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1 Introduction

The field of inductive damping of structural vibrations is best described from an
energetic point of view. The kinetic energy of the structural vibration is converted
into electric energy by electromagnetic induction. The electric energy is then dissi-
pated by ohmic resistors and is thus extracted from the mechanical system. In order
to convert kinetic energy into electric energy, the magnetic flux through some con-
ductive material has to be modulated. This process can be divided into four basic
functionalities: source of magnetic flux, transport of magnetic flux, modulation of
magnetic flux and induction of electric current.

For each of these functionalities different realizations are possible. The source of
themagnetic flux can either be a permanentmagnet or an electromagnet, the transport
of the magnetic flux can be guided through the structure by use of high permeability
iron cores or can be unguided. The modulation of the flux in a conductive material
may be due to a change of the magnetic flux itself or due to a movement of a
conductive material relative to a magnetic field. The induction can either occur in
a coil (as a lumped element of the system) or in form of eddy currents, distributed
over a part of the structure. Figure1 shows a matrix which gives an overview on the
different functionalities as well as symbolic design examples.

Based on this matrix, damping devices may systematically be created by (rather)
freely combining different alternatives to implement the basic functionalities. For
example, an inductive damping device may be constructed by combining a guided
transport of the magnetic flux, a modulation of the flux by varying an air gap, an
inductive coupling by means of a coil and providing dissipation using an ohmic
resistor. For the source of the magnetic flux, basically two options are available:
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Fig. 1 Overview on functional elements of electromagnetic damping devices
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Fig. 2 Examples built from the matrix of basic functionalities using different realizations of the
source of the magnetic flux: a permanent magnet, b electromagnet

it may either be produced by a permanentmagnet with a remanence of BR (cf. Fig. 2a)
or by means of an electromagnet fed with a constant current I0 (cf. Fig. 2b).

In the past decades several investigations on inductive damping have been pub-
lished. Behrens et al. [4] have introduced electromagnetic shunt damping. They
proposed a plunger, consisting of permanent magnets, that is moving in a coil, which
is connected to an impedance network.

Przybylowicz and Szmidt [8, 9] theoretically investigated a mechanical oscillator
between two electromagnets. The magnetic flux is guided with iron cores through
the mechanical oscillator and builds two independent magnetic circuits with an air
gap. The length of the air gap is modulated by the mechanical movement and thus,
eddy currents are induced in the iron core. The investigated model shows strongly
nonlinear behavior.

Bae et al. [1, 2] studied the behavior of a cylindrical permanent magnet moving
in a conductive tube. Sodano et al. [12, 13] investigated a model consisting of a
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cantilever beam with a conducting plate, that is moving in the magnetic field of a
permanent magnet. Later on Sodano and Inman [14] proposed an active damping
device where they used again a cantilever beam with a conductive plate. This time
an electromagnet generates the magnetic field and a feedback control system is used
to control the oscillations of the structure. Laborenz et al. [5, 6] experimented with
eddy current damping to reduce the oscillations of steam turbine blades. They, as
well, used a copper plate oscillating in the magnetic field of a permanent magnet.

Bae et al. [3] studied the use of an eddy current damper as a magnetically damped
tuned mass damper to reduce oscillations of a beam structure. They showed, that
the resonance amplitudes of the structure were decreased by applying eddy current
damping to the tuned mass damper. Lian et al. [7] proposed an eddy current-tuned
mass damper for wind turbines.

The objective of this contribution is to systematically analyze different realizations
of inductive damping elements. Therefore models using different elements of the
basic functionalities shown in Fig. 1 will be investigated. Furthermore, the possibility
tomodify inductive damping systemswith additional nonlinearities to showa specific
behavior is presented.

2 Analysis of Models Based on Magnetic Circuits

In this section the equations of motions for the proposed models shown in Fig. 2 will
be derived and the static and dynamic behavior will be analyzed. The derivation of
the equations of motion is exemplary shown for the system with permanent magnet,
illustrated in Fig. 2a.

To describe an inductive damping model mathematically, the system can be
divided into three subsystems, as shown in Fig. 3. Here, the electrical and themechan-
ical subsystem do not interact directly but will be coupled by themagnetic fieldwhich
acts as a mediator.

The mechanical system in this case is a simple single degree of freedom (DoF)
oscillator with mass m and stiffness k (cf. Fig. 4a). The position of the mass is
described by the coordinate x . The mass is excited harmonically by an external force
F(t). Furthermore the magnetic force Fmag acts on the mass. Another static force
F0 is introduced in order to compensate static magnetic forces and thus to ensure,
that the system will have a static resting position at x = 0. For instance, such a force
could easily be realized by preloading the spring. Eventually, the equation of motion
for the mechanical system follows from Newton’s law and is given by

magnetic systemelectric system mechanical system

Fig. 3 Separate physical sub-domains involved in an inductive damping device
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Fig. 4 a Mechanical subsystem. b Electrical subsystem

mẍ + kx = F(t) + Fmag − F0. (1)

The electric subsystem is a simple electrical network, featuring an ohmic resistor R
and the induced voltageUem f . The current flowing in the circuit is denoted by I . The
equation of motion follows from Kirchhoff’s law and reads

Uem f + RI = 0. (2)

Assuming magnetostatic conditions the magnetic problem can be described by
the simplified form of Ampère’s law [16], reading

∮
�

H · dl = Ienc, (3)

where H is the magnetic field, Ienc is the current enclosed by the loop � and d� is
an infinitesimal element of the curve �. Furthermore, the conservation law of the
magnetic flux holds according to

∮
S
B · da = 0, (4)

where B is the magnetic flux density and da is the outer normal unit vector of the
closed surface S. The magnetic flux density B is connected to the magnetic field H
by the constitutive relation

H = H(B). (5)

Furthermore, the magnetic flux through a surface S is defined by

� =
∫
S
B · da. (6)

The magnetic subsystem for the proposed inductive damping device with a per-
manent magnet is shown in Fig. 5. Applying Ampère’s law to the illustrated loop �

yields
Hm�m + Hfe�fe + Hd(�d − x) = N I, (7)
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Fig. 5 Magnetic subsystem
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where Hm is the magnetic field in the permanent magnet, �m is the length of the
permanent magnet, Hfe is the field in the iron core, �fe is the length of the iron core,
Hd is the field in the air gap and �d is the nominal length of the air gap, N is the
number of turns of the coil and I is the current flowing through the coil. From the
conservation of the magnetic flux, it may be followed that all individual parts of the
structure are crossed by the same flux and thus

�m = �fe = �d = � (8)

holds. Assuming equal cross sections A of the individual parts yields

� = BA, (9)

which states that the magnetic flux density in all parts is equal. The constitutive
relations for the magnetic fields in the permanent magnet (Hm), the air gap (Hd ) and
the iron core (Hfe) are given by

Hm = 1

μ0
(B − BR), Hd = 1

μ0
B and Hfe = 1

μfe(B)
B, (10)

where μ0 is the magnetic permeability of free space and μfe(B) is the permeability
of the iron. The permeability of the magnet is assumed to be μ0, as this is approx-
imately the case for neodymium magnets. For this study hysteresis losses of the
B–H characteristic are neglected because most of the energy storage of the mag-
netic field occurs in the air gap, and thus hysteresis losses are assumed to be small
[15]. The assumed B–H characteristic is shown in Fig. 6: the slope of the character-
istic decreases sharply after the magnetic flux density reaches a magnitude Bsat , as
the material saturates.

Eventually, the magnetic flux of the system is described by

(
(�m + �d − x) + μ0

μfe(B)
�fe

)
� = μ0N AI + �m�R, (11)
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Fig. 6 B–H characteristic
of the material for the iron
core (adapted from [15])

H

Bsat

B

where �R = BR A is the magnetic flux of the remanence. The link of the mechanical
and the magnetic subsystems may be expressed using Maxwell’s stress tensor

T = B ⊗ H − 1

2
(B · H)I, (12)

where I is the unit dyadic tensor [11]. Accordingly, the total magnetic force acting
on an object reads

F =
∮
S
T · da, (13)

where S is the surface of the object and da is the outer normal unit vector of the
surface. For the considered model, the magnetic force results in

Fmag = A
B2

2μ0
= �2

2Aμ0
. (14)

The relation between the electric and the magnetic subsystem is given by the flux
linkage of the coil, and thus

Uem f = d�

dt
, where � = N�. (15)

For the proposed model, � is not explicitly time-dependent and therefore

Uem f = N
d�

dt
= N

(
∂�

∂x
ẋ + ∂�

∂ I
İ

)
(16)

applies. Summarizing, the equations of motion for the system in Fig. 2a read

mẍ + kx − �2

2Aμ0
= F(t) − F0 (17)

N

(
∂�

∂x
ẋ + ∂�

∂ I
İ

)
+ RI = 0 (18)
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(
(�m + �d − x) + μ0

μfe(�/A)
�fe

)
� = μ0N AI + �m�R . (19)

Using the mechanical eigenfrequency

ω0 =
√

k

m
(20)

for vanishing electro-magnetic coupling (i.e. � = 0), the time t is re-scaled to
the dimensionless time τ = ω0t . Consequently, the differential operators transform
according to ˙(·) = ω0(·)′, where (·)′ denotes the derivation with respect to τ . Fur-
thermore the dimensionless parameters

κ = �m

b
, δ0 = �d

b
, β = �fe

b
, (21)

ν = N�Rω0

RI0
, γ = �2

R

2�dk Aμ0
, h(ϕ) = μ0

μfe (�Rϕ/A)
, (22)

ρ = bμ0N I0
�R

, f (τ ) = 1

�dk
F (τ/ω0) , f0 = 1

�dk
F0 (23)

as well as the scaled coordinates

displacement: ξ = x

�d
, flux: ϕ = �

�R
, current: ι = I

I0
(24)

are introduced, where b is the width of the iron core and I0 is some reference cur-
rent. Inserting these parameter into the Eqs. (17)–(19) results in the dimensionless
equations of motion of the system with permanent magnet (cf. Fig. 2a)

ξ ′′ + ξ − γ ϕ2 = f (t) − f0 (25)

ν

(
∂ϕ

∂ξ
ξ ′ + ∂ϕ

∂ι
ι′
)

+ ι = 0 (26)

(κ + ρι) − (
κ + δ0(1 − ξ) + βh(ϕ)

)
ϕ = 0. (27)

Apart from the difference in the source term of the magnetic flux, the mechanical
and electrical subsystems for the damping device using an electromagnet as depicted
in Fig. 2b are equivalent. For this case, Ampère’s law yields

Hfe�fe + Hd (�d − x) = N I + N0 I0, (28)

where N0 is the number of turns of the electromagnet and I0 is a constant current
feeding the electromagnet. Following the same steps as for the system with a perma-
nent magnet, the dimensionless equation ofmotion of the systemwith electro-magnet
(cf. Fig. 2b) are found as
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ξ ′′ + ξ − γ ϕ2 = f (t) − f0 (29)

ν

(
∂ϕ

∂ξ
ξ ′ + ∂ϕ

∂ι
ι′
)

+ ι = 0 (30)

(ρ0 + ρι) − (δ0(1 − ξ) + βh(ϕ)) ϕ = 0, (31)

where ρ0 is the source term of the magnetic flux, given by

ρ0 = bμ0N0 I0
�r

. (32)

2.1 Static Analysis

In Fig. 7 the magnetic flux ϕ of the considered models is shown as a function of
the relative static displacement ξ .1 Since a static solution is assumed (ξ ′ = 0) no
currents are induced and therefore, ι = 0 holds. Notice that a relative displacement
of ξ = 1 means, that the air gap is closed. The figure compares solutions with as well
as those without accounting for magnetic saturation. For the system with permanent
magnet, the influence of saturation is very small, as the magnetic flux is restricted
due to the remanence of the permanent magnet. In contrast, the system with elec-
tromagnet shows a strong influence of saturation as the flux increases for small air
gaps. Therefore, for the system with an electromagnet, saturation effects must be
taken into account, if small air gaps occur.

As the magnetic forces act equivalent to a nonlinear spring with negative stiff-
ness, the static solution may become unstable for certain parameters. Figure8 shows
stability charts for bothmodels for parameter variations of the source termof themag-
netic flux (κ respectively ρ0) and the coupling parameter of the mechanical and the
magnetic subsystem γ . While the systemwith a permanent magnet only shows insta-
bilities for higher values of γ , the system with an electromagnet becomes unstable

Fig. 7 Magnetic flux of
models with permanent
magnet (pm) and
electromagnet (em) with and
without the effect of
saturation

-1 -0.5 0 0.5 1
ξ

0

1

2

3

ϕ

pm
pm w/o saturation
em
em w/o saturation

1 The parameters used for the analysis are κ = 2, δ0 = 1, β = 10, ρ0 = 0.5, ρ = 0.5, γ = 0.5,
ν = 1, Br = 1.2.
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Fig. 8 Stability charts of magneto-mechanical coupling against flux source for a system with
permanent magnet, b system with electromagnet [10]

already for much lower values. As the stiffness of the magnetic force is dependent on
the slope of the magnetic forces against ξ , the system becomes unstable if γ

dϕ2

dξ > 1
applies [10].

2.2 Dynamic Analysis

For a harmonic excitation with f (t) = f̂ sin(ητ), a dynamic analysis of the sys-
tem is carried out using a simple shooting method. The maximal amplitudes of the
occurring oscillations are shown in Fig. 9a. Both systems—the one with permanent
magnet as well as the system with electromagnet—show a shift of the resonance
frequency. This is caused by the magnetic forces acting as a spring with negative
stiffness. Furthermore, in both cases resonance amplitudes are limited. The reso-
nance amplitudes of the system featuring an electromagnet are much lower and thus,
the damping is higher. While for the system with a permanent magnet higher ampli-
tudes of the excitation force will lead to system failure, as the deflection reaches the
length of the air gap, the frequency responses of the system with an electromagnet
for higher excitation force levels are depicted in Fig. 9b. The system shows strongly
nonlinear behavior for higher amplitudes. Even higher amplitudes of the force lead
to instabilities and therefore are not computable by the used simple shooting method.

2.3 Numerical Validation

To validate the obtained results, a numerical model has been set up. To compensate
the one-sided magnetic pull and to get a more efficient damping, the model has been
expanded to a symmetric model, as depicted in Fig. 10a.
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Fig. 9 a Frequency responses of themodels with excitation force amplitude f̂ = 0.02. Red: system
with permanent magnet—Green: system with electromagnet—Gray: system without magnets. b
Frequency response of the system with electromagnet for different excitation force amplitudes f̂
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Fig. 10 a Model for numerical validation. bMEC-network of the model

To describe the model analytically, the method of magnetic equivalent circuits
(MEC) is used. The method converts the continuous model into lumped parameters
connected by nodes and thus, forming a network, similar to an electric network. The
method is equivalent in assumptions to the one presented in the previous subsection,
but it brings the advantage of being able to analyze more complex systems with
multiple connected magnetic circuits. To transform the continuous model into a
MEC, Ampère’s law (Eq. (3)) is split into individual sections

∮
�

H · d� =
∑
d∈D�

∫
�d

H · d� =
∑
d∈D�

Fd , (33)
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where D� is the set of names of the individual parts. Fd is commonly referred to as
magnetomotive force (MMF) drop. Accordingly the currents inside the loop � are
called MMF sources and are denoted as

Ienc,� =
∑
s∈S�

Ns Is =
∑
s∈S�

Fs, (34)

where S� is a set, containing the names of the MMF sources. Ampère’s law in the
theory of MECs is referred to as Kirchhoff’s MMF law, which states that the sum of
MMF drops in a closed loop equals the sum of MMF sources, i.e.

∑
d∈D�

Fd =
∑
s∈S�

Fs . (35)

Additionally the flux conservation law (Eq. (4))was used in the previous chapter. This
is found in Kirchhoff’s flux law, which states that the sum of fluxes into respectively
out of any node must vanish. It is left to define Ohm’s law for magnetic equivalent
circuits, which is found by manipulating the MMF drops to a form

Fd = Rd�d , (36)

where Rd is called a reluctance of the associated section of the structure. A detailed
description of the method is provided in [15].

For the presented model, the MEC network is shown in Fig. 10b. As the previous
study showed, that for the considered system with permanent magnet saturation
doesn’t have an influence on the magnetic flux, saturation is not taken into account
for this study. Thus, the MECmodel provides a linear algebraic equation to calculate
the magnetic flux, given by

RN�N = FN . (37)

In Eq. (37), RN is the network reluctance matrix, FN is a column matrix containing
the external MMF sources and �N is the column matrix of the network fluxes. The
equations of motion for the mechanical and the electric system read

mẍ + kx − 1

μ0A
(�2

2 − �2
1) = F(t) (38)

Cẋ + Lİ + RI = 0, (39)

where m is the oscillating mass, k is the stiffness of the spring, F(t) is a harmonic
force, μ0 is the vacuum permeability, A is the cross section of the iron cores. The
matricesC (coupling), L (inductance) andR (electric resistance) are calculated with

C = N
d�

dx
and L = N

d�

dI
and R =

[
R 0
0 R

]
, (40)
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Fig. 11 a Dynamic flexibility of the symmetric model shown in Fig. 10a. Red circles: time depen-
dent FEA—Blue line: MEC network shown in Fig. 10b—Green line: modified MEC with leakage
paths (cf. Fig. 11b)—Gray line: system without magnets. bMEC network with additional elements
to model leakage

where N is the number of turns of the coils, R is the ohmic resistance of the coils
and � = [�1 �2]T is a column matrix containing the magnetic fluxes linked with
the coils. The dynamic flexibility of the nonlinear set of equations is calculated using
the Harmonic BalanceMethod (HBM).2 During the calculation the derivatives of the
fluxes are evaluated numerically. The results are depicted in Fig. 11a.

For the validation process a finite element analysis (FEA) using the commercial
program COMSOL Multiphysics has been carried out. The mesh for the analysis is
depicted in Fig. 12a. In Fig. 12b the calculated flux is shown for a stationary analysis.
A dynamic FEA is carried out using the moving mesh formulation of the software
coupled with an ordinary differential equation for the mechanical subsystem. The
dynamic flexibility, calculated with the FEA, is also shown in Fig. 11a. A significant
difference to the result of the proposed MEC system exists. This can be explained by
leakage effects, i.e. not all the magnetic flux follows the predefined path. Therefore
the MEC model has been modified as illustrated in Fig. 11b with additional leakage
paths. The dynamic flexibility of the enhanced model is also depicted in Fig. 11a.
The FEA and the MEC analysis with the expanded model are in good agreement
and thus, it is confirmed, that leakage is the main cause for the differences in the
models. Consequently, the guidance of the magnetic flux through a structure has

2 The parameters of the MEC are calculated by �R = ABR , Ruc = �uc/(μfe A), Ric = �ic/(μfe A),
Rm = �m/(μ0A), Rd1 = (d0 − x)/(μ0A), Rd2 = (d0 + x)/(μ0A), Rσ1 = �σ1/(μ0�σ1b), Rσ2 =
�σ2/(μ0�σ2b). The values of the parameters used for the analysis are m = 0.1 kg, k =
3 × 104 Nm−1, F̂ = 1N (force amplitude of excitation), R = 0.015�, d0 = 3mm (nominal air
gap length), A = 100mm2, N = 35, BR = 1.2 T, �uc = 50mm, �ic = 20mm, �m = 2mm, �σ1 =
4mm, �σ2 = 13mm, b = 10mm (depth of iron core), μ0 = 4π × 10−7 Hm1, μ f e = 5000μ0.
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(a) (b)

Fig. 12 aMesh of the FEA model. b Simulation result from static FEA. Color Gradient: magnetic
flux density—White lines: magnetic field lines

to be designed very carefully. Furthermore, flux leakage does effect the damping
efficiency dramatically and therefore must be minimized in order to efficiently calm
structural vibrations.

3 Analysis of Models Based on Eddy Currents

Another inductive damping device may be derived from the matrix in Fig. 1 by pro-
ducing the modulation of the flux by moving a magnet in the vicinity of a conductive
material. As a source of the magnetic flux, a permanent magnet is chosen and the
transport is unguided. The induction is distributed over the conductive material. One
representation of this set of realizations of the functionalities is shown in Fig. 13a
and has been analyzed e.g. by Bae et al. [1]. Since the analytic calculation of eddy
currents is rather complex and only applicable for simple geometries, a mixed for-
mulation will be derived. Still, a short summary of the basic procedure as used in
e.g. [1, 5, 12] is given.

3.1 Analytic Description of Eddy Currents

According to Ohm’s law, the eddy current density J is given by

J = σE, (41)
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Fig. 13 a Model of eddy current damper as proposed by Bae et al. [1]. b Model of a single DoF
oscillator featuring position-dependent inductive damping

where σ is the electric conductivity of the material and E is the electromotive force.
If no electric charge accumulations exist, the electromotive force in a homogeneous
conducting rigid object, moving translationally at the velocity v in a constant mag-
netic field B, is given by

E = v × B. (42)

The electromagnetic force on the object due to eddy currents can be calculated by

F =
∫
V
J × B dV, (43)

which is known as the Lorentz force equation [11]. Neglecting the magnetic field
induced by the eddy currents, the magnetic field is a prescribed quantity and can be
calculated with Biot-Savart’s law. Inserting Eqs. (41) and (42) into Eq. (43) the force
due to eddy currents yields

F =
∫
V

σ (v × B) × B dV . (44)

From this, the part of the force acting against the movement of the object and thus,
as a damping force can be found as

Fd = v

∫
V

σ B2
⊥ dV . (45)

Herein v is the magnitude of the velocity and B⊥ is the magnitude of the part of the
magnetic flux density that is perpendicular to the velocity of themoving object. It can
be concluded, that the damping force due to the eddy currents is linear in the velocity.
This linearity in the velocity allows a numerical calculation of the damping force for
a specific velocity. Afterwards a damping parameter can be calculated by dividing
the damping force by this velocity. Further analysis may be carried out, using lumped
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models with the evaluated damping parameter. Note, that as the magnetic field of the
induced eddy currents is neglected in this derivation, the method is only suitable, for
(rather) low velocities.

3.2 Nonlinear Eddy Current Damping Element

The analysis in the previous subsection revealed that the damping force of a magnet
moving in a conductive tube is proportional to the velocity, thus it behaves identical
to linear viscous damping. In this section, the model of a permanent magnet moving
in a conductive tube, as proposed by Bae et al. [1], is upgraded with geometric dis-
continuities for position-dependent damping behavior. Therefore a gap is introduced
in the conductive tube as shown in the system in Fig. 13b.

To calculate the position-dependent damping parameter, a FEAmodel of themag-
net in the conductive tube with a gap has been set up. In a time dependent study the
magnet was moved with constant velocity v0 through the conductive tube and the
damping force Fd was calculated at each position. Afterwards, the resulting damp-
ing force Fd has been divided by the velocity v0 to obtain the damping parameter.
Furthermore, it has been normalized to a maximum value of one and stretched, so
that the maximum damping value is reached at ξ = ±1. The resulting normalized
position dependent damping parameter is depicted in Fig. 14a. For the FEA again the
moving mesh formulation has been used to adapt the mesh during the simulation.
Figure14b shows the FEA model at a specific time step.

-1.
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Fig. 14 aNormalizeddamping coefficient of position dependent eddy current damping.Red circles:
result of FEA—Blue line: fitted curve used for dynamic analysis.bModel of the eddy current damper
with geometric discontinuities and position-dependent inductive damping. White lines: magnetic
field lines—Gray gradient (in air): magnitude of magnetic flux density—Colored gradient (on
conductive tube): magnitude of eddy current density
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For the analysis of the systemdepicted inFig. 13b, the normalized dampingparam-
eter has been fitted with the curve shown in Fig. 14a. The equations of motion for
the system are given by

mẍ + d(x)ẋ + kx = F̂ sin(�t), (46)

where m is the mass of the moving object, d(x) is the position dependent damping
coefficient (not normalized), k is the stiffness of the spring, F̂ is the amplitude of an
external harmonic force and � is its frequency. The position of the moving object
is described by x . To minimize the number of parameters, the equation of motion
is converted into dimensionless form. Based on the characteristics ω0 = √

k/m and
thus τ = ω0t , the non-dimensional parameters η = �/ω0 and f̂ = F̂/(k�) are intro-
duced. Moreover, the scaled coordinate ξ = x

�
will be used, where � is the reference

length used for the stretch of the damping parameter. Introducing the re-scaled param-
eters and coordinates the damping term may be transformed as

d(x) = d0δ
( x

�

)
= d0δ(ξ) and

d0
m

= 2Dω0 (47)

where D is the damping factor and δ(ξ) is the normalized damping parameter, as
depicted in Fig. 14a. The dimensionless equation of motion is given by

ξ ′′ + 2Dδ(ξ)ξ ′ + ξ = f̂ sin(ητ). (48)

To solve the nonlinear differential equations, again a simple shooting method is
used. For the analysis, the maximum value of the damping parameter has been set
to D = 1. Figure15a shows the frequency response of the nonlinear damped single
degree of freedomdevice. The graph of the dynamic flexibility is depicted in Fig. 15b.
It shows that for higher excitation levels the resonance peak becomes lower, and
thus the position dependent damping allows for an amplitude dependent damping
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Fig. 15 a Frequency response and b dynamic flexibility of proposed nonlinear model for different
levels of the excitation force
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behavior. While small oscillations remain mainly unaffected, large oscillations are
efficiently suppressed. This behavior might be favorable in situations, where for a
better efficiency of a system a low damping ratio is necessary, but still large vibrations
must be prevented.

3.3 Nonlinear Magnetically Damped Tuned Mass Damper

The proposed nonlinear damping device could as well be used as a magnetically
damped tuned mass damper (TMD). A basic model of this is shown in Fig.16. The
equations of motion are given by

[
M + m m

m m

] [
ẍ
z̈

]
+

[
0 0
0 d0δ(z/�)

] [
ẋ
ż

]
+

[
k0 0
0 k

] [
x
z

]
=

[
F̂ sin(�t)

0

]
, (49)

where x is the coordinate describing the position of the primary mass M and k0 is
the stiffness of the spring connecting it with the environment. z is the coordinate
describing the position of the TMD with the mass m and k is the stiffness of the
spring connecting it with the primary mass. d0 is the damping coefficient and δ(z/�)
is the normalized position dependent damping parameter with the reference length �

as discussed in the previous subsection. To minimize the number of parameters, the
scaled quantities

ω0 =
√

k0
M

, ωT =
√

k

m
, DT = d0

2mωT
, μ = m

M
, ν = ωT

ω0
, (50)

f̂ = F̂

k0
�, τ = ω0t, η = �

ω0
, ξ = x

�
, ζ = z

�
(51)

are introduced. The dimensionless equations of motion read

Fig. 16 Single degree of
freedom oscillator with a
magnetically damped tuned
mass damper d(z) k

m
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k0
2

x

z F(t)

k0
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Fig. 17 Dynamic flexibility of the system with nonlinear damped TMD for different excitation
levels. a Primary mass. b TMD

[
1 + μ μ

μ μ

] [
ξ ′′
ζ ′′

]
+

[
0 0
0 2μνDT δ(ζ )

] [
ξ ′
ζ ′

]
+

[
1 0
0 μν2

] [
ξ

ζ

]
=

[
f̂ sin(ητ)

0

]
. (52)

The dynamic flexibility charts for different excitation levels for the TMD and for the
primary mass are shown in Fig. 17. The values of the parameters used for the analysis
are μ = 0.1, ν = 1 and DT = 0.2.

Due to the presence of damping in the TMD, the resonance amplitudes are lim-
ited. However, near the designed operating point (here: η ≈ 1) the system behaves
similar to a weakly damped TMDwhich may show very effective vibration compen-
sation. Thus, this nonlinear damper might combine the benefits of weakly damped
TMDs with the operational safety of optimally damped TMDs, which have smaller
resonance amplitudes, than weakly damped TMDs.

4 Conclusion

In a first step, basic functional elements of inductive damping devices were identified
and classified into a matrix. Using this schematic, a systematic derivation of possible
damping designs may be obtained by re-combining several options.

Based on this matrix, two basic designs were derived and analyzed in more detail.
All analyzedmodels show the possibility to efficiently reduce the vibration amplitude
of an oscillating structure, modeled as a single degree of freedom oscillator. From the
analysis of the systems, modulating the magnetic flux due to mechanical movement
and guiding the flux through the structure, it was concluded, that saturation has a
major influence on systems based on electromagnets, if only small air gaps occur in
the structure. Furthermore, itwas shown, that flux leakage pathsmust be implemented
in an analysis, as they strongly decrease the damping performance.

The analysis of the considered eddy current damping elements showed,
that neglecting the field of the eddy currents, the resulting damping force is
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proportional to the velocity. As the analytic calculation of eddy currents is only
favorable for simple geometries, a coupled numeric-analytic analysis was presented,
where the damping coefficient is calculated using FEAand the result is integrated into
a lumped parameter mechanical model. Using this procedure, the damping parameter
of a position dependent eddy current damper was evaluated and the dynamic behav-
ior of the system was analyzed. It was shown, that the proposed model is capable
of reducing predominantly large oscillations. Furthermore, the position-dependent
damping element was used in a TMD. The system with the TMD behaved similar
to a weakly damped TMD for small oscillations, but limited resonance amplitudes
effectively.
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