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Abstract. Massive Open Online Courses (MOOCs) are often plagued by a low
level of student engagement and retention, with many students dropping out
before completing the course. In an effort to improve student retention, educa-
tional researchers are increasingly turning to the latest Machine Learning (ML)
models to predict student learning outcomes, based on which instructors can pro-
vide timely support to at-risk students as the progression of a course. Though
achieving a high prediction accuracy, these models are often “black-box” mod-
els, making it difficult to gain instructional insights from their results, and accord-
ingly, designing meaningful and actionable interventions remains to be challeng-
ing in the context of MOOCs. To tackle this problem, we present an innovative
approach based on Hidden Markov Model (HMM). We devoted our efforts to
model students’ temporal interaction patterns in MOOCs in a transparent and
interpretable manner, with the aim of empowering instructors to gain insights
about actionable interventions in students’ next-step learning activities. Through
extensive evaluation on two large-scale MOOC datasets, we demonstrated that,
by gaining a temporally grounded understanding of students’ learning processes
using HMM, both the students’ current engagement state and potential future
state transitions could be learned, and based on which, an actionable next-step
intervention tailored to the student current engagement state could be formulated
to recommend to students. These findings have strong implications for real-world
adoption of HMM for promoting student engagement and preempting dropouts.
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1 Introduction

Over the last decade, the proliferation of MOOCs has provided millions of students
with unprecedented access to open educational resources. However, from their concep-
tion, MOOCs have attracted widespread criticism due to students’ limited interactions
with the course materials and high dropout rates [17]. Driven by this, an extensive body
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of research has developed accurate predictive models of student dropout [3,9]. Despite
achieving a high accuracy (around 90% AUC [17]) with increasingly more advanced
Machine Learning (ML) models, these models provide a limited understanding of the
underlying phenomenon, i.e., how a student disengages from the course which ulti-
mately leads to a dropout. In providing course instructors with relevant insights, on the
one hand, educational researchers have attempted to represent students’ interactions as a
set of “prototypical”, richly descriptive patterns of student activity [12,15], from which
a high-level description of students’ engagement with the course material may emerge
(e.g., “on-track”, “behind” or “disengaged” [12]). However, studies of this strand of
research often failed to provide actionable insights to instructors/students, i.e., how to
persist student in an on-track state, or how to prevent students from being disengaged.
On the other hand, researchers have foregone the understanding of student engagement
and have instead aimed to directly predict a future learning path towards successful
completion of a course [16,25]. Though achieving a high prediction accuracy (up-to
80%), these approaches relied on “black-box” models, making it difficult for instruc-
tors/students to embrace such suggestions as actionable. In an effort to bridge these two
disparate fields (i.e., understanding student engagement and providing actionable learn-
ing suggestions), and develop models that offer both interpretable insights as well as
actionable suggestions about improving student retention in the future, we posit that it is
essential to consider students’ engagement patterns as a non-static phenomenon which
may change with time, e.g., an “on-track” student may be demotivated and become less
engaged with the course materials [2]. By taking such temporal dynamics of engage-
ment (i.e., how students’ engagement evolves as the course progresses) into account,
meaningful future actions could be inferred directly based on the current engagement
state for improving student retention.

As such, we investigated the following Research Questions (RQs): RQ 1 – To
what extent can temporal engagement patterns be identified that are reflective of student
retention in MOOCs? RQ 2 – How can these patterns be used for promoting engage-
ment and preempting dropout? To address RQ 1, we took temporal dynamics into
account by utilising a fully transparent and interpretable model for analyzing sequen-
tial data (e.g., students’ interaction with different course materials over time), namely,
a Hidden Markov Model (HMM). The HMM consists of a set of latent states, which
represent discrete points in time, along with a transition matrix that governs the switch-
ing dynamics between them. So we may capture the underlying latent states behind
students’ interactions, and the potential future transitions between different states. To
address RQ 2, we further explored the use of HMM-identified patterns and transitions
as a basis to suggest next-step actionable learning activities to students (i.e., the learn-
ing material to be accessed at the next step) based on their current engagement states.
Through extensive evaluation on the two MOOCs datasets, we demonstrated that HMM
may capture not only richly descriptive patterns about student interactions (termed as
engagement patterns) in the hidden states, but also salient information regarding the
future engagement trend (e.g., whether a student may continue to engage with the
course). This indicates that HMMmay be a valuable tool for researchers and practition-
ers to understand the temporal dynamics of student engagement. Besides, in a simulated
dropout study, the HMM-suggested next-step learning activity is the only one that can
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achieve simultaneously a high contribution to student retention and a high probability
of being performed by a student given their current engagement state, compared to the
two other baselines, thereby providing strong motivation for future real-world evalua-
tion and adoption.

2 Related Work

Interpreting Interactions; Illuminating Engagement. While students’ engagement
may be opaque, the engagement state (i.e., the underlying state which drives how a stu-
dent interacts with course material) generally manifests itself as a mediating role in stu-
dents’ subsequent behaviour [3,15]. This behaviour is observable and may be directly
modeled [3,12,18,21]. For instance, Herskovits et al. [8] proposed that diverse interac-
tion patterns reflect high levels of engagement. To quantify this diversity, the authors
used principal component analysis at regular time intervals to project student’s interac-
tions along the top three principal components. These interactions were then clustered
into common trajectories. In a similar vein, Kizilcec et al. [12] adopted a simple but
effective k-means clustering approach and showed that high-level prototypical engage-
ment trajectories consistently emerged from three different computer science MOOCs.
Then, the later work of Coleman et al. [1] rejected the curation of rigidly defined fea-
ture sets and instead used Latent Dirichlet Allocation (LDA) to discover behavioural
patterns, or “topics”, directly from students’ interactions (in an unsupervised manner).
By representing students as a mixture of these latent types, students may be charac-
terised by a distribution over the set of course resources (termed as “use-cases”), e.g., a
shopping use case (where students only access the free components of the course) vs. a
disengaging use case (where students interaction gradually attenuated as the course pro-
gresses). The shortcoming of these prior approaches is that they treat student engage-
ment patterns mostly as a static phenomenon, where user activity is represented as a
“bag-of-interactions”, which ignores the temporal dependency that is inherent to the
data – a student may be, for example, actively engaged for the first week of a course,
before transitioning into a state of disengagement in the following weeks. We argue that
such a temporal factor could bring valuable insights about how and when a student first
started to disengage, which subsequently may inform relevant engagement strategies to
preempt their dropout.

Promoting Engagement; Preempting Dropout. While the combination of richly
descriptive models of students’ interactions with the improvement of learning outcomes
(e.g., dropout) has been largely overlooked by the literature, a number of fields come
close. For instance, the literature surrounding learning strategies (defined as “thoughts,
behaviours, beliefs, or emotions that facilitate the acquisition, understanding, or later
transfer of new knowledge and skills” [8]), identify common interaction patterns which
are associated with learning outcomes [4,11,13,14,20]. While these studies generally
found that students’ learning strategies/trajectories were associated with their learn-
ing outcome, they did not explicitly model this relationship, so were unable to evalu-
ate the extent to which different learning strategies are contributing to a dropout/non-
dropout of a student. In a different vein, researchers have forgone the notion of student
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engagement and instead, attempted to generate a learning path (i.e., the learning mate-
rials/resources a student accesses at the next step in order to achieve a certain learn-
ing outcome) directly from the latest black-box ML models. For instance, Mu at al.
[16] attempted to suggest learning resources based on a student’s past learning experi-
ence using a XGBoost coupled with an explainer model. So the past activity with the
highest feature importance (based on model explanation) and an undesirable learning
outcome were diagnosed as important actions to be performed by students. Similarly,
Zhou et al. [25] recommended learning resources based on students’ expected future
performance, which are predicted using a deep neural network-based model. Although
achieving a high accuracy (up-to 80%) at recommending the correct resources, these
approaches were limited from the perspective of a learner’s dynamic engagement state,
as the learning paths are separately modelled from how a student may actually inter-
act with the course material given their current engagement state (e.g., recommending
highly effective strategies to a “shopping” student who merely intended to browse the
free component of the course is considered pointless). Besides, black-box models lack
transparency and interpretability, which can make it challenging to gain educational
insights from the results of these models and subsequently limit actual adoption in
real-world educational scenarios. Driven by this, we adopted a fully transparent HMM
model to analyse student engagement dynamics, which we then use for informing an
engaging next-step learning activities based on a student’s current engagement state. To
our knowledge, our approach is the first to suggest actionable activities based on HMM.

3 Method

3.1 Dataset

To ensure a robust analysis on student engagement in MOOCs, we adopted twoMOOCs
datasets in the evaluation. The first dataset Big data in Education (denote as Big data)
was a course offered by Columbia University in 2013 and delivered on the Coursera
platform. In this course, students learned a variety of educational data-mining methods
and applied them to research questions related to the design and improvement of inter-
ventions within educational software and systems. The course material consisted of lec-
ture videos, formative in-video quizzes, and 8 weekly assignments. The second dataset
Code Yourself was offered by the University of Edinburgh in 2015 on the Coursera
platform. The course was designed to introduce teenagers to computer programming,
while also covering basic topics in software engineering and computational thinking.
The course materials consisted of lectures, videos, formative in-video quizzes, peer-
reviewed programming projects, and 5 weekly assignments. Although the two courses
had initial enrolments of over 45,000 and 59,900, respectively (as shown in the statis-
tics Table 1), a large proportion of these students did not actively participate, and only
18,222 and 26,514 accessed at least a single item in the course; we restrict our study
to these students. Of these active students, only 3,600 and 10,183 was active the entire
course, and only about 2% of all students have successfully completed the course. This
low completion rate can be attributed to a high rate of student attrition – common across
MOOC environments – which, although significantly attenuated after the first weekly
assignment, remained substantial throughout the course.
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Table 1. The descriptive statistics of the two MOOCs datasets used in this study. The fractions
within brackets indicate the percentage of No. enrolled.

Dataset Duration No. enrolled No. dropout No. active learners

At least once Entire course Completed

Big data 8 weeks 45,000 41,400 (92.00%) 18,222 (40.49%) 3,600 (8.00%) 638 (1.42%)

Code yourself 5 weeks 59,900 49,717 (83.00%) 26,514 (44.26%) 10,183 (17.00%) 1,591 (2.66%)

3.2 Modeling Student Engagement by HMM

Hidden Markov Model (HMM) is a well-established unsupervised machine learning
approach that helps to make inferences about the latent variables (i.e., hidden states)
through analyzing the observable actions [6,15]. Importantly, we opted for a variant
known as sticky HMM [6]. The “sticky” assumption in the Markov model is that once
a student has adopted a particular state, they persist in that state for as long as possible
until a new state is required to describe their actions. Not only does this assumption
represent many scenarios in real-world data, where states persist through time [6], but
it also helps combat the unrealistically rapid switching dynamics that are present in
models without this state-persistence bias [5]. The sticky HMM requires us to spec-
ify the number of states. However, to mitigate the impact this has on our model, we
place a non-parametric prior over the state space [6]. The implementation uses a weak-
limit approximation to the hierarchical Dirichlet process [24], which approximates the
unbounded state space by a truncated representation with τ states, where we specify
τ = 10 [15]. The prior places a diminishing probability mass on infrequent states and
thus focuses the majority of the probability mass on a relatively small number of major
states in the model. For brevity, we refer to the sticky HMM as an HMM in this paper.

RQ 1: Understanding student engagement. In our engagement analysis, we used stu-
dent interaction in MOOC as observable actions to model the student engagement state
as hidden states. As we were interested in the temporal relation of student interaction,
we represented students’ interactions on a weekly basis. Specifically, we created a 10
element vector. The first three elements of the vector represented whether the student
took actions for each type (i.e., assignment a, lecture l, quiz q) from the past week
(denote as ap, lp and qp respectively); the next three elements represented actions from
the current week; the next three elements represented actions from the future week; and
finally, the last element indicated whether the student interacted with any resources at
all during the current week (denote as o). Therefore, during each week, a student Gi

is represented by the 10 binary-element vector: Gi = [ap, lp, qp, ac, lc, qc, af , lf , qf , o].
By doing so, we can model temporal engagement and understand how a student engage-
ment from the perspective of their interaction with the past, current, and future weeks.

RQ 2: Recommending learning path. Based on the HMM-identified student engage-
ment states and their transitions, we further explored the use of these states and transi-
tions to suggest important actions to be performed in future weeks in order for students
to transition/persist in the engaging state. Specifically, at a given week w, based on a
student’s performed actions μw at w (e.g., accessing lecture slides from w − 1), we
identified a student’s current engagement state Sw by finding the state with the highest
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probability of emitting μ. Next, we utilised the state transition probability matrix T to
calculate a favorable state at next week Sw+1, where Sw+1 was the top-3 most likely
state to be transitioned from Sw and had the highest probability to persist in engaging
states (determined via a descriptive analysis shown in Sect. 4) in the following weeks.
To illustrate this, we present an example in Fig. 1: suppose Learner started a 5-week
course. After finishing week 1, based on their interactions with course material, we
identify their current engagement state 1 (i.e., the state with the highest probability of
emitting μ). The aim is to decide which state should Learner proceed to next in order
to maximize their chance of staying engaged with the course. Therefore, we identify the
top-3 most probable transitions from 1 based on T : 5 (which is on Path a), 3 (Path
b) and 2 (Path c) respectively. Since 5 is not an engaging state, we move on to Path b
(on the left side of Fig. 1). To calculate the total probability of staying engaged on Path
b (denote as Eb), we multiply all transition probabilities between engaging state pairs
step-wise on the path, e.g., the first step being 3 → 1 is determined by T ( 3 , 1 ).
Then Eb = T ( 3 , 1 )×T ( 1 , 2 )×T ( 2 , 3 ), similarly, the engaging probability of
Ec = T ( 2 , 3 ) × T ( 3 , 1 ) × T ( 1 , 2 ) (Path c shown on the right side of Fig. 1).
Lastly, the higher probability between the Eb and Ec is selected as the engaging path,
and learning activities are recommended based on activities with the highest emission
probability from the state of first step e.g., if Eb has a higher engaging probability, then
activities with the highest emission probability of state 3 are selected from the activity
vector as instruction to students. Since the student may still not behave as instructed,
we recalculate the path at each week to ensure the engaging path is up-to-date with the
student current engagement state.

Fig. 1. An example illustration of a recommended learning path.

Evaluation Approach. We assessed the effectiveness of HMM-recommended next-
step learning actions from the perspective of student dropout [3,9], i.e., by taking the
learning activity in the recommended path, how likely would a student dropout in the
following week. In line with previous studies [3,7], the dropout was a binary label and
is set to 1 if a student takes no further actions in the following weeks, and set to 0 oth-
erwise [3,17]. Given that the latest Deep Learning (DL) dropout predictor can achieve
a high prediction accuracy (around 90% AUC [17]), we utilise the predictive power by
building a LSTM model – one of the representative DL approaches widely adopted to
predict dropout in MOOCs [16,17,25]. We input students’ temporal activity representa-
tion (as detailed in Sect. 3.2) and their dropout labels to the LSTM model, which output
whether a student would dropout on a weekly basis. Importantly, for each week’s pre-
diction, we changed the last week’s activity to the HMM-recommended activity (i.e.,
assuming the student followed the recommendation) to assess the impact on a dropout
prediction. For instance, suppose we were assessing the impact of HMM-recommended
activity in week 3, the input to the LSTM model consisted of [μ1, μ2, μ3], we replaced
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μ3 with HMM-recommended activity resulting in [μ1, μ2, μ
′
3], and performed subse-

quent dropout prediction. Although we could simply compare the predicted dropout
label between the original [μ1, μ2, μ3] and HMM-suggested [μ1, μ2, μ

′
3], to understand

specific impact of μ′
3, we adopted a widely-used black-box explainer model LIME [19]

to examine the importance of μ′
3 towards a dropout/non-dropout prediction. Given that

LIME is more efficient than other black-box explainers (e.g., SHAP [23]), LIME can be
used to explain a large number of student instances in MOOCs. LIME produce a feature
importance score in the interval [−100, 100], where 100 indicates a high importance to
a dropout prediction, and −100 indicates high importance to a non-dropout prediction.
To demonstrate the effectiveness of our approach, we included in total three baseline
approaches, inspired from previous literature:

– Random samples from the learning activities of those who successfully completed
the course randomly as the recommended learning action to a learner.

– Diagnose Past Performance (DPP) [16] utilised a XGBoost model to
recommend missing learning activities from previous weeks that has the highest
contribution (measured in SHAPLEY value) to a dropout label.

– Future Performance Prediction (FPP) [25] utilised a LSTM model to
predict the optimal learning activities to be performed, which would result in the
lowest dropout probability based on a learner’s past activity.

3.3 Study Setup

Pre-processing. Given the goal of our study was to analyse student engagement with
the MOOCs, we restricted our study to students who accessed the course material at
least once, i.e., the At least once column in Table 1. In line with [15], the training
and testing results of HMM and LSTM models are reported based on the 5-fold cross-
validation. For all experiments, HMM and LSTM were trained using the same training
set, and we ensured that the testing set was not used in the training phase. Given the
high class imbalance ratio of dropout vs. non-dropout labels inherently in a MOOC
course, which may cause the LSTM to over-classify the majority class (i.e., dropouts),
we applied random under-sampling to ensure the training set of the LSTM model has
an equal distribution of dropout and non-dropout samples.

Model Implementation.We implement HMM by Python package bayesian-hmm1.
To train HMM, we used the Markov Chain Monte Carlo (MCMC) sampling estimation
with an iteration of 2000 steps. The LSTM model was implemented using the Python
package keras. In line with the prior dropout prediction literature [17], the model was
composed by two LSTM layers of size 32 and 64 and a Dense layer (with sigmoid
activation) with a hidden size of 1. During training, we used a batch size of 32 with
an Adam optimiser and set the learning rate and training epoch parameters to 0.001
and 20, respectively. Lastly, LIME was implemented using the Python LIME package2.
In response to the call for increased reproducibility in educational research [7], which
benefit practitioners, we open-source code used in this study3

1 https://pypi.org/project/bayesian-hmm/.
2 https://github.com/marcotcr/lime.
3 https://github.com/lsha49/hmm-engagement.

https://pypi.org/project/bayesian-hmm/
https://github.com/marcotcr/lime
https://github.com/lsha49/hmm-engagement
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Evaluation Metrics. Given that the feature importance of HMM-suggested activity
(to a non-dropout label) depends on the accuracy performance of the LSTM dropout
prediction, we adopted two commonly adopted accuracy metrics that are robust against
class imbalance: AUC and F1 scores.

4 Results

To investigate student engagement, we generated plots illustrating their parameters:
state and state transition. For the sake of brevity, these plots are only displayed for
the larger course under study (Big Data in Education). Although we observed similar
results across both MOOCs datasets.

Fig. 2. The HMM states and transition illustration of Big data in education.

RQ1: Understanding student engagement. To answer our first research question, we
generated plots illustrating the hidden states (Fig. 2a) and transitions between different
states (Fig. 2b) in Fig. 2. Among all states, students belonged to state 1–5 generally
tended to interact with the current week (denoted in blue) and the next week’s (in dark
blue) learning materials. As such, these states could also be given semantic labels in
keeping with those found in the literature – “on-track” [12]. By contrast, state 6–10
were characterised mostly by inactivity. For instance, state 9–10were mostly non-active
(i.e., no observation as denoted in grey), while state 7–8 were mostly only viewing lec-
tures, thus may be categorised as “disengaged”. Lastly, we noted that state 6 was more
active than state 9–10, and performed all the action types (as opposed to just viewing
lectures). However, students in state 6 tended to focus on past activities (denoted in light
blue), compared to activities in the current or future weeks, so we assign it a “behind”
label. It is important to note that, while some states appeared to have similar observable
patterns, e.g., between the on-track state 4 and state 5 or between the disengaged state 7
and state 8, their transitions may have been different, as detailed in Fig. 2b. For instance,
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while state 5 almost exclusively transitioned to another on-track state 1, state 4 may
have transitioned to a quite different on-track state 2 and a disengaged state 9, which
highlighted the importance of closely monitoring the state transitions beyond the static
patterns. Interestingly, students who were in a disengaged or behind state almost exclu-
sively kept transitioning to disengaged states. This indicated that, once students started
to disengage from the course material, they were unlikely to revert back to an engag-
ing state and complete the course, which corroborated with previous findings [2,22]. In
comparison, though the “on-track” state 1–5 in general, tended to transition to another
“on-track” state, they may have also transitioned to a disengaged state – especially state
2 and state 4 (except for state 5), indicating the importance of persisting students in an
engaging state despite that they are already engaging.

Table 2. The LIME feature importance score (denoted as Lscore) and transition probability
(denoted as Ppath) of the HMM-suggested path. The results in row Actual were calculated
by using students’ original activity. The signs ↑ and ↓ are used to indicate whether a higher (↑) or
lower (↓) value was more preferred in a metric.

Dataset Path week 2 week 3 week 4 week 5 week 6 week 7

↓ Lscore ↑ Ppath ↓ Lscore ↑ Ppath ↓ Lscore ↑ Ppath ↓ Lscore ↑ Ppath ↓ Lscore ↑ Ppath ↓ Lscore ↑ Ppath

Big data Actual 0.04 0.72% 0.11 0.82% 0.12 1.24% −0.03 1.33% −0.01 0.61% 0.01 1.18%

Random −0.93 0.01% −0.54 0.75% −2.76 1.69% −5.76 1.56% −0.03 1.23% 0.02 0.65%

DPP 1.02 0.02% −1.31 0.55% −2.24 0.46% 1.35 0.28% 0.01 0.42% −0.05 0.39%

FPP 5.89 0.06% −6.51 0.57% 0.74 0.47% −0.12 0.28% −0.31 0.45% 0.14 0.39%

HMM −1.25 1.18% −1.6 0.76% −4.59 2.22% −6.40 2.40% −0.07 1.88% 0.02 0.65%

Code yourself Actual −1.61 9.79% −2.30 2.29% 6.03 3.82% – – –

Random 4.66 4.51% −4.43 0.91% −2.36 0.81% – – –

DPP −5.43 10.17% 3.64 2.29% 3.65 3.82% – – –

FPP −10.28 2.68% −15.50 2.30% −2.22 3.82% – – –

HMM 2.85 6.25% −3.89 2.71% −2.64 2.29% – – –

RQ2: Promoting students onto engaging paths. Given the above findings, we fur-
ther explored whether the proposed HMM-based approach could be used to promote
student engagement and preempt dropout. To this end, we utilised HMM to generate
engaging paths and test the feature importance score of the path via a dropout predic-
tor (as detailed in Sect. 3.2). Given that the validity of this approach relied on using an
accurate dropout predictor, we first evaluated the accuracy of the LSTM model (mea-
sured in F1 score and AUC). Overall, we observed that the model achieved a high F1
(0.85–0.91) and AUC (0.82–0.92) in weeks 3–7 for Big data and a high F1 and AUC
(0.80) in week 3 for Code yourself, and thus could serve as a strong basis to evaluate the
generated path. (We have included a complete report of F1 and AUC results in digital
appendix4) Given that the rest of the weeks achieved lower F1 and AUC (below 0.80),
we restricted our analysis of the feature importance score in weeks 3–7 for Big data
and week 3 for Code yourself. We summarise the LIME importance score towards a
dropout/non-dropout prediction in Table 2. To take into account the scenario where the
model recommended a path consisting of highly engaging learning activities, but were
difficult to follow (e.g., recommending students to perform all activities), we included a

4 https://docs.google.com/document/d/1hntPaZ1NfSJF4t2I9x83CKtAt4C0jRB9Ma8OfdYj2
Q/edit?usp=sharing.

https://docs.google.com/document/d/1hntPaZ1NfSJF4t2I9x83CKtAt4C0jRB9Ma8OfdYj2_Q/edit?usp=sharing
https://docs.google.com/document/d/1hntPaZ1NfSJF4t2I9x83CKtAt4C0jRB9Ma8OfdYj2_Q/edit?usp=sharing
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measure of the probability of students performing the recommended activity on a path
(i.e., Ppath), based on the HMM transition matrix (detailed in Sect. 3.2). Overall, we
observed that, for both datasets, FPP achieved the best performance in terms of LIME
score (Lscore) that contributed to a non-dropout (3 out of 6 in weeks 3–7 for Big data
and week 3 for Code yourself), closely followed by the proposed HMM approach (2
out of 6). Though, HMM achieved the highest path transition probability Ppath (4 out of
6), even higher than the Actual activity (i.e., student’s original action), while none of
the other baseline approaches managed to surpass Actual. In particular, while FPP
generated activity performed the best in terms of LIME score, it had the lowest or the
second lowest path probability in 5 out of 6 instances (i.e., week 3–7 in Big data). This
indicated that, FPP tended to recommend highly engaging learning activities that were
unlikely to be performed by the learners. In comparison, HMM-recommended activi-
ties had a more balanced performance between the LIME score (top-2) and transition
probability (top-1), indicating that the recommended engaging paths were more likely
to be adopted by learners (compared to other path-generating strategies) and as such are
more likely to preempt students’ dropout.

5 Discussion and Conclusion

This paper investigated the effectiveness of a HMM-based approach to analyse student
temporal engagement patterns. Compared to previous approaches, HMM was shown to
be able to not only capture students’ static engagement patterns (represented as “state”),
but also the transitions between different states. So, we were able to uncover insights
about the temporal dynamics about student engagement. In particular, we found that
while disengaged students were unlikely to transition to an engaging state, the engag-
ing students may either stayed engaged or became disengaged in future weeks. This
highlighted the importance of persisting students’ engagement state in order to pre-
empt their dropout. Driven by this, we further explored the use of the student engage-
ment state and their transitions to inform a learning path that can promote students’
engagement. Through extensive experimentation, we demonstrated that, not only our
HMM-suggested learning activities were effective at preempting student dropout, but
these activities were also more likely to be performed by students given their current
engagement state (compared to other baseline approaches). These results provide a
strong motivation for adoption of the proposed HMM approach in a real-world MOOC
setting.

Implications. Firstly, our evaluations demonstrated the effectiveness of HMM as a fully
transparent and interpretable approach for modeling student-temporal interactions and
identifying hidden patterns and their transitions. All this provides useful insights about
students’ current engagement states (e.g., whether they are on-track for completion) and
future engagement trends (e.g., whether they are likely to stay engaged in the future with
the course material), making it a valuable tool for educators and researchers potentially
beyond a MOOC setting (e.g., to model student interactions in a hybrid learning envi-
ronment). Secondly, given that students who have already been disengaged are almost
never going to transition back to an engaging state in a MOOC setting, we posit that
providing guidance/intervention at the time of dropout or immediately before dropout
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(by utilising predictive models) may be futile and laborious. Instead, educators and
practitioners may repurpose such efforts onto persisting the engagement of those “on-
track” students and preempt their dropout. Thirdly, we showed that HMM-generated
learning path is the only approach that can achieve simultaneously a high contribution
to non-dropout prediction and a high probability of being performed by a student given
their current engagement state. This implies that students may be inclined to follow
the suggested activity and stay engaged with minimal human intervention. Given the
low teacher-student ratio in MOOCs settings [10], the HMM-based approach may be
implemented to persist student engagement and support teaching at scale.

Limitations.We acknowledge the following limitations of our study. First, the analysis
involved only two MOOCs datasets, which enabled us to model student engagement
using three different student interaction types (i.e., assignment, lecture, and quiz). To
further increase the generalizability of our findings, we plan on adopting additional
datasets, potentially beyond MOOC settings, and with more interactions (e.g., forum
activity) so as to further explore HMM’s capability in modeling student engagement.
Second, we have not conducted a human evaluation on the real-world impact of HMM-
suggested engagement paths. Given the promising findings, for future work, we plan on
implementing the proposed approach in a real-world MOOC setting and evaluate the
effectiveness of preempting student dropouts.
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13. Lin, J., Lang, D., Xie, H., Gašević, D., Chen, G.: Investigating the role of politeness in
human-human online tutoring. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R.,
Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 174–179. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-52240-7 32

14. Lin, J., et al.: Is it a good move? Mining effective tutoring strategies from human-human
tutorial dialogues. Futur. Gener. Comput. Syst. 127, 194–207 (2022)

15. Mogavi, R.H., Ma, X., Hui, P.: Characterizing student engagement moods for dropout pre-
diction in question pool websites. arXiv preprint: arXiv:2102.00423 (2021)

16. Mu, T., Jetten, A., Brunskill, E.: Towards suggesting actionable interventions for wheel-
spinning students. Int. Educ. Data Min. Soc. (2020)

17. Prenkaj, B., Velardi, P., Stilo, G., Distante, D., Faralli, S.: A survey of machine learning
approaches for student dropout prediction in online courses. ACM Comput. Surv. (CSUR)
53(3), 1–34 (2020)
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