
√

1 − b2|ξ |−2 ≤ 2, (26) 

A is diagonalized as M−1AM = diag(λ, λ) =: Λ by the diagonalizer 

. M :=
(

1 −iδ

iδ 1

)
.

Denoting W1 := M−1W , (25) is rewritten as follows: 

. ∂tW1 =
(
Λ − M−1(∂tM)

)
W1 = (Λ1 + R1) W1,

where 

. Λ1 :=
(

−b − ∂t log
(
1 − δ2

)
2

)
I − i

√
|ξ |2 − b2

(
1 0
0 −1

)

and 

. R1 := −i
b'|ξ |−1

2
(
1 − b2|ξ |−2

) (
0 −1
1 0

)
.

Then, by (26) we have 

. ∂t |W1|2 ⋚ −
(

2b + R

(
∂t log

(
1 − δ2

))
± 4

3
|b'||ξ |−1

)
|W1|2.

Noting that (12) and (20) conclude the following estimates: 

.|ξ |−1
ˆ ∞

tξ

|b'(s)| ds < ∞ (α ≥ 0) and |ξ |−1
ˆ tξ

T

|b'(s)| ds < ∞ (α < 0),
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by Lemma 3, (26) and Gronwall’s inequality, we have |W1(t, ξ)| ≃ |W1(tξ , ξ)| for 
α >  0 and |W1(t, ξ)| ≃ |W1(T , ξ)| for α ≤ 0 in  ZH . Finally, noting that |δ|2 = 1 
and (26) gives 

√
1/2|W | ≤ |W1| ≤ √

2/3|W |, we conclude the proof. ⨅⨆

3.3 Estimate in ZΨ

Proposition 2 There exist a positive constant K2 such that the following estimates 
are established in ZΨ : 

. 

{
K−1

2 |W(T, ξ)| ≤ |W(t, ξ)| ≤ K2|W(T, ξ)| (α > 0),

K−1
2 |W(tξ , ξ)| ≤ |W(t, ξ)| ≤ K2|W(tξ , ξ)| (α ≤ 0).

Proof Let us introduce the change of variable from t ∈ [T ,∞) to θ ∈ [0, ∞) by 

. θ :=
ˆ t

T

exp

(
−2
ˆ s

T

b(σ ) dσ

)
ds.

Here we note that θ(t)  is strictly increasing and satisfying e−2b0 t ≤ θ(t)  ≤ e2b0 t by 
(18). We define a(τ) and η(τ) by 

. a(τ) := exp

(
2
ˆ θ−1(τ )

T

b(s) ds

)

and 

. η(τ) := exp

(
2
ˆ ∞

T

Q1(s) ds + 2
ˆ θ−1(τ )

T

∞∑
k=2

Qk(s) ds

)
.

Here we remark that e−2b0 ≤ a(τ), η(τ) ≤ e2b0 and η'(τ ) ≥ 0 are valid by 
Lemma 2, (17) and (22). By mean value theorem, (5) and (21), there exist constants 
a0 > 0 and 0 < κ  <  1 such that the following estimates are established: 

. 

ˆ θ(t)

θ(T )

|a(σ ) − η(σ )| dσ =
ˆ t

T

∣∣∣∣1 − exp

(
2
ˆ ∞

s

Q1(σ ) dσ

)∣∣∣∣ ds

=
ˆ t

T

∣∣∣∣2
ˆ ∞

s

Q1(σ ) dσ exp

(
2κ

ˆ ∞

s

Q1(σ ) dσ

)∣∣∣∣ ds

≤ 2e2κ

ˆ t

0

∣∣∣∣
ˆ ∞

s

Q1(σ ) dσ

∣∣∣∣ ds ≤ a0(1 + t)α.

Moreover, if (6) holds for α ≤ 0, then we have
´∞ 
θ(t)

|a(σ )−η(σ )| dσ ≤ a0(1+ t)α .
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By the change of variables t → θ and denoting y(θ(t), ξ) = ŵ(t, ξ), (25) is 
represented by 

. ∂θY = BY, Y :=
(

∂θy + iη|ξ |y
∂θy − iη|ξ |y

)

and 

. B := i|ξ | (a2 + η2
)

2η

(
1 0
0 −1

)
+ η'

2η

(
1 −1

−1 1

)
+ i|ξ | (a2 − η2

)
2η

(
0 −1
1 0

)
.

Then, by Lemma 3, we have  

. ∂θ |Y |2 =η'

η

(
|Y1|2 − 2R

(
Y1Y2

) + |Y2|2
)

+ |ξ | (a + η) (a − η)

η
2R

(
iY1Y2

)

⋚
(

2η'

η
± 2e4b0 |ξ ||a − η|

)
|Y |2.

Therefore, noting the following estimates: 

. 

⎧⎨
⎩

|ξ | ´ θ(t)

θ(T )
|a(s) − η(s)| ds ≤ a0|ξ |(1 + t)α ≤ a0N (α ≥ 0),

|ξ | ´ θ(t)

θ(tξ )
|a(s) − η(s)| ds ≤ a0|ξ |(1 + tξ )

α = a0N (α < 0),

by Gronwall’s lemma, we have 

. |Y (θ(t), ξ)|2 ⋚
(

η(θ(t))

η(θ(T ))

)2

exp
(
±2a0Ne4b0

)
|Y (θ(T ), ξ)|2 ≃ |Y (θ(T ), ξ)|2

for α >  0 and T ≤ t ≤ tξ , and 

. |Y (θ(t), ξ)|2 ⋚
(

η(θ(t))

η(θ(tξ ))

)2

exp
(
±2a0Ne4b0

)
|Y (θ(tξ ), ξ)|2 ≃ |Y (θ(tξ ), ξ)|2

for α ≤ 0 and t ≥ tξ . Noting the equalities |Y |2 = 2|∂θy|2 + η2|ξ |2|y| and a∂θy = 
∂t ŵ, we have 2e−4b0 |W | ≤ |Y |2 ≤ 2e4b0 |W |, and thus we conclude the proof. ⨅⨆
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3.4 Completion of the Proof 

If .α > 0, then by Propositions 1 and 2, we have  

. 

⎧⎪⎪⎨
⎪⎪⎩

K−1
2 |W(T, ξ)| ≤ |W(t, ξ)| ≤ K2|W(T, ξ)| (T ≤ t ≤ tξ ),

|W(t, ξ)|
{

≤ K1|W(tξ , ξ)| ≤ K1K2|W(T, ξ)|
≥ K−1

1 |W(tξ , ξ)| ≥ K−1
1 K−1

2 |W(T, ξ)| (t ≥ tξ ).

On the other hand, if .α ≤ 0, then we have 

. 

⎧⎪⎪⎨
⎪⎪⎩

K−1
1 |W(T, ξ)| ≤ |W(t, ξ)| ≤ K1|W(T, ξ)| (T ≤ t ≤ tξ ),

|W(t, ξ)| ≤
{

≤ K2|W(tξ , ξ)| ≤ K1K2|W(T, ξ)|
≥ K−1

2 |W(tξ , ξ)| ≥ K−1
2 K−1

2 |W(T, ξ)| (t ≥ tξ ).

Consequently, since the estimate . E(u; b)(t) = exp
(−2
´∞
t

b(s) ds
) ‖W(t, ·)‖2

L2 ≃
‖W(t, ·)‖2

L2 holds by (18) and Parseval’s equality, we have (4). 
In order to prove (14), introduce the following proposition: 

Proposition 3 For any .T > 0, there exists a positive constant .K0 = K0(T ) such 
that the following estimate is established on .[0, T ]: 

. EKG(u; 1)(t) ≤ K0EKG(u; 1)(0).

Proof We extend .b(t) on .[0, T ) as .b ∈ C0([0,∞)) and . |b| is monotone decreasing. 
By Cauchy-Schwarz inequality, we have 

. 
d

dt
EKG(u; 1)(t) = (1 − M(t))R (u(t, ·), ∂tu(t, ·))L2 ≤ |1 − M(t)|EKG(u; 1)(t).

Therefore, by (7) and Gronwall’s inequality, we have 

. E(u; b)(t) ≤ ‖u(t, ·)‖2
L2 + 2‖∂tu(t, ·)‖2 + 2b(T )2‖u(t, ·)‖2

L2

≃ EKG(u; 1)(t) ≤ exp

(
T sup

0≤t≤T

{|1 − M(s)|}
)

EKG(u; 1)(0).

for any .t ∈ [0, T ]. ⨅⨆
Thus (14) is proved by combining Proposition 3 and (4). 
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Non-Linear Evolution Equations with 
Non-Local Coefficients and 
Zero-Neumann Condition: One 
Dimensional Case 

Akisato Kubo and Hiroki Hoshino 

Abstract In this paper, we investigate the global existence in time and asymptotic 
behaviour of solutions of non-linear evolution equations with strong dissipation and 
non-local coefficients in one spacial dimension, arising in mathematical models of 
cell migration. We consider the initial boundary value problem with zero-Neumann 
condition for the equation, applying the argument of the singular integral operator 
to the non-local term, and we obtain the .L2-estimate of it which is necessary for 
the energy estimates of our problems. Finally we can prove the desired result by the 
standard argument of the interation scheme of our problem. 

1 Introduction 

Let us consider the following non-linear evolution equations with non-local term, 
for .w := w(x, t) with . (x, t) ∈ Ω × (0, T )

. (NE)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

wtt = D∆wt + ∇ · (α(wt )e
−wχ [w]) + μ(1 − wt)wt , in Ω × (0, T )

(1.1)

∂

∂ν
w = 0 on ∂Ω × (0, T ) (1.2)

w(x, 0) = w0(x), wt (x, 0) = w1(x) in Ω (1.3) 

where .D,μ are positive constants, .α(·) is an sufficiently smooth function, . Ω is a 
bounded domain in . Rn with smooth boundary . ∂Ω and . ν is the outer unit normal 
vector on . ∂Ω, .χ [w] := χ [w](x, t) is a non-local term. In this paper we study the 
one-dimensional case of (NE). 
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Let . w̃ be an extension function of w satisfying .w = w̃ in . Ω, .w̃ = 0 for . |r| > |Ω|.
Let us recall that 

.‖w̃‖m ≤ C‖w‖m,Ω (1.4) 

(cf. Mizohata [15]; Chap. 3), where .‖ · ‖m.Ω is the Sobolev norm of order m defined 
in . Ω, which will be specified later soon, and it is written by .‖ · ‖m simply when 
.Ω = R. The definition of .χ [w] for .n = 1 is given as follows: for a step function 
with respect to r: 

. χ±(x, t) =
{

χ(x, t) (r > 0)
−χ(x, t) (r < 0),

and a smooth function .χ(x, t) in .Ω × (0, T ), 

. χ [w](x, t) = v.p.χ±(x, t)
1

r
∗ w̃xt (r, t)

. := lim
ϵ→0

ˆ
|r|≥ϵ

χ±(x, t)
1

r
w̃xt (x − r, t)dr.

In this paper, we investigate (NE) for .n = 1 and our purpose is to establish 
the existence theorem of time global solutions to (NE). Our difficulty to deal with 
(NE) lies in the discontinuity of .χ±(x, t) at .r = 0. We apply the .L2-estimate of 
the singular integral operator to the non-local term to derive the estimates of (NE), 
which play an important role to obtain our desired results. 

Now let us introduce the function spaces used in this paper. Firstly, . Hl(Ω)

denotes the Sobolev space .Wl,2(Ω) of order l on . Ω. For functions .h(x, t) and 

.k(x, t) defined in .Ω × [0,∞), putting . (h, k)Ω(t) =
ˆ

Ω

h(x, t)k(x, t)dx, ‖h‖2Ω =
(h, h)Ω(t), then we define the norm of .Hl(Ω) by . ‖h‖2l,Ω(t) =

∑

|β|≤l

‖∂β
x h(·, t)‖2Ω(t),

and also denote .‖ · ‖0 and .‖ · ‖0,Ω simply by .‖ · ‖ and .‖ · ‖Ω respectively, where . ∂x =
(∂x1 , · · · , ∂xn) =

(
∂

∂x1
, · · · ,

∂

∂xn

)

and . β is a multi-index for .β = (β1, · · · , βn). 

Secondly let define .Wl(Ω) as follows, which is a subspace of .Hl(Ω). The  
eigenvalues of .−∆ with the homogeneous Neumann boundary conditions are 
denoted by .{λi |i = 0, 1, 2, · · · }, which are arranged as . 0 = λ0 < λ1 ≤ · · · → +∞.

Let .ϕi = ϕi(x) indicate the . L2 normalized eigenfunction corresponding to . λi . 
Then we put for .h(x), k(x) ∈ Hl(Ω), and a non-negative integer l, . (h, k)l,Ω =
(h, k)Ω + (∇ lh,∇ lk)Ω, |h|2l,Ω = (h, h)l,Ω. We set .Wl(Ω) as a closure of the 

subset spanned by .{ϕ1, ϕ2, · · · , ϕn, · · · } in .Hl(Ω). Taking .λ1 > 0 into account, it 
is noticed that we have .

´
Ω

h(x)dx = 0 for .h(x) ∈ Wl(Ω), which enables us to use 
Poincare’s inequality. We know the equivalence of norms .| · |l,Ω, ‖ · ‖l,Ω.
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1.1 Known Results and Reduction Process to (NE) 

Recently in [6] Gerisch and Chaplain proposed a non-local model of a cell migration 
(see also [5]): for .n = n(x, t), .f = f (x, t), .m = m(x, t), and positive constants 
.D1,D3, . γ , . α, . λ, . μ1 and . μ2, 

. (CG)

⎧
⎪⎨

⎪⎩

∂tn = ∇ · [D1∇n − nA{u(t, ·)}] + μ1n(1 − n − f ), (1.5)

∂tf = −γmf + μ2(1 − n − f ), (1.6)

∂tm = ∇ · [D3∇m] + αn − λm, (1.7) 

with initial data and zero-Neumann condition, where 

. A{u(t, ·)}(x) = 1

R

ˆ R

−R

1

R
Ω(r)σ (u(t, x − r))dr, u(x, t) = (n, f,m)(x, t)

is the non-local term for “sensing radius” .R > 0, which detects the local 
environment of the cell, a stp funstion .Ω(r): 

. Ω(r) =
{

c for r > 0
−c for r < 0,

and a smooth function .σ( · ). In the same reduction way as used in [7–10, 12, 13], 
(NE) is reduced from (CG). Following [4–6] it is seen that as .R → 0 the non-
local model (CG) is reduced to a corresponding local model, for example, a cell 
migration model (CL) proposed by Chaplain and Lolas [3], for positive constants 
. d, μ, γ1, γ2, d3, α1, λ1

. (CL)

⎧
⎪⎨

⎪⎩

∂tn = d∆n − γ1∇ · (
n∇σ(u)

) + μn(1 − n − f ), (1.8)

∂tf = −γ2mf,

∂tm = ∇ · [d3∇m] + α1n − λ1m.

with initial data and zero-Neumann condition. Mathematical analysis of (CL) is 
studied in [7, 8, 13] and related chemotaxis models to (CL) are considered in [1, 2, 
11, 14, 16, 17]. 

For a constant .ϵ > 0 putting .R = ϵ, the non-local term is written by the form 

.A{u(t, ·)}(x) =
ˆ

ϵ>|r|
Ω(r)

1

ϵ2
σ(u(t, x − r))dr, (1.9)
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taking Taylor expansion of .σ(u(t, x − r)) at . r = 0,

. = 1

ϵ2

K∑

k=0

dk

dxk
σ (u(t, x))Ak(ϵ) + RK

where .Ak(ϵ) =
ˆ ϵ

−ϵ

Ω(r)
(−r)k

k! dr and .RK is a remainder term. We see that if k is 
even, 

. 
1

ϵ2
Ak(ϵ) = 0.

Following to [6], as .ϵ → 0 it holds that for a constant A 

.A{u(t, ·)}(x) → d

dx
σ(u(t, x))A. (1.10) 

Due to (1.10) they justify .A{u(t, ·)}(x) as a generalization of the differential 
operator of .∂xσ (u(t, x)). Further in order to consider the non-local term in more 
details we divide it into two parts taking account of (1.9) for any fixed constant 
.ϵ > 0 and it is respected as 

.A{u(t, ·)}(x) = (

ˆ
R≥|r|>ϵ

+
ˆ

ϵ>|r|
)Ω(r)

1

ϵ2
σ(u(t, x − r))dr. (1.11) 

In the first term of (1.11) the integrated function should not depend on . ϵ if we apply 
our mathematical analysis. Hence by changing . ϵ to the variable .r ∈ R in the term:. 1

ϵ2

of the first term of (1.11), as .ϵ → 0, the non-local term is rewritten by 

.A{u(t, ·)}(x) ≃ lim
ϵ→0

ˆ
R≥|r|>ϵ

1

r2
c±σ(u(t, x − r))dr + A

d

dx
σ(u). (1.12) 

Hence it is enough to focus our arguments only on the first term of (1.12) because 
the second term is just a local term, in which case (CG) can be considered as the 
same type of problem of (CL), assuming .σ(u) = f . 

Further let us study a simpler case of the first term of (1.12) for .σ(u) = u. From  
integration by parts it follows that 

. v.p.c±
1

r2
∗ u(r, t) = lim

ϵ→0

ˆ
|r|≥ϵ

c±
1

r2
u(x − r, t)dr

. = lim
ϵ→0

ˆ
|r|≥ϵ

c±
r

r2

d

dr
u(x − r, t)dr − lim

ϵ→0

{
c+

ϵ

ϵ2
u(x − ϵ) + c−

ϵ

ϵ2
u(x + ϵ)

}

. = −v.p.c±
r

r2
∗ (

d

dx
u)(r, t) + A1(

d

dx
u)(x, t) (1.13)
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where . A1 is a constant. In fact, by using the argument from (1.9) to (1.10) the  
boundary terms can be expressed by 

. 

K∑

k=0

−
(

c+
r

r2

(−r)k

k!
dk

dxk
u(x, t)

)

|r=ϵ +
(

c−
r

r2

(−r)k

k!
dk

dxk
u(x, t)

)

|r=−ϵ

+ the remainder term

which tend to .A1
d
dx

u(x, t) as .ϵ → 0. Thus the first term of (1.13) leads us to the 
definition of . χ [w].

In [6] Gerisch and Chaplain investigate and explorate the model by compu-
tational simulations. Mathematical analysis of the model is given by Chaplain, 
Lachowicz, et al. [4] for a more abstract form than (CG). 

However in their non-local term such discontinuity at .r = 0 as in .Ω(r) of (CG) 
is not considered. In this sense they do not to deal with this critical point of the 
problem and the regularity theorem of their problem was not obtained. 

To overcome these difficulties, we introduce the argument of a singular integral 
operator to the non-local term and consider (NE) in .L2-framework. Finally we 
obtain the existence theorem and asymptotic behaviour of solutions of (NE) in the 
analogous way as used in the previous papers [7–10, 12, 13]. In this paper, we 
consider (NE) for .μ = 0, α(wt ) = wt in one spacial dimension for the simplicity. 

Remark 1 We already have dealt with local cases corresponding to (NE), which is 
given by replacing .χ [w] with .χ(x, t)∇w in the non-local term, and we call (LE) for 
the replaced one below. The problem (LE) is reduced from (CL) and using results 
of (LE) the existence theorem of (CL) is shown (cf. [7–10, 12, 13]). In the same 
line we will be able to deal with (CG) by using results of (NE). The same type of 
problems of (LE) is studied in [7–14, 16–18]. 

2 Existence and Asymptotic Profile of (NE) 

For .g(w)(x, t) = e−wwtχ [w], we set  

. P [w] = wtt − D∆wt − ∇ · g(w).

We seek the solution in the form of .w(x, t) = a+bt+v(x, t) for positive parameters 
a and b. Then (NE) is rewritten by 

.(NE)ab

⎧
⎪⎪⎨

⎪⎪⎩

Pa,b[v] = vtt − D∆vt − ∇ · (ga,b(v)) = 0
∂νv|∂𝛀 = 0
v(x, 0) = v0(x) = w0(0) − a,

vt (x, 0) = v1(x) = w1(x) − b
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where we denote .ga,b(v) = e−a−bt−v(b + vt )χ(a,b)[v] with . χ(a,b)[v] = χ [a + bt +
v]. We will seek the time global solution of .(NE)ab. It is noticed that .χ(a,b)[v] is 
represented as follows. 

. χ(a,b)[v] = v.p.χ±(x, t)
1

r
∗ vxt = lim

ϵ→0

ˆ
|r|≥ϵ

χ±(x, t)
1

r
ṽxt (x − r, t)dr.

Here and hearafter below we often use notations . ∇ and . ∆ instead of . ∂x and . ∂2x
respectively for the readability. 

2.1 Singular Integral Operator 

Let us introduce the singular integral operator H as follows for a bounded function 
.hj (x): 

. Hu(x) = (2πi)2
n∑

i=1

hj (x)Rju(x),

Rju(x) = v.p.
xj

|x|n+1
∗ u(x), for x ∈ R

n,

where . Rj is Riesz operator. We have the following well known .L2-estimate of the 
singular integral operators (see Mizohata [15]; Chap. 6). 

Proposition 1 For .u ∈ L2(Rn) there exists a constant .C > 0 such that it follows 
that 

. ‖Hu(x)‖ ≤ C‖u‖.

2.2 Estimate of the Non-Local Term 

For .u ∈ C((0, T );L2(R)) and a constant .c > 0 we have 

.v.p.c±
1

r
∗ u(r, t) = lim

ϵ→0

ˆ
|r|≥ϵ

c±
r

r2
u(x − r, t)dr = v.p.

r

r2
∗ c±u(r, t) (2.1) 

Taking account of (2.1) and Proposition 1 we have 

.‖v.p.c±
1

r
∗ u(r, t)‖ ≤ C‖v.p. r

r2
∗ c±u(r, t))‖ ≤ C‖u‖. (2.2)
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Lemma 1 For .u ∈ C((0, T );L2(R)) there exists a constant .C > 0 such that (2.2) 
holds. 

Let us estimate the non-local term .χ [u] for .ut (x, t) ∈ C((0, T );H 1(Ω)) as 
follows. By using an extension . ̃u of u we have 

. ‖v.p.χ±(r, t)
1

r
∗ uxt (r, t)‖Ω ≤ ‖ lim

ϵ→0

ˆ
|r|≥ϵ

χ±(x, t)
r

r2
ũxt (x − r, t)dr‖

≤ C‖ũt (x)‖1 ≤ C‖ut‖1,Ω
in the same procedure from (2.1) to (2.2) to this term. Then we obtain the following 
result. 

Lemma 2 For .ut ∈ C((0, T );H 1(Ω)) there exists a constant .c > 0 such that we 
obtain 

. ‖χ [u](x, t)‖Ω ≤ C‖ut‖1,Ω.

2.3 Estimates of Non-Local Problem (NE)ab 

We assume the regularity and the boundedness conditions for . m ≥ [n/2] + 1

.vt ∈ L2([0,∞);Wm(Ω)) and (vt , e
−a−bt−v) ∈ Br+, (2.3) 

where .Br+ is an upper semicircle of radius r at 0 in . R2. We first prepare a result 
required to derive energy estimates of .(NE)ab. The following lemma is shown by 
the integration by parts with respect to t (see [7–10, 12, 13]). 

Lemma 3 Assume that .v = v(x, t) satisfies the condition (2.3) with . m > M ≥
[n/2] + 1. For .0 < b' < b and .i = 1, 2, · · ·, n, it holds that 

. ‖e−b't vxi
‖2M,Ω(t) +

ˆ t

0
‖e−b'svxi

‖2M,Ω(s)ds

≤ C

(ˆ t

0
‖e−b'svxis‖2M,Ω(s)ds + ‖vxi

‖2M,Ω(0)

)

.

Proof For any .ε > 0, integration by parts for the second term leads us to 

. ‖e−b't vxi
‖2Ω(t) + 2b'

ˆ t

0
e−2b's‖vxi

‖2Ω(s)ds

≤ C

(
1

ε

ˆ t

0
e−2b's‖vxis‖2Ω(s)ds + ε

ˆ t

0
e−2b's‖vxi

‖2Ω(s)ds + ‖vxi
‖2Ω(0)

)

.

Taking . ε sufficiently small, finally we have the desired result. ⨅⨆
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Lemma 4 (Basic estimate of .(NE)ab) We have a basic energy estimate of . (NE)ab

under the regularity and boundedness conditions (2.3) on .v = v(x, t), 

.‖vt‖2Ω(t) +
ˆ t

0
D‖∇vs‖2Ωds ≤ CEa[v](0), (2.4) 

for sufficiently large a where .Ea[v] = ‖vt‖2Ω + e−2a‖∇v‖2Ω. 
Proof We get by the integration by parts 

. 2(Pa,b[v], vt )Ω = 2(∂2t v − D∆vt − ∇ · (ga,b(v)), vt )Ω

= ∂

∂t
‖vt‖2Ω + 2D‖∇vt‖2Ω + 2(ga,b(v),∇vt )Ω = 0. (2.5) 

From Lemmas 2 and 3 it follows that for any .ε > 0 and a constant .0 < b' < b, 

. 

ˆ t

0
(e−a−bt−v(b + vs)χ(a,b)[vs],∇vs)Ωds ≤ C(ε−1

ˆ t

0
(e−2a−2b's∇vs,∇vs)Ωds

+ε

ˆ t

0
‖∇vs‖2Ωds).

By integrating the equality (2.5) over .(0, t) and using the above estimate, we get by 
the same way as in previous papers [7–10, 12, 13] 

. ‖vt‖2Ω(t) +
ˆ t

0
2D‖∇vs‖2Ω(s)ds

≤ C(Ea[v](0) + ε−1
ˆ t

0
(e−2(a+b's)∇vs,∇vs)Ωds + ε

ˆ t

0
‖∇vs‖2Ωds). (2.6) 

Since the last term of the right hand side of (2.6) is negligible for sufficiently small 
. ε, we have  

.‖vt‖2Ω(t) +
ˆ t

0
D‖∇vs‖2Ω(s)ds ≤ CEa[v](0) + Cεe

−a

ˆ t

0
‖∇vs‖2Ωds. (2.7) 

⨅⨆
Lemma 5 (Higher Order Estimates for .(NE)ab) Under the regularity and bound-
edness conditions (2.3) on .v = v(x, t) with .m > M ≥ [n/2]+1, we have the higher 
order energy estimate of .(NE)ab for sufficiently large a: 

.

M+1∑

j=1

{‖∇j−1vt‖2Ω(t) +
ˆ t

0
D‖∇j vs‖2Ω(s)ds} ≤ CEa,M [v](0), (2.8) 

where we denote for any non-negative integer .k,Ea,k[v](t) = Ea[∇kv].
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Proof Suppose that the estimate (2.8) holds for .M = k − 1 ≥ 0. Considering . ∇kv

instead of v in (2.4), in the same way as in Lemma 4 we can obtain (2.8) for .M = k. 
In fact, in order to show it, it is enough to prove that the following estimate holds 
for a parameter . κ > 0

. 

(
∇k

(
e−a−bt−v(b + vt )χn(a,b)[v]) − e−a−bt−v(b + vt )χn(a,b)[∇kv],∇kvt

)

Ω

≤ C(κ−1
k∑

j=1

(e−a−b't∇j vt ,∇j vt )Ω + κ|vt |2k,Ω + Ea,k−1[v](0)). (2.9) 

By using Lemma 4 and taking a and . κ sufficiently large and small respectively, the 
first and second terms of (2.9) can be neglected. Hence we obtain (2.8). ⨅⨆

3 Existence of the Solution to (NE)ab 

We obtain the following result of the global existence in time and some properties 
of the solution to .(NE)ab. 

Theorem 1 Let .(v0(x), v1(x)) ∈ Wm+1(Ω) × Wm(Ω) for .v0(x) = w0(x) − a and 
.v1(x) = w1(x) − b and .m ≥ [n/2] + 3. For sufficiently large a, there exists the 
solution: 

. w(x, t) = a + bt + v(x, t) ∈
1⋂

i=0

Ci([0,∞);Hm−i (Ω))

to .(NE)ab, moreover for .w1 = |Ω|−1
´
Ω

w1(x)dx it holds that 

. lim
t→∞ ‖wt(x, t) − w1‖m−1,Ω = 0. (3.1) 

Proof The proof will be shown in the same manner as in [7–10, 12, 13]. We give an 
iteration scheme and derive the energy estimate of it. 

. (NE)(i+1)

⎧
⎪⎪⎨

⎪⎪⎩

Pi[vi+1] = ∂2t vi+1 − ∂t∆vi+1

−∇ · (e−a−bt (b + vit )χ(a,b)[vi]e−vi ) = 0
∂νvi+1|∂Ω = 0,
vi+1(x, 0) = v0(x), vi+1t (x, 0) = v1(x)

where .vi = ∑∞
j=1 fij (t)ϕj (x), .v0(x) = ∑∞

j=1 hjϕj (x), v1(x) = ∑∞
j=1 h'

jϕj (x). 
Taking .Ea,M [v](0) sufficiently small in the energy estimate, we see that (2.8) 
guarantees the estimate with a uniform upper bound of each problem . (NE)(i+1)
for large enough r in .Br+ and .i = 1, 2, · · · .
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We determine .fij (t) by Galerkin method and by applying (2.8) to the following 
system of ordinary deferential equations with initial data, for .j = 1, 2, · · · , we  
obtain the global smooth solution in time, which satisfies (2.3), 

. 

{
(Pi[vi+1], ϕj ) = 0,
fi+1j (0) = hi+1, fi+1j t (0) = h'

i+1.

Eventually the energy estimate enables us to get the solution of .(NE)ab by 
considering .Pi[vi+1] − Pi−1[vi] and the standard argument of convergence for 
.vi+1 − vi = ui . In fact, we consider the following problem for .l(t) = a + bt . 

. (NE)(i+1)−(i)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pi[vi+1] − Pi−1[vi] = ∂2t ui+1 − ∂t∆ui+1

−∇ · (e−l(t)(b + vit )χ(a,b)[ui]e−vi )

−∇ · (
e−l(t)((b + vit )χ(a,b)[vi−1]e−vi

−(b + vi−1t )χ(a,b)[vi−1]e−vi−1)
) = 0,

ui+1(0, x) = ui+1t (0, x) = 0.

In order to obtain the estimate of .(NE)(i+1)−(i) it is enough to deal with the last 
term of .Pi − Pi−1 as follows: for . θ > 0

. 2
ˆ t

0

(

∇M−1∇ ·
(
e−l(s)((b

+vit )e
−vi − (b + vi−1t )e

−vi−1)χ [vi−1]
)
,∇M−1uis

)

Ω

ds

≤ Ca

θ

ˆ t

0
e−2bs

1∑

j=0

‖∂j
s ui−1‖2M−1,Ωds + θ

ˆ t

0
‖∇uis‖2M−1,Ωds. (3.2) 

Then in the same way as derived the energy estimate (2.8), we have by using (3.2) 
for sufficiently large a and small . θ , 

.‖uit‖2M−1,Ω(t) + D

ˆ t

0
‖∇uis‖2M−1,Ωds ≤ Ca‖ui−1t‖2M−1,Ω, (3.3) 

where . Ca depends on .sup
t

‖∂tvi‖2M,Ω, sup
t

‖∂tvi−1‖2M,Ω and .e−a, Ca → 0 as . a → ∞
and for sufficiently small . θ we can neglect the last term of (3.2). Then we take a so 
large that .Ca < 1. By the standard argument of the iteration scheme there exists the 
solution .v(x, t) of .(NE)ab such that .{vi} converges strongly to v satisfying 

. lim
i→∞ vi = v in

1⋂

i=0

Ci([0,∞);Hm−i (Ω)), m ≥ [n/2] + 3. (3.4)
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The proof of (3.1) is shown in the same way as in [9]. ⨅⨆
Concluding Remark We can consider (NE) for .μ /= 0, α(wt ) /≡ wt, n ≥ 1 if an 
appropriate generalization .χn[w] of .χ [w] would be given for .n ≥ 1, for example, 
.χn[w] = (2πi)2

∑n
i=1 v.p.χi±(x, t)

ξi

|ξ |2 ∗ wxit (ξ, t) for .ξ ∈ Ω ⊂ R
n. Also we will 

be able to show the existence and asymptotic behaviour of the solution to (CG) by 
using Theorem 1 for .n = 1 and its generalization for .n ≥ 2. Such results with the 
full proof of them will be published somewhere soon. 
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Nonlinear Perturbed BLMP Equation 

Sandra Lucente 

Abstract In the present paper we consider the non-existence of weak solutions 
related to a class of differential equations connected with the Airy operator. More 
precisely, we deal with a positive semilinear perturbation of important PDEs 
involved in fluido-dynamic: Airy, KdV and BLMP equation. 

1 Introduction 

Many quasilinear PDEs describe physical phenomena and take the form 

. P(t, x, ∂t ,Dx)u = f (Dxu, ∂tu)

with .t > 0 as time variable and .x ∈ R
N as space variable. The operator P is a 

linear operator while f gives the nonlinear part of the equation. In the present paper 
we want to add forcing terms of type .|u|q and .|Du|2q in BLMP (Boiti Leon Manna 
Pempinelli) equation and show that for some .q > 1 and suitable initial data the 
corresponding weak solutions do not exist. 

In Sect. 2 we motivate the choice of BLMP equation that can be considered a 
generalization of KdV equation. In both cases the linear operator is of Airy type. 
More precisely, in Sect. 2.1 we discuss two Liouville semilinear problems related to 
Airy operator. In Sect. 2.2 we consider the correspondent initial value problems. In 
Sect. 2.3 we consider a perturbed KdV equation. 

In Sect. 3 we state and prove the main result on the non-existence of weak 
solutions for BLMP perturbed equation. From such proof one derives, as corollary, 
all the proofs of theorems stated in Sect. 2. 
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2 From Airy to BLMP Equations 

Let be .N = 1. Let us start with the Airy operator .∂t + ∂3x and its most famous 
nonlinear related equation: 

.∂tu + ∂3xu = g(u)∂xu . (1) 

We can write the right side as .∂x(G(u)) being G a primitive of g. For  . G(s) = 3s2

this is the classical Korteweg de Vries equation introduced in 1895. It is completely 
integrable and describes for example the evolution of long, one-dimensional waves. 

Let .N = 2. Many variants of the previous couple operator/equation have been 
studied. For example one can consider 

.∂x(∂t + ∂3x )u + λ∂2yu = ∂x(g(u)∂xu) (2) 

obtained formally as a linear second order perturbation of (1), after deriving it with 
respect to x. In particular any solution of (1) gives a solution of this equation 
independent of y. For  .g(u) = u this is a Kadomtsev–Petviashvili type equation, 
studied since 1970, see [6]. It gives a model of waves in ferromagnetic media. 

In 1986 Boiti, Leon, Manna, Pempinelli [1] proposed a 2D-variant for KdV: 

.∂y(∂t + ∂3x )u = 3∂xu∂y∂xu + 3∂2xu∂yu . (3) 

The linear operator is a derivation of Airy’s one. Concerning the nonlinear term, it 
can be seen as nonlinear perturbation of .∂y(G(∂xu)), with .G(s) = 3/2s2, by an  
extra-term which involves . ∂2xu. Formally taking .x = y and .v = ∂xu, from (3) we 
come back to (1). We mention that in this case the nonlinear part does not depend on 
the function u, but only on its derivatives. It describes the interaction of two different 
waves along the two axes. The 3D-version was given in 2012 in [4]: 

.(∂y + ∂z)(∂t + ∂3x )u = 3∂xu(∂y + ∂z)∂xu + 3∂2xu(∂y + ∂z)u . (4) 

Such kind of equations appear in oceanography and plasma physics. The 4D case 
has been recently studied in [8]. In order to introduce the ND version, we take . x ∈ R

as special direction, in which Airy operator applied, and .ξ ∈ R
N−1. We denote by 

. S(∇ξ ) = ∂ξ1 + · · · + ∂ξN−1

the divergence of the .N − 1 vector with any component equal to an assigned scalar 
function. Hence we consider 

.(∂t + ∂3x )S(∇ξ )u(t, x, ξ) = 3(∂xuS(∇ξ )∂xu + ∂2xuS(∇ξ )u) . (5)
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In the present paper we want to study nonexistence of weak solution with extra 
sources which growth polynomially in u and .∇x,ξ u. 

2.1 Liouville Problems for Semilinear Airy Equations 

The idea to split space-variables into two sets, appears in many papers. Concerning 
the non-existence of weak solutions, we have to mention for example [2]. Let us 
rewrite such result for .(t, x, ξ) ∈ R

N+1 = R × R × R
N−1. The dual variables, in 

the sense of Fourier transform, are denoted by .(τ, x̃, η) ∈ R × R × R
N−1. 

Let L be a linear differential operator of order .m ≥ 1 of the form 

.L(t, x, ξ,Dt ,Dx,Dξ ) =
∑

1≤|(α,β,γ )|≤m

lα,β,γ (t, x, ξ)Dα
t Dβ

x D
γ
ξ , (6) 

with multi-index .(α, β, γ ) ∈ N × N × N
N−1 and symbol 

. L(t, x, ξ, τ, x̃, η) =
∑

1≤|(α,β,γ )|≤m

(−1)|α|+|β|+|γ |lα,β(t, x, ξ)ταx̃βηγ .

We emphasize that no 0-order term is present in the operator L. 

Definition 1 The m-th order operator L is called quasi-homogeneous if there exist 
.δ1, δ2, δ3 > 0 such that for any .λ > 0, .(t, x, ξ), (τ, x̃, η) ∈ R

N+1, it holds 

. L(λ−δ1 t, λ−δ2x, λ−δ3ξ, λδ1τ, λδ2 x̃, λδ3η) = λmL(t, x, ξ, τ, x̃, η).

By quasi-homogeneous dimension we mean the quantity 

. Q = δ1 + δ2 + δ3(N − 1) .

We recall that the adjoint of a linear operator L, denoted by . L∗, satisfies 

.

ˆ
RN+1

(Lf )g dt dx dξ =
ˆ
RN+1

f L∗g dt dx dξ, (7) 

for any .f ∈ D(L), .g ∈ D(L∗). Clearly, .D(L) and .D(L∗) depend on the regularity 
of the coefficients .lα,β,γ . For simplicity here we consider smooth coefficients. 

Definition 2 Let .q > 1. A function .u ∈ L
q
loc(R

N+1) is called weak solution of 
.Lu = |u|q if, for any .ϕ ∈ C∞

c (RN+1,R+), it holds 

.

ˆ
RN+1

|u|qϕ dt dx dξ =
ˆ
RN+1

uL∗ϕ dt dx dξ . (8)
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Here and in the sequel .C∞
c (D) denotes the space of functions belonging to . C∞(D)

with compact support in a domain D. 
The main result of [2], based on test function method, can be written as follows. 

Theorem 1 Let .q > 1. Consider a m-th order quasi-homogeneous operator L in 
form (6). Assume 

.Dα
t Dβ

x D
γ
ξ lα,β,γ (t, x, ξ) = 0 , (9) 

for any .(α, β, γ ) ∈ N×N×N
N−1 such that .1 ≤ |α| + |β| + |γ | ≤ m. Let Q be the 

quasi-homogeneous dimension of L. If  

.(Q − m)q ≤ Q (10) 

then .Lu = |u|q has no nontrivial weak solutions. 

In the case of Airy operator, we have .m = 3, symbol .τ + x̃3 and quasi-homogeneous 
dimension .Q = 4. Indeed we can take .δ1 = 3, δ2 = 1 so that . (λ3τ) + (λx̃)3 =
λ3(τ + x̃3). Hence the equation 

. (∂t + ∂3x )u(t, x) = |u|q

has no nontrivial weak solution (in the sense of Definition 2), for any 

. 1 < q ≤ 4 .

Now we consider the semilinear case associated to the left side of BLMP equation: 

.(∂t + ∂3x )S(∇ξ )u(t, x, ξ) = |u|q q > 1, (11) 

where .ξ ∈ R
N−1 with .N ≥ 2. We see that the operator has order .m = 4 and 

it is still quasi-homogeneous, indeed .((λ3τ) + (λx̃)3)(λη) = λ4(τ + x̃3)η . More 
precisely .(δ1, δ2, δ3) = (3, 1, 1) and .Q = 3 + 1 + 1 × (N − 1) = 3 + N . As a  
conclusion, Eq. (11) has no nontrivial weak solution (in the sense of Definition 2), 
provided .(3 + N − 4)q ≤ 3 + N . Explicitly, we require 

. 1 < q ≤ N + 3

N − 1
, N ≥ 2.

Taking .N = 1 we do not arrive to the condition .1 < q ≤ 4, this reveals that the 
presence of .S(∇ξ ) deeply changes the critical exponents, acting both on Q and m. 
This is a first hint to see that BLMP equation will give different results with respect 
to Airy’s one. Passing to initial value problems, some other differences with respect 
to KdV will also appear.
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2.2 Initial Value Problems for Semilinear Airy Equations 

In [3] many generalizations of the test function method appear. For example one can 
treat initial value problems. Let us adapt such results to our situation. 

Definition 3 Let .i = 1, 2. Let . Pi be a linear differential operator of order .ki ≥ 1: 

.Pi(x, ξ,Dx,Dξ ) =
∑

1≤|(β,γ )|≤ki

p
(i)
β,γ (x, ξ)Dβ

x D
γ
ξ , (12) 

where the multi-index .(β, γ ) ∈ N × N
N−1. Consider the Cauchy Problem 

. 

{
(∂tP1 + P2)u(t, x, ξ) = |u(t, x, ξ)|q , t ≥ 0, x ∈ R , ξ ∈ R

N−1, q > 1

u(0, x, ξ) = u0(x, ξ) .

(13) 

Denoted by .L = ∂tP1+P2, we say that .u ∈ L
q

loc([0,+∞)×R
N) is a weak solution 

to (13) if for any .η ∈ C∞
c ([0,∞),R+), .φ ∈ C∞

c (R,R+) and . ψ ∈ C∞
c (RN−1,R+)

one has 

. 

ˆ ∞

0

ˆ
RN

|u(t, x, ξ)|q η(t)φ(x)ψ(ξ) dx dt dξ =

−
ˆ
RN

u0(x)η(0)P ∗
1 (φ(x)ψ(ξ)) dξ

+
ˆ ∞

0

ˆ
RN

u(t, x, ξ)L∗(η(t)φ(x)ψ(ξ)) dx dt dξ .

We will discuss two different cases according to the following assumption is 
satisfied: 

.Dβ
x D

γ
ξ p

(1)
β,γ (x, ξ) = 0 , 1 ≤ |β| + |γ | ≤ k1, (14) 

with .(β, γ ) ∈ N × N
N−1. 

Theorem 2 Assume that .L = ∂tP1 +P2 is a quasi-homogeneous operator of order 
m and quasi-homogeneous dimension Q. Suppose (9) holds. If 

. (Q − m)q ≤ Q

then (13) has no global weak solution provided either .u0 ∈ L1(RN) and (14) holds 
or
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. u0 ∈ D(P1) , P1u0 ∈ L1(RN) and
ˆ
RN

P1u0(x, ξ) dx dξ > 0 .

We are stating that if .u(t, x, ξ) solves (13), according Definition 3, then there exists 
.T∗ > 0 such that .[0, T∗)×R

N is the maximal domain for u. The proof of Theorem 2 
will follow from the proof of Theorem 4. 

Let us apply such theorem to conclude that Airy equation 

. 

{
(∂t + ∂3x )u(t, x) = |u(t, x)|q , t ≥ 0, x ∈ R,

u(0, x) = u0(x) .

has no global weak solution (in sense of Definition 3) once .1 < q ≤ 4 provided that 
.
´
R

u0(x) dx > 0. 
Similarly semilinear equation associated to BLMP linear part 

. 

{
(∂t + ∂3x )S(∇ξ )u(t, x, ξ) = |u(t, x, ξ)|q , t ≥ 0, x ∈ R, ξ ∈ R

N−1

u(0, x, ξ) = u0(x, ξ) .

has no global weak solutions once .1 < q ≤ N+3
N−1 provided that .u0 ∈ L1(RN). 

Another difference between Airy and BLMP operator appears: the initial condition 
does not require positivity. To our knowledge this result is new. 

2.3 Perturbation of KdV Equation 

Starting from [7], the test function method technique has been applied for quasilin-
ear equations. Here we consider a perturbation of KdV equation: 

. 

{
(∂t + ∂3x )u = ∂x(|u|2) + |u|q + β|u|2q , u = u(t, x) , t ≥ 0, x ∈ R ,

u(0, x) = u0(x) .

(15) 

We say that .u ∈ L
2q
loc([0,+∞) × R

N) is a weak solution to (15) if for any . η ∈
C∞

c ([0,∞),R+) and for any .φ ∈ C∞
c (RN,R+) it holds 

. 

ˆ ∞

0

ˆ
RN

(|u|q + β|u|2q) η(t)φ(x) dx dt = −
ˆ
RN

u0(x)φ(x) dx

−
ˆ ∞

0

ˆ
RN

u (∂t + ∂3x )(η(t)φ(x)) dx dt −
ˆ ∞

0

ˆ
RN

∂x(|u|2) η(t)φ(x) dx dt .

Let us state the following result. For the proof see Remark 1.
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Theorem 3 Let .u0 ∈ L1(R) with .
´

u0 dx > 0. If .β /= 0 and .1 < q ≤ 4/3, then 
(15) has no global weak solution. 

3 Non Existence of Weak Solutions for Perturbed BLMP 

We prove our main result for a perturbation of BLMP equation. 

Theorem 4 Let .N ≥ 2. Consider the initial value problem 

. 

{
(∂t + ∂3x )S(∇ξ )u = 3(∂xuS(∇ξ )∂xu + ∂2xuS(∇ξ )u) + |u|q + |∇x,ξ u|2q ,

u(0, x, ξ) = u0(x, ξ) .

(16) 

If .u0 ∈ L1(RN) and .1 < q ≤ N+3
N+2 . then (16) has no global weak solution. 

More precisely if .u ∈ L
q
loc([0, T ) × R

N) and .∇x,ξ u ∈ L
2q
loc([0, T ) × R

N) solves 

. 

ˆ ∞

0

ˆ
RN

(|u|q + |∇x,ξ u|2q) η(t)φ(x)ψ(ξ) dx dξ dt =

= −
ˆ
RN

u0(x, ξ)η(0)φ(x)S(∇ξ )ψ(ξ) dx dξ

+
ˆ ∞

0

ˆ
RN

u (∂t + ∂3x )S(∇ξ )(η(t)φ(x)ψ(ξ)) dx dξ dt

− 3
ˆ ∞

0

ˆ
RN

(∂xuS(∇ξ )∂xu + ∂2xuS(∇ξ )u) η(t)φ(x)ψ(ξ) dx dξ dt

for any .η ∈ C∞
c ([0,∞),R+), .φ ∈ C∞

c (R,R+) and .ψ ∈ C∞
c (RN−1,R+), then 

.u(x, ξ, t) has a finite maximal time existence: .T < +∞. 

Proof We will deal with a more general situation: 

. L = ∂tP1(x, ξ, ∂x,Dξ ) + P2(x, ξ, ∂x,Dξ )

a quasi-homogeneous operator of order m and quasi-homogeneous dimension . Q =
δ1 + δ2 + δ3(N − 1). Moreover we put 

.Cl,n,r :=
{
(t, x, ξ) ∈ R+ × R

N : 0 ≤ t < l , |x| ≤ n , |ξ | ≤ r
}

.

Cn,r :=
{
(x, ξ) ∈ R

N : |x| ≤ n , |ξ | ≤ r
}

.
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From Appendix A of [2], we recall that 

. L∗SI

λδ1
SII

λδ2
SIII

λδ3
g = λmSI

λδ1
SII

λδ2
SIII

λδ3
L∗g for g ∈ D(L∗).

where .SI
λg(t, x, ξ) := g(λt, x, ξ), .SII

λ g(t, x, ξ) := g(t, λx, ξ) and . SIII
λ g(t, x, ξ) :=

g(t, x, λξ). In what follows .η ∈ C∞
c ([0,∞),R+), .φ ∈ C∞

c (R,R+) and . ψ ∈
C∞

c (RN−1,R+). We choose .η = 1 in .[0,−1/2], .η = 0 for .t ≥ 1; .φ = 1 in 
.[−1/2, 1/2]with .φ(R) ⊂ [0, 1] and .suppφ ⊂ [−1, 1]; .ψ = 1 for . |ξ | ∈ [−1/2, 1/2]
with .0 ≤ ψ(ξ) ≤ 1 for any .ξ ∈ R

N−1 and .suppψ ⊂ {|ξ | ≤ 1}. Hence we put 
. ηR(t) = η

(
R−δ1 t

)
, φR(x) = φ

(
R−δ2x

)
, ψR(ξ) = ψ

(
R−δ3ξ

)
.

We start from 

. IR :=
ˆ ∞

0

ˆ
RN

(|u|q + β|∇x,ξ u|2q) ηR(t)φR(x)ψR(ξ) dx dξ dt =

= −
ˆ
RN

u0(x)P ∗
1 (φR(x)ψR(ξ)) dx dξ

+
ˆ ∞

0

ˆ
RN

uL∗(ηR(t)φR(x)ψR(ξ)) dx dξ dt

+ α

ˆ ∞

0

ˆ
RN

(∂xuS(∇ξ )∂xu + ∂2xuS(∇ξ )u) ηR(t)φR(x)ψR(ξ) dx dξ dt

=: −DR + LR + NR

with .α ∈ R and .β > 0 or .α = 0 = β. We see that 

. DR =
ˆ
supp (φRψR)

P1(u0(x))φR(x)ψR(ξ) dx dξ

If .
´
RN P1(u0(x)) dx dξ > 0, then there exists .R̄ > 0 such that .DR > 0 for any 

.R ≥ R̄. If  (14) holds, then we observe that . P1 is quasi-homogeneous of dimension 

.δ2 + δ3(N − 1) and order .m − δ1, so that 

. DR = R−m+δ1

ˆ
C

Rδ2 ,Rδ3 \C
Rδ2 /2,Rδ3 /2

u0(x.ξ)SII

R−δ2
SIII

R−δ3
P ∗
1 (φ(x)ψ(ξ)) dx dξ

= R−m+δ1+δ2+δ3(N−1)
ˆ

C1,1\C1/2,1/2

u0(R
δ2x.Rδ3ξ)P ∗

1 (φ(x)ψ(ξ)) dx dξ

= R−m+δ1+δ2+δ3(N−1)‖P ∗
1 (φψ)‖∞‖SII

Rδ2
SIII

Rδ3
u0‖1 ≲ R−m+δ1‖u0‖1 .

Since .u0 ∈ L1(RN), we find 

.|DR| → 0 if − m + δ1 < 0 , (17)
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Now we estimate 

. LR ≤
(¨

C
Rδ1 ,Rδ2 ,Rδ3 \C

R−δ1 /2,R−δ2 /2,R−δ3 /2

|u|qηR(t)φR(x)ψR(ξ) dx dξ dt

)1/q

×
(¨

C
Rδ1 ,Rδ2 ,Rδ3 \C

Rδ1 /2,Rδ2 /2,Rδ3 /2

|L∗ηR(t)φR(x)ψR(ξ)|q '

|ηR(t)φR(x)ψR(ξ)|(q '−1)
dx dξ dt

)1/q '

=: (I
#
R)1/q(L̃

#
R)1/q

'
.

Assuming (9), we can substitute .ηφψ with .(ηφψ)σ with large .σ > mq ' so that the 
function in the last integral is finite, see Lemma 2.1 in [3]. Moreover we have 

. L̃
#
R ≤ R−mq '

¨
C

Rδ1 ,Rδ2 ,Rδ3 \C
Rδ1 /2,Rδ2 /2,Rδ3 /2

SI

Rδ1
SII

Rδ2
SIII

Rδ3

|L∗(ηφψ)|q '

|(ηφψ)|q '−1
dx dξ dt

= R−mq '+Q

¨
C1,1,1\C1/2,1/2,1/2

|L∗(ηφψ)|q '

|(ηφψ)|q '−1
dx dξ dt .

In particular the last integral does not depend on .R > 1. After Young inequality, we 
may conclude that there exists .C > 0 such that 

.LR ≤ I
#
R/4q + CqL̃

#
R ≤ I

#
R/4q + CR−mq '+Q . (18) 

It remains to consider . NR . The main trick of this proof is the following relation that 
is the heart of BLMP equation from nonlinear point of view: 

. NR = −α

¨
C

Rδ1 ,Rδ2 ,Rδ3 \C
Rδ1 /2,Rδ2 /2,Rδ3 /2

∂xuS(∇ξ )uηR∂xφRψR dx dξ dt

For .α = β = 0 this term has to be neglected. 
Let .β > 0. After Holder inequality we get 

.|NR| ≤
(¨

C
Rδ1 ,Rδ2 ,Rδ3 \C

Rδ1 /2,Rδ2 /2,Rδ3 /2

β|∇x,ξ u|2qηRφRψR dx dξ dt

)1/q

× α

β1/q

(¨
C

Rδ1 ,Rδ2 ,Rδ3 \C
Rδ1 /2,Rδ2 /2,Rδ3 /2

|∂xφR(x)|q '

|φR(x)|q '−1
ηR(t)ψR(ξ) dx dξ dt

)1/q '

≤ (I
#
R)1/q(N

#
R)1/q

'
.
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Proceeding as before, we have 

.NR ≤ I
#
R/4q + CR−δ2q

'+Q (19) 

From (17), (18), (19) we can conclude that there exist .η, φ,ψ such that 

. 

ˆ ∞

0

ˆ
RN

(|u|q + β|∇x,ξ u|2q) ηR(t)φR(x)ψR(ξ) dx dξ dt ≤

≤ −DR + C1R
−mq '+Q + C2R

−δ2q
'+Q .

For .1 < q < Q/(Q − min{m, δ2}), the right side goes to zero hence .u = 0. 
For .u0 /= 0, we get a maximal time existence for u. For BLMP Eq. (16) we get 
nonexistence of global weak solution below the critical exponent .q0 = N+3

N+2 . 
It remains to discuss the critical case. In (18) or (19) we have an exponent equal 

zero and a constant that does not depend on R, that is . L#
R and .N#

R are uniformly 
bounded from above. We may only conclude that .u ∈ L

q
loc([0, T ) × R

N) and 

.∇x,ξ u ∈ L
2q
loc([0, T ) × R

N). From Lebesgue theorem this implies .I #
R → 0, so  

we can conclude the proof as before without using Young inequality. ⨅⨆
Remark 1 Taking .α = β = 0 in the proof of Theorem 4 we can deduce Theorem 2. 
Taking .u0 = 0 we can find the proof of Theorem 1 for the particular shape of 
.L = ∂tP1 + P2. Concerning Theorem 3 all the ingredients are similar to BLMP 
case, indeed after integration by parts .|u|2 instead of .|∇x,ξ u|2 appears and it is 
compensated by .|u|2q . The main difference is the lack of .S(∇ξ ) in the linear part of 
KdV equation so that the positivity of the initial data is necessary. 

4 Conclusion and Open Problems 

Clearly this paper is only a starting point for studying nonlinear perturbations of 
BLMP equations. Let us list some open questions. 

• With a different approach one can investigate the lifespan of the regular solutions 
of (16). 

• One could study a more general perturbation such as 

. (∂t + ∂3x )S(∇ξ )u = α(∂xuS(∇ξ )∂xu + ∂2xuS(∇ξ )u) + β1|u|q1 + β2|∇x,ξ u|q2

and the interaction between . q1 and . q2. 
• Similarly one can perturb generalized KdV equation: 

. (∂t + ∂3x )u = ∂x(|u|p) + β1|u|q1 + β2|u|q2

and investigate the interaction between p, . q1 and . q2.
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• One can change the quasilinear part in such a way that after integration by parts 
one has 

. 

ˆ
RN

(G1(∂xu, ∂xS(∇ξ )u) + G2(∂
2
xu, S(∇ξ )u)φ(x)ψ(ξ) dx dξ

≤
ˆ

|∇x,ξ u|pP (∂x, S(∇ξ ))(φ(x)ψ(ξ)) dx dξ

for some .p > 1 and linear operator P such that (14) holds. In BMLP case . p = 2
and .P = ∂x . We believe that this kind of property is related to the possibility 
to write an equation in a bilinear form. For BLMP this happens by means of 
Hirota’s differential operators. See for example [5]. 
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Part XI 
Wavelet Theory and Its Related Topics



Holomorphic Curves with Deficiencies 
and the Uniqueness Problem 

Yoshihiro Aihara 

Abstract In this note, we shall give an orverview of some results on holomorphic 
curves .f : C → Pn(C) with deficiencies. We first recall theorems on the structure 
of the set of deficient divisors and give some uniqueness theorems for holomorphic 
curves. We also discuss several methods for constructing holomorphic curves with 
deficiencies. 

1 Introduction 

The aim of this note is to give an overview of some results on holomorphic curves 
with deficiencies. Let M be a smooth complex algebraic variety and .L → M a very  
ample line bundle over M . We denote by . |L| the complete linear system of L. Let  
.f : C → M be a transcendental holomorphic curve. In [3], we gave the structure 
theorem for the set 

. Df = {D ∈ |L|; δf (D) > 0}

of deficient divisors of f . The existence of holomorphic curves . f : C → M

with .Df /= ∅ is a delicate matter. In the previous papers [1] and [2], we 
gave some uniqueness theorems for families of meromorphic maps . f : Cm →
M with deficiencies. We studied how the existence of deficient divisors affects 
the uniqueness problem of meromorphic mappings. We shall give some unicity 
theorems for holomorphic curves with deficient hyprersurfaces in the case where 
.M = Pn(C) (cf. [1]). We also consider methods for constructing holomorphic 
curves with deficiencies (cf. [3]). By making use of holomorphic curves of special 
exponential type, we shall construct holomorphic curves f of finite order with 
.Df /= ∅. In particular, the order . ρf of f is a non-negative integer. 
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2 Preliminaries 

We recall some known facts on Nevanlinna theory for holomorphic curves. For 
details, see [8] and [9]. In particular, for holomorphic line bundles and Chern 
classes, see the Section 1 of [8, Chapter 2]. 

Let z be the natural coordinate in . C, and set 

. Δ(r) = {z ∈ C; |z| < r} and C(r) = {z ∈ C; |z| = r}.

For a (1,1)-current . ϕ of order zero on . C we set 

. N(r, ϕ) =
ˆ r

1
〈ϕ, χΔ(t)〉 dt

t
,

where .χΔ(r) denotes the characteristic function of .Δ(r). 
Let E be an effective divisor on . C. We write .E = ∑

j kjpj , where . kj are positive 
integer and .pj ∈ C. For a positive integer l, we define by 

. Nl(r, E) =
ˆ r

1

∑

pj ∈Δ(t)

min{kj , l} dt

t

the l-truncated counting function of E. 
Let M be a compact complex manifold and let .L → M be a line bundle over M . 

We denote by .Γ (M, L) the space of all holomorphic sections of .L → M and by 
.|L| = P(Γ (M, L)) the complete linear system of L. Denote by .|| · || a hermitian 
fiber norm in L and by . ω its Chern form. Let .f : C → M be a holomorphic curve. 
We set 

. Tf (r, L) = N(r, f ∗ω)

and call it the characteristic function of f with respect to L. In the case where 
.M = Pn(C) and L is the hyperplane bundle .OPn(1), we always take the Fubini-
Study form . ωFS. We simply write .Tf (r) for .Tf (r,OPn(1)). We notice 

. Tf (r,OPn(d)) = dTf (r) + O(1).

for all positive integer d. If  

. lim inf
r→+∞

Tf (r, L)

log r
= +∞,

then f is said to be transcendental. We define the order . ρf of .f : C → M by 

.ρf = lim sup
r→+∞

log Tf (r, L)

log r
.
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We notice that the definition of . ρf is independent of a choice of positive line bundles 
.L → M . Let  .D = (σ ) ∈ |L| with .||σ || ≤ 1 on M . Assume that .f (C) is not 
contained in .Supp D. We define the proximity function of D by 

. mf (r, D) =
ˆ

C(r)

log

(
1

||σ(f (z))||
)

σ(z).

Here . σ is the invariant measure on .C(r) normalized so that .σ(C(1)) = 1. Then we 
have the following first main theorem for holomorphic curves .C → M . 

Theorem 1 (First Main Theorem) Let .L → M be a line bundle over M and 
.f : C → M a non-constant holomorphic curve. Then 

. Tf (r, L) = N(r, f ∗D) + mf (r, D) + O(1)

for .D ∈ |L| with .f (C) /⊆ Supp D, where .O(1) stands for a bounded term as 
.r → +∞. 

Let f and D be as above. We define Nevanlinna’s deficiency .δf (D) by 

. δf (D) = lim inf
r→+∞

mf (r, D)

Tf (r, L)
.

It is clear that .0 ≤ δf (D) ≤ 1. Then we have a defect function . δf defined on . |L|. 
If .δf (D) > 0, then D is called a deficient divisor in the sense of Nevanlinna. Let  
.D1, . . . , Dq be smooth hypersurfaces of degree d in .Pn(C). Set .Q = {1, . . . , q}. 
Definition 1 We say that .D1, . . . , Dq are in general position if 

. 
⋂

j∈R

SuppDj = ∅ for every subset R ⊆ Q with #R = n + 1.

In the case where .D1, . . . , Dq are hyperplanes, H. Cartan’s second main theorem 
is well known. Now, assume that .D1, . . . , Dq are hypersurfaces of .d ≥ 2. For  a  
positive real number s, we let  . ⎾s⏋ denote the least positive integer not less than s. 
The following inequality of second main theorem type is due to An and Phuong [5]. 

Theorem 2 (An–Phuong) Let .f : C → Pn(C) be an algebraically non-
degenerate holomorphic curve and let .D1, . . . , Dq be smooth hypersurfaces of 
degree d in general position in .Pn(C). For  .0 < ε < 1, set  . l = 2d⎾2n(n + 1)n(d +
1)ε−1⏋n. Then 

. (q − n − 1)Tf (r,OPn(d)) ≤
q∑

j=1

Nl(r, f
∗Dj) + εTf (r,OPn(d))

for all r except on .E ⊆ [1,∞) with finite Lebesgue measure.
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3 Deficiencies of the Base Loci of Linear Systems 

We shall define the deficiency of the base locus of a linear system. We recall some 
basic facts in value distribution theory for coherent ideal sheaves (cf. [9, Chapter 
2]). Let .f : C → M be a holomorphic curve and . I a coherent ideal sheaf of the 
structure sheaf .OM of M . Let  .U = {Uj } be a finite open covering of M with a 
partition of unity .{ηj } subordinate to . U . We can assume that there exist finitely 
many sections .σjk ∈ Γ (Uj , I ) such that every stalk . Ip over .p ∈ Uj is generated 
by germs .(σj1)p, . . . , (σjlj )p. Set 

. dI (p) =
⎛

⎝
∑

j

ηj (p)

lj∑

k=1

∣
∣σjk(p)

∣
∣2

⎞

⎠

1/2

.

We may assume that .dI (p) ≤ 1 for all .p ∈ M. Set 

. φI (p) = − log dI (p)

and call it the proximity potential for . I . It is easy to verify that .φI is well-defined 
up to addition by a bounded continuous function on M . We now define the proximity 
function .mf (r, I ) of f for . I , or equivalently, for the complex analytic subspace 
(may be non-reduced) 

. Y = (Supp (OM/I ), OM/I )

by 

. mf (r, I ) =
ˆ

C(r)

φI (f (z))σ (z),

provided that .f (C) is not contained in .Supp Y . For  .z0 ∈ f −1(Supp Y ), we can 
choose an open neighborhood U of . z0 and a positive integer . ν such that 

. f ∗I = ((z − z0)
ν) on U.

Then we see 

. log dI (f (z)) = ν log |z − z0| + hU(z) for z ∈ U,

where . hU is a .C∞-function on U . Thus we have the counting function . N(r, f ∗I )

as above. Moreover, we set 

.ωI ,f = −ddchU on U,
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where .dc = (
√−1/4π)(∂ −∂). We obtain a well-defined smooth .(1, 1)-form . ωI ,f

on . C. Define the characteristic function .Tf (r, I ) of f for . I by 

. Tf (r, I ) =
ˆ r

1

dt

t

ˆ
Δ(t)

ωI ,f .

We have the first main theorem in value distribution theory for coherent ideal 
sheaves: 

Theorem 3 (First Main Theorem) Let .f : C → M and . I be as above. Then 

. Tf (r, I ) = N(r, f ∗I ) + mf (r, I ) + O(1).

Let .L → M be an ample line bundle and .W ⊆ Γ (M, L) a linear subspace with 
.dimW ≥ 2. Set .Λ = P(W). The base locus .BsΛ of . Λ is defined by 

. BsΛ =
⋂

D∈Λ

SuppD.

We define a coherent ideal sheaf . I0 in the following way. For each .p ∈ M , the stalk 
.I0,p is generated by all germs .(σ )p for .σ ∈ W . Then . I0 defines the base locus of 
. Λ as a complex analytic subspace . BΛ, that is, 

. BΛ = (Supp (OM/I0), OM/I0).

Hence .BsΛ = Supp (OM/I0). We define the deficiency of . BΛ for f by 

. δf (BΛ) = lim inf
r→+∞

mf (r, I0)

Tf (r, L)
.

4 Structure Theorems for the Set of Deficient Divisors 

In this section, we shall summarize theorems on the structure of the set of deficient 
divisors of holomorphic curves. Let .L → M be an ample line bundle and . f : C →
M a transcendental holomorphic curve. Let .Λ ⊆ |L| be a linear system. We say that 
f is non-degenerate with respect to . Λ if .f (C) is not contained in .SuppD for all 
.D ∈ Λ. Set 

. Df = {D ∈ Λ; δf (D) > δf (BΛ)}.

We call . Df the set of deficient divisors in . Λ. 
By making use of the generalized Crofton’s formula due to R. Kobayashi ([9, 

Theorem 2.4.12]), we have the following proposition ([3, Proposition 4.1]).
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Proposition 1 Suppose that f is non-degenerate with respect to . Λ. Then the set 
. Df is a null set in the sense of the Lebesgue measure on . Λ. In particular . δf (D) =
δf (BΛ) for almost all .D ∈ Λ. 

Definition 2 If .ρf < +∞, then f is said to be of finite type. 

Then we have the structure theorem for the set . Df (see [3, §5]). 

Theorem 4 Suppose that f is of finite type and non-degenerate with respect to . Λ. 
Then the set .Df of deficient divisors is a union of at most countably many linear 
systems included in . Λ. Furthermore, the set .δf (Λ) of values of deficiency of f is 
an at most countable subset .{ei} of .[0, 1]. For each . ei , there are linear systems 
.Λ1(ei), . . . , Λs(ei) included in . Λ such that .ei = δf (BΛj (ei )) for .j = 1, . . . , s. 

By the above theorem, there exists a family .{Λj } of at most countably many 
linear systems in . Λ such that .Df = ⋃

j Λj . Define .Lf = {Λj } ∪ {Λ}. We call . Lf

the fundamental family of linear systems for f . 

Proposition 2 If .δf (D) > δf (BΛ) for a divisor D in . Λ, then there exists a linear 
system .Λ(D) ∈ Lf such that . δf (D) = δf (BΛ(D)).

5 Unicity Theorems for Holomorphic Curves 

In this section, we shall give unicity theorems for holomorphic curves f into .Pn(C). 
In particular, we show that the existence of deficient divisors gives a strong effect 
on the unicity of holomorphic curves. Let .D1, . . . , Dq be smooth hypersurfaces of 
degree d in general position in .Pn(C) and let .E1, . . . , Eq be divisors in . C with 
.SuppEi ∩ SuppEj = ∅ (i /= j). By making use of Theorem 2 with .ε = 1/2, 
Dulock and Ru [6] proved the uniqueness theorem as follows. 

Theorem 5 (Dulock–Ru) Let .f, g : C → Pn(C) be algebraically non-degenerate 
holomorphic curves. Suppose that .Supp f ∗Dj = Supp g∗Dj = SuppEj and . f =
g on .∪jSuppEj . Set .l0 = 2d(2n−1(n+1)n(d+1))n. If .q > (n+1)+(2ln/d)+(1/2), 
then f and g are identical. 

We first give a generalization of Theorem 5. For an effective divisor E on . C and 
a positive integer k, we denote by .Suppk E the union of all irreducible components 
of E with the multiplicities at most k. In what follows we fix a transcendental 
algebraically non-degenerate holomorphic curve .f0 : C → Pn(C). Let  . k1, . . . , kq

be positive integers and set .k0 = max{k1, . . . , kq}. Assume that 

. Suppkj
f ∗
0 Dj = SuppEj for all j = 1, . . . , q.

We denote by 

.F = F (f0; {kj }; (C, {Ej }), (Pn(C), {Dj }))
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the set of all algebraically non-degenerate transcendental holomorphic curves . f :
C → Pn(C) such that 

. Suppkj
f ∗Dj = SuppEj , j = 1, . . . , q.

and 

. f = f0 on
q⋃

j=1

SuppEj .

Let .l0 = 2d(2n−1(n + 1)n(d + 1))n and set 

. κ({Dj }, {Ej }; {kj }) = q − n − 2 −
q∑

j=1

l0

kj + 1
− 2l0k0

k0 + 1
.

We have the following unicity theorem for the family . F by Theorem 2 and methods 
similar to the argument in [1]. 

Theorem 6 If .κ({Dj }, {Ej }; {kj }) > n + 1, then .F = {f0}. 
In the case where .κ({Dj }, {Ej }; {kj }) = n + 1, we have the following unicity 

theorem. 

Theorem 7 Suppose that .κ({Dj }, {Ej }; {kj }) = n + 1. If .δf0(Dj ) > 0 for at least 
one .Dj (1 ≤ j ≤ q), then .F = {f0}. 
Remark 1 In the proofs of Theorems 6 and 7, we essentially use that the canonical 
bundle of .Pn(C) is .OPn(−(n + 1)). 

6 Methods for Constructing Holomorphic Curves with 
Deficiencies 

In this section, we consider the case where .M = Pn(C) and .L = OPn(d) for a 
positive integer d. The existence of .f : C → Pn(C) with .Df /= ∅ is a delicate 
matter. In fact, Mori [7] showed that a family 

. {f ∈ Hol(C,Pn(C)); δf (H) = 0 for all H ∈ |OPn(1)|}

of holomprphic curves is dense in .Hol(C,Pn(C)) with respect to a certain kind 
of topology. However, for any .Λ ⊆ |OPn(d)|, there exists an algebraically non-
degenerate holomorphic curve .f : C → Pn(C) with .Df /= ∅. In fact, we have the 
following theorem ([4, Theorem 3.2]).



680 Y. Aihara

Theorem 8 (Aihara–Mori) Let .D ∈ |OPn(d)|. There exists a constant .λ(D) with 
.0 < λ(D) ≤ d depending only on D that satisfies the following property. : Let . α be 
a positive real constant such that 

. 0 < α ≤ λ(D)

d
.

Then there exists an algebraically non-degenerate transcendental holomorphic 
curve .f : C → Pn(C) such that . δf (D) = α.

Remark 2 Let f be as in Theorem 8. By making use of Theorem 4 and the proof of 
Theorem 8 ([4, pp. 239–244]), we can show that the set .δf (Λ) of values of . δf is a 
finite set for all .Λ ⊆ |OPn(d)|. 

The proof of the above theorem is based on G. Valiron’s theorem on entire 
functions of order zero. Hence the resulting holomorphic curves are of order zero. 
Let . ρ is a positive integer. We can construct holomorphic curves . f : C → Pn(C)

with .Df /= ∅ and .ρf = ρ by another way. 
We recall some basic results on holomorphic curves of special exponential type 

in .Pn(C). For details, see [10]. Let . λ be a positive integer and denote by . Z+ the set 
of positive integers. We let . Eλ denote the ring of holomorphic functions of the form 

. g =
k∑

j=1

φj (z) expPj (z),

where . Pj are polynomials on . C of degree at most . λ and .φj (z) are meromorphic 
functions on . C such that 

. Tφj
(r) = o(rλ).

We note that .g ∈ Eλ must be holomorphic, although the . φj may be meromorphic. 
For example, a holomorphic function 

. g(z) = 1

z
exp zλ − 1

z
exp 0

is contained in . Eλ. Hence .Eλ /= ∅ for all .λ ∈ Z+. Set 

. E n+1
λ (C) = {(g0, . . . , gn); g0, . . . , gn ∈ Eλ}.

Definition 3 A holomorphic curve .f : C → Pn(C) is called a special exponential 
curve of order . λ if f has a reduced representation . f̃ in .E n+1

λ (C) and the order . ρf

of f is . λ. In particular, a holomoprphic curve .f : C → Pn(C) defined by 

. f̃ = (exp a0z
λ, . . . , exp anz

λ) (a1, . . . , an ∈ C)

is called a simple exponential curve of order . λ.
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We let . Sλ denote the set of special exponential curves of order . λ and set 

. S =
⋃

λ∈Z+
Sλ.

We shall compute the characteristic function .Tf (r) of a holomorphic curve f 
in . Sλ. In general, it is difficult to compute .Tf (r). We consider the case where 
holomorphic curves .f : C → Pn(C) defined by 

. f̃ (z) = (expP0(z), . . . , expPn(z)),

where . Pj are polynomials of degree . λ. We regard the polynomial 0 as a polynomial 
of degree . λ. Hence 0 may be contained in . P . Let  .P = {P0, . . . , Pn} be a 
finite collection of all polynomials. For a set .A ⊆ C, we let  .C (A) denote the 
circumference of the convex hul l . Â of A. Then Shiffman ([10]) proved the following 
lemma. 

Lemma 1 Set 

. K(P) =
ˆ

C(1)
C (P(z))σ (z),

where .P(z) = {Pj (z);Pj ∈ P}. Then 

. Tf (r) = K(P)rλ + O(1).

For a simple exponential curve f defined by 

. f̃ (z) = (exp a0z
λ, . . . , exp anz

λ),

we can give .Tf (r) explicitly. We denote by . Cf the circumference of the convex 
polygon spanned by the set .{a0, . . . , an}. If the convex polygon reduces to the 
segment with the end points with . aj and . ak , then we see .Cf = 2|aj − ak|. Then we 
have, 

. Tf (r) = Cf

2π
rλ + O(1).

We first assume .d = 1. Let  H be a hyperplane in .Pn(C) defined by 

. 

n∑

j=0

αj ζj = 0 (α0, . . . , αn ∈ C),

where .ζ = (ζ0 : . . . : ζn) is a homogeneous coordinate system in .Pn(C). We define 
the set . JH of index by .JH = {j ; αj /= 0}. Let  .Cf (H) be the circumference of
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the convex polygon spanned by the set .{aj ; j ∈ JH }. Then we have the following 
lemma [3, Lemma 6.6]. 

Lemma 2 The deficiency of f for H is given by 

. δf (H) = 1 − Cf (H)

Cf

.

We notice that the constant .Cf (H) depends only on f and . JH . 
Next, we consider the case where .d ≥ 2. Let  .vd : Pn(C) → Pm(C) be the 

Veronese map of degree d , where .m = (
n+d
d

) − 1. Set .h = vd ◦ f .Then the 
holomorphic curve 

. h : C → Pm(C)

is also a simple exponential curve of order . λ. Set .W = vd(Pn(C)). Then W is a 
smooth subvariety of .Pm(C). For a hypersurface D of degree d in .Pm(C), the image 
.vd(D) is .W ∩ H for a hyperplane H in .Pm(C). Hence the method in the proof 
of Lemma 2 works for the case where .d ≥ 2. By making use of Theorem 4 and 
Lemma 2, we have the following theorem. 

Theorem 9 Let .Λ ⊆ |OPn(d)| and let . λ be a positive integer. Then there is a 
transcendental holomorphic curve .f : C → Pn(C) that is non-degenerate with 
respect to . Λ and .ρf = λ such that the set .δf (Λ) of values of . δf is a finite set 
.{e1, . . . , et } with .0 < ej ≤ 1. Furthermore, there are finitely many linear systems 
.{Λ1, . . . , Λt } such that 

. Df =
t⋃

j=1

Λj and δf (D) = ej for all D ∈ Λj \ (
⋃

k /=j

Λk).

In Theorem 9, the  set  .δf (Λ) is finite. It is a very difficult problem to construct a 
holomorphic curve f such that .δf (Λ) is an infinite set. 
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On Some Topics Related to the Gabor 
Wavelet Transform 

Keiko Fujita 

Abstract We have studied the Gabor wavelet transform, the windowed Fourier 
transform and the Fourier transform of analytic functional on the sphere. In the case 
of the sphere, the space of the square integrable functions on the sphere is a subspace 
of the space of analytic functionals. In this note, we will review our previous results 
and consider the relationship between the Gabor wavelet transform and the Fourier 
transform. 

1 Introduction 

For .z = (z1, z2, · · · , zn+1) ∈ Cn+1 and .w = (w1, w2, · · · , wn+1) ∈ Cn+1, we set  

. z · w = z1w1 + · · · + zn+1wn+1, z2 = z · z, ‖z‖2 = z · z.

Let f be an integrable function on .Rn+1. The Fourier transform of f is defined by 

. 

ˆ
Rn+1

e−ix·ωf (x)dx,

and the windowed Fourier transform with respect to the window function . w is 
defined by 

. 

ˆ
Rn+1

w(x − y)e−ix·ωf (x)dx.

Let .ω0 ∈ Cn+1 \ {0} be fixed. Put 

. Gω0(x) = e−x2/2e−ix·ω0 .
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For .a ∈ R+ = {x : x > 0}, the Gabor wavelet transform of f is defined by 

. 
1

a

ˆ
Rn+1

Gω0

(
x − τ

a

)
f (x)dx.

In this note, we will treat the Gabor wavelet transform on the unit sphere . Sn in 
.Rn+1; that is, 

. Sn = {(x1, x2, · · · , xn+1) ∈ Rn+1; x2 = 1}.

In Sect. 2, we will see the relationship between the Fourier transform and the 
Gabor wavelet transform of f . In Sect. 3, we will see the expansion formula of the 
Gabor wavelet transform of f . In Sect. 4, we remark on the inverse Gabor wavelet 
transformation. 

2 Gabor Wavelet Transformation on the Sphere 

In this section, first we will review the Fourier transformation on the sphere. 
Next, we will consider the windowed Fourier transformation on the sphere and 
consider the relationship between the the windowed Fourier transform and the 
Fourier transform. Then we will consider the Gabor wavelet transformation on the 
sphere and consider the relationship between the the Gabor wavelet transform and 
the Fourier transform. 

2.1 Fourier Transformation on the Sphere 

We denote by .dΩn+1(x) the non-normalized invariant measure on . Sn induced by the 
Lebesgue measure .dx = dx1dx2 · · · dxn+1 and by .Ωn+1 the volume of . Sn measured 
by this measure: 

. Ωn+1 = vol(Sn) =
ˆ

Sn

dΩn+1 = 2π(n+1)/2

Γ ((n + 1)/2)
,

where .Γ ( · ) is the Gamma function. 
For an integrable function f on . Sn, we define the Fourier transformation . F by 

.F : f �→ (Ff )(w) =
ˆ

Sn

e−ix·wf (x)dωn+1(x), (1) 

where .dωn+1 is the normalized invariant measure on . Sn: .dωn+1 = dΩn+1/Ωn+1.
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For the square integrable functions f and . g on . Sn, we define a sesquilinear form 
.(f, g)S2 by 

. (f, g)Sn ≡
ˆ

Sn

f (x)g(x)dωn+1(x).

Then .( · , · )Sn gives an inner product. We denote by .L2(Sn) the space of square 
integrable functions on . Sn with the inner product .(· , · )Sn , and the norm .‖ · ‖Sn of 
f is given by .‖f ‖Sn = √

(f, f )Sn . 

2.2 Windowed Fourier Transformation on the Sphere 

For .b > 0, put 

. fy(x) = exp

(
− (x − y)2

2b2

)
= exp

(
−x2 + y2 − 2x · y

2b2

)
, y ∈ Rn+1.

Then for .x /= y, .limb→0 fy(x) = 0 and .limb→±∞ fy(x) = 1. For  .x, y ∈ Sn, we  
have .1 − x · y ≥ 0 and 

. exp(−2/b2) ≤ fy(x) = exp(−(1 − x · y)/b2) ≤ 1. (2) 

We know 

. 

ˆ
Sn

exp(x · ζ )dωn+1(x) = j̃0

(
i

√
ζ 2

)
=

∞∑
l=0

Γ ((n + 1)/2)

l!Γ (l + (n + 1)/2)

(
ζ 2

4

)l

.

(See Sect. 3.) Therefore for .y ∈ Sn, we have  

. exp(−2/b2) ≤
ˆ

Sn

fy(x)dωn+1 = exp(−1/b2)j̃0
(
i/b2

)
≤ 1 (3) 

by (2). By (3), we have .exp(−t) ≤ j̃0(it) ≤ exp(t) for .t ∈ R. 
Let .b ∈ R \ {0} and put 

. wb(x) = exp(−x2/(2b2)).

Note that .Wb(x − τ) = fτ (x). For  .f ∈ L2(Sn) and .ω, τ ∈ Cn+1 \ {0}, we define 
the windowed Fourier transformation .WbF with the window function .wb(x) by 

.WbF : f �→ (WbFf )(τ, ω) =
ˆ

Sn

e−ix·ωwb(x − τ)f (x)dωn+1(x). (4)
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For .x ∈ Sn we have 

. e−ix·ωwb(x − τ) = e
−1−τ2

2b2 e
−ix· ω+iτ

b2 = e
−1−τ2

2b2 e−ix·ωex·τ/b2 .

Thus we have 

.(WbFf )(τ, ω) = e
− 1+τ2

2b2 (Ff )(ω + iτ/b2) = e
− 1+τ2

2b2 (Fg)(ω), (5) 

where we put .g(x) = ex·τ/b2f (x). Therefore, the windowed Fourier transform of 
.f ∈ L2(Sn) can be expressed by means of the Fourier transform of f . 

2.3 Gabor Wavelet Transformation on the Sphere 

For .f ∈ L2(Sn) and .a ∈ R+ = {x : x > 0}, similar to the case of .Rn+1, we define 
the Gabor wavelet transformation .Gω0 on . Sn by 

.Gω0 : f �→ (Gω0f )(τ, a) = 1

a

ˆ
Sn

Gω0

(
x − τ

a

)
f (x)dω(x). (6) 

For .x ∈ Sn we have 

. Gω0

(
x − τ

a

)
= 1

a
e
− 1+τ2

2a2 eiτ · ω0
a e

−ix·( ω0
a

+i τ

a2
) = 1

a
e
− 1+τ2

2a2 eiτ · ω0
a e−ix· ω0

a e
x·τ
a2 .

Thus we have 

.(Gω0f )(τ, a) = 1

a
e
− 1+τ2

2a2 eiτ · ω0
a (Ff )

(ω0

a
+ i

τ

a2

)
. (7) 

= 
1 

a 
e
− 1+τ2 

2a2 eiτ · ω0 
a (Fg)

(ω0 

a

)
, (8) 

where we put .g(x) = exp(x · τ/a2)f (x). 
By (5), (7) and (8), if we can construct the inverse mapping of the Fourier 

transformation, we can find the inverse mappings of the windowed Fourier transfor-
mation, and of the Gabor wavelet transformation. Since we constructed the inverse 
mapping of the Fourier transformation, we can construct the inverse mappings of 
the windowed Fourier transformation, and of the Gabor wavelet transformation.
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3 Expansion Formula of the Gabor Wavelet Transform 

In this section, first we will review some notation to consider the image of the Gabor 
wavelet transform. Next, we will review the expansion formula. 

3.1 Spherical Harmonics Expansion 

We will express the images of (1), (4) and (6) by means of the infinite sum of the 
Legendre polynomials and the Bessel polynomials. We recall some notations. 

Let .Pk,n(t) be the Legendre polynomial of degree k and of dimension .n + 1: 

. Pk,n(t) =
(−1

2

)2 Γ (n
2 )

Γ (k + n
2 )

(1 − t2)
2−n
2

dk

dtk
(1 − t2)k+ n−2

2 .

We define the extended Legendre polynomial by 

. Pk,n(z,w) = (
√

z2)k(
√

w2)kPk,n

(
z√
z2

· w√
w2

)
, z, w ∈ Cn+1.

Then .Pk,n(z,w) is a homogeneous harmonic polynomial of degree k in z and 
in w. That is, .Pk,n(z,w) = Pk,n(w, z) and . ΔzPk,n(z,w) ≡ ( ∂2

∂z21
+ · · · +

∂2

∂z2n+1
)Pk,n(z, w) = 0. We denote by .N(k, n) the dimension of the space of 

homogeneous harmonic polynomials of degree k. We know 

. N(k, n) = (2k + n − 1)(k + n − 2)!
k!(n − 1)! .

By the orthogonality of the Legendre polynomials, we have 

.N(k, n)

ˆ
Sn

Pk,n(x, z)Pl,n(x,w)dωn+1(x) = δklPk,n(z, w) . (9) 

For .ν /= −1,−2, · · · , let  

.Jν(t) =
(

t

2

)ν ∞∑
l=0

1

l!Γ (ν + l + 1)

(
it

2

)2l
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be the Bessel function of order . ν. We put 

. j̃k(t) = Γ (k + n + 1

2
)

(
t

2

)−(k+ n−1
2 )

J
k+ n−1

2
(t) =

∞∑
l=0

Γ (k + (n + 1)/2)

l!Γ (k + l + (n + 1)/2)

(
it

2

)2l

.

Note that .j̃k(0) = 1 and .j̃k(−t) = j̃k(t). (See Lemma 5.13 in [6]). 
By using the extended Legendre polynomials and the modified Bessel functions, 

the exponential function is represented as follows; 

. exp(z · w) =
∞∑

k=0

Γ (n+1
2 )N(k, n)

2kΓ (k + n+1
2 )

j̃k(i
√

z2
√

w2)Pk,n(z, w). (10) 

Therefore, by (9) and (10), for .η, ζ ∈ Cn+1, we have  

. 

ˆ
Sn

exp(ix · η) exp(x · ζ )dωn+1(x)

=
∞∑

k=0

(Γ ((n + 1)/2))2N(k, n)

22kΓ (k + n+1
2 )2

j̃k

(√
η2

)
j̃k

(
i

√
ζ 2

)
Pk,n(η, ζ ).

On the other hands, 

. 

ˆ
Sn

exp(ix · η) exp(x · ζ )dωn+1(x) =
ˆ

Sn

exp(x · (iη + ζ )) dωn+1(x)

= j̃0

(
i

√
(ζ + iη)2

)

=
∞∑
l=0

Γ ((n + 1)/2)

l!Γ (l + (n + 1)/2)

(
(ζ + iη)2

4

)l

=
∞∑
l=0

Γ ((n + 1)/2)

l!Γ (l + (n + 1)/2)

(
ζ 2 − η2 + 2iζ · η

4

)l

.

For this calculation see [4] and [6], for example.
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3.2 Expansion Formula 

For .f ∈ L2(Sn), define 

. fk(z) = N(k, n)

ˆ
Sn

f (y)Pk,n(z, y)dωn+1(y), z ∈ Cn+1.

Note that .Δzfk(z) = 0. For .x ∈ Sn we have 

. f (x) =
∞∑

k=0

fk(x),

in the sense of .L2(Sn). We remark that the infinite sum of the right hand side is a 
complex harmonic function and converges in the Lie ball 

. B̃ =
{

z ∈ Cn+1 :
√

‖z‖2 +
√

‖z‖4 − |z2|2 < 1

}
.

(See [6], for example.) Further we remark that 

. 

∞∑
k=0

N(k, n)Pk,n(z,w) = 1 − z2w2

(1 − 2z · w + z2w2)(n+1)/2

is the Poisson kernel. 
We consider the images of .fz(x) = Pk,n(x, z), z ∈ Cn+1 under the Fourier 

transformation, the windowed Fourier transformation and the Gabor wavelet trans-
formation. Note that .Pk,n(z,w) = Pk,n(z,w). We recall .Pk,n(z,w) = Pk,n(w, z). 
By (9) and (10), we have 

. (Ffz)(ω) =
ˆ

Sn

∞∑
l=0

Γ ((n + 1)/2)N(l, n)

2lΓ (l + n+1
2 )

j̃l(i
√

ω2)Pl,n(x, ω), Pk,n(x, z)dω(x)

= Ckj̃k(i
√

ω2)Pk,n(ω, z).

where we put .Ck = Γ ((n+ 1)/2)/(2kΓ (k + (n+ 1)/2)). Thus for .f ∈ L2(Sn), we  
have 

.(Ff )(ω) =
∞∑

k=0

Ckj̃k(i
√

ω2)fk(ω).
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Therefore for .f ∈ L2(Sn), we have  

. (WbFf )(τ, ω) = e
− 1+τ2

2b2

∞∑
k=0

Ckj̃k

(
i

√
(ω + i

τ

b2
)2

)
fk

(
ω + i

τ

b2

)
,

(Gω0f )(τ, a) = e
− 1+τ2

2a2 eiτ · ω0
a

a

∞∑
k=0

Ckj̃k

(
i

√
(
ω0

a
+ i

τ

a2
)2

)
fk

(ω0

a
+ i

τ

a2

)
.

4 Inverse Gabor Wavelet Transformation 

In this section, to consider the inverse Gabor transformation on the sphere, we will 
consider the inverse Fourier transformation. 

In [2], [4] and [5], we treated the inverse Gabor wavelet transformation on . S2. 
For .z,w ∈ Cn+1, put 

. E(z,w) =
∞∑

k=0

1

2kk!j̃k(i
√

z2
√

w2)
Pk,n(z, w).

For .0 < s < ∞, let  

. Kν(s) = K−ν(s) =
ˆ ∞

0
exp(−s cosh t) cosh νtdt,

be the modified Bessel function. Put 

. ρr(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(n−1)/2∑
l=0

alr
l+n+1sl+1Kk(rs), n is odd,

n/2∑
l=0

alr
l+n+1/2sl+1Kl−1/2(rs), n is even,

where the constants . al are defined by 

. 

ˆ ∞

0
s2l+n−1ρn(s)ds = N(l, n)l!Γ (l + (n + 1)/2)22k

Γ ((n + 1)/2)
, l = 0, 1, 2, · · · .

In [1] we define a measure . dμ on .Rn+1 by 

.

ˆ
Rn+1

f (x)dμ(x) =
ˆ ∞

0

ˆ
Sn

f (sω)dωn+1(ω)sn−1ρ(s)ds.
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For .z ∈ Sn, the mapping 

.F �→
ˆ
Rn+1

F(x)E(z, x)dμ(x) =
ˆ
Rn+1

F(x)E(z, x)dμ(x) (11) 

gives the inverse mapping of the Fourier transformation defined by (1). 
By (5), (7) and (8), the inverse mapping of the Windowed Fourier transformation 

(4) and the inverse mapping of the Gabor wavelet transformation (6) can be 
constructed by using (11). 
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On the Diameters and Radii of the 
Extended Sierpiński Graphs 

Mai Fujita and Yoshiroh Machigashira 

Abstract In this paper, the diameters and radii of the extended Sierpiński Graphs 
are discussed. 

1 Introduction 

Let G be a simple connected graph. We denote by .V (G) and .E(G) its vertex set 
and edge set, respectively. For any u and v in . V (G), the  distance .dG(u, v) between 
u and v, briefly .d(u, v), denotes the number of edges of a shortest path joining u 
with v. For a fixed .v ∈ V (G), we call the distance from v to the farthest vertex (or 
the vertices) the eccentricity of the vertex v and denote by .eG(v), namely, 

. eG(v) = max
u∈V (G)

dG(u, v).

We define the diameter and radius of G by 

. diam(G) = max
v ∈V (G)

eG(v) = max
u,v ∈V (G)

dG(u, v),

rad(G) = min
v ∈V (G)

eG(v),

respectively. 
In [1], the Sierpiński Graphs were introduced. Let .n, k ∈ N. We define the 

Sierpiński Graphs .S(n, k) as follows. 

. V
(
S(n, k)

) = {1, 2, · · · , k}n.
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Instead of .v ∈ V (S(n, k)) and .v = (v1, v2, · · · , vn), we simply write . v ∈ S(n, k)

and .v = v1v2 · · · vn, respectively. Two different vertices .u = u1u2 · · · un and . v =
v1v2 · · · vn are adjacent if and only if there exists .𝓁 ∈ {1, 2, · · · , n} such that 

. 

⎧
⎪⎪⎨

⎪⎪⎩

uj = vj

(
j ∈ {1, · · · , 𝓁 − 1}),

u𝓁 /= v𝓁,

uj = v𝓁 and u𝓁 = vj

(
j ∈ {𝓁 + 1, · · · , n}).

In [2], the diameters and radii of the Sierpiński Graphs were obtained. 

Theorem 1 ([2, Corollary 2.2, Theorem 3.1]) Let .n, k ∈ N. Then 

.diam (S(n, k)) = 2n − 1, (1) 

rad (S(n, k)) =
{

2n − 1 (n < k), 
2n−1 + 2n−2 · · · +  2n−(k−1) (n ≥ k). 

We call a vertex of .S(n, k) of the form . in, .i ∈ {1, 2, · · · , k}, an extreme vertex of 
.S(n, k). Choosing . in and .v = v1v2 · · · vn satisfying .vj /= i for all .j ∈ {1, 2, · · · , k}, 
the diameter in .S(n, k) is attained. Especially, we can choose two different extreme 
vertices. Concerning about the radius, .n ≥ k, the eccentricities of vertices of the 
form .v = v1v2 · · · vk−1v

n−(k−1)
k satisfying .{v1, v2, · · · , vk} = {1, 2, · · · , k} attain 

the radius in .S(n, k) and the farthest vertices at that time are vertices . vn
k . 

In [3, 4], the extended Sierpiński Graphs .S+(n, k) and .S++(n, k) were intro-
duced. The first typed extended Sierpiński Graphs .S+(n, k) are defined by adding a 
new vertex s, called the special vertex of .S+(n, k), and all edges connecting s and 
all extreme vertices of .S(n, k), that is, 

. V
(
S+(n, k)

)
= V

(
S(n, k)

) ∪ {s},

E
(
S+(n, k)

)
= E

(
S(n, k)

) ∪ {
ei : i ∈ {1, 2, · · · , k}},

where . ei are the edges linking s and the extreme vertices . in. Also, we define the 
second typed extended Sierpiński Graphs .S++(n, k) as follows. 

. V
(
S++(n, k)

)
= V

(
S(n, k)

) ∪ V
(
S(n − 1, k)

)
,

E
(
S++(n, k)

)
= E

(
S(n, k)

) ∪ E
(
S(n − 1, k)

) ∪ {
ẽi : i ∈ {1, 2, · · · , k}},

where . ẽi are the edges connecting the extreme vertices .in ∈ S(n, k) and the extreme 
vertices .0in−1 ∈ S(n − 1, k), .v = 0v2 · · · vn denote vertices in .S(n − 1, k). In this  
paper, we investigate the diameters and radii of the first typed extended Sierpiński 
Graphs .S+(n, k). From now on, we treat the case .k ≥ 3.
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Theorem 2 Let .n, k ∈ N and .N0 = N ∪ {0}. Then 

.diam
(
S+(n, 3)

) =
{

(5 · 2n−1 − 1)/3 (n = 2m,m ∈ N),

(5 · 2n−1 − 2)/3 (n = 2m + 1,m ∈ N0),
. (2) 

diam
(
S+(n, k)

) = 2n − 1 (k ≥ 4), . (3) 

rad
(
S+(n, k)

) = 2n−1. (4) 

Note that the special vertex s is the unique vertex which attains the radius of 
.S+(n, k). This will be shown in the proof of (4). Also, we show the diameters and 
radii of the second typed extended Sierpiński Graphs .S++(n, k). 

Theorem 3 Let .n, k ∈ N. Then 

.diam
(
S++(n, k)

) = 2n − 1, . (5) 

rad
(
S++(n, k)

) = 2n−1 + 2n−2 + · · · +  2n−k (n ≥ k). (6) 

In the case .k = 3, for example, two vertices . 1n and .2322n−3 no longer attain the 
diameter in .S++(n, 3). 

2 Preliminaries 

In this section, we collect lemmas which will be used later on. 

Lemma 1 ([1, Lemma 4]) Let .n, k ∈ N, .v = v1v2 · · · vn ∈ S(n, k) and . i ∈
{1, 2, · · · , k}. Then 

.dS(n,k)(v, in) = 〈ρv1,i ρv2,i · · · ρvn,i〉2, (7) 

where 

. ρj,j ' :=
{

1 (j /= j '),
0 (j = j ')

and the right hand side of (7) is a binary number, that is to say, 

.〈a1a2 · · · an〉2 =
n∑

k=1

ak2n−k.
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Lemma 2 ([2, Corollary 2.2 (i)]) Let .n, k ∈ N, .n ≥ 2, . u = iu2 · · · un, v =
iv2 · · · vn ∈ S(n, k), where .i ∈ {1, 2, · · · , k}. Then 

. dS(n,k)(iu2 · · · un, iv2 · · · vn) = dS(n−1,k)(u2 · · · un, v2 · · · vn).

3 Proof of Theorem 2 

In this section, we prove Theorem 2. Firstly, we investigate (2). Let .u = u1u2 · · · un, 
.v = v1v2 · · · vn be arbitrary vertices of .S+(n, 3). We shall prove that . dS+(n,3)(u, v)

is less than or equal to the right hand side of (2). We distinguish two cases. 

Case 1: .u1 = v1. It is sufficient to find a path linking u and v satisfying its length 
is less than or equal to the right hand side of (2). It follows immediately from 
Lemma 2 and (1) that the direct path is the desired one. 

Case 2: .u1 /= v1. Without loss of generality, we may assume that .u1 = 1, .v1 = 2. 
Concerning paths connecting u and v, we can consider three cases. One is the 
direct path denoted by . P1, the second one is the path via the special vertex s 
denoted by . P2 and the third one is the path containing .13n−1 denoted by . P3. We  
denote by .L(P ) the length of the path P . By Lemmas 2 and 1, we see that 

. L(P1) + L(P2) + L(P3) = 5 · 2n−1,

where we have used the fact that .
∑k

i=1 dS(n,k)(v, in) = (k − 1)(2n − 1) for all 
vertices v of .S(n, k). Considering the remainder of dividing .5 · 2𝓁 by 3, .𝓁 ∈ N, 
it follows that at least one of .L(P1), .L(P2) and .L(P3), therefore, . dS+(n,3)(u, v)

is less than or equal to the right hand side of (2). Finally, we choose two vertices 
.(u, v) with the shortest paths connecting u and v as follows. 

. 

{
(u, v) = (131313 · · · 13, 231313 · · · 13) with P1, P3 (n = 2m,m ∈ N),

(u, v)= (131313 · · · 131, 231313 · · · 131) with P1 (n= 2m + 1,m ∈N0).

Thus, the diameters are attained and this completes the proof of (2). 

Secondly, we consider (3). For all vertices u and v of .S+(n, k), since 
.dS+(n,k)(u, v) denotes the number of edges of a shortest path in .S+(n, k), clearly 
we have 

. dS+(n,k)(u, v) ≤ dS(n,k)(u, v) ≤ 2n − 1.

Choosing two vertices .(u, v) = (12n−1, 34n−1) with the direct path, the diameter is 
attained and this proves (3).
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Thirdly, we show (4). We consider the eccentricities of vertices. Note that 

.eS+(n,k)(s) = 2n−1. (8) 

This is a consequence of the fact that the farthest vertices from s are the vertices 
.v = v1v2 · · · vn satisfying .vi /= v1 for all .i ∈ {2, · · · , n} with the path through . vn

1 . 
We shall prove that for all vertices v of .S+(n, k) except the special vertex s, 

. eS+(n,k)(v) > 2n−1.

Once this is proved, combining this and (8), we obtain the conclusion. Let . v =
v1v2 · · · vn be an arbitrary vertex of .S+(n, k) except the special vertex s. It is  
sufficient to show that there exists a vertex u such that 

. dS+(n,k)(u, v) > 2n−1,

where .dS+(n,k)(u, v) denotes the number of edges of a shortest path joining u with 
v in .S+(n, k). Without loss of generality, we may assume that .v1 = 1. We choose 
the vertices u depends on v as follows. 

. 

{
u = 23n−1 (v2 ∈ {1, 3, 4, · · · , k}),
u = 32n−1 (v2 = 2).

Therefore, we can check that lengths of all paths joining u with v are strictly greater 
than .2n−1. We end the proof of (4). 

4 Proof of Theorem 3 

In this section, we prove Theorem 3. Firstly, we investigate (5). For all vertices u 
and v of .S++(n, k), by the same reason for .S+(n, k), clearly we have 

. dS++(n,k)(u, v) ≤ 2n − 1.

Choosing two vertices .(u, v) = (12n−1, kn) with the direct path, the diameter is 
attained. This proves (5). 

Secondly, we consider (6). We shall prove that for all vertices v of . S++(n, k)

.eS++(n,k)(v) ≥ 2n−1 + 2n−2 + · · · + 2n−k. (9)
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Let .v = v1v2 · · · vn be an arbitrary vertex of .S++(n, k). It is sufficient to show that 
there exists a vertex u such that 

.dS++(n,k)(u, v) ≥ 2n−1 + 2n−2 + · · · + 2n−k. (10) 

To do this, we denote by .#(A) the number of elements of the set A. We choose 
the vertices u depending on v with several paths need to be mentioned as follows. 
Consequently, we can show that lengths of all paths linking u and v are greater than 
or equal to the right hand side of (10). 

The case for .v1 /= 0. Without loss of generality, we may assume that . v1 = 1. We  
distinguish several cases. 

Case 1: .# ({1, 2, · · · , k} \ {1, v2, · · · , vk}) ≥ 2. We can take . α /= β ∈
{1, 2, · · · , k} \ {1, v2, · · · , vk} and set .u = αβn−1. For the paths via .1jn−1, 
.j ∈ {1, 2, · · · , k} \ {α, β}, it is easy to see that their lengths are greater than or 
equal to . 2n and for the paths through .1jn−1, .j ∈ {α, β}, clearly we see that their 
lengths are greater than or equal to the right hand side of (10). 

Case 2: .# ({1, 2, · · · , k} \ {1, v2, · · · , vk}) = 1. We can take . α ∈ {1, 2, · · · , k} \
{1, v2, · · · , vk}. When .1 /∈ {v2, · · · , vk}, set .u = 0αn−1. For the paths containing 
.1jn−1, .j ∈ {2, · · · , k} \ {α}, it is easily checked that their lengths are strictly 
greater than . 2n. When .1 ∈ {v2, · · · , vk}, there only exists .𝓁 ∈ {2, · · · , k} such 
that .v𝓁 = 1. Set .u = α𝓁−1βαn−𝓁, where .β /= 1, .β /= α. Note that for the 
path through . 1n, .dS(n−1,k)(v2 · · · vn, 1n−1) contains . 2n−2 + 2n−3 + · · · + 2n−k

except .2n−𝓁 and .dS(n,k)(α
n, u) coincides .2n−𝓁. Moreover, for the paths via .1jn−1, 

.j ∈ {2, · · · , k}\{α}, .dS(n−1,k)(v2 · · · vn, j
n−1) contains . 2n−2+2n−3+· · ·+2n−k

except .2n−𝓁'
, where .𝓁' ∈ {2, · · · , k} \ {𝓁} is the unique number satisfies . v𝓁' = j

and .dS(n,k)(αjn−1, u) contains .2n−2 + 2n−3 + · · · + 2n−k except .2n−𝓁, where 
.𝓁 ∈ {2, · · · , k}. 

Case 3: .# ({1, 2, · · · , k} \ {1, v2, · · · , vk}) = 0. Set .u = 0u2 · · · un satisfying 
.ui /= 1 for all .i ∈ {2, · · · , n} and .uj /= vj for all .j ∈ {2, · · · , k}. It  
should be remarked that for the paths containing .1jn−1, .j ∈ {2, · · · , k}, 
there only exists .𝓁 ∈ {2, · · · , k} such that .v𝓁 = j and .u𝓁 /= j . Further-
more, .dS(n−1,k)(v2 · · · vn, j

n−1) contains .2n−2 + · · · + 2n−k except .2n−𝓁 and 
.dS(n−1,k)(j

n−1, u2 · · · un) contains .2n−𝓁. 

The case for .v1 = 0. We distinguish two cases. 

Case 1: .# ({1, 2, · · · , k} \ {v2, v3, · · · , vk}) ≥ 2. The proof of this case is similar 
to that of Case 1 for .v1 /= 0 and we omit it. 

Case 2: .# ({1, 2, · · · , k} \ {v2, v3, · · · , vk}) = 1. We can take . α ∈ {1, 2, · · · , k} \
{v2, v3, · · · , vk}. Set .u = αu2 · · · un satisfying .ui /= α for all . i ∈ {2, · · · , n}
and .uj /= vj for all .j ∈ {2, · · · , k}. When .1 /∈ {v2, · · · , vk}, this means .α = 1, 
the rest of the proof of this case is similar to that of Case 3 for .v1 /= 0. When 
.1 ∈ {v2, · · · , vk}, this means .α /= 1, the rest of the proof of this case is similar to 
that of Case 2 for .v1 /= 0.
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Finally, choosing the vertex .v = 012 · · · (k − 1)kn−k , it follows that . eS++(n,k)(v)

coincides the right hand side of (9), where the farthest vertex from v is . k(k − 1)n−1

with the paths via .0kn−1 and .0(k − 1)n−1. This completes the proof of (6). 

Acknowledgments The second author thanks Takuto Imai for useful discussion. 
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Some Inequalities for Parseval Frames 

Takeshi Mandai, Ryuichi Ashino, and Akira Morimoto 

Abstract Let .F = {fk}k∈K be a Parseval frame in a Hilbert space 
H , that is, .‖x‖2 = ∑

k∈K |〈x, fk〉|2 holds for all . x ∈ H . It is well  
known that if the norm .‖fk0‖ = 1, then .fk0 ⊥ fk for all .k /= k0. 
In general, we might expect that if .‖fk0‖ is close to 1, then the angles 
between other . fk’s are close to .π/2. We want to make it clear by some 
inequalities. In fact, we can prove several inequalities. The most typical one is 

. 
|〈fk, fl〉|

‖fk‖ · ‖fl‖ ≤
√

1 − ‖fk‖2

‖fk‖ ·
√

1 − ‖fl‖2

‖fl‖
for .k /= l. The meaning of the inequalities and some related topics will be given. 

1 Introduction 

Frame theory for Hilbert space, initiated by Duffin and Schaffer [4], has been widely 
used in various areas like signal analysis, especially wavelet theory [3, 5]. Parseval 
frames, also called normalized tight frames, generalize orthonormal bases. They 
have the same reconstruction formula as orthonormal bases [1, 2, 6]. 

We are interested in a configuration of vectors in a Parseval frame. We give 
several inequalities estimating the angle between two vectors in a Parseval frame 
by means of their norms, without proofs. The proofs will be given elsewhere. 
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2 Parseval Frames 

Let . H be a Hilbert space over .K = R or . C with inner product .〈·, ·〉 and norm . ‖·‖. 
Let K be an index set like .N,Z,N × Z and so on, and .F = (fk)k∈K be a sequence 
of .fk ∈ H . The cardinality of K is denoted by . |K|. A typical Hilbert space is 

. 𝓁2(L) :=
{

(cl)l∈L

∣
∣
∣ cl ∈ K,

∑

l∈L
|cl |2 < ∞

}

for an index set L with inner product .〈(cl), (dl)〉 = ∑
l∈L cldl and norm . ‖(cl)‖ =√∑

l∈L |cl |2. 

Definition 1 

(i) The sequence F is called a Bessel sequence for H , if there exists a constant 
.B > 0 such that 

. 
∑

k∈K

|〈f, fk〉|2 ≤ B ‖f ‖2 for every f ∈ H.

(ii) The sequence F is called a frame for H , if there exist two constants . A,B > 0
such that 

. A ‖f ‖2 ≤
∑

k∈K

|〈f, fk〉|2 ≤ B ‖f ‖2 for every f ∈ H.

(iii) The sequence F is called a Parseval frame, or  normalized tight frame, for  H , 
if 

. ‖f ‖2 =
∑

k∈K

|〈f, fk〉|2 for every f ∈ H. (1) 

An orthonormal basis is a Parseval frame, but there are many Parseval frames 
which are not orthogonal systems. 

Let F be a Bessel sequence for H . The  analysis operator of F is a bounded 
operator .R0 = R0[F ] : H → 𝓁2(K), defined by 

. R0f := (〈f, fk〉)k∈K ∈ 𝓁2(K) for f ∈ H.

The synthesis operator is .R∗
0 = R0[F ]∗ : 𝓁2(K) → H . We have  

.R∗
0(ck)k =

∑

k∈K

ckfk ∈ H for (ck)k∈K ∈ 𝓁2(K).
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The frame operator is .S = S[F ] = R0[F ]∗R0[F ] : H → H . We have  

. Sf =
∑

k∈K

〈f, fk〉fk ∈ H for f ∈ H.

Since 

.〈Sf, f 〉 =
∑

k∈K

|〈f, fk〉|2, (2) 

S is a non-negative definite self-adjoint operator. If F is a frame, S is positive-
definite. 

2.1 Important Properties 

We summarize some important properties of Parseval frames [1, 2, 6]. Let . F =
(fk)k∈H be a Parseval frame for H . 

1. The analysis operator .R0[F ] is an isometry, that is 

. ‖R0f ‖ = ‖f ‖ for every f ∈ H.

∑

k∈K

|〈f, fk〉|2 = ‖f ‖ for every f ∈ H.

An isometry preserves inner products as well. 

. 〈R0f,R0g〉 = 〈f, g〉 for every f, g ∈ H.

∑

k∈K

〈f, fk〉〈g, fk〉 = 〈f, g〉 for every f, g ∈ H.

2. We have a good reconstruction formula: 

. f =
∑

k∈K

〈f, fk〉fk for all f ∈ H.

In other words, .S[F ] = IdH . 
3. Let .H1(⊂ H) be a closed subspace of H , and .PH1 be the orthogonal projection 

onto . H1. Then, .PH1(F ) := (PH1(fk))k∈H is a Parseval frame for . H1. 
4. Every Parseval frame is an orthogonal projection of an orthonormal basis. That 

is, there exist a Hilbert space .H̃ ⊃ H and its orthonormal basis . E = (ek)k∈K

such that .fk = PH (ek).
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5. Let .H = 𝓁2(L) and .F = (fk)k∈K , .fk = (fk,l)l∈L ∈ 𝓁2(L). Then, 
.
(
(fk,l)k∈K

)
l∈L

is an orthonormal system of .𝓁2(K). That is, . 
∑

k∈K fk,l fk,l' =
δl,l' for .l, l' ∈ L, where .δl,l' is Kronecker’s delta. 

This is also a sufficient condition for F to be a Parseval frame. 
6. The sum of the squares of norms depends only on the dimension of H : 

.
∑

k∈K ‖fk‖2 = dim H . 
7. If .dim Span{f1, . . . , fs} = 1, then we can replace .f1, . . . , fs by . f∗ :=√∑s

j=1

∥
∥fj

∥
∥2

e, preserving that F is a Parseval frame, where . e ∈
Span{f1, . . . , fs}, .‖e‖ = 1. Here, .SpanV denotes the subspace spanned by 
the vectors in V . 

From a frame we can make a Parseval frame in the following manner. If F is a 
frame for H , then its frame operator .S = S[F ] is positive-definite, and . S−1/2F :=
(S−1/2fk)k∈K is a Parseval frame. In fact, by (2) we have 

.

∑

k

|〈f, S−1/2fk〉|2 =
∑

k

|〈S−1/2f, fk〉|2 = 〈SS−1/2f, S−1/2f 〉

= 〈f, f 〉 = ‖f ‖2 .

(3) 

In other words, if we replace the inner product .〈 , 〉 of H by new inner product 
.〈 , 〉S defined by 

. 〈f, g〉S := 〈S−1/2f, S−1/2g〉 = 〈S−1f, g〉,

then F is a Parseval frame for the new Hilbert space H equipped with this inner 
product .〈 , 〉S and the norm .‖f ‖S = √〈f, f 〉S = ∥

∥S−1/2f
∥
∥. In fact, by  (3) 

. 
∑

k∈K

|〈f, fk〉S |2 =
∑

k∈K

|〈S−1/2f, S−1/2fk〉|2 =
∥
∥
∥S−1/2f

∥
∥
∥

2 = ‖f ‖2
S .

2.2 Interesting Examples 

In this section, we give several interesting examples of Parseval frames. 

1. Let .Fj = (e
(j)
k )k∈Kj

be orthonormal bases (or Parseval frames) for H (.j ∈ J ) 

and .
∑

j∈J |aj |2 = 1. Then .
⋃

j∈J (aj e
(j)
k )k∈Kj

is a Parseval frame. Especially, if 
.|J | < ∞, then we can take .aj = 1/

√|J |. 
2. Let .(ek)k∈K be an orthonormal basis (or a Parseval frame) for .H̃ = L2(Ω0), 

where .Ω0 ⊂ R
n. If .Ω ⊂ Ω0, then .(ek|Ω)k∈K is a Parseval frame for .H = L2(Ω).
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Fig. 1 Mercedes Benz frame 

3. In . R2, let  

. f1 =
⎛

⎝
0√
2√
3

⎞

⎠ , f2 =

⎛

⎜
⎜
⎝

− 1√
2

− 1√
6

⎞

⎟
⎟
⎠ , f3 =

⎛

⎜
⎜
⎝

1√
2

− 1√
6

⎞

⎟
⎟
⎠ .

Then, .(f1, f2, f3) is a Parseval frame for .R2 (Fig. 1). This is called Mercedes 
Benz frame. 

4. As for wavelet frames, we have the following theorem. 
Let .α ∈ R, . α > 1. For .f ∈ L2(Rn), .j ∈ Z, . u ∈ R

n, set  

. fj,u(x) := (Dαj Tuf )(x) = αjn/2f (αjx − u).

Let L be a finite index set, and .p𝓁 > 0 (.𝓁 ∈ L). 

Theorem 1 Let . Q𝓁 be a cube in . Rn with the sides of length .
2π

p𝓁

(.𝓁 ∈ L). For  

.ψ𝓁 ∈ L2(Rn) (.𝓁 ∈ L), if  

. supp ψ̂𝓁 ⊂ Q𝓁, 𝓁 ∈ L,

∑

𝓁∈L

1

pn
𝓁

∑

j∈Z
|ψ̂𝓁(α−j ξ)|2 = 1 for 1 ≤ ξ ≤ α,

where .ψ̂(ξ) is a Fourier transform of . ψ , then .
(
ψ𝓁

j,kp𝓁

)

𝓁∈L;j∈Z,k∈Zn
is a Parseval 

frame for .L2(Rn).
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3 What Do We Want to Know? 

Let .F = (fk)k∈K be a Parseval frame. It is well known that if .
∥
∥fk0

∥
∥ = 1, then 

.fk ⊥ fk0 for all .k /= k0. Hence, we might expect: 

If .
∥
∥fk0

∥
∥ is “close” to 1, then the angle .θk,k0 is “close” to . 

π

2
, 

where .θk,k0 ∈ [0, π ] is determined by .cos θk,k0 = 𝔎〈fk, fk0〉
‖fk‖

∥
∥fk0

∥
∥

. 

Here, . 𝔎z denotes the real part of .z ∈ C. 
However, we can show that in case of .‖fk‖2 + ∥

∥fk0

∥
∥2 ≤ 1, the angle .θk,k0 can 

be arbitrary. 

Theorem 2 For every .θ ∈ [0, π ], and for every .(t, s) ∈ (0, 1)2 satisfying . t2 + s2 ≤
1, there exist a Parseval frame F for . R2, and .f1, f2 ∈ F such that 

. 
〈f1, f2〉

‖f1‖ ‖f2‖ = cos θ, ‖f1‖ = t, ‖f2‖ = s.

How about the case .‖fk‖2 + ∥
∥fk0

∥
∥2

> 1 ? From the definition of Parseval 
frame, we can easily show the following inequality. 

Proposition 1 Let .|K| ≥ 2 and .fk /= 0 for all .k ∈ K . If .k /= l, then 

.
|〈fk, fl〉|
‖fk‖ ‖fl‖ ≤

√

1 − ‖fk‖2

‖fl‖ . (4) 

In other words, if .‖fk‖2 + ‖fl‖2 > 1, then 

.
|〈fk, fl〉|
‖fk‖ ‖fl‖ ≤ min

⎧
⎨

⎩

√

1 − ‖fk‖2

‖fl‖ ,

√

1 − ‖fl‖2

‖fk‖

⎫
⎬

⎭
. (5) 

=
√

1 − max{‖fk‖ , ‖fl‖}2 

min{‖fk‖ , ‖fl‖} . (6) 

The equality in (5) holds, if 
(i) .fk ⊥ fj for all .j /= k, l, or (ii) .fl ⊥ fj for all .j /= k, l. 

Note that .

√

1 − ‖fk‖2

‖fl‖ < 1 if and only if .‖fk‖2 + ‖fl‖2 > 1. If the right hand 

side of (4) is greater than 1, the inequality is meaningless since it is weaker than the
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Fig. 2 Graph of . min

{

1,

√
1 − max{x, y}2

min{x, y}

}

Schwarz inequality. Similarly, .

√
1 − max{‖fk‖ , ‖fl‖}2

min{‖fk‖ , ‖fl‖} < 1 if and only if . ‖fk‖2 +
‖fl‖2 > 1. (See Fig. 2.) 

The equality in (6) follows from the following lemma. 

Lemma 1 If .x, y ∈ (0, 1] and .x2 + y2 > 1, then 

. min

{√
1 − x2

y
,

√
1 − y2

x

}

=
√

1 − max{x, y}2

min{x, y} . (7) 

Proof Since 

. 
1 − x2

y2 − 1 − y2

x2 = (y − x)(x + y)(x2 + y2 − 1)

x2y2 ,

if .x > 0, y > 0, x2 + y2 > 1, then 

. 
1 − x2

y2 ≤ 1 − y2

x2 ⇐⇒ y ≤ x.

Hence, if .y ≤ x, then the both sides of (7) are .

√
1 − x2

y
, and if .x ≤ y, then the both 

sides are .

√
1 − y2

x
. ⨅⨆
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The inequality (4) is obtained by dropping many terms of the equality (1), and the 
conditions (i) and (ii) for the equality seem too strong. For example, Mercedes Benz 

frame does not satisfy the equality, since .
1

2
<

1√
2

. We want stronger inequalities. 

4 Main Result 

In this section, we give a stronger inequality, which is best possible in the sense 
explained in the next section. 

Theorem 3 Let .F = (fk)k∈K be a Parseval frame. If .k /= l, then 

.|〈fk, fl〉| ≤
√

1 − ‖fk‖2
√

1 − ‖fl‖2, . (8) 

|〈fk, fl〉|
‖fk‖ ‖fl‖ ≤

√

1 − ‖fk‖2
√

1 − ‖fl‖2

‖fk‖ ‖fl‖ . (9) 

Mercedes Benz frame satisfies the equality .

(
1

2
= 1

2

)

. 

Note that the right-hand side .

√

1 − ‖fk‖2
√

1 − ‖fl‖2

‖fk‖ ‖fl‖ < 1 if and only if . ‖fk‖2+
‖fl‖2 > 1 (Fig. 3). 

Fig. 3 Graph of .min
{

1,

√
1 − x2

√
1 − y2

xy

}
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Fig. 4 Graph of . min

{

1,

√
1 − max{x, y}2

min{x, y}

}

− min

{

1,

√
1 − x2

√
1 − y2

xy

}

The inequality (9) is stronger than (5) if .‖fk‖2 + ‖fl‖2 > 1, since 

. 

√
1 − max{x, y}2

min{x, y} >

√
1 − x2

√
1 − y2

xy
⇐⇒ x2 + y2 > 1.

See Fig. 4. The maximum is . 
1

4
at .(x, y) = (

2√
5
,

2√
5
). 

The inequality (9) is quantitatively explaining the following. If .‖fk‖ is close to 

1, then .cos θk,l is close to 0, that is, .θk,l is close to . 
π

2
. 

Next, we consider when equality holds. The condition for the equality in (9) is 

. (E)(k,l) |〈fk, fl〉|2 = (1 − ‖fk‖2)(1 − ‖fl‖2).

Theorem 4 

(1) .(E)(k,l) for all .k /= l holds if and only if .codim Range R0[F ] ≤ 1, where 
.Range P is the range of a linear operator P , and .codim V is the codimension 
of a subspace V . 
Especially, if .dim H < ∞ and .|K| = dim H + 1, then the equality holds for all 
.k /= l. (The Mercedes Benz frame is an example.) 

(2) let .k /= l be fixed. 
(i) When .dim Span{fk, fl} = 1 (that is, .θk,l = 0 or . π ), 

.(E)(k,l) holds if and only if .fj ⊥ fk, fl for all .j /= k, l. 
(This implies .‖fk‖2 + ‖fl‖2 = 1.)
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(ii) When .dim Span{fk, fl} = 2, 
.(E)(k,l) holds if and only if .dim Span{PSpan{fk,fl}fj | j /= k, l} ≤ 1. 

5 Best Possibility 

Inequality (8) is the best inequality in the following sense. 

Theorem 5 Let .dim H ≥ 2. For every .f, g ∈ H satisfying 

. |〈f, g〉| ≤
√

1 − ‖f ‖2
√

1 − ‖g‖2,

there exists a Parseval frame .F = (fk)k∈K for H such that .f = fk, g = fl for 
some .k /= l ∈ K . 

6 Another Type of Inequality 

We have estimated the configuration by the angles or cosines of them. We can also 
consider the distance of two vectors. 

Let .F = (fk)k∈K be a Parseval frame for H . If .a ∈ K and .|a| = 1, then we can 
replace . fl by . afl preserving that F is a Parseval frame. We should consider . afl with 
.|a| = 1 is an “equivalent” vector to . fl . Note that 

. min
a∈K,|a|=1

‖fk − afl‖2 = ‖fk‖2 + ‖fl‖2 − 2|〈fk, fl〉|,

in general, since 

. ‖fk − afl‖2 = ‖fk‖2 + |a|2 ‖fl‖2 − a〈fk, fl〉 − a〈fk, fl〉
= ‖fk‖2 + ‖fl‖2 − 2𝔎a〈fk, fl〉
≥ ‖fk‖2 + ‖fl‖2 − 2|〈fk, fl〉|, (10) 

and the equality in (10) is attained if .a〈fk, fl〉 > 0. 

Theorem 6 Let .k /= l. For .a ∈ K with .|a| = 1, we have 

. ‖fk − afl‖2 ≥ ‖fk‖2 + ‖fl‖2 − 2
√

1 − ‖fk‖2
√

1 − ‖fl‖2.

If .‖fk‖ is close to 1, then the distance between . fk and . afl is close to .‖fk‖2 +‖fl‖2, 
which is the case when .fk ⊥ fl , which means . fk and . fl cannot be so “close” in a 
Parseval frame.
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Similarly, 

. min
a∈K

‖fk − afl‖2 = ‖fk‖2 ‖fl‖2 − |〈fk, fl〉|2
‖fl‖2

represents the distance between . fk and the line .Lfl
:= { afl | a ∈ K }. 

Theorem 7 Let .k /= l. For .a ∈ K, we have 

. ‖fk − afl‖2 ≥ ‖fk‖2 + ‖fl‖2 − 1

‖fl‖2 .

If .‖fk‖ is close to 1, then the distance between . fk and .Lfl
is close to 1, which means 

. fk and . fl cannot be so “close” in a Parseval frame. 
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p-Adic Time-Frequency Analysis 
and Its Properties 

Toshio Suzuki 

Abstract . Qp is the field of p-adic numbers defined by the completion of the field 
of rational numbers with respect to the p-adic norm. The p-adic number field 
.Qp was introduced by Kurt Hensel in 1897. The p-adic analysis, which is the 
mathematical analysis of functions defined on . Qp, has attracted attention in a variety 
of fields such as image processing and data compression. In this paper, we study the 
time-frequency analysis for complex valued functions on . Qp. Especially we will 
construct the p-adic Stockwell transform and see its properties. 

1 p-Adic Field Qp 

The p-adic number field . Qp was introduced by Kurt Hensel in 1897. The applica-
tions of p-adic numbers have attracting attention not only in mathematics [1, 2] but  
also in various other fields. The topology of . Qp is quite different from the one of 
the real numbers field . R. In this section, we see the properties of the p-adic number 
field. 

1.1 Definition of the p-Adic Field 

For a prime number p, the rational number .x( /= 0) can be represented as 

. x = pγ m

n
,
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where .γ = γ (x) ∈ Z and .m, n ∈ Z are not divisible by p. Then the p-adic norm is 
defined as 

. |x|p =
{
0 (x = 0),
p−γ (x /= 0).

Remark that the p-adic norm may take only countable set of values. The field of . Qp

is defined by the completion of the field of rational numbers . Q with respect to the 
p-adic norm .| · |p [9]. Ostrowski theorem gives us that every non-trivial norm on 
the set of rational numbers . Q is equivalent to either the usual real absolute value or 
a p-adic norm. Therefore, it is natural idea to think of a p-adic number field . Qp. 

The p-adic norm has the following properties: For .x, y ∈ Qp, 

1. .|x|p ≥ 0, |x|p = 0 ⇔ x = 0, 
2. .|xy|p = |x|p|y|p, 
3. .|x + y|p ≤ max{|x|p, |y|p} (Strong triangle inequality). 

Moreover, if .|x|p /= |y|p, the  p-adic norm satisfies .|x + y|p = max{|x|p, |y|p}. 
Since the p-adic norm satisfies the inequality 3, it is called non-Archimedean. 

1.2 The p-Adic Canonical Form 

Any p-adic number .x( /= 0) ∈ Qp such that .|x|p = p−γ (γ ∈ Z) can be represented 
as the canonical form 

. x = pγ
∞∑

j=0

xjp
j = pγ (x0 + x1p + x2p

2 + · · · )

where .0 ≤ xj ≤ p − 1 (0 ≤ j < ∞) and .x0 /= 0. This series converges in the 
sense of p-adic norm. For example, the following equation holds: 

. − 1 = (p − 1) + (p − 1)p + (p − 1)p2 + · · · .

By adding 1 to both sides, we can verify that this equation is valid. 
Using the canonical form, we can define the fractional part of the p-adic number. 

Let .x ∈ Qp have the canonical form .x = pγ (x0 + x1p + x2p
2 + · · · ). Then, the 

fractional part of x is defined as follows: 

.{x}p =
{
0 (γ ≥ 0 or x = 0),
pγ (x0 + x1p + x2p

2 + · · · + x−γ−1p
−γ−1) (γ < 0).
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1.3 The Topology of Qp 

Since the p-adic norm and the absolute value are different, the topology of . Qp is 
also different from the topology of . R. For  .a ∈ Qp, γ ∈ Z, we put the p-adic ball 
and the sphere as 

. Bγ (a) = {x ∈ Qp | |x − a|p ≤ pγ }, Sγ (a) = {x ∈ Qp | |x − a|p = pγ }.

Especially, when the center is at the origin, we write .Bγ = Bγ (0), Sγ = Sγ (0). The  
following properties are valid: 

1. .Bγ (a) = Bγ+1(a) \ Sγ+1(a). 
2. .Bγ (a) and .Sγ (a) are both open and closed set in . Qp. 
3. Any two balls in . Qp either disjoint or one is contained in another. 

4. .Qp =
⋃
γ∈Z

Bγ (a) =
⋃
γ∈Z

Sγ (a). 

. Qp can be represented as the union of the p-adic spheres. These properties give us 
that . Qp is a totally disconnected space. 

2 p-Adic Time-Frequency Analysis 

Since the topology of .Qp is different from the topology of . R, the  p-adic time-
frequency analysis is also different from the case on . R. 

2.1 p-Adic Calculus 

There exists a Haar measure dx on . Qp, which is positive, shift invariant . d(x +a) =
dx and normalized by .

´
B0

dx = 1. For f , which is mapping on . Qp we define the 
. Lq norm (.1 ≤ q < ∞) as  

. ‖f ‖Lq(Qp) =
(ˆ

Qp

|f (x)|qdx

)1/q

and the . Lq space is defined by 

.Lq(Qp) = {f : Qp → C |
ˆ
Qp

|f (x)|qdx < ∞}.
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If .q = 2, the . L2 space is a Hilbert space with the inner product 

. (f, g)L2(Qp) =
ˆ
Qp

f (x)g(x)dx,

for .f, g ∈ L2(Qp) where .g(x) is the complex conjugate of .g(x). 

2.2 p-Adic Fourier Transform 

We define the additive character of the field . Qp as .χp(x) = exp(2πi{x}p). Then 
the p-adic Fourier transform of .f ∈ L2(Qp) is defined by 

. Ff (ξ) = f̂ (ξ) =
ˆ
Qp

f (x)χp(ξx)dx (ξ ∈ Qp)

and its inverse by 

. F−1f (ξ) = f̌ (ξ) =
ˆ
Qp

f (x)χp(−ξx)dx (ξ ∈ Qp).

We can check that the p-adic Fourier transformation .f → f̂ is a linear isomorphism 
from .L2(Qp) onto .L2(Qp) and for any .f, g ∈ L2(Qp), 

. (f, g)L2(Qp) = (f̂ , ĝ)L2(Qp), ‖f ‖L2(Qp) = ‖f̂ ‖L2(Qp)

hold. On the other hand, the integration of the additive character on .Qp has the 
following property. See [6] for the proof. 

Proposition 1 For .γ ∈ Z, 

. λ (ξ, γ ) =
ˆ

Sγ

χp(ξx)dx =

⎧⎪⎨
⎪⎩

pγ
(
1 − 1

p

)
(|ξ |p ≤ p−γ ),

−pγ−1 (|ξ |p = p−γ+1),

0, (|ξ |p ≥ p−γ+2)

and more generally, 

.λ (ξ, γ ; k0, · · · , kl) =
ˆ

Sγ ,x0=k0,··· ,xl=kl

χp

(
|ξ |−1

p x
)

dx

=
{

χp

(
|ξ |−1

p p−γ
(
k0 + · · · + klp

l
))

pγ−l−1, if |ξ |p ≤ pγ−l−1,

0, if |ξ |p ≥ pγ−l .
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Moreover let .f ∈ L2(Qp) be a function which depends only on the value of .|x|p. 
Then, we have 

. 

ˆ
Qp

f (x)χp(ξx)dx =
∑
γ∈Z

f
(
pγ

) ˆ
Sγ

χp(|ξ |−1
p x)dx.

This proposition gives us that a Fourier transform of the function which depends 
only on the value of .|x|p is also a function which depends only on the value of . |ξ |p. 

2.3 p-Adic Time Frequency Analysis 

First, we see the definition of the p-adic windowed Fourier transform. See [6] for  the  
properties of the p-adic windowed Fourier transform and the proof of the following 
theorem. 

Definition 1 Let .g ∈ L1(Qp) ∩ L2(Qp). For  .f ∈ L2(Qp), the definition of the 
windowed (short-time) Fourier transform with the window function . g ∈ L1(Qp) ∩
L2(Qp) is as follows: 

.(Ggf )(b, ξ) = 1

‖g‖2
ˆ
Qp

f (x)g(x − b)χp(ξx)dx, b, ξ ∈ Qp. (1) 

Under some assumptions, the p-aidc windowed Fourier transform of a function can 
be represented as the sum of the values of the function. 

Theorem 1 Assume that .f, g ∈ L2(Qp) are functions which depend only on the 
value of .|x|p, then 

. 

(
Ggf

)
(b, ξ) = 1

‖g‖2
p−1∑
k=1

∑
γ>γb

f
(
p−γ

)
ḡ

(
pγ

)
λ(ξ, γ ; k)

+ ḡ
(|b|p

)
‖g‖2

p−1∑
k=1

∑
γ<γb

f
(
p−γ

)
λ(ξ, γ ; k)

+ f
(
p−γb

)
‖g‖2

∞∑
k=0

ḡ
(
pγq−k

)
[λ (ξ, γb; b0, · · · , bk−1)

−λ (ξ, γb; b0, · · · , qk)]

where the .γb = |b|p.
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Next, we see the definition of the p-adic wavelet transform. See [5] for  the  
properties of the p-adic wavelet transform and the proofs of the following Propo-
sition and Theorem. The (continuous) wavelet transform is an integral transform 
which provides a representation of a signal by the varing the translation and scale 
parameters of a wavelet [3]. 

Definition 2 If .ψ ∈ L1(Qp) ∩ L2(Qp) satisfies the admissible condition 

. cψ =
ˆ
Qp

|ψ̂(a)|2
|a|p da < ∞,

then we call . ψ a wavelet. Let .α ∈ R, .ψ ∈ L1(Qp) ∩ L2(Qp) be a wavelet. 
For .f ∈ L2(Qp), we define the p-adic (continuous) wavelet transform by 

. (Ωψf )(b, a) = 1√
cψ |a|αp

ˆ
Qp

f (x)ψ

(
x − b

a

)
dx.

Proposition 2 Let .ψ ∈ L2(Qp) satisfy the admissible condition. Then, for . f ∈
L2(Qp) and .α, β ∈ R such that .2α + β = 3, 

. f (x) = 1√
cψ

ˆ
Qp

da

|a|α+β
p

ˆ
Qp

(
Ωψf

)
(b, a)ψ

(
x − b

a

)
db.

Under some assumptions, the p-adic wavelet transform of a function can be also 
represented as the sum of the values of the function. 

Theorem 2 Assume that .f ∈ L2(Qp) depends only on the value of .|x|p, and . ψ is 
a wavelet. Then, 

. (Ωψf )(b, a) = 1√
cψ |a|αp

{ (
1 − 1

p

) ∑
γ>γb

f
(
p−γ

)
ψ

(|a|pp−γ
)
pγ

+
(
1 − 1

p

)
ψ

( |a|p
|b|p

) ∑
γ<γb

f
(
p−γ

)
pγ

+
(
1 − 1

p

)
|b|pf

(
|b|−1

p

) ∞∑
k=1

ψ

(∣∣∣a
b

∣∣∣
p

pk

)
p−k

+
(
1 − 2

p

)
|b|pf

(
|b|−1

p

)
ψ

(∣∣∣a
b

∣∣∣
p

)}

where . γb = |b|p
See [5] for the proofs.
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For .f ∈ L2(Qp), .a, b ∈ Qp, we define the translate, dilation, and modulation 
operators as 

. (Tbf )(x) = f (x + b)

(D1/af )(x) = 1

|a|α f
(x

a

)

(Mξf )(x) = χp(ξx)f (x)

Then, the p-adic windowed Fourier transform and the p-adic wavelet transform can 
be represented as follows: 

. (Ggf ) = (f,M−ξ T−bg)L2(Qp), (Ωϕf ) = (f, T−bD1/a
ϕ√
cψ

)L2(Qp).

2.4 p-Adic Stockwell Transform 

The Stockwell transform (S transform) was introduced by R. G. Stockwell (see [8]) 
for analyzing geophysics data. This transform is said that it is the hybrid transform 
of the windowed Fourier transform and the wavelet transform. There are a lot of 
studies of the Stockwell transform [4, 10]. 

First, we see the definition of the p-adic Stockwell transform. The following 
results are our previous results. See [7] for the proofs. 

Definition 3 Let .g ∈ L2(Qp) be a function with compact support. For . f ∈
L2(Qp), we define the Stockwell transform . Sg by 

. (Sgf )(b, ξ) = |ξ |p
ˆ
Qp

f (x)g (ξ(x − b))χp(xξ)dx.

We can find that the p-adic Stockwell transform contains the translation, dilation, 
and modulation factors. Especially, we can represent the p-adic Stockwell transform 
with the p-adic wavelet transform. 

Proposition 3 Let .ψ ∈ L2(Qp) be a wavelet and .ψ(x) = g(x)χp(−x). Then, for 
the wavelet transform . Ω and Stockwell transform S, the following relation has hold: 

. (Sgf )(b, ξ) = √
cψ |ξ |−α+1

p χp(bξ)(Ωψf )(b, 1/ξ).

The following theorem is the Parseval-Steklov type identity for the p-adic Stockwell 
transform.
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Theorem 3 Assume that .g ∈ L1(Qp) ∩ L2(Qp) satisfies .‖g‖L2(Qp) = 1 and 

. cg =
ˆ
Qp

|ĝ(ξ − 1)|2
|ξ |p dξ < ∞.

Then, for any .f, h ∈ L2(Qp), 

. (f, h)L2(Qp) = 1

cg

ˆ
Qp

ˆ
Qp

Sgf (b, ξ)Sgh(b, ξ)
dbdξ

|ξ |p .

Especially, if .f = h, we get 

. ‖f ‖L2(Qp) = 1√
cg

‖Sgf ‖L2(Q2
p/|ξ |p).

Similar to the case of the Stockwell transform for functions on real numbers, we can 
obtain the inversion formula of the p-adic Stockwell transform. 

Theorem 4 Let .g ∈ L2(Qp) satisfy .‖g‖L2(Qp) = 1 and 

. cg =
ˆ
Qp

|ĝ(ξ − 1)|2
|ξ |p dξ < ∞.

Then, for any .f ∈ L2(Qp), 

. f (x) = 1

cg

ˆ
Qp

ˆ
Qp

Sgf (b, ξ)g(ξ(x − b))χp(−bx)
dξdb

|ξ |p .

The Stockwell transform of a function which depends only on the value of .|x|p can 
be represented as the sum of the function like the windowed Fourier transform and 
the wavelet transform. 

Theorem 5 Let .f ∈ L2(Qp), .g ∈ L1(Qp) ∩ L2(Qp) be functions depend only on 
the value of .|x|p. Let .b, ξ ∈ Qp and .b = p−γb (b0 + b1p + b2p

2 + · · · ). Then, we 
have 

.
(
Sgf

)
(b, ξ) = |ξ |p

∑
γ>γb

f (pγ )g
(|ξ |ppγ

)
λ(ξ, γ )

+|ξ |pg(|ξ |pγb)
∑
γ<γb

f (pγ )λ(ξ, γ )

+|ξ |pf (pγb)

∞∑
k=0

g(|ξ |ppγb−k)

× (λ(ξ, γb; b0, . . . , bk−1) − λ(ξ, γb; b0, . . . , bk)) .
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