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Chapter 8
Steroid Hormone Interaction 
with Dendritic Spines: Implications 
for Neuropsychiatric Disease

Maya Frankfurt, Zeinab Nassrallah, and Victoria Luine

Abstract Dendritic spines, key sites for neural plasticity, are influenced by gonadal 
steroids. In this chapter, we review the effects of gonadal steroids on dendritic spine 
density in areas important to cognitive function, the hippocampus, and prefrontal 
cortex. Most of these animal model studies investigated the effects of estrogen in 
females, but we also include more recent data on androgen effects in both males and 
females. The underlying genomic and non-genomic mechanisms related to gonadal 
steroid-induced spinogenesis are also reviewed. Subsequently, we discuss possible 
reasons for the observed sex differences in many neuropsychiatric diseases, which 
appear to be caused, in part, by aberrant synaptic connections that may involve den-
dritic spine pathology. Overall, knowledge concerning the regulation of dendritic 
spines by gonadal hormones has grown since the initial discoveries in the 1990s, 
and current research points to a potential role for aberrant spine functioning in many 
neuropsychiatric disorders.
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8.1  Introduction

Dendritic spines are an important site of neural plasticity. As such, many factors, 
including gonadal steroid hormones, which are the primary focus of this chapter, 
influence spine density. Most of the work reviewed here focuses on the effects of 
estrogens on dendritic spine plasticity in the context of mediating cognition. 
Although less well studied, androgens have also been shown to alter spine density 
and impact cognition, and therefore, they will be reviewed as well. In addition, it is 
becoming increasingly evident that dendritic spines play a role in neuropsychiatric 
disorders, and given that gonadal steroids influence spine plasticity, we will specu-
late on the potential role that gonadal steroids may play in mediating neural 
dysfunction.

8.2  Dendritic Spines

In general, dendrites are covered extensively by dendritic spines, which, as they are 
sites for synaptic contact, have a prominent post-synaptic density that contains actin 
and scaffolding proteins that are activated or deactivated depending on physiologi-
cal state (Calabrese et al. 2006; Chidambaram et al. 2019). The number of dendritic 
spines increases with development to a critical point (Urbanska et al. 2012), and 
following the establishment of connectivity between neurons, dendritic spine turn-
over actively continues until adulthood when spines achieve relative stability and 
less turnover (Koleske 2013). In the adult, several distinct dendritic spine subtypes 
have been described, with thin filopodial types presumed to be immature spines 
capable of plasticity, and larger, mushroom-shaped spines that are more stable and 
are the sites of functioning synapses (Bourne and Harris 2007; Von Bohlen Und 
Halbach 2009).

Although relatively stable in adulthood as compared to development, dendritic 
spines do exhibit plasticity, including alterations in number and spine subtype, in 
adult mammals in response to varied stimuli, including denervation/reinnervation 
(Deller et al. 2006; Parnavelas et al. 1974), hormonal changes (Luine and Frankfurt 
2020b; Frankfurt and Luine 2015), drug exposure (Frankfurt et al. 2011; Robinson 
et al. 2001; Kolb and Gibb 2015), environmental stimuli (Kolb et al. 2003), learning 
and memory (Luine and Frankfurt 2020c; Kasai et al. 2010a), and stress (Watanabe 
et  al. 1992). Notably, spine plasticity varies during the lifespan. During adoles-
cence, pruning of dendritic spines occurs in the neocortex (Kolb et  al. 2012; 
Holtmaat et al. 2005; Khanal and Hotulainen 2021). Pruning at this stage suggests 
a refinement of synapses such that weaker connections are eliminated, and stronger 
ones are maintained. In the aging brain, dendritic spines and synapse density 
decrease. There are decreases in dendritic spine density in the cortex (Dickstein 
et al. 2013; Dumitriu et al. 2010) and dendritic spines and axospinous synapses in 
the hippocampus with aging (Geinisman et al. 1992; Von Bohlen Und Halbach et al. 
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Fig. 8.1 Representative photomicrographs of Golgi-impregnated cells in CA1. Left: Low-power 
illustrating a single layer of pyramidal cells  in CA1. Right: Secondary basal dendrite. Arrows 
denote spines

2006). Given that during adolescence and aging there is significant change in steroid 
hormone levels and function, dendritic spine plasticity during these times may be 
more susceptible to hormonal influences.

Dendritic spine plasticity is essential for learning and memory (Koleske 2013; 
Chidambaram et al. 2019; Khanal and Hotulainen 2021), which has also been dem-
onstrated to be influenced by gonadal steroids (Luine and Frankfurt 2020a, c; Luine 
et al. 2018, 2022). The hippocampus and the medial prefrontal cortex (mPFC) are 
integral to learning and memory (Churchwell and Kesner 2011; Churchwell et al. 
2010) and changes in dendritic spine density in these areas play a critical role in 
these cognitive processes (Jedlicka et al. 2008; Leuner et al. 2003). For this reason, 
alterations in spine density in the hippocampus and mPFC have been studied more 
than in other brain regions (Fig. 8.1). Many studies have demonstrated estrogen- 
dependent enhancements in learning and memory, and these enhancements are 
associated with increases in spine density on apical and basal dendrites in pyramidal 
cells in the CA1 region of the hippocampus (CA1) and mPFC in rodents (Luine and 
Frankfurt 2012, 2013, 2020a, b; Luine 2015, 2016). Therefore, estrogen- induced 
dendritic spine plasticity has been more extensively studied in the mPFC and CA1 
than in other brain regions.

8.2.1  Steroids and Dendritic Spine Plasticity: Estrogens

Early studies demonstrated that dendritic spine density on pyramidal cells in CA1 in 
gonadally intact female rats fluctuated over the estrous cycle (Woolley et al. 1990; 
Woolley and McEwen 1992) with the highest levels in proestrus when estrogen 
levels are also highest. Initial results in the hippocampus were supported by later 
studies (Kinsley et al. 2006; Gonzalez-Burgos et al. 2005). Alterations in spine den-
sity during the estrous cycle have also been demonstrated in other brain regions 
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including the ventromedial nucleus of hypothalamus (Frankfurt et  al. 1990; 
Gonzalez-Burgos et al. 2015), the amygdala (Rasia-Filho et al. 2012), and pyrami-
dal cells in layers III and V of the sensorimotor cortex (Chen et al. 2009). In general, 
spine density was greatest when estrogen levels were highest apart from the medial 
nucleus of the amygdala where spine density was lowest on neurons when estrogen 
levels were high (Rasia-Filho et al. 2012). Alterations in spine density during the 
estrous cycle in these regions may underlie lordosis and other reproductive 
behaviors.

The data on intact cycling rats are supported by studies that show a decrease in 
spine density in ovariectomized (OVX) rats in CA1 (Gould et al. 1990b) that was 
subsequently restored by administration of estrogen for different time periods 
(Fig. 8.2), acute (<2 h) to subchronic (2–7 days). In initial studies, subchronic estro-
gen was shown to reverse the OVX-induced decrease in spine density on pyramidal 
cells in CA1 (Gould et al. 1990b; Luine and Frankfurt 2013). Spine synapses in the 
hippocampi of OVX monkeys (Leranth et al. 2002) and rats (Woolley and McEwen 
1992) are also restored after subchronic estrogen administration. More recently, 
acute estradiol or estrogen agonists, given for less than 2 h, have been found to 
induce rapid increases in spine density in gonadectomized female (Inagaki et al. 
2012; Luine and Frankfurt 2020a; Phan et al. 2012; Phan et al. 2011; Phan et al. 
2015) and male rats (Jacome et al. 2016). A decrease in spine density after OVX has 
also been shown in CA1 and the mPFC (Wallace et al. 2006). Dendritic spines are 
decreased in both CA1 and the mPFC in aged females that have lower levels of 
estrogen (Wallace et al. 2007; Luine et al. 2011). Moreover, when OVX rats are fed 
a diet low in phytoestrogens, spine density in both CA1 and the mPFC is lower than 

Fig. 8.2 Schematic of the effects of ovariectomy (OVX), castration (CAS), estrogen and androgen 
replacement, and aging on dendritic spine density on a typical pyramidal cell in CA1
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those fed a high phytoestrogen diet (Luine et al. 2006). Finally, chronic exposure to 
high levels of estrogen during and after pregnancy increases spine density in CA1 
pyramidal cells in rats (Kinsley et al. 2006).

As with the estrous cycle, most studies have been done in the hippocampus, but 
dendritic spine density in other brain regions is also altered when estrogen fluctu-
ates. In the rat, OVX-induced decreases in spine density in the ventromedial nucleus 
of the hypothalamus (Frankfurt et al. 1990), amygdala (Rasia-Filho et al. 2012), and 
layers III and V of the somatosensory cortex (Chen et  al. 2009) are reversed by 
estradiol administration (Fig. 8.2). Ye et  al. (2019) found that pyramidal cells in 
layer V of the frontal, motor, and somatosensory cortex in the OVX mouse have 
decreased spine density that is also reversed when estradiol is given (Ye et al. 2019). 
The fact that spine density is altered in many brain areas by estrogen illustrates that 
many neurons are probably sensitive to hormonal alterations, and this understand-
ing may shed light on the observation of sex differences in many neuropsychiatric 
diseases.

8.2.2  Gonadal Steroids and Dendritic Spine 
Plasticity: Androgens

Many neurons in the central nervous system are also sensitive to circulating andro-
gens. Although far fewer studies have addressed the interaction between androgens 
and dendritic spines, it has been clearly demonstrated that various androgens and 
several androgenic metabolites function similarly to estrogens in terms of their abil-
ity to increase spine synapse and dendritic spine density. In gonadectomized male 
and female rats, both testosterone propionate (TP) and dehydroepiandrosterone 
(DHEA) increased dendritic spine density on pyramidal cells in CA1 and the mPFC 
(Luine et al. 2022; Jacome et al. 2016). Similarly, spine synapse density decreases 
in CA1 after gonadectomy are reversed in rats of both sexes after TP, dihydrotestos-
terone (DHT), and DHEA administration (Hajszan et  al. 2004; Maclusky et  al. 
2004; Leranth et al. 2004; Atwi et al. 2016). In adult male mouse hippocampus, 
testosterone (T) increased spine density (Li et  al. 2012), and in rats, castration 
(CAS) reduced, while administration of DHT or estradiol increased spine synapse 
density in the mPFC (Hajszan et al. 2007). Neurons in the brains of females are also 
sensitive to androgens as subchronic TP, and DHEA increased spine density on 
pyramidal cells in the mPFC and CA1 of adult OVX female rats (Luine et al. 2022). 
Again, as with estrogens, most studies use subchronic treatments, but rapid effects 
of androgens have also been shown. Acute administration of both T and DHT 
increases spine density in CA1 in gonadectomized male and female rats (Jacome 
et  al. 2016; Luine et  al. 2022) and in hippocampal slices taken from male rats 
(Murakami et al. 2018). Thus, both spine synapses and synapse density fluctuate 
with changing androgen levels (Fig. 8.2).
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Consistent with the estrogen studies, there are reports of androgens increasing 
spine density in brain regions other than the hippocampus and mPFC. Syrian ham-
sters had decreased dendritic spine density in the medial preoptic area 9 weeks after 
gonadectomy compared to intact male hamsters and gonadectomized hamsters 
treated with T for 9 weeks (Garelick and Swann 2014). Gonadectomy decreased 
spine density in the medial preoptic nucleus and medial amygdala, and this effect 
was reversed by DHT 24 h after injection (Huijgens et al. 2021). Androgen-induced 
alterations in spine density in these regions may underlie regulation of male sexual 
behavior.

8.3  Mechanism of Gonadal Steroid Action 
on Dendritic Spines

Gonadal steroids exert their effects via receptors that mediate both nuclear, genomic, 
and membrane, non-genomic, mechanisms (Fig.  8.3). Estrogen receptors (ER) α 
and β are found within cell nuclei and on cell membranes in neurons in many brains 
regions, while the more recently described G-protein-linked estrogen receptor 
(GPER) is found on membranes of both neurons and glia (Korol and Pisani 2015; 
Waters et al. 2015; Torres-Revereron et al. 2020). Chronic effects of steroids are 

Fig. 8.3 Schematic illustrating the mechanisms underlying estradiol (E2)-induced spinogenesis 
via both genomic and non-genomic means. E2 diffuses across the cell membrane to bind to cyto-
solic ERs, which then enter the nucleus and bind to the estrogen response element (ERE) inducing 
the synthesis of synaptic and other proteins. E2 also binds several membrane receptors, which then 
alters second messenger systems that result in the polymerization of actin, which increases the 
number of dendritic spines. Genomic and non-genomic mechanisms may have some degree of 
interaction in mediating these effects
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mediated mainly through nuclear receptors and genomic mechanisms, while bind-
ing to membrane receptors mediates the rapid effects through the activation of 
numerous signaling pathways. Recent studies indicate that interaction between 
nuclear and membrane receptors may also mediate some steroid effects (Arevalo 
et al. 2015; Kramár et al. 2013; Luine and Frankfurt 2012). As a membrane receptor, 
GPER also activates signaling pathways. Which receptors are involved in mediating 
spine dynamics in neurons and whether the different receptors have an additive 
effect on steroid-mediated spinogenesis remain to be determined.

Although some differences in effects have been reported, agonists for both ERα 
and ERβ alter spine density (Murakami et al. 2006; Phan et al. 2011). Studies in 
OVX mice showed that propyl pyrazole triol (PPT), an ERα agonist, increased den-
dritic spine density in the stratum radiatum and lacunosum-moleculare of CA1 
within 1 h, whereas diarylpropionitrile (DPN), an ERβ agonist, decreased spine 
density in the lacunosum-moleculare of CA1 (Phan et al. 2011). In the PFC, ago-
nists of the GPER, but not ERα/β receptors, rapidly increased spine density, and the 
opposite selectivity was found in CA1 (Ye et al. 2019).

Dendritic spine plasticity implies cycling of immature spines to mature spines 
that make synaptic contact (Ziv and Smith 1996) and changes that existing spines 
may undergo after exposure to different stimuli (Kasai et al. 2010b; Koleske 2013; 
Sehgal et al. 2013). This process requires mobilization of many proteins, particu-
larly actin and associated proteins (Penzes and Rafalovich 2012; Hokenson et al. 
2021; Koleske 2013). The cycling between filamentous and globular actin is an 
essential part of spine plasticity and requires interaction with other proteins, includ-
ing several actin-binding proteins such as cofilin and profilin, which regulate actin 
polymerization (Basu and Lamprecht 2018; Borovac et al. 2018).

Since spine plasticity is dependent on mobilization of actin and synaptic pro-
teins, it is notable that these proteins have also been shown to be altered by gonadal 
steroids. Estradiol inactivates cofilin, which is responsible for the disassembly of 
actin (Kramár et al. 2009). In addition, OVX decreased spine density in the CA1 
region of mice in which the expression of cofilin was increased and profilin, which 
promotes actin polymerization, decreased (Lan et  al. 2021). These results may 
explain how estradiol promotes filamentous actin and spine assembly (Kramár et al. 
2009). Estrogen also increases other proteins that are found in the synapses, such as 
PSD95 and spinophilin (Tang et al. 2004; Maclusky et al. 2005; Lee et al. 2004). 
Estrogen-induced increases in dendritic spine density have been demonstrated to 
involve the activation of multiple cell signaling pathways, such as ERK, mTOR 
(Tuscher et al. 2016), CREB, and PI3, that promote the assembly of actin and pro-
tein synthesis and other proteins involved in spine dynamics (Sheppard et al. 2019; 
Frankfurt and Luine 2015; Fortress et al. 2013; Luine and Frankfurt 2013; Bethea 
and Reddy 2010; Hansberg-Pastor et al. 2015). Overall, it appears that estrogen act-
ing via multiple pathways influences the assembly of actin and synaptic proteins, 
which, in turn, increases the number or the maturity of existing spines (Fig. 8.3).

The mechanisms by which androgens influence dendritic spines have been 
less well studied than estrogens, but the presence of both nuclear and membrane 
receptors on neurons has also been described for androgens (Atwi et al. 2016; 
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Chen et al. 2022). Studies to date show that androgens exert similar effects to 
estrogens in terms of altering cytoskeletal and other proteins in dendritic spines. 
For example, orchiectomy decreases spine density, actin polymerization, and 
post-synaptic density thickness in adult male mice (Zhao et al. 2018). In addi-
tion, Chen et al. (2022) demonstrated that, in cultured hippocampal neurons from 
male mice, T promoted the maturation of immature spines and increased synaptic 
markers PSD 95 and synapsin.

Taken together, the data suggest that steroids can alter dendritic spine density 
by binding with steroid receptors on neurons and then initiating a series of intra-
cellular events that promote the proteins, which increase the number of dendritic 
spines. Although most of the studies described here are related to rapid membrane- 
mediated effects of gonadal steroids, it is interesting to note that both types of 
receptors appear to mediate similar effects on synaptic proteins. Using antago-
nists to both nuclear and membrane estrogen receptors, Xing et al. (2018) found 
that receptor antagonists to ERα, Erβ, and GPER administered to mice decreased 
PSD-95, spinophilin, spine density, and synaptic density. These results suggest 
that both genomic and non-genomic receptors play a role in estrogen-induced 
reorganization of the actin cytoskeleton. There is some evidence for cross talk 
between the genomic and membrane estrogen receptors, especially given that 
binding of estrogens to nuclear ERα and ERβ in some circumstances results in 
alterations in rapid signaling pathways (Kramár et al. 2013; Arevalo et al. 2015; 
Luine and Frankfurt 2012).

8.4  Dendritic Spine Plasticity and Gonadal Steroids: 
Potential Clinical Importance

There are clear sex differences in the incidence of some neuropsychiatric diseases 
(Bangasser and Cuarenta 2021; Seney et al. 2022; Bangasser and Valentino 2014; 
Schulte Holthausen and Habel 2018; Vegeto et al. 2020). Alzheimer’s disease is 
more prevalent in women, and Parkinson’s disease occurs more often in men 
(Vegeto et al. 2020). Psychiatric disorders such as major depressive disorder and 
anxiety are more prevalent in women (Bangasser and Cuarenta 2021; Seney et al. 
2022; Bangasser and Valentino 2014). Personality disorders, such as paranoid, 
schizotypal, and narcissistic disorders, are diagnosed more often in men, and bor-
derline histrionic disorders are more common in women (Schulte Holthausen and 
Habel 2018).

Thus, it is interesting to speculate on the possible clinical importance of gonadal 
steroid interactions with spines in neural and psychiatric diseases because this infor-
mation may provide insights into the etiologies and possible treatments for these 
conditions.

M. Frankfurt et al.
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8.4.1  Sex Differences in the Brain

Results of preclinical, clinical, and anatomical studies provide some basis for the 
sex differences in neuropsychiatric disease. There are reports of sex differences in 
neural structure in rats (McEwen and Milner 2017; Brandt et al. 2020; Scharfman 
and Maclusky 2017; Yagi and Galea 2019; Marrocco and McEwen 2016). 
Nevertheless, sex differences in spine density reports are inconclusive. Female rats 
in proestrus were found to have greater spine density in CA1 than male rats (Woolley 
et al. 1990; Shors et al. 2001), and male rats have more thorny excrescences in hip-
pocampal CA3 neurons than female rats (Gould et al. 1990a). However, in other 
studies no sex differences in spine density were seen in CA1 or the mPFC (Bowman 
et al. 2015; Gould et al. 1990a). The latter two studies did not consider the estrous 
stage of the females, and this may account for the different findings among studies. 
Thus, while sex differences in brain structure exist, data regarding spine density dif-
ferences are limited and further research is required to determine possible 
relationship(s) to clinically observed sex differences in diseases.

What about sex differences in brain structure in humans? Imaging studies have 
shown that men have larger brains, more cortical surface area, and more white mat-
ter (except for the corpus callosum) than women, and women have denser gray 
matter than men (Salminen et  al. 2022). Male brains have been shown to have 
greater ipsilateral connectivity, while female brains have greater commissural con-
nectivity (Ingalhalikar et al. 2014). In the hippocampus, there are sex differences in 
the size of different hippocampal subregions (Van Eijk et al. 2020). These studies 
are not conclusive, and it should be noted that there is controversy regarding how 
real these differences are after being corrected for men’s larger brain sizes, sample 
sizes, and general differences in analysis (for reviews see Hines (2020), Salminen 
et al. (2022), and Hoggetts and Hausman (2023)).

Therefore, it appears that sex differences in the brain are more subtle than 
straightforward sexual dimorphisms and may be the result of ongoing developmen-
tal exposure during critical periods in the lifespan. One must consider that hormone- 
induced effects on neurons in adults are the result of multiple effects of hormones at 
different life stages. These include organizational exposure to gonadal steroids dur-
ing development and activational exposure starting with adolescence, which may be 
further influenced by environmental factors (Fig. 8.4), rendering it challenging to 
correlate levels of steroid hormones with disease (McEwen and Milner 2017). 
Finally, there is a great deal of variability in preclinical studies with respect to time 
from gonadectomy to steroid replacement, dose used, length of steroid administra-
tion, and age of the animals during the experiment and animal strain, all of which 
could impact the results. Sex differences in response to stress (see below) are an 
example of the interaction of factors that may occur when sex differences in disease 
are manifested. Thus, neural networks seem more important for function than indi-
vidual differences. Neural networks are connected by spines and synapses, which 
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Fig. 8.4 Schematic illustrating the potential interaction between dendritic spine density, hormonal 
influences, and alterations in environment throughout the lifespan

make them important to study. In the next section, we will review the intersection 
between spine pathology and gonadal steroids in a few examples to address poten-
tial mechanisms that may underlie the sex differences observed clinically.

8.5  Dendritic Spine Plasticity, Gonadal Steroids, 
and Neuropsychiatric Disorders

8.5.1  Depression

Depression-related alterations in neural plasticity have been studied extensively in 
animal models subjected to stress because stressed animals exhibit depression-like 
disturbances, such as anhedonia and alterations in dendritic spines and synapses in 
the hippocampus and PFC (Leuner and Shors 2013; Yang et al. 2020; Licznerski 
and Duman 2013). Therefore, stress-induced plasticity in rodents is thought to 
model what occurs in the human brain with depression.

The brain regions involved in mediating stress-induced responses include the 
PFC, hippocampus, and amygdala, which have extensive interconnections. Chronic 
restraint stress has been shown to decrease dendritic spine density in the hippocam-
pus and PFC and increase it in the amygdala (Qiao et al. 2016). Most studies have 
only been done in male animals, and unfortunately, there are little data from female 
animals. However, 21  days of chronic restraint stress causes retraction of apical 
dendrites in the CA3 region of the hippocampus in male, but not female, rats (Galea 
et al. 1997). In a mouse model in which animals were stressed for 1 h for 6 days 
using different stressors, only OVX female mice were susceptible to the stress 
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(Iqbal and Ma 2020). These authors found that OVX female mice had significantly 
higher corticosterone levels, increased spine density on PFC neurons, increased 
immobility time of several behavioral tests, and decreased sucrose consumption, 
which is consistent with anhedonia, in comparison with intact males and sham- 
operated females. Interestingly, sex differences in behavioral responses to stress 
have been clearly demonstrated in rats. Chronic restraint stress, 6 h for 21 consecu-
tive days, impairs male performance on several behavioral cognitive tasks and either 
enhances or has no effect on female cognitive function (Luine et al. 2017; Bowman 
et  al. 2022). In terms of spine density, Shors et  al. (2001) found that 24  h after 
30 minutes of intermittent stress, spine density in CA1 pyramidal cells was increased 
in male but decreased in female rats. In the lateral hypothalamic area, there is a sex 
difference in spine density on putative orexin neurons, and males have less spines 
than females (Grafe et al. 2019). Following 5 days of 30-minute restraint stress, this 
sex difference was no longer present, meaning that stress decreased spine density in 
females only. Following a paradigm of 30 minutes of restraint stress for 5 days, 
male rats were able to habituate to the stress but female rats did not, and females had 
significantly higher levels of corticosterone compared to males (Grafe and Bhatnagar 
2020). These different stress studies may yield inconsistent results because of the 
different stress paradigms and behavioral assessments used, but the results do sug-
gest that neural networks related to depression are differentially affected during 
stress and these changes may help explain sex differences in the incidence of 
depression.

8.5.2  Schizophrenia

Spine density alterations have also been shown in other diseases (Khanal and 
Hotulainen 2021). Postmortem Golgi studies have found a decrease in spine density 
in the dorsolateral prefrontal cortex (DLPFC) and the superior temporal gyrus 
(Glausier and Lewis 2013; Penzes et  al. 2011) of schizophrenic patients, which 
implies decreased connectivity in regions known to be critical to cognitive function. 
These authors speculate that dendritic spine plasticity/pruning may be altered dur-
ing early development and adolescence in schizophrenic patients, time periods in 
which gonadal steroids influence dendritic spine turnover. Although direct compari-
sons to the PFC in rodents are difficult, a preclinical study in rats subjected to 
repeated variable perinatal stress demonstrated a sex difference in the pattern of 
dendritic development in the PFC (Markham et al. 2013). Dendritic connectivity in 
both sexes in layer III pyramidal cells of the PFC during adolescence was increased, 
but maximal growth occurred earlier in female rats and lasted later, into adulthood. 
Increased spine density was seen in both sexes before puberty, but only females 
showed pruning of spines in late adolescence. These preliminary results support 
potential network alterations during a period of gonadal hormone secretions that 
may explain the observed sex difference in schizophrenia.
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8.5.3  Alzheimer’s Disease

The incidence of neurodegenerative diseases increases with aging. With aging, there 
are also decreases in spine density (Young et al. 2014; Dumitriu et al. 2010; Walker 
and Herskowitz 2021; Wallace et al. 2007; Luine et al. 2011). Whether the decreases 
in spine density in these regions are due to an overall decrease in neuronal number 
is unclear. However, these changes may be related to the increased incidence of 
neurodegenerative diseases that is seen with aging. Spine abnormalities, including 
decreases in number and alterations in spine subtype, have been reported for numer-
ous neurodegenerative diseases that have a cognitive component, such as Alzheimer’s 
disease, Parkinson’s disease, and Huntington’s disease (for review, see Herms and 
Dosostkar (2016), and Walker and Herskowitz (2021)). The accumulation of extra-
cellular proteins in Alzheimer’s disease appears to interfere with dendritic spines, 
leading to synaptic loss in both the hippocampus and cortex of patients with 
Alzheimer’s disease (Chidambaram et  al. 2019). Given the importance of spine 
plasticity to the process of learning and memory, it is not surprising that in 
Alzheimer’s disease there are alterations in dendritic spine density (Walker and 
Herskowitz 2021). Interestingly, Walker and Hershowitz (2021) review the litera-
ture that demonstrates that patients with preclinical Alzheimer’s disease, who have 
some signs of the disease but have normal cognitive functions, have higher levels of 
dendritic spines and synaptic proteins in the hippocampus and PFC than patients 
who were known to have impaired cognition. This finding implies that dendritic 
spines may confer resilience to cognitive decline and that decreases in spine density 
are related to impaired cognition, which is consistent with previous animal studies 
(Luine and Frankfurt 2020c; Frankfurt and Luine 2015).

8.6  Conclusion

Gonadal steroids exert acute and chronic effects on dendritic spines in pyramidal 
neurons across the lifespan in both males and females. These effects are mediated 
by both genomic and non-genomic mechanisms, which influence the assembly of 
actin and synaptic proteins to promote spinogenesis. Although gonadal steroids 
have been shown to influence spine density in many brain areas, sex differences 
have not been adequately investigated, and therefore, it is a challenge to relate dif-
ferences observed in neuropsychiatric disorders to the basic and clinical data on sex 
differences to date. This apparent discrepancy may be due to the multifactorial pro-
cesses and timing during hormonal exposure. Given that there are also spine density 
changes reported for these disorders, it may become important to consider potential 
differences in treatment based on sex. However, local alterations in spine density 
under different conditions imply that alterations in the neural networks may be a 
critical underlying issue and should be further investigated in relation to potential 
sex differences.
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