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1 Introduction

1.1 Mechanical Systems

The basic dynamics of mechanical systems are commonly determined by the equi-
librium of inertia forces Mq̈(t), damping and internal restoring forceŝf (q̇(t), q(t))
and external forces, i.e. loads, ̂F(t):

Mq̈(t) + ̂f (q̇(t), q(t)) = ̂F(t), q(0) = q0, q̇(0) = q̇0 (1)

with (generalized) displacements q(t) ∈ R
N , mass matrix M ∈ R

N×N , ̂f : R
N ×

R
N → R

N and ̂F(t) ∈ R
N .

From a system-theoretic point of view with the input-output behavior being of
importance, the external forces are considered explicitly as a space- and a time-
dependent part ̂F(t) = BF(t) where the input matrix B ∈ R

N×p contains weights
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and allocations to the degrees of freedom of the time-dependent forces, i.e. the input
signals F(t) ∈ R

p (p ≤ N ). The corresponding system outputs are given by Eq. (4).
Additionally, the lack of knowledge about the dominating damping mechanisms

frequently leads to an assumption of simpler linear viscous damping Dq̇(t). Exclud-
ing gyroscopic effects allows for writing ̂f (q̇(t), q(t)) = Dq̇(t) + f (q(t)):

Mq̈(t) + Dq̇(t) + f (q(t)) = BF(t), q(0) = q0, q̇(0) = q̇0 (2)

with damping matrix D ∈ R
N×N and nonlinear internal restoring forces f :

R
N → R

N .
Sufficiently small displacements around an equilibrium position or initial con-

figuration allows for considering only the linear part of the internal restoring forces
f (q(t)) ≈ Kq(t) resulting in the well-known linear second-order representation

Mq̈(t) + Dq̇(t) + Kq(t) = BF(t), q(0) = q0, q̇(0) = q̇0 (3)

with stiffness matrix K ∈ R
N×N and

y(t) = Cq(t) (4)

with output matrix C ∈ R
q×N returning the outputs of interest for the mechanical

system if only displacements are considered.
In the Laplace-domain, the transfer behavior from inputs to outputs for zero initial

conditions is given by

G(s) = C
(

s2M + sD + K
)−1

B (5)

such that Y(s) = G(s)F(s) where Y(s) and F(s) are the Laplace transformed out-
puts y(t) and inputs F(t), respectively.

Typically, mass (M) and stiffness (K ) matrices are symmetric and positive (semi-)
definite for appropriate boundary conditions suppressing rigid body modes. Com-
monly, linear damping is realized via modal damping. A simple and popular choice
is the special case of proportional or Rayleigh damping where D = αM + βK with
α, β ≥ 0. The damping matrix D is symmetric and positive definite in that case,
same as M and K .

Further information about mechanical systems and their properties can be found
e.g. in [1, 2].

1.2 Model Order Reduction

The computational effort for numerically solving systems (2) or (3) and (4) can
be significantly reduced by applying reduced-order models (ROM) that accurately
approximate the relevant behavior of the original full-order model (FOM). One
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classical option to obtain such ROMs is by applying projectivemodel order reduction
(MOR).

The full-order displacements q(t) ∈ R
N are first approximated as a linear combi-

nation of reduced coordinates qr(t) ∈ R
n: q(t) = Vqr(t) + e(t) where V ∈ R

N×n ,
n � N . Inserting this approximation in (2) or (3) and (4) leads to an overdetermined
system with the residuals ε(t) ∈ R

N

MVq̈r(t) + DV q̇r(t) + f (Vqr(t)) = BF(t) + ε(t) or

MVq̈r(t) + DV q̇r(t) + KVqr(t) = BF(t) + ε(t) and

yr(t) = CVqr(t)

(6)

Additionally the Petrov-Galerkin conditions WTε(t) = 0 are enforced such that the
residuals ε(t) vanish. Premultiplying (6) with WT ∈ R

n×N leads to the fully deter-
mined system

M r q̈r(t) + Dr q̇r(t) + f r(qr(t)) = BrF(t) or

M r q̈r(t) + Dr q̇r(t) + K rqr(t) = BrF(t) and

yr(t) = C rqr(t)

(7)

where the reduced matrices and operators are given by {M, D, K }r =
WT {M, D, K } V , Br = WTB, C r = CV and f r(qr(t)) = WT f (Vqr(t)). The ini-
tial conditions are {q, q̇}r (0) = (WTV )−1WT

{

q0, q̇0

}

.
The main task of any projective model order reduction technique reduces to

finding suitable reduction bases V ,W ∈ R
N×n that span appropriate subspaces

V = cspan(V ) and W = cspan(W).
Model order reduction in mechanical engineering typically aims at achieving a

good approximation quality, the preservation of certain system properties and numer-
ical efficiency. Depending on the application and the characteristic behavior of the
FOM, two categories can be distinguished: Initial condition-state based reduction or
input-output based reduction. To keep the second-order structure, so-called structure-
preserving model reduction is applied. In order not to violate the principle of virtual
work, the reduction should be performed by a (orthogonal) Galerkin projectionwhere
W = V instead of a two-sided (oblique) Petrov-Galerkin projection.

Further information about model order reduction for mechanical systems and
specific algorithms can be found e.g. in [2].

In the following, Sect. 2 presents specific simulation-free model reduction
approaches for mechanical systems with geometric nonlinearities which were
addressed during the first phase of the DFG priority program 1897. Section 3 con-
tinues on simulation-free model reduction approaches for linear mechanical systems
with partial visco-elastic material treatments focused on in the second phase. Fur-
thermore, these methods are extended to work on parameterized systems to make the
methods usable for applications such as design studies, optimization or sensitivity
analyses.
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2 Geometrical Nonlinear Mechanical Systems

Model reduction for geometrical nonlinear mechanical systems requires meeting two
challenges. First, a reduction basis must be found that is able to capture nonlinear
effects originating from large displacements. Classic reduction methods from linear
theory are not suitable for this kind of system. Second, a Galerkin projection with a
suitable reduction basis is not sufficient to reduce computation time. The reason is
that the nonlinear restoring force term must be evaluated and assembled in the full
element domain. Therefore, methods are demanded that are able to accelerate this
evaluation. These methods are called Hyperreduction.

2.1 Simulation-Free Reduction Bases

In contrast to reduction bases obtained from training data, such as the Proper Orthog-
onal Decomposition of displacement training sets, simulation-free reduction bases
do not require time integration of full order models. They are thus much cheaper to
compute.

One idea to gain a reduction basis for geometric nonlinear systems is to use
simulation-free bases from techniques for linear systems and augment them with
special vectors that are able to capture nonlinear effects. A prominent example are the
combination of eigenmodes andmodal derivatives. They extend themodal truncation
reduction basis, that is known from linear model reduction, with their sensitivities in
the direction of the modes themselves.

First, the solutions φi to the eigenproblem

(K − ω2
i M)φi = 0 (8)

describe the modes of the linearized system. Since K is a function of the displace-
ments q, the eigenproblem can be derived with respect to them. This leads to modal
derivatives. However, experience has shown that neglecting the mass matrix for the
computation of these derivatives results in basis vectors that lead to more accurate
reduced systems. These derivatives are called static modal derivatives [3] (∇φ j

φi )

that are determined by solving

K(∇φ j
φi ) = −(∇φ j

K)φi . (9)

The final reduction basis

V = [

φ1, . . . ,φM ,∇φ1
φ1,∇φ2

φ1, . . . ,∇φM
φM

]

(10)

is then built by stacking some modes and some static modal derivatives into one
reduction basis.
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The same idea can be applied to other linear reduction techniques, such as the
moment matching technique. The linear reduction basis known frommoment match-
ing is computed iteratively via

Kv1 = −B (11)

Kv2 = −Dv1 (12)

Kv j = −Dv j−1 − Mv j−2. (13)

Afterwards, their derivatives can be computed as follows:

K (∇v jv1) = −(∇v jK) v1 (14)

K (∇v jv2) = −D (∇v jv1) − (∇v jK) v2 (15)

K (∇v jvi ) = −D (∇v jvi−1) − M(∇v jvi−2) − (∇v jK) v j (16)

where a constant mass and damping matrix according to Eq. 2 is assumed. A case
study evaluating the performance of these bases is shown in [4].

2.2 Simulation-Free Hyper-Reduction

2.2.1 Polynomial Expansion

One technique that can be considered as hyperreduction is the polynomial expansion.
One can show that the nonlinear force term is a polynomial of third order if the system
is set up with constitutive laws that are linear in the Green Lagrange strain measure.
The nonlinear force term can then be written as

fi (q) = K1
i jq j + K2

i jkq jqk + K3
i jklq jqkql . (17)

The tensorsK1,K2 andK3 are costly to store. But they can be reduced by applying
a Galerkin projection with a proper reduction basisV shown in the previous sections
such that

K̄1
i jqr j + K̄2

i jkqr jqrk + K̄3
i jklqr jqrkqrl (18)

where

K̄1
i j = (VT )ikK1

klVl j , K̄2
i jk = (VT )ilK2

lmnVmjVnk, K̄3
i jkl = (VT )imK3

mnopVnjVokVpl

(19)
and where we use Einstein’s summation convention, i.e., indices that appear twice
are summed up.

The polynomial expressions allow a very fast evaluation of the nonlinear restoring
force term [5]. However, this representation is only feasible for systems that can be
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described by a low dimensional reduction basis. If a reduction basis of medium or
large size is required, other hyperreduction techniques are more suitable, such as the
Energy Conserving Sampling and Weighting method (ECSW).

2.2.2 Energy Conserving Sampling and Weighting

The idea of the Energy Conserving Sampling and Weighting method (ECSW) [6] is
to not evaluate all elements during the assembly of the restoring force term. Instead,
it evaluates only a subset Ẽ ⊂ E of all elements and interpolates their contribution
to the full restoring force term

VT f(Vqr) =
∑

e∈E
VTLT

e fe(LeVeqr) ≈
∑

e∈Ẽ⊂E

ξeVTLT
e fe(LeVeqr) (20)

whereLe describes Boolean localization matrices to map the local elemental degrees
of freedom to the global degrees of freedom.

The interpolation is achieved through positive weights ξe. These weights and the
element set Ẽ are chosen by requesting that the virtual work of the restoring force
in the direction of all reduction basis vectors is retained in the hyperreduced model
for some training sets qr,τ . This requirement can approximately be formulated as the
minimization problem

argmin
ξ∈�

‖xi‖0 where � = {xi ∈ R
Ne : ‖Gxi − b‖ ≤ εECSW‖b‖ and ξe ≥ 0}

(21)
where

G =
⎡

⎢

⎣

g11 · · · g1Ne

...
. . .

...

gNτ 1 · · · gNτ Ne

⎤

⎥

⎦ ∈ R
nNτ ×Ne and b =

⎡

⎢

⎣

b1
...

bNτ

⎤

⎥

⎦ ∈ R
nNτ (22)

are built up by the entries

gle(qr,τl ) = VTLT
e fe(LeVqr,τl ) ∈ R

n and bl = fr (qr,τl ) =
Ne
∑

e=1

gle(qr,τl ) .

(23)
Here, Ne and Nτ describe the number of elements of the full order model and the
number of training sets, respectively.

The training sets qτl = Vqr,τl can be gained by obtaining displacement vectors of
a full order solution or by the so called Nonlinear Stochastic Krylov Training Sets
method.
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2.2.3 Nonlinear Stochastic Krylov Training Sets

The idea of these training sets [7] is to build a subspace

Fkry = span{B,MK−1B, (MK−1)2B, . . .} = K(MK−1,B) (24)

that is able to approximate the nonlinear restoring force f . Afterwards, some random
vectors fτ

NSKT S ∈ K(MK−1,B) are generated and the nonlinear static problems

f(q(k)
τ ) = kfτ

NSKT S, k ∈ (0, 1] (25)

are solved. The solutions q(k)
τ are then used as training sets for the ECSW. This

procedure avoids costly time integration of the high dimensional model. However,
some nonlinear static equations of full dimension must be solved.

2.3 Extension to Parametric Bases

2.3.1 Parameterization of Finite Element Models

Design studies or sensitivity analyses require a parameterization of the Finite element
model. The parameterization ofmaterial data and boundary conditions is quite easy to
achieve. But shape parameterization of the mesh is much harder. Classic approaches
for parameter studies create a new mesh for each iteration. This is disadvantageous
for our applications for two reasons: First, a mesh generation can take large amounts
of computation time. Second, the mesh topology can change, which makes already
computed reduction bases useless unless one applies special mapping techniques.

Therefore, we use a mesh parameterization approach that avoids both drawbacks:
Mesh morphing. The mesh morphing approach just modifies the coordinates of the
nodes in the mesh while maintaining the mesh connectivity.

We use Radial Basis functions, more precisely, thin plate splines to move interior
nodes and maintain mesh quality. One example is the beam shown in Fig. 1 where a
notch’s position is parameterized.

After parameterization, the equations of motion (2) become parametric and can
be written as

M( p)q̈(t) + D( p)q̇(t) + f (q, p)(t) = B( p)F( p)(t), q(0) = q0, q̇(0) = q̇0.

(26)
Now, simulation-free reduction basis also depend on the parameters p. This implies
that a computed reduction basis for a certain parameter value may not be valid for
other parameter values as well. Some methods to overcome this burden are summa-
rized in the following sections.
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morphed to p = 0.15

morphed to p = 0.35

p

reference mesh p = 0.25

Fig. 1 Mesh morphing for a cantilever beam. The beam has a notch on the bottom side. Middle:
The reference mesh. Top: The notch is translated to the left. Bottom: The notch has been morphed
to the right. The translation is done via mesh morphing such that only nodal coordinates change
while the mesh topology is maintained

2.3.2 Basis Updating

The most simple parametric model reduction technique is to compute a new
simulation-free reduction basis for each new parameter value. But since the reduction
basis information will not be completely different, information from previous com-
putations can be used to gain new reduction bases with less effort. This procedure is
called basis updating. In the typical case where the reduction basis consists of modes
and static modal derivatives, this can be done in two steps. First, an inverse free
preconditioned Krylov subspace method (IFPKS) is used to update the modal part of
the reduction basis. Second, an iterative solver such as the preconditioned conjugate
gradient method can be used to gain the static derivative part of the reduction basis.
This procedure is described in detail in [8].

2.3.3 Global Reduction Basis Through Sampling

Another idea is to sample the parameter space

Psample = {p1,p2,p3, . . . ,pN } (27)

and compute a simulation-free reduction basis for each sample point

Vsample = {V(p1),V(p2), . . . ,V(pN )}. (28)

Afterwards, all sampled reduction bases are stacked into one reduction basis. The
reduction basis is then deflated such that nearly parallel vectors are removed from
the reduction basis. The advantage is that a global reduction basis can be found very
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easily. But if the reduction basis space changes drastically in the parameter space of
interest, the reduction basis can be of high dimension and many sample points could
be necessary, which makes other approaches more suitable [9].

2.3.4 Augmentation with Parametric Sensitivities

If only a small parameter space around a certain parameter is of interest, an aug-
mentation by parametric sensitivities is an option [10]. This idea is similar to the
ideas of simulation-free reduction bases for geometric nonlinear systems. The basis
is built up by stacking the simulation-free reduction basis at a certain point and their
parametric derivatives into one basis:

V = [

v1(p0), v2(p0), . . . , vN (p0),∇e1v1(p0),∇e2v1(p0), . . . ∇ePvN (p0)
]

(29)

where ei is the i-th unit vector in the Euclidean space.

2.3.5 Interpolation on Manifolds

The space of reduction bases can be seen as a manifold which enables interpola-
tions between different bases. One option to define this manifold is the Grassmann-
manifold. If two reduction bases V1 and V2 at sample points p1 and p2 have been
computed and a reduced model at sample point p̂, that is between these two points,
is demanded, one can interpolate between the computed reduction bases. One has to
perform two steps for this interpolation: First, a singular value decomposition of

(

IN − V1VT
1

)

V2
(

VT
1 V2

)−1 = U�WT (30)

is computed. Afterwards, the interpolated reduction basis V̂ at p̂ is determined by

V̂( p̂) = V1W cos

[(

p̂ − p1
p2 − p1

)

tan−1(�)

]

+ U sin

[(

p̂ − p1
p2 − p1

)

tan−1(�)

]

.

(31)
This method works very well even for systems whose modes show high parametric
dependencies [11].

2.4 Parametric Hyper-Reduction

Similar to the global reduction basis approach, the hyperreduction problem can
also be globalized [12]. First, we compute qτ (ps) (using NSKTS) for each sam-
ple point ps ∈ Psample. Then, the quantities
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Gglobal =
⎡

⎢

⎣

g̃11 · · · g̃1Ne

...
. . .

...

g̃NS1 · · · g̃NSNe

⎤

⎥

⎦
∈ R

k·β·NS×Ne and bglobal =
⎡

⎢

⎣

b̃1
...

b̃NS

⎤

⎥

⎦
∈ R

k·β·NS

(32)
are built up by the entries

g̃se =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

VT (ps) · LT
e fe(ps,LeV(ps) qτ1,1(ps))

...

VT (ps) · LT
e fe(ps,LeV(ps) qτ1,k (ps))

VT (ps) · LT
e fe(ps,LeV(ps) qτ2,1(ps))

...

...

VT (ps) · LT
e fe(ps,LeV(ps) qτβ,k (ps))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
k·β·NS (33)

b̃s =
Ne
∑

e=1

g̃se (34)

where NS = |Psample| is the number of sample points, β is the number of NSKTS
vectors per sample, k is the number of load increments (Eq. 25) that are computed
for each NSKTS vector and V(ps) are local reduction bases that are computed at
sampling point ps . The matrix Gglobal and the vector bglobal are used to compute a
global set of weights and elements for the ECSW as described by Eq. (21).

2.5 Case Study

Wewant to show a simple case study showing the performance of themost promising
approaches. A notched cantilever beam with hexagonal elements is set up as shown
in Fig. 1. The beam is parameterized with the position of the notch. The left end
is fixed and an harmonic excitation force is applied at the tip. Since the beam is
very slender, a highly nonlinear behavior is expected for sufficiently large excitation
forces.

Two approaches are compared to find a suitable reduction basis for p = 0.25.
First, the interpolationmethod is tested by interpolating between two reduction bases
at p = 0.24 and p = 0.26. Second, the parametric sensitivity approach is tested by
computing a reduction basis at p = 0.24 and its parametric sensitivities. The tip dis-
placement errors for the different bases are depicted in Fig. 2. One can conclude that
both approaches lead to a good reduced model. The parametric sensitivity approach
performs best and gives almost the accuracy of a model with direct computation of
a reduction basis at p = 0.25.
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Fig. 2 Tip displacement error for a model at p = 0.25 over time for different reduction bases.
The parametric sensitivity approach at p = 0.24 (4 modes + static modal derivatives + parametric
sensitivities = 28 basis vectors) gives almost the same accuracy as the directly computed reduction
basis for p = 0.25 (6 modes + static modal derivatives = 27 basis vectors). The interpolation of
the basis between p = 0.24 and p = 0.26 (6 modes + static modal derivatives = 27 basis vectors)
also gives good accuracy. The reduction basis at p = 0.24 (6 modes + static modal derivatives) is
not suitable for reduction

Fig. 3 Tip displacement errors of hyperreducedmodels compared to amodel that is reducedwithout
hyperreduction. The smallest tolerance leads to an accuracy compared to the non-hyperreduced
model. A very broad tolerance gives best performance due to a softening effect by using too few
integration points

Furthermore, a hyperreduction with the ECSW and NSKTS is conducted with the
reduction that performed best, namely the parametric sensitivity approach. Figure 3
shows the tip displacement error for the hyperreducedmodelwith different tolerances
for the ECSW. One can see that a very tight tolerance leads to a model that is
as accurate as a reduced order model without hyperreduction. However, a very high
tolerance leads to amodel that ismore accurate compared to the non-reduced solution.
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Table 1 Number of evaluated elements, simulation times for reduced order models and speedup
factor compared to full order model. Row one shows the full order model and rows 2–4 shows
hyperreduced models with different tolerances for ECSW weight generation according to Fig. 3

Type εECSW no. of
elements |Ẽ |

sim. time
online

speedup

Full order model – 248 3155 1.0

ECSW hyperreduced model 0.1 85 1581 2.0

ECSW hyperreduced model 0.01 114 1762 1.8

ECSW hyperreduced model 0.001 142 1871 1.7

This probably originates from a softening effect because too few integration points
(i.e. selected finite elements) are used.

Table 1 lists simulation times in seconds, measured with Python’s function
process_time(), and speedup factors for the hyperreduced models compared
to the full order model. The simulations are conducted on a machine with Intel Xeon
CPU E3-1270 v5 (3.6 GHz) with 32 GB RAM. The table also contains the num-
ber of elements that are evaluated for the nonlinear restoring force vector. For this
small academical problem, the hyperreduced model with largest tolerance reaches a
speedup factor of 2.0.

3 Linear Visco-Elastic Mechanical Systems

Manymaterials that are used to damp structural vibrations, such as rubber-like layers
placed on plate-like structures, show a material behavior that is called viscoelastic.
Viscoelastic behavior is characterized by a mixture of elastic and viscous properties.
These are often modeled by the Generalized Maxwell model especially if a time
domain simulation is demanded. One major drawback of this model is that it intro-
duces internal state variables that must be evaluated in each timestep. For this reason,
the computational effort is drastically increased for such models and, thus, model
reduction is highly desired.

3.1 Modeling Aspects

3.1.1 Generalized Maxwell Model

Figure 4 illustrates the GeneralizedMaxwell model that is used to model viscoelastic
materials in time domain. It consists of several Maxwell elements built from linear
elastic springs and viscous dashpots.
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Fig. 4 Generalized Maxwell
Model consisting of M
Maxwell elements. Each
Maxwell element is
composed of a spring and a
dashpot. A single spring with
stiffness E∞ is added to
model long time elastic
behavior

The constitutive equations

εm,el = σm

Em
, ε̇m,in = σm

ηm
(35)

for the dashpot and the spring and the kinematic relation

ε = εm,el + εm,in (36)

leads to the equation

σm = Emεm,el = ηm ε̇m,in ⇔ Em(ε − α) = ηm α̇ (37)

where εm,in has been replaced by α. We call α an internal variable. This leads to two
equations for the constitutive law:

ηm

Em
α̇ + α = ε , σm = Em(ε − α) (38)

When a step load in strain with amplitude ε0 is applied to a Maxwell element, its
response is

σm(t) = ε0Em e− t
θm (39)

where we use the definition θm := ηm
Em

. The full response of all Maxwell elements is
the sum

σ(t) = σ∞ +
M
∑

m=1

σm(t) = ε0

(

E∞ +
M
∑

m=1

Em e− t
θm

)

(40)

Therefore, the constitutive equation can also be expressed by a Duhamel integral
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σ(t) = E∞ε(t) +
t

∫

0

M
∑

m=1

Em e− t−s
θm ε̇(s) ds (41)

An extension to the three dimensional case is easy to achieve by introducing a
split into volumetric and deviatoric parts and using an internal variable for each
coordinate of the strain tensors [13, 14].

3.1.2 Explicit Form

The explicit state form contains the internal variables in its system state vector x =
[u,α]. This allows to apply model reduction techniques for linear systems because
this representation leads to a system

[

Muu 0
0 0

] [

ü
α̈

]

+
[

Duu 0
0 Dαα

] [

u̇
α̇

]

+
[

Kuu Kuα

Kαu Kαα

] [

u
α

]

=
[

F
0

]

(42)

that is linear.
The matrices Muu,Duu,Kuu are similar to those from classic Finite Element

models containing linear materials. The matrices Dαα and Kαα are fully diagonal.
The coupling between the internal states α and the displacements u happens in the
stiffness matrix through the blocks Kuα and Kαu .

3.2 Model Reduction via Decoupling into Subsystems

In a first naiv approach, classical model order reduction approaches, like moment
matching or modal truncation, are applied the fully coupled system (42). With this
approach different physics, displacements u and partial stresses (internal variables)
α are mixed in the reduced coordinates xr , thereby losing their physical meaning and
limiting the reduction process.

To avoid those limitations, displacement variables and internal partial stress vari-
ables are treated separately. For this, the visco-elastic structural system (42) S is
treated as a coupled respectively closed-loop system: The purely elastic structural
subsystem S1 with Nu degrees of freedom u is coupled to the viscous subsystem S2

with Nα degrees of freedom α via the interface equations I
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S :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S1 :

⎧

⎪

⎨

⎪

⎩

Muu ü(t) + Duu u̇(t) + K uuu(t) = −K uαu12(t) + BF(t)

y1(t) = C1u(t)

y12(t) = Iu(t)

S2 :

⎧

⎪

⎨

⎪

⎩

Mααα̈(t) + Dααα̇(t) + Kααα(t) = −K T
uαu21(t)

y2(t) = C2α(t)

y21(t) = Iα(t)

I :
{

u12(t) − y21(t) = 0

u21(t) − y12(t) = 0

With regard tomodel reduction, thiswayboth systems canbe treated separately. Thus,
for each subsystem,well established first- or second-ordermethods like first-/second-
order moment matching, modal truncation with complex eigenvectors, second-order
balanced truncation and others can be applied. The reduced and re-coupled system
will have the dimension n = n1 + n2. Additionally, the interface equations are also
reduced, i.e. (internal) in- and outputs are reduced.

3.2.1 Second-Order Moment Matching

Transfer function (5) of the full and reduced system are represented by Taylor series
around the shift s0 ∈ C:

G(s) = C(s2M + sD + K )−1B =
∞
∑

i=0

Ms0,i (s − s0)
i (43)

Gr(s) = C r(s
2M r + sDr + K r)

−1Br =
∞
∑

i=0

M r,s0,i (s − s0)
i (44)

whereMs0,i andM r,s0,i ∀i = 0, . . . ,∞ are called themoments of the full and reduced
system, respectively.

The basic ansatz consists in making a specified amount of moments match around
s0:

M r,s0,i
!= Ms0,i ∀i = 0, . . . , q0 (45)

This can implicitly and numerically efficiently be achieved by using second-order
Krylov subspaces as reduction bases [15]. The necessary Krylov subspace is defined
as

Kn(M1, M2, V ) = colspan {P0, P1, . . . , Pn−1} (46)

where P0 = V , P1 = M1V and P i = M1P i−1 + M2P i−2.
In general with one-sided moment matching q0 moments can be matched if V is

chosen such that it includes the input Krylov subspace:
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Kq0(K
−1
s0 Ds0 , K

−1
s0 M, K−1

s0 B) ⊆ colspan V (47)

where K s0 = s20M + s0D + K and Ds0 = 2s0M + D.
To achievemomentmatching arounddifferent shifts (s0, q0), (s1, q1),…the appro-

priate Krylov subspaces simply need to be augmented.

3.2.2 Reduction of Coupling Blocks

The coupling block K uα and Kαu are reduced via singular value decomposition and
only considering the dominant singular values:

K ab = Uab�abVT
ab ≈

nab
∑

i=0

Uab[:, i]�ab[i, i]VT
ab[i, :] (48)

Thus, internal in- and output matrices for both subsystems can be defined

Bab = Uab[:, : nab]
√

�ab[: nab, : nab] (49)

Cba = √

�ab[: nab, : nab]VT
ab[: nab, :] (50)

and included in the moment matching process for each subsystem guaranteeing
moment matching for the fully re-coupled system [16].

3.3 Schur Complement

The diagonality of Dαα and Kαα can be exploited to condense the internal states in
the equations of motion (42). The equations of motion in frequency domain

([

Kuu Kuα

Kαu Kαα

]

+ i�

[

Duu 0
0 Dαα

]

− �2

[

Muu 0
0 0

])[

U
A

]

=
[

F
0

]

(51)

consist of two blocks of rows. The second block can be transformed

(Kαα + i�Dαα)A = −KαuU ⇒ A = −(Kαα + i�Dαα)−1KauU (52)

such that the states A can be inserted into the first block. This results in

(Kuu + i�Duu − Kuα(Kαα + i�Dαα)−1Kαu
︸ ︷︷ ︸

Kschur(i�)

−�2Muu)U = F. (53)



Simulation-Free Model Reduction Approaches … 205

This procedure is a Schur complement of the dynamics stiffness matrix. It can be
computed very cheaply because (Kαα + i�Dαα) is diagonal and its inverse is very
cheap to evaluate. The same procedure can also be done in time domain if a certain
time integration scheme is applied butwe stick to the frequency domain for simplicity.

The Schur complement is an exact procedure, i.e. it produces no procedural error.
It reduces the number of degrees of freedom to the number of displacement degrees
of freedom. This can be a large reduction, especially if large regions of the model are
considered viscoelastic or if viscoelastic materials have many Maxwell elements.

3.3.1 Modal Reduction

TheSchur complement is a good starting point to reduce the degrees of freedomof the
equations ofmotion, but wewant to go further. One idea is to apply amodal reduction
after the application of the Schur complement. One can use the eigenvectors of the
eigenvalue problem

(Kuu − ω2
i Muu)φ

0
i = 0 (54)

and stack these modes into a reduction basis such that

V = [φ1, φ2, . . . , φn] (55)

The reduced system can then be expressed as

(VTKschur(i�)V
︸ ︷︷ ︸

Kred(i�)

−�2VTMuuV) · Q = VTF, U = VQ. (56)

However, we will see that these modes are not a good choice for the reduction. The
reason is that these modes are the modes of an elastic system where all dampers of
Maxwell elements are blocked (α = 0). This results in a system that is stiffer and
leads too high eigenfrequencies in the reduced system. A better approach is to use
the eigenmodes of the elastic system where no Maxwell element is active, i.e. only
the long-time elastic behavior is considered (α̇ = 0). These modes are computed by
solving the eigenproblem

(Kschur(i0) − ω2
i Muu)φ

∞
i = (Kuu − Kuα(Kαα)−1Kαu − ω2

i Muu)φ
∞
i = 0. (57)

An extension to this idea is the augmentation by the static response to loads that
are generated by the imaginary part of the stiffness matrix when the structure is
deformed according to a mode [17, 18]. The reduction basis then reads

V = [

φ∞
1 , φ∞

2 , . . . , φ∞
n ,K−1

∞ �(Kschur(iω
∞
1 ))φ∞

1 ,K−1
∞ �(Kschur(iω

∞
2 ))φ∞

2 . . .
]

(58)
with K∞ = Kschur(i0).
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3.4 Numerical Example: Plate with Acoustic Black Hole
and Visco-Elastic Constrained Layer Damping

The proposed methods are illustrated by a model of an aluminium plate that contains
a so called acoustic black hole (ABH). ABHs are regions where the plate thickness
is decreased with a special shape function. The theory claims that bending waves
traveling through the plate decrease their travel velocity when the plate thickness is
decreased. Therefore, the waves stay longer in regions with decreased thickness and
can damped more effectively in these regions.

The proposed model, that is taken from [19], is depicted in Fig. 5. It consists of
an aluminium plate with a circular ABH and a constrained layer damper treatment
placed in the ABH region. The constrained layer damper treatment consists of a
viscoelastic rubber-like layer and a constrained layer made of CFRP. The Finite
Element model has 14,769 displacement degrees of freedom u and 14,280 internal
states α.

Figure 6 shows a part of the frequency response function evaluated at a point on
the plate for different reduction methods.Whenmodes φ0 are used for reduction, one
can see that the solution is similar to a full solution where viscoelasticity is neglected,
i.e. the system {Muu,Duu,Kuu}. The reason is that the modes are computed for a
very stiff constrained layer damper (all dashpots of Maxwell elements are blocked)
and they do not activate the viscoelastic layer. Amodal reduction with the modes φ∞
gives better results. But modes computed with φ∞ and the augmentation according
to Eq. 58 gives best results. However, these perform worse in the higher frequency
domain if the dimension of the reduction basis is equal for all methods (this is not
illustrated in the Figure). Due to the augmentation only half of the modes φ∞ can
be used to keep the same dimension. The moment matching approach is not able
to approximate the frequency response fir a comparable reduced dimension of 50.
However, moment matching can approximate the FRF very well if a dimension of
about 300 is used which is also shown in [19].

Fig. 5 Free aluminium plate with acoustic black hole (ABH) and constrained layer damper treat-
ment (CLD). The CLD is placed on the backside in the ABH’s region. The plate is excited at the
marked point
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Fig. 6 Frequency response function computed with different reduced order models compared to
the full order model. The Schur complement gives exact results. Modal reduction with modes φ0

approximate a full solution where viscoelasticity is neglected. The reduced order model with φ∞
give good results while the augmentation according to Eq. (58) gives best accuracy for reduction
bases with dimension 50. The moment matching approach needs a higher number of basis vectors
to give a good accuracy

4 Conlusion and Outlook

Accurate simulation models to motivate design decisions in early product devel-
opment phases is a challenge. Especially models containing viscoelastic materials
or undergoing large deformations can lead to high computation times. It is desired
to reduced these times to accelerate simulations in the concept phase. A promising
method to achieve this goal is model reduction.

We have shown different methods to reduce Finite element models of mechanical
structures undergoing large deformations. The challenge here is to find reduction
bases that are able to capture nonlinear effects and parametric dependencies. Fur-
thermore a hyperreduction must be applied to accelerate evaluation of the nonlinear
restoring force term. A cantilever beam case study illustrates the potential of the
methods. Furthermore, we have introduced how viscoelasticity is modeled in Finite
Element models. The equations of motion contain many internal states that can be
considered as additional system states that can increase the system dimension drasti-
cally. Some reduction bases are proposed to reduce these models. A case study on a
plate with an acoustic black hole illustrates the performance of the reduction bases.
Further research is necessary to also apply the parametric methods from the geo-
metric nonlinear reduced order models to the viscoelastic systems. Hyperreduction
methods can also be a potential candidate to reduce the evaluation costs of internal
states in viscoelastic models.
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