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1 Introduction

In the light of the current environmental crisis, lightweight design becomes an
increasingly important aspect in various engineering disciplines. Appropriate appli-
cation of lightweightmaterials and structures can significantly reduce the energy con-
sumption during manufacturing, operation and recycling of a product. Lightweight
structures are characterized by a high stiffness relative to their mass, which how-
ever makes them prone to noise, vibration and harshness. In the current engineering
practice, vibration mitigation is usually achieved by adding damping treatments in a
late stage of the design process or even after manufacturing. The resulting increase
in mass and volume can be significant and deteriorates the ecological footprint of
the product. Recent approaches for a deliberate introduction of energy dissipation
includes materials with high inherent damping [1] and the use of special devices such
as particle dampers [2], electrorheological valves [3] and acoustic black holes [4].

This contribution deals with another, often neglected damping phenomenon, com-
monly denoted as acoustic radiation damping. That is the energy dissipation in
vibrating structures by virtue of far-field sound radiation, accounting for a significant
share in the overall damping of lightweight structures. Although radiation damping is
not to be understood as a deliberately introduced dampingmechanism, it nevertheless
requires accurate quantification. In fact, deliberately introduced treatments require
that the extent of added damping is at least within the same order of magnitude as
radiation damping in order to be effective [5]. Furthermore, including the effect of
radiation damping facilitates more reliable vibroacoustic simulations.

Early attempts to estimate radiation damping are based on the principles of power
flow and assume a sufficiently high modal density [6, 7]. While these expressions
are accurate approximations in the high frequency range above coincidence [8],
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they are rather deficient at low frequencies due to well-separated modes. The latter
implies that radiation damping is strongly dependent on the actual excitation and
mounting condition of the structure at hand. The applicability of the abovementioned
theoretical expressions to complex geometries and to inhomogeneous materials is
also difficult to judge. Alternatively, experimental assessment of radiation damping
is possible based on sound power measurements inside reverberation chambers and
anechoic rooms [9]. This allows to consider geometries that are more complex and
also to accurately reflectmaterial properties. If themeasurements are conducted in the
actual mounting condition, even the effect of the boundary conditions is realistically
included. However, in the low frequency range, reliable acoustic measurements are
hardly possible due to the modal behavior of the rooms [10].

This contribution presents a framework for a low frequency assessment of radi-
ation damping by acoustic simulations based on the boundary element method
(BEM) [11]. The use of BEM yields clear advantages compared to other approaches
for evaluating sound radiation and associated damping. Where domain-based dis-
cretization methods such as the finite element method (FEM) [12] necessitate spe-
cial treatments for truncating the far-field sound radiation [13], modeling in BEM is
restricted to the radiating surface of the structure. Moreover, compared to the above
mentioned experimental approaches, which require special facilities with limited
scope of application, the applicability of BEM is more versatile allowing to cover
a large range of frequencies and geometrical configurations. This contribution com-
bines BEM with both a structural simulation model [8] and with an experimental
characterization of structural mobility [14, 15]. Excitation-dependent radiation loss
factors as well as modal loss factors that are associated with certain structural modes
are derived.

The remainder of the contribution is organized as follows. Section2 presents the
methodological tools for evaluating radiation damping, including BEM, FEM and
structural mobilitymeasurements. Section3 presents an application of thesemethods
to a honeycomb sandwich panel. Finally, themain content and results are summarized
in Sect. 4.

2 Methods

This section describes the framework for a numerical and an experimental-numerical
assessment of radiation damping. In the upcoming derivations, a harmonic time
dependency of e−iωt is assumed, where i = √−1, the angular frequency is ω = 2π f
and t denotes the time.
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2.1 Boundary Element Method for the Evaluation of Sound
Radiation

In this work, the propagation of acoustic waves in the fluid surrounding the structure
is modeled by the inhomogeneous Helmholtz equation [16]

�p(x) + ω2

c2
p(x) = −q, (1)

in which c is the speed of sound and q refers to the source. The sound pressure field
p(x) is the sum of the scattered field ps and the incident field pi. The same applies
to the fluid particle velocity vf , i.e.

p(x) = ps(x) + pi(x) (2)

vf(x) = vs
f (x) + vi

f(x). (3)

Reformulation of Eq. (1) by the Kirchoff integral theorem and collocation discretiza-
tion using boundary elements yields the linear system of equations [16]

H(ω)p = G(ω)
(
vf − vif

) + H(ω)pi (4)

for the description of the acoustic field. Therein, p is the unknown vector contai-
ning the sound pressure solution at the nodes. The frequency dependent coefficient
matrices H(ω) and G(ω) relate the fluid particle velocity vf to the sound pressure.
Acoustically rigid baffles can be taken into account by evaluating H(ω) and G(ω)

using a half-space formulation with a modified Green’s function [17]. The incident
sound pressure field is denoted by pi and the corresponding incident particle velocity
is vif .

After solving Eq. (4), the time-averaged radiated sound power can be obtained
from

P = 1

2
Re

(
pT�v∗

f

)
, (5)

where (·)∗ denotes the conjugate complex, (·)T is the transpose, and� is the boundary
mass matrix, which is obtained by integration of the boundary element interpolation
functions. Note that only the real part Re (·) of the complex sound power is associated
with radiation damping. The imaginary part of the sound power corresponds to near-
field sound radiation, which has a mass-like effect on the structure and hence, does
not dissipate energy.
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2.2 Numerical Assessment of Radiation Damping Using
Finite and Boundary Elements

The fluid particle velocity vf in Eqs. (4) and (5) is determined by the oscillations of
the solid structure that is submerged by the fluid. The underlying equations of linear
time-harmonic elasticity are discretized by finite elements, which yields [18]

(
K − iωD − ω2M

)
u = fs + ff . (6)

The vector u contains the unknown displacement degrees of freedom (DOFs). The
matricesK,D,M are related to the stiffness, damping and mass of the structure. The
excitation is a combination of structural forces fs and fluid forces ff . The latter acts by
virtue of the surrounding acoustic field. This coupling condition and the continuity
condition can be expressed as

ff = Csfp, and vf = −iωCfsu, (7)

inwhich thematricesCsf andCfs establish the coupling between the structural and the
acoustic subdomains [19]. Combining Eqs. (4), (6) and (7) yields the fully coupled
structural acoustic system

[
K − iωD − ω2M −Csf

iωG(ω)Cfs H(ω)

] [
u
p

]
=

[
fs

−G(ω)vif + H(ω)pi

]
. (8)

Forming the Schur complement of H(ω) with respect to the block system matrix in
Eq. (8) and thereby eliminating the pressure DOFs from Eq. (8) yields

[
K − iωD − ω2M + iωCsfH−1(ω)G(ω)Cfs

]
u = fs + Csf

(
pi − H−1(ω)G(ω)vif

)

︸ ︷︷ ︸
ft

,

(9)
which can be interpreted as a structural equation with an additional term correspon-
ding to the mass and damping contributions of the fluid. The total force vector ft in
Eq. (9) comprises both, structural loading fs and acoustic loading due to the incident
acoustic field characterized by pi and vif . Efficient strategies for solving equations of
form (9) are discussed in e.g. [20–22].

2.2.1 Harmonic Radiation Loss Factors

Harmonic radiation loss factors are a result of a frequency-wise response analysis
and thus depend on the type of the excitation. They are obtained by relating the
time-averaged radiated sound power P obtained by Eq. (5) to the time-averaged total
energy Etot of the vibration [23], i.e.
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ηr = P

|ωEtot| . (10)

In harmonic problems, the time-averaged total vibrational energy in Eq. (10) is equiv-
alent to twice the time-averaged potential energy. This assumption gives [18]

Etot = 1

2
uTKu∗ − 1

2
fHt u. (11)

The first term in Eq. (11) is the potential energy due to the elastic straining and
the second term corresponds to the work done by external forces. The superscript
(·)H indicates the conjugate transpose of a matrix. In view of the balance of forces
in Eq. (9), the time-averaged total vibrational energy can alternatively be expressed
as twice the sum of time-averaged kinetic and dissipated energies of the structural
acoustic system, i.e.

Etot = 1

2
uT

(
ω2M + iωD − iωCsfH−1(ω)G(ω)Cfs

)
u∗. (12)

Besides the inertial and damping terms corresponding to the finite element matrices
M andD, Eq. (12) also includes energy contributions of the acoustic field. The imag-
inary part of H−1(ω)G(ω) is associated with the additional mass effect of the fluid,
and its real part corresponds to radiation damping.

Since the energy expressions in Eqs. (11) and (12) are fully equivalent to each
other, either of them can be employed to evaluate radiation damping by Eq. (10) in
the context of a coupled FEM-BEM analysis. In practice, the expression based on
the potential energy in Eq. (11) is more efficient to evaluate since it only comprises
sparse coefficient matrices.

2.2.2 Modal Radiation Loss Factors

While the harmonic loss factor given by Eq. (10) depends on the type of the excita-
tion, an alternative measure for radiation damping can be derived based on a modal
analysis of the structural acoustic system. Modal analyses of closed acoustic cavities
can be solved using FEM [24] or frequency independent BEM formulations [25].
These techniques yield linear eigenvalue problems (EVPs) forwhichwell-established
algorithms are available [26]. The situation is different in the context of exterior
acoustic domains, which are the relevant case for the analysis of radiation damping.
When using the coupled FEM-BEM formulation as described in this contribution,
the underlying EVP is obtained by setting the right-hand side of Eq. (9) to zero, i.e.

[
K − iω̃D − ω̃2M + iω̃CsfH−1(ω̃)G(ω̃)Cfs

]

︸ ︷︷ ︸
A(ω̃)

� = 0, (13)
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in which the vector � denotes a fluid-loaded displacement mode. Equation (13) is
a nonlinear EVP, since the coefficient matrices H(ω̃) and G(ω̃) implicitly depend
on the eigenvalue parameter ω̃. Recent approaches for solving nonlinear EVPs of
the form (13) are based on contour integration [27, 28] and on rational approxima-
tions [29]. In this contribution, the block SS contour integral method [8] is employed,
which essentially transforms the nonlinear EVP (13) into a generalized EVP

H1ψ = λH2ψ, (14)

with the eigenvector ψ and eigenvalue λ. The latter is identical to the complex
eigenfrequency ω̃ of the structural acoustic system in Eq. (13). The block matrices
H1,H2 ∈ C

K L×K L are defined as

H1 =

⎡

⎢⎢⎢
⎢
⎣

M0 M1 · · · MK−1

M1
...

... M2K−3

MK−1 · · · M2K−3 M2K−2

⎤

⎥⎥⎥
⎥
⎦

, H2 =

⎡

⎢⎢⎢
⎢
⎣

M1 M2 · · · MK

M2
...

... M2K−2

MK · · · M2K−2 M2K−1

⎤

⎥⎥⎥
⎥
⎦

, (15)

where K and L are positive integers and need to be set by the user. The product K L
determines the subspace dimension. The moments Ml ∈ C

L×L are obtained from

Ml = 1

2π i

∮

C
zlUHA−1(z)V dz, l = 0,...,2K − 1, (16)

where the matricesU andV contain random source vectors as columns. The original
system A is evaluated at the complex-valued shifts z. The latter is defined along an
elliptic contour C that has its major axis aligned with the real axis of the complex
plane. The two vertices on the real axis correspond to the lower and upper frequency
bounds ( fmin, fmax) respectively. A suitable definition of an ellipse can be given as

z(θ) = γ + ρ (cos θ + iζ sin θ) , θ ∈ [0, 2π) , (17)

where γ = ( fmax + fmin) /2 andρ = ( fmax − fmin) /2.After solving the generalized
EVP (14), the fluid-loaded structuralmodes are obtained from� = Sψ .With the def-
inition in Eq. (17) at hand, approximations of the matricesMl and S = [

S0,...,SK−1
]

can be computed using the N -point trapezoidal rule, i.e.

Ŝl = 1

iN

N∑

j=1

(
z(θ j ) − γ

ρ

)l

z′(θ j )A−1z(θ j )V, M̂l = UHŜl , (18)

where N denotes the number of integration points on the contour and θ j = 2π( j −
1)/N , j = 1,...,N . The block matrices are assembled according to Eq. (15) using
the approximated moments M̂l . Finally, the generalized EVP Ĥ1ψ̂ j = λ̂ j Ĥ2ψ̂ j can
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be solved and the eigenfrequencies ω̃ j as well as the fluid-loaded modes � j , j =
1,...,K L can be obtained by

ω̃ j = γ + ρλ̂ j , � j = Ŝψ̂ j . (19)

The modal loss factor corresponding to a structural mode� j is determined by [5]

η j = −2
Im

(
ω̃ j

)

Re
(
ω̃ j

) . (20)

Note that Im
(
ω̃ j

)
is negative since the harmonic time dependency is defined as

e−iωt . Assuming D = 0, the modal loss factor in Eq. (20) quantifies the extent of
radiation damping for the corresponding fluid-loaded structural mode, since the ener-
gy dissipation due to sound radiation is the only damping contribution. In that case,
the modal loss factor in Eq. (20) is equivalent to the harmonic loss factor given
by Eq. (10) at the respective eigenfrequency f j = Re

(
ω̃ j

)
/2π , assuming that the

respective mode is excited in the response analysis.

2.3 Hybrid Experimental-Numerical Assessment
of Radiation Damping

While the above described coupled FEM-BEM approach facilitates an accurate rep-
resentation of the acoustic conditions and associated effects such as scattering and
short-circuiting in the low frequency range, it suffers from two disadvantages when
compared to an experimental evaluation of sound radiation. First, finite elementmod-
els usually introduce vast simplifications of boundary conditions such as clamped
or simply supported, which can yield large errors in acoustic quantities when sound
radiation is mainly induced by edge and corner motions [23]. Second, vibroacoustic
behavior is largely determined by the elastic material properties of the structure at
hand. It is clear that accurate predictions of radiation damping therefore demand pre-
cisematerialmodels. Ironically, radiation damping is particularly relevant in complex
material configurations that are designed to achieve a high ratio of bending stiffness
to mass. These issues can be addressed by a hybrid experimental-numerical method
developed in [15]. It is briefly reproduced below.

The structural finite element model is omitted and instead, the structure is cha-
racterized by

vr = Y(ω)
[
fe + Cef

(
pi − H−1(ω)G(ω)vif

)]
, (21)

in which Y(ω) is a mobility matrix containing experimentally determined transfer
functions that relate the force excitation to the surface velocity. The vector vr contains
the surface velocities at the nodes of the response grid. The excitation vector in square
brackets on the right-hand side of Eq. (21) comprises structural excitation fe as well
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as excitation by an incident acoustic field. The excitation vector is defined on a
(possibly different) excitation grid. The force associated with the incident acoustic
field is computed by BEM resulting in a similar expression for the force vector as on
the right-hand side of Eq. (9). Having evaluated vr for a given excitation, the particle
velocities on the nodes of the boundary element model are computed by

vf = Cfrvr, (22)

and the pressure field and sound radiation can be obtained by Eqs. (4) and (5). The
couplingmatrixCef inEq. (21) relates the acoustic quantities on the boundary element
mesh to the excitation grid, and similarly, Cfr in Eq. (22) establishes the coupling
between the response grid and the boundary element nodes.

In order to assess radiation damping via Eq. (10), the time-averaged total vibra-
tional energy is evaluated by

Etot = 1

2
vTr

(
Mr − i

ω
CrfH−1(ω)G(ω)Cfr

)
v∗
r , (23)

which is similar to the expression in Eq. (12). The mass matrix Mr of the structure
under test is assembled by the structural mass contributions of each element on the
response grid. In this work, the transfer functions contained in Y(ω) are obtained
by scanning laser Doppler vibrometry (LDV) and excitation by an automated modal
hammer. In many situations, it is not necessary to have the whole matrix Y(ω), e.g.
when only a local excitation is of interest. Moreover, symmetry of the structure and
boundary conditions can be exploited to reduce the measurement effort. Details on
this hybrid experimental-numerical approach are given in [15]. The experimental
procedure for determining the mobility matrix Y(ω) is reported in Sect. 3.2.

3 Application

This section studies the acoustic radiation damping of a honeycomb sandwich panel
using the described numerical as well the hybrid experimental-numerical method.
Modal and harmonic loss factors for different types of excitations and acoustic bound-
ary conditions are computed.

The panel consists of two aluminum face sheets enclosing an aluminum honey-
comb core. The dimension and the material properties are listed in Table 1. Two
different load cases are considered. A point force is located at (x = 0.062m, y =
0.188m) and amonopole sound source is located at (x = 1.376m, y = 1.25m, z =
0.3m). The origin of the corresponding coordinate system coincides with the center
of the panel.
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Table 1 Geometry and material properties of the aluminum honeycomb sandwich panel provided
by the manufacturer. Assumed values are marked with a star∗

Aluminum face sheets

Thickness t 0.5mm

Density ρf 2690 kg/m3

Young’s modulus E 70GPa

Poisson’s ratio νa 0.3

Aluminum honeycomb core

Thickness h 4.5mm

Density ρc 135 kg/m3

Young’s modulus Ex , Ey 10MPa∗

Young’s modulus Ez 360MPa

Shear modulus Gxy 1MPa∗

Shear modulus Gyz 280MPa

Shear modulus Gxz 140MPa

Poisson’s ratio νc 0.01∗

Dimensions lx × ly 0.748 × 0.5m2

3.1 Results Obtained by Coupled Finite and Boundary
Element Analyses

In this section, radiation damping of the sandwich panel is studied using the coup-
led FEM-BEM framework described in Sect. 2.1. The panel itself is modeled using
twenty-noded hexahedral solid finite elements for the representation of the core and
eight-noded quadrilateral shell finite elements based on the Reissner-Mindlin theory
for the two face sheets. A uniform mesh of 36 × 24 elements along the in-plane
directions ensures that at least six elements capture one bending wave length in the
considered frequency range. A single solid element is used to discretize the core in
the out-of-plane direction. Simply supported boundary conditions are applied to the
two short edges of the panel. The long edges are unconstrained. Structural damping
is neglected in the following. Figure1 shows the finite element mesh of the panel
with the position of the point force excitation.

Fig. 1 Finite element model
of the sandwich panel

0.5
m

z y

x

Point force

0.748m
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Fig. 2 Radiation loss factor by harmonic response of the honeycomb sandwich panel subject to
excitation by a point force. Comparison between baffled and unbaffled acoustic boundary conditions

The structural finite element mesh is coupled to a boundary element model for
the representation of the surrounding acoustic field. The boundary elements coincide
with the finite elements. Two different acoustic conditions are studied: First, the panel
is confined in an infinitely extended baffle, which prohibits acoustic flow between
the two sides of the panel. Second, the panel is situated in a free acoustic field, which
will be referred to as unbaffled.

Figure2 shows radiation loss factors obtained by harmonic response analyses of
the panel subject to excitation by a point force. The frequency range up to 625Hz
is considered. The baffled and the unbaffled cases are compared with each other.
The acoustic short circuiting occurring in the unbaffled panel decreases radiation
efficiency and thus radiation damping at low frequencies. The two curves converge
to each other towards higher frequencies. The apparent dips in the loss factors cor-
respond to structural modes of the panel associated with sound pressure cancellation
among neighboring half-cells. This cancellation effect disappears at higher frequen-
cies.

Besides harmonic analyses, modal analyses of the air-loaded panel are performed
using the algorithm described in Sect. 2.2.2. Thirteen eigenfrequencies occur in the
considered frequency range. The resulting modal radiation loss factors are obtained
by Eq. (20) and plotted in Figs. 3 and 4 for the baffled and unbaffled case, respec-
tively. In addition, harmonic radiation loss factors for both point force excitation and
excitation by a monopole source are shown. The latter yields significantly higher
loss factors at frequencies between resonances due the spatially uniform loading. At
the eigenfrequencies, however, the harmonic loss factors of the two load cases con-
sistently agree with each other. They coincide with the modal radiation loss factors,
which are inherent properties of the structural acoustic system and independent of
the excitation.
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Fig. 3 Radiation loss factor of the honeycomb sandwich panel confined in an acoustically rigid
baffle. Comparison between point force excitation and excitation by a monopole source. Additio-
nally, the modal radiation loss factors are plotted at their respective eigenfrequencies
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Fig. 4 Radiation loss factor of the unbaffled honeycomb sandwich panel. Comparison between
point force excitation and excitation by a monopole source. Additionally, the modal radiation loss
factors are plotted at their respective eigenfrequencies

Table 2 lists the eigenfrequencies of the panel in vacuo as well as the eigenfre-
quencies resulting from a modal analysis including air loading for the baffled and the
unbaffled case. Eigenfrequency shifts of up to 5% for the baffled and the unbaffled
panel clearly illustrate the effect of additional mass and damping due to the acoustic
field.
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Table 2 Eigenfrequencies of the honeycomb sandwich panel in vacuo and in air considering baffled
and unbaffled acoustic boundary conditions

No. In Vacuo Baffled (%) Unbaffled (%)

1 32.7Hz 30.7Hz (−5.9) 31.0Hz (−5.0)

2 70.7Hz 69.9Hz (−2.6) 69.9Hz (−2.5)

3 130Hz 126Hz (−3.2) 126Hz (−3.5)

4 181Hz 177Hz (−2.1) 177Hz (−2.2)

5 218Hz 214Hz (−1.8) 213Hz (−2.3)

6 287Hz 281Hz (−2.2) 279Hz (−2.7)

7 336Hz 330Hz (−1.7) 329Hz (−2.1)

8 340Hz 334Hz (−1.8) 333Hz (−2.0)

9 498Hz 487Hz (−1.7) 484Hz (−2.3)

10 501Hz 493Hz (−1.6) 490Hz (−2.1)

11 503Hz 495Hz (−1.6) 493Hz (−2.0)

12 547Hz 540Hz (−1.6) 537Hz (−1.8)

13 610Hz 539Hz (−1.6) 598Hz (−2.0)

Fig. 5 Set-up of the
honeycomb sandwich panel
for mobility measurements

Screws

Measurement points

3.2 Results Obtained by the Hybrid Procedure

Thefinite elementmodel of the sandwich panel is now replaced bymeasuredmobility
data of the panel in order to apply the hybrid procedure described in Sect. 2.3 for the
assessment of radiation damping. The sandwich panel is mounted onto a concrete
foundation by gluing the short edges of the panel into aluminum F-profiles and fixing
them with screws. The set-up is shown in Fig. 5. The excitation is carried out on a
uniform grid with 6 × 4 patches by means of an automated modal hammer (NV Tech
SAM1). The force transmitted at the hammer tip is measured in order to derive the
respective transfer functions.

On the opposite side of the panel, scanning LDV (Polytec PSV 500) is performed
on a uniform response grid of 8 × 6 patches in order tomeasure the surface vibrations
of the panel. The signal to noise ratio is increased by applying reflective tape at the
laser positions. The resulting transfer function matrix Y(ω) is of size 48 × 24.
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Fig. 6 Radiation loss factor of the baffled honeycomb sandwich panel subject to excitation by a
monopole sound source. Comparison between the results obtained by the FEM-BEM approach and
the hybrid approach

The transfer functions are obtained by relating the Fourier transforms of the veloc-
ity signal to the force signal. The measurement time is long enough so that all signals
die out. No window functions are required. Complex frequency domain averaging
mitigates the noise that is not phase correlated.

Figures6 and 7 show the radiation loss factors of the panel in the baffled and
unbaffled condition, respectively. An excitation by a monopole sound source is con-
sidered. In the hybrid approach, the incident sound field is created using the boundary
element model and the resulting force vector is obtained by coupling the bounda-
ry element mesh to the experimental excitation grid. The velocity response is then
computed by multiplication with the measured matrix of mobilities, c.f. Eq. (21).
Finally, the radiated sound field is again computed by BEM.

Figures6 and 7 and indicate an excellent agreement between the numerical and the
hybrid experimental-numerical approach. The numerically predicted eigenfrequen-
cies match the experimental results well, which suggests that the simply supported
boundary conditions in the finite element model are a reasonable approximation
of the actual mounting condition in the experiment. The material modeling in the
structural finite element model also accurately reflects the properties of the sandwich
panel. In other cases inwhich themounting condition andmaterial properties are sub-
ject to uncertainties or prestress occurs during manufacturing, the hybrid approach
facilitates an accurate low frequency assessment of radiation damping [15].
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Fig. 7 Radiation loss factor of the unbaffled honeycomb sandwich panel subject to excitation by
a monopole sound source. Comparison between the results obtained by the FEM-BEM approach
and the hybrid approach

4 Summary and Conclusion

This contribution has reviewed two recent approaches for assessing acoustic radiation
damping in the low frequency range. The methodological basis for both approaches
is the acoustic BEM, which allows to predict the radiated sound power of structures
exhibiting complex geometrical configurations and acoustic boundary conditions.

The first approach is purely numerical and employs a finite element model to char-
acterize the vibrational behavior of the submerged solid structure. Harmonic radia-
tion loss factors are derived based on the forced response of the coupled structural
acoustic system. In addition, excitation-independent modal radiation loss factors are
obtained by solving the underlying nonlinear structural acoustic eigenvalue problem
by a contour integral method.

The second approach is based on an experimentally obtained matrix of mobilities.
The mobility matrix, which contains rtransfer functions relating the surface velocity
to the force excitation, is coupled to a numerical model of the surrounding acoustic
field based on BEM. This approach allows consideration of the actual mechanical
boundary conditions and elastic material properties without the need of acoustic
measurement facilities.

The two approaches were used to analyze the radiation damping of a honeycomb
sandwich panel. The results illustrate the pronounced influence of the type of exci-
tation and acoustic boundary conditions on radiation damping in the low frequency
range. At the structural resonance frequencies, however, the harmonic radiation loss
factors consistently agree with the excitation-independent modal loss factors. The
hybrid experimental-numerical method has achieved excellent agreement with the
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numerically predicted results. The results in [15, 29] indicate that the methods pre-
sented here are also applicable to more complex geometries.

Ongoing and future work includes application of the presented method in the
design process of damping treatments and exploitation of radiation damping for
deliberate energy dissipation.
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