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1 Introduction

Effective, targeted vibration damping with low efficiency reduction is an impor-
tant goal for a modern design, especially for lightweight constructions and energy-
efficient applications. An ideal damper dissipates energy only near the resonance
frequency, when the undesired vibration amplitudes jeopardize the service life or
function of the system. Such dampers increase the overall energy efficiency of a
system.

To suppress undesired vibrations, viscous damping is introduced into the system
in most applications, e.g. in the automotive industry in the form of a hydraulic shock
absorber [2]. These damping mechanisms are always active and constantly dissipate
energy even when this is not necessary. Thus, reducing the energy efficiency of the
system. However, viscous damping is not the only way to reduce vibrations. The
use of absorbers for vibration reduction is also common in engineering [1, 11].
Vibration absorbers achieve at their tuned operating frequency optimal vibration
reduction. Nevertheless, at least one structural resonance must be overcome to reach
the operating frequency. Furthermore, these devices are sensitive to the inevitable
system parameter changes due to wear, time, and environmental conditions.

An additional alternative in vibration reduction are friction-based dampers, which
are widely used in engineering. These dampers are used mainly in three different
fields: in turbomachinery as so-called platform dampers, in civil engineering struc-
tures such as buildings and cables, and in railroad freight trucks. Platform dampers
are in most cases metal elements which are pressed between two blade platforms
by the centrifugal force in a gas turbine. These dampers are investigated mainly in
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two variations: as curved friction dampers and as wedge (or cottage-roof) friction
dampers [10]. In civil engineering friction dampers are mainly found in two forms. In
some applications, planar contact surfaces are combined, whereas in other applica-
tions varying contact geometries are used. Applications with planar contact surfaces
are found in [13], whereas investigations with geometric variations are presented in
[9]. A special variant of friction dampers, the so called wedge dampers, are used in
railroad trucks. These dampers are composed of a wedge placed between the bolster,
which carries the wagon, and side frame, which is connected to the wheels. The
geometric variations in the dampers’ sliding contact partners “simulate” a viscous
damping avoiding technological difficulties connected with the handling of fluids.
Due to their robustness, low cost, and low maintenance they are quite popular and
still investigated today [14].

A possible passive implementation of an energy-efficient vibration suppression
can be realized by dry friction. The special character of dry friction with stick-
slip transitions allows the design of elements that change their behavior. Frictional
contacts, which can stick and slide, change the structure of a system and thus its
behavior. The targeted design of the sticking and sliding dynamics allows systems
to passively adapt to current operating conditions. This paper focuses on three such
passive dry friction dampers: the dry friction lock-up damper, a prestressed slid-
ing wedge damper, and the friction damper with polynomial contact geometry. The
underlying operating principle of the dampers is based on the stick-slip properties
of dry friction. This ensures sticking at low excitation amplitudes, which prevents
any relative movement between the masses and thus no energy is dissipated. As soon
as the breakaway force of the damper is overcome, the system moves in the stick-
slip range. The breakaway condition ensures a selective energy dissipation, which
only occurs at high vibration amplitudes. This work uses the simplest friction model
namely the Coulombmodel, in which Stribeck effects and a difference between static
and dynamic friction coefficients are neglected.

The present paper is structured as follows. In Sect. 2 the dry friction lock-up
damper is investigated. The equations of motion of the dampers are derived and
numerical parameter studies are performed, which gives a first impression of the
system dynamics. In addition, an analytical solution for the systems is derived and
analyzed using the averaging method. Analogous investigations are carried out in
Sect. 3. Analytical solutions for different polynomial degrees are derived in Sect. 4
for the dry friction damper with polynomial contact surface. Experimental results
are presented in Sect. 5. The main findings are summarized in Sect. 6.

2 The Dry Friction Lock-Up Damper

The goal of the dry friction lock-up damper (Fig. 1) is to improve the dynamics of
an existing main system. In this paper the main system is represented by the primary
spring c1 and the primary mass m1. The lock-up damper, consisting of a dry friction
element with friction force R, a secondary spring c2, and a secondary mass m2 is
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Fig. 1 Lock-up with a
harmonic excitation on the
primary mass

attached to the main system. Due to the neglecting of both Stribeck effects and a
difference between static and sliding friction coefficients, the friction force R also
corresponds to the breakaway force of the friction element. The friction element
determines the stick-slip behavior of the system and thus also the conditions under
which the secondary spring influences the system dynamics. While sticking both
masses move together in the same way and the secondary spring is inactive. In the
inactive state, the secondary spring can be in a deflected state, but this does not affect
the motion of the system. The inactive secondary spring only affects the stiction
force. As soon as the friction element allows relative movement, the structure of the
system changes from a one degree to a two degrees of freedom oscillator. This leads
to a change in the number and value of of the system’s natural frequencies. The stick-
slip properties divide the system behavior into linear and nonlinear ranges, each of
which is determined by the closed and open state of the friction element respectively.
Therefore the system’s dynamics are characterized by these two ranges: the sticking
range and the sliding range. The system is in the sticking range as long as the absolute
value of the stiction force H is smaller than the breakaway force R (|H | ≤ R) and
the kinematic condition ẋ1 = ẋ2 is fulfilled. If one of these conditions is violated,
the system switches to the sliding range. The equations of motion for both ranges
are given by

while sticking

(m1 + m2)ẍ1 + c1x1 = F sin�t, (1)

H = m2 ẍ2 + c2(x2 − x1), (2)

while sliding

m1 ẍ1 + c1x1 − c2(x2 − x1) − R sgn(ẋ2 − ẋ1) = F sin�t, (3)

m2 ẍ2 + c2(x2 − x1) + R sgn(ẋ2 − ẋ1) = 0. (4)

The sticking range is described by one equation of motion and one algebraic
equation for the stiction force, whereas the sliding range is characterized by two
equations of motion. As described in [5], it is intuitive that the amplitude response of
the whole system follows the amplitude response of the linear system up to a certain
breakaway amplitude. After the breakaway point, a nonlinear region follows, where
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stick-slip and full sliding movements occur. The nonlinear range is only concluded
by the complete closing of the friction point over an entire period. Afterwards, the
amplitude response of the entire system follows the amplitude response of the linear
system with one degree of freedom again.

2.1 Numerical Investigations

To gain a first insight into the dynamics of the lock-up damper, numerical parameter
studies are carried out. The parameters of the main system are usually determined
a priori and therefore cannot be modified. In these studies, both the mass and the
spring stiffness are set to one without any restriction of the generality. Since the total
mass of the system should not be significantly changed, the value of the secondary
mass is chosen to be much smaller than the primary mass, e.g. one tenth of the
primary mass. In order to reduce amplitudes over the entire frequency spectrum, the
secondary stiffness is chosen to cancel out the resonance of the main system. Only
the breakaway force of the friction element remains as a freely selectable design
parameter. A parameter study on the influence of the friction force [12] is shown in
Fig. 2 for the parameters

m1 = 1 kg, m2 = 0.1 kg, c1 = 1 N/m, c2 = 0.1 N/m, F = F0 = 0.1 N.

The friction force R determines the breakaway frequency and thus determines
whether the system behaves mainly like a one or two degrees of freedom system. For
a systemwith one peak it is necessary that the breakaway frequency is higher than the
first resonance frequency of the two degrees of freedom system. On the basis of this

Fig. 2 Parameter study of
the lock-up damper for
R ∈ [0N(blau), 1.5N(rot)],
Ropt ≈ 0.0369 N
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Fig. 3 Parameter study of
the lock-up damper for
different excitation forces
with R = 0.05 N

parameter study the existence of an optimal friction force is identified. The optimal
friction force leads to a minimization of the maximum amplitude in the frequency
spectrum and must be tuned to the excitation force. This is clearly shown in Fig. 3.
An increase of the excitation force with the same friction force leads to considerably
larger amplitudes in a detuned lock-up damper. The reason for this is the relation-
ship between the energy dissipated by the damper and the relative amplitude. The
friction force is constant over the displacement. This leads to an energy dissipation
proportional to the relative amplitude. In the detuned case the dissipated energy is
not sufficient to limit the amplitudes. With the selected parameters, this effect can
be seen when the excitation is doubled.

2.2 Analytical Investigations

After the insight into the dynamics of the lock-up damper, an analytical solution is
advantageous for a deeper understanding of the system. A detailed description of
this solution can be found in [6]. To derive an analytical solution for this system,
the nonlinear equations of the system are considered. It is additionally assumed that
permanent sliding occurs. The first step is to derive the nondimensional equations of
motion of the system. The necessary transformations are
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z1 = m1x1 + m2x2
m1 + m2

, z2 = x2 − x1, (5)

ε = m2

m1 + m2
� 1, k =

√
c1
m1

, λ =
√

c2
m2

, p = λ

k
, (6)

τ = kt, (·)′ = d

dτ
(·), η = �

k
, μ = R

m2k2(1 − ε)
, (7)

f0 = F

k2(m1 + m2)
= ε f, f = O(1). (8)

The newly introduced variables z1 and z2 represent the movement of the center of
mass of the entire system and the relative movement between the masses. These
transformations lead to the nondimensional equations

z′′
1 + z1 = ε(z1 + z2 + f sin ητ) − ε2z2, (9)

z′′
2 + p2

1 − ε
z2 + μsgn(z′

2) = z1 − ε

(
z2 + f

1 − ε
sin ητ

)
. (10)

In order to obtain suitable equations for the averaging procedure, a Van der Pol
transformation is additionally applied and the slowly changing amplitudes and phase
differences of the variables are considered. This yields

z1 = A sin ϕ, z′
1 = A cosϕ, (11)

z2 = B sinψ, z′
2 = Bp cosψ, (12)

γ = ϕ − ητ, εδ1 = 1 − η, (13)

θ = ψ − ϕ, εδ2 = p − η, (14)

A′ = ε( f sin ητ + A sin ϕ + B sinψ) cosϕ − ε2B sinψ cosϕ, (15)

γ ′ = εδ1 − ε( f sin ητ + A sin ϕ + B sinψ) sin ϕ + ε2B sinψ sin ϕ, (16)

B ′ = ε

p

(
( Ã sin ϕ − μ̃sgn(cosψ) − (1 + p2)B sinψ

)
cosψ

−ε2

p

(
p2B sinψ + f̃ sin ητ

)
cosψ, (17)

θ ′ = εδ2 + ε

p

(
μ̃sgn(cosψ) + (1 + p2)B sinψ

)
sinψ

− ε

p
Ã sin ϕ sinψ + ε2

p

(
p2B sinψ + f̃ sin ητ

)
sinψ. (18)

It should be noted that in the Eqs. 17 and 18 the scaling A = ε Ã, μ = εμ̃ and
f = ε f̃ was applied. The reason for this, is that Eq. 10 depends only on the ratios
of these quantities and not on the actual quantities themselves. If these selected
parameters are scaled with the same factor, the equation will qualitatively yield the
same solution scaled only by the selected factor. For a more detailed explanation, the
reader is referred to [6]. If a first and second order averaging procedure is applied to
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Fig. 4 Analytical solution
of the lock-up damper

the Eqs. 15–18, the analytical solutions in Fig. 4 is obtained. The first-order solution
represents the qualitative behavior of the amplitude response. The resonance peak
of the system is limited and a declining characteristic curve in the resonance range
can be observed. The second order solution provides a quantitative improvement of
the result. It is also demonstrated, that the damper is very sensitive to changes of
the excitation amplitude (or the changes of the friction coefficient). Therefore, its
applicability is limited.

3 The Prestressed Sliding Wedge Damper

Similar to the lock-up damper, the aim of the prestressed sliding wedge damper is
to improve the dynamics of a main system with spring stiffness c1 and mass m1.
The damper is attached to the main system and consists of a prestressed mass m2

Fig. 5 The prestressed
sliding wedge damper
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between two wedges with the wedge angle α, see Fig. 5. The prestress force act-
ing on the wedges is produced by a spring of stiffness c2, which is prestressed by
a length �. In addition, the coefficient of friction μ describes the relationship of
the normal force to the friction force between the wedges and the mass. A relative
movement of the masses presses the wedges apart symmetrically. Furthermore, the
wedges are mounted on the main mass in such a way that they only transmit a force
in the vibration direction. Because the wedges are pressed apart, this damper more
robust compared to the lock-up damper. The friction force of the lock-up damper is
constant, whereas the friction force in the prestressed sliding wedge damper depends
on the relative displacement. If there is a relative displacement between the masses,
the normal force between the wedges and the mass increases due to the geome-
try and spring deflection. This change ultimately leads to a variable friction force,
which achieves limited vibration amplitudes at different excitation force amplitudes.
Analytical investigations of this system without preload can be found in [4]. The
industrial implementation of a sliding wedge damper without prestress in a drive
train is described in [8] and is called a anti-clutch-judder-damper (germ.: Anti-Rupf-
Tilger).

From a practical point of view, it makes sense to choose small coefficients of
friction, because these lead to a longer service life of the damper [7]. However, a
reduction of the coefficient of friction also reduces the energy dissipation. If this effect
is not desired, compensation can be made by adjusting the angle α. The equations
of motion of the system are given by

while sticking

(m1 + m2)ẍ1 + c1x1 = F sin�t, (19)

H = m2

m1 + m2
(F sin�t − c1x1), (20)

while sliding

m1 ẍ1 + c1x1 − FWD = F sin�t, (21)
m2 ẍ2 + FWD = 0, (22)

FWD = 2c2 (2 tan α|x2 − x1| + �)
tan αsgn(x2 − x1) + μsgn(ẋ2 − ẋ1)

1 − μsgn(ẋ2 − ẋ1) tan αsgn(x2 − x1)
. (23)

The stiction force H in Eq. 20 represents the necessary constraining force to prevent
relative movement between the primary and secondary mass. Accordingly, it is not
the stiction force between the wedges and the mass m2. Furthermore, for small
coefficients of friction it is permissible to linearize the damper force with respect
to the friction parameter. As shown in Fig. 6 the damper force can be broken down
into a dissipation-free portion FC,WD and a dissipativ portion FD,WD. These terms are
described by



A Study on Friction Dampers and Their Contact Geometry Design 33

Fig. 6 Break down of the
damper force of the
prestressed sliding wedge
damper with xrel = x2 − x1

FWD = FC,WD + FD,WD, (24)

FC,WD = 2c2(2 tan α(x2 − x1) + �sgn(x2 − x1)) tan α, (25)

FD,WD = 2c2 (2 tan α|x2 − x1| + �)
μ

cos2 α
sgn(ẋ2 − ẋ1). (26)

The nonlinearities in the wedge damper are much more pronounced than in the
lock-up damper, because for this damper there are discontinuities in its force both as
a function of the position and as a function of the velocity. In addition, the dissipative
part of the damper force is proportional to the displacement. As a result, the dissipated
energy is proportional to the square of the relative amplitude, similar to a viscous
damper. Based on this finding, the authors of this work refer to this device as a
pseudo-viscous damper.

3.1 Numerical Investigations

The first findings of this system are obtained by numerical simulations. As in Sect. 2,
the parameters of themain system are exemplary set to one and the secondarymass is
chosen as one tenth of themainmass. However, the prestresses slidingwedge damper
offers a higher design flexibility, since the wedge angle α, the coefficient of friction
μ, the preload length � and the secondary stiffness c2 can be considered as design
parameters. The numerical studies of thiswork are limited to two design parametersα

and� and to the robustness of the system against the excitation amplitude F . Unless
otherwise specified, the following standard parameters are used for the numerical
studies

m1 = 1 kg, m2 = 0.1 kg, c1 = 1 N/m, c2 = 0.1 N/m,

F = F0 = 0.01 N, α = 30◦, � = 0.01 m, μ = 0.01.
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Fig. 7 Parameter study of
the prestressed sliding wedge
damper for different wedge
angles α

The variation of the wedge angle α shows that this parameter has a significant
influence on the effective stiffness c2,eff between the masses. Based on the non-
dissipative part of the damper force, the effective stiffness can be derived as the
coefficient of relative displacement, c2,eff = 4c2 tan2 α, cf. Eq. 25. This influence is
shown in Fig. 7. At small angles, there is a low effective stiffness and thus a peak
at low frequencies and a peak near the resonance of the sticking system. Increasing
the effective stiffness by the changing angle α causes both resonances to shift to
the right, increasing the first peak and decreasing the second one. Additionally, the
wedge angle has an influence on the dissipated energy. The higher the wedge angle,
the higher the dissipative force at constant relative displacement, cf. Eq. 26.

Similar to the friction force of the lock-up damper, the prestress displacement
determines the breakaway frequency at which the system changes to the nonlinear
stick-slip range. The parameter study of the prestress displacement � is shown in
Fig. 8. A nonexistent prestress (� = 0) results in a two degrees of freedom system
that does not stick. If the prestress displacement is increased, the sliding range is
reduced and two sticking ranges appear at the edges of the amplitude response. The
higher the displacement, the larger the sticking ranges become. For � → ∞ the
system always sticks. An optimum prestress displacement exists for this system as
well. This optimumcauses the best possible switching between the two extreme cases
and thus achieves lower vibration amplitudes. Furthermore, non-periodic solutions
can occur in the system. These can be both quasi-periodic and chaotic. For lowest
possible vibration amplitudes over the whole frequency range, this type of solution
should be avoided.

The last study of the friction absorber deals with the robustness of the system
against a change of the excitation force amplitude. Figure 9 shows the normalized
magnification factor of the system for different excitation forces. In contrast to the
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Fig. 8 Parameter study of
the prestressed sliding wedge
damper for different preload
displacements �

Fig. 9 Parameter study of
the prestressed sliding wedge
damper for different
excitations forces F with
V = Ax1,F/F, V0 =
Ax1,F0/F0

lock-up damper, the amplitudes remain limited. The curves are not directly on top
of each other, but the differences are minimal. An increase of the excitation force
causes almost no change of the magnification factor. Consequently, the vibration
amplitudes of the systemare amplified by approximately the same factor. This implies
a scalability of the amplitude responses, although an exact scalability can only be
observed in linear mechanical systems with viscous damping. These last correlations
confirm the pseudo-viscous behavior of the friction damper.
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3.2 Analytical Investigations

The analytical solution of the friction damper [4] is derived analogous to the lock-up
damper via an averaging method. For this purpose the equations are nondimension-
alized and the following dimensionless parameters are introduced

λ = m2

m1
, k2 = c1

m1
, f = F

m1k2
, τ = kt, (·)′ = d

dτ
(·), η = �

k
, (27)

a = tan2 α, b = μ
tan α

cos2 α
c = � tan α, d = �μ

cos2 α
, (28)

ε � 1, f, �, μ = O(ε). (29)

If these dimensionless parameters are set inEqs. 19–22, the dimensionless differential
equations are given by

x ′′
1 + x1 + 4λa(x1 − x2) = f sin ητ

−4λb|x1 − x2|sgn(x ′
1 − x ′

2) − 2λcsgn(x1 − x2), (30)

λx ′′
2 − 4λa(x1 − x2) = 4λb|x1 − x2|sgn(x ′

1 − x ′
2) + 2λcsgn(x1 − x2). (31)

Equations 30 and 31 are rewritten in matrix form and a modal transformation is
applied

Mx′′ + Cx = εfNL(x,�), (32)

x = Rz = R[p, q]
 with R
MR = I, R
CR = diag(η2
i ), (33)

R
MRz′′ + R
CRz = εR
fNL(z) = εf̃NL(z), (34)

p′′ + η2
01 p = ε f̃NL,1(p, q,�), (35)

q ′′ + η2
02q = ε f̃NL,2(p, q,�). (36)

Equations 35 and 36 describe the equations of motion of the system in the modal
coordinates. The equations are weakly coupled because the terms on the right side
of the equation are of the order ε. In order to obtain decoupled equations, only
the corresponding modal coordinate is considered exclusively near its resonant fre-
quency. Therefore the remaining modal coordinate is neglected [4]. This leads to the
decoupled equations of motion in the modal coordinates

η ≈ η01 : p′′ + η2
01 p = ε f̃NL,1(p, 0,�), (37)

η ≈ η02 : q ′′ + η2
02q = ε f̃NL,2(0, q,�). (38)

In order to derive an analytical solution, a Van der Pol transformation is applied to
the system analogous to the lock-up damper and the slowly changing amplitude and
phase differences of the system are investigated
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Fig. 10 Analytical solution of the prestressed sliding wedge damper for the standard parameters

p = A1 sin ϕ1, p′ = A1η01 cosϕ1, ϕ1 = ητ + ψ1, (39)

q = A2 sin ϕ2, q ′ = A2η02 cosϕ2, ϕ2 = ητ + ψ2, (40)

i = {1, 2}, δi = η0i − η, (41)

A′
i = ε f̃NL,i(Ai , ψi , ϕi ) cosϕi , (42)

ψ ′
i = ε

(
δi − 1

Aiη0i
f̃NL,i(Ai , ψi , ϕi ) cosϕi )

)
. (43)

The stationary solution of the equations for Ai andψi is determined by the averaging
procedure and the results are shown in Fig. 10. It can be seen that the analytical
solution approximates the numerical resultswith the accuracyof asymptoticmethods.
The deviations from the numerical solution are of the order ε, which confirms the
validity of the analytic solution.

4 The Friction Damper with Polynomial Contact
Geometries

The friction damperwith polynomial contact geometries is quite similar to the sliding
wedge damper analyzed in Sect. 3. The damper is attached to the main system and
is composed of two main elements: a vibration absorber and two contact surfaces
with a polynomial geometry. The secondary spring c2 and secondary mass m2 make
up the absorber portion of the damper and allow it to reduce vibration in the vicinity
of the tuned frequency. As with the sliding wedge damper, the contact surfaces are
clamped on to the secondarymass via a third spring c3 and the prestress displacement
�. The geometry of the contact surfaces are described by the function y(xrel) =
y(x2 − x1) = γ |x2 − x1|n withn ∈ N. For the sake of simplicity only one polynomial
term is introduced in the function y. Additionally, the coefficient μ describes the



38 J. Aramendiz and A. Fidlin

Fig. 11 The friction damper with polynomial contact geometry

relationship between the normal force and the friction force acting on the secondary
mass (or on the contact surfaces) (Fig. 11).

As with the sliding wedge damper, the prestress level determines when the sys-
tem finds itself in the linear sticking range or in the nonlinear stick-slip range. The
equations of motion for both ranges are given by

while sticking

(m1 + m2)ẍ1 + c1x1 = F sin�t, (44)

H = m2

m1 + m2
(F sin�t − c1x1), (45)

while sliding

m1 ẍ1 + c1x1 − c2(x2 − x1) − FPD = F sin�t, (46)

m2 ẍ2 + c2(x2 − x1) + FPD = 0, (47)

FPD = 2c3(2y + �)
yx + μsgn(ẋ2 − ẋ1)

1 − μsgn(ẋ2 − ẋ1)yx
, (48)

y = γ |x2 − x1|n, yx = nγ |x2 − x1|n−1sgn(x2 − x1). (49)

Analogous to the sliding wedge damper, the force FPD is linearized with respect to
the friction coefficient. This linearization allows an insight into the damper force and
a practicable separation into a dissipation free FC,PD and dissipativ portion FD,PD.
These quantities are given by

FPD ≈ FPD,lin = FC,PD + FD,PD, (50)

FC,PD = 4c3γ 2n(x2 − x1)2n−1 + 2c3�γ n|x2 − x1|n−1sgn(x2 − x1), (51)

FD,PD = 4c3μ
(
γ |x2 − x1|n + γ 3n2|x2 − x1|3n−2

)
sgn(ẋ2 − ẋ1)

+2c3�μ
(
1 + γ 2n2|x2 − x1|2n−2

)
sgn(ẋ2 − ẋ1). (52)

As noticed from Eqs. 51 and 52, the contact geometries introduce a dominant non-
linear stiffness of the degree 2n − 1, as well as a dominant nonlinear damping of the
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degree 3n − 2. These terms will mainly determine the behavior of the systems in the
resonance regimes and the damping capability of the system.

Since the analytical procedure was validated for the sliding wedge damper, the
investigations in this section are limited to analytical considerations of the friction
damper with polynomial contact geometries. To this end, the equations of motion are
nondimensionalized. In order to ensure a vibration absorption frequency, dominant
linear terms are required for low amplitude vibrations. Therefore, a soft spring c3 is
chosen with c3 = εc̃3 and ε � 1. The necessary transformations for the analytical
considerations are given by

m2

m1
= λ,

c1
m1

= ω2
01, τ = ω01t,

d( )

dt
= ω01

d( )

dτ
, η = �

ω01
, p = c2

m1ω01
,(53)

a = 4c̃3
m1ω

2
01

, b = 4c̃3μ

m1ω
2
01

, c = 2c̃3�

m1ω
2
01

, d = 2c̃3�μ

m1ω
2
01

, ε f = F

m1ω
2
01

. (54)

Inserting these transformations in the equations of motion yields

x ′′
1 + x1 − p2(x2 − x1) = ε( f sin ητ + fPD) = ε f1, (55)

λx ′′
2 + p2(x2 − x1) = −ε fPD = ε f2, (56)

fPD = aγ 2n(x2 − x1)2n−1 + b
(
γ |x2 − x1|n + γ 3n2|x2 − x1|3n−2

)
sgn(x ′

2 − x ′
1)

+cγ n|x2 − x1|n−1sgn(x2 − x1) + d
(
1 + γ 2n2|x2 − x1|2n−2

)
sgn(x ′

2 − x ′
1) . (57)

Subsequently, a modal coordinate transformation is applied yielding first the weakly
coupled differential equations in the modal coordinates. By only considering the cor-
responding modal coordinate in the respective resonance regime, the fully decoupled
differential equations are obtained

η ≈ η01 : p′′ + η2
01 p = ε(r11 f1(p, 0) + r21 f2(p, 0)), (58)

η ≈ η02 : q ′′ + η2
02q = ε(r12 f1(0, q) + r22 f2(0, q)). (59)

For the sake of brevity and due to the length of the expressions further equations are
omitted. The parameters are chosen as follows

m1 = 1, m2 = 0.1, c1 = 1, c2 = 0.1, c3 = 0.01,

� = 0.1, γ = 1, μ = 0.1, F = 0.01.

The first consideration focuses on the amplitude response of the polynomial damper
for different polynomial degrees, c.f. Fig 12. As expected, multiple solution branches
exist for n > 1 due to the nonlinear stiffness terms. Here the advantages and disad-
vantages of the damper are noted. Due to the nonlinear dissipative terms the maximal
amplitude of the system is greatly reduced. For example a polynomial degree of n = 4
leads to a maximum amplitude reduction of 72, 9% in comparison to a polynomial
contact surface with n = 1. This amplitude reduction comes at the price of multi-
ple branch solutions, thus leading to higher possible amplitudes within the multiple
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Fig. 12 Amplitude response of the friction damperwith polynomial contact geometries for different
polynomial degrees

solution range and amplitude jump when leaving said range. Especially the jumps in
amplitude could prove detrimental to the function and life span of the main system
[3]. Furthermore, the multiple solution range increases with the excitation leading
to an amplitude rise over a wider range. However, if the excitation amplitude is
known and a system overload can be excluded, the polynomial contact surface can
be designed in order to avoid multiple solutions and effectively reduce amplitude
vibrations.

An additional analytical consideration evaluates the relationship between the exci-
tation force and the maximal amplitude in the system’s response. Figure 13 shows
that for low excitation forces the contact surface with lower polynomial degree result
in lower maximal amplitudes. This is due to the relationship between the dissi-
pated energy and the relative displacement, which is approximately described by
ED ∼ (Arel/K )3n−1. As is seen from this relationship, low values of Arel caused by

Fig. 13 Excitation vs maximal amplitude relationship for different polynomial degrees
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low excitation forces lead to a significantly lower dissipated energy for n > 1. Fur-
thermore, all curves cross the same point where the exponent has no influence on the
dissipated energy, c.f. Fig 12.

5 Experiments

Based on the described analytic results, an experimental setup has been developed.
The first experiments were performed together with the group of Professor Sattel
at the TU Ilmenau, see Fig. 14. This setup allows for the investigation of different
add-on damper systems at comparatively low frequencies (10–60 Hz) with large
amplitudes (0.1–2 mm). The results confirm the theoretically predicted behavior, c.f.
Figs. 2, 3 and 15. In Fig. 15a, the curves represent different preloads of the friction
contact. The blue curves correspond to a zero breakaway force (no preload). The
system behaves as a tuned mass damper, demonstrating two prominent peaks and the
strong suppression of vibrations at the tuning frequency. The red curves correspond
to very high preload, which ensures permanent sticking in the friction contact. The
system’s behavior in the last case corresponds to a one degree of freedom oscillator.
The curves in between demonstrate that the lock-up damper is able to damp the peak
around the first resonance. Furthermore, the systems sensitivity with respect to the
excitation amplitude was also validated, c.f. Fig 15b. A comparison between the dry
friction lock-up damper and a magneto-electro rheological damper is presented in
[12].

In order to validate the numerical and analytical predictions of the performance of
the wedge damper, a second setup was designed, see Fig. 16. To a certain extent, this
setup uses the same parts as the setup for the lock-up damper and is also designed for
low frequencies and large amplitudes. The experimental results confirm thenumerical
and analytical simulations. The prestress level on the damper determined how the

a) b)

Fig. 14 a Experimental setup for testing of the lock-up mass damper. b Detailed view on the
lock-up element
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a) b)

Fig. 15 a Prestress variation results. b Excitation amplitude variation results

a) b)

Fig. 16 a Experimental setup for testing of the wedge damper. b Detailed view on the wedge
element

system behaves, analogously to the breakaway force of the lock-up damper. If the
prestress level is too high, the system behaves as a one degree of freedom system,
whereas if it is set to zero, a systemwith two degrees of freedom is observed, c.f. Fig.
16a. Additionally, Fig. 16b shows the magnification factor V for different excitations
amplitudes and proves the damper’s robustness, i.e. its scalability (Fig. 17).

6 Conclusions

This work investigated three friction based dampers: the lock-up damper, the sliding
wedge damper, and the friction damper with polynomial contact surfaces. It can be
stated that the friction-based dampers demonstrate their ability to diminish forced
vibrations tightly focused on the resonance ranges. Furthermore, the contact geom-
etry significantly determines the characteristics of the damper. The planar contact
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a) b)

Fig. 17 a Prestress variation results 6δmin = 0.7mm. b Magnification factor results for different
excitation amplitudes

geometry of the dry lock-up damper has a limited robustness and therefore a reduced
applicability. An increase in robustness is observed in the prestressed wedge damper,
which has a linear varying contact geometry. In order to avoid unnecessary energy
losses, the wedge damper can be prestressed and forced into the stick-phase as long
as the vibrations remain sufficiently small. These passive dampers are either optimal
in the passage through resonance or at a certain tuned frequency, but not in both. The
friction based damper with polynomial contact surfaces addresses this limited appli-
cability to a certain extent. Namely, when the range of the excitation force amplitude
is known a priori.

The developed analytical approaches enable to predict the behavior of such sys-
tems and to make the reasonable parameter choice for the design of real devices.
These analytical results are verified via experiments for the lock-up damper and the
sliding wedge damper. Comparing the analytical results, it is noted that the devel-
oped approach based on the averaging technique enables accurate prediction of the
dynamics of such devices.
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