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Preface

Priority Programme Calm, Smooth and Smart—Novel
Approaches for Influencing Vibrations by Means
of Deliberately Introduced Dissipation (SPP 1897)

The Senate of theDeutsche Forschungsgemeinschaft (DFG,GermanResearch Foun-
dation) established in 2015 a Priority Programme (in German: ‘Schwerpunktpro-
gramm’) entitledCalm, Smooth and Smart—Novel Approaches for Influencing Vibra-
tions by Means of Deliberately Introduced Dissipation (SPP 1897). The programme
was scheduled to run for six years split into two calls for proposals for two three-year
funding periods.

Over the last decades, the concept of lightweight design has become more and
more important in engineering. Herein, it is the aim to reduce the mass of any kind of
technical structure to a minimum in order to save resources, costs, and energy during
both manufacturing and operation. Following the rules of this design principle also
often means making technical components and the whole system more sensitive to
unwanted vibrations. These vibrations can cause severe environmental and health
issues, and hence should be minimized. This yet inevitable dependence shall now
be eliminated by developing novel approaches for influencing vibrations that result
from the research of the established Priority Programme and lead to a “calm, smooth
and smart” behaviour of technical units.

“Calm” represents the demand to avoid or at least to severely reduce unwanted
noise generated by technical installations. “Smooth” ensures a comfortable and jerk-
free operation. Finally, “smart” means that the introduced damping devices not only
help to achieve the desired vibrational behaviour of the overall technical systems,
but also take over additional functional tasks.

The key to achieving a “calm, smooth and smart” characteristic of technical equip-
ment is the time- and position-dependent application of dissipation in order to trans-
form vibrational energy into heat or other forms of energy. But since there is, as
yet, only limited knowledge on most of its physical phenomena and mechanisms,
dissipation can hardly be introduced in a deliberate fashion in daily engineering.

v



vi Preface

For this reason, it was themain objective of this Priority Programme to form the basis
for a deliberate utilization of dissipative processes which is not exclusively based
upon trial and error and allows for the future development of vehicles, machines
and facilities that are energy efficient and light, but at the same time, show a “calm,
smooth and smart” behaviour as required.

It was the aim to pool the expertise of mechanics, mathematics, control engi-
neering, tribology, fluid mechanics and material science in Germany, and to create
new and strengthen already available networks in order to achieve the set goals. In
the framework of this cooperation, the existing experiences were exchanged between
the different working groups to generate synergies, to save time and costs and to raise
the working efficiency. Moreover, it was intended to bring this new-born research
spirit to international excellence in the field of innovative damping techniques.

In the first funding period, the Priority Programme tried to drive research towards
the following directions concerning dissipation mechanisms and damping strategies:

• Systematic investigation of dissipative mechanisms and subsequent development
of mathematical models used to describe them.

• Definition, analysis and validation of novel damping techniques as well as their
effect on vibrations.

• Development of numerical methods that allow modelling of dissipation and
damping devices in an engineering-compliant environment.

• Integration of submodels describing new kinds of damping-based vibration
absorbers and of proper model order reduction techniques into the overall models
of vehicles, machines and facilities.

• Experimental investigation of the influence of damping mechanisms and devices
on the characteristics of overall system dynamics.

In the second funding period, a clear focus of the projects was on specific novel
damping devices and/or novel applications to technical problems on the basis of the
insights gained during the first phase.

Project proposals addressed most of these points, i.e. allow the description of the
influence of new damping mechanisms/devices or refined modelling/description of
damping on the overall dynamics of a mechanical or mechatronic system having
influence towards the system properties “calm, smooth and smart”. Furthermore, it
was expected that the proposals provide clear visionary aims.

It is the goal of this book to summarize the findings of the Priority Programme and
tomake them available to the scientific community. Of course, during the two phases,
many separate or joint scientific publications evolved from the different projects and
many details were published, but here, an overview of the various projects and their
influence on “calm, smooth and smart” was intended. Thus, we are grateful that all
projects from the first and second phases provided their contributions to this book
irrespective of being funded in one or both phases.

Besides the research in the separate projects, there were many cooperations and
joint research works. This was also supported by many common events like annual
status seminars, doctoral student meetings, working group meetings, sessions at
meetings and many others.
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Besides this book and the separate publications, for everybody interested and
not just for the experts, also a video about the common topic was produced and
made available at https://www.itm.uni-stuttgart.de/spp_1897/
videos and every project produced additionally a fascinating video about its
specific insights and approaches.

Of course, the corona crisis hit the second phase of the Priority Programme hard.
For more than two years, we had to switch to video meetings and were not able to
meet in person. Fortunately, most cooperations were already established, the project
coworkers already kneweach other and the scientificwork and output hardly suffered.

We want to thank the programme committee who accompanied the Priority
Programme from the preparation phase (P) through both phases (1, 2). The members
Prof. von Wagner (Berlin, P, 1, 2), Prof. Fidlin (Karlsruhe, P, 1), Prof. Stykel (Augs-
burg, P) and Prof. Willner (Erlangen, P, 1) spent a lot of effort and time to make this
research possible.

Further thanks go to Nadine Walker and Elizaveta Shishova, who not only scien-
tifically contributed to the Priority Programme, but also organized, as coordinator
assistant, all the meetings and events, and also took care of the web pages, collected
and organized the videos and made this book possible.

Finally, we want to thank the German Research Foundation (DFG), who not
only funded our research for over six years, but always helped in many aspects
such as accompanying the discussions which led to the preparation of the initial
proposal, organizing the review processes and providing us extreme flexibility, espe-
cially during the corona crisis. Colleagues from other countries always envy us for
this wonderful research funding organization and they are completely right.

Personally, I want to give my special thanks to Dr. Simon Jörres, from the DFG,
who was always available during any smaller and larger challenges. He skilfully
guided the Priority Programmewith a light hand and highly contributed to its success.
It was my true pleasure to cooperate with him and his team.

Stuttgart, Germany
September 2022

Peter Eberhard
Coordinator of the SPP 1897

https://www.itm.uni-stuttgart.de/spp_1897/videos
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Particle Dampers—Vibration Reduction
Through Distributed Dissipation Over
Complex Particle Shapes

Andreas Schönle, Chandramouli Gnanasambandham, and Peter Eberhard

1 Introduction

The growing emphasis on lightweight construction has not only reduced the weight
of technical systems drastically but also made them more vulnerable to unwanted
vibrations. This fact combined with the growing complexity of these systems has
lead to a rethinking of the purpose of damping devices and has paved way for the
development of new methods to dissipate the unwanted vibrational energy. Their
relatively simple design and their flexible ability to dissipate energy in a wide fre-
quency range [1] have made solid particle filled dampers a popular alternative to
conventional damping devices. Moreover, unlike viscous dampers, PDs do not rely
on a fixed anchor point as an impulse source, which makes it even easier to mount
them on technical systems. One of the earliest applications of PDs in the context of
machine tools was presented in [2]. Some of the more recent applications include
damping the structural vibrations of an oscillatory saw [3], noise reduction in trans-
mission systems [4], reducing the horizontal vibrations in wind turbine towers [5],
and to reduce vibrations on circuit boards of a spacecraft [6]. Furthermore, PDs have
also been used to control vibrations in combustion discharge nozzles in industrial
gas turbines [7].

The process of energy dissipation in PDs is very complex, as the damping perfor-
mance depends on various parameters such as the strength of the forcing function (i.e.
amplitude and frequency), size and geometry of the particles, inter-particle friction,
material properties of the particle themself amongst others. PDs can be more easily
put to practical use in technical applications if there is a deep understanding of the
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underlying dissipation mechanisms. A systematic theoretical/experimental analysis
of PDs in the context of free response behavior of a cantilever beam with a PD was
presented in [8]. Here, an elementary analytical model to predict the macroscopic
dissipative properties of PDs is reported, which was able to predict the experiments
with reasonable accuracy. A parametric model of the nonlinear damping of PDs as
an equivalent viscous damper was proposed in [9]. This research could be used in
order to make predictions during the early design stage. Even though these models
are reasonably good in predicting the macroscopic behavior of PDs, their predictions
become fallible as soon as the particle-level parameters change. This is the case when
PD contents has two distinctively different materials like solid and liquid, or when
the particles have complicated shapes. This motivates further research to improve
the understanding and applicability of PDs. Such research is to be conducted in this
project using numerical simulations and laboratory experiments. The simulations are
carried out using the particle simulation programm Pasimodo [10].

1.1 Dependencies of the PD Behaviour

The dependency of PD behaviour on particle movement can be illustrated by an
experiment of rather simple design. In Fig. 2, one possible experimental setup is
shown. Compressing the particles through the movable container walls ensures their
immobility (left). Contrary to this, particles are free to move within the container
volume in the second case (right). In Fig. 1 the experimental setup is illustrated
schematically. Figure 3 shows the resulting measurement curves. Both of these mea-
surements were conducted with an initial displacement of A0 = 40mm. It can be
seen in Fig. 3 that significant amounts of kinetic energy can be dissipated when

PSV500

adjustable
wall

vertical leaf
spring

oscillations

solid particle

PC

damper
container

trigger
signal

electromagnet

Fig. 1 Schematic view of the experimental setup used for experiments. It is to be noted that the
oscillation direction is perpendicular to the acceleration due to gravity
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tightly packed free to move

a) b)

Fig. 2 The PD configurations with a the particles tightly packed and b whith the particles free to
move and a container length of 100 mm
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]

tightly packed
L = 100mm

Fig. 3 Container velocities measured using an LDV for two configurations. First (red) the particles
are tightly packed. Second (blue) particles are allowed to move freely. A considerable amount of
kinetic energy is dissipated when particles are allowed to move freely due to inter particle collisions

the particles are allowed to move relative to each other. To quantify the dissipation
present in the system, an effective decay rate parameter � is introduced. The decay
rate during the i th cycle�i is defined as the natural logarithm of two successive peak
amplitudes. It is given by

�i = ln
y(ti )

y(ti+1)
, (1)

where yi and yi+1 are the peak displacement of the damper container during the i th
and i+1th cycle, respectively. In Fig. 4, the logarithmic decay rate for each cycle
�i is plotted over time for both cases. Since the particles were restricted to move
relative to each other in the tightly packed configuration, the dissipation in this case,
seen in Fig. 4 (red line), is very small and is essentially due to the intrinsic material
damping present in the leaf spring.

However, it can also be observed from Figs. 3 and 4 that a residual amplitude
exists in the case of the freely moving particles. Here the amplitude of the container
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Fig. 4 The logarithmic decay � for both configurations. A constant decay rate, mostly due to
the intrinsic material damping present in the leaf spring, is observed when the particles are tightly
packed. Two distinctly different decay rates are observed when the particles are allowed to move
freely

is not sufficient to keep the particles moving. Thus, hindering dissipation extending
the material damping which is observed for the case of tightly packed particles.
These insights give an idea for improving the overall dissipation behaviour of PDs,
for a more detailed analysis see [11]. Keeping the particles in motion and finding
measures to improve the dissipation for low amplitudes of excitation are, therefore,
overall research objectives in this project.

Tools to grant detailed insights on how the taken measures improve the damp-
ing behaviour of PDs accelerate this process. This leads to a combined approach
of numerical simulation and laboratory experiments. While the simulations offer
access to the mechanisms within the PD, experiments ensure the agreement of the
simulations with the actual system. A snapshot from a PD simulation with spherical
particles can be seen in Fig. 5. The good agreement in Figs. 6 and 7 illustrates the
feasibility of this approach for spherical particles using DEM.

2 Influence of Fillings

One possible way to increase the damping, even under low driving accelerations,
is, to combine a liquid with solid fillings. Another influence factor is the shape of
the particles as it alters the contact situation among particles. These influences are
therefore of great interest for the overall performance of PDs.
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Fig. 5 DEM simulation snapshots showing the motion of the solid particles
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Fig. 6 Comparing DEM simulation results and experimental data for a damper filled with 100
aluminum spherical particles. A good agreement between experiment and simulation is observed

2.1 Influence of Liquid

Before investigating the effects of an added liquid, it is necessary to investigate the
case where the damper is filled only with liquid contents. To simulate liquids in the
PD the SPH method is used, as it is shown in [12]. The liquid motion resulting from
these simulations is illustrated in Fig. 8. Figures 9 and 10 also show good agreement
for this approach.

Combining solid particles with liquid in PDs has great potential in improving
the damping behaviour. To study the effects of this approach the previously used
simulation methods are combined. The damping behavior of a damper filled with a
combination of solid particles and a liquid, as shown in Fig. 11, is investigated. Again
this is done in both, numerical simulations and experiments. While the simulation
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Fig. 7 Logarithmic decay rates predicted by DEM simulations and measured using experimental
data for a damper filled with solid particles. Initially, due to the large relative motion, higher decay
rates are observed

(d) t= 1.50 s(c) t= 0.39 s

(b) t= 0.27 s(a) t= 0 s

pressure

maxmin

Fig. 8 SPH simulation snapshots showing the motion of the liquid modeled

grands important insights to understand the mechanisms leading to the improved
damping behaviour, the experimental data is used for confirmation of the results. In
the simulations the contactmodel is extended to cover the fluid-solid interactions. For
this purpose, the damper container is filled with 100 aluminum particles and 30 ml of
distilled water. In order to ensure a fair comparison between all the damper configu-
rations, compensation masses were added during the laboratory experiments, so that
all the configurations have the same static mass, measured using a weighing scale.
The simulation results, showing the velocity amplitude decay for all three damper
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Fig. 9 Comparing SPH simulation results and experimental data for a damper filled with 30 ml
distilled water. A good agreement between experiment and simulation is observed
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Fig. 10 Liquid filled dampers exhibit decay rates which are much smoother than for only solid
particle filled dampers. Liquid filled dampers continue to dissipate energy even under low vibration
amplitudes

configurations is seen in Fig. 12. As seen in an earlier investigation, the only-solid
particle-filled damper seems to be not so effective under low acceleration conditions.
Under low forcing condition, the solid particles seem to arrange themselves in an
orderly packing. This makes it increasingly difficult for the particles to move relative
to each other. As a consequence, the decay rate of solid-filled dampers in Fig. 13
(green) is observed to be lower than that of solid-liquid-filled dampers (blue). In fact,
the worst performing of all three damper configurations is the one with only liquid
filling. Even though there is a large relative motion observed between liquid layers,
the resistance forces acting against the motion of the damper container are small,
due to the lower momentum carried by the liquid.
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(d) t= 0.46 s(c) t= 0.365 s

(b) t= 0.25 s(a) t= 0 s

pressure

maxmin

Fig. 11 Fluid-solid motion, predicted by coupled DEM-SPH simulations, at various time steps.
The liquid is visualized using smaller coloured balls, whereas the solids are visualized as large
yellow balls
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Fig. 12 The velocity of the damper container is compared for all the damper configurations. The
blue dotted curve represents the container velocity predicted by coupled SPH-DEM simulations of
a damper filled with solids and liquid particle
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Fig. 13 Decay rates of all damper configurations are compared. Decay rates of solid filled dampers
and liquid filled dampers are relatively similar. A substantial improvement in the damping perfor-
mance is observed in the solid and liquid filled dampers

On the other hand, it can be seen that the damper configuration with a combination
of both, solid-liquid contents indeed performs better than the other two configura-
tions. Since the solid particles are surrounded by a liquid, it is muchmore difficult for
the solids to remain in an ordered structure. This disorder makes them more suscep-
tible to move relative to each other, which ultimately leads to stronger collisions and
intern leads to more energy dissipation. In general, good agreement for the combined
solid liquid simulation can be observed in Fig. 12. Therefore, the coupled SPH-DEM
simulation is a useful tool to investigate particle dampers and the behaviour of their
fillings. From Figs. 12 and 13 a significant increase in the decay of the vibration
amplitude is seen.

This motivates further simulations and experiments to gain additional insights in
the underlying effects resulting in such improvement. Possible influences considered
are the solid-liquid fill ratio and the shape of the solid particles.

2.2 Influence of Particle Shape

The influence of the particle shapes is mainly attributed to the motion of the liquid
through the particle filling. An experimental comparison of spheres and tetrapods
as solid particles in a solid-liquid filled PD can be seen in Fig. 14. The tetrapods
provide an evident advantage over simple spheres in the damping behaviour, which
shows potential for further investigation. To study the effects leading to the observed
advantages, detailed insights into the PD filling are advantageous. Therefore, the
established SPH-DEM simulations are adapted for non-convex polyhedra, as it is
described in [13]. In Fig. 15 (left), the velocity of the partially liquid-filled PD with
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Fig. 14 Comparing solid particles with different shapes and additional liquid. The tetrapod shaped
particles perform better compared to spherical particles or pure liquid. The overall mass is kept
constant at all cases
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Fig. 15 The red line represents the container velocity measured during laboratory experiments
for the liquid-filled PD case with tetrapods. The blue dotted line represents the container velocity
predicted by coupled SPH-DEM simulation. An excellent agreement between experiments and
simulations are observed

tetrapod shapes, measured during experiments and predicted by coupled SPH-DEM
simulation is compared. In order to better understand the effect of solid particles, the
velocity for a damper filled purely with a liquid measured during experiments is also
plotted in Fig. 15 (left). Macroscopically seen, there is a good agreement between
simulations and experiments, showing that coupled SPH-DEM simulations can ade-
quately model the dynamics involved in a partially liquid-filled particle damper, also
for the case of non-convex polyhedra as solid particles. It can be clearly seen, that
the velocity decay is faster for the case with both liquid and solid filling, than for the
purely liquid filled case, confirming the previous experimental findings. The gained
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insights through simulations allow for amore detailed investigation of the underlying
damping effects.

The observed improvements can, therefore, be explained as follows. First, the solid
particles due to the hydraulic forces applied by the liquid, remain agile even under
lower vibration amplitude, thereby leading to more effective collisions and in turn
more energy dissipation. Secondly, the liquid is squeezed between two approaching
solid particles leading to shearing of liquid layers. This ultimately results in more
energy dissipation. In this case, the non-convex tetrapod particles behave effectively
as obstacles towaves created by liquidmotion. These general findings concerning the
filling of PDs also raise an additional research question. What should the solid-liquid
fill ratio be in order to maximize the dissipation rate? In order to gain further insights
regarding this question a numerical investigation is performed. In this numerical
study the number of tetrapod solids are varied in three stages (0, 40, 60 solids) while
the amount of liquid is kept at a constant volumeof 30ml. By thisway, the solid-liquid
ratio is implicitly varied. For this study, the density of each solid tetrapod particle is
chosen to be 7850 kgm−3. While setting up the simulations, compensation masses
were added to the system mass so that all the configurations have the same static
mass.

In Fig. 17 (left) the simulated velocity decay for different solid-liquid fill ratios
is compared and the corresponding average logarithmic decay rate is visualized in
Fig. 17 (right). Moreover, increasing the number of solids particles seem to substan-
tially increase the decay rate. As the number of solid particles, also in the presence of
a liquid, governs the number of solid particle collisions. Additionally, the liquid flow
is observed to be more fierce with increase in the number of solid particles, leading
to even more kinetic energy dissipation. This effect is highlighted by calculating the
logarithmic decay. The most significant step is from a purely liquid filling to the use
of tetrapods and additional liquid. But also the increase of particle numbers clearly
shows to improve the damping effect. In Fig. 16 the simulation of the tetrapod and
liquid filled particle damper is illustrated. It can be seen, that the tetrapods lead to a
higher pressure in the fluidwhen the it sloshes through them, resulting in an increased
damping effect. For more details of the simulation, see [14].

3 Obstacle Grids

An additional approach to increase damping in PDs are obstacle grids. These grids
improve the interaction between the PD container and the particles by preventing the
clustering of particles. This increases the energy transferred from the container to
the particle filling and allows for greater particle movement. Obstacle grids, there-
fore, are especially advantageous for systems under forced excitation. For exper-
imental investigations of this approach, a different testbench is introduced. The
main difference lies in the change to a forced excitation through an electromag-
netic shaker. The laboratory apparatus consists of a horizontally mounted steel beam
of dimensions 540mm × 20mm × 2mm, which is rigidly clamped on one side.
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t= 0.27 s t= 0.55 s

Fig. 16 Themotion of damper contents visualized for (top row) purely liquid-filled damper, (middle
row) 40 tetrapod solid + liquid and (bottom row) 60 tetrapod solids + liquid, at two different time
instances. In all cases, the fluid is visualized as coloured balls, where the colour coding visualizes
pressure from low (red) to high (blue)
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Fig. 17 (left) The velocity of the damper container for various solid-liquid fill ratios is compared.
(right) The average logarithmic decay rate, computed at the end of every cycle, is visualized with
respect to different solid-liquid fill ratios
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The PD enclosure, weighing 58.8 g, is a transparent acrylic box of inner dimensions
35mm × 35mm × 20mm, which is fixed to the side of the beam. This PD enclosure
is filled with steel spheres of 2mm diameter. The total mass of the spherical particles
was kept constant at 0.03 kg throughout this investigation, which corresponds to 1880
spheres. The uniform obstacle-grid used for this investigation has several cells, each
having a gap volume corresponding to a cube of size 8mm. The size of each of these
cubes is a characteristic dimension of the obstacle-grid and will be referred to as
the cell-size of the obstacle-grid. The uniform obstacle-grid used in the experiments
was manufactured using a Formlabs Form 2.0 Stereolithography (SLA) 3D printer.
Additional information about the experimental setup can be found in [15]. In order
to characterize dissipation in the system, a procedure similar to the one described
in [16] is followed. In this procedure a dissipation parameter η is computed for a
structure at resonance as the ratio of the measured average power dissipated over
time period T and half the square of the absolute input velocity amplitude. The dis-
sipation parameter η has a unit of Nsm−1. Similar dissipation parameters have been
used in [17, 18] for characterizing PDs. The dissipation parameter for a sinusoidal
motion can be written as

η =
1
T

∫ t+T

t
ẏ fedt

A2ω
2

2

. (2)

Here, A is the amplitude, ω is the frequency of the sinusoidal motion function.
Moreover, fe is the force applied on thePDenclosure due to particle interactions in the
direction of oscillation. It is to be noted, that due to the discrete nature of the particle
interactions the dissipated energy measurement varies over time. In order to take
this into account, the dissipation measure for each PD configuration is calculated by
averaging over several oscillation cycles. Throughout this investigation, the structure
was excited at varying amplitudes at its second resonance frequency, in this case at
27Hz and correspondingly a time period T of 0.037s. The second mode of the beam
allows positioning of the PD at a precise location where there is minimum rotation
and nevertheless maintain large driving amplitudes.

In Fig. 18, the driving forces and resulting forces on the container are shown for
such a systemcontainingof a leaf springwithmountedPD.Thedampingperformance
of three different configurations is experimentally compared. The first configuration
consists of an empty PD enclosure without particles or an obstacle-grid. The empty
PD configuration allows the quantification of the dissipation present due to intrin-
sic material behavior and other external effects. By this way, the additional energy
dissipation contribution purely due to particle interactions can be better understood.
The second configuration consists of a conventional PD solely filled with solid par-
ticles. In the third configuration, the damper contains in addition to solid particles
a deliberately introduced 3D printed obstacle-grid. In order to ensure a fair com-
parison between all the damper configurations, compensation masses were added
during the laboratory experiments, so that all the configurations have the same static
mass, measured using a weighing scale. A comparison of typical experimental lines,
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Fig. 18 Typical
measurement obtained from
laboratory experiments. a
Driving velocity of the PD
enclosure for the three
configurations. b Container
forces. It can be seen that the
container forces are higher in
the case where the PD is
equipped with an
obstacle-grid, indicating
more dissipation
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showcasing the velocity and force measurements, of the three damper configurations
is shown in Fig. 18. In general it can be said that all the waveforms, irrespective of
the configuration, are periodic indicating that a steady-state is being reached. Even
though the velocity signal seems to be nearly sinusoidal, the force signal is complex,
due to the presence of higher modes of the clamped beam. It can be seen in Fig. 18b,
that for the same input velocity, the impedance forces (red curve) measured for a
PD with an obstacle-grid seems to be drastically higher, indicating higher energy
dissipation in this case compared to the other configurations. Similarly, the dissi-
pation parameter η computed using Eq.2 for all the PD configurations is presented
in Fig. 19 as a function of the dimensionless acceleration amplitude � = Aω2/g,
where g is the acceleration due to gravity. The translucent bands around the curves
represent the variance present in several experiments for the measured dissipation
parameter. It can be seen, that due to the absence of particles, the variance present in
the empty PD case is negligible compared to other configurations. As a consequence,
the dissipation in the empty PD case (blue line with triangle markers), which occurs
due to intrinsic structural damping, is far lower compared to other configurations.
A higher dissipation rate is observed for the case with particles than for the empty
case. It is also seen in Fig. 19 (black line with diamond markers), that increasing
the acceleration amplitudes seems to steadily increase dissipation, at least starting
from � = 6, for the conventional PD case. For lower acceleration levels, between
� = 3 and � = 6, the measured dissipation for the conventional PD case seems to
have high variance. This is probably due to the very noisy force signals measured
during these experiments. Perhaps the most interesting aspect of Fig. 19 is the dissi-
pation behavior of a PDwith a deliberately introduced obstacle-grid. The dissipation
rate for a PD with obstacle-grids irrespective of the acceleration amplitude clearly
outperforms the conventional PD without an obstacle-grid. This is arguably due to
the increased particle activity and relative motion of the particles leading to more
effective collisions and thereby increasing energy dissipation. Moreover, at an accel-
eration amplitude of � = 10 the dissipation rate for the PD with obstacle-grid is
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Fig. 19 Dissipation
parameter for all the PD
configurations as a function
of the dimensionless
acceleration amplitude
� = Aω2/g. The translucent
bands around the curves
represent the variance
observed during the
experimental trials. The
deliberate introduction of an
obstacle-grid drastically
increases dissipation
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observed to reach an optimum. Additional information about the simulation model
and the contact detection algorithm used can be found in [15].

The comparison of the resulting simulations with the previously conducted exper-
iments in Fig. 20 (b) shows good agreement. This is the case for both configurations
with and without the use of an obstacle grid. The previously mentioned increase in
particle motion through the grid can clearly be observed in the simulation visualiza-
tions namely subfigures (d) and (e) in Fig. 20. This also highlights again the useful
additional insights into the PD provided through numerical simulations. A more
detailed discussion of these results and additional visualisations of the simulation
data can also be found in [15].

Next, a numerical study is set up to investigate the effect of cell-size on the
damping performance of a PD with an obstacle-grid. For this purpose, obstacle-grid
geometries with two different cell-sizes, namely 5 mm and 8 mm, are investigated,
as depicted in Fig. 21. In order to ensure a fair comparison, the PD is filled with the
same amount (0.03 kg) of spherical steel particles for both simulation scenarios. In
order to predict the effect of obstacle-grid cell size several simulations are performed.
During each simulation, the PD equipped with an obstacle-grid of a particular cell-
size is driven with a sinusoidal velocity at a constant frequency of 27 Hz for 5 cycles.
The resulting container forces accumulated due to particle interactions are recorded
at every numerical time step and are utilized to compute an average dissipation rate
for each cycle according to Eq.2. This procedure is performed for both obstacle-grid
sizes and for several acceleration amplitudes �. The results are reported in Fig. 21c.
As seen in Fig. 21c, the dissipation rate predictions for the two configurations are
significantly different, even though all the parameters except the obstacle-grid cell-
size are identical. Therefore, the cause of the observable difference in dissipation rate
must be entirely due to the geometry of the obstacle-grid. It can be observed, that
for both cases a clear peak in dissipation rate is observed at a specific acceleration
amplitude. The peak dissipation rate predicted for a PD with 8 mm grid is higher at
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Fig. 20 a and b show the PD configurations tested during the laboratory experiments. cComparison
of the dissipation parameter predicted usingDEMsimulations andmeasured during lab experiments.
A good agreement between experiments and simulations is observed. Visualizations of the particle
motion predicted by DEM simulations d with and e without an obstacle-grid for � = 10. Here, the
obstacle-grid d is made translucent for visualization purposes. Particles attain far higher relative
velocities for the case with a obstacle-grid than without it
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Fig. 21 A numerical study compares the damping performance of PDs with obstacle-grids of
two different cell-sizes namely a 5 mm and b 8 mm. In this simulation, both configurations were
subjected to � = 10 and the color gradient represents the relative velocity of the solid particles
with respect to the PD container. c Results show the noticeably distinct dissipation rates predicted
for the two cell-sizes at various acceleration levels. The dissipation rate for the PD with 5 mm grid
peaks at a different acceleration level compared to the PD with 8 mm grid. This shows, that the
obstacle-grid cell size plays a crucial role in the design of PDs with obstacle-grids
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3.38 Nsm−1 than the peak dissipation of a PD with 5 mm grid which is found to be
3.23 Nsm−1. Moreover, the acceleration level at which the dissipation rate peaks is
higher at � = 10 for PD with 8 mm grid than for PD with 5 mm grid at � = 4. This
indicates that the cell size could be used as an additional tuning parameter to control
the damping performance of PDs equipped with an obstacle-grid.More interestingly,
after the maximum dissipation is reached, the rate at which the dissipation parameter
decreases for the case of a PD with 5 mm grid is much steeper than for the PD with
8 mm grid. This shows that the PD with 8 mm grid seems to be less sensitive, in
other words more robust, to changes in the driving acceleration level.

4 Broadband Properties

To study the broadband damping properties of a PD, aweakly damped frame structure
as shown in Fig. 22 is designed and build. This frame structure exhibits multiple
vibration modes even in the lower frequency range. When excited with a shaker, the

Polytec LDV

kevlar cords

OROS
shaker

support structure

host structure

Fig. 22 Lab apparatus consisting of the host structure hung using kevlar cords. The host structure
is excited using an electrodynamic shaker. A Laser Doppler Vibrometer is used to measure the
structural response
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frequency response of the host structure with a PD allows a systematic investigation
of the broadband damping effect of PDs. In Fig. 22, the surrounding lab setup used
for the experiments is also shown. The host structure is suspended by kevlar cords
to replicate a free-free boundary condition. This gives the opportunity to study the
dynamics of the structure independently from clamping to a surrounding suspension.
The host structure is excited using an electromagnetic shaker Elektro-Mechanik
Schmid SW100, which is driven by a power amplifier Brüel & Kjær Type 2706.
The driving signal for the shaker is controlled using a Tectronix AFG2022B signal
generator. A PCB288D01 impedance sensor situated between the shaker and the host
structure is used to measure the force and acceleration at the forcing point (input).
The forces and accelerations at the input vary, but are in a range up to 55 N and
40 ms−2 peak values, respectively. For more information about the structure used,
as well as, detailed pictures of the experimental setup refer to [21].

4.1 Comparison with Tuned Mass Damper

In order to investigate the influence of a PD on the host structure, the steady state
frequency response functions (FRFs) of three different configurations are measured.
The three configurations are: host structure with an added ballast mass (BM), host
structure with a tuned mass damper (TMD) and host structure with a PD. The ballast
block is in the same location as the PD and its mass is equal to the static mass
of the particle damper. The TMD also has the same static mass and is chosen for
comparison as it is a commondevice for suppressing unwanted vibrations in technical
applications. Also, considering broadband properties, it poses a contrasting concept
as it only works well within a narrow frequency band around the tuning frequency.
The FRFs for the three configurations are generated by driving the shaker with a
frequency sweep signal from 25 to 100 Hz. To make sure that a quasi-steady state is
reached, a relatively long frequency sweep time of 375s is chosen. Figure 23 shows
the frequency response of the host structure with a TMD, with a PD and with a BM.
It is clearly seen that near the design frequency of 60 Hz, the TMD provides superior
vibration suppression compared to a PD. This behaviour is expected, because a TMD
works by introducing a vibration node at the point of attachment to the host structure
exactly at design or operating frequency. Therefore, a conventional TMD actually
does not directly dissipate the vibrational energy but rather transfers the energy to the
vibration of the attached auxiliary mass. The movement of this mass functions as a
kinetic energy reservoir and also leads to dissipation throughmaterial damping of the
deflected TMD beam, friction in the joints, etc.. Furthermore, a TMD introduces an
additional degree of freedom to the host structure and thus, adds additional resonance
frequencies. This is clearly seen in the additional resonance peak at 70 Hz for the
case where the host structure is fitted with a TMD, see the blue dashed curve in
Fig. 23.

Additionally, the introduction of a TMD lowers the natural frequencies of the
reference host structure that are below the design frequencies. For instance, the nat-
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Fig. 23 Experimental frequency response of the host structure with a BM, TMD and PD. Near the
design frequency of 60 Hz, the TMD provides superior vibration attenuation compared to a PD.
However, the PD provides considerable vibration damping at multiple resonance frequencies at the
same time

ural frequency at 60 Hz is now lowered to 45 Hz. On the other hand, the resonance
frequencies of the reference host structure that are higher than the design frequency,
for instance the frequency at 80 Hz, are raised with the introduction of a TMD, see
Fig. 23 for high frequencies. On the whole, the TMD, even though it does a very
good job in reducing vibration near the design frequency of 60 Hz, drastically alters
the frequency response of the host structure and creates trouble at other frequencies.
Another aspect of the TMD is, that its vibration attenuation property is highly sensi-
tive to changes in stiffness and mass of the auxiliary system. In other words, changes
in the TMD configuration, for instance due to fatigue, lead to a detuning of the TMD
which could result in a sudden unwanted increase in vibrations. Therefore, care has
to be taken when designing a TMD and it should only be used for a system that is
subjected to a constant frequency excitation.

On the other hand, PDs provide considerable vibration damping not only at 60 Hz
but also at other frequencies. Unlike a TMD, PDs due to inter particle collisions and
friction, actually dissipate the vibrational energy of the host structure and convert it
to other energy forms (for instance heat). As seen in Fig. 23, the energy dissipation
in the PD is relatively insensitive to the excitation frequency and highly sensitive to
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the external motion at the attachment point. Consequently, the PD affects the host
structure only where the host structure shows high vibration amplitudes and induces
no alternation elsewhere, see Fig. 23.

4.2 Towards Quantifying Broadband Dissipation

The experimental investigations shown have opened up two crucial questions which
are yet to be addressed. To what extent does a particular damping device influence
the frequency response of the host structure? Moreover, how can a damping device
be rated according to its broadband damping property? In order to answer these
questions, two additional quantities are introduced.

Firstly, the dynamic influence factor Sdev is introduced, which is the ratio of the
mobility of the host structure with the damping device to the mobility of the host
structure with a ballast block having the same static mass of the device. The factor
Sdev is defined as

Sdev, f = Mdev, f

Mref, f
, (3)

whereMdev, f is themobility (velocity/force) of the structure with the damping device
at the frequency f and Mref, f is the mobility of the host structure with an equivalent
mass block. The factor Sdev helps to quantify the effect of the particular damping
device on the host structure. For instance, a high dynamic influence (greater than 1)
indicates vibration amplification and a low value (smaller than 1), indicates vibra-
tion reduction. The dynamic influence factor Sdev applied to the investigated host
structure with a PD and a TMD is shown in Fig. 24. It can be seen that the dynamic
influence factor for the TMD has a very low value near the design frequency of 60
Hz, meaning vibration attenuation is only observed around the design frequency.
Apart from the design frequency, especially at 49 Hz, 68 Hz, 91 Hz frequencies,
the dynamic influence factor for the TMD case has high positive values, indicating
even a vibration amplification at these frequencies, i.e. a worsening of the dynamic
behaviour. From a practical point of view these vibration amplifications observed
only in the TMD case are disadvantageous. This is because the TMD, apart from
providing the vibration attenuation at the design frequency, fundamentally alters the
frequency response of the host structure elsewhere and might even make it worse
than that of the undamped structure.

Interestingly, the dynamic influence for the PD case is relatively smooth compared
to the TMD case. The SPD for the PD case attains values smaller than one (meaning
vibration reduction) at frequencies where the host structure exhibits high vibration
amplitudes. Usually, the value of SPD is close to one. This means that the PD is a pas-
sive damping device which smoothens the resonance peaks without fundamentally
altering or shifting the natural frequencies of the host structure.

Secondly, to analyse the broadband damping property of a device, another quantity
namely the mean influence deviation σdev is introduced. The deviation σdev is defined
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Fig. 24 Dynamic influence factor computed for the host structure equipped with a PD and a TMD.
The SPD shows that the PD influences the host structure only for high vibration amplitudes, whereas
STMD shows that the TMD fundamentally alters the frequency response of the host structure

as the squared deviation of the dynamic influence factor from its mean behaviour of
a particular damping device. This can be defined as

σdev, f = (Sdev, f − S̄dev)
2, (4)

where S̄dev is the average dynamic influence factor of the host structure equipped
with a particular damping device. In other words, σdev indicates the extent to which a
device deviates from its mean response over frequency. A high value of σdev means,
that the device changes its behaviour to a large extent. A perfect broadband damping
device would have a value of zero, even though such a device would be impractical.
Figure 25 shows the curves forσTMD andσPD computed for the host structure equipped
with a TMD and PD, respectively. It is clearly seen that the deviation σPD for the
PD case has a much lower numerical value over the entire frequency range when
compared to a TMD. This means that the behaviour of a PD does not drastically
deviate from its mean performance compared to a TMD. For the TMD case it can
be seen that the vibration amplification around 49 Hz and 91 Hz are prominent in
the influence deviation as well. However the attenuation around 60 Hz leads to no
observable peak. This is due to numerically small numbers of STMD from which the
constant S̄dev is subtracted. The formulation of σdev, f in Eq. 4 especially highlights
positive deviation from S̄dev which leads to undesired vibration amplification caused
by the damping device.
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Fig. 25 Mean influence deviation computed for the host structure equipped with a TMD and a PD.
The σPD has smaller values compared to σTMD indicating that the PD does not drastically deviate
from its mean behaviour compared to a TMD

Therefore, the value Sdev provides quantitative insights on the extent to which a
device influences the host structure and σdev provides insights regarding the broad-
band damping property of a damping device. So, Sdev and σdev together provide
the right tools to quantitatively investigate damping devices or parameter changes
systematically.

5 Conclusion

The emphasis of this research project was the improvement of PDs and their applica-
bility. Therefore, several PD concepts were analysed through experiment and simu-
lation. To improve the damping properties of PDs, the conceps investigated included,
e.g., additional liquid, complex particle shapes, and obstacle-grids. These variations
on PD fillings provided significant enhancement of damping under various loading
conditions. Especially the combined approach of simulations supported by mean-
ingful laboratory experiments allowed for a targeted investigation of the different
concepts. The simulations allow detailed insights into the behaviour of the PD fill-
ings and the experiments ensure the approximations made for the simulation model
are realistic and yield good agreement with measured data. The ability to examine
the particles during simulations in detail for every timestep is of great benefit for the
understanding of the damping processes within the PD. This is especially important
for a targeted design improving the applicability of PDs for a special use case. The
general applicability was improved in this project by investigating damping prop-
erties over a wide frequency range with the help of test structures with dynamical
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behaviour relevant for industrial applications. In this context, the PDwas also directly
compared to a conventional TMD which is already widely used in technical appli-
cations. In this research project, the usage of PDs for targeted damping in structures
and technical applications showed to be feasible and beneficial. Further research
in this field seems promising to further improve the applicability of PDs and make
them usable in various application fields over wide ranges of frequency and loading
amplitudes. Enabling the industry to use PDs as standard damping devices seems of
great interest in many fields.
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A Study on Friction Dampers and Their
Contact Geometry Design

Jimmy Aramendiz and Alexander Fidlin

1 Introduction

Effective, targeted vibration damping with low efficiency reduction is an impor-
tant goal for a modern design, especially for lightweight constructions and energy-
efficient applications. An ideal damper dissipates energy only near the resonance
frequency, when the undesired vibration amplitudes jeopardize the service life or
function of the system. Such dampers increase the overall energy efficiency of a
system.

To suppress undesired vibrations, viscous damping is introduced into the system
in most applications, e.g. in the automotive industry in the form of a hydraulic shock
absorber [2]. These damping mechanisms are always active and constantly dissipate
energy even when this is not necessary. Thus, reducing the energy efficiency of the
system. However, viscous damping is not the only way to reduce vibrations. The
use of absorbers for vibration reduction is also common in engineering [1, 11].
Vibration absorbers achieve at their tuned operating frequency optimal vibration
reduction. Nevertheless, at least one structural resonance must be overcome to reach
the operating frequency. Furthermore, these devices are sensitive to the inevitable
system parameter changes due to wear, time, and environmental conditions.

An additional alternative in vibration reduction are friction-based dampers, which
are widely used in engineering. These dampers are used mainly in three different
fields: in turbomachinery as so-called platform dampers, in civil engineering struc-
tures such as buildings and cables, and in railroad freight trucks. Platform dampers
are in most cases metal elements which are pressed between two blade platforms
by the centrifugal force in a gas turbine. These dampers are investigated mainly in
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two variations: as curved friction dampers and as wedge (or cottage-roof) friction
dampers [10]. In civil engineering friction dampers are mainly found in two forms. In
some applications, planar contact surfaces are combined, whereas in other applica-
tions varying contact geometries are used. Applications with planar contact surfaces
are found in [13], whereas investigations with geometric variations are presented in
[9]. A special variant of friction dampers, the so called wedge dampers, are used in
railroad trucks. These dampers are composed of a wedge placed between the bolster,
which carries the wagon, and side frame, which is connected to the wheels. The
geometric variations in the dampers’ sliding contact partners “simulate” a viscous
damping avoiding technological difficulties connected with the handling of fluids.
Due to their robustness, low cost, and low maintenance they are quite popular and
still investigated today [14].

A possible passive implementation of an energy-efficient vibration suppression
can be realized by dry friction. The special character of dry friction with stick-
slip transitions allows the design of elements that change their behavior. Frictional
contacts, which can stick and slide, change the structure of a system and thus its
behavior. The targeted design of the sticking and sliding dynamics allows systems
to passively adapt to current operating conditions. This paper focuses on three such
passive dry friction dampers: the dry friction lock-up damper, a prestressed slid-
ing wedge damper, and the friction damper with polynomial contact geometry. The
underlying operating principle of the dampers is based on the stick-slip properties
of dry friction. This ensures sticking at low excitation amplitudes, which prevents
any relative movement between the masses and thus no energy is dissipated. As soon
as the breakaway force of the damper is overcome, the system moves in the stick-
slip range. The breakaway condition ensures a selective energy dissipation, which
only occurs at high vibration amplitudes. This work uses the simplest friction model
namely the Coulombmodel, in which Stribeck effects and a difference between static
and dynamic friction coefficients are neglected.

The present paper is structured as follows. In Sect. 2 the dry friction lock-up
damper is investigated. The equations of motion of the dampers are derived and
numerical parameter studies are performed, which gives a first impression of the
system dynamics. In addition, an analytical solution for the systems is derived and
analyzed using the averaging method. Analogous investigations are carried out in
Sect. 3. Analytical solutions for different polynomial degrees are derived in Sect. 4
for the dry friction damper with polynomial contact surface. Experimental results
are presented in Sect. 5. The main findings are summarized in Sect. 6.

2 The Dry Friction Lock-Up Damper

The goal of the dry friction lock-up damper (Fig. 1) is to improve the dynamics of
an existing main system. In this paper the main system is represented by the primary
spring c1 and the primary mass m1. The lock-up damper, consisting of a dry friction
element with friction force R, a secondary spring c2, and a secondary mass m2 is
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Fig. 1 Lock-up with a
harmonic excitation on the
primary mass

attached to the main system. Due to the neglecting of both Stribeck effects and a
difference between static and sliding friction coefficients, the friction force R also
corresponds to the breakaway force of the friction element. The friction element
determines the stick-slip behavior of the system and thus also the conditions under
which the secondary spring influences the system dynamics. While sticking both
masses move together in the same way and the secondary spring is inactive. In the
inactive state, the secondary spring can be in a deflected state, but this does not affect
the motion of the system. The inactive secondary spring only affects the stiction
force. As soon as the friction element allows relative movement, the structure of the
system changes from a one degree to a two degrees of freedom oscillator. This leads
to a change in the number and value of of the system’s natural frequencies. The stick-
slip properties divide the system behavior into linear and nonlinear ranges, each of
which is determined by the closed and open state of the friction element respectively.
Therefore the system’s dynamics are characterized by these two ranges: the sticking
range and the sliding range. The system is in the sticking range as long as the absolute
value of the stiction force H is smaller than the breakaway force R (|H | ≤ R) and
the kinematic condition ẋ1 = ẋ2 is fulfilled. If one of these conditions is violated,
the system switches to the sliding range. The equations of motion for both ranges
are given by

while sticking

(m1 + m2)ẍ1 + c1x1 = F sin�t, (1)

H = m2 ẍ2 + c2(x2 − x1), (2)

while sliding

m1 ẍ1 + c1x1 − c2(x2 − x1) − R sgn(ẋ2 − ẋ1) = F sin�t, (3)

m2 ẍ2 + c2(x2 − x1) + R sgn(ẋ2 − ẋ1) = 0. (4)

The sticking range is described by one equation of motion and one algebraic
equation for the stiction force, whereas the sliding range is characterized by two
equations of motion. As described in [5], it is intuitive that the amplitude response of
the whole system follows the amplitude response of the linear system up to a certain
breakaway amplitude. After the breakaway point, a nonlinear region follows, where
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stick-slip and full sliding movements occur. The nonlinear range is only concluded
by the complete closing of the friction point over an entire period. Afterwards, the
amplitude response of the entire system follows the amplitude response of the linear
system with one degree of freedom again.

2.1 Numerical Investigations

To gain a first insight into the dynamics of the lock-up damper, numerical parameter
studies are carried out. The parameters of the main system are usually determined
a priori and therefore cannot be modified. In these studies, both the mass and the
spring stiffness are set to one without any restriction of the generality. Since the total
mass of the system should not be significantly changed, the value of the secondary
mass is chosen to be much smaller than the primary mass, e.g. one tenth of the
primary mass. In order to reduce amplitudes over the entire frequency spectrum, the
secondary stiffness is chosen to cancel out the resonance of the main system. Only
the breakaway force of the friction element remains as a freely selectable design
parameter. A parameter study on the influence of the friction force [12] is shown in
Fig. 2 for the parameters

m1 = 1 kg, m2 = 0.1 kg, c1 = 1 N/m, c2 = 0.1 N/m, F = F0 = 0.1 N.

The friction force R determines the breakaway frequency and thus determines
whether the system behaves mainly like a one or two degrees of freedom system. For
a systemwith one peak it is necessary that the breakaway frequency is higher than the
first resonance frequency of the two degrees of freedom system. On the basis of this

Fig. 2 Parameter study of
the lock-up damper for
R ∈ [0N(blau), 1.5N(rot)],
Ropt ≈ 0.0369 N
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Fig. 3 Parameter study of
the lock-up damper for
different excitation forces
with R = 0.05 N

parameter study the existence of an optimal friction force is identified. The optimal
friction force leads to a minimization of the maximum amplitude in the frequency
spectrum and must be tuned to the excitation force. This is clearly shown in Fig. 3.
An increase of the excitation force with the same friction force leads to considerably
larger amplitudes in a detuned lock-up damper. The reason for this is the relation-
ship between the energy dissipated by the damper and the relative amplitude. The
friction force is constant over the displacement. This leads to an energy dissipation
proportional to the relative amplitude. In the detuned case the dissipated energy is
not sufficient to limit the amplitudes. With the selected parameters, this effect can
be seen when the excitation is doubled.

2.2 Analytical Investigations

After the insight into the dynamics of the lock-up damper, an analytical solution is
advantageous for a deeper understanding of the system. A detailed description of
this solution can be found in [6]. To derive an analytical solution for this system,
the nonlinear equations of the system are considered. It is additionally assumed that
permanent sliding occurs. The first step is to derive the nondimensional equations of
motion of the system. The necessary transformations are
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z1 = m1x1 + m2x2
m1 + m2

, z2 = x2 − x1, (5)

ε = m2

m1 + m2
� 1, k =

√
c1
m1

, λ =
√

c2
m2

, p = λ

k
, (6)

τ = kt, (·)′ = d

dτ
(·), η = �

k
, μ = R

m2k2(1 − ε)
, (7)

f0 = F

k2(m1 + m2)
= ε f, f = O(1). (8)

The newly introduced variables z1 and z2 represent the movement of the center of
mass of the entire system and the relative movement between the masses. These
transformations lead to the nondimensional equations

z′′
1 + z1 = ε(z1 + z2 + f sin ητ) − ε2z2, (9)

z′′
2 + p2

1 − ε
z2 + μsgn(z′

2) = z1 − ε

(
z2 + f

1 − ε
sin ητ

)
. (10)

In order to obtain suitable equations for the averaging procedure, a Van der Pol
transformation is additionally applied and the slowly changing amplitudes and phase
differences of the variables are considered. This yields

z1 = A sin ϕ, z′
1 = A cosϕ, (11)

z2 = B sinψ, z′
2 = Bp cosψ, (12)

γ = ϕ − ητ, εδ1 = 1 − η, (13)

θ = ψ − ϕ, εδ2 = p − η, (14)

A′ = ε( f sin ητ + A sin ϕ + B sinψ) cosϕ − ε2B sinψ cosϕ, (15)

γ ′ = εδ1 − ε( f sin ητ + A sin ϕ + B sinψ) sin ϕ + ε2B sinψ sin ϕ, (16)

B ′ = ε

p

(
( Ã sin ϕ − μ̃sgn(cosψ) − (1 + p2)B sinψ

)
cosψ

−ε2

p

(
p2B sinψ + f̃ sin ητ

)
cosψ, (17)

θ ′ = εδ2 + ε

p

(
μ̃sgn(cosψ) + (1 + p2)B sinψ

)
sinψ

− ε

p
Ã sin ϕ sinψ + ε2

p

(
p2B sinψ + f̃ sin ητ

)
sinψ. (18)

It should be noted that in the Eqs. 17 and 18 the scaling A = ε Ã, μ = εμ̃ and
f = ε f̃ was applied. The reason for this, is that Eq. 10 depends only on the ratios
of these quantities and not on the actual quantities themselves. If these selected
parameters are scaled with the same factor, the equation will qualitatively yield the
same solution scaled only by the selected factor. For a more detailed explanation, the
reader is referred to [6]. If a first and second order averaging procedure is applied to
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Fig. 4 Analytical solution
of the lock-up damper

the Eqs. 15–18, the analytical solutions in Fig. 4 is obtained. The first-order solution
represents the qualitative behavior of the amplitude response. The resonance peak
of the system is limited and a declining characteristic curve in the resonance range
can be observed. The second order solution provides a quantitative improvement of
the result. It is also demonstrated, that the damper is very sensitive to changes of
the excitation amplitude (or the changes of the friction coefficient). Therefore, its
applicability is limited.

3 The Prestressed Sliding Wedge Damper

Similar to the lock-up damper, the aim of the prestressed sliding wedge damper is
to improve the dynamics of a main system with spring stiffness c1 and mass m1.
The damper is attached to the main system and consists of a prestressed mass m2

Fig. 5 The prestressed
sliding wedge damper
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between two wedges with the wedge angle α, see Fig. 5. The prestress force act-
ing on the wedges is produced by a spring of stiffness c2, which is prestressed by
a length �. In addition, the coefficient of friction μ describes the relationship of
the normal force to the friction force between the wedges and the mass. A relative
movement of the masses presses the wedges apart symmetrically. Furthermore, the
wedges are mounted on the main mass in such a way that they only transmit a force
in the vibration direction. Because the wedges are pressed apart, this damper more
robust compared to the lock-up damper. The friction force of the lock-up damper is
constant, whereas the friction force in the prestressed sliding wedge damper depends
on the relative displacement. If there is a relative displacement between the masses,
the normal force between the wedges and the mass increases due to the geome-
try and spring deflection. This change ultimately leads to a variable friction force,
which achieves limited vibration amplitudes at different excitation force amplitudes.
Analytical investigations of this system without preload can be found in [4]. The
industrial implementation of a sliding wedge damper without prestress in a drive
train is described in [8] and is called a anti-clutch-judder-damper (germ.: Anti-Rupf-
Tilger).

From a practical point of view, it makes sense to choose small coefficients of
friction, because these lead to a longer service life of the damper [7]. However, a
reduction of the coefficient of friction also reduces the energy dissipation. If this effect
is not desired, compensation can be made by adjusting the angle α. The equations
of motion of the system are given by

while sticking

(m1 + m2)ẍ1 + c1x1 = F sin�t, (19)

H = m2

m1 + m2
(F sin�t − c1x1), (20)

while sliding

m1 ẍ1 + c1x1 − FWD = F sin�t, (21)
m2 ẍ2 + FWD = 0, (22)

FWD = 2c2 (2 tan α|x2 − x1| + �)
tan αsgn(x2 − x1) + μsgn(ẋ2 − ẋ1)

1 − μsgn(ẋ2 − ẋ1) tan αsgn(x2 − x1)
. (23)

The stiction force H in Eq. 20 represents the necessary constraining force to prevent
relative movement between the primary and secondary mass. Accordingly, it is not
the stiction force between the wedges and the mass m2. Furthermore, for small
coefficients of friction it is permissible to linearize the damper force with respect
to the friction parameter. As shown in Fig. 6 the damper force can be broken down
into a dissipation-free portion FC,WD and a dissipativ portion FD,WD. These terms are
described by
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Fig. 6 Break down of the
damper force of the
prestressed sliding wedge
damper with xrel = x2 − x1

FWD = FC,WD + FD,WD, (24)

FC,WD = 2c2(2 tan α(x2 − x1) + �sgn(x2 − x1)) tan α, (25)

FD,WD = 2c2 (2 tan α|x2 − x1| + �)
μ

cos2 α
sgn(ẋ2 − ẋ1). (26)

The nonlinearities in the wedge damper are much more pronounced than in the
lock-up damper, because for this damper there are discontinuities in its force both as
a function of the position and as a function of the velocity. In addition, the dissipative
part of the damper force is proportional to the displacement. As a result, the dissipated
energy is proportional to the square of the relative amplitude, similar to a viscous
damper. Based on this finding, the authors of this work refer to this device as a
pseudo-viscous damper.

3.1 Numerical Investigations

The first findings of this system are obtained by numerical simulations. As in Sect. 2,
the parameters of themain system are exemplary set to one and the secondarymass is
chosen as one tenth of themainmass. However, the prestresses slidingwedge damper
offers a higher design flexibility, since the wedge angle α, the coefficient of friction
μ, the preload length � and the secondary stiffness c2 can be considered as design
parameters. The numerical studies of thiswork are limited to two design parametersα

and� and to the robustness of the system against the excitation amplitude F . Unless
otherwise specified, the following standard parameters are used for the numerical
studies

m1 = 1 kg, m2 = 0.1 kg, c1 = 1 N/m, c2 = 0.1 N/m,

F = F0 = 0.01 N, α = 30◦, � = 0.01 m, μ = 0.01.
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Fig. 7 Parameter study of
the prestressed sliding wedge
damper for different wedge
angles α

The variation of the wedge angle α shows that this parameter has a significant
influence on the effective stiffness c2,eff between the masses. Based on the non-
dissipative part of the damper force, the effective stiffness can be derived as the
coefficient of relative displacement, c2,eff = 4c2 tan2 α, cf. Eq. 25. This influence is
shown in Fig. 7. At small angles, there is a low effective stiffness and thus a peak
at low frequencies and a peak near the resonance of the sticking system. Increasing
the effective stiffness by the changing angle α causes both resonances to shift to
the right, increasing the first peak and decreasing the second one. Additionally, the
wedge angle has an influence on the dissipated energy. The higher the wedge angle,
the higher the dissipative force at constant relative displacement, cf. Eq. 26.

Similar to the friction force of the lock-up damper, the prestress displacement
determines the breakaway frequency at which the system changes to the nonlinear
stick-slip range. The parameter study of the prestress displacement � is shown in
Fig. 8. A nonexistent prestress (� = 0) results in a two degrees of freedom system
that does not stick. If the prestress displacement is increased, the sliding range is
reduced and two sticking ranges appear at the edges of the amplitude response. The
higher the displacement, the larger the sticking ranges become. For � → ∞ the
system always sticks. An optimum prestress displacement exists for this system as
well. This optimumcauses the best possible switching between the two extreme cases
and thus achieves lower vibration amplitudes. Furthermore, non-periodic solutions
can occur in the system. These can be both quasi-periodic and chaotic. For lowest
possible vibration amplitudes over the whole frequency range, this type of solution
should be avoided.

The last study of the friction absorber deals with the robustness of the system
against a change of the excitation force amplitude. Figure 9 shows the normalized
magnification factor of the system for different excitation forces. In contrast to the
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Fig. 8 Parameter study of
the prestressed sliding wedge
damper for different preload
displacements �

Fig. 9 Parameter study of
the prestressed sliding wedge
damper for different
excitations forces F with
V = Ax1,F/F, V0 =
Ax1,F0/F0

lock-up damper, the amplitudes remain limited. The curves are not directly on top
of each other, but the differences are minimal. An increase of the excitation force
causes almost no change of the magnification factor. Consequently, the vibration
amplitudes of the systemare amplified by approximately the same factor. This implies
a scalability of the amplitude responses, although an exact scalability can only be
observed in linear mechanical systems with viscous damping. These last correlations
confirm the pseudo-viscous behavior of the friction damper.
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3.2 Analytical Investigations

The analytical solution of the friction damper [4] is derived analogous to the lock-up
damper via an averaging method. For this purpose the equations are nondimension-
alized and the following dimensionless parameters are introduced

λ = m2

m1
, k2 = c1

m1
, f = F

m1k2
, τ = kt, (·)′ = d

dτ
(·), η = �

k
, (27)

a = tan2 α, b = μ
tan α

cos2 α
c = � tan α, d = �μ

cos2 α
, (28)

ε � 1, f, �, μ = O(ε). (29)

If these dimensionless parameters are set inEqs. 19–22, the dimensionless differential
equations are given by

x ′′
1 + x1 + 4λa(x1 − x2) = f sin ητ

−4λb|x1 − x2|sgn(x ′
1 − x ′

2) − 2λcsgn(x1 − x2), (30)

λx ′′
2 − 4λa(x1 − x2) = 4λb|x1 − x2|sgn(x ′

1 − x ′
2) + 2λcsgn(x1 − x2). (31)

Equations 30 and 31 are rewritten in matrix form and a modal transformation is
applied

Mx′′ + Cx = εfNL(x,�), (32)

x = Rz = R[p, q]
 with R
MR = I, R
CR = diag(η2
i ), (33)

R
MRz′′ + R
CRz = εR
fNL(z) = εf̃NL(z), (34)

p′′ + η2
01 p = ε f̃NL,1(p, q,�), (35)

q ′′ + η2
02q = ε f̃NL,2(p, q,�). (36)

Equations 35 and 36 describe the equations of motion of the system in the modal
coordinates. The equations are weakly coupled because the terms on the right side
of the equation are of the order ε. In order to obtain decoupled equations, only
the corresponding modal coordinate is considered exclusively near its resonant fre-
quency. Therefore the remaining modal coordinate is neglected [4]. This leads to the
decoupled equations of motion in the modal coordinates

η ≈ η01 : p′′ + η2
01 p = ε f̃NL,1(p, 0,�), (37)

η ≈ η02 : q ′′ + η2
02q = ε f̃NL,2(0, q,�). (38)

In order to derive an analytical solution, a Van der Pol transformation is applied to
the system analogous to the lock-up damper and the slowly changing amplitude and
phase differences of the system are investigated
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Fig. 10 Analytical solution of the prestressed sliding wedge damper for the standard parameters

p = A1 sin ϕ1, p′ = A1η01 cosϕ1, ϕ1 = ητ + ψ1, (39)

q = A2 sin ϕ2, q ′ = A2η02 cosϕ2, ϕ2 = ητ + ψ2, (40)

i = {1, 2}, δi = η0i − η, (41)

A′
i = ε f̃NL,i(Ai , ψi , ϕi ) cosϕi , (42)

ψ ′
i = ε

(
δi − 1

Aiη0i
f̃NL,i(Ai , ψi , ϕi ) cosϕi )

)
. (43)

The stationary solution of the equations for Ai andψi is determined by the averaging
procedure and the results are shown in Fig. 10. It can be seen that the analytical
solution approximates the numerical resultswith the accuracyof asymptoticmethods.
The deviations from the numerical solution are of the order ε, which confirms the
validity of the analytic solution.

4 The Friction Damper with Polynomial Contact
Geometries

The friction damperwith polynomial contact geometries is quite similar to the sliding
wedge damper analyzed in Sect. 3. The damper is attached to the main system and
is composed of two main elements: a vibration absorber and two contact surfaces
with a polynomial geometry. The secondary spring c2 and secondary mass m2 make
up the absorber portion of the damper and allow it to reduce vibration in the vicinity
of the tuned frequency. As with the sliding wedge damper, the contact surfaces are
clamped on to the secondarymass via a third spring c3 and the prestress displacement
�. The geometry of the contact surfaces are described by the function y(xrel) =
y(x2 − x1) = γ |x2 − x1|n withn ∈ N. For the sake of simplicity only one polynomial
term is introduced in the function y. Additionally, the coefficient μ describes the
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Fig. 11 The friction damper with polynomial contact geometry

relationship between the normal force and the friction force acting on the secondary
mass (or on the contact surfaces) (Fig. 11).

As with the sliding wedge damper, the prestress level determines when the sys-
tem finds itself in the linear sticking range or in the nonlinear stick-slip range. The
equations of motion for both ranges are given by

while sticking

(m1 + m2)ẍ1 + c1x1 = F sin�t, (44)

H = m2

m1 + m2
(F sin�t − c1x1), (45)

while sliding

m1 ẍ1 + c1x1 − c2(x2 − x1) − FPD = F sin�t, (46)

m2 ẍ2 + c2(x2 − x1) + FPD = 0, (47)

FPD = 2c3(2y + �)
yx + μsgn(ẋ2 − ẋ1)

1 − μsgn(ẋ2 − ẋ1)yx
, (48)

y = γ |x2 − x1|n, yx = nγ |x2 − x1|n−1sgn(x2 − x1). (49)

Analogous to the sliding wedge damper, the force FPD is linearized with respect to
the friction coefficient. This linearization allows an insight into the damper force and
a practicable separation into a dissipation free FC,PD and dissipativ portion FD,PD.
These quantities are given by

FPD ≈ FPD,lin = FC,PD + FD,PD, (50)

FC,PD = 4c3γ 2n(x2 − x1)2n−1 + 2c3�γ n|x2 − x1|n−1sgn(x2 − x1), (51)

FD,PD = 4c3μ
(
γ |x2 − x1|n + γ 3n2|x2 − x1|3n−2

)
sgn(ẋ2 − ẋ1)

+2c3�μ
(
1 + γ 2n2|x2 − x1|2n−2

)
sgn(ẋ2 − ẋ1). (52)

As noticed from Eqs. 51 and 52, the contact geometries introduce a dominant non-
linear stiffness of the degree 2n − 1, as well as a dominant nonlinear damping of the



A Study on Friction Dampers and Their Contact Geometry Design 39

degree 3n − 2. These terms will mainly determine the behavior of the systems in the
resonance regimes and the damping capability of the system.

Since the analytical procedure was validated for the sliding wedge damper, the
investigations in this section are limited to analytical considerations of the friction
damper with polynomial contact geometries. To this end, the equations of motion are
nondimensionalized. In order to ensure a vibration absorption frequency, dominant
linear terms are required for low amplitude vibrations. Therefore, a soft spring c3 is
chosen with c3 = εc̃3 and ε � 1. The necessary transformations for the analytical
considerations are given by

m2

m1
= λ,

c1
m1

= ω2
01, τ = ω01t,

d( )

dt
= ω01

d( )

dτ
, η = �

ω01
, p = c2

m1ω01
,(53)

a = 4c̃3
m1ω

2
01

, b = 4c̃3μ

m1ω
2
01

, c = 2c̃3�

m1ω
2
01

, d = 2c̃3�μ

m1ω
2
01

, ε f = F

m1ω
2
01

. (54)

Inserting these transformations in the equations of motion yields

x ′′
1 + x1 − p2(x2 − x1) = ε( f sin ητ + fPD) = ε f1, (55)

λx ′′
2 + p2(x2 − x1) = −ε fPD = ε f2, (56)

fPD = aγ 2n(x2 − x1)2n−1 + b
(
γ |x2 − x1|n + γ 3n2|x2 − x1|3n−2

)
sgn(x ′

2 − x ′
1)

+cγ n|x2 − x1|n−1sgn(x2 − x1) + d
(
1 + γ 2n2|x2 − x1|2n−2

)
sgn(x ′

2 − x ′
1) . (57)

Subsequently, a modal coordinate transformation is applied yielding first the weakly
coupled differential equations in the modal coordinates. By only considering the cor-
responding modal coordinate in the respective resonance regime, the fully decoupled
differential equations are obtained

η ≈ η01 : p′′ + η2
01 p = ε(r11 f1(p, 0) + r21 f2(p, 0)), (58)

η ≈ η02 : q ′′ + η2
02q = ε(r12 f1(0, q) + r22 f2(0, q)). (59)

For the sake of brevity and due to the length of the expressions further equations are
omitted. The parameters are chosen as follows

m1 = 1, m2 = 0.1, c1 = 1, c2 = 0.1, c3 = 0.01,

� = 0.1, γ = 1, μ = 0.1, F = 0.01.

The first consideration focuses on the amplitude response of the polynomial damper
for different polynomial degrees, c.f. Fig 12. As expected, multiple solution branches
exist for n > 1 due to the nonlinear stiffness terms. Here the advantages and disad-
vantages of the damper are noted. Due to the nonlinear dissipative terms the maximal
amplitude of the system is greatly reduced. For example a polynomial degree of n = 4
leads to a maximum amplitude reduction of 72, 9% in comparison to a polynomial
contact surface with n = 1. This amplitude reduction comes at the price of multi-
ple branch solutions, thus leading to higher possible amplitudes within the multiple
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Fig. 12 Amplitude response of the friction damperwith polynomial contact geometries for different
polynomial degrees

solution range and amplitude jump when leaving said range. Especially the jumps in
amplitude could prove detrimental to the function and life span of the main system
[3]. Furthermore, the multiple solution range increases with the excitation leading
to an amplitude rise over a wider range. However, if the excitation amplitude is
known and a system overload can be excluded, the polynomial contact surface can
be designed in order to avoid multiple solutions and effectively reduce amplitude
vibrations.

An additional analytical consideration evaluates the relationship between the exci-
tation force and the maximal amplitude in the system’s response. Figure 13 shows
that for low excitation forces the contact surface with lower polynomial degree result
in lower maximal amplitudes. This is due to the relationship between the dissi-
pated energy and the relative displacement, which is approximately described by
ED ∼ (Arel/K )3n−1. As is seen from this relationship, low values of Arel caused by

Fig. 13 Excitation vs maximal amplitude relationship for different polynomial degrees
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low excitation forces lead to a significantly lower dissipated energy for n > 1. Fur-
thermore, all curves cross the same point where the exponent has no influence on the
dissipated energy, c.f. Fig 12.

5 Experiments

Based on the described analytic results, an experimental setup has been developed.
The first experiments were performed together with the group of Professor Sattel
at the TU Ilmenau, see Fig. 14. This setup allows for the investigation of different
add-on damper systems at comparatively low frequencies (10–60 Hz) with large
amplitudes (0.1–2 mm). The results confirm the theoretically predicted behavior, c.f.
Figs. 2, 3 and 15. In Fig. 15a, the curves represent different preloads of the friction
contact. The blue curves correspond to a zero breakaway force (no preload). The
system behaves as a tuned mass damper, demonstrating two prominent peaks and the
strong suppression of vibrations at the tuning frequency. The red curves correspond
to very high preload, which ensures permanent sticking in the friction contact. The
system’s behavior in the last case corresponds to a one degree of freedom oscillator.
The curves in between demonstrate that the lock-up damper is able to damp the peak
around the first resonance. Furthermore, the systems sensitivity with respect to the
excitation amplitude was also validated, c.f. Fig 15b. A comparison between the dry
friction lock-up damper and a magneto-electro rheological damper is presented in
[12].

In order to validate the numerical and analytical predictions of the performance of
the wedge damper, a second setup was designed, see Fig. 16. To a certain extent, this
setup uses the same parts as the setup for the lock-up damper and is also designed for
low frequencies and large amplitudes. The experimental results confirm thenumerical
and analytical simulations. The prestress level on the damper determined how the

a) b)

Fig. 14 a Experimental setup for testing of the lock-up mass damper. b Detailed view on the
lock-up element
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a) b)

Fig. 15 a Prestress variation results. b Excitation amplitude variation results

a) b)

Fig. 16 a Experimental setup for testing of the wedge damper. b Detailed view on the wedge
element

system behaves, analogously to the breakaway force of the lock-up damper. If the
prestress level is too high, the system behaves as a one degree of freedom system,
whereas if it is set to zero, a systemwith two degrees of freedom is observed, c.f. Fig.
16a. Additionally, Fig. 16b shows the magnification factor V for different excitations
amplitudes and proves the damper’s robustness, i.e. its scalability (Fig. 17).

6 Conclusions

This work investigated three friction based dampers: the lock-up damper, the sliding
wedge damper, and the friction damper with polynomial contact surfaces. It can be
stated that the friction-based dampers demonstrate their ability to diminish forced
vibrations tightly focused on the resonance ranges. Furthermore, the contact geom-
etry significantly determines the characteristics of the damper. The planar contact
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a) b)

Fig. 17 a Prestress variation results 6δmin = 0.7mm. b Magnification factor results for different
excitation amplitudes

geometry of the dry lock-up damper has a limited robustness and therefore a reduced
applicability. An increase in robustness is observed in the prestressed wedge damper,
which has a linear varying contact geometry. In order to avoid unnecessary energy
losses, the wedge damper can be prestressed and forced into the stick-phase as long
as the vibrations remain sufficiently small. These passive dampers are either optimal
in the passage through resonance or at a certain tuned frequency, but not in both. The
friction based damper with polynomial contact surfaces addresses this limited appli-
cability to a certain extent. Namely, when the range of the excitation force amplitude
is known a priori.

The developed analytical approaches enable to predict the behavior of such sys-
tems and to make the reasonable parameter choice for the design of real devices.
These analytical results are verified via experiments for the lock-up damper and the
sliding wedge damper. Comparing the analytical results, it is noted that the devel-
oped approach based on the averaging technique enables accurate prediction of the
dynamics of such devices.
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Simulation-Based Design of Hybrid
Particle Dampers with Application
to Flexible Multibody Systems

Niklas Meyer and Robert Seifried

1 Introduction

Passive damping techniques are often used to reduce structural vibrations. Classical
liquid dampers aremostly seen for these applications. These dampers arewell studied
andmathematically easy to describe. However, liquid dampers perform insufficiently
under extreme temperatures, due to the change of viscous properties, and do need an
anchor point. Hence, for applications where liquid dampers are not suitable, particle
dampers are becoming more and more popular.

Particle damping (PD) technology is classified as an auxiliary-mass type vibration
technique [1]. Either containers attached to the vibrating structure or holes within
the vibrating structure are filled with a granular material of convex or non-convex
shape. Various different materials like steel, tungsten, carbide, polymers and many
more can be used. The particle size normally ranges from the micrometer scale to
the millimeter scale. Thus, from several dozens up to millions of particles might be
included in a single particle damper. By structural vibrations, momentum is trans-
ferred to the granular material causing granular movement. By particle interactions,
energy dissipation occurs due to inelastic normal collisions and frictional losses. This
reduces the structural vibrations.

Compared to other damping techniques, particle dampers show various advan-
tages due to their conceptual simplicity and passive nature. They are cost-efficient
devices, do not need an anchor point, and do not often degrade in time [2]. Using
appropriate particles, e. g. steel or tungsten, particle dampers can even operate in
extreme environmental conditions [1, 3, 4]. Furthermore, particle dampers add only
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little mass to the primary system [2] causing no significant change in its mass and
stiffness [5]. It is also reported that particle dampers can be applied to a wide fre-
quency range [6].

Although particle dampers show huge potential, they are so far only rarely used
in technical applications. The major reason for this is that currently there exists no
easy design guideline, which is due to their nonlinear behavior and the variety of
influence parameters. These influence parameters strongly affect the particle motion,
also called state ofmatter ormotionmode (of the rheology behavior),which correlates
in a non-trivialwaywith the damper’s energy dissipation. These correlations are often
only poorly understood, leading to a trial and error-based design process of particle
dampers even nowadays. In [7], a systematic multiscale design methodology in form
of a toolchain is developed, which is based on computational models as well as
models derived from experiments. These models are extremely useful for supporting
the damper design and damper integration on a structure. In addition, they also
provide useful insights into the complex processes, the nonlinear effects, and the
design parameters influencing the efficiency of particle dampers.

Within this paper, the toolchain is used to develop single particle damper units
with predefined characteristics, which do not rely on a specific application. Different
hybrid damper approaches are utilized to increase the efficiency of the individual
particle dampers. Multiple container layers with different filling ratios are used to
obtain an optimizeddampingbehavior for transient vibrations. Inner structureswithin
the dampers show a more robust behavior and buffering the damper’s walls with a
polymer leads not only to a considerable noise reduction, but leads also to an increased
efficient range of operation.

This paper summaries the research on the DFG projects SE1685/5-1 and
424825162 within the SPP1897. This paper is based on the publications [7–16]
which originated from the two project phases and is organized in the following way:
In Sect. 2 the systematic multiscale design methodology in form of a toolchain is
presented. In the following sections the design toolchain is applied to design particle
dampers for horizontal free and forced vibration systems of low intensity, see Sect. 3
and horizontal and vertical forced vibration systems of high intensity, see Sect. 4.
Finally, the conclusion is given in Sect. 5.

2 Design Toolchain

Particle dampers show a nonlinear dynamical behavior, starting at the micro-
mechanical effects during single particle impacts and sliding contacts, continuing
with the energy dissipation inside the particle container, and ending at the interac-
tion within a structure. For a better understanding, and thus also for the design of
particle dampers, investigations on these different scales or levels, respectively, are
necessary. A systematic multiscale design methodology in form of a toolchain is
therefore developed, see Fig. 1 and [7]. Insights made on one level can be used
on the next level to better understand the dynamical properties and shorten the
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Fig. 1 Toolchain for the analysis of particle dampers

overall design process of particle dampers. On all levels, numerical models, as well
as experimental tests, might be used for analysis.

On the first level of the toolchain, the micro-mechanical behavior of single
particle–particle and particle–wall interactions is analyzed. This provides impor-
tant input for the second level. The second level represents investigations into an
isolated particle damper subjected to a harmonic motion and the determination of
the damper’s energy dissipation for a given excitation frequency range and ampli-
tude range. First design rules and, if applicable, analytical formulas for the energy
dissipation are derived here. Finally, the third level represents the integration of the
particle damper in a vibrating structure to evaluate the overall damping effect.

2.1 Level I

The first level of the toolchain, see Fig. 1-single particle, is completely indepen-
dent of the other two levels. On this level, the micro-mechanical behavior dur-
ing a normal impact of two bodies of macroscopic size, like particle–particle or
particle–wall, is analyzed. Here, a particle collides in a defined manner with the col-
lision partner. Thereby, the energy dissipation during the impacts is of major interest
and can mainly be characterized by the coefficient of restitution (COR) ε describ-
ing the velocity change during contact [17, 18]. The COR designates the quotient
between the velocities right after (1) and before (0) the impact for the bodies I and
II as ε = − (

v1I − v1II
)
/
(
v0I − v0II

)
. For ε = 1 the impact is called elastic. For ε = 0

it is called fully inelastic and both collision partners move with the same velocity
afterward.

In discrete element method (DEM) simulations, which are used on level II, often a
constant COR is applied. However, the impact velocity of the collision partners has a
big influence on theCORand should thus be considered.Numerical and experimental
models can be used to determine the COR [19–21]. For example, Fig. 2 shows the
experimental setup for the impact of a steel sphere against different planar wall
materials, as detailed discussed in [14, 16]. The testbed consists of a steel sphere
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Fig. 2 Test bed to determine the COR for a sphere–wall contact

of 15 mm radius which is suspended by thin wires impacting the wall material probe
glued or fixed to a rigid steel block.

The sphere is held in the deflected state by an electromagnet. As the position of
the electromagnet is variable, different impact velocities are achieved. After release,
the velocity of the sphere is measured by the laser vibrometer (LV) PSV-500 from
Polytec with a sampling frequency of 250 kHz.

Alternatively, numerical investigations using the finite element method (FEM)
can be performed for determining the COR [20, 22]. A schematic representation
of the sphere–sphere FEM model is shown in Fig. 1–level I. Here, for example, the
spheres have an initial radius of 5mm, which can be scaled to different sizes. Each
sphere consists of 6093 axis symmetric 2D elements, called CAX4R inAbaqus. The
element size varies between 0.015 mm to 0.5 mm and both spheres are assigned
with half the impact velocity with opposed signs [14, 16].

The analyzed steel–steel and steel–aluminum contacts show a high dependency
on impact velocity [14, 16]. Exemplary, in Fig. 3a the experimental and numerical
COR results for steel sphere–steel wall impacts are shown. These start at high COR
values for low impact velocities and show a digressive decay towards higher impact
velocities. Due to plastic deformations, repeated impacts onto the same spot show
a much higher COR [22]. The FEM simulations are capable to reproduce the quan-
titative progression of the COR observed in experiments. Only small quantitative
differences remain.

Besides the metal–metal impacts, steel-polymers combinations are investigated.
Exemplary, in Fig. 3b the experimental and numerical COR results for steel sphere–
polymer wall impacts are shown. The steel–polymer contacts show only little depen-
dency on impact velocity. For v0I > 0.1 m

s , only a little linear decrease of COR with
impact velocity is observed. The effect of repeated impacts vanishes [16], as no plas-
tic deformations in the contact zone occur. Numerically, a good agreement with the
experimental measurements is achieved for low impact velocities, i. e. v0I < 1m

s . At
high impact velocities, bigger differences are seen.
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Fig. 3 Experimental and numerical COR results for sphere-wall impacts of different materials

Using the validated numerical models, the CORs for various sphere diameters are
calculated, which can be used for later DEM simulations. Indeed, it turns out that
the dependency on impact velocity is much bigger than on the sphere’s diameter.
See [16] for further details.

2.2 Level II

The second level of the toolchain, see Fig. 1-single damper, represents investiga-
tions of an isolated particle damper subjected to a defined horizontal or vertical
vibration. The energy dissipation of the particle damper is determined for the given
excitation frequency range and excitation amplitude range.Additional, insights about
the movement of the particle bed, called motion mode, are gained. The particle con-
tainer is excited by a harmonic motion using a rheonomic constraint xc = X sin(�t),
with container amplitude X and angular frequency � = 2π f . The corresponding
container velocity and acceleration follow as ẋc = V cos(�t) and ẍc = −A sin(�t)
with V = X � and A = X �2. The dimensionless excitation intensity is defined
as � = A/g with g as gravity constant. From the velocity of the particle container
and the excitation force, the complex power can be determined. Using the complex
power, the energy dissipation and the reduced loss factor are obtained, displayed
as characteristic diagrams over the excitation frequency and excitation amplitude.
These characteristic diagrams are also called effective fields in the following. The
calculated effective fields can be stored and used on the third level of the toolchain for
the integration process of the particle dampers in a vibrating structure. If applicable,
the effective fields might be approximated by an analytical formula, which can also
be integrated on the next level. All these aspects help to shorten the design phase on
level III.

Investigations can be performed experimentally using a closed-loop controlled
shaker setupor a linear drive. This depends on the excitation frequency and amplitude,
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see e. g. [12, 14, 15]. Investigations can also be performed numerically using the
DEM, see e. g. [7]. Such a DEM model is shown in Fig. 1-single damper.

Discrete Element Method: The DEM is a discrete simulation method for granular
materials. Every particle is considered as an unconstrained moving body only influ-
enced by applied forces, e. g. the particle–particle and particle–wall contact forces.
The dynamics are described by Newton’s and Euler’s equation of motion for every
particle [23]. This results in general in a coupled nonlinear differential equation
with 6 np degrees of freedom for 3D simulations with np being the number of parti-
cles. Here, the algorithms presented in [11] are used.

Complex power:Toanalyze the energydissipation and the efficiencyof the particle
damper, the complex power method, introduced by Yang [24], is used. The complex
power is determined to P = 0.5 F∗� V̄ ∗. Hereby, F∗ denotes the complex amplitude
calculated by the fast Fourier transform (FFT) of the driving force signal acting on the
container and V̄ ∗ is the conjugate complex amplitude by FFT of the velocity signal of
the container motion. The dissipated energy per cycle Ẽdiss follows from the complex
power to Ẽdiss = 2π Ediss = 2π Real(P)/�. To judge about the damper’s efficiency
the reduced loss factor η∗ [14] is utilized. It is calculated by a scaling of the dissipated
energy with the kinetic energy of the particle system Ekin = 0.5mbed |V ∗

�|2 using
the mass of the particle bed mbed, i. e. the mass of all particles, to η∗ = Ediss/Ekin

with V ∗
� being the complex amplitude of the velocity signal at driving frequency.

As consequence, the reduced loss factor is independent of the container and particle
mass and enables the comparison of different particle settings.

2.3 Level III

The third level of the toolchain, see Fig. 1-structural integration, represents the inte-
gration of particle dampers in a vibrating structure to evaluate their overall damping
effect. This can be done experimentally or numerically. For simplicity on this level,
only 2D motion is considered in this project, i. e. either horizontal or vertical vibra-
tions. For the numerical investigations, three different approaches have been devel-
oped. In the first approach, the complete DEMmodel describing the particle damper
used on level II is coupled with the dynamical model of the structure. The flexible
structure might be described by a reduced linear finite element model or a flexible
multibody system. While this approach is very accurate and useful for verification
purposes, it is computationally very expensive. Alternatively, the flexible structure
model can be coupled with the effective fields or the analytical formulas previous
determined in level II. This coupling is easily implemented and leads to accurate
results and short computation times, see [7, 12] for detailed information about the
coupling process. If an analytical formula is present, it even might be used for a
damper optimization.

In the following, the toolchain is applied to design different particle damper sys-
tems for various application fields and their results are presented.
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3 Horizontal Vibration Systems of Low Vibration Intensity

Low vibration intensity is defined here as a vibration with particle damper accel-
eration amplitudes below the gravitational acceleration A < g and frequencies/
eigenfrequencies of f0 < 5 Hz. Often, only small energy dissipation rates are
obtained for such systems so far, due to sticking of particles. Hence, a new and more
efficient design of particle dampers is necessary for these applications, whereby the
focus is on horizontal vibrations. The proposed design makes use of the rolling prop-
erty of spheres inside particle containers with flat bases, see [15]. The presentation
of this chapter is based on [7, 13, 15].

3.1 Level II—Considerations

The experimental setup to analyze the particle damper’s motion modes and energy
dissipation under horizontal forced vibration of low intensity is shown in Fig. 4-top.
For this purpose, a linear drive is used.

The cuboid container is filled with 36 spherical steel particles of 5 mm radius
with clearance hroll to the other container side. The container is mounted via a force
transducer on a linear drive. Thus, the excitation force acting on the particle container
is measured. During the conducted experiments, two different motion modes of the
particle bed are observed. Trajectories of these motion modes, obtained from DEM
simulations, are shown in Fig. 5. The reduced loss factor, i. e. the efficiency factor of
the particle bed, is shown in Fig. 4-bottom. For low excitation amplitudes X < Xopt

rol ,
the system is in the so-called scattering motion mode. No regular or synchronous
motion of the particles is observed, see also Fig. 5a. Hence, only a little amount
of energy dissipates, resulting in a low reduced loss factor. When the container
amplitude reaches a certain threshold amplitude Xopt

rol the system turns suddenly into
the rolling collect-and-collidemotionmode, i. e. for X > Xopt

rol . Here, the particle bed
stays together as one particle block and slides and rolls over the container base. The
collisions with the container walls are inelastic, i. e. after impact, the particle bed
adopts the container’s velocity and does not rebound from it. This happens due to
multiple inter-particle collisions during impact, see [25, 26] for further details.Hence,
a synchronous particle motion with the container is achieved, see Fig. 5b. This leads
to a high energy dissipation at X = Xopt

rol with a slight decrease to higher excitations
amplitudes. Equipping the container with buffered walls, making the particle damper
hybrid, does not influence its energy dissipation but leads to a considerable noise
reduction for this excitation regime.

The numerical DEM results for the reduced loss factor are also pictured in Fig. 4.
For the scattered motion mode, i. e. X < Xopt

rol , the results are on the same scale as
the experimental results. However, neither a qualitative nor quantitative agreement
of the observed curves for this area is achieved. For the rolling collect-and-collide
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motion mode, i. e. X > Xopt
rol , a good qualitative agreement with the experiments is

obtained.
For the scattered state, an empirical formula describing the energy dissipation is

found, yielding a rough approximation. For the rolling collect-and-collide regime,
instead, an deterministic equation for the energy dissipation is derived. For this
analytical equation, the curve progression of the reduced loss factor agrees well with
the experiments, see Fig. 4. However, the obtained reduced loss factor values are
above the experimentally measured ones for all excitation amplitudes. Additionally,
a simple expression for the optimal stroke is achieved to Xopt

rol ≈ 0.4 hroll, see also
Fig. 4. This formula is in great agreement with experimental results [15] and enables
a quick and reliable damper design for a structural integration.

Additionally, intensive sensitivity analyses are performed experimentally and
numerically in [15]. Most of the particle properties, like Young’s modulus, den-
sity, coefficient of restitution, or particle number have a negligible influence on
the damper’s efficiency. However, it turns out that a low friction coefficient and a
high particle radius are beneficial. Also, a tilt around the damper’s axis are studied.
Hereby, a little tilt around the dampers yaw axis is showing only little influence
on the damper’s efficiency. Indeed, a tilt around its longitudinal or pitch axis might
significantly decrease the efficiency of the rolling collect-and-collide motion mode.
Finally, the container shape is analyzed. The cuboid shape is replaced by a cylin-
drical shape heading against gravity. While the efficiency of the damper is only a
little reduced, this cylindrical shape is showing the great advantage of applying to
vibrations in the whole horizontal plane. Thus, this new efficient damper design for
low acceleration vibrations opens a completely new area of applications for particle
dampers in mechanical and civil engineering, like the damping of high-rise buildings
or wind power plants [15].

3.2 Level III—Considerations

To show the applicability of the derived damper design, it is applied to free and forced
vibrations in the following.

3.2.1 Free Vibrations

The system to be damped for these vibration intensities is a parallel lightweight
manipulator with highly elastic links [7], see Fig. 6-top. The lightweight manipulator
consists of two linear motors set up in a “T–configuration”. Elastic links, made of
spring steel, are mounted via revolute joints on both sliders and are connected via a
third revolute joint forming a parallel robot. At the end of link II, the end-effector is
mounted, which consists of the hybrid particle damper of multiple layers. The elastic
deformation in link II is introduced via the rigid body motion, i. e. when the linear
drives are moving, and is dominated by the first (bending) eigenmode.
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Fig. 6 Parallel lightweight
manipulator used for
harmonic vibration analyses
with overview of the system
(top) and comparison of the
end-effector movement for
the optimized particle
damper (bottom)
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For this system, all three particle damper models, i. e. full DEM model, effective
fields, and analytical formulas, are coupled to themodal reducedmodel of the system.
All coupledmodels are showing a good agreement to experimentalmeasurements [7].
Finally, the analytical formulas are used to optimize the filling ratio of the different
particle damper layers for an initial deflection of link II. The effectiveness of the
optimized design is demonstrated experimentally as shown in Fig. 6-bottom. Only a
small difference between experiment and analytical formulas is found and the system
is greatly damped compared to the undamped case.

3.2.2 Forced Vibrations

For the forced vibrations, a simple beam-like structure is used as an application
example, see Fig. 7-top. Its base point is subjected to a harmonic motion of vari-
able frequency using a linear drive. The particle damper is mounted at the tip of
the beam and its velocity is measured using a laser scanning vibrometer. Thus,
the frequency response function (FRF) |H∗( f )| = |X∗

c ( f )/U
∗( f )|, with complex

particle damper amplitude X∗
c and complex excitation amplitude U ∗ is obtained
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Fig. 7 Simple beam-like structure setup for forced vibration analyseswith overview of system (top)
and FRF’s of optimized particle damper for an excitation of U = 1.33mm and 36 steel particles
of 5 mm radius (bottom)

experimentally. Numerically, the equations describing the energy dissipation of the
particle damper, which are shown in the normalized form in Fig. 4-bottom, are cou-
pled to amodal reducedmodel of the structure. A good agreement between analytical
and experimental obtained frequency response function is achieved for various exci-
tation intensities, validating the presented approach, see [13] for a detailed discussion.

Finally, the coupled model is used to calculate the design parameter of the parti-
cle damper to operate it at its maximum efficiency, i. e. at Xopt

rol see Fig. 4-bottom. A
simple analytical expression is obtained. Its accuracy is proven by comparison to an
experiment as shown in Fig. 7-bottom. Simulation and experiment are only slightly
crossing the optimal normalized amplitude of Xopt

rol /U , with U being the excitation
amplitude. However, due to uncertainties within the experimental setup, some differ-
ences remain in the obtained FRF’s. Still, the derived formula provides a powerful
tool to design particle damper for applications of low acceleration intensity, see the
discussion in [7].
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4 Horizontal and Vertical Vibration Systems of High
Vibration Intensity

High intensity vibrations are defined here as vibrations with an acceleration ampli-
tude A � g and (eigen)frequencies f0 � 10Hz. For such vibrations, the particle
dynamics completely change compared to the previous two sections, but the influence
of the gravitational acceleration becomes less.

4.1 Level II—Considerations

For the analysis of motion modes and effective fields, a corresponding testbed is
developed [9–11, 14] as shown in Fig. 8. The cylindrical particle container is excited
by a controlled harmonic force via a shaker perpendicular to gravity. The excitation
force is controlled in such a way that the vibration frequency and acceleration mag-
nitude of the container stays constant. The force sensor is mounted between particle
container and shaker. The velocity of the particle container is measured via a laser
vibrometer.

Filling the particle containerwith steel spheres ofmacroscopic size, i. e. from 0.3–
5 mm radius, five differentmotionmodes can be observed, as shown as velocity fields
in Fig. 9. In Fig. 10 the reduced loss factor and the distribution of motion modes for
such a setting are plotted. The solid-like state, see Fig. 9a, is characterized by almost
no relative motion between particles and container. This causes the granular matter
to look like an added block, staying at the container base and moving with the
same velocity as the container. Hence, only little dissipation rates are obtained, see
Fig. 10. For the local fluidization, see Fig. 9b, particles located at the top surface
become fluidized. Here small to medium dissipation rates are achieved, see Fig. 10.
When the whole particle system gets fluidized, the global-fluidization is obtained, as

excitation
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particle
damper
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y
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vibration controller
& power amplifier
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data acquisition &
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particle container

shaker

load cell

velocity
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control
accelerometer
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accelerometeradjustable

cap

Fig. 8 Testbed for determination of effective fields of particle damper for high vibration intensities
with schematic representation (left) and picture (right)



Simulation-Based Design of Hybrid Particle Dampers … 57

Fig. 9 Velocity fields of motion modes for high excitation intensities for particle damper shown
in Fig. 8. The colors show the magnitude of the in-plane particle velocity normed by the container
velocity V from low (blue) to high (red)

Fig. 10 Experimentally
determined reduced loss
factor (top) and numerically
obtained motion modes
(bottom) of particle container
for horizontal high excitation
intensities shown in Fig. 8

shown in Fig. 9c. Medium to high reduced loss factors are seen. Within the bouncing
collect-and-collidemotionmode, see Fig. 9d, the particlesmove as one single particle
block synchronously with the driven particle container and collide in elastically with
the container walls, leading to medium to high reduced loss factors. The decoupled
motion mode is shown in Fig. 9e. It is characterized by a very small absolute particle
velocity compared to the velocity of the container. Thus, the granular matter appears
to be decoupled from the container and results in small dissipation rates.
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Fig. 11 Inner structures used for high excitation vibrations with schematic representation (left)
and result for same particle setting as used in Fig. 10 equipped with inner structure (right)

An intensive sensitivity analysis is performed experimentally and numerically
in [14] on different particle and container properties affecting the motion modes.
The bouncing collect-and-collide motion mode is rather insensitive except for the
clearance hbou. High reduce loss factor values are again obtained along a constant
container stroke of Xopt

bou = hbou/π , see also Fig. 8 for the definition of hbou. For the
global fluidization, a high filling ratio of the particle container and a small particle
size are found to be advantageous.

Hybrid Particle Dampers: In [27] two hybrid particle damper approaches are pre-
sented to make the damping behavior around high reduced loss factor values more
robust and efficient compared to a pure particle damper. These findings [27] are sum-
marized here. The first approach uses inner structures inside the particle container,
see Fig. 11-left for a schematic representation. In Fig. 11-right the corresponding
reduced loss factor is shown. Hereby, the same particle settings as for Fig. 10 are
used. Inner structures lead to lower reduced loss factors of the bouncing collect-and-
collide motion mode, but to a more robust (wider) behavior in this excitation area,
compare red dots in Figs. 10 and 11. Also, they lead to higher reduced loss factors
at high frequencies. The more inner structures are used and the smaller the parti-
cle radius, the stronger the effect on the reduced loss factor. The second approach
presented in [27] utilizes buffered walls of the particle container. The approach
aims to influence the local fluidization mode, such that a similar motion as in the
bouncing collect-and-collide is achieved. Instead of taking off the container base and
flying through the container as for the bouncing collect-and-collide motion mode,
the particle bed penetrates the buffered wall material. When the buffered material
is completely compressed, an inelastic collision with the container’s wall occurs
and the relative velocity between particles and wall vanishes. This produces a new
particle motion, also called compression collect-and-collide. In Fig. 12-left, the cor-
responding velocity field obtained from DEM simulations is shown. In contrast to
the local fluidization mode, a much higher particle velocity is achieved, compare
with Fig. 9b. An analytical formula based on Hertz impact theory has been derived,
enabling a fast dimensioning of the buffered wall material, see [27]. In Fig. 12-right,
the reduced loss factor is shown for the particle setting of Fig. 10 using buffered walls
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Fig. 12 Buffered walls used for high excitation vibrations with particle damper’s velocity field
(left) and reduced loss factor for same particle setting as used in Fig. 10 equipped with buffered
walls designed for f = 60Hz (right)

designed for an excitation frequency of f = 60Hz. Here, a very robust behavior of
the reduced loss factor concerning the excitation intensity at the desired excitation
frequency is achieved.

4.2 Level III—Considerations

In the next step, the particle container of level II is coupled to an underlying structure
as presented in detail in [11, 12]. The previous experimentally and numerically
determined effective fields or the full DEM model are used to predict the overall
damping of the system. As an application example, a beam-like structure with free–
free boundary condition is used. A picture and a schematic representation of the
beam and testbed are shown in Fig. 13. The testbed consists of a flexible beam with
a hollow profile supported by three soft cables. The beam is exited in the transverse
directionwith a variable force by a shaker at its free end using a sine sweep excitation.
The particle container can be placed at any desired position on the beam. For the
investigated analysis here, the container is placed at the free, not excited end, as
shown in Fig. 13. Later on, the position of the particle damper can be varied.

Coupling the effectivefields of the particle damper to amodal reducedmodel of the
beam, various investigations have been conducted to show its qualitative accuracy
and efficiency [11, 12]. In Fig. 14 an exemplary result of this coupling procedure
is shown. While a perfect quantitative fit is not obtained, so gives the qualitative
results useful guidelines during the particle damper design process. The position
of the particle damper plays an important role. Placing the particle damper at an
antinode of the shape function a good agreement between damping prediction and the
experimental result is achieved. By placing the damper at a position where the shape
function exhibits an additional rotation, the damping prediction is still acceptable.
Although, in some cases this greatly reduces the energy dissipation of the damper,
i. e. for the bouncing collect-and-collide motion mode. Even multiple eigenmodes
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Fig. 13 Testbed to
determine the overall
damping behavior of the
particle damper for high
excitation vibrations with
schematic representation
(top) and picture (bottom)

Fig. 14 Damping ratios of
beam-like structure equipped
with particle damper of
Fig. 8 for high excitation
intensities

can be damped efficiently if the particle damper is placed at a position, where these
modes have a high shape function value. For further details on the different coupling
methods of the numerical models see [11, 12].
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5 Conclusion

So far particle dampers have been mostly developed by time-consuming
experimental-based trial and error strategies for very specific applications, where
the adaption to other systems is extremely limited. This might be due to the fact, that
the processes in the particle dampers are highly nonlinear and depend on a variety
of different influence parameters, like the coefficient of restitution, the coefficient
of friction, the excitation frequency, and the vibration amplitude. Due to the lack
of understanding of these processes in the dampers and missing systematic design
approaches, particle damper’s application is so far limited.

The goal of this project is the development of a new design methodology in form
of a toolchain for passive vibration damping of lightweight structures and machines
using particle dampers. Thereby, using simulations that are verified by experiments,
also a deeper understanding of the micro-mechanical processes in the dampers are
obtained. This is crucial in the systematic design of particle dampers using numerical
methods. By this new design methodology, which is in parts independent of the
specific application, it is possible to extend particle dampers to a variety of very
different applications, which has been shown at multiple examples.

Using thedeveloped toolchain single particle damper unitswith predefined charac-
teristics are developedwhich do not rely on a specific application. Hybrid approaches
are used to increase the efficiency of the individual particle dampers. Multiple layers
with different filling ratios might be used to obtain an optimized damping behavior
for transient vibrations. Inner structures within the dampers cause a more robust
behavior and buffering the dampers walls with a polymer leads not only to a consid-
erable noise reduction but can also be used to extend the damper’s efficient range of
operation for high intensity applications. These individual particle dampers finally
form an assembly set, which is ultimately used in the overall damping concept for
specific applications.
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A Systematic Approach to Smart
Damping of Mechanical Systems Based
on Inductive Electro-Mechanical
Coupling

Mitja Rosenboom and Hartmut Hetzler

1 Introduction

The field of inductive damping of structural vibrations is best described from an
energetic point of view. The kinetic energy of the structural vibration is converted
into electric energy by electromagnetic induction. The electric energy is then dissi-
pated by ohmic resistors and is thus extracted from the mechanical system. In order
to convert kinetic energy into electric energy, the magnetic flux through some con-
ductive material has to be modulated. This process can be divided into four basic
functionalities: source of magnetic flux, transport of magnetic flux, modulation of
magnetic flux and induction of electric current.

For each of these functionalities different realizations are possible. The source of
themagnetic flux can either be a permanentmagnet or an electromagnet, the transport
of the magnetic flux can be guided through the structure by use of high permeability
iron cores or can be unguided. The modulation of the flux in a conductive material
may be due to a change of the magnetic flux itself or due to a movement of a
conductive material relative to a magnetic field. The induction can either occur in
a coil (as a lumped element of the system) or in form of eddy currents, distributed
over a part of the structure. Figure1 shows a matrix which gives an overview on the
different functionalities as well as symbolic design examples.

Based on this matrix, damping devices may systematically be created by (rather)
freely combining different alternatives to implement the basic functionalities. For
example, an inductive damping device may be constructed by combining a guided
transport of the magnetic flux, a modulation of the flux by varying an air gap, an
inductive coupling by means of a coil and providing dissipation using an ohmic
resistor. For the source of the magnetic flux, basically two options are available:
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Fig. 1 Overview on functional elements of electromagnetic damping devices
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Fig. 2 Examples built from the matrix of basic functionalities using different realizations of the
source of the magnetic flux: a permanent magnet, b electromagnet

it may either be produced by a permanentmagnet with a remanence of BR (cf. Fig. 2a)
or by means of an electromagnet fed with a constant current I0 (cf. Fig. 2b).

In the past decades several investigations on inductive damping have been pub-
lished. Behrens et al. [4] have introduced electromagnetic shunt damping. They
proposed a plunger, consisting of permanent magnets, that is moving in a coil, which
is connected to an impedance network.

Przybylowicz and Szmidt [8, 9] theoretically investigated a mechanical oscillator
between two electromagnets. The magnetic flux is guided with iron cores through
the mechanical oscillator and builds two independent magnetic circuits with an air
gap. The length of the air gap is modulated by the mechanical movement and thus,
eddy currents are induced in the iron core. The investigated model shows strongly
nonlinear behavior.

Bae et al. [1, 2] studied the behavior of a cylindrical permanent magnet moving
in a conductive tube. Sodano et al. [12, 13] investigated a model consisting of a
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cantilever beam with a conducting plate, that is moving in the magnetic field of a
permanent magnet. Later on Sodano and Inman [14] proposed an active damping
device where they used again a cantilever beam with a conductive plate. This time
an electromagnet generates the magnetic field and a feedback control system is used
to control the oscillations of the structure. Laborenz et al. [5, 6] experimented with
eddy current damping to reduce the oscillations of steam turbine blades. They, as
well, used a copper plate oscillating in the magnetic field of a permanent magnet.

Bae et al. [3] studied the use of an eddy current damper as a magnetically damped
tuned mass damper to reduce oscillations of a beam structure. They showed, that
the resonance amplitudes of the structure were decreased by applying eddy current
damping to the tuned mass damper. Lian et al. [7] proposed an eddy current-tuned
mass damper for wind turbines.

The objective of this contribution is to systematically analyze different realizations
of inductive damping elements. Therefore models using different elements of the
basic functionalities shown in Fig. 1 will be investigated. Furthermore, the possibility
tomodify inductive damping systemswith additional nonlinearities to showa specific
behavior is presented.

2 Analysis of Models Based on Magnetic Circuits

In this section the equations of motions for the proposed models shown in Fig. 2 will
be derived and the static and dynamic behavior will be analyzed. The derivation of
the equations of motion is exemplary shown for the system with permanent magnet,
illustrated in Fig. 2a.

To describe an inductive damping model mathematically, the system can be
divided into three subsystems, as shown in Fig. 3. Here, the electrical and themechan-
ical subsystem do not interact directly but will be coupled by themagnetic fieldwhich
acts as a mediator.

The mechanical system in this case is a simple single degree of freedom (DoF)
oscillator with mass m and stiffness k (cf. Fig. 4a). The position of the mass is
described by the coordinate x . The mass is excited harmonically by an external force
F(t). Furthermore the magnetic force Fmag acts on the mass. Another static force
F0 is introduced in order to compensate static magnetic forces and thus to ensure,
that the system will have a static resting position at x = 0. For instance, such a force
could easily be realized by preloading the spring. Eventually, the equation of motion
for the mechanical system follows from Newton’s law and is given by

magnetic systemelectric system mechanical system

Fig. 3 Separate physical sub-domains involved in an inductive damping device
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Fig. 4 a Mechanical subsystem. b Electrical subsystem

mẍ + kx = F(t) + Fmag − F0. (1)

The electric subsystem is a simple electrical network, featuring an ohmic resistor R
and the induced voltageUem f . The current flowing in the circuit is denoted by I . The
equation of motion follows from Kirchhoff’s law and reads

Uem f + RI = 0. (2)

Assuming magnetostatic conditions the magnetic problem can be described by
the simplified form of Ampère’s law [16], reading

∮
�

H · dl = Ienc, (3)

where H is the magnetic field, Ienc is the current enclosed by the loop � and d� is
an infinitesimal element of the curve �. Furthermore, the conservation law of the
magnetic flux holds according to

∮
S
B · da = 0, (4)

where B is the magnetic flux density and da is the outer normal unit vector of the
closed surface S. The magnetic flux density B is connected to the magnetic field H
by the constitutive relation

H = H(B). (5)

Furthermore, the magnetic flux through a surface S is defined by

� =
∫
S
B · da. (6)

The magnetic subsystem for the proposed inductive damping device with a per-
manent magnet is shown in Fig. 5. Applying Ampère’s law to the illustrated loop �

yields
Hm�m + Hfe�fe + Hd(�d − x) = N I, (7)
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Fig. 5 Magnetic subsystem

NI

BR

Γ

�d − x

�m

where Hm is the magnetic field in the permanent magnet, �m is the length of the
permanent magnet, Hfe is the field in the iron core, �fe is the length of the iron core,
Hd is the field in the air gap and �d is the nominal length of the air gap, N is the
number of turns of the coil and I is the current flowing through the coil. From the
conservation of the magnetic flux, it may be followed that all individual parts of the
structure are crossed by the same flux and thus

�m = �fe = �d = � (8)

holds. Assuming equal cross sections A of the individual parts yields

� = BA, (9)

which states that the magnetic flux density in all parts is equal. The constitutive
relations for the magnetic fields in the permanent magnet (Hm), the air gap (Hd ) and
the iron core (Hfe) are given by

Hm = 1

μ0
(B − BR), Hd = 1

μ0
B and Hfe = 1

μfe(B)
B, (10)

where μ0 is the magnetic permeability of free space and μfe(B) is the permeability
of the iron. The permeability of the magnet is assumed to be μ0, as this is approx-
imately the case for neodymium magnets. For this study hysteresis losses of the
B–H characteristic are neglected because most of the energy storage of the mag-
netic field occurs in the air gap, and thus hysteresis losses are assumed to be small
[15]. The assumed B–H characteristic is shown in Fig. 6: the slope of the character-
istic decreases sharply after the magnetic flux density reaches a magnitude Bsat , as
the material saturates.

Eventually, the magnetic flux of the system is described by

(
(�m + �d − x) + μ0

μfe(B)
�fe

)
� = μ0N AI + �m�R, (11)
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Fig. 6 B–H characteristic
of the material for the iron
core (adapted from [15])

H

Bsat

B

where �R = BR A is the magnetic flux of the remanence. The link of the mechanical
and the magnetic subsystems may be expressed using Maxwell’s stress tensor

T = B ⊗ H − 1

2
(B · H)I, (12)

where I is the unit dyadic tensor [11]. Accordingly, the total magnetic force acting
on an object reads

F =
∮
S
T · da, (13)

where S is the surface of the object and da is the outer normal unit vector of the
surface. For the considered model, the magnetic force results in

Fmag = A
B2

2μ0
= �2

2Aμ0
. (14)

The relation between the electric and the magnetic subsystem is given by the flux
linkage of the coil, and thus

Uem f = d�

dt
, where � = N�. (15)

For the proposed model, � is not explicitly time-dependent and therefore

Uem f = N
d�

dt
= N

(
∂�

∂x
ẋ + ∂�

∂ I
İ

)
(16)

applies. Summarizing, the equations of motion for the system in Fig. 2a read

mẍ + kx − �2

2Aμ0
= F(t) − F0 (17)

N

(
∂�

∂x
ẋ + ∂�

∂ I
İ

)
+ RI = 0 (18)
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(
(�m + �d − x) + μ0

μfe(�/A)
�fe

)
� = μ0N AI + �m�R . (19)

Using the mechanical eigenfrequency

ω0 =
√

k

m
(20)

for vanishing electro-magnetic coupling (i.e. � = 0), the time t is re-scaled to
the dimensionless time τ = ω0t . Consequently, the differential operators transform
according to ˙(·) = ω0(·)′, where (·)′ denotes the derivation with respect to τ . Fur-
thermore the dimensionless parameters

κ = �m

b
, δ0 = �d

b
, β = �fe

b
, (21)

ν = N�Rω0

RI0
, γ = �2

R

2�dk Aμ0
, h(ϕ) = μ0

μfe (�Rϕ/A)
, (22)

ρ = bμ0N I0
�R

, f (τ ) = 1

�dk
F (τ/ω0) , f0 = 1

�dk
F0 (23)

as well as the scaled coordinates

displacement: ξ = x

�d
, flux: ϕ = �

�R
, current: ι = I

I0
(24)

are introduced, where b is the width of the iron core and I0 is some reference cur-
rent. Inserting these parameter into the Eqs. (17)–(19) results in the dimensionless
equations of motion of the system with permanent magnet (cf. Fig. 2a)

ξ ′′ + ξ − γ ϕ2 = f (t) − f0 (25)

ν

(
∂ϕ

∂ξ
ξ ′ + ∂ϕ

∂ι
ι′
)

+ ι = 0 (26)

(κ + ρι) − (
κ + δ0(1 − ξ) + βh(ϕ)

)
ϕ = 0. (27)

Apart from the difference in the source term of the magnetic flux, the mechanical
and electrical subsystems for the damping device using an electromagnet as depicted
in Fig. 2b are equivalent. For this case, Ampère’s law yields

Hfe�fe + Hd (�d − x) = N I + N0 I0, (28)

where N0 is the number of turns of the electromagnet and I0 is a constant current
feeding the electromagnet. Following the same steps as for the system with a perma-
nent magnet, the dimensionless equation ofmotion of the systemwith electro-magnet
(cf. Fig. 2b) are found as
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ξ ′′ + ξ − γ ϕ2 = f (t) − f0 (29)

ν

(
∂ϕ

∂ξ
ξ ′ + ∂ϕ

∂ι
ι′
)

+ ι = 0 (30)

(ρ0 + ρι) − (δ0(1 − ξ) + βh(ϕ)) ϕ = 0, (31)

where ρ0 is the source term of the magnetic flux, given by

ρ0 = bμ0N0 I0
�r

. (32)

2.1 Static Analysis

In Fig. 7 the magnetic flux ϕ of the considered models is shown as a function of
the relative static displacement ξ .1 Since a static solution is assumed (ξ ′ = 0) no
currents are induced and therefore, ι = 0 holds. Notice that a relative displacement
of ξ = 1 means, that the air gap is closed. The figure compares solutions with as well
as those without accounting for magnetic saturation. For the system with permanent
magnet, the influence of saturation is very small, as the magnetic flux is restricted
due to the remanence of the permanent magnet. In contrast, the system with elec-
tromagnet shows a strong influence of saturation as the flux increases for small air
gaps. Therefore, for the system with an electromagnet, saturation effects must be
taken into account, if small air gaps occur.

As the magnetic forces act equivalent to a nonlinear spring with negative stiff-
ness, the static solution may become unstable for certain parameters. Figure8 shows
stability charts for bothmodels for parameter variations of the source termof themag-
netic flux (κ respectively ρ0) and the coupling parameter of the mechanical and the
magnetic subsystem γ . While the systemwith a permanent magnet only shows insta-
bilities for higher values of γ , the system with an electromagnet becomes unstable

Fig. 7 Magnetic flux of
models with permanent
magnet (pm) and
electromagnet (em) with and
without the effect of
saturation

-1 -0.5 0 0.5 1
ξ

0

1

2

3

ϕ

pm
pm w/o saturation
em
em w/o saturation

1 The parameters used for the analysis are κ = 2, δ0 = 1, β = 10, ρ0 = 0.5, ρ = 0.5, γ = 0.5,
ν = 1, Br = 1.2.
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Fig. 8 Stability charts of magneto-mechanical coupling against flux source for a system with
permanent magnet, b system with electromagnet [10]

already for much lower values. As the stiffness of the magnetic force is dependent on
the slope of the magnetic forces against ξ , the system becomes unstable if γ

dϕ2

dξ > 1
applies [10].

2.2 Dynamic Analysis

For a harmonic excitation with f (t) = f̂ sin(ητ), a dynamic analysis of the sys-
tem is carried out using a simple shooting method. The maximal amplitudes of the
occurring oscillations are shown in Fig. 9a. Both systems—the one with permanent
magnet as well as the system with electromagnet—show a shift of the resonance
frequency. This is caused by the magnetic forces acting as a spring with negative
stiffness. Furthermore, in both cases resonance amplitudes are limited. The reso-
nance amplitudes of the system featuring an electromagnet are much lower and thus,
the damping is higher. While for the system with a permanent magnet higher ampli-
tudes of the excitation force will lead to system failure, as the deflection reaches the
length of the air gap, the frequency responses of the system with an electromagnet
for higher excitation force levels are depicted in Fig. 9b. The system shows strongly
nonlinear behavior for higher amplitudes. Even higher amplitudes of the force lead
to instabilities and therefore are not computable by the used simple shooting method.

2.3 Numerical Validation

To validate the obtained results, a numerical model has been set up. To compensate
the one-sided magnetic pull and to get a more efficient damping, the model has been
expanded to a symmetric model, as depicted in Fig. 10a.
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Fig. 9 a Frequency responses of themodels with excitation force amplitude f̂ = 0.02. Red: system
with permanent magnet—Green: system with electromagnet—Gray: system without magnets. b
Frequency response of the system with electromagnet for different excitation force amplitudes f̂
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Fig. 10 a Model for numerical validation. bMEC-network of the model

To describe the model analytically, the method of magnetic equivalent circuits
(MEC) is used. The method converts the continuous model into lumped parameters
connected by nodes and thus, forming a network, similar to an electric network. The
method is equivalent in assumptions to the one presented in the previous subsection,
but it brings the advantage of being able to analyze more complex systems with
multiple connected magnetic circuits. To transform the continuous model into a
MEC, Ampère’s law (Eq. (3)) is split into individual sections

∮
�

H · d� =
∑
d∈D�

∫
�d

H · d� =
∑
d∈D�

Fd , (33)
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where D� is the set of names of the individual parts. Fd is commonly referred to as
magnetomotive force (MMF) drop. Accordingly the currents inside the loop � are
called MMF sources and are denoted as

Ienc,� =
∑
s∈S�

Ns Is =
∑
s∈S�

Fs, (34)

where S� is a set, containing the names of the MMF sources. Ampère’s law in the
theory of MECs is referred to as Kirchhoff’s MMF law, which states that the sum of
MMF drops in a closed loop equals the sum of MMF sources, i.e.

∑
d∈D�

Fd =
∑
s∈S�

Fs . (35)

Additionally the flux conservation law (Eq. (4))was used in the previous chapter. This
is found in Kirchhoff’s flux law, which states that the sum of fluxes into respectively
out of any node must vanish. It is left to define Ohm’s law for magnetic equivalent
circuits, which is found by manipulating the MMF drops to a form

Fd = Rd�d , (36)

where Rd is called a reluctance of the associated section of the structure. A detailed
description of the method is provided in [15].

For the presented model, the MEC network is shown in Fig. 10b. As the previous
study showed, that for the considered system with permanent magnet saturation
doesn’t have an influence on the magnetic flux, saturation is not taken into account
for this study. Thus, the MECmodel provides a linear algebraic equation to calculate
the magnetic flux, given by

RN�N = FN . (37)

In Eq. (37), RN is the network reluctance matrix, FN is a column matrix containing
the external MMF sources and �N is the column matrix of the network fluxes. The
equations of motion for the mechanical and the electric system read

mẍ + kx − 1

μ0A
(�2

2 − �2
1) = F(t) (38)

Cẋ + Lİ + RI = 0, (39)

where m is the oscillating mass, k is the stiffness of the spring, F(t) is a harmonic
force, μ0 is the vacuum permeability, A is the cross section of the iron cores. The
matricesC (coupling), L (inductance) andR (electric resistance) are calculated with

C = N
d�

dx
and L = N

d�

dI
and R =

[
R 0
0 R

]
, (40)
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Fig. 11 a Dynamic flexibility of the symmetric model shown in Fig. 10a. Red circles: time depen-
dent FEA—Blue line: MEC network shown in Fig. 10b—Green line: modified MEC with leakage
paths (cf. Fig. 11b)—Gray line: system without magnets. bMEC network with additional elements
to model leakage

where N is the number of turns of the coils, R is the ohmic resistance of the coils
and � = [�1 �2]T is a column matrix containing the magnetic fluxes linked with
the coils. The dynamic flexibility of the nonlinear set of equations is calculated using
the Harmonic BalanceMethod (HBM).2 During the calculation the derivatives of the
fluxes are evaluated numerically. The results are depicted in Fig. 11a.

For the validation process a finite element analysis (FEA) using the commercial
program COMSOL Multiphysics has been carried out. The mesh for the analysis is
depicted in Fig. 12a. In Fig. 12b the calculated flux is shown for a stationary analysis.
A dynamic FEA is carried out using the moving mesh formulation of the software
coupled with an ordinary differential equation for the mechanical subsystem. The
dynamic flexibility, calculated with the FEA, is also shown in Fig. 11a. A significant
difference to the result of the proposed MEC system exists. This can be explained by
leakage effects, i.e. not all the magnetic flux follows the predefined path. Therefore
the MEC model has been modified as illustrated in Fig. 11b with additional leakage
paths. The dynamic flexibility of the enhanced model is also depicted in Fig. 11a.
The FEA and the MEC analysis with the expanded model are in good agreement
and thus, it is confirmed, that leakage is the main cause for the differences in the
models. Consequently, the guidance of the magnetic flux through a structure has

2 The parameters of the MEC are calculated by �R = ABR , Ruc = �uc/(μfe A), Ric = �ic/(μfe A),
Rm = �m/(μ0A), Rd1 = (d0 − x)/(μ0A), Rd2 = (d0 + x)/(μ0A), Rσ1 = �σ1/(μ0�σ1b), Rσ2 =
�σ2/(μ0�σ2b). The values of the parameters used for the analysis are m = 0.1 kg, k =
3 × 104 Nm−1, F̂ = 1N (force amplitude of excitation), R = 0.015�, d0 = 3mm (nominal air
gap length), A = 100mm2, N = 35, BR = 1.2 T, �uc = 50mm, �ic = 20mm, �m = 2mm, �σ1 =
4mm, �σ2 = 13mm, b = 10mm (depth of iron core), μ0 = 4π × 10−7 Hm1, μ f e = 5000μ0.
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(a) (b)

Fig. 12 aMesh of the FEA model. b Simulation result from static FEA. Color Gradient: magnetic
flux density—White lines: magnetic field lines

to be designed very carefully. Furthermore, flux leakage does effect the damping
efficiency dramatically and therefore must be minimized in order to efficiently calm
structural vibrations.

3 Analysis of Models Based on Eddy Currents

Another inductive damping device may be derived from the matrix in Fig. 1 by pro-
ducing the modulation of the flux by moving a magnet in the vicinity of a conductive
material. As a source of the magnetic flux, a permanent magnet is chosen and the
transport is unguided. The induction is distributed over the conductive material. One
representation of this set of realizations of the functionalities is shown in Fig. 13a
and has been analyzed e.g. by Bae et al. [1]. Since the analytic calculation of eddy
currents is rather complex and only applicable for simple geometries, a mixed for-
mulation will be derived. Still, a short summary of the basic procedure as used in
e.g. [1, 5, 12] is given.

3.1 Analytic Description of Eddy Currents

According to Ohm’s law, the eddy current density J is given by

J = σE, (41)
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Fig. 13 a Model of eddy current damper as proposed by Bae et al. [1]. b Model of a single DoF
oscillator featuring position-dependent inductive damping

where σ is the electric conductivity of the material and E is the electromotive force.
If no electric charge accumulations exist, the electromotive force in a homogeneous
conducting rigid object, moving translationally at the velocity v in a constant mag-
netic field B, is given by

E = v × B. (42)

The electromagnetic force on the object due to eddy currents can be calculated by

F =
∫
V
J × B dV, (43)

which is known as the Lorentz force equation [11]. Neglecting the magnetic field
induced by the eddy currents, the magnetic field is a prescribed quantity and can be
calculated with Biot-Savart’s law. Inserting Eqs. (41) and (42) into Eq. (43) the force
due to eddy currents yields

F =
∫
V

σ (v × B) × B dV . (44)

From this, the part of the force acting against the movement of the object and thus,
as a damping force can be found as

Fd = v

∫
V

σ B2
⊥ dV . (45)

Herein v is the magnitude of the velocity and B⊥ is the magnitude of the part of the
magnetic flux density that is perpendicular to the velocity of themoving object. It can
be concluded, that the damping force due to the eddy currents is linear in the velocity.
This linearity in the velocity allows a numerical calculation of the damping force for
a specific velocity. Afterwards a damping parameter can be calculated by dividing
the damping force by this velocity. Further analysis may be carried out, using lumped
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models with the evaluated damping parameter. Note, that as the magnetic field of the
induced eddy currents is neglected in this derivation, the method is only suitable, for
(rather) low velocities.

3.2 Nonlinear Eddy Current Damping Element

The analysis in the previous subsection revealed that the damping force of a magnet
moving in a conductive tube is proportional to the velocity, thus it behaves identical
to linear viscous damping. In this section, the model of a permanent magnet moving
in a conductive tube, as proposed by Bae et al. [1], is upgraded with geometric dis-
continuities for position-dependent damping behavior. Therefore a gap is introduced
in the conductive tube as shown in the system in Fig. 13b.

To calculate the position-dependent damping parameter, a FEAmodel of themag-
net in the conductive tube with a gap has been set up. In a time dependent study the
magnet was moved with constant velocity v0 through the conductive tube and the
damping force Fd was calculated at each position. Afterwards, the resulting damp-
ing force Fd has been divided by the velocity v0 to obtain the damping parameter.
Furthermore, it has been normalized to a maximum value of one and stretched, so
that the maximum damping value is reached at ξ = ±1. The resulting normalized
position dependent damping parameter is depicted in Fig. 14a. For the FEA again the
moving mesh formulation has been used to adapt the mesh during the simulation.
Figure14b shows the FEA model at a specific time step.
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Fig. 14 aNormalizeddamping coefficient of position dependent eddy current damping.Red circles:
result of FEA—Blue line: fitted curve used for dynamic analysis.bModel of the eddy current damper
with geometric discontinuities and position-dependent inductive damping. White lines: magnetic
field lines—Gray gradient (in air): magnitude of magnetic flux density—Colored gradient (on
conductive tube): magnitude of eddy current density
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For the analysis of the systemdepicted inFig. 13b, the normalized dampingparam-
eter has been fitted with the curve shown in Fig. 14a. The equations of motion for
the system are given by

mẍ + d(x)ẋ + kx = F̂ sin(�t), (46)

where m is the mass of the moving object, d(x) is the position dependent damping
coefficient (not normalized), k is the stiffness of the spring, F̂ is the amplitude of an
external harmonic force and � is its frequency. The position of the moving object
is described by x . To minimize the number of parameters, the equation of motion
is converted into dimensionless form. Based on the characteristics ω0 = √

k/m and
thus τ = ω0t , the non-dimensional parameters η = �/ω0 and f̂ = F̂/(k�) are intro-
duced. Moreover, the scaled coordinate ξ = x

�
will be used, where � is the reference

length used for the stretch of the damping parameter. Introducing the re-scaled param-
eters and coordinates the damping term may be transformed as

d(x) = d0δ
( x

�

)
= d0δ(ξ) and

d0
m

= 2Dω0 (47)

where D is the damping factor and δ(ξ) is the normalized damping parameter, as
depicted in Fig. 14a. The dimensionless equation of motion is given by

ξ ′′ + 2Dδ(ξ)ξ ′ + ξ = f̂ sin(ητ). (48)

To solve the nonlinear differential equations, again a simple shooting method is
used. For the analysis, the maximum value of the damping parameter has been set
to D = 1. Figure15a shows the frequency response of the nonlinear damped single
degree of freedomdevice. The graph of the dynamic flexibility is depicted in Fig. 15b.
It shows that for higher excitation levels the resonance peak becomes lower, and
thus the position dependent damping allows for an amplitude dependent damping
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Fig. 15 a Frequency response and b dynamic flexibility of proposed nonlinear model for different
levels of the excitation force
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behavior. While small oscillations remain mainly unaffected, large oscillations are
efficiently suppressed. This behavior might be favorable in situations, where for a
better efficiency of a system a low damping ratio is necessary, but still large vibrations
must be prevented.

3.3 Nonlinear Magnetically Damped Tuned Mass Damper

The proposed nonlinear damping device could as well be used as a magnetically
damped tuned mass damper (TMD). A basic model of this is shown in Fig.16. The
equations of motion are given by

[
M + m m

m m

] [
ẍ
z̈

]
+

[
0 0
0 d0δ(z/�)

] [
ẋ
ż

]
+

[
k0 0
0 k

] [
x
z

]
=

[
F̂ sin(�t)

0

]
, (49)

where x is the coordinate describing the position of the primary mass M and k0 is
the stiffness of the spring connecting it with the environment. z is the coordinate
describing the position of the TMD with the mass m and k is the stiffness of the
spring connecting it with the primary mass. d0 is the damping coefficient and δ(z/�)
is the normalized position dependent damping parameter with the reference length �

as discussed in the previous subsection. To minimize the number of parameters, the
scaled quantities

ω0 =
√

k0
M

, ωT =
√

k

m
, DT = d0

2mωT
, μ = m

M
, ν = ωT

ω0
, (50)

f̂ = F̂

k0
�, τ = ω0t, η = �

ω0
, ξ = x

�
, ζ = z

�
(51)

are introduced. The dimensionless equations of motion read

Fig. 16 Single degree of
freedom oscillator with a
magnetically damped tuned
mass damper d(z) k

m

M

k0
2

x

z F(t)

k0
2
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Fig. 17 Dynamic flexibility of the system with nonlinear damped TMD for different excitation
levels. a Primary mass. b TMD

[
1 + μ μ

μ μ

] [
ξ ′′
ζ ′′

]
+

[
0 0
0 2μνDT δ(ζ )

] [
ξ ′
ζ ′

]
+

[
1 0
0 μν2

] [
ξ

ζ

]
=

[
f̂ sin(ητ)

0

]
. (52)

The dynamic flexibility charts for different excitation levels for the TMD and for the
primary mass are shown in Fig. 17. The values of the parameters used for the analysis
are μ = 0.1, ν = 1 and DT = 0.2.

Due to the presence of damping in the TMD, the resonance amplitudes are lim-
ited. However, near the designed operating point (here: η ≈ 1) the system behaves
similar to a weakly damped TMDwhich may show very effective vibration compen-
sation. Thus, this nonlinear damper might combine the benefits of weakly damped
TMDs with the operational safety of optimally damped TMDs, which have smaller
resonance amplitudes, than weakly damped TMDs.

4 Conclusion

In a first step, basic functional elements of inductive damping devices were identified
and classified into a matrix. Using this schematic, a systematic derivation of possible
damping designs may be obtained by re-combining several options.

Based on this matrix, two basic designs were derived and analyzed in more detail.
All analyzedmodels show the possibility to efficiently reduce the vibration amplitude
of an oscillating structure, modeled as a single degree of freedom oscillator. From the
analysis of the systems, modulating the magnetic flux due to mechanical movement
and guiding the flux through the structure, it was concluded, that saturation has a
major influence on systems based on electromagnets, if only small air gaps occur in
the structure. Furthermore, itwas shown, that flux leakage pathsmust be implemented
in an analysis, as they strongly decrease the damping performance.

The analysis of the considered eddy current damping elements showed,
that neglecting the field of the eddy currents, the resulting damping force is
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proportional to the velocity. As the analytic calculation of eddy currents is only
favorable for simple geometries, a coupled numeric-analytic analysis was presented,
where the damping coefficient is calculated using FEAand the result is integrated into
a lumped parameter mechanical model. Using this procedure, the damping parameter
of a position dependent eddy current damper was evaluated and the dynamic behav-
ior of the system was analyzed. It was shown, that the proposed model is capable
of reducing predominantly large oscillations. Furthermore, the position-dependent
damping element was used in a TMD. The system with the TMD behaved similar
to a weakly damped TMD for small oscillations, but limited resonance amplitudes
effectively.
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The Role of Damping in Complex
Structural Dynamics: Data-Driven
Approaches

Merten Stender and Norbert Hoffmann

1 Introduction and Problem Statement

Structural dynamics and computational simulation approaches have reached high
levels of maturity over past decades. High-performance computing allows for simu-
lating large structures at high precision.At the same time, linear andweakly nonlinear
system identification techniques are available for the parameterization of mathemat-
ical models. Uncertainty quantification allows for propagating measurement errors,
manufacturing tolerances, and the-like modeling inaccuracies into the simulation
results. Viewing the problem of damping design from a conceptual perspective, one
could therefore say that the problem should be solved today. Within the context of
accurate modeling and determinism, model based approaches should allow to eval-
uate stability boundaries and even non-linear solutions after branching. In fact, this
idea and approach has been and is about to be followed in a large number of dis-
ciplines. In some fields of application, the model based approach has today lead to
tools to analyze damping behavior and to design damping elements [1]. In other
fields, the purely model based approaches do, however, still fall short of allowing
for robust system design, and in some fields, like e.g. brake noise, many researchers
would today say that physics-based approaches do still not work at all [2, 3]. The key
ingredients to a successful modeling of structural dynamics are i) correct mathemat-
ical models and ii) correct parameterization of those. Challenges arise when either
of those ingredients cannot be met at high precision. For example, frictional pro-
cesses are inherently connected with damping. However, they are difficult tomeasure
and model, therefore the simulation of complex friction-affected structures is still a
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challenge. The two research projects at Hamburg University of Technology (TUHH)
lead by Prof. N. Hoffmann therefore addressed a data-driven perspective on damping
in structural dynamics.

1.1 Nonlinear Dynamics

The field of nonlinear dynamics has emerged at least about half a century ago in
mathematics and the sciences, and now can be considered as an established domain.
Science and engineering have traditionally developed along the lines of thinking in
terms of equilibria, stationarity, and then from there on to more complicated non-
stationary behavior. In many cases, design processes proceed by assuming stationary
operation, with instationarity forming perturbations to steady operation [4]. This has
workedwell inmany cases in the past, but the limitations of the approachhave become
apparent [5, 6]. Environmental loads are very complex and can be described in terms
of means and deviations only comparatively poorly. Also operational strategies are
usually non-stationary, what can well be seen in the field of autonomous driving,
where cars are practically never subject to the same operational state [7]. In the
context of ‘Industry 4.0’, global plant control strategieswill cause evenmore dynamic
loads and higher performance requirements which have to be taken into account [8].

Chaotic dynamics [9] are typically related with the extreme sensitivity of a fully
deterministic process to a small change in initial conditions. Veryminor perturbations
will cause an exponential divergence of trajectories, thereby limiting the prediction
horizon. Considering uncertainties, numerical rounding and measurement noise, the
implications of the concept of chaos are crucial. Although the findings in chaotic
dynamics and complexity have made their way to many domains, like meteorology
for weather and climate analysis, or also to the life-sciences, the field did have an
impact on the design of complex dynamical machines mostly with respect to weak
nonlinearities. Many further reaching achievements of nonlinear dynamics, which
have broken ground in the complex system sciences [10] still need to find their way
into machine dynamics design. Classically, machines are designed for a linear and
regular behavior, although many recent data analyzes show that machine dynamics
and machine vibrations usually exhibit rather irregular and chaotic motion [11–
13]. One may even speculate that controlled chaotic motion could extend component
lifetimes due to the broader spectrum of loads compared to strictly repetitive patterns
of regular motion. However, the deliberate design of machines for low-amplitude
chaotic operation conditions has, astonishingly, not found much attention yet.

1.2 Complexity and Structural Dynamics

In the field of nonlinear structural dynamics, a large number of advanced validation
methods have been developed in recent years, including control-based continuation
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into the nonlinear domain [14], nonlinear time-series analysis [15], recurrence plot
analysis [16], to name just a few. Independently from this, a wide range of disci-
plines from science, technology, medicine and other disciplines have been subjected
to analysis and validation tasks which share many characteristics known from non-
linear structural machine dynamics. Over the years, these communities have come
to summarize their systems as ‘complex systems’, and rather recently it has shown
that many of the problems that arise can well be studied in the context of networks
and graph theory. In the present field of nonlinear structural dynamics, it seems
that the system and dynamics analysis methods from the field of complexity and
network theory have hardly been studied, analyzed or exploited by now. Purely data-
driven techniques and machine learning are currently making their way into many
application-related fields of structural dynamics.

1.3 Damping Paradox

In externally excited systems, the dynamic response depends crucially on the dissi-
pative mechanisms involved, and in almost all cases introducing dissipative design
elements, i.e. dampers, reduces the strength, amplitude, or level of the dynamic
response. For linear systems the corresponding theory has been standing for a long
time, and for weakly non-linear systems it can be extended. For systems that may
show self-excited vibration, the situation can be much different. Here, certain system
parameters may fall in ranges where instability results from additive damping [17].
Finite-amplitude responses in the form of regular or irregular response result, includ-
ing limit-cycles, quasi-periodic solutions, chaos. Hence, when it comes to either sta-
bility boundaries, or to characteristics of weakly or strongly non-linear solutions,
the influence of dissipation can be very complicated. Often times, additional damp-
ing elements plainly stabilize a system. Very early on, however, it has already been
noticed that an increase in damping, e.g. through putting additional dampers into a
system, stability boundaries may becomeworse than without damping. Systemsmay
even be destabilized through adding or increasing damping. This characteristic has
actually, over time, been uncovered in a very large number of disciplines: physics,
engineering, the geosciences [18–20]. The mechanical or mathematical origin of this
destabilizing character of damping ismost often to be found in the combination of the
effects that additional damping elements may have on the overall system structure
and dynamics: local dampers may alter the structure of the flow of energy through the
structure, they may change amplitude and phase behavior, and these effects, intrinsic
to the system, may suffice to turn a stable into an unstable system.
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1.4 Friction and Damping

Mechanical friction is a complex process that spans multiple time and length scales
[21]. The relevance of various frictional processes and phenomena is obvious for
brake systems, clutches, drill strings and various other mechanical machines. Being
a multi-physic and multi-scale process, friction is inherently difficult to model for
a given contact between two bodies. Over-simplified approaches like Coulomb fric-
tion exist to capture the overall logic of friction. Realistic frictional contacts are
however much more complex. Ultimately, frictional behavior contradicts classical
understanding of linearizations and nonlinearities: classical, nonlinear behavior is
expected for large deflections and deviations from an equilibrium. In contrast, friction
can be approximated to behave linearly for large deflections or relative sliding veloc-
ities. In the range of small sliding velocities, frictional behavior is however strongly
nonlinear. As a result, linearization about a point of operation may not always be
appropriate for friction-affected systems, is however the standard in finite element
simulations of brake systems. Moreover, friction can act as both an energy sink and
energy source. Frictional damping will dissipate energy and transform motion into
heat or deformation (frictional wear).Mechanical joints were shown to contribute the
majority of dissipation to mechanical structures [22] through friction damping. At
the same time, friction can also feed energy back into the structure and thereby excite
finite-amplitude vibrations, commonly denoted as self- or friction-excited vibrations
(FIV). Velocity-dependent friction can result in negative damping and thereby desta-
bilize a structure, which is typically the case for stick-slip self-excited vibrations.
Mode-coupling (binary flutter) instability [23] can be another root cause for FIV
which exists also for constant friction. Here, a parameter variation in the frictional
contact will couple two structural modes, one of which is destabilized.

Frictionmust thus be understood as a central aspect ofmanymechanicalmachines,
crucially affecting the dissipation and the resulting vibration behavior. Owing to the
complexity of frictional processes, their sensitivity, and narrow stability margins,
understanding damping in mechanical structures is closely related with friction and
self-exited vibrations. An important recent insight in self-excited system is that many
of the systems under study demonstrate irregular rather than regular dynamics when
investigated in detail [6, 11, 12]. Most often the resulting solutions appear to be
periodic only at first sight [24], while in fact closer data analysis demonstrates that
the seemingly periodic solutions rather do form tori or strange attractors. In a sense,
this finding should not be considered to be too surprising. In many self-excited
systems actually dynamics on a wide band of scales takes place, and the usually
implicitly assumed separation of scales works in an approximate manner at most, if
at all. Nevertheless, a wide range of theory and tools for irregular dynamics, which
were often developed in stronger idealized mathematical environments, could be
used and applied - although this is hardly ever done.
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1.5 Structure of This Work

This work aims at summarizing the research efforts conducted in two three-year
periods of the Priority Programme SPP1897 under the project lead of Prof. Nor-
bert Hoffmann at Hamburg University of Technology. As such, we re-visit central
findings that have been published in the course of the SPP1897 in 18 peer-reviewed
journal publications. The illustration of the work does not follow a strict chrono-
logical order, but aligns with central aspects of research on data-driven damping
identification in complex and friction-affected systems. Particularly, Sect. 2 intro-
duces several approaches to signal processing, Sect. 3 revisits system identification
techniques, Sect. 4 presents physics-based modeling methods, and Sect. 5 focuses on
data-driven models. Section6 summarizes highlights and several future directions of
research, before Sect. 7 gives a comprehensive conclusion.

2 Signal Processing

Signal processing is a research field concerned with the extraction of information
from (measured) data, which typically takes the form of univariate and multivari-
ate time series in the area of structural dynamics. As such, signal processing is
closely related with system identification tasks. Central aspects and challenges in
signal processing for structural dynamics lie in the sparsity of the data: not every
degree-of-freedom can bemeasured and the sampling frequencies of sensors are lim-
ited. Furthermore, measurements are typically contaminated with noise. This section
presents how nonlinear signal processing techniques can be leveraged to understand
complex vibrations, thereby extending the classical toolset beyond linear approaches
such as the Fourier transform. As techniques from nonlinear time series analysis and
recurrence analysis are not too common in structural dynamics, the central concepts
of those methods are briefly revisited first.

2.1 Phase Space Embeddings

Since the 1980s a large number of conceptual approaches have been proposed for
studying characteristic features of nonlinear dynamical systems based on measured
time series [15]. Importantly, these time series are sparse in the sense that only a min-
imal set of degrees-of-freedom of the physical system can be sensed. At the core of
the approach is the idea to characterize nonlinear invariant measures in phase space.
This is possible in a number of different ways. Usually, the system and its dynamics
are characterized from either a geometric or a dynamic perspective. Important exam-
ples include fractal dimensions, Lyapunov exponents as measures for stability of
dynamics with respect to infinitesimal perturbations, and various forms of entropy to
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evaluate the uncertainty about the future state of a chaotic trajectory. A typical task is
to perform a precise system characterization from a single time series, or from a set of
time series. A time series xi = x(ti ) can be understood a finite representation of the
trajectory x(t) of some dynamical system. The data is converted into state vectors in
some appropriately reconstructed phase space. A common method from dynamical
systems theory to define such a phase space is time-delay embedding [25, 26]. One
constructs qi = [

xi , xi+τ , . . . , xi+(m−1)τ
]�

to obtain an m-dimensional time-delay
embedding of x(t) with delay τ and state vectors q(t) in the reconstructed phase
space R

m . For deterministic dynamical systems, the reconstructed phase space is
topologically equivalent to the original space if m > 2DF, where DF is the fractal
dimension of the support of the invariant measure generated by the dynamics in the
true (but often at most partially observed) state space. The false nearest-neighbors
(FNN) method [27] is an approach to derive a reasonable guess of how to choose
m. If a reasonably large embedding dimension is determined, all dynamically rele-
vant properties of the system are appropriately represented. Similarly, a delay τ is
appropriate when the statistical dependence between the components of the embed-
ding vectors q approaches zero. This can be achieved by choosing τ correspond-
ing to properties of the auto-correlation function of the time series data. Another
well established strategy for determining τ is to use the first minimum of the time-
delayed mutual information [28]. Once the embedding has been achieved properly,
all invariant measures of the dynamical system, like Lyapunov exponents or fractal
dimensions, can be extracted following the traditional methods from the theory of
dynamical systems.

2.2 Recurrence Analysis

A shortcoming or limitation of the use and application of embedding and phase space
reconstructionmethods ariseswhen the embedding dimensions become larger, which
makes direct visualization of the resulting dynamics difficult. Additionally, phase
space reconstruction is theoretically only possible for purely deterministic signals,
hence excluding noise-contaminated signals and processes that involve stochastic
parts. As a consequence, recurrence plots [16] have been introduced, on which sub-
sequent analysis, often referred to as recurrence quantification analysis, can be per-
formed. Recurrence of states, meaning that states get arbitrary close to earlier states
after some time, is a fundamental property of deterministic dynamical systems and
is typical for many nonlinear or systems. From the set of (original or reconstructed)
state vectors q representing a discrete sampling of the underlying system’s trajectory
(e.g., the chaotic attractor of a dissipative structural system), recurrences can be very
well visualized by recurrence plots (RP), originally introduced by Eckmann et al.
[29]. The RP is a graphical representation of the corresponding recurrence matrix
R(ε), usually defined as Ri, j (ε) = θ(ε − ∣∣qi − q j

∣∣), where |·|may denote any norm.
A RP enables us to investigate the recurrences of the m-dimensional phase space
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trajectory through a two-dimensional graphical representation Ri, j in terms of black
and white dots indicating recurrent and non-recurrent pairs of vectors. The algorith-
mic parameter ε is a threshold value which determines whether two state vectors
are close or not. RPs of dynamical systems with various types of dynamics exhibit
distinct structural properties, which can be characterized in terms of their small-,
medium- as well as large-scale features [30]. The study of recurrences by means of
RPs has become popular with the introduction of recurrence quantification analysis
(RQA) [31]. RQA measures use the distribution of small-scale features in the RP,
namely individual recurrence points as well as diagonal and vertical line structures.
One should also remark that even dynamical invariants, like the K2 entropy, mutual
information, or fractal dimensions (i.e., the information and correlation dimensions)
can be efficiently estimated from RPs.

2.3 Applications and Findings

Within the SPP1897, several sub-projects were performed for structural dynamics
diagnosis: given a single time series measurement of vibration, very detailed analysis
was performed to understand the characteristics of the vibrations, transitions, and
dynamical invariants. Friction brakes, and particularly disc brakes, have been studied
for long times in order to understand andmitigate friction-excited vibrations thatmay
annoy customers of automotive manufacturers. A range of different acoustics can
be emitted by the brake system during braking, ranging from low-frequency moan
sounds (100–800Hz) to high-frequency squeal sounds (1–12kHz). These vibrations
have long been understood as regular limit-cycle solutions with a strict periodicity,
more detailed analysis have revealed more complicated and chaotic dynamics [11–
13].

Within the SPP1897 we studied a large amount of real-world brake system vibra-
tions with a focus on the qualitative and quantitative characteristics of the underlying
nonlinear dynamics in [32]. Particularly, a systematic study was performed on the
sound pressure level emitted during brake system testing on a noise dynamome-
ter according to the SAE-J2521 standardized protocol at AUDI AG Ingolstadt. The
measurement time series were subjected to a slidingwindow processing, a fully auto-
mated embedding process, and recurrence quantifiers were derived from the resulting
recurrence plot representations. For the first time, a very large set of brake system
vibrations were characterized by nonlinear invariant measures. Figure1 illustrates an
exemplary measurement signal, the reconstructed phase space derived through time-
delay embedding, and the resulting recurrence plots. In the non-squealing regime
at the beginning of the braking, no structure is observed in the reconstructed tra-
jectories. Some long-term periodicities are found in the recurrence plot, potentially
being linked with the disk rotation. During the onset of high-amplitude vibrations, a
circular structure forms in the state space, thereby indicating strong periodicity with
super-imposed fluctuations. Diagonal line structures begin to grow in the recurrence
plot. In the fully developed vibration case, the trajectories form a limit cycle-like
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Fig. 1 Microphone measurement of the sound emissions of a single brake stop (top); three-
dimensional representation of the reconstructed phase space using embedding parameters m and τ

(middle); recurrence plots computed by the fixed-number of neighbors norm (bottom). Illustration
adapted from [32]

signature, which is supported by long diagonal recurrence plot lines. Super-imposed
modulations at a slower time scale can be read from the periodic interruptions in the
recurrence plot. While all of these characteristics would be hardly distinguishable in
time domain or in frequency domain, the state embedding and recurrence plot anal-
ysis allows for a very detailed analysis of the observed vibrations. The systematic
analysis of the embedding parameters and the recurrence quantifiers for 156min of
braking, then separated into non-squealing and squealing epochs, reveals the main
findings reported in [32]:

• The relevant dimensionality (m = 8, . . . , 12) of steady sliding dynamics without
sound emissions is higher than the dimensionality (m = 3, . . . , 6) of high ampli-
tude vibrations emitted during self-excited squeal events. The high-amplitude
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vibrations turn out more deterministic and only weakly chaotic, while quiet sliding
can either be related with mostly stochastic or highly chaotic characteristics.

• Brake system vibrations exhibit clear signatures of temporalmulti-scale dynamics,
possibly introduced by different processes in the frictional contact, as well as
external loading such as the disk rotation.

• Stationarity and instationarity of brake dynamics tend to depend on the perspective
taken to analyze vibration time series. While the dynamics in time domain seem
very transient and constantly changing, e.g. in amplitude, a recurrencematrix anal-
ysis reports rather constant invariant quantifiers. Even though the actual dynamics
change, the qualitative properties and characteristics remain constant.

• Effective damping and the distance of the instantaneous system state from
the stability borderwere able to bemeasured by recurrence quantifiers such as
entropy and average line length, which has not been possible before. This result
highlights the relevance of nonlinear signal processing techniques for under-
standing complex dynamics and damping in large multi-component structures.

A different work [33] studied the self-excited vibrations of two metallic bodies in
dry frictional contact subjected to an imposed relative sliding velocity at La Sapienza
Universita di Roma. The specimen and the complete experimental apparatus were
supported by air bearings, thereby minimizing the influence of external vibrations
or disturbances. Despite the simplicity of the set-up, rather complex vibrations arose
from the sliding motion. Laser doppler velocimetry (LDV) measurements of the
vibrations were analyzed using phase space embedding and successive recurrence
analysis. Figure2 illustrates an exemplary analysis, comparing a time-frequency anal-
ysis by short-time Fourier transform (STFT) to a rolling-window recurrence quan-
tification analysis (RQA) over a duration of just 1.5s of sliding. The STFT reveals
many different strong periodicities as well as transitions between them. However,
the analysis of the STFT would be limited to dominant frequencies and respective
vibration amplitudes. The RQA however, is able to quantify the different epochs of
the vibration signal, for example by the diagonal and vertical line lengths L , V . Some
epochs appear very constant with respect to RQA, while transitions are clearly visi-
ble in the statistics of the vertical line lengths V . The interpretation of those metrics
allows to draw conclusions about the degree of (ir)regularity, laminarity and also
attractiveness, i.e. the actual damping at play. The labeled sections in Fig. 2 relate
to different phases of vibration: purely harmonic oscillation (a), tori (b), tori with
laminar fast-slow phases (c), multi-harmonic vibrations (d,e), chaotic vibrations (f)
and low-deterministic or random-like vibrations (g).
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Fig. 2 Comparing a linear time-frequency analysis (top panel) with a nonlinear recurrence quan-
tification analysis (bottom panel) for the motion of two friction-excited bodies, adapted from [33]

The research work conducted in the SPP project established nonlinear time
series and recurrence plot quantification analysis as valuable tools for in-depth
and nonlinear signal processing techniques. On the example of brake system
applications and friction-excited dynamics, we were able to show that the
resulting dynamics mostly formweakly chaotic attractors, that these dynamics
can be stationary with respect to qualitative measures, and that damping and
stability properties can be encoded in the instantaneous vibration signatures.

Besides the two works discussed before, the articles [34–36] were published in
the course of the SPP on signal processing-related topics.



The Role of Damping in Complex Structural Dynamics … 93

3 System Identification

Right after signal processing, the system identificationwill take place in a data-driven
perspective on partially unknown systems like the ones that were treated in this
project. System identification aims at deriving mathematical structures and descrip-
tions from observations. These mathematical descriptions carry parameters that will
allow the model to generalize to different situations, e.g. other initial conditions.
Importantly, the identified parameters will be interpreted as stiffness or damping
characteristics of a vibrating structure. Given complex dynamics that are strongly
nonlinear, existing (linear) identification techniques for stiffness or damping are
mostly not applicable.

Stender et al. [37] introduced a novel signal processing and damping estima-
tion technique for self-excited vibrations at the example of brake squeal. Following
the outlines given in the introduction, vibrations will be excited once the effec-
tive damping in the structure is not sufficient to dissipate the frictional energy fed
into the system. In such scenario, vibration amplitudes will grow at an exponential
rate x(t) = C · exp (λt), where λ is the largest positive eigenvalue of the linearized
dynamical system. Therefore, λ directly encodes the effective damping at play, in
this case negative damping. Many experimental studies on self-excited vibrations
have related the finally obtained vibration amplitude with the damping properties of
the linearized system: if large vibrations are observed, the corresponding real part
of the eigenvalue is assumed to be large. However, such an understanding contra-
dicts basic theoretical concepts of linear and nonlinear dynamics: amplitudes grow
at exponential rate λ, but they will be limited by nonlinearities. Therefore, the final
vibration amplitude is clearly related to nonlinear effects, which do not encode linear
damping properties of the vibrating structure. The contribution of [37] is to provide a
methodology to extract the growth rate λ from vibration measurements, and thereby
allow for system identification of damping properties. Given a measurement time
series, the point of instability and amplitude growth is found through amplitude-
based criteria. Spectral filtering (using inverse Fourier transformation and wavelet
bandwidth filtering) of the time series is performed in order to carve out the rele-
vant frequency range of the final vibration. The instances of exponentially growing
amplitudes is extracted, and an exponential fit to the amplitude envelope signal is
performed. Thereby, the rate is estimated at which the amplitudes of a certain vibra-
tion frequency grow. In order to obtain more robust estimates of the grow rate, the
data fitting range (time range describing the amplitude growth) is varied for more
than 100 times. The resulting statistics give an indication about the estimation error
and the uncertainty of the growth rate λ extracted from the experimentally measured
time series. Finally, the growth rate can be used for model-updating of simulation
models, typically large FE models. Figure3 depicts the exponential fitting procedure
to the filtered amplitude envelope function. Studying a complete test run of hundreds
of brake stops, the relationship between growth rates and final vibration amplitudes
was established. For the first time, it was shown that those two quantities are in fact
de-correlated as theory would suggest.
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Fig. 3 Extraction of negative damping values from noise-contaminated vibration measurements
of the sound pressure level (SPL): a sound emissions of a brake system exhibiting self-excited
vibrations from 1.05s onwards. b Identification of the exponentially growing amplitude envelope
function after filtering and successive fitting of an exponential. c Relation between extracted growth
rates λ and the final vibration amplitudes. Adapted from [37]

In a different work [38] in collaboration with University of Stuttgart, the effective
damping properties of particle dampers were extracted from the forced response
of a particle-damped beam structure. The dynamics of particle-damped structures
are inherently multi-scale: compared to the overall structure’s size and mass, the
individual particles in the damper are small and light-weighted. The large number of
particles interactwith other particles and the damper’s containerwalls, andhencewith
the structure to be damped. Using experimental data from a ring-downmeasurement,
a time-scale separationwas performed using the discrete wavelet transform. Thereby,
the vibrational energies contained in different time scales can be extracted. On the
slow scales, the bending modes of the beam structure dominate the response. On the
very fast scales, the particle activity is reflected, which stems from collisions in the
particle container. The effectiveness, i.e. the damping potential, of a particle damper
can be estimated using computationally demanding discrete element simulations.
Every particle collision and trajectory has to be computed in order to compute the
cumulative dissipation force acting on the structure. It would therefore be beneficial
to employ a different, much faster technique, to estimate the particle activity and
damping potential from experimental studies.
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Fig. 4 Conceptual overview on SINDy methods: using a library of ansatz functions, we aim at
solving the resulting system of equations ẋ = f (x, t) while enforcing sparsity in the solution
vector ξ , which coefficients will form the analytical differential equation that describes the data
x(t). Illustration adapted from [39]

In [38] it was found that the time scale separation works effectively, thereby
separating the dynamics of the structure and the dynamics of the particles. A
energy formulation at specific time scales allowed to extract equivalent particle
activity, i.e. damping, metrics. The research showed very good agreement
between those experimentally obtained activity metrics with the ones obtained
from excessive simulations. The versatility of the proposed techniques allowed
for measuring damping directly from time-series measurements at low costs,
thereby allowing for fast experimental damper design studies.

Another contribution to data-driven damping identification followed the research
lines of sparse identification of nonlinear dynamics (SINDy) proposed in [40].
Figure4 illustrates the concept of finding analytical equations from time series using
sparse regression. Overall, SINDy methods aim at deriving a set of analytical differ-
ential equations from given time-series data. These equations are descriptive for the
dynamics observed and provided to SINDy, hence they can reflect certain properties
of the underlying process that generated the observations. However, themathematical
models are not necessarily the same as the ones that would be obtained by classical
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physics-based methods: if the observations capture a purely harmonic response, the
SINDy models will most-likely find a minimal set of equations that can generate
harmonics of correct amplitude, frequency, and phase. Only when transients are pro-
vided to SINDy, more pieces of information about the underlying dynamics system
are available. Two works [39, 41] have been published in the SPP for advancing
aspects of the SINDy method and their application to system identification in struc-
tural dynamics. Stender et al. [39] proposed a post-processing routine to fine-tune
the coefficients found by the classical SINDy procedure and sparse thresholded least
squares solution procedure. The coefficients ξ are found by a sequential process,
resulting in potentially sub-optimal coefficient values. The proposed method uses a
loss function to minimize, typically the difference between input time series x(t) and
the time integration x̂(t) of the resulting set of equations. Constrained optimization
will then allow for changing the non-zero SINDy coefficients ξ to reduce the model-
ing error without introducing more terms, i.e. adding non-zero coefficients. Thereby,
the data fit can be improved while keeping the sparsity of the SINDy model. The
study was performed on various types of classical oscillators and analysis configura-
tions. Results indicate that this type of post-processing can reduce the fitting error by
up to 30% and even reduce the number of coefficients further. Then, this technique
was used to identify damping coefficients from time series data stemming from a
mechanical oscillator. In [41], the proposedmethodologies were applied to a geomet-
rically nonlinearly vibrating and base-excited mechanical system. The experimental
data exhibited some degree of noise contamination. The full state space was first
reconstructed using embedding techniques. Then, SINDy and successive coefficient
fine-tuning were applied to derive analytical mathematical models from a single
vibration time series. Nonlinear and damping effects were identified successfully.

The true damping coefficients were identified at high accuracy without making
any strict assumption about the library of SINDy ansatz functions. Hence,
those methods represent a promising pathway towards a direct identification
of dynamical models from data, particularly for finding uncertain parameters
such as dissipative terms.

4 Physics-Based Modeling

Having identifiedmathematical models for vibrating structures, or having parameter-
ized existing models, one will need to make predictions about the system dynamics
under different excitations, parameter configurations, or initial conditions. A large set
of numerical methods exist for these tasks, such as direct time integration, harmonic
balance approaches, and continuation methods. Several activities in the SPP1897
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thus focused on the efficient determination of the nonlinear dynamics of mechanical
structures.

One aspect of particular relevance is the phenomenon of multi-stability, even in
small and weakly nonlinear dynamical systems. The complicated localization pat-
terns and multi-stable states were studied in [42]. A chain comprised of multiple
bi-stable frictional oscillators exhibits various states of vibration that co-exist at spe-
cific sliding velocities, thereby showing that in realistic friction brakes the uncertainty
about emerging vibrations may be rooted in types of multi-stable dynamics. Closely
related with multi-stability, the phenomenon of isolated solution branches poses
major challenges to classical solvers for nonlinear dynamics, such as harmonic bal-
ance methods. Further, it was found that there is a possibility to harvest energy from
forced systems that are susceptible to self-excited vibrations, even without requiring
the system to exhibit large limit-cycle vibrations [43].

Isolated solution branches co-exist in certain parameter regions and do not link to
bifurcation paths of equilibria or limit cycles. As path-following continuation meth-
ods will only find solutions that branch from a-priori known solutions, one will not
be able to find isolated branches. An extension to the periodic motion concept was
proposed [44, 45] in collaborationwith LeibnizUniversity of Hannover. Thismethod
allows for finding isolated solution branches using classical harmonic balance meth-
ods and nonlinear normalmodes.At the core of themethod, an artificial damping term
is introduced into the differential equations, always setting the energy balance of the
system to zero, i.e. obtaining an autonomous solution to the system. As the vibration
amplitudes along the normal modes are increased, the absolute value of the artificial
damping terms is tracked. Whenever this term vanishes, a true solution to the given
system is found. That way, all solutions to a system can be found quickly, includ-
ing isolated solution branches. Using this technique, small friction-excited systems
were studied for all of their solutions at high energy levels. In [46] it was found that
even minimal models for friction-excited vibrations in brake squeal can exhibit very
complicated multi-stable dynamics. In certain weakly nonlinear parameter regimes
up to five competing periodic solutions were found by the newly developed solution
strategies. Moreover, we were able to show that the co-existing solutions even differ
in their qualitative characteristics: hyper-chaotic solutions (having more than one
positive Lyapunov exponent) were observed to exist in parallel to classical periodic
limit cycle solutions. This finding has not been reported for friction-excited systems
before, and may change the perspectives on vibrations observed experimentally: a
system may not be in a regular or irregular configuration, it can in fact be in both
configurations at the same time. Only the initial conditions and instantaneous per-
turbations will dictate if the system dynamics end up being periodic or strongly
chaotic. In contrast to chaotic vibrations generated by the system itself, [35] studied
the impact of a co-simulated chaotic friction model coupled to a classical minimal
model for brake system vibrations. It was observed that the chaotic dynamics will
propagate into the overall system dynamics, such as the ones of the brake disc, only
to a certain degree. Synchronization effects and mass-proportional bandpass filtering
will change the effective stability properties of the system, while the resulting system
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Fig. 5 Multi-stability in the Duffing oscillator ÿ − 0.08ẏ + y3 = 0.2 cos(t): a five co-existing
periodic solutions ȳi and b the corresponding state space, displacements y1 and velocities y2, and
basins of attraction for each solution. Illustration adapted from [47]

dynamics were only weakly chaotic with different Lyapunov spectra than the friction
model itself.

Our studies [34, 35, 46] highlight how complex dynamics can arise even
in seemingly simple and small dynamical systems that were thought to be
fully understood and behave regularly before. The interaction of multiple time
scales, self-excitation and damping renders the dynamics particularly hard to
predict using existing numerical techniques.

Understanding multi-stability as a central property of many nonlinear dynamical
systems, classical concepts of stability loose some degree of relevance: most of clas-
sical stability concepts build on stability against local perturbations: will trajectories
return to that solution if a small perturbation is imposed? The resulting stability state-
ment is only valid locally in multi-stable systems, and the admissible size of those
small perturbations is unknown. For practitioners those stability statements have only
limited significance. Given that a system may show several very different dynam-
ics that solely depend on the initial conditions, the shape and size of the respective
basins of attraction are the relevant quantity, see Fig. 5. Given a range and distribu-
tion of initial conditions or external perturbations, the basin information will allow
to derive the probability of arriving at a specific solution. The work in the SPP1897
published an open-sourced toolbox [47] to derive the basin stability for multi-stable
systems. In a fully automated manner, users can find all stable solutions of their
dynamical systems, and obtain the probabilities of transitioning to those solutions.
Thereby, classical stability concepts are extended towards a probabilistic estimate.
Using the proposed methods and codes, the basin stability has been investigated for
friction-excited systems [48] and fluttering airfoils [49].
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5 Data-Driven Modeling

Albeit the maturity of mathematical modeling, signal processing and system identifi-
cation techniques, there remain certain mechanical structures that cannot bemodeled
at acceptable precision today [3, 20]. One of which systems are full-scale realistic
brake systems. The highly complicated friction interface, unsteady external loading
conditions, a multitude of mechanical joints, and only partly-understood damping
are themain challenges. Specifically, today onemust accept that there is no technique
that can robustly predict the onset of self-excited vibrations such as high-frequency
brake squeal. Within the SPP project, a novel approach to brake squeal prediction
using machine learning was researched and presented [50]. To overcome the limita-
tions of physics-based modeling, deep artificial neural networks (NN) were trained
to predict the squeal occurrence from a set of multivariate time series measurements
of the loading conditions, such as rotational velocity, brake line pressure, and various
temperatures. The sequential character of the input time series was explicitly treated
using recurrent neurons that allow for taking time-dependent and history-dependent
behavior into account. Training and validation data was acquired from dynamome-
ter testing of four commercial disk brake systems, each test covering around 1500
brake stops. As the distribution of squealing and non-squealing brake stops were
very uneven (non-squealing over-represented), typical classification metrics were
not expressive for the accuracy of the trained models. Using the Mathews’ Corre-
lation Coefficient (MCC, ranging from (−1) to (+1)), scores of up to 0.78 were
obtained, meaning that around 85% of all vibration events were predicted correctly.
This result highlights the capabilities of deep neural networks for behavior predic-
tion in structural dynamics. However, the prediction models performed differently
on the data sets of all four braking systems. A global neural network for different
brake systems did not achieve better behavior prediction performance than random.
This result indicates the highly individual instability behavior of seemingly similar
mechanical structures. Particularly, the excitation and damping mechanisms were
found to be very specific to the individual mechanical structure, therefore requiring
individual models for each structure.

Very recent work within the SPP1897 was focusing on links between data-driven
modeling and physics-based modeling. To this end, we proposed to use HAVOK
(Hankel-alternative view of Koopman operators [51]) models, which derive ana-
lytical differential equations from data, similarly to the SINDy method. Classical
descriptions of nonlinear dynamical systems ẋ = f (x, t) follow the discrete time
update

xk+1 = F (xk) =
∫ (k+1)�τ

k�τ

Ax(τ ) + fnl(τ )dτ, xk = x(k�t) (1)

where F is a nonlinear operator on the system states, A is the linear system matrix,
and fnl are all nonlinear forces. A different perspective is taken in the Koopman
theory, where instead of system states one will study measurement functions g(x)
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that represent observables sk = g(xk) of the system states xk . The Koopman operator
K then advances the time step of the observables

sk+1 = Ksk = Kg(xk) = g(xk+1). (2)

In contrast to F, the Koopman operator is a linear one (at the cost of being infinite-
dimensional). The HAVOK methods now proposes to estimate a finite-dimensional
operator K̄ from data. In this SPP project, several studies were undertaken to under-
stand how the analytical equations derived from HAVOK approaches

v̇(t) = AHv(t) + Bvr , v = [
v1, . . . , vr−1

]
(3)

compare to the classical dynamical system representation of physics-based
approaches. Here, v(t) represent eigen-time-delay coordinates derived from a Han-
kel embedding approach, i.e. the new coordinates or measurement functions derived
from the input time series. The linear fit v̇ = AHv is good for the first (r − 1) compo-
nents. The last r components represent a weak linear fit, andwill be represented in the
nonlinear forcing termBvr . Particularly, we investigated how the linear system repre-
sentations A in Eq. (2) relate toAH in Eq. (3). Those results have not been published
yet. It was found for the Lorenz system that the derived damping properties and the
choice of initial conditions are clearly interrelated: the system representations derived
from a time series that starts far off the attractorwill carrymore damping (i.e. negative
parts of the eigenvalues) than a representation derived from a time series that starts in
close vicinity to the attractor. While the volume contraction property of the chaotic
attractor, i.e. a damping equivalent, does not change, the amount of transients taken
into account for the HAVOKmodels does matter. Studies with linear, weakly nonlin-
ear, and strongly nonlinear few-degree-of-freedom oscillators gave further insights
into the models derived by HAVOK, i.e. analytical equations in the form of Eq. (3),
from a single univariate time series: for weakly nonlinear dynamics the number of
state variables v did match the true number of states x, thereby finding the correct
system dimensionality. Secondly, the eigenvalue spectrum ofAH doesmatchwith the
spectrum of the true eigenvalues ofA in most situations. In this way, damping values
can be estimated from the real parts of the eigenvalues. This pathway is a completely
data-driven approach to deriving damping values from sparse time series data. As the
nonlinearity increases, the system representation approaches a spectral decomposi-
tion of the observed dynamics: more states r are introduced in the HAVOK models,
and the resulting eigenvalue spectra (imaginary parts) approach the most relevant
frequency components of the signal. Concluding, the HAVOK approach represents
a valid technique for deriving analytical equations from raw data, while at the same
time bridging over to classical physics-based modeling and system representations.
Further work in this field is required to arrive at a better understanding for how we
can integrate data-driven models with physics-based models in a unified framework
for model identification and behavior prediction.
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6 Summary

The research activities within SPP1897 were concerned with a data-driven per-
spective on damping in complex structural dynamics. The main findings of various
research efforts can be summarized as follows:

• Many real-word mechanical structures operate at the edge of chaos. Multiple time
and length scales are at play, and required adequate treatment, scale selection, and
scale-bridging methodologies to capture the multitude of processes that interact.

• Nonlinear signal processing techniques are particularly useful for studying sparse
experimental time series data. Assumptions about stationarity, determinism, or
linearity tend to over-simplify the rich information contained in measured data.

• Transient data and processes carry a significantly higher degree of information
that can be utilized for system identification. Particularly, damping estimates rely
on transient trajectories evolving towards a steady-state response.

• Data-driven identification of damping properties is possible using sparse regres-
sion, Koopman-driven, and neural-network based approaches.

• Further research is required to link data-driven and physics-based approaches in a
unified framework that is making use of both worlds’ potentials.

More details of the investigations can be found in the respective publications
achieved within the SPP1897. Parts of the results were also published in the disser-
tation thesis of Stender [52] under open access.

7 Conclusion

The research projects within SPP1897 led by Prof. Norbert Hoffmann focused on
damping in structural dynamics, particularly in complex systems affected by fric-
tion and self-excited responses. A data-driven perspective was taken to approach
damping effects and mechanisms in multi-scale, partially observable, and chaotic
dynamics. The results of the research conducted within SPP1897 were published
in 18 peer-reviewed journal publications and has been presented at 19 conferences.
Collaborations outside the SPP1897 were undertaken with Politecnico di Bari [41,
42, 48, 49], La Sapienza Universita di Roma [33, 36], University of Technology
Sydney [32, 35, 39, 50] among others. Collaborations within the SPP were under-
taken with University of Stuttgart [38], Leibniz University Hannover [44–46], and
Technische Universität Berlin [53].
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HyCEML – Hybrid CFRP Elastomer
Metal Laminates Containing Elastomeric
Interfaces for Deliberate Dissipation

Alexander Jackstadt, Vincent Sessner, Wilfried Liebig, Luise Kärger,
and Kay Weidenmann

1 Introduction

In combining the advantages of metals and fiber-reinforced polymers (FRPs), fiber
metal laminates (FMLs) are intended to surpass the properties of the monolithic
materials [20]. However, as most lightweight materials and structures, FMLs tend to
be prone to vibrations under real-world loading conditions. To overcome this, FMLs
can be complemented by viscoelastic elastomer layers in order to achieve a desired
level of damping [18]. Following the principles of constrained layer damping (CLD)
[12, 14], a viscoelastic and highly compliant layer is laminated in between two
stiff constraining layers. The large transverse shear deformations in the constrained
viscoelastic middle layer induced under bending lead to the dissipation of vibration
energy. By varying the laminate’s parameters such as lay-up, layer thickness or the
damping material itself [11], this intrinsic damping mechanism can be optimized to
deliberately dissipate undesired vibration energy.
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1.1 Materials

Within this work, different laminates which can be classified as hybrid CFRP elas-
tomer metal laminates (HyCEMLs) are investigated. The laminates comprise the
constituents listed in Table 1. The metal layers consist of an aluminum wrought
alloy EN AW-2024-T3 ALCLADAMS-QQA-250/5 delivered as sheets of thickness
tAl = 0.3mm. The carbon fiber-reinforced polymer (CFRP) layers are cured uni-
directional prepreg sheets HexPly M77/38/UD150/CHS-12K-70 by Hexcel with a
nominal cured ply thickness of tCFRP = 0.15mm. Two elastomer materials fulfill the
role of the constrained damping layers within HyCEML. Both types of elastomer
are provided by Gummiwerk KRAIBURG GmbH & Co. KG from their KRAIBON
product range, namely SAA9579-52 and HAA9275-45. The first one will in the
following be referred to as soft, whereas the latter is denoted as hard.

Within this work, multiple lamination schemes were manufactured and investi-
gated, as shown in Fig. 1 and Table 2. All variations were manufactured in the same
hot-mold process at a temperature of 150 ◦C at a pressure of 40bar for 300 s. Further
details on the manufacturing process and specimen preparation can be found in [16,
17, 19].

Table 1 Quasistatic linear elastic material parameters of the constituents used in HyCEML

Aluminum CFRP Elastomer

Soft Hard

Young’s modulus in GPa E1
E2
E3

73.1 113.7
7.75
7.75

0.045 0.483

Shear modulus in GPa G12
G31
G32

28.0 3.76
3.76
2.75

0.015 0.15

Poisson’s ratio ν12
ν31
ν32

0.34
0.31
0.40

0.34 0.48 0.45

Mass density in kg m−3 ρ 2780 1496 1180 1250

Fig. 1 Micro sections and naming conventions of FML and HyCEML stacking sequences consid-
ered within this study. The abbreviations for the different stacking sequences are listed in Table 2
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Table 2 Overview of lamination schemes and naming conventions. Individual constituents, alu-
minum (A), CFRP (C) and elastomer (E) from Table 1, are abbreviated accordingly. Subscripts
denote the individual layer thickness, whereas superscripts denote material specifications such as
orientation or type of elastomer used. Symmetric or repeating parts of a laminate are denoted with
()sym or ()3, if for example, 3 repetitions are present

Lay-up Cured laminate
thickness

Abbreviation

[
A0.3/

(
C0◦
0.15/C

90◦
0.15

)
3 /A0.3

]
1.5mm A-C-A

[(
C0◦
0.15/C

90◦
0.15

)
sym /A0.3/

(
C0◦
0.15/C

90◦
0.15

)
sym

]
1.5mm C-A-C

[
A0.3/Ehard

0.5 /
(
C0◦
0.15/C

90◦
0.15

)
3 /Ehard

0.5 /A0.3
]

2.5mm A-Eh
.5-C-E

h
.5-A

[
A0.3/Esoft

0.5 /
(
C0◦
0.15/C

90◦
0.15

)
3 /Esoft

0.5 /A0.3
]

2.5mm A-Es
.5-C-E

s
.5-A

[(
C0◦
0.15/C

90◦
0.15

)
sym /Ehard

0.5 /A0.3/Ehard
0.5 /

(
C0◦
0.15/C

90◦
0.15

)
sym

]
2.5mm C-Eh

.5-A-E
h
.5-C

[(
C0◦
0.15/C

90◦
0.15

)
sym /Esoft

0.05/A0.3/Esoft
0.05/

(
C0◦
0.15/C

90◦
0.15

)
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2 Understanding the Damping Behavior of HyCEML

While the first scientific publications on CLD such as [8, 12, 14] date back more
than half a century, there is very limited published work on the damping properties
of hybrid CLD laminates in the context of lightweight structures. In particular, the
influences of lamination schemes, the dampingmaterial’s properties and the influence
of different loading and boundary conditions have not been addressed. Therefore,
the following experimental and analytical methods have been developed in order to
accurately investigate the damping behavior of hybrid CLD laminates.

2.1 Experimental

In order to understand the damping behavior of HyCEML, a two-step experimen-
tal approach is adopted. First, the individual constituents expected to significantly
contribute to damping are characterized. Furthermore, the different laminates are
characterized as well.
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2.1.1 Methods

Dynamicmechanical analysis (DMA) is used to determine thematerials’ viscoelastic,
thus frequency-dependent, mechanical properties. For this purpose, specimens are
subjected to a sinusoidal excitation in terms of a constant strain amplitude at multiple
discrete frequencies. This is conducted over a wide range of temperatures so that the
determined mechanical behavior can be extrapolated to a wider range of frequencies
and strain rates respectively, using the principle of time temperature superposition
applicable to polymers. The procedure is outlined in [6, 15]. The resulting complex
Young’s modulus

E∗ ( f ) = E ′ ( f ) + iE ′′ ( f ) = E ′ (1 + i tan (δ)) (1)

is then available as a function of frequency at a chosen reference temperature Tref . The
real part E ′ is known as the storage modulus and quantifies the elastic contribution,
whereas the loss modulus E ′′ describes the viscous part of the material behavior. The
phase lag is described by the phase angle δ, and the loss factor tan (δ) is a measure
of the material damping.

2.1.2 Results

The master curves, determined in DMA under tension for the two elastomers used in
this study, are shown in Fig. 2 in terms of storage modulus E ′, loss modulus E ′′ and
loss factor tan (δ). As the loss factor is a measure for the dissipation of the induced
strain energy, the materials reach their highest damping in the peak of the loss factor
tan (δ). This occurs in the vicinity of the material’s glass transition region, which
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Fig. 2 Experimentally determined master curves of the two elastomers used in this work. Green
shows the soft compound, whereas the blue curves belong to the hard compound [15]
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[15]

is found at a lower frequency for the soft elastomer. Furthermore, the loss factor is
significantly higher in case of the soft elastomer. For high excitation frequencies,
both elastomers show a similar stiffness. However, the soft elastomer shows a signif-
icantly more pronounced decrease of stiffness with decreasing excitation frequency
compared to the hard elastomer.

To assess the damping capabilities of different HyCEML configurations, bending
DMA was conducted. The results in terms of storage bending modulus and the
corresponding loss factors are shown in Fig. 3 for two different laminates. In Fig. 3,
the bending storage modulus shows that in the given frequency range and a reference
temperature of Tref = 20 ◦C, laminateA-Es

.5-C-E
s
.5-A is slightly stiffer,with this effect

being more pronounced for lower frequencies. The stronger decline in stiffness of
laminate C-Es

.5-A-E
s
.5-C towards lower frequencies is explained by the fact, that this

laminate contains a higher fraction ofCFRP thanA-Es
.5-C-E

s
.5-A.Due to its polymeric

matrix, theCFRPalso shows a frequency-dependentmaterial behavior, as analyzed in
[10], and thus a softer behavior towards lower frequencies. Considering the loss factor
in Fig. 3, both curves show two maxima each. Whereas the peaks at high frequencies
correspond to the glass transition region of the soft elastomer layers, the peaks at low
frequencies result from the glass transition region of the CFRP. Generally, laminate
C-Es

.5-A-E
s
.5-C shows higher damping due to the elastomer layers lying closer to the

plate’s center. Thus, higher shear deformations are induced. An exception to this
behavior is found below the CFRP’s glass transition region, where laminate A-Es

.5-
C-Es

.5-A shows higher damping as the CFRP layers constitute the plate’s center and
thus undergo higher shear deformations than those in laminate C-Es

.5-A-E
s
.5-C.
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2.2 Modeling

2.2.1 Method

While the experimental procedures outlined in Sect. 2.1 offer valuable insights into
the laminates considered, the investigation of CLD in a wider range of variations
concerning lamination schemes and material properties is time-consuming if not
impossible. Furthermore, numerical finite element (FE) models tend to be rather
large and computationally expensive, since full 3Dmodels have to be used due to the
strongheterogeneity inHyCEML’s constituents.Consequently, analytical procedures
can be of great value in large-scale parametric studies and optimizations of hybrid
CLD laminates. For such a procedure, the following requirements are identified:

• Consideration of frequency-dependent material properties such as stiffness and
material damping

• Minimal amount of degrees of freedom
• Prescribed kinematics suitable for a wide range of laminates

In order to fulfill these requirements, a plate theory based on a variable kinemat-
ics approach, namely the Generalized Unified Formulation (GUF) [1, 2] has been
developed by the authors [4–6]. For each layer k within the laminate, an axiomatic
approach for the displacement and out-of-plane stress components

ukx (x, y, z) = Uk
x,αux

Fαux
(z)�ux (x, y)

uky (x, y, z) = Uk
y,αuy

Fαuy
(z)�uy (x, y)

ukz (x, y, z) = Uk
z,αuz

Fαuz
(z)�uz (x, y)

σ k
xz (x, y, z) = Skxz,ασxz

Fασxz
(z)�σxz (x, y)

σ k
yz (x, y, z) = Skyz,ασyz

Fασyz
(z)�σyz (x, y)

σ k
zz (x, y, z) = Skzz,ασzz

Fασzz
(z)�σzz (x, y)

(2)

is applied. In Eq. (2), the indices α are summation indices according to Einstein’s
summation convention. For each displacement and out-of-plane stress component,
the order of expansion is chosen individually. Each index α then runs from 1 to
N + 1 indicating that a specific layer displacement or out-of-plane stress component
is modeled with N + 1 so far unknown variables Uk

i,αui
and Skiz,ασi z

respectively. The
functions used to expand displacement and out-of-plane stress components Fαui

(z)
and Fασi z

(z) are combinations of Legendre polynomials as outlined in [2, 5]. The
in-plane dependencies of the solution are summarized in the functions �(x, y).
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2.2.2 Results

The analytical procedure has been verified against refined, thus computationally
expensive, FE models [4]. In the following, some analytically obtained results for
simply supported plates as shown in Fig. 4 are presented. The plates considered here
have the dimensions a = b = 0.4m. Laminates C-Es

.5-A-E
s
.5-C and A-Es

.5-C-E
s
.5-A

are considered, and the solutions are obtained using an adapted Navier method as
outlined in [4]. Figures 5 and 6 show the plate’s response to a harmonic force exci-
tation in terms of displacement amplitude ||û∗

z || and phase angle δ over the excita-
tion frequency. From Fig. 5, it can be seen, that laminate A-Es

.5-C-E
s
.5-A appears

slightly stiffer based on the location of amplitude peaks compared to C-Es
.5-A-

Es
.5-C. Both laminates show an increased level of damping for higher frequencies, as

observable in Fig. 6 from the phase angle.
Figures 7 and 8 show the plate’s natural frequencies and modal damping ratios.

While this confirms, that laminate A-Es
.5-C-E

s
.5-A is the stiffer one, Fig. 8 shows that

its modal damping ratios increase in a more consistent way. Conversely, laminate
C-Es

.5-A-E
s
.5-C shows particularly high damping ratios of modes that comprise only

one half-wave in x- or y-direction, but significantly more half-waves in the other
direction.

To summarize, an analytical framework was developed for the rapid analysis of
CLD laminates. The number of degrees of freedom is magnitudes lower than that of
an equivalent finite element method (FEM) model. As it also considers frequency-
dependent material behavior, it is a valuable tool in the analysis and design of hybrid

Fig. 4 Simply supported plate with global coordinate system
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∗ z
||
in

m

C-Es
.5-A-Es

.5-C
A-Es

.5-C-Es
.5-A

Fig. 5 Frequency response of the simply supported plate in Fig. 4 in terms of displacement ampli-
tude ||û∗

z || over excitation frequency f for two different types of HyCEML. The curves are deter-
mined analytically using the approach introduced in Sect. 2.2.1
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Fig. 6 Frequency response of the simply supported plate in Fig. 4 in terms of phase angle δ over
excitation frequency f for two different types of HyCEML. The curves are determined analytically
using the approach introduced in Sect. 2.2.1
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laminates due to the multitude of design parameters which have an influence on the
expected damping behavior.

3 The Mullins Effect in HyCEML

The damping layers in CLD applications are usually comprised of filled rubbers. In
filled rubbers, however, the presence of a cyclic softening is to be expected. This
cyclic softening effect has been the subject of numerous studies and is known as the
Mullins effect after the author of some directional works on this effect. Although the
Mullins effect is a large strain phenomenon, it should be considered in the modeling
of CLD applications, as the strains observed in the damping layers exceed the global
deformation of the laminate by far as shown in [5]. Furthermore, deformations during
manufacturing or assembly and possible static loads during operation can trigger the
Mullins effect and thus affect the mechanical behavior of the damping layer.

3.1 Experimental

As the Mullins effect is a large-strain phenomenon, it is only investigated for the
soft elastomer, because the hard elastomer does not undergo large strains before
failure. The experimental characterization of the Mullins effect is achieved using
uniaxial cyclic tensile tests at constant strain rates. The specimen is loaded until it
reaches a certain strain level and then unloaded until it is free of stress. An example
of such a test result is shown in Fig. 9 for nominal strain levels of 10, 20, 40 and
80%. The curve clearly shows the typical softening behavior upon reloading up to
the point of maximum strain. When this point is exceeded, the material’s response
follows the undamaged hyperelastic envelope. Furthermore, upon unloading to the
stress-free state, significant residual strain is present. The softening in terms of a

Fig. 9 Cyclic uniaxial
tension test on the soft
elastomer SAA9579-52
inducing the Mullins effect
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Fig. 10 Secant modulus (left) and permanent set (right) following cyclic loading to different strain
levels. Results are shown for two different strain rates

secant modulus and the permanent set after each cycle are evaluated in more detail
in Fig. 10. Although the overall secant modulus is higher in case of the higher strain
rate 1 × 10−2 s−1, the decrease is identical for both. The residual strain shows no
difference between the two strain rates.

3.2 Modeling

In order to analyze the Mullins effect’s role in CLD applications, nonlinear consti-
tutive models are required, that can first and foremost depict the reduced stiffness of
the material due to softening. As the observed permanent set can also be of interest,
the proposed modeling approach also incorporates this. Following Dorfmann and
Ogden [3], the deviatoric pseudo-elastic strain energy density function W dev can be
formulated as

W dev (λi , η1, η2) = η1W̃
dev (λi ) + (1 − η2) N (λi ) + �(η1, η2) (3)

in dependence of the principal stretches λi . The softening of the material is described
by the modified damage parameter of the Ogden-Roxburgh (OR) model [13]

η1 = 1 − 1

r
erf

(
W dev

max − W̃ dev

m + βW dev
max

)

, (4)

with the material parameters r , m and β. If permanent set is also taken into account,
a second damage parameter
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η2 = tanh

⎛

⎝

(
W̃ dev

W dev
max

)α(W dev
max)

⎞

⎠ tanh (1)−1 (5)

where α contains two more material parameters, is introduced, yielding the Dorf-
mann-Ogden (DO) model [3]. The parameters for both damage parameters are iden-
tified using a Differential Evolution algorithm. Details are omitted for brevity, but
are found in [7]. Figure 11 shows the model predictions compared to the experimen-
tal findings from Fig. 9. Both models represent the experimental data well. When
higher strain levels are reached, however, the DO model is more accurate in terms
of representing the slope upon reloading as it takes into account the permanent set.

Figures 12 and 13 show the influence of the Mullins effect on the vibrational
behavior of HyCEML based on a numerical case study. A simply supported plate
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corresponding to the specimens used in Sect. 4.1 was pre-strained by applying a
displacement of 0mm respectively 1mm in the center of the plate. The dynamic
behavior is analyzed in terms of natural frequencies and modal damping ratios after
unloading the plate. TheMullins effect is modeled by the ORmodel and the material
parameters are identified in [7]. From Fig. 12, a significant softening of the plate
can be observed. The decrease in natural frequencies is similar for both laminates
C-Es

.5-A-E
s
.5-C and A-Es

.5-C-E
s
.5-A. The influence ofMullins effect induced softening

on the modal damping ratios, however, is limited as observable in Fig. 13. This effect
has yet to be validated experimentally, as a possible influence on the loss modulus
of the elastomer material is not considered in the material model.

4 Low-Velocity Impact Tolerance of HyCEML Regarding
Its Damping Behavior

Historically, FMLs have been deployed, among other reasons, due to their high
damage tolerance under impact loading [21]. While there is some research on how
elastomer interlayers in FRP laminates can significantly improve their impact behav-
ior, no studies, to the authors’ knowledge, have been conducted on the influence of
barely visible impact damage on the CLD mechanism.
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Fig. 14 HyCEML plate in
configuration A-Es

.5-C-E
s
.5-A

under low-velocity impact
loading. The plate’s in-plane
dimensions are 150mm and
100mm, respectively. The
specimen’s upward
movement in transverse
direction is restricted by four
clamps

4.1 Experimental

4.1.1 Methods

Drop Weight Impact Test

In order to inflict and assess the damage in HyCEML under low-velocity impact
loading, drop weight experiments are conducted based on ASTM D7136. Thus, the
boundary conditions of the specimen plates are considered simply supported. The
impact energy is varied and takes values of 5 J, 10 J and 20 J. All the laminates listed
in Table 2 are tested with each energy. Figure 14 shows the support fixture and a
specimen plate during impact. The specimens have the dimensions a = 150mm and
b = 100mm and are impacted in their center. The impactor has a hemispherical tip
with the diameter d = 20mm.

Modal Analysis

In order to assess the influenceof various types of damage inflicted under low-velocity
impact loading, as illustrated above, experimental modal analyses are performed. For
reference, undamaged specimens are also analyzed. The specimen plates are excited
using an automated modal hammer and the response is detected with a laser scanning
vibrometer. Free-free boundary conditions are aimed for by placing the specimens
on a soft polymeric foam material during the analysis. The natural frequencies and
modal damping ratios are then determined from the frequency response function for
each plate.
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Fig. 15 Force time response of laminates C-Es
.5-A-E

s
.5-C (left) and A-Es

.5-C-E
s
.5-A (right) under

low-velocity impact loading with different impact energies

4.1.2 Results

Drop Weight Impact Test

The results from the impact test illustrated in Sect. 4.1 are shown in the following.
Figure 15 shows the force F detected by the impactor over time t for laminates
C-Es

.5-A-E
s
.5-C and A-Es

.5-C-E
s
.5-A at different impact energy levels. For both lam-

inates, a strain rate dependent stiffness is visible from the increasing slope with
higher impact energies, which can be attributed to the viscoelastic behavior of the
polymeric constituents in the laminates. Based on the smoothness of the curves for
Eimpact = 5 J, no damage is detectable in both laminates. For E = 10 J, however, a
bend is visible in the response of laminate C-Es

.5-A-E
s
.5-C indicating the onset of

a damage mechanism. In the case of laminate A-Es
.5-C-E

s
.5-A, oscillations start to

occur from a force F = 2500N onwards, suggesting continuous hardening of the
aluminum layer due to plastic deformation. This effect occurs at higher energies and
forces for laminate C-Es

.5-A-E
s
.5-C due to the fact that, in this laminate, the aluminum

layer is in the plate’s center and thus undergoes less deformation under bending.
The absence of pronounced bends in the curves of laminate A-Es

.5-C-E
s
.5-A can be

attributed to the absorption of energy by strong plastic deformation of the aluminum
layers which in turn protects the CFRP layers from cracking as seen for laminate
C-Es

.5-A-E
s
.5-C. This mechanism is further discussed in [9].

The force over displacement curves for both laminates are shown in Fig. 16.
The aforementioned onset of damage again is visible. Furthermore, the extent of
plastic deformation can also be derived from the residual displacement at the end of
the unloading phase when the impactor looses contact with the plate. This residual
displacement is much more pronounced for laminate A-Es

.5-C-E
s
.5-A, even for an

impact energy of 5 J, confirming the aforementioned.
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under low-velocity impact loading with different impact energies
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Fig. 17 Absorbed energy over time of laminates C-Es
.5-A-E

s
.5-C (left) and A-Es

.5-C-E
s
.5-A (right)

under low-velocity impact loading with different impact energies

Figure 17 shows the energy transferred to the specimen during the impact event
over time. The energy is calculated by integrating the force displacement curves
from Fig. 16. From both curves with E = 5 J it can be seen, that for both laminates
a similar amount of energy is absorbed by the specimen and thus not returned to
the impactor. Since no severe damage could be detected for this energy level, it can
be assumed that this amount of energy was dissipated during the impact event by
viscoelastic deformation in the polymeric layers besides some general losses due
to friction. For higher energies, laminate A-Es

.5-C-E
s
.5-A generally shows a higher

amount of absorbed energy after the impact event than laminate C-Es
.5-A-E

s
.5-C. This

indicates, that plastic deformation of the aluminum layers is the main contributor to
the general absorption capabilities of the HyCEML material. This assumption has
been validated using numerical models in [9].
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Fig. 18 Natural frequencies of laminates C-Es
.5-A-E

s
.5-C (left) and A-Es

.5-C-E
s
.5-A (right) impacted

with different energies

From the experimental results presented above, it can be concluded that the lam-
ination scheme of HyCEML strongly influences the occurrence of damage under
low-velocity impact loading. The primary mechanism involved in the absorption of
impact energy is plastic deformation of the aluminum layers. Since intra-ply failure
of the CFRP layers is also observed, a significant change of the overall stiffness
distribution in the laminate is expected, which in turn is assumed to influence the
CLD capabilities of the material.

Modal Analysis

For laminates C-Es
.5-A-E

s
.5-C and A-Es

.5-C-E
s
.5-A and impact energies of 0 J, 5 J and

10 J, the natural frequencies determined in experimental modal analysis are shown in
Fig. 18. In the case of laminate C-Es

.5-A-E
s
.5-C, the deviation of the damaged plates

compared to the undamaged one is negligible. In contrast, laminate A-Es
.5-C-E

s
.5-A

shows a visible influence of impact damage on the natural frequencies. For both
impact energies, 5 J and 10 J, higher modes occur at lower frequencies, indicating a
more damaged and thus more compliant material.

The modal damping ratio corresponding to the natural frequencies in Fig. 18 are
shown in Fig. 19 for both laminates. It can be seen that the damping ratios of the
damagedC-Es

.5-A-E
s
.5-C plates differ from the undamaged ones. Both damaged plates

seem to follow the same trend when deviating from the undamaged reference, as
some modes show stronger damping while others are damped less. Generally, plates
impacted with a higher energy also show higher deviations when compared to the
undamaged plate. Laminate A-Es

.5-C-E
s
.5-A behaves similar in this regard, however,

the deviations from the damaged plates are higher than seen with laminate C-Es
.5-A-

Es
.5-C. This effect is more pronounced for higher modes, as almost no deviations are

visible for the first three modes.
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Fig. 19 Modal damping ratios of laminates C-Es
.5-A-E

s
.5-C (left) and A-Es

.5-C-E
s
.5-A (right)

impacted with different energies

Following the results presented above, it can be concluded that the lamination
scheme in HyCEML is critical to its damage tolerance with regard to the CLD
damping capabilities. When comparing the laminates C-Es

.5-A-E
s
.5-C and A-Es

.5-C-
Es

.5-A, themore distinct plastic deformation in the latter suggest that this is the primary
driver for a change in the damping capabilities. From laminate C-Es

.5-A-E
s
.5-C it can

be concluded that the global stiffness change due to damage is negligible as seen in
the natural frequencies of undamaged and damaged plates. Consequently, the more
pronounced change in modal damping cannot be attributed to the damage induced
reduction of stiffness alone. More likely, the geometric change of the specimen
results in an altered distribution of strain within the elastomeric damping layers.
Furthermore, a change in the elastomer material’s damping characteristics caused by
the impact event itself is assumed to be a contributing factor.

4.2 Modeling

In order to further analyze the role of low-velocity impact damage on CLD, the
resulting damage mechanisms are modeled numerically using the FEM solver
Abaqus/Standard. As an example, the modeling of delaminations is illustrated in
the following. Since the aim of this work lies in the behavior of damaged laminates
under vibration, the initiation and evolution of damage is not modeled explicitly.
Instead, delaminations are treated as defined regions with no interlaminar stiffness.
Undamaged interfaces are assumed to be strictly bondedwithout any interface behav-
ior. In order to prevent unphysical deformations and penetrations of layers adjacent
to a delamination, a cohesive surface-to-surface contact is established between the
top and bottom delaminated surfaces. Thus, an opening of the delamination is not
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Fig. 20 Numerically determined natural frequencies of undamaged and delaminated simply sup-
ported laminates C-Es

.5-A-E
s
.5-C (left) andA-Es

.5-C-E
s
.5-A (right), showingmarginal effect of delam-

ination on the vibration behavior

prohibited. A complex eigenvalue extraction is performed by linear perturbation of
the equilibrium equation of the system.

Based on micrographs of damaged specimens subjected to low-velocity impact as
outlined in Sect. 4.1, delaminations between 0◦ and 90◦ CFRP layers have been found
to predominantly occur under given loading. Figure 20 shows the natural frequencies
of undamaged and delaminated simply supported specimens. The delaminated spec-
imens are modeled to contain a circular delamination with a radius of 20mm with
its center aligned with the point of impact. For both laminates, the delamination lies
in the bottom most interface between two CFRP layers with different orientations
0◦ and 90◦. From Fig. 20 it is observed that the modeled delamination does not have
an effect on the natural frequencies of the plate for both laminates. Figure 21, how-
ever, shows the corresponding modal damping ratios. For these values, a difference
between the undamaged and delaminated laminates can be seen in case of laminate
C-Es

.5-A-E
s
.5-C. The deviation, however, is smaller than the ones seen experimentally

in Fig. 19. No deviations between undamaged and delaminated plates is seen for
laminate A-Es

.5-C-E
s
.5-A. This can serve as an indicator, that the CLD mechanism

in HyCEML is not as sensitive to inter-ply failure within the laminate following a
low-velocity impact events as it is to plastic deformations. Consequently, the exper-
imentally observed plastic deformation of the impacted laminates appears to be the
main contributor to the observed change in the vibrational behavior, especially for
laminates with outer aluminum layers.
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supported laminates C-Es
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5 Conclusion

Within this work, experimental methods for the characterization of the vibrational
behavior of HyCEML have been developed and applied in order to analyze the influ-
ence of parameters like temperature, excitation frequency, and amplitude on the CLD
mechanism of such laminates. Furthermore, the influence of material properties and
stacking sequence within a laminate has been identified as a major contributor to the
resulting damping behavior. In order to facilitate the optimization of such laminated
structures, an efficient analytical modeling approach has been developed, which
allows the identification of vibrational parameters for arbitrary materials and lami-
nates. Subsequently, the CLD mechanism has been further investigated regarding its
influenceability by a number of damage phenomena. On the one hand, the Mullins
effect occurring in most filled elastomers has been characterized in the damping
material used in this study. Constitutive models depicting this strain-dependent soft-
ening have been parameterized and found to accurately depict the material behavior.
A numerical case study has shown, that pre-straining a plate by moderate deflections
can greatly influence the laminates’ natural frequencies. On the other hand, low-
velocity impact has been considered and the resulting types of damage have been
analyzed. Plastic deformation and delaminations both contribute to a change in the
modal damping of HyCEML, with the former being the dominant effect.
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Shape Memory Alloy (SMA) Damping
for Smart Miniature Systems

Kiran Jacob, Shahabeddin Ahmadi, Pejman Shayanfard, Frank Wendler,
and Manfred Kohl

1 Introduction

In many applications, uncontrolled mechanical vibrations are a potential source of
noise and damage. On the large scale, dampers are used in massive structures like
buildings and bridges to reduce the impact of seismic loads, or in automobiles, to
improve travel comfort and safety [1]. In the past couple of decades, there is a
strong drive towards miniaturization with integration of many sensors/actuators at
small footprint [2]. Vibration damping and control for small andmicro-scale systems
is challenging, as most damper concepts used for large structures cannot easily be
downscaled.Here, the authors developminiature dampers and vibration control using
Shape Memory Alloy (SMA) foil based devices for miniature robotics application
and smartphone camera stabilization against hand movements. By using SMA foils,
design flexibility and miniaturization are achieved.

SMAs are functional materials capable of undergoing large reversible deforma-
tion throughwhich a lot of energy is dissipated. This unique behaviour is attributed to
the underlying phase transformation of thematerial between austenite andmartensite
phases. Unlike many other velocity dependent damper concepts, the energy dissipa-
tion in SMA is heavily dependent on the loading strain. SMAs exhibit two types of
behaviours called pseudoelasticity or one-way shape memory effect depending on
the operating temperature. Thematerial shows pseudoelasticity when operated above
austenite finish temperature (Af) and one-way shape memory effect below marten-
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site finish temperature (Mf). In pseudoelastic SMA, the strain recovery occurs upon
unloading. In a mechanical loading cycle, large amount of energy is dissipated by
material hysteresis which is used to develop passive dampers. In one-way SMA, the
strain recovery occurs when the material is heated above Af . This principle is used
to develop active dampers and actuators for vibration control.

This article is structured as follows: in Sect. 2 the pseudoelasticmaterial behaviour
and passive damper performance under shock loading are illustrated. In Sect. 3, con-
cepts for active damping based on the one-way SMA effect are introduced, and
a related multi-axial constitutive model is sketched. In Sect. 4, a 2-DoF vibration
stabilization platform using one-way SMA actuators is described.

2 Damping Using Pseudoelastic SMA Devices

Acold-rolledNi50.5Ti49.1Fe0.4 (at.%) foil of 30μmthickness is used to investigate the
passive damping behaviour of SMA. This material shows pseudoelastic behaviour at
room temperature. The stress-induced transformation between austenite and marten-
site is responsible for the energy dissipation in pseudoelastic SMA. In this section, the
behaviour of the material, damper devices and passive damper systems is described.

2.1 Material Behaviour

The mechanical behaviour of pseudoelastic SMA is investigated by displacement-
controlled uniaxial tensile loading of a strip of SMA foil having dimensions (l,w, t):
10, 3, 0.03mm. Figure1a shows the tensile loading at various loading strains. Above
a critical stress of about 500MPa, the phase transformation to martensite is initiated
resulting in the plateau region in stress-strain behaviour. A large strain of 0.04 is
accommodated during the transformation to martensite. The material recovers to
its initial state upon unloading. A large amount of loading energy is dissipated via
hysteresis in this cyclic operation. The energy dissipation increases with increase
in loading strain. Figure1b illustrates the effect of pre-straining (εpre) on energy
dissipation while retaining a constant loading strain of 0.01 with reference to the
loading behaviour at zero pre-strain. The material has a non-linear behaviour with an
initial elastic region until about 0.02 strain where the material remains in austenite
and thereafter a plateau region where the transformation to martensite occurs. At
pre-strain of 0.01 (εpre1) and loading strain of 0.01, not much energy dissipation is
observed owing to predominant elastic behaviour. Adjusting the pre-strain close to
the beginning of transformation plateau at 0.02 (εpre2), an almost repeatable energy
dissipation is observed for loading cycles. Fixing the pre-strain in the elastic region
enables thematerial to completely recover to its starting condition. Further increase in
pre-strain to 0.03 (εpre3), high energy dissipation in the first loading cycle is attained
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(a) (b)

Fig. 1 Material hysteresis behaviour under uniaxial tensile loading for various loading strains (a)
and at fixed loading strain of 0.01 (b)

Fig. 2 SDC behaviour at various frequencies and loading strains showing increase in hysteresis
until adiabatic loading is reached above 1Hz

but subsequent cycles show reduced energy dissipation. Therefore, pre-strain and
loading strain are crucial parameters for optimizing dissipation.

The energy dissipation of the material at various frequencies and loading strains
is shown in Fig. 2. The energy dissipation arising from the material hysteresis is
quantified using the parameter called SpecificDampingCapacity (SDCmaterial), which
is the ratio of energy dissipation through hysteresis to the loading energy. Until
loading frequencies upto 1Hz there is an increase in SDCmaterial due to increase
in hysteresis. This effect is associated with the self-heating of the material during
the transformation to martensite. Owing to this temperature rise in the material,
an increase in loading stress is required for transformation. Above 1Hz, adiabatic
heating is attained, resulting in a frequency independent SDCmaterial behaviour.
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2.2 Double Bridge Device and Passive Damper System

Designing of the damper device is based on the load to be supported and the external
excitation. A passive damper device with double bridge structure is micromachined
by laser cutting from SMA foil as shown at the top of Fig. 3 (drawing not to scale).
The half-bridge dimensions of the device are 5 × 0.3 × 0.03 mm3 (L0 w, t). The
device is designed to operate in out-of-plane direction. The bridges of the device are
strained to 0.05 for an out-of-plane loading displacement of 1.6mm. The pre-strain
of the device is adjusted along the in-plane direction.

The damper system is constructed from two double bridge devices sandwiching
a mass of 18g as shown in Fig. 3. The mass is pulled using an electromagnet and
released by deactivating the electromagnet. The free oscillation of themass is tracked
using a laser displacement sensor. The SDC for the system is evaluated for the first
oscillating cycle as

SDCsystem = 1 −
(

x1
xmax

)2

, (1)

where xmax is the shock loading amplitude and x1 is the first peak of free oscillation.
SDCsystem is higher than the SDCmaterial described in Sect. 2.1 owing to the presence
of air drag and structural damping in the system. Figure4 shows the SDCsystem at
various loading amplitudes and pre-strains for the first oscillation cycle. SDCsystem

increases with increase in loading amplitude and pre-strain. This trend continues
until the combined strain due to pre-strain and loading strain is not exceeding com-
plete martensite transformation strain of 0.05. Therefore, for a particular loading
amplitude, pre-strain optimization enables improved energy dissipation. Maximum
SDCsystem of 70% is reached utilizing maximal material hysteresis for energy dis-
sipation, implying that only 30% of the loading energy is remaining. After the first
oscillation cycle, themass undergoes several low amplitude oscillations before reach-
ing equilibrium position. Owing to the lack of guidance for the mass, various modes
of oscillations are observed in this settling behaviour.

Fig. 3 The schematic of
damper test setup [3] and an
image of the double bridge
device is shown at the top
(drawing not to scale).
Legends: S-Displacement
sensor, V1,V2-Terminals for
heating pulse (used while
using one-way devices)
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Fig. 4 SDC behaviour of pseudoelastic damper system at various pre-strains and shock loading
amplitudes

2.3 Single Bridge SMA Device and Passive Damper System

A prospective application of the SMA damper is the shock absorption in minia-
ture robotics, where vertical shock loads are of interest. As illustrated in Sect. 2.2,
high energy dissipation is achieved under shock loading. The lack of mass guidance
resulted in 3D mass movement after release from the electromagnet. In this section,
the behaviour of SMA shock absorber under vertical shock loading with guidedmass
movement is illustrated.

A single bridge damper device design is used as the mass is balanced using the
guidance. The bridge has a dimension of w= 1mm and L0= 6mm, allowing for an
out-of-plane displacement of 1.9mm at a strain of 0.05 in the bridge.

The test setup for the shock absorber is illustrated in Fig. 5. A mass of 47g is
connected to the damper device and itsmovement is guided using a low friction linear
bearing. The shock loading is provided using an electromagnet. The movement of
the mass is tracked using a laser displacement sensor. Data acquisition and control
system is used to acquire the measurement and to control the electromagnet.

Fig. 5 Schematic of test
setup for vertical shock
loading
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Fig. 6 The shock response of the system at various device pre-stains and the zoomed in settling
behaviour showing an increase in overshoot amplitude with increase in elastic recovery

The shock response of this device under various pre-strains is shown in Fig. 6. The
shock loading amplitude is selected to limit the total created strain on the SMAdevice
to 0.045. In all loading experiments, the mass stabilizes immediately after the first
overshoot demonstrating excellent shock damping performance. A closer look on the
settling behaviour reveals the contributions of elastic recovery and material hystere-
sis. Elastic recovery, resulting in a sudden mass movement, occurs immediately after
release as marked by the red lines. Apparently, the elastic recovery changes with
the pre-strain and loading conditions. Accordingly, the overshoot amplitude (OA)
follows the same trend as elastic recovery showing high OA at high elastic recov-
ery. This study reveals the effectiveness of using SMA foil based passive damper as
miniature shock absorber.

2.4 Development of a FEMModel for Pseudoelastic Damping

The mechanical response of SMAs is both nonlinear and history dependent due to a
first order structural phase transition from austenite (A) to martensite (M), which
is related to the release (A → M) or the uptake (M → A) of latent heat. The
strong thermomechanical coupling requires transient, time-resolved simulations as
the deformation depends on the history of the internal state variables. The local
character of the transition observed in experiments necessitates a spatially resolved,
mesoscale description of the sample geometry, for which the authors use a finite
element approach.

2.4.1 SMA Constitutive Material Model

Taking the original 1D approach from Müller et al. [4] as a basis, a plane-stress 2D
constitutive model for tensile loaded thin films was developed in [5]. The model is
based on a thermodynamic description using a Gibbs free energy density



Shape Memory Alloy (SMA) Damping for Smart Miniature Systems 133

(a) (b)

Fig. 7 (a) Force balance assumed in the ODE for mass displacement z (top) and 2D FE domain
with boundary conditions (bottom) [6]. (b) Top → bottom: time evolution of martensite fraction in
SMA bridge during loading (left) and unloading (right), at equidistant time steps of 10s

g(ε, σ, T, xα,∇xα) = Ψmech(σ, ε) − σε + Ψchem(T ) + ΨPF (xα,∇xα),

that depends on local values of strain ε, stress σ , temperature T , the fraction of phases
xα , and their gradients ∇xα . The existence of tension and compression accommo-
datedmartensite variants (α = M+, M−) and austenite (α = A) is assumed. Twinned
martensite is represented as 50–50 mixture of M+ and M−. The mechanical part of
the free energy Ψmech forms a non-convex continuous three-well potential in linear
strain space, whereas the chemical partΨchem controls the energy difference between
austenite and martensite phase. A phase-field energy term ΨPF for a coarse-grained
treatment of A-M interface energies was incorporated [5, 7]. Rate equations for the
phase fractions XM− , XA and XM+ are formulated as

ẋM+ = −xM+ p
xM+ A + xA p

AxM+ − ω

W
δΨPF/δxM+

ẋM− = −xM− p
xM− A + xA p

AxM− − ω

W
δΨPF/δxM−

ẋ A = −ẋM+ − ẋM− ,

where δ/δxM± denotes a variational derivative. By this approach the authors assume
thermally activated kinetics describing transitions from compression-accommodated
M− over austenite A to tension-accommodatedmartensiteM+, where stress and tem-
perature dependent transition rates pαβ(σ − σαβ, T ) are used. The plateau stresses
σαβ = (σ

αβ

0 + Cαβ(T − TR))(1 + ξ) define the transformation criteria [5]. Here, a
static noise field for the transformation stress level ξ is introduced to capture heteroge-
neous nucleation sites not observable on the device level. In this way, in simulations,
local deformation pattern like Lüders-like bands are developing, where the proper-
ties of the noise distribution ξ are adjusted in comparison with DIC (digital image
correlation) images from experiment.
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2.4.2 FEM Setup for Simulating Bridge Vibrations

Due to the low thickness of the SMA films of a few tens of microns, bending defor-
mation of the bridge dampers can be neglected, as the related stresses amount for
only a few percent of those created by the tensile stretch. This was also verified
by a good match between measured quasi-stationary force-displacement curves and
calculated ones, where the stress-strain characteristics of the material was used. For
transient simulations of pseudoelastic single bridges, the setup including mechanical
and thermal boundary conditions is shown in Fig. 7a. The SMA domain is discretized
with high spatial resolution in the FE model assuming 2D plane stress conditions
(top view), whereas the equation of motion of the attached mass is given as the force
balance (side view) of the proof mass, resulting in

mz̈ − mg + 2FSMA(t)sin(θ) − Fe(t) = 0 with sin(θ) = z√
z2 + l20(1 + εpre)2

,

where l0 denotes initial SMA length and εpre the applied pre-strain. This one-DoF
ODE is solved simultaneously, where the coupling of mass position z and displace-
ment, u, at the FE domain boundary is achieved by a boundary condition for the
longitudinal displacement rate u̇x = żsin(θ) assuming a stretched geometry with
angle θ . For a quasi-stationary displacement of the mass in z-direction (Fig. 7a), the
time evolution of the martensite fraction due to the occurring tensile load is shown
in Fig. 7b.

The transient mass amplitude and martensite fractions are given in Fig. 8a for a
single bridge device excited with a harmonic force of 0.1N and 32Hz. Simulations
were conducted with the parameter set in Table1 determined from characterization
data of the quarternary alloy NiTiCoCu. Both curves show the evolution of a steady
state after an initial settling phase. For operation of the devices close to the resonance

(a) (b)

Fig. 8 (a) Time data of mass displacement z and martensite fraction xM+ for a harmonically
loaded single bridge device (32Hz, 0.1N, m =10g); (b) local patterns of martensite fraction and
temperature, at the two time steps indicated in (a) [8]
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Table 1 Simulation parameters for a pseudoelastic NiTiCuCo damper device [7] and a one-way
TiNi device [6]

Parameter Symbol Pseudoelastic SMA One-way SMA

Proof mass m 0.01 kg 0.018 kg

Length/width/thickness,
SMA

l/w/d 10/0.35/0.02 mm 5/0.3/0.03 mm

Plateau stress A-M σ AM 242 MPa 495 MPa

Plateau stress M-A σ MA 134 MPa 100 MPa

Reference temp.
for σ AM /σ MA

Tre f 294 K 349.7 K

Clausius-Clapeyron
coeff. A-M

CAM 10.4 MPa K−1 5.8 MPa K−1

Clausius-Clapeyron
coeff. M-A

CMA 14 MPa K−1 6.2 MPa K−1

Transformation strain εT 0.0075 0.04

Elastic modulus, A EA 35.9 GPa 70.2 GPa

Elastic modulus, M EM 16.0 GPa 32.2 GPa

Latent heat L 5600 J kg−1 22130 J kg−1

Thermal conductivity, A kA 18 Wm−1K−1 18 Wm−1K−1

Thermal conductivity, M kM 8.6 Wm−1K−1 8.6 Wm−1K−1

Heat transfer coefficient h 30 Wm−2 K−1 30 Wm−2 K−1

of the bridge oscillator, generally a continuous accumulation of martensite is found,
hence a steady decay of damping capacity follows. Representative local fine-banded
patterns of phase fraction and temperature are given in Fig. 8b, which shows that
martensite accumulation proceeds from the fixed boundaries of the SMA.

3 Damping Using One-Way SMA Devices

So far, the passive damping of SMA devices exploiting stress induced phase transfor-
mation is explained. By using SMA devices showing one-way shape memory effect,
heating pulses can be utilized to stimulate phase transformation allowing for an exter-
nal control of the energy dissipation. To investigate the active damping behaviour
of SMA, cold-rolled NiTi foil of 30μm thickness is used here. This material shows
one-way effect at room temperature, retaining its strain upon loading owing to the
reorientation of martensite. Strain recovery occurs by heating the material above
austenite finish temperature to enable phase transformation to austenite. A large part
of the loading energy is dissipated in this cyclic operation. In this section, the damp-
ing behaviour of one-way material based damper devices and damper systems is
described [3, 9].
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3.1 Material Behaviour

The phase transformation behaviour of a Ti50.2Ni49.8 (at.%) foil measured using
Differential ScanningCalorimetry (DSC) is shown inFig. 9a. Thematerial transforms
to austenite at temperatures above the austenite finish temperature A f . When cooling
down, the material transforms to martensite via an intermediate R-phase. However,
macroscopically, the effect of R-phase is observed as a small plateau only in the first
loading cycle near to a loading strain of 0.005 . Therefore the phase of the material
below the R finish temperature (R f ) of 43.2 ◦C is referred to as the starting phase in
this article.

A strip of one-way SMA foil having dimension 10×3×0.03mm3 is uniaxially
loaded in displacement controlled mode to a loading strain of 0.04 at various fre-
quencies in a thermal chamber, the corresponding SDC, estimated from the mate-
rial hysteresis as explained in Sect. 2.1, is shown in Fig. 9b. The maximum SDC is
achieved for loading at 25°C. The SDC of the material decreases significantly with
increase in temperature. At 60°C, the material is in austenite and exhibits pseudoe-
lastic behaviour demonstrating a lower SDC of about 45%.

The damping capacity of the material at various loading strains and frequencies
is shown in Fig. 10. The SDCmaterial increases with increasing loading amplitude
and attains a maximum of 86% under quasi-stationary loading conditions. Also, the
SDCmaterial shows a reduction with frequency up to 1Hz, which is caused by the
increase in transformation stress arising from the self-heating of the material. The
self-heating raises the material temperature above As resulting in enhanced elastic
recovery. After reaching an adiabatic loading situation at 1Hz, the SDCmaterial shows
a nearly frequency independent behaviour.

(a) (b)

Fig. 9 The phase transformation behaviour of one-way SMA (a) and its temperature dependent
SDC behaviour at various ambient temperatures (b). Legends: Austenite–As,p,f : 47.2, 54.2, 59.1 °C,
R-phase–Rs,p,f : 50.3, 47.9, 43.2 °C, Martensite–Ms,p,f : 2.0, –5.1, –28.5 °C (temperatures listed as
start, peak, finish)
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Fig. 10 SDC behaviour of one-way SMA strip under tensile testing showing reduction in damping
capacity until reaching the adiabatic loading condition at 1Hz

3.2 Double Bridge Device and Active Damper System

The double bridge device design explained in Sect. 2.2 is also used to develop one-
way SMA devices to investigate their active damping performance. For active damp-
ing, the phase transformation to austenite is attained by electrical heating pulses. The
pulse duration of 50ms is chosen to enable the transformation within the first cycle
of free oscillation, and leads to an inhomogeneous temperature distribution along the
bridges.

The maximum temperature in the device (Tmax) is shown in Fig. 11. The device
heats-up from the initial room temperature to 80 ◦C when a heating pulse of 1W is
applied for 50ms. Under this condition, more than 90% of the bridge is at a temper-
ature above Af . The time to cool down to 90% of the maximum bridge temperature
lies between 1.2 and 1.3 s. This large cooling time limits the effectiveness of applying
multiple heating pulses during free oscillation after shock loading.

The test setup explained in Sect. 2.2 is used to investigate the active shock damp-
ing performance. Terminals V1 and V2 in Fig. 3 are used to apply the heating pulses
to enable phase transformation to austenite. Figure12 shows the SDCsystem at vari-
ous pre-strains and shock loading amplitudes for this one-way damper system. The
heating pulse is applied when the mass moves 0.3mm after the release from the elec-
tromagnet. The SDC measurement for the first oscillation cycle shows an increase

Fig. 11 The maximum
temperature on the double
bridge device for various
heating pulses of 50ms
duration, and related time to
cool-down to 90% of the
raised temperature
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Fig. 12 SDC of double
bridge active damper system
depending on pre-strain and
amplitude (left), and
comparison of active and
passive modes of operation
(right) for a pre-strain of
2.0% and a loading
amplitude of 1.5mm [9]

with the increase in loading amplitude and reaches a maximum of about 90% result-
ing in a large reduction in oscillation amplitudes and settling time.

3.3 Single Bridge Device and Active Damper System

As for the pseudoelastic passive damper system in Sect. 2.3, the motion constrained
to a single DoF is investigated for the one-way SMA device under vertical shock
loading.

The thermal behaviour of the device after pulse and continuous heating is investi-
gated to optimize the thermally-inducedphase transition. Figure13 shows the temper-
ature distribution along a half-bridge. An improved homogeneity of the temperature
distribution is achieved at a short heating pulse of 0.89W for 100ms indicating adi-
abatic conditions for the device below 100ms. After the heating pulse, the cooling
down time to reach the starting phase is about 0.75–1s.

For the single DoF device, a short current pulse of 75ms is applied on the SMA
device at the instance of the electromagnet being turned OFF. A systematic study
of the response for various mass and pre-strains is conducted (Fig. 14). The shock
loading amplitude of the different pre-strains depicted inFig. 14b is chosen to limit the
total strain in the SMA to 0.045 to avoid overloading. The total strain is composed
of pre-strain, loading strain of the device due to the supported mass, and strain
introduced by the shock loading. Under test conditions of varying mass and pre-
strains, the system shows a similar relaxation, indicating that this settling behaviour
is determined by the phase transformation of the material alone. After the removal of
heating pulse, a small overshoot of themass displacement is visible. This arises due to
the strong recovery force that persists until the temperature falls below Rf , resulting
in the overshoot. Thereafter, the SMA device gradually relaxes to equilibrium. At all
these examined loading conditions, oscillation-free fast settling is demonstrated by
this damper system.
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Fig. 13 Thermal distribution along the bridges with the application of continuous and pulsed
heating [10]

(a) (b)

Fig. 14 The response of the vertical damper system to shock loading at various masses under zero
pre-strain (a) and at various device pre-strains for a mass of 47g (b)

3.4 Dynamical Modeling of One-Way Materials

For the linear bridge device made from the one-waymaterial from Sect. 2.1, the FEM
model developed in Sect. 2.4 was adapted, with the parameters given in Table1. Con-
trary to the tensile pseudoelastic SMA, the transitions in the one-way material now
include phase contributions xα for all phases α ∈ {M+, M−, A} due to the heating to
austenite and cooling down to a mixture of twinned martensite. Under normal oper-
ation, after cooling to room temperature the material will remain in the intermediate
R-phase state, which is treated as a modified form of the common parent phase A
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(a) (b)

Fig. 15 (a) Experiment (solid) and simulation (dashed): stress-strain response for one-waymaterial;
(b) Top panel: Simulation of proof mass displacement for a double bridge damper with active heat
pulse (time steps 4–5), in comparison to experiment (red). Lower panels: temperature, heating
current and pre-straining (εpre) to 1.5% (steps 1–3)

(see Fig. 9a). This is accomplished by a transition path dependent latent heat (dif-
ferent for R→M, M→A or A→R transitions) and a temperature dependent elastic
modulus

EA(T ) = ER + 1

2

(
1 + tanh

(
T − T ′

�T ′

))
(EA − ER),

where EA and ER are the moduli of A and R-phase (here, EM = ER), T ′ the approx-
imate A-R transition temperature of 60 ◦C and �T ′ the transition interval of 5 ◦C.
The pronounced hardening behavior apparent in the R-phase state is tackled by mul-
tiplying the plateau stresses with a hardening function σ AM = σ AM(T )h(T, xM),
which depends on both temperature and martensite fraction. It is fitted to the tensile
characterization data as h(T, xM) = 1 + (

116.9 − 0.67T + 0.00955T 2
)
epx( xM−1

0.15 )

and predicts well the tensile quasistatic loading in Fig. 15a. The simulation results
for the mass displacement of a double bridge device under shock release is shown
in Fig. 15b, where the initially ramped up load is held constant from time steps 2 to
3. In this experiment, a heating pulse (50ms) is started delayed at point 4 in time to
include the passive oscillation behavior. The increased amplitude reduction of the
system is partly attributed to a stiffness increase, visible by a frequency increase from
29 to 59Hz. From simulated stress and strain data, a specific damping capacity of
82% is calculated for the first oscillation cycle after the pulse, which is nearly 50 %
larger than for the same material in passive damping mode.

The dynamical simulations performed so far are based on a model originally
developed for uniaxial loading. In case of film structure with higher structural com-
plexity than simple bridges, a more complex strain path that depends on the loading
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history needs to be recorded. Furthermore, transitions between the low-temperature
phaseM and the metastable R-phase cannot always be excluded and simplified in the
manner described above. To be able to numerically predict the associated response of
three dimensional connected active/passive dampers, a phenomenological coupled
multi-axial model for polycrystalline NiTi-based SMAs by Benešová et al. [12] and
Sedlák et al. [13] is implemented in the ABAQUS finite element package within the
user material subroutine UMAT for coupled temperature-deformation cycles. Based
on the framework of continuum thermodynamics of irreversible processes, themodel
is capable of predicting dynamic loading including physical effects important in the
multi-DoF SMA devices. Briefly, the model’s features include: (i) a refined dis-
sipation function coupling martensite transformation and reorientation processes,
(ii) inclusion of the material responses associated with the transformation between
austenite, martensite, and R-phase, (iii) the influence of tension-compression asym-
metry; and the thermomechanical coupling, considering the strain-rate dependent
latent heat generation/absorption during forward/reverse phase transformationwhere
the localized martensite bands evolve. The following forms of free energy, dissipa-
tion function, and the heat equation are incorporated. The free energy is formulated
as function of total strain ε = e + π and inelastic strain π , martensite fraction ξ and
temperature θ as

Ψ (ε(u), π, ξ, θ) = 1
2K tr(e)2 + G (ξ, ε) + ζ(π, ξ) + φ(ξ.η) + δS(π, ξ)

+ ν
2 |∇π |2 + ν

2 |∇ξ |2

with ξ the martensite volume fraction, used to derive the driving force for transfor-
mation. The first two terms represent the elastic energy, ζ(π, ξ) a non-convex energy
which, together with the last two gradient terms, is motivated by the localization of
martensitic transformation, and φ(ξ, η) is the part of the chemical energy driving
the thermomechanical coupling [12]. The dissipation function comprises the rate-
independent part rRI which depends on the transformation direction (ξ̇ ), while the
term rV I denotes the viscous contribution [12]:

RT OT = rRI (π, ξ, θ, π̇ , ξ̇ ) + rV I (π̇, ξ̇ ) with

rRI (π, ξ, θ, π̇ , ξ̇ ) =
{
areo(θ)|π̇ | + aAM(ξ)ξ̇ , if ξ̇ ≥ 0

areo(θ)(|πξ̇/ξ | + |π̇ − πξ̇/ξ |) + aMA(ξ)ξ̇ , if ξ̇ < 0

rV I (π̇, ξ̇ ) = μ

2 |π̇ |2 + μ

2 |ξ̇ |2

By solving the heat equation

ω̇ − div(K(ξ, θ)∇θ) = rRI (π, ξ, θ, π̇ , ξ̇ ) + 2rV I (π̇, ξ̇ ) + ξ̇ ∂ξφ(ξ.η)

the model can reproduce localized transformation at different strain rates related to
heat transfer effects. This kind of approach is a prerequisite to the simulation of
complex SMA structures in Sect. 4.2.
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4 Two-DoF Vibration Stabilization Platform

The phase transformation between martensite and austenite for one-way SMA gen-
erates large recovery force allowing for active vibration control. The operating fre-
quency of SMA actuator is limited by the cooling down time of the actuator. There-
fore, a miniaturized SMA actuator is favourable for low frequency vibration control
application below 100Hz, owing to reduced power consumption for device heating
and faster cooling. A prospective application is to compensate against the vibrations
introduced by hand movement in smartphone camera where the typical operating
frequency is below 10Hz. In contrast to the vibration control using voice coil motor,
less components are required for SMA based stabilizers facilitating miniaturization.
The authors present a 2-DoF vibration stabilization platform for smartphone cameras
to compensate for the vibrations arising from hand movements. The design criteria
is to stabilize rotational movements of 1◦ along x and y axis based on the desirable
specifications for Optical Image Stabilization (OIS) system [11].

4.1 Construction and Operation

A monolithic SMA device design is adopted for the stabilization platform to enable
ease of assembly as shown in Fig. 16a. Using a NiTi foil of 15μm thickness, four
SMA actuators of bridge structure having a width of 65μm are micromachined by
laser cutting. A short current pulse of 0.2A for 20ms is used to raise the bridge
temperature to 80 ◦C. After removal of heating pulse, the bridge requires 55ms to
reach the starting state (Fig. 16b), achieving a maximum operating frequency of
13Hz.

The construction of the OIS system is illustrated in Fig. 17a and the assembled
device (without top cover) is shown in Fig. 17b.

Figure18 shows the operation of the OIS system. A short heating pulse of 20ms is
used to enable phase transformation to austenite. The antagonistic bridge pair SMA_1
and SMA_3 are activated sequentially to estimate the maximum tilting angle. The
displacement is traced using laser displacement sensor on SMA_1. A maximum
displacement of 65μm is achieved, corresponding to a tilting angle of 1◦.

Fig. 16 (a) Monolithic
SMA design for 2-DoF
vibration stabilization and
(b) its thermal response on a
short heating pulse of 20ms.
The device cools down to the
starting state in 55ms
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Fig. 17 The exploded view, illustrating the assembly of 2-DoF vibration stabilization platform (a)
and the system after assembly (without top cover) (b)

Fig. 18 The stabilization
angle of 1◦ is achieved in
this system by sequential
activation of antagonistic
pairs SMA_1 and SMA_3

4.2 Static Simulation of the Two-DoF Vibration Stabilization
Platform

The implemented multi-axial model is applied for an analysis of the stress-strain-
phase transformation evolution upon single pulse heating. After the device has been
pre-strained (Fig. 19a) the SMA_1 element is heated, where temperature changes
homogeneously in the activated material and tilting to the observed angle follows.
This leads to a coupled deformation of the opposed SMA_3 across the device.
Figure19b shows the total strain in the structure. The tilting, which occurs due to
transformation-strain recovery in SMA_1 upon heating, results in additional progress
of transformation in SMA_3. This leads to the actuation of SMA_1 under a variable
bias triggered from SMA_3 (actuation under variable stress as in [14]). Figure20a
represents the related stress-temperature evolutions for SMA_1 and SMA_3 accom-
panied by thematerial’s characteristic Clausius-Clapeyron transformation lines (blue
lines for A→M, green lines for M→A phase transition), and in Fig. 20b the corre-
lated stress-strain responses are shown simultaneously. The resulting coupling gives
rise to the observed overshoot of the tilt actuator displacement during actuation in
Fig. 18 (right).
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(a) (b)

Fig. 19 Induced equivalent total strain after pre-straining of the device (a) and after actuation of
bridge SMA_1, which causes tilting (b, top view)

Fig. 20 Stress-temperature paths for two opposed bridges SMA_1 and SMA_3 from Fig. 19b, state
after pre-straining for both SMAs: Point P, after heating: P’ for SMA_3, P” for SMA_1(a); The
coupled stress-strain behavior in the SMAs (b). The blue and green lines represent the forward and
reverse transformation stresses, their inclination is given by the Clausius-Clapeyron coefficients
CM and CA

5 Conclusions

The energy dissipation of thin film/foil SMA materials mostly depends on loading
strain, pre-strain and loading rate. Pre-strain and loading strain are crucial design
parameters to maximize energy dissipation. In pseudoelastic SMA, pre-straining
close to the beginningof transformationplateau results in achieving repeatable energy
dissipation behaviour in all loading cycles. From a uniaxial tensile loading of the
material, up to 34% of loading energy is dissipated for the pseudoelastic SMA and
86% for the one-way SMA material. In a damper system containing double bridge
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device, high SDCs of 70 and 90% are achieved using pseudoelastic and one-way
SMA devices, respectively. Short current pulses below 100ms enable more homog-
enized temperature distribution on one-way device achieving better phase transfor-
mation. For vertical shock loading with guided mass movement, the mass stabilizes
without any oscillation after shock loading, showing large application potential as
shock absorber inminiature robotics. For the dynamic simulation of bridge actuators,
FEMmodels for 2Dplane stress simulations of the bridge domains are combinedwith
a thermally activated kinetic reaction model for phase transformations. For pseudoe-
lastic and one-way SMAs, this approach well predicts the transient response, where
localization of transformation and the accumulation of martensite phase in the SMA
explain limitations of the damping capacity.

Miniaturized SMA actuators for 2-DoF tilt stabilization have demonstrated an
operating frequency range up to 13Hz. Ease of assembly is achieved using a mono-
lithic device design. The more complex kinematics requires the use of multi-axial
constitutive models with thermomechanical coupling to allow a precise prediction
of the interference of strain and temperature across the distributed active SMA parts.

Acknowledgements The authors gratefully acknowledge funding by the German Science Foun-
dation (DFG) within the priority program SPP1897. The authors appreciate the support of Nicholas
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Lightweight Structures with Adaptive
Dynamic Behavior Through Evanescent
Morphing

Tom Ehrig, Christoph Hildebrand, Klaudiusz Holeczek, Niels Modler,
and Pawel Kostka

1 Introduction

1.1 State of the Art

Improving the energy efficiency and achieving new performance levels of vehicles,
machines and facilities is a continuous challenge for engineering and science. In
the scope of structural design, a consistent implementation of lightweight design
principles is widely recognized as an important tool to achieve this goal. Hybrid
materials combining polymers, ceramics, lightweight alloys and composites as well
as integral design with a reduced number of joints offer the possibility to develop
light components with material type and distribution optimized for actual operat-
ing loads. An ultimately stiffness/strength-oriented design, however, often causes a
problematic vibration susceptibility, especially of common thin-walled components
and makes the application of additional damping measures necessary. Herein, some
representative examples include:
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• special sandwich panel cores with layered damping materials [26] or filled with
granular materials [17], including voids of optimized geometries [19],

• local dampers such as acoustic black holes [20], particle dampers [10, 21] and
joints with viscoelastic damping [12],

• active magneto-/electro- or photorheological layers with the damping and stiffness
controlled by magnetic, electric field or light, respectively [1, 9, 24],

• distributed active damping systems that use vibration sensors and actuators
attached to complex-shaped structures, driven by real-time controllers [11, 18].

Common to active systems is a real-time calculation and generation of damping
forces according to the instantaneous vibration position of the damped element.
The necessary vibration measurement, signal routing, and a permanent power con-
sumption combined with additional masses of the structure-integrated and external
components often prove to be challenging and limit the application scope of active
damping systems. Therefore, passive damping solutions are still used for a large
part of technical applications. Especially free and constrained damping layers of
viscoelastic materials are a widely used choice for flat panels, curved shell compo-
nents [16] or structures with complex geometries [2]. A number of investigations
aim at integration of such layers during the material manufacturing process [22] or
at optimal distribution of damping segments [27].

In the case of widely used Constrained Layer Damping (CLD), a damping layer
attached to the surface of a component is constrained by an additional top layer
made of stiff material. Resulting shear deformations of the damping layer enable a
particularly high damping power density of such treatment. However, the setup and
material configuration of passive damping layers are typically designed for specific
vibration conditions of the respective structures and do not allow any adaptation of
their properties to varying excitation parameters.

1.2 Compressible Constrained Layer Damping

The presented research activities are pioneering work to develop a new kind of CLD,
referred to as Compressible Constrained Layer Damping (CCLD) that implements
a simple and almost massless mechanism for adaptation of damping properties. The
conventional solidmaterial of the viscoelastic layer is replacedhere by a compressible
one. The volume of the damping layer is considered as a structural cavity, which can
be supplied with negative or positive pressure in order to control the damping layer
thickness (Fig. 1) and thus the

• properties of the damping material - its densification or expansion affects the
storage and loss shear modulus, G ′ and G ′′, respectively

• deformation kinematics of the layer - the shear deformation amplitude γ̂ increases
with the reduction of the thickness tv.

Compared to typical active systems, the proposed actuating principle contains no
explicit actuators. Instead, the damping layer itself or special structural cavities gen-
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Fig. 1 The CCLD setup
similar to the well-known
CLD design, with the
incompressible viscoelastic
damping layer replaced by a
compressible one. Actuating
pressure p1 < p0 densifies
the damping material and
alters the shear deformation
amplitude γ1 due to variable
damping layer thickness tv

tv1

Vibrating

tv0

Constraining layer Base structure

p0 , G0', G0''
pamb

p1<p0 , G1', G1''
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erate evanescent deformations when supplied with hydraulic fluid, compressed air
or vacuum, which significantly reduces the implementation costs. In this way, the
dynamic response of a CCLD-damped structure can be successively adapted on
the basis of the current vibration conditions in order to achieve optimal dynamic
response, e.g. in the sense of minimal vibration amplitude, minimal sound radiation,
or maximal damping power etc. The term “evanescent deformation” used here refers
primarily to the damping layer and it means such a geometrical change that it is
irrelevant to the main function of the base structure. Additionally, curved base struc-
tures are subject to a certain degree of deformation and prestress caused by coupling
effects due to CCLD actuation. These effects can also change the dynamic behavior
and thus represent a part of the adaptation mechanism.

Considering the multiple phenomena and their interactions that occur in CCLD,
the analysis of its adaptive damping properties as well as the elaboration of appro-
priate design guidelines require a complex work plan. The content of this chapter is
structured accordingly as follows:

• Section 2 describes selection and characterization of compressible damping mate-
rials. Quasi-static and compression- and frequency-dependent viscoelastic prop-
erties of candidate materials are analyzed as a basis for understanding the damping
layer behavior at various actuation conditions and vibration frequencies.

• Section 3 presentsmodeling and simulation approaches that use the acquiredmate-
rial data. First, an analytical model of simple beam structures is analyzed that allow
a basic assessment of the CCLD potential as an adaptive damping treatment. Then,
a parametric numericalmodel of a generic single-curved shell structure is described
that explicitly includes both the complex deformation process during the CCLD
actuation and the adaptive structural dynamic behavior.

• Further description focuses on experimental investigations on a lightweight single-
curved shell structure with applied CCLD (Sect. 4). The experimental results are
used at this stage for the validation of the developed numerical model.

• Finally, in Sect. 5 the application of the validated model for a simulation series is
described. An assessment of the proposed damping solution is given based on a
systematic variation of some CCLD key parameters.
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2 Damping Materials

The following section describes the selection of suitable damping materials and their
characterization. These steps were necessary for modeling purposes since neither
compression-dependent material parameters for suitable materials were available in
special literature nor were they provided by the manufacturers.

2.1 Material Selection

Even though a variety of viscoelastic materials are suitable for the application in
a CCLD, the following material characteristics were identified as necessary for the
realization of the CCLD principle:

• high damping to significantly influence the structural dynamic behavior,
• strong compression dependency of viscoelastic material properties for broad
adjustment range of structural dynamic properties using evanescent morphing,

• high permeability for the actuation fluid and a technically feasible relation between
compressive stress and compression, allowing an effective actuation,

• low density to suit the lightweight aspect.

The permeability for the actuation fluid significantly limits the material choice, mak-
ing flexible open-cell foams a feasible material group. A product survey of com-
mercial foams revealed the unavailability of sufficient quantitative specifications of
material properties related to the abovementioned characteristics, hampering a direct
selection of suitable materials. Especially the pressure-compression-shear damp-
ing/stiffness characteristics as a parameter of key importance could not be found
for any compressible material even in specialized scholar publications. Therefore,
a preselection of materials was conducted taking into account merely the available
information about basic material features and the final selection was made based on
the self conducted experimental material characterization.

Since the material density is an important lightweight indicator and it influences
the damping as well as determines indirectly the actuation-relevant porosity of the
foam, a broad range of densities was used as an initial material selection crite-
rion. This led to the selection of twelve open cell polyurethane (PU) foams and a
single melamine foam,1 samples of which were procured and subjected to an in-
house quality control and preliminary rheometric tests. Finally, three PU foams and
the melamine foam with favorable viscoelastic properties and significantly different
property profiles were used in further investigations.

Another material group that fulfills the criteria mentioned above are nonwovens.
Since the production of nonwovens converts the fibers directly into fabrics and thus
eliminates the yarn production process, nonwovens are a very cost-effective solution
for many applications. Low density and remarkable energy absorption capacity are

1 As a material with fundamentally different open cell morphology compared to PU foams.
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Table 1 For the in-depth investigation selected foams and nonwovens
Sample Type name Manufacturer Base material Density kg/m3

Foam A Basotect® G+ BASF SE Melamine resin 9.0

Foam B RG1720 SchaumstoffeW.WegerichGmbH PU 16.3

Foam C Visco 5030 Schaumstoffe W.WegerichGmbH PU 48.4

Foam D Confor™MCF40 Aearo Technologies LLC PU 96.2

Nonwoven A PP05 MKFilzeGmbH 100% PP fibers 120

Nonwoven B PES 03-36 FilzfabrikGustavNeumannGmbH 100% PET fibers 360

Nonwoven C Woll05 MKFilzeGmbH 90% wool fibers
10% staple rayon

280

Nonwoven D Nomex® FilzfabrikGustavNeumannGmbH 100%
meta-aramid
fibers

160

the reasons why nonwovens have been used for years for acoustic or impact damping
[15]. Although it seems likely that the superior energy absorption capacity could also
be used for structural dynamic damping, there are only a few publications on the use
of nonwovens or dry fiber assemblies for vibration damping. Nonwovens made of
four main representative materials have been chosen (cf. Table 1):

• Polypropylene (PP) fibers as low density material, used e.g. for sound/heat insu-
lation and soundproofing of loud-speakers or in vehicles,

• Polyethylene terephthalate (PET) fibers, as a low-cost, often recycled material,
• Wool fibers, as a renewable raw material, and
• Aramid fibers, which are known for their good damping properties e.g. in fiber
composite materials and have a high temperature and chemical resistance.

2.2 Material Characterization

The CCLD-relevant properties were determined for the materials given in Table 1
based on procedures described in DIN EN ISO 845:2009-10 (density), DIN EN ISO
11357-2:2014-07 (glass transition temperature), and ASTM D 3576 (cell diameter
of PU foams; due to different morphology, a similar procedure was derived for the
melamine foam). In addition, microscope images were analyzed for all materials
to evaluate the microstructure. For the nonwovens, also fiber diameter and fiber
distribution were determined from these images.

The experiments related to the compression behavior and viscoelastic shear prop-
erties were conducted using an universal testing machine (Z2.5, Co. Zwick-Roell)
respectively a rotatory rheometer (MCR 502-300, Co. Anton Paar) in parallel plate
mode. Detailed information regarding the characterization of the foams can be found
in [7], of the nonwovens in [8].
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2.2.1 Quasi-static Material Properties

The quasi-static through thickness compression behavior, which determines the actu-
ation characteristics of the CCLD, was investigated by uniaxial compression tests.
Throughout this chapter, the compression level k is defined as:

k =
(
1 − tv1

tv0

)
· 100% (1)

where tv1 and tv0 are the sample thicknesses in the compressed and uncompressed
state, respectively. For an initial comparison of the materials, the nominal compres-
sive stress as a function of the compression level is shown in Fig. 2. For the sake
of clarity and due to the good repeat accuracy, only one loading cycle is presented.
All investigated materials show a quantitatively similar, non-linear behavior, how-
ever, they can be compressed to different levels. For an adaptive damping system,
this means that nonwovens reveal a smaller range of the compression level due to a
pressure-driven actuation. This, in turn, leads to lower deformations of the structure,
which is well compatible with the idea of evanescent morphing. The results shown
later in this section, however, confirm that even such small deformations lead to
significant changes in viscoelastic properties. For the tested foam materials, three
typical regions [25] can be distinguished: cell wall bending, cell wall buckling and
foam densification (shown exemplary for foam D in Fig. 3). It could be observed
that all of the tested foams could be densified at least up to 88% using atmospheric
pressure.2 In order to understand the deformation kinematics and to assess the com-
pression reversibility at such high densifications, high-resolution in situ computed
tomography (CT) enabling x-ray scanning in deformation controlled mode, was used
(Fig. 3). It was found that even if the tested foams were compressed to one tenth of
their initial thickness, they would return to their undamaged initial structure after
relief.

Fig. 2 Nominal compressive
stress versus compression
level k for loading and
unloading at uniaxial
compression. The flexible
foams could be compressed
to significantly higher levels
at comparable compressive
stress as nonwovens 0 20 40 60 80 100
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2 Which is a theoretical limit in the case of a vacuum actuation.
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Fig. 3 Nominal compressive stress versus compression level k with in situ CT images of foam D
at (I) 5%, (II) 50%, (III) 88% compression and (IV) after relief of the compression force again at
5% compression

2.2.2 Compression- and Frequency-Dependent Material Properties

In the scope of material characterization and following modeling of the structural
dynamic behavior, a linear viscoelastic model of the foams as damping material was
assumed at individual compression levels. This assumption was verified based on the
analyses of raw rheometric data revealing harmonic, phase shifted stress response
on applied harmonic strain. Therefore, the well established description of the vis-
coelastic properties using the complex shear modulus G∗ = G ′ + iG ′′ was applied,
where G ′ is the stiffness related storage modulus and G ′′ is the damping related
loss modulus. The compression-dependent complex shear modulus—determining
the adaptability of the CCLD treatment—was characterized in shear rheometric tests
at different frequencies and temperatures for several compression levels with com-
pressive stresses up to 100kPa, anticipating a vacuum driven CCLD actuation.

In the case of foammaterials, the time-temperature superposition (TTS) principle
allowed a transformation of the test data in an augmented frequency range that is
much broader than the testing machine’s frequency span (here 0.1 ... 16Hz). The
spans of test temperatures and frequencies were selected in such a way that the
measured data could be extrapolated for a fixed operating temperature of 23 ◦C into
a new frequency range ending at 104 Hz, what required several thousand independent
rheometric tests. Figuer 4 is provided to illustrate the frequency- and compression-
dependent behavior of the storage shear modulus and the loss factor for foam D. The
characterization of foams A-D is described in detail in [7].

Figure 5a shows an example of the characteristic hysteresis behavior for a foam
and a nonwoven as determined with the rheometric investigations. The enclosed area
of the loops is proportional to the energy dissipated per cycle. As can be seen, nonwo-
vens have a significantly higher energy dissipation capacity than foams. The influence
of the compression level is shownexemplary in Fig. 5b for nonwovenA.With increas-
ing compression, all materials show an increase of the stiffness on the one hand and
an increase of the dissipated energy on the other hand.Nonwovens, however, revealed
an even stronger dependence of shear damping and stiffness upon compression. Fur-
ther advantages of nonwovens are almost frequency-independent material behavior
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Fig. 5 a Comparison of the shear stress versus shear deformation for foam D and nonwoven B at
comparable compressive stress; b variation of the compression level k from 5 to 40% for nonwoven
A, which showed the strongest dependency of shear damping and stiffness upon compression

at room temperature (except for nonwoven A made of PP) and significantly less
temperature-dependent behavior.3 However, nonwovens reveal a non-linear material
behavior already at significantly smaller shear deformation amplitudes. This is due to
the fundamentally different damping mechanism, which is mainly based on friction
between the entangled fibers, and presents a challenge for modeling and design of
a potential damping element. A more detailed discussion of the above mentioned
effects can be found in [8].

Regarding the shear oscillation motion, an insignificant volume change during
a vibration period was assumed, which should result in a low impact of fluid flow
effects on damping properties. Thus, the influence of effects connectedwith fluid flow
in the cell skeleton was neglected in the above presented material characterization.

2.2.3 Characterization at High Excitation Parameters

In addition to the above-described tests at lowexcitation parameters, effects occurring
at high excitation amplitudes and frequencies were investigated. For these investiga-

3 In fact, this is also the reason why TTS is not feasible with most nonwovens.
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tions a test stand was developed and used in connection with a large electrodynamic
shaker (V8-440, Co. Bruel&Kjœr) generating a broad range of vibration amplitudes
and frequencies (up to 1000 Hz). After a virtual dimensioning and fundamental
experimental tests, an add-on module for simple-shear tests, based on the inertial
mass principle, was extensively tested and put into operation. With this test stand
it is also possible to characterize the damping materials to the point of damage in
order to determine the limits of the CCLD.A primary result of the conductedmaterial
characterization is a catalog of material data describing compression- and frequency-
dependent properties of several foams and nonwovens. These results, revealing a
complex picture, can be used as the necessary basis for the modeling and simulation
of structures with CCLD in an extended range of excitation parameters.

3 Modeling of Lightweight Structures with CCLD
Treatment

For a detailed analysis of the CCLD influence on the dynamic behavior of light-
weight structures, models with different abstraction levels have been realized. First,
an analytical model of bending beams and its application in exemplary parameter
studies are described (Sect. 3.1). Then, further models were developed, e.g. with
prestressed beams [13], which cannot be discussed here in detail due to limited
space. Finally, the latest and most complex model–a fully parametric finite element
(FE) model for single-curved shell structures–is presented in Sect. 3.2.

3.1 Analytical Model for a Simply Supported Beam with
CCLD

For the analytical approach, a well established mathematical formulation of a simply
supported beam with CLD [28] has been modified by adding the possibility of a
compression-driven adaptation of the geometrical and material properties of the vis-
coelastic layer. This was accomplished by implementing the compression dependent
properties of the viscoelastic layer: its thickness, mass density as well as storage and
loss shear modulus.

Themodel was used in a series of simulations to study the CCLD potential regard-
ing the damping capacity and its adaptation as well as to understand the physical rela-
tionships of parameters describing the systemconfiguration.The length (L =550mm)
and the width (W =55mm) of the base beam made of carbon fiber reinforced epoxy
resin was kept constant while its thickness hb was varied in such a way that its
slenderness took the values of 10, 20 and 100. The thickness of the constraining
layer, made of the same material as the base beam, was kept constant at 0.25mm.
The parameters of the viscoelastic layer were consecutively set according to material
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Fig. 6 Exemplary normal amplitudes at the beam’smiddle point L/2 calculated using the analytical
model from [14]: aComparison of the vibration amplitudes of the bare beam (dashed line) and beam
with CCLD at different compression levels, b detailed view of the frequency range around the 1st
eigenfrequency and graphical explanation of the key CCLD efficiency indicators

characterization results for the foams shown in Table 1. Since the shear deforma-
tion of the viscoelastic layer during the beam bending vibrations increases with the
decrease of its thickness (cf. shear deformation amplitude γ1 in Fig. 1), possibly
thin layers were pursued in order to maximize the damping effect. Thus, the lower
thickness limit in uncompressed state was set for each foam to exactly 10 mean foam
cell diameters.

The normal displacement amplitude at the beam’s middle point L/2 as a response
to a unit, normal harmonic excitation force applied in the same point was calculated
for every above mentioned slenderness value and foam material. The change of the
dynamic behavior in comparison with the bare beam behavior and the adaptation
range as a result of the CCLD actuation, were used as key effectiveness indicators.
They are presented for an exemplary system configuration in Fig. 6. Results for other
configurations are compactly presented in Fig. 7 for the bending modes 1, 3 and 5.
A detailed description of the model used and a thorough discussion of the results can
be found in [14]. The results of the simulations described up to this point confirm
the principal correctness of the initial theoretical assumptions about the adaptive
dynamic behavior of structures with CCLD treatment. Both significant vibration
damping and the CCLD adaptability through effects occurring during compressive
actuation of the damping layer were observed. The developed analytical modeling
approach can be used for a quick preliminary system design. However, due to the
complexity of real-world structures, more elaborate modeling is often required.
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3.2 Numerical Model for Single-Curved Structures with
CCLD

A multi-step FE model was developed to estimate the potential of CCLD for single-
curved structures. In the following, the setup of the model is described and a possible
indicator to estimate the efficiency of the CCLD, the mean mobility, is discussed.

3.2.1 Setup of the Parameteric FE Model

The key component of the model is a two-step simulation procedure which was
implemented in the commercial software COMSOLMultiphysics® 5.6 (Fig. 8). This
simulation procedure is re-run with adapted input data for each set of selected CCLD
design parameters. The modeled geometry was discretized using quadrilateral ele-
ments for the damping and constraining layer as well as tetrahedral elements for
the base structure to reduce computation time. The different layers are modeled as
union, therefore no relative motions of the layers to each other are possible. The
model boundary conditions are defined as a pressure load on the damping layer and
a fixed- and floating constraint on two opposing axial edges of the base structure.

In the first step, the deformation and the prestress, caused by the compression of
the damping layer material by the CCLD-actuation, are computed using a stationary
solver (no damping is taken into account). For a realistic simulation of the largemate-
rial deformations, the hyperelastic Storaker model [23] was selected for the damping
layer. For the fitting of the Storaker model, data sets from uniaxial compression tests
mentioned in Sect. 2.2.1 were used separately for each considered foammaterial (cf.
Table 1). A sample validation of the model was performed on a real CCLD setup
assembled with foam D. The deformation behavior of the CCLD actuated in the
pressure-controlled mode was measured with a 3D scanner and compared with the
model outputs of this simulation step. Due to the good agreement, the described
modeling approach was used in all further described simulations.
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Fig. 8 Overview of the parametric FE model with input-output data

In the second step, the deformed and prestressed CCLD from the first step is
taken over for a harmonic response analysis. Stationary vibration responses to a
monoharmonic force excitation are simulated in a selected frequency range.To reduce
simulation time, an adaptive control of the frequency step was implemented. In this
simulation step, the damping layer material is switched to linear elastic material
and parametrized with frequency-dependent values of shear modulus and loss factor
(Sect. 2.2.2) taking into account the previously calculated compression level.

For the validation of the simulation results from this two-step simulation proce-
dure, a single-curved test structure was manufactured and the simulation results were
compared to the experimental data (Sect. 4).

3.2.2 Mobility as Indicator of CCLD Treatment Efficiency

To evaluate the impact of the proposed CCLD on the dynamic behavior of a structure,
a variety of possible indicators can be defined. In this study, themobility as a complex-
valued frequency response function describing velocity per unit force was assessed.
Therefore, the measured excitation force Fexc(ω) and response velocities v(ω) were
used to calculate the mobility M(ω) as following:

M(ω) = v(ω)

Fexc(ω)
(2)
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The magnitudes of the mobilities at measurement points n were then averaged:

M̄(ω) =
√

1

N
�N

n=1Mn(ω)2 (3)

Here, M̄(ω) is the mean mobility magnitude as a single convenient measure, which
allows an assessment of the damping efficiency. N is the number of the velocity
measurement points. It should be noted that the mobility is actually defined as the
velocity that is perpendicular to the surface in relation to the excitation force. For the
investigated curved structure, only the z components of the velocities4 were taken
into account to improve the comparability of the velocities measured by the laser
scanning vibrometer and the simulation results.

4 Experimental Setup for Model Validation

The proof-of-principle for the CCLD treatment was performed in an earlier inves-
tigation phase on a flat panel structure and revealed very promising results [5]. In
this section, the experiments on a single-curved shell structure are presented and the
results are compared with the developed model.

4.1 Configuration of the Curved CCLD Sample Structure

The analyzed base structure is a cylindrical shell section with a constant radius rb,
thickness tb, width wb and section angle φb precisely milled from aluminum (EN
AW-5083). This expensive manufacturing solution guarantees very high geometric
precision and residual stress-free condition of the base structure, avoiding a number
of random effects that could influence the observed vibration behavior. The CCLD
treatment was set up as shown in Fig. 9. The CCLD patch was applied only partially
and has a width wv and section angle φv. The viscoelastic damping layer consists
of the open-cell PU foam D with the thickness tv depending on the compression
level. An aluminum sheet with the thickness tc was used as constraining layer. The
additional mass due to the CCLD patch was only 0.12kg (+4.36%). The vacuum-
sealing was assured by using a vacuum film, which was glued to the base structure
and the constraining layer. To avoid introducing another viscoelastic layer and to
exclude further phenomena such as curing of the adhesive in the open-cell pores, the
individual layers were not glued together. The structure was held in position by the
tightly applied vacuum film and later fixed by the actuation pressure, which enabled

4 This refers to the components of the vibration velocities that are perpendicular to a plane defined
by the corner points of the curved shell.
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Fig. 9 Schematic drawing of the CCLD setup on a single-curved structure

Table 2 Applied actuation pressure and corresponding damping layer thickness (tv0 = 11mm)

Applied actuation
pressure pact

–1.1kPa –2.4kPa –5.4kPa –16.9kPa –31.7kPa –49.0kPa

Damping layer
thickness tv

0.95 tv0 0.65 tv0 0.35 tv0 0.2 tv0 0.15 tv0 0.12 tv0

Compression level k 5% 35% 65% 80% 85% 88%

the coupling of the layers by frictional forces.5 The applied actuation pressure was
generated by a vacuum pump and adjusted with a valve to achieve the predetermined
compression levels (Table 2).

4.2 Measurement Setup

The characterization of the dynamic behavior was carried out on the test structure
hung up on an auxiliary frame, mounted on a vibration-insulated table (Fig. 10). An
electrodynamic shaker (type 4810, Co. Bruel&Kjœr) was used to generate a sine
sweep excitation force in the frequency range between 50 and 450Hz. This force,
applied near a corner of the base structure, was measured with an impedance head
(type 8001, Co. Bruel&Kjœr). At the same time, the vibration response was recorded
by means of a laser scanning vibrometer (type PSV-400, Co. Polytec) at 35 regularly
distributed laser light reflecting spots, with a resolution of 48.9mHz.

Several test series were carried out, first with the base structure without CCLD and
then with the applied CCLD patch. The compression levels were set in increasing,
decreasing and random order, according to values shown in Table 2. The repeat

5 The simulation results (Sect. 4.4) show a remarkably good agreement especially for the lowest
compression level (k = 5%), which supports this assumption.
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Fig. 10 Illustration of the
measuring setup with the
adaptive structure [4]

Auxiliary frame

Hung support

Base structure
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the Backside

accuracy of all these measurements was excellent, so that only one measurement per
compression level is used in the following discussion.

4.3 Discussion of the Measurement Results

4.3.1 Measured Mean Mobility at Different Compression Levels

The two simultaneous and compression-dependent phenomena: variability of mate-
rial properties of the damping layer and its changing deformation kinematics (cf.
Sect. 1.2) suggest a complex effect of the CCLD actuation on the dynamic behav-
ior of the adaptive structure. Figure 11a shows the mean out-of-plane mobility (cf.
Eq. 3) of the adaptive CCLD structure at different compression levels for the mea-
sured frequency range from 50 to 450Hz, compared with the mean mobility of the
bare base structure. Figure 11b and c provide a detailed illustration of the frequency
range around the 2nd and 5th eigenfrequency (EF), respectively. Due to the additional
mass of the CCLD patch, the EFs shift to a lower frequency range at low compres-
sion levels of the damping layer. Increasing shear stiffness at higher compression
levels compensates this effect, and the EFs shift back to a higher range.6 A signifi-
cant reduction of the amplitudes compared to the base structure can be observed, but
the relationship between compression level and reduction of the amplitude is rather
complex. In the example shown, the amplitude of the 5th EFs decreases steadily
with increasing compression (Fig. 11c), while the amplitude of the 2nd EF reaches
its minimum amplitude at a compression level of 80% (Fig. 11b).

4.3.2 Compression Level for Achieving the Minimal Mobility

The effect of CCLD in an adaptive mode of vibration damping can be illustrated
by the example of the presented structure under a monoharmonic vibration excita-

6 The reduction of the bending stiffness of the adaptive CCLD structure, caused by a decrease of
the second moment of inertia with increasing compression, appears to play a minor role.
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Fig. 11 a Mean out-of-plane mobility for different compression levels; b, c detailed view of the
2nd EF and the 5th EF (legend is valid for all three figures) [4]
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Fig. 12 Mean out-of-plane mobility for different compression levels and controlled state with the
minimal achievable mobility (bold line) by adapting the compression level (step diagram)

tion. Figure 12 extends the mean mobility patterns by a step diagram showing the
frequency-dependent compression level of the CCLD yielding the minimum mobil-
ity. This actuation profile, which includes all the levels analyzed, allows a significant
calming of the sample structure (bold line) compared to the respective constant com-
pression levels. In addition to minimum mobility, other criteria for CCLD control
are also possible, e.g. maximum damping power, minimum sound radiation, etc. The
CCLD control in technically common, more complex excitation scenarios remains
a challenging task that will not be addressed here.
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Fig. 13 Measured mean out-of-plane mobility (solid lines) compared to the simulation results
(dotted lines) for a the measured frequency range and b detail of the 2nd to 4th EF [4]

4.4 Comparison of Experimental and Simulation Results

Achieving a good quantitative agreement between experimentally determined and
simulated vibration properties in terms of natural frequencies and vibration ampli-
tudes is often challenging in the case of more complex structures. In the present case,
an additional difficulty results from the modeling of the CCLD actuation process that
modifies many properties at material, geometric, and kinematic level.

In a first step of the validation procedure, the model and experiment outputs
in terms of the mean mobility were compared for the bare structure. The actual
validation step concerned a similar comparison at different CCLD actuation states.
An example of experimental and simulated patterns for the two steps is shown in
Fig. 13. The obtained results were evaluated as satisfactory and the model as valid
for further simulation-based analysis of CCLD effect in other system configurations.
A more detailed discussion on the validation procedure can be found in [4].

5 Model Application

The results shown in Sect. 4 demonstrate that CCLD can be an effective damping
treatment. However, determining the optimal CCLD layout for a given use case
appears to be a challenging task due to a large number of design parameters, includ-
ing:

• Dynamic behavior the base structure,
• Number, distribution and geometry of CCLD patches (c.f. Fig. 9 as example),
• Material parameters, including (i) frequency-dependent, (ii) compression-depen-
dent and (iii) temperature-dependent material behavior of the damping layer,

• Vibration excitation parameters.
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Fig. 14 a Schematic illustration of the four variants and b their mean out-of-plane mobility with
adaptive control to achieve the minimal mobility

Furthermore, an optimal design depends on the respective objective function such
as minimum vibration amplitude, minimum sound radiation, or maximum damping
power, as well as on possible constraints including allowed space, position, and mass
of the damping components. In the scientific approach followed here, a numerical
experiment will be performed to comprehensively characterize the dynamic behavior
under different parameter combinations. The results obtained will serve as the basis
for a data-driven identification of CCLD design principles.

To illustrate the complex nature of the described task, an exemplary study will be
presented. For a given base structure, only the position, width and section angle of
the CCLD patch are varied. In all four variants shown in Fig. 14a, the CCLD patch
has the same area and the additional mass in relation to the base structure is only
5%. All other parameters remain constant in this study. Figure 14b illustrates the
best possible condition i.e. the lowest mean out-of-plane mobility as described in
Sect. 4.3.2. The responses for a monoharmonic excitation are obtained by successive
control of the compression level for each of the four variants. It is clearly visible that
the different patch configurations significantly influence the mobility, especially in
the range of the EF’s. Thus, with Patch 2, the EF at approx. 100Hz can be damped
effectively, whereas the EF at approx. 130Hz can be damped significantly less. For
Patch 1, on the other hand, the situation is exactly the opposite. The range between
approx. 260Hz and 380Hz illustrates a similar effect particularly well. The vertical
lines in Fig. 14b mark the 1/3 octave bands. A possible quantitative measure for the
CCLD assessment can be the integrated mean out-of-plane mobility e.g. over 1/3
octave bands (Fig. 15). It is apparent that for the given CCLD parameters, the variant
with Patch 1 is the best choice in the considered frequency range. However, it also
becomes clear that, depending on the frequency range of interest, different variants
are the best option. This small insight with only a few parameter sets already reveals
a complex picture and should demonstrate the necessity of a large-scale parameter
study.



Lightweight Structures with Adaptive Dynamic … 165

2.78

3.42
3.60

3.33

50 63 80 100 125 160 200 250 315 400

0.1

0.2

0.3

0.5

0.7

1

0.1

1

Center frequency of 1/3 octave bands in Hz 

 Patch 1 opt
 Patch 2 opt
 Patch 3 opt
 Patch 4 opt

Integrated mean 
-2 -1mobility in m s N  

for 45-450 Hz

1     2     3     4

Patch #

(a) (b)
In

te
gr

at
ed

 m
ea

n 
-2

-1
m

ob
ili

ty
 in

 m
 s

N

Fig. 15 a Comparison of the mean out-of-plane mobility integrated over the 1/3 octave bands for
the four patch variants and b comparison of the mean out-of-plane mobility integrated over the
entire frequency range (45–450Hz)

6 Conclusion

The novel CCLD damping technique poses an efficient and nearly weight neutral
solution to calm vibrating lightweight structures. In experiments carried out on a
single-curved shell structure with a partial CCLD coverage and adaptive CCLD con-
trol it was possible to significantly reduce the maximum vibration amplitudes with
only a small increase in the structure’s mass. In order to choose suitable damping
materials for the CCLD technique, different viscoelastic foams and nonwovens were
investigated, characterized and necessarymaterial propertieswere identified. In addi-
tion to the experimental investigations, a two-step simulation procedurewas proposed
and investigated. The therefore developed model uses the experimentally obtained
material properties and is capable of predicting the structural dynamic behavior of
a structure with applied and actuated CCLD. It shows a good agreement with the
experimental results. This model provides the basis for a large-scale parameter study
in the future. The hereby obtained results will then be used to develop guidelines
for the design of CCLD patches and identify optimal CCLD design parameters like
patch size, -position and -material. Further experiments with the test structures in
different scenarios, such as in acoustic damping context [3] are planned.
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Acoustic Black Holes – Modelling,
Shaping, Placement and Application

Steffen Hoffmann, Sebastian Rothe, and Sabine Christine Langer

1 Introduction

The development of new technical products is challenged by constantly growing
requirements regarding, for example, energy consumption, environmental compati-
bility and handling. In order to meet these requirements, new design approaches and
material combinations are necessary.

In most cases, the lightweight design-driven development, especially for mobility
vehicles, leads to a worsening of the acoustic properties of the technical product in
particular. With less insulating mass available, new measures are required to com-
pensate the worsened acoustic characteristic. Acoustic Black Holes (ABHs) show
immense potential to overcome the conflict between low mass and good acoustic
properties, as they can be used as an efficient passive damping measure (by even
reducing product weight).

This paper summarises main results on modelling, design and positioning studies
of ABHs (Sect. 3). Experiments on plates to show the basic ABH effect serve as
a starting point for this (Sect. 2). In addition, essential findings for the integration
into more complex material systems (Sect. 4) as well as the applicability to realistic
components (Sect. 5) are described.

The effect of ABHs was first described by Mironov [1] in 1988. He described
mathematically that through a targeted impedance reduction at the end of a beam in
form of a thickness reduction, the propagating bending waves become slower in the
direction of the beam tip, while the amplitudes increase. With a theoretical thickness
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Fig. 1 Mean squared admittance La and loss factor η over frequency (simulation results) for three
beams with the same applied damping patch but differently shaped ends

reduction down to zero, the wave would stop and not return. This consideration
inspired Krylov [2] in 2000 to name this type of material or component weakening an
Acoustic BlackHole (ABH).Due to the finite thickness reduction that exists in reality,
partial reflection of the waves occurs. In order to damp this reflecting wave portion,
Krylov combined the ABH with an additional damping layer. Since the increasing
amplitudes in the ABH create an ideal region for damping application, a structure
carrying structure-borne sound can be damped very efficiently. This becomes clear,
for example, when comparing frequency responses (mean squared admittance La

(whole beam) over frequency f ) of beams with different design of the beam end (see
Fig. 1).

By using the ABH shape in combination with a damping patch (ABH), the peaks
can be damped much more compared to the reference beam with the same amount
of damping foil (REF). This effect is also visible in the graph of the resulting system
damping (loss factor η). Additionally, the measure results in a desired additional
mass reduction. In the results of the design variant with the step at the end of the
beam (STP) – high wave reflection due to impedance jump – it is obvious how
important the smooth impedance adjustment is for a high damping effect.

Over the last two decades, the effect of ABH has been studied in a number of
different structural (see e.g. [3, 4]) and fluid contexts (see e.g. [5]). A good overview
of the most important research up to 2020 can be found in Pelat et al. [6]. Neverthe-
less, it is evident that ABHs have not yet fully established in the industry. The aim
of the studies conducted within the DFG founded Priority Program 1897 is to facil-
itate access to ABHs for mobility applications by providing numerical modelling
approaches as well as identifying relations between the expected acoustic effects
and design parameters (outer shape, shape function, position, size, etc.). The basis of
the investigations are experiments and numerical results based on the finite element
method (FEM).
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2 Experimental Investigation of ABH Effect on Plates

To demonstrate the theoretical ABH effect described in the introduction on a realistic
structure, three different plates are manufactured (see photos in Fig. 2 top right). A
0.495x0.395m and 0.005m thick aluminium plate is used as a reference structure.
In addition, one plate with a circular step and one with a circular ABH (radius: 0.1m,
polynomial degree of ABH n = 2, hABH,min = 0.0005m) are produced. For this pur-
pose, the one-dimensional shapes shown in Fig. 1 are rotated and integrated into the
plate as two-dimensional measures. Circular damping patches with constrained layer
(CLD) are applied for every variant in the centre of the ABH respectively at the same
position on the reference (REF) and step (STP) plate (radius: 0.05m).

To measure the plates, they are freely suspended and excited at one point by an
electrodynamic shaker (symbolised by red arrow). The force is measured with a
force sensor and the surface velocity with a laser scanning vibrometer (LSV) at 755
points on the flat side of the plates. The density of measurement points is doubled in
the ABH and step area in order to better scan the locally arising deflection shapes.
Excitation and mounting points are chosen according to the minima and maxima
of a multiplied superposition of all modes – up to 3200Hz – in frequency domain

Fig. 2 Comparison of experimental results of reference plate with CLD (grey), plate with step
shaped measure (orange) and plate with one ABH (blue): top: area-weighted mean squared admit-
tance levelsmiddle: mean squared admittance levels La in third-octave bands bottom: loss factors
η determined at resonance frequencies
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(excitation sensitivity). The experimental results of other plate structures used in the
further course of the paper are characterised experimentally using a similar procedure.

The resulting mean squared admittance levels in frequency domain of the three
measured plates are shown in Fig. 2. The advantage of the ABH compared to the
other variants becomes clear from about 1300Hz, where the peaks are damped much
stronger, even if it is less noticeable than in the beam comparison (compare Fig. 1).
Reasons for this include the fact that measurement deviations occur in comparison to
simulation results and that optimal comparability of the variants is not possible due to
manufacturing inaccuracies. However, the experimental results of the 2D structures
serve as a starting point and as a validation basis for the studies and modelling
approaches in the following sections.

3 Modelling and Numerical Studies

Models are suitable for investigating the effect of changing system parameters of the
ABH on the structure-borne sound behaviour of plate-like structures.When these are
transferred into parametric numerical models based on the FEM parameter, changes
can be investigated efficiently. However, for reliable predictions, a valid simulation
model is essential.

In the following subsections, themodelling procedure of ABHs in plate-like struc-
tures and the modelling of the damping patch used in this work are described. Exper-
imental results are used for comparison and assessment of validity. On this basis,
numerical studies are carried out subsequently with regard to geometric parameters
(e.g. polynomial degree of ABH shape function, outer shape of the ABH, position
on the structure).

3.1 Numerical Modelling of Plates with ABH and Damping
Patch

The investigated plate structures are mainly modelled according to the Reissner-
Mindlin plate theory and discretised with the help of shell elements. Elements with
quadratic ansatz function are used. A comparison to results of models (base plate
without CLD) with volume elements was carried out. This leads to no increase
in accuracy but higher computational costs. For all model discretisations at least
15 points per bending wavelength are defined, based on convergence studies. The
shortest occurring wavelength is taken as reference. Local discretisation differences
of the FEmesh are thereforemainly dependent on the local plate thickness. SIMULIA
Abaqus FEA is used as environment for all numerical FE calculations.

An accurate representation of the ABH shape and the damping patch accounts for
a particular challenge when creating the numerical models. Due to the use of shell
elements the shape function of the ABH has to be realised by an element thickness
adjustment. In order to realise a sufficient representation of the ABH shape function,
a maximum height difference between neighbouring elements must be defined. In all
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Fig. 3 Schematic representation of the element subdivision in the area of the ABH (left: in radial
direction; right: in peripheral direction)

subsequent calculations a height difference of hdiff = 0.1 · hABH,min is used. Herein
hABH,min describes the minimum thickness of the ABH. This parameter serves as step
size for an initial subdivision of the ABH. The second subdivision is made by the
required number of points per bendingwavelength of each previously defined section
and is therefore frequency dependent. The element subdivision in radial direction of
the ABH for a maximum thickness of hABH,max = 0.005m and a minimum thickness
of hABH,min = 0.0005m is shown in the left diagram of Fig. 3. The division of the
rings in peripheral direction is done by defining the maximum aspect ratio for each
element, which is a maximum of five in this case. This is shown schematically on
the right side of Fig. 3 as a top view on the ABH.

Based on this partitioning, element sets are created to which the corresponding
thicknesses and material properties can be assigned. For the base material (alu-
minium) linear elastic material is assumed with a Young’s modulus E = 70GPa and
a density � = 2700 kg/m3. The material damping is modelled frequency-dependent
and taken into account as Rayleigh damping (α = 0.256 and β = 4.62e − 7; experi-
mental determined acc. to [7]). In the area of the damping patch, considering only an
increased damping value is not sufficient, since it neglects the stiffness increase and
the frequency-dependent interaction of the sandwich system (base plate and CLD
patch). Therefore a more complex modelling is considered, which is explained in
more detail hereafter.

In order to be able to represent the influence and effects of the damping patch
sufficiently, it is modelled with the help of shell and volume elements. The M3TM

Damping foil 2552 [8] used in the experiments in Figs. 2, 10 and 15 serves as the
basis. As illustrated in Fig. 1 this are constraining damping measures with multiple
layers (damping layer combined with constraining aluminum layer). Since the thin
top layer is made of aluminum, it is modeled in the same way as the base structure
and with quadratic shell elements. The damping layer is an acrylic that behaves
viscoelastically rather than linearly elastically and is discretised by volume elements
(20 node elements, quadratic ansatz function).

Since thematerial parameters of the acrylic adhesive layer are not known, amethod
for determining these parameters was developed as part of the project (see [7]). For
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Fig. 4 Experimentally determined homogenised flexural storage moduli (left) and loss factors
(middle) of CLD covered beams of different thickness and curves fitted via RKU [10] (dot-dash
line); right: inversely determined E-modulus and loss factor of the damping layer [7]

this purpose, aluminum beams of different lengths and thicknesses are treated with
the same type of damping foil. The flexural storage modulus Ef (Fig. 4, left) and
the flexural loss factor ηf (Fig. 4, middle) of all beams are determined according to
DIN EN ISO 6721-3 [9] up to 3.5 kHz.

In order to obtain the parameters of the intermediate damping layer from the
homogenising quantities (Fig. 4 left/middle), an inverse method is used. A detailed
description of the procedure can be found in [7]. It is based on the approach of Ross,
Kervin and Ungar (RKU) [10]. For the complex total bending stiffness B tot of the
CLD treated beams the following applies [10, p. 61]:

B tot = K2

[
h22
12

+ H21

]
+ K3

[
h23
12

+ gK1H 2
31

K1 + g(K1 + K3)

]

− K2h31

[
K1

( H21
2 + h2

12

) + 2gK3H21

K1 + g (K1 + K3)

]
+ K1

h21
12

(1)

The tensile stiffness Ks of the individual layer1 s = [1, 2, 3] are calculated using
the respective material (for each layer: νs–poisson ratio, Es–Young’s modulus, �s–
density, ηs–loss factor) and geometry parameters (hs–layer thickness):

Ks = Eshs (1 + jηs)

Furthermore, the geometry parameters H21 and H31 are defined as

H21 = h1
2

+ h2
2

, H31 = h1
2

+ h3
2

+ h2

1 s = 1 – base layer, s = 2 – intermediate damping layer, s = 3 – constraining top layer
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as well as the length-related massm ′ and the relationship between shear modulus G2

and elastic modulus E2 of the damping layer are required, i.e.

m ′ = ρ1h1 + ρ2h2 + ρ3h3, E2 = 2G2 (1 + ν2) .

These quantities can subsequently be used to determine the shear parameter g and
the wave number k (Btot indicates the real part of B tot, j the complex number):

g = G ′
2

h2k2

(
1

K1
+ 1

K3

)
(1 + jη2) , k = 4

√
�2m ′

Btot

The frequency-dependent values for G2 and η2 are varied until the E-modulus Ef

and loss factor ηf (ratio of real and imaginary part of the complex bending stiffness
B tot) fit into the measured curves (dot-dash lines in Fig. 4). The frequency-dependent
material parameters G2 and η2 obtained from the parameter variation are shown in
the right diagram of Fig. 4.

The determined material parameters are used to describe the viscoelastic material
behaviour for the volume elements of the adhesive layer. A viscoelastic modelling
of the damping layer is not always necessary and must be checked for the individual
case.While it has been shown that a viscoelastic calculation of the intermediate layer
is appropriate for beam structures with ABH placed at the ends, this does not apply to
the present plate structure. As the frequency response functions (FRF) in Fig. 5 show,
there seems to be hardly any difference in the stiffness between the model with a
linearly elastic intermediate layer (linear) and the model with a viscoelastic modeled
damping layer. For the numerical model, the mean values over the frequency range
are used (Fig. 4 (right): E2,mean = 14GPa, η2,mean = 1.1).

However, the systemdamping in the linearmodel deviatesmore from themeasure-
ment than for the viscoelastic simulation. Nevertheless, since a considerable amount

Fig. 5 Comparison of the mean square admittance level between two modelling variants of the
damping patch (linear and viscoelastic) and the measurement result (top: FRF, bottom: FRF as
third-octave band)
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of computing time can be saved with the linear calculation, a full modelling of the
CLD patch with a linear elastic intermediate layer is carried out for the following
variations (unless otherwise discussed). These studies focus on crucial parameters
in the design and placement of ABH.

3.2 Analytical Variation of Polynomial Degree and Minimum
Height of ABH Shape Function

To find out which design parameters of the ABH are best for the effect of the damping
patch, a variation of the geometric parameters of the ABH shape function hABH is
performed. The shape function of the ABH can be described with the help of the
minimum (hABH,min) and maximum thickness (hABH,max) of the ABH area, the length
of the ABH (	 ABH) and the polynomial degree n according toMironov [1] as follows:

hABH = hABH,max − hABH,min

	 n
ABH

xn + hABH,min ; n ≥ 2 (2)

The origin of the x-coordinate is the end of the ABH shape (beam). Based on the
presented RKU approach (Eq. 1) and the determined material parameters (Fig. 4) of
the intermediate layer, a variation for the minimum thickness hABH,min and the poly-
nomial degree n of the ABH shape function is performed. In Fig. 6 the homogenised
loss factor η over x (corresponds to the radius of ABH in plates) in dependency on
the frequency f is shown. The results are based only on analytical calculations.

The results in Fig. 6 (left) showwhy it is reasonable to cover only half of the ABH
(from the inside) with CLD, as the resulting loss factor decreases strongly towards
the edge. In addition, there is a strong dependence on frequency and thickness.

To obtain a single value for a variation of hABH,min and n, the values of the left
diagram in Fig. 6 are averaged over the frequency in a first step and afterwards over

Fig. 6 RKU based variation of polynomial degree n and minimum ABH height hABH,min for
optimal loss factor determination (based on reference structure: hABH,max = 0.005m)
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x (radius of the ABH). This spatially- and frequency-averaged loss factor η is plotted
in the right diagram for hABH,min over n. Here it can be seen that particularly high
polynomial degrees are suitable for obtaining high loss factors and that the optimal
minimum thickness of the ABH converges to a limit value (≈ 0.35mm). It can also
be seen that for the ideal case of an ABH with hABH,min ≈ 0, considerably lower loss
factors can be expected, even if high polynomial degrees are used. This is due to
the increasingly constant thickness of the ABH with increasing polynomial degree
and the layer structure, in which there is an optimum base layer thickness that leads
to an optimal loss factor. Since only the loss factor and no impedance matching is
considered here, no general statement for real structures can bemade. For this reason,
further numerical simulations will be carried out in the following sections.

3.3 Variation of Polynomial Degree of ABH in Plates

For the numerical polynomial degree variation, the same ABH plate configuration
as described at the beginning of Sect. 2 is taken as a basis. The modelling is done
according to the procedure in Sect. 3.1. A total of four different variations are carried
out. They differ on the one hand in the modelling of the damping foil and on the other
hand in a constant or variable ABH radius. For the first variation, the radius of the
ABH is kept constant (const. ABH radius) and the damping patch is only modelled
by an increased structural damping (SD) in the application area (mean value based
on results in Fig. 4). The second variation, on the other hand, considers the patch
as detailed model (FM), as described in Sect. 3.1. For the other two variants, the
radius of the ABH is adjusted for each polynomial degree so that the variants have
the same mass among each other (constant mass). In this way it can be ensured that
only the change in the polynomial degree is assessed and that any mass effects do not
falsify the comparison. The radius of the CLD patch remains constant for all variants
(rCLD = 0.05m).

As an assessment quantity for the polynomial degree, the total levels of the mean
squared admittance La,s are calculated and comparedwith the total level of the variant
with polynomial degree n = 2 (see left diagram in Fig. 7). To calculate the total level,
the range from 200−3200Hz is taken into account in each case.

What becomes clear in the comparison is that higher polynomial degrees than
n = 2 make sense with regard to the reduction of La. However, there is an optimum.
If the polynomial degree is increased further, the reduction of La decreases. This is
also confirmed by the results of the investigations by Rothe et al. [11]. Due to an
increasing polynomial degree, the shape function approaches the step shape (STP)
and thus no longer enables the smooth impedance matching for the bending waves
in the ABH.

Anoptimal polynomial degreemust be determined separately for each application.
However, based on the investigations in this paper (see Sect. 3.1), polynomial degrees
between n = 5 and n = 12 can be recommended. They correspond to the minima
of the blue and orange curves in Fig. 7 . The FRF as well as its representation in
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Fig. 7 Results of variation of polynomial degrees of ABH in plates (left: difference in the mean
squared admittance total level (reference: n = 2), right: comparison of FRFs of n = 2 and the two
best polynomial degrees)

third-octave bands is shown in comparison to the variant with n = 2 in the right
diagrams of Fig. 7. Here the considerable advantage of higher polynomial degrees
(over the entire frequency range) becomes clear once again.

3.4 ABH Position Variation on Rectangular Plate

After the suitable polynomial degrees have been determined, the position of the ABH
on the previous investigated plate configurations should be examined more closely.
The goal is not to determine an optimal position for this structure, which is why no
optimization algorithm is used. Rather, the basic structural behaviour with regard to
the ABH position and the usefulness of a position optimization in the design process
should be evaluated. Due to the previous variation, the degree of the polynomial is
set to five, since the curves in Fig. 7 deviates strong for higher degrees. The radius
is reduced accordingly with respect to the results in Fig. 7 as a higher admittance
decrease is to be expected here. In addition, a larger area of the plate can be used for
positional variation without the ABH protruding over the edge of the plate (Fig. 7,
left).

The ABH is placed at a total of 400 equidistantly distributed positions on the plate
and the total level of the mean squared admittances is calculated for the position
assessment in each case. The resulting position rating distribution is shown as a
contour plot in Fig. 8 (left).

It becomes clear that positioning the ABH in the area of the force application
should be avoided under any circumstances, as this can even result in a worsening of
the structure-borne sound behaviour compared to the initial structure without ABH.
This also agrees with the findings in [12]. For a better comparison, the FRFs of
the best (blue) and worst (grey) position are plotted on the right side of Fig. 8. For
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Fig. 8 Results of the ABH position variation (left: Position rating distribution of ABH on plate
(gray circle represents an exemplary ABH), right: comparison of FRFs of worst and best position)

better assessment of the necessity of a position optimisation, the worst (*) position
outside the excitation region is shown (orange). These positions are also marked with
crosses in the respective colours in the contour plot. In the one-third octave bands,
the differences of the position are clearly visible. However, if the positioning of the
ABH in the force application area is generally avoided, much smaller differences
in the resulting total level are to be expected with different ABH positioning on the
plate (≈4 dB).

3.5 Oval Shaped ABH in Plates

Beyond the shaping of the ABH cross-section, the optimal external shape of the ABH
is also of great interest. Regarding a limited design space, it is obvious to consider
not only circular ABH, but also other shapes. The most obvious shape is a special
case of the oval, the ellipse. This shape could be well adapted to slim design areas and
can “catch" longer bending waves than several small ABHs. Combining the elliptic
description with the ABH shape function leads to the following formulation of the
material thickness distribution of an elliptic ABH:

hABH(xe, ye) =

⎛
⎜⎜⎝hABH,max − hABH,min(√

x2K + y2K

)n

⎞
⎟⎟⎠ ·

(√
x2e + y2e

)n

+ hABH,min (3)

The following applies to yK and xK:
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Fig. 9 Principle sketch for geometrical parameters of the oval ABH

xK =
√√√√√

1

1

a2
+ (xe · tan(φ))2

b2

yK = tan(φ) · xK

The geometric parameters are summarised in the following Fig. 9 as a sketch.
With the help of experiments it is investigated whether the effect of the ABH can

be improved by tightening the shape of the ABH (oval ABH) to the aspect ratio of
the considered structure respectively design space. For this, an elliptical ABH in the
same design area will be compared with three round ABHs.

Assuming that the design space for the application of passive dampingmeasures is
limited, a design spacewith an aspect ratio of 1:3 is defined. This can be seen inFig. 10
(top, right) slightly framed in black in the photos of the plate under consideration.
In one case, three round ABHs are placed. For comparison, an oval ABH (same area
as the three round ABHs) is placed on the similar plate with the same design area.
The excitation is done at the opposite corner of the ABH positioning. The plates are
suspended quasi-freely and their surface velocity is measured at 750 equidistantly
distributed points using a laser scanning vibrometer. The area of the ABH is scanned
twice as fine in order to sufficiently resolve the local deflection shapes. The CLD
patches are placed in the centre of the ABHs and care is taken to apply the same
amount of damping foil for both variants.

Figure 10 shows La over the frequency as well as the representation in one-third
octave bands and the determined loss factor. A clear difference appears especially in
the middle frequency range. While the position of the resonances of both structures
is similar, the plate with oval ABH shows a strongly increased damping from the
fourth resonance on. This effect is noticeable up to 1.5 kHz, above which the loss
factors converge and the differences decrease significantly.

The effect is due to the reduced stiffness over a large area, which leads to low-
frequency, broadband large deflections in the area of the damping layer. If the bending
waves become smallerwith increasing frequency and alsofit into the roundABHs, the
difference between the two structures becomes much smaller. In order to maximise
the damping as much as possible with a limited design area, a single connected
measure (e.g. oval ABH) should be designed instead of several round ABHs.
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Fig. 10 Comparison of experimental results of plate with multiple ABH (orange) and plate with
elliptic ABH (blue) in a defined design space: top: area-weighted mean squared admittance levels
middle: mean squared admittance levels La in third-octave bands bottom: loss factors η determined
at resonance frequencies

In the special case of the elliptical ABH used here, the ABH shape function (see
Eq. 2) is fulfilled at every point of the ABH,which is only possible for shapes without
undercuts (all ovals). More complex shapes with undercuts would also be possible
if not fulfilling the shape function at certain points is accepted.

4 Material Studies

In this section, the possibility of integrating Acoustic Black Holes into
non-homogeneous materials is studied. For this purpose, additively manufactured
and fibre laminate structures are investigated. Besides numerical studies, mainly
experimental investigations on beams and plate samples are done.

4.1 Additively Manufactured Structures

In additive manufacturing, the structures are produced by applying material layer by
layer. This enables the realisation of almost any complex geometry and thus also a
great variety for the integration of ABH. The additive manufacturing process focused
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Fig. 11 Possible integration of ABH in additively manufactured structures (demonstrator)

Fig. 12 Material parameters of additively manufactured beams of various thicknesses (0.6, 1, 1.2,
1.8, 2, 3, 6 mm) determined according to Din EN 6721. Left: Frequency-dependent flexural storage
modulus (top) and loss factor (bottom). Right: Flexural storage modulus averaged over frequency
range (top) and loss factor (bottom)

on here is fused deposition modelling (FDM). Here, the material, which is available
as a filament, is melted with the help of nozzles and continuously applied (mate-
rial extrusion). A heated print bed serves as the construction base. Thermoplastic
polymers are used as materials. In the cases examined here, these are polylactic
acid (PLA) and thermoplastic polyurethane (TPU). The following Fig. 11 shows an
example of how an ABH can be fully integrated into plate-like structures. The ABH
would not be visible from the outside, but would still have its damping-increasing
effect.

The realisation of additively manufactured ABH and its effectiveness could
already be shown in some project related publications, to which reference is made
here [13–15]. One key finding is that the numerical modelling of additively manu-
factured structures is much more complex. Besides the viscoelastic and anisotropic
behaviour, a thickness-dependent effect with regard to the homogenised material
properties could be determined (see [16]). This is also shown by the results in Fig. 12.

For this purpose, three beams of PLA (without ABH) with thicknesses of 0.6,
1.0, 1.2, 1.8, 2.0, 3.0, 6.0mm are additively manufactured and measured at 19 ◦C in
accordance to DIN EN ISO 6721-3 [9]. The influence of shear deformation (espe-
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cially for thicker beams) is taken into account in the calculation by numerically
determined frequency dependent material parameters. The Young’s modulus and the
loss factor are plotted over the frequency and frequency-averaged values are shown
for different thicknesses of the samples.

Comparing the resultingflexuralmoduli Ef of the beamsof different thicknesses h,
it becomes clear that the homogenised flexural modulus also increases with increas-
ing thickness. The damping, quantified here via the bending loss factor ηf, is not
dependent on the thickness of the beams. It can also be represented quite well via the
Rayleigh damping, which is particularly advantageous for more efficient numerical
solutions with the help of the finite element method.

4.2 Laminate Structures

In contrast to homogeneous structures, layered structures offer the advantage that
active (e.g. piezo actuators) or passive (e.g. damping polymers) measures can already
be integrated into the layers directly during manufacturing. This is investigated in
this section for ABHs. In addition to the often used glass or carbon fibre reinforced
materials, laminated woods are particularly suitable due to the usually greater mate-
rial thicknesses, which is especially advantageous for ABHs. In addition, these are
sustainable materials for which there is a drive towards greater use in automotive but
also other mobility vehicles and building acoustics.

The challenge here is the fibre orientation to be taken into account and the already
high inherent damping of laminated materials (especially wood), which promises
only little potential for improvement through ABHs.

After some numerical studies based on thematerial properties of laminated beams
determined according to DIN EN ISO 6721-3 [9], different glued laminated timber
(glulam) beams are manufactured with ABH (see Fig. 13). The stepped and ABH-
formed beams are provided with the same amount of silicone (white filling of the
beams), related to the same length of the measure. The third beam is made with an
off-centre ABH within the layered construction and has less damping material. The
length of the beam is adjusted to achieve a similar modal density. The excitation is
done at one side of the beam, while the surface velocity is measured with a laser
scanning vibrometer (double mesh density in the area of the ABH). In addition to the
mean square admittance La, the homogenised loss factor η of the measured beams
in the resonant frequencies are determined with the peak-fit method (see Fig. 13).

The same amount of damping material results in significantly higher damping
values due to the ABH shaping (blue curve). By placing the measure outside the
neutral axis (red curve), the loss factor can be effectively increased despite much
smaller amounts of damping material (damping material is sheared stronger here).

In addition to one-dimensional beam structures, multi-layered plates are also
of interest, especially in the context of building acoustics. Among other things, the
question ariseswhether the orientation of an ovalABHadapted to the fibre orientation
brings advantages. This is investigated experimentally in the following.
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Fig. 13 Glued laminated timber (glulam) beamswith dampingmeasures integratedwithin the layer
structure, top: area-weighted mean squared admittance levels middle: mean squared admittance
levels La in third-octave bands bottom: loss factors η determined at resonance frequencies

The effectiveness of the acoustic measure (oval ABH filled with acrylate, Fig. 14)
compared to the plate without ABH can be successfully demonstrated (Fig. 14, light
gray). The aspect ratio of the oval ABHs is thereby adapted to the stiffness ratios
of the plate in x and y directions. Averaged over the whole frequency range, four
times higher loss factors (η = 0.0109...0.0451) and amaximum level reduction La of
15 dB (around 1 kHz) can be achieved. To investigate the influence of the orientation
of the ABH, three different plates with an oval ABH are manufactured (see Fig.14,
top) and measured.

The results in Fig. 14 highlight that the different orientation of the oval ABH rela-
tive to themain fibre orientation (0 ◦, 45 ◦, 90 ◦) show no significant effect. Additional
numerical studies also did not show a significant advantage of a material stiffness
based orientation of the oval ABH, even when the aspect ratios or anisotropies were
more significant than in the experimentally studied plates.

5 Application on an Automotive Structure

With the knowledge gained concerning the design and placement of ABHs, several
ABHs are integrated into a typical component of an automobile. An oil pan (VAG
038103601NA) made of die-cast aluminium is used as the test object. It is used as
a representative of typical thin-walled die-cast aluminium components with a large
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Fig. 14 Glulam plates with damping measures applied on the sample surface, top: area-weighted
mean squared admittance levels middle: mean squared admittance levels La in third-octave bands
bottom: loss factors η determined at resonance frequencies

surface area. The same oil pans from one manufacturer already behave dynamically
different in the initial state above 1500Hz. The component is therefore measured
sequentially in three states: in the initial state (Fig. 15 left), with three applied CLD
patches (Fig. 15middle) and finally with three ABHs including CLD patches of same
size and position (Fig. 15 right). Unfortunately, a comparison with a step-shaped
structure is not possible because the component can only be machined once.

The excitation is done with the help of a shaker at a screw point on the sealing
edge (Fig. 15 red arrow). The surface velocity is measured with an laser scanning
vibrometer at 700 points. The normal vectors of each measurement point are cal-
culated element by element via the measurement grid in order to compensate the
different angles of the individual partial surfaces.

The oval ABHs are milled in the flat surfaces (Fig. 15 black boxed regions in
the middle picture). The material thickness of 1.8mm in the design area is reduced
to 0.3mm to obtain high loss factors with the CLD foil (based on the variation in
Fig. 6). The polynomial degree is set to n = 5. The size of the ABHs is limited due
to the maximal usable area of the flat design spaces.

The amplitude reduction due to the introduction of the ABHs is clearly visible
in the curves in Fig. 15. This is particularly noticeable from approx. 500Hz and is
significantly greater compared to CLD patches without ABH. The low effectiveness
at low resonances is a frequently occurring effect for ABHs, as here the wavelengths



186 S. Hoffmann et al.

Fig. 15 Comparison of the mean squared admittance levels of an oil pan with different passive
measures, top: area-weighted mean squared admittance levels bottom: mean squared admittance
levels La in third-octave bands

are too large and the reducedmass for insulation ismissing. This can be compensated,
for example, by placing point masses in the maxima of the corresponding first two
modeswithout increasing themass compared to the reference structure [17]. It should
nevertheless benoted that the clearly recognisable damping effect cannot be attributed
solely to the impedance matching by the ABH shape function, since the comparison
with the step function is not possible.

6 Conclusion and Outlook

The studies in the project have identified many sensitive parameters in the design and
positioning ofABHs. The results aremainly supported by numerical studies using the
finite element method. However, these are always validated by experimental studies.
Beams and plates are investigated as generic structures.

A suitable procedure for modelling and discretising (FE mesh) ABHs as well as
a CLD patch is proposed. Especially for the plate structures it shows that although
a detailed modelling of the layers (damping layer with volume elements and top
layer with shell elements) is useful, the consideration of the viscoelastic behaviour
of the intermediate layer is not essential for the general vibroacoustic assessment of
the investigated structures. To determine the material properties of the intermediate
layer, an experimental procedure on beam structures based on the RKU model is
proposed.
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Furthermore, variations of the polynomial degree of the ABH shape function
show that a specific adjustment of the thickness of the base structure can have a
considerable influence on the resulting damping by the CLD patch. In general, it can
be stated that higher polynomial degrees (here: n = 5...12) are more advantageous
and lead to a greater reduction of structural vibrations. However, there is an optimum
which must be determined for each individual case.

The position of the ABH also has a considerable influence on its mode of action.
In any case, positioning in the area of the force application point should be avoided.
The variation in position in the remaining area of the plate, on the other hand, showed
only small differences in the total level of the mean square admittance (� ≈ 4 dB).

An adaptation of the outer shape of the ABH can be useful, especially with regard
to limited design space in realistic structures. Here, the design of an oval ABH has
proven to be advantageous compared to three round ABHs in the same design area.

In addition to the investigations on the geometric design parameters, studies on the
integration into other material systems are investigated. Due to the design freedom in
additive manufacturing, ABH can be integrated directly into the structure during the
manufacturing process (fused depositionmodelling). Due to the layer-by-layer build-
up, variants that fully enclose the ABH are possible. This could be used, for example,
for chemical or physical protection of the damping layer. This is also possible in a
similar way when integrating ABH into laminate structures made of wood (glulam),
although here the design freedoms is more restricted. Experiments show that the
ABH effect can also be used in such structures. However, the valid modelling of the
structures is challenging. Here, anisotropic and viscoelastic material properties must
be taken into account so that the vibroacoustic behaviour is correctly simulated.

Transferring the findings to a realistic structure – oil pan – on which three oval
ABHs are placed, has once again highlighted the high potential of ABH as an acous-
tic measure. The knowledge gained from the project can help to make ABHs more
accessible as a measure in the future and thus enable their standard use in the indus-
try. Nevertheless, the results shown here should be extended by further studies and
validated on further realistic structures. Just like the challenge regarding a reduced
static load-carrying capacity due to the material thickness weakening.
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Simulation-Free Model Reduction
Approaches for Geometric-Nonlinear
and Linear-Visco-Elastic Mechanical
Systems

Christopher Lerch, Christian Meyer, Daniel J. Rixen, and Boris Lohmann

1 Introduction

1.1 Mechanical Systems

The basic dynamics of mechanical systems are commonly determined by the equi-
librium of inertia forces Mq̈(t), damping and internal restoring forceŝf (q̇(t), q(t))
and external forces, i.e. loads, ̂F(t):

Mq̈(t) + ̂f (q̇(t), q(t)) = ̂F(t), q(0) = q0, q̇(0) = q̇0 (1)

with (generalized) displacements q(t) ∈ R
N , mass matrix M ∈ R

N×N , ̂f : R
N ×

R
N → R

N and ̂F(t) ∈ R
N .

From a system-theoretic point of view with the input-output behavior being of
importance, the external forces are considered explicitly as a space- and a time-
dependent part ̂F(t) = BF(t) where the input matrix B ∈ R

N×p contains weights
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and allocations to the degrees of freedom of the time-dependent forces, i.e. the input
signals F(t) ∈ R

p (p ≤ N ). The corresponding system outputs are given by Eq. (4).
Additionally, the lack of knowledge about the dominating damping mechanisms

frequently leads to an assumption of simpler linear viscous damping Dq̇(t). Exclud-
ing gyroscopic effects allows for writing ̂f (q̇(t), q(t)) = Dq̇(t) + f (q(t)):

Mq̈(t) + Dq̇(t) + f (q(t)) = BF(t), q(0) = q0, q̇(0) = q̇0 (2)

with damping matrix D ∈ R
N×N and nonlinear internal restoring forces f :

R
N → R

N .
Sufficiently small displacements around an equilibrium position or initial con-

figuration allows for considering only the linear part of the internal restoring forces
f (q(t)) ≈ Kq(t) resulting in the well-known linear second-order representation

Mq̈(t) + Dq̇(t) + Kq(t) = BF(t), q(0) = q0, q̇(0) = q̇0 (3)

with stiffness matrix K ∈ R
N×N and

y(t) = Cq(t) (4)

with output matrix C ∈ R
q×N returning the outputs of interest for the mechanical

system if only displacements are considered.
In the Laplace-domain, the transfer behavior from inputs to outputs for zero initial

conditions is given by

G(s) = C
(

s2M + sD + K
)−1

B (5)

such that Y(s) = G(s)F(s) where Y(s) and F(s) are the Laplace transformed out-
puts y(t) and inputs F(t), respectively.

Typically, mass (M) and stiffness (K ) matrices are symmetric and positive (semi-)
definite for appropriate boundary conditions suppressing rigid body modes. Com-
monly, linear damping is realized via modal damping. A simple and popular choice
is the special case of proportional or Rayleigh damping where D = αM + βK with
α, β ≥ 0. The damping matrix D is symmetric and positive definite in that case,
same as M and K .

Further information about mechanical systems and their properties can be found
e.g. in [1, 2].

1.2 Model Order Reduction

The computational effort for numerically solving systems (2) or (3) and (4) can
be significantly reduced by applying reduced-order models (ROM) that accurately
approximate the relevant behavior of the original full-order model (FOM). One
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classical option to obtain such ROMs is by applying projectivemodel order reduction
(MOR).

The full-order displacements q(t) ∈ R
N are first approximated as a linear combi-

nation of reduced coordinates qr(t) ∈ R
n: q(t) = Vqr(t) + e(t) where V ∈ R

N×n ,
n � N . Inserting this approximation in (2) or (3) and (4) leads to an overdetermined
system with the residuals ε(t) ∈ R

N

MVq̈r(t) + DV q̇r(t) + f (Vqr(t)) = BF(t) + ε(t) or

MVq̈r(t) + DV q̇r(t) + KVqr(t) = BF(t) + ε(t) and

yr(t) = CVqr(t)

(6)

Additionally the Petrov-Galerkin conditions WTε(t) = 0 are enforced such that the
residuals ε(t) vanish. Premultiplying (6) with WT ∈ R

n×N leads to the fully deter-
mined system

M r q̈r(t) + Dr q̇r(t) + f r(qr(t)) = BrF(t) or

M r q̈r(t) + Dr q̇r(t) + K rqr(t) = BrF(t) and

yr(t) = C rqr(t)

(7)

where the reduced matrices and operators are given by {M, D, K }r =
WT {M, D, K } V , Br = WTB, C r = CV and f r(qr(t)) = WT f (Vqr(t)). The ini-
tial conditions are {q, q̇}r (0) = (WTV )−1WT

{

q0, q̇0

}

.
The main task of any projective model order reduction technique reduces to

finding suitable reduction bases V ,W ∈ R
N×n that span appropriate subspaces

V = cspan(V ) and W = cspan(W).
Model order reduction in mechanical engineering typically aims at achieving a

good approximation quality, the preservation of certain system properties and numer-
ical efficiency. Depending on the application and the characteristic behavior of the
FOM, two categories can be distinguished: Initial condition-state based reduction or
input-output based reduction. To keep the second-order structure, so-called structure-
preserving model reduction is applied. In order not to violate the principle of virtual
work, the reduction should be performed by a (orthogonal) Galerkin projectionwhere
W = V instead of a two-sided (oblique) Petrov-Galerkin projection.

Further information about model order reduction for mechanical systems and
specific algorithms can be found e.g. in [2].

In the following, Sect. 2 presents specific simulation-free model reduction
approaches for mechanical systems with geometric nonlinearities which were
addressed during the first phase of the DFG priority program 1897. Section 3 con-
tinues on simulation-free model reduction approaches for linear mechanical systems
with partial visco-elastic material treatments focused on in the second phase. Fur-
thermore, these methods are extended to work on parameterized systems to make the
methods usable for applications such as design studies, optimization or sensitivity
analyses.
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2 Geometrical Nonlinear Mechanical Systems

Model reduction for geometrical nonlinear mechanical systems requires meeting two
challenges. First, a reduction basis must be found that is able to capture nonlinear
effects originating from large displacements. Classic reduction methods from linear
theory are not suitable for this kind of system. Second, a Galerkin projection with a
suitable reduction basis is not sufficient to reduce computation time. The reason is
that the nonlinear restoring force term must be evaluated and assembled in the full
element domain. Therefore, methods are demanded that are able to accelerate this
evaluation. These methods are called Hyperreduction.

2.1 Simulation-Free Reduction Bases

In contrast to reduction bases obtained from training data, such as the Proper Orthog-
onal Decomposition of displacement training sets, simulation-free reduction bases
do not require time integration of full order models. They are thus much cheaper to
compute.

One idea to gain a reduction basis for geometric nonlinear systems is to use
simulation-free bases from techniques for linear systems and augment them with
special vectors that are able to capture nonlinear effects. A prominent example are the
combination of eigenmodes andmodal derivatives. They extend themodal truncation
reduction basis, that is known from linear model reduction, with their sensitivities in
the direction of the modes themselves.

First, the solutions φi to the eigenproblem

(K − ω2
i M)φi = 0 (8)

describe the modes of the linearized system. Since K is a function of the displace-
ments q, the eigenproblem can be derived with respect to them. This leads to modal
derivatives. However, experience has shown that neglecting the mass matrix for the
computation of these derivatives results in basis vectors that lead to more accurate
reduced systems. These derivatives are called static modal derivatives [3] (∇φ j

φi )

that are determined by solving

K(∇φ j
φi ) = −(∇φ j

K)φi . (9)

The final reduction basis

V = [

φ1, . . . ,φM ,∇φ1
φ1,∇φ2

φ1, . . . ,∇φM
φM

]

(10)

is then built by stacking some modes and some static modal derivatives into one
reduction basis.
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The same idea can be applied to other linear reduction techniques, such as the
moment matching technique. The linear reduction basis known frommoment match-
ing is computed iteratively via

Kv1 = −B (11)

Kv2 = −Dv1 (12)

Kv j = −Dv j−1 − Mv j−2. (13)

Afterwards, their derivatives can be computed as follows:

K (∇v jv1) = −(∇v jK) v1 (14)

K (∇v jv2) = −D (∇v jv1) − (∇v jK) v2 (15)

K (∇v jvi ) = −D (∇v jvi−1) − M(∇v jvi−2) − (∇v jK) v j (16)

where a constant mass and damping matrix according to Eq. 2 is assumed. A case
study evaluating the performance of these bases is shown in [4].

2.2 Simulation-Free Hyper-Reduction

2.2.1 Polynomial Expansion

One technique that can be considered as hyperreduction is the polynomial expansion.
One can show that the nonlinear force term is a polynomial of third order if the system
is set up with constitutive laws that are linear in the Green Lagrange strain measure.
The nonlinear force term can then be written as

fi (q) = K1
i jq j + K2

i jkq jqk + K3
i jklq jqkql . (17)

The tensorsK1,K2 andK3 are costly to store. But they can be reduced by applying
a Galerkin projection with a proper reduction basisV shown in the previous sections
such that

K̄1
i jqr j + K̄2

i jkqr jqrk + K̄3
i jklqr jqrkqrl (18)

where

K̄1
i j = (VT )ikK1

klVl j , K̄2
i jk = (VT )ilK2

lmnVmjVnk, K̄3
i jkl = (VT )imK3

mnopVnjVokVpl

(19)
and where we use Einstein’s summation convention, i.e., indices that appear twice
are summed up.

The polynomial expressions allow a very fast evaluation of the nonlinear restoring
force term [5]. However, this representation is only feasible for systems that can be
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described by a low dimensional reduction basis. If a reduction basis of medium or
large size is required, other hyperreduction techniques are more suitable, such as the
Energy Conserving Sampling and Weighting method (ECSW).

2.2.2 Energy Conserving Sampling and Weighting

The idea of the Energy Conserving Sampling and Weighting method (ECSW) [6] is
to not evaluate all elements during the assembly of the restoring force term. Instead,
it evaluates only a subset Ẽ ⊂ E of all elements and interpolates their contribution
to the full restoring force term

VT f(Vqr) =
∑

e∈E
VTLT

e fe(LeVeqr) ≈
∑

e∈Ẽ⊂E

ξeVTLT
e fe(LeVeqr) (20)

whereLe describes Boolean localization matrices to map the local elemental degrees
of freedom to the global degrees of freedom.

The interpolation is achieved through positive weights ξe. These weights and the
element set Ẽ are chosen by requesting that the virtual work of the restoring force
in the direction of all reduction basis vectors is retained in the hyperreduced model
for some training sets qr,τ . This requirement can approximately be formulated as the
minimization problem

argmin
ξ∈�

‖xi‖0 where � = {xi ∈ R
Ne : ‖Gxi − b‖ ≤ εECSW‖b‖ and ξe ≥ 0}

(21)
where

G =
⎡

⎢

⎣

g11 · · · g1Ne

...
. . .

...

gNτ 1 · · · gNτ Ne

⎤

⎥

⎦ ∈ R
nNτ ×Ne and b =

⎡

⎢

⎣

b1
...

bNτ

⎤

⎥

⎦ ∈ R
nNτ (22)

are built up by the entries

gle(qr,τl ) = VTLT
e fe(LeVqr,τl ) ∈ R

n and bl = fr (qr,τl ) =
Ne
∑

e=1

gle(qr,τl ) .

(23)
Here, Ne and Nτ describe the number of elements of the full order model and the
number of training sets, respectively.

The training sets qτl = Vqr,τl can be gained by obtaining displacement vectors of
a full order solution or by the so called Nonlinear Stochastic Krylov Training Sets
method.
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2.2.3 Nonlinear Stochastic Krylov Training Sets

The idea of these training sets [7] is to build a subspace

Fkry = span{B,MK−1B, (MK−1)2B, . . .} = K(MK−1,B) (24)

that is able to approximate the nonlinear restoring force f . Afterwards, some random
vectors fτ

NSKT S ∈ K(MK−1,B) are generated and the nonlinear static problems

f(q(k)
τ ) = kfτ

NSKT S, k ∈ (0, 1] (25)

are solved. The solutions q(k)
τ are then used as training sets for the ECSW. This

procedure avoids costly time integration of the high dimensional model. However,
some nonlinear static equations of full dimension must be solved.

2.3 Extension to Parametric Bases

2.3.1 Parameterization of Finite Element Models

Design studies or sensitivity analyses require a parameterization of the Finite element
model. The parameterization ofmaterial data and boundary conditions is quite easy to
achieve. But shape parameterization of the mesh is much harder. Classic approaches
for parameter studies create a new mesh for each iteration. This is disadvantageous
for our applications for two reasons: First, a mesh generation can take large amounts
of computation time. Second, the mesh topology can change, which makes already
computed reduction bases useless unless one applies special mapping techniques.

Therefore, we use a mesh parameterization approach that avoids both drawbacks:
Mesh morphing. The mesh morphing approach just modifies the coordinates of the
nodes in the mesh while maintaining the mesh connectivity.

We use Radial Basis functions, more precisely, thin plate splines to move interior
nodes and maintain mesh quality. One example is the beam shown in Fig. 1 where a
notch’s position is parameterized.

After parameterization, the equations of motion (2) become parametric and can
be written as

M( p)q̈(t) + D( p)q̇(t) + f (q, p)(t) = B( p)F( p)(t), q(0) = q0, q̇(0) = q̇0.

(26)
Now, simulation-free reduction basis also depend on the parameters p. This implies
that a computed reduction basis for a certain parameter value may not be valid for
other parameter values as well. Some methods to overcome this burden are summa-
rized in the following sections.
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morphed to p = 0.15

morphed to p = 0.35

p

reference mesh p = 0.25

Fig. 1 Mesh morphing for a cantilever beam. The beam has a notch on the bottom side. Middle:
The reference mesh. Top: The notch is translated to the left. Bottom: The notch has been morphed
to the right. The translation is done via mesh morphing such that only nodal coordinates change
while the mesh topology is maintained

2.3.2 Basis Updating

The most simple parametric model reduction technique is to compute a new
simulation-free reduction basis for each new parameter value. But since the reduction
basis information will not be completely different, information from previous com-
putations can be used to gain new reduction bases with less effort. This procedure is
called basis updating. In the typical case where the reduction basis consists of modes
and static modal derivatives, this can be done in two steps. First, an inverse free
preconditioned Krylov subspace method (IFPKS) is used to update the modal part of
the reduction basis. Second, an iterative solver such as the preconditioned conjugate
gradient method can be used to gain the static derivative part of the reduction basis.
This procedure is described in detail in [8].

2.3.3 Global Reduction Basis Through Sampling

Another idea is to sample the parameter space

Psample = {p1,p2,p3, . . . ,pN } (27)

and compute a simulation-free reduction basis for each sample point

Vsample = {V(p1),V(p2), . . . ,V(pN )}. (28)

Afterwards, all sampled reduction bases are stacked into one reduction basis. The
reduction basis is then deflated such that nearly parallel vectors are removed from
the reduction basis. The advantage is that a global reduction basis can be found very
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easily. But if the reduction basis space changes drastically in the parameter space of
interest, the reduction basis can be of high dimension and many sample points could
be necessary, which makes other approaches more suitable [9].

2.3.4 Augmentation with Parametric Sensitivities

If only a small parameter space around a certain parameter is of interest, an aug-
mentation by parametric sensitivities is an option [10]. This idea is similar to the
ideas of simulation-free reduction bases for geometric nonlinear systems. The basis
is built up by stacking the simulation-free reduction basis at a certain point and their
parametric derivatives into one basis:

V = [

v1(p0), v2(p0), . . . , vN (p0),∇e1v1(p0),∇e2v1(p0), . . . ∇ePvN (p0)
]

(29)

where ei is the i-th unit vector in the Euclidean space.

2.3.5 Interpolation on Manifolds

The space of reduction bases can be seen as a manifold which enables interpola-
tions between different bases. One option to define this manifold is the Grassmann-
manifold. If two reduction bases V1 and V2 at sample points p1 and p2 have been
computed and a reduced model at sample point p̂, that is between these two points,
is demanded, one can interpolate between the computed reduction bases. One has to
perform two steps for this interpolation: First, a singular value decomposition of

(

IN − V1VT
1

)

V2
(

VT
1 V2

)−1 = U�WT (30)

is computed. Afterwards, the interpolated reduction basis V̂ at p̂ is determined by

V̂( p̂) = V1W cos

[(

p̂ − p1
p2 − p1

)

tan−1(�)

]

+ U sin

[(

p̂ − p1
p2 − p1

)

tan−1(�)

]

.

(31)
This method works very well even for systems whose modes show high parametric
dependencies [11].

2.4 Parametric Hyper-Reduction

Similar to the global reduction basis approach, the hyperreduction problem can
also be globalized [12]. First, we compute qτ (ps) (using NSKTS) for each sam-
ple point ps ∈ Psample. Then, the quantities
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Gglobal =
⎡

⎢

⎣

g̃11 · · · g̃1Ne

...
. . .

...

g̃NS1 · · · g̃NSNe

⎤

⎥

⎦
∈ R

k·β·NS×Ne and bglobal =
⎡

⎢

⎣

b̃1
...

b̃NS

⎤

⎥

⎦
∈ R

k·β·NS

(32)
are built up by the entries

g̃se =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

VT (ps) · LT
e fe(ps,LeV(ps) qτ1,1(ps))

...

VT (ps) · LT
e fe(ps,LeV(ps) qτ1,k (ps))

VT (ps) · LT
e fe(ps,LeV(ps) qτ2,1(ps))

...

...

VT (ps) · LT
e fe(ps,LeV(ps) qτβ,k (ps))

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

∈ R
k·β·NS (33)

b̃s =
Ne
∑

e=1

g̃se (34)

where NS = |Psample| is the number of sample points, β is the number of NSKTS
vectors per sample, k is the number of load increments (Eq. 25) that are computed
for each NSKTS vector and V(ps) are local reduction bases that are computed at
sampling point ps . The matrix Gglobal and the vector bglobal are used to compute a
global set of weights and elements for the ECSW as described by Eq. (21).

2.5 Case Study

Wewant to show a simple case study showing the performance of themost promising
approaches. A notched cantilever beam with hexagonal elements is set up as shown
in Fig. 1. The beam is parameterized with the position of the notch. The left end
is fixed and an harmonic excitation force is applied at the tip. Since the beam is
very slender, a highly nonlinear behavior is expected for sufficiently large excitation
forces.

Two approaches are compared to find a suitable reduction basis for p = 0.25.
First, the interpolationmethod is tested by interpolating between two reduction bases
at p = 0.24 and p = 0.26. Second, the parametric sensitivity approach is tested by
computing a reduction basis at p = 0.24 and its parametric sensitivities. The tip dis-
placement errors for the different bases are depicted in Fig. 2. One can conclude that
both approaches lead to a good reduced model. The parametric sensitivity approach
performs best and gives almost the accuracy of a model with direct computation of
a reduction basis at p = 0.25.
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Fig. 2 Tip displacement error for a model at p = 0.25 over time for different reduction bases.
The parametric sensitivity approach at p = 0.24 (4 modes + static modal derivatives + parametric
sensitivities = 28 basis vectors) gives almost the same accuracy as the directly computed reduction
basis for p = 0.25 (6 modes + static modal derivatives = 27 basis vectors). The interpolation of
the basis between p = 0.24 and p = 0.26 (6 modes + static modal derivatives = 27 basis vectors)
also gives good accuracy. The reduction basis at p = 0.24 (6 modes + static modal derivatives) is
not suitable for reduction

Fig. 3 Tip displacement errors of hyperreducedmodels compared to amodel that is reducedwithout
hyperreduction. The smallest tolerance leads to an accuracy compared to the non-hyperreduced
model. A very broad tolerance gives best performance due to a softening effect by using too few
integration points

Furthermore, a hyperreduction with the ECSW and NSKTS is conducted with the
reduction that performed best, namely the parametric sensitivity approach. Figure 3
shows the tip displacement error for the hyperreducedmodelwith different tolerances
for the ECSW. One can see that a very tight tolerance leads to a model that is
as accurate as a reduced order model without hyperreduction. However, a very high
tolerance leads to amodel that ismore accurate compared to the non-reduced solution.
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Table 1 Number of evaluated elements, simulation times for reduced order models and speedup
factor compared to full order model. Row one shows the full order model and rows 2–4 shows
hyperreduced models with different tolerances for ECSW weight generation according to Fig. 3

Type εECSW no. of
elements |Ẽ |

sim. time
online

speedup

Full order model – 248 3155 1.0

ECSW hyperreduced model 0.1 85 1581 2.0

ECSW hyperreduced model 0.01 114 1762 1.8

ECSW hyperreduced model 0.001 142 1871 1.7

This probably originates from a softening effect because too few integration points
(i.e. selected finite elements) are used.

Table 1 lists simulation times in seconds, measured with Python’s function
process_time(), and speedup factors for the hyperreduced models compared
to the full order model. The simulations are conducted on a machine with Intel Xeon
CPU E3-1270 v5 (3.6 GHz) with 32 GB RAM. The table also contains the num-
ber of elements that are evaluated for the nonlinear restoring force vector. For this
small academical problem, the hyperreduced model with largest tolerance reaches a
speedup factor of 2.0.

3 Linear Visco-Elastic Mechanical Systems

Manymaterials that are used to damp structural vibrations, such as rubber-like layers
placed on plate-like structures, show a material behavior that is called viscoelastic.
Viscoelastic behavior is characterized by a mixture of elastic and viscous properties.
These are often modeled by the Generalized Maxwell model especially if a time
domain simulation is demanded. One major drawback of this model is that it intro-
duces internal state variables that must be evaluated in each timestep. For this reason,
the computational effort is drastically increased for such models and, thus, model
reduction is highly desired.

3.1 Modeling Aspects

3.1.1 Generalized Maxwell Model

Figure 4 illustrates the GeneralizedMaxwell model that is used to model viscoelastic
materials in time domain. It consists of several Maxwell elements built from linear
elastic springs and viscous dashpots.
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Fig. 4 Generalized Maxwell
Model consisting of M
Maxwell elements. Each
Maxwell element is
composed of a spring and a
dashpot. A single spring with
stiffness E∞ is added to
model long time elastic
behavior

The constitutive equations

εm,el = σm

Em
, ε̇m,in = σm

ηm
(35)

for the dashpot and the spring and the kinematic relation

ε = εm,el + εm,in (36)

leads to the equation

σm = Emεm,el = ηm ε̇m,in ⇔ Em(ε − α) = ηm α̇ (37)

where εm,in has been replaced by α. We call α an internal variable. This leads to two
equations for the constitutive law:

ηm

Em
α̇ + α = ε , σm = Em(ε − α) (38)

When a step load in strain with amplitude ε0 is applied to a Maxwell element, its
response is

σm(t) = ε0Em e− t
θm (39)

where we use the definition θm := ηm
Em

. The full response of all Maxwell elements is
the sum

σ(t) = σ∞ +
M
∑

m=1

σm(t) = ε0

(

E∞ +
M
∑

m=1

Em e− t
θm

)

(40)

Therefore, the constitutive equation can also be expressed by a Duhamel integral
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σ(t) = E∞ε(t) +
t

∫

0

M
∑

m=1

Em e− t−s
θm ε̇(s) ds (41)

An extension to the three dimensional case is easy to achieve by introducing a
split into volumetric and deviatoric parts and using an internal variable for each
coordinate of the strain tensors [13, 14].

3.1.2 Explicit Form

The explicit state form contains the internal variables in its system state vector x =
[u,α]. This allows to apply model reduction techniques for linear systems because
this representation leads to a system

[

Muu 0
0 0

] [

ü
α̈

]

+
[

Duu 0
0 Dαα

] [

u̇
α̇

]

+
[

Kuu Kuα

Kαu Kαα

] [

u
α

]

=
[

F
0

]

(42)

that is linear.
The matrices Muu,Duu,Kuu are similar to those from classic Finite Element

models containing linear materials. The matrices Dαα and Kαα are fully diagonal.
The coupling between the internal states α and the displacements u happens in the
stiffness matrix through the blocks Kuα and Kαu .

3.2 Model Reduction via Decoupling into Subsystems

In a first naiv approach, classical model order reduction approaches, like moment
matching or modal truncation, are applied the fully coupled system (42). With this
approach different physics, displacements u and partial stresses (internal variables)
α are mixed in the reduced coordinates xr , thereby losing their physical meaning and
limiting the reduction process.

To avoid those limitations, displacement variables and internal partial stress vari-
ables are treated separately. For this, the visco-elastic structural system (42) S is
treated as a coupled respectively closed-loop system: The purely elastic structural
subsystem S1 with Nu degrees of freedom u is coupled to the viscous subsystem S2

with Nα degrees of freedom α via the interface equations I
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S :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S1 :

⎧

⎪

⎨

⎪

⎩

Muu ü(t) + Duu u̇(t) + K uuu(t) = −K uαu12(t) + BF(t)

y1(t) = C1u(t)

y12(t) = Iu(t)

S2 :

⎧

⎪

⎨

⎪

⎩

Mααα̈(t) + Dααα̇(t) + Kααα(t) = −K T
uαu21(t)

y2(t) = C2α(t)

y21(t) = Iα(t)

I :
{

u12(t) − y21(t) = 0

u21(t) − y12(t) = 0

With regard tomodel reduction, thiswayboth systems canbe treated separately. Thus,
for each subsystem,well established first- or second-ordermethods like first-/second-
order moment matching, modal truncation with complex eigenvectors, second-order
balanced truncation and others can be applied. The reduced and re-coupled system
will have the dimension n = n1 + n2. Additionally, the interface equations are also
reduced, i.e. (internal) in- and outputs are reduced.

3.2.1 Second-Order Moment Matching

Transfer function (5) of the full and reduced system are represented by Taylor series
around the shift s0 ∈ C:

G(s) = C(s2M + sD + K )−1B =
∞
∑

i=0

Ms0,i (s − s0)
i (43)

Gr(s) = C r(s
2M r + sDr + K r)

−1Br =
∞
∑

i=0

M r,s0,i (s − s0)
i (44)

whereMs0,i andM r,s0,i ∀i = 0, . . . ,∞ are called themoments of the full and reduced
system, respectively.

The basic ansatz consists in making a specified amount of moments match around
s0:

M r,s0,i
!= Ms0,i ∀i = 0, . . . , q0 (45)

This can implicitly and numerically efficiently be achieved by using second-order
Krylov subspaces as reduction bases [15]. The necessary Krylov subspace is defined
as

Kn(M1, M2, V ) = colspan {P0, P1, . . . , Pn−1} (46)

where P0 = V , P1 = M1V and P i = M1P i−1 + M2P i−2.
In general with one-sided moment matching q0 moments can be matched if V is

chosen such that it includes the input Krylov subspace:
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Kq0(K
−1
s0 Ds0 , K

−1
s0 M, K−1

s0 B) ⊆ colspan V (47)

where K s0 = s20M + s0D + K and Ds0 = 2s0M + D.
To achievemomentmatching arounddifferent shifts (s0, q0), (s1, q1),…the appro-

priate Krylov subspaces simply need to be augmented.

3.2.2 Reduction of Coupling Blocks

The coupling block K uα and Kαu are reduced via singular value decomposition and
only considering the dominant singular values:

K ab = Uab�abVT
ab ≈

nab
∑

i=0

Uab[:, i]�ab[i, i]VT
ab[i, :] (48)

Thus, internal in- and output matrices for both subsystems can be defined

Bab = Uab[:, : nab]
√

�ab[: nab, : nab] (49)

Cba = √

�ab[: nab, : nab]VT
ab[: nab, :] (50)

and included in the moment matching process for each subsystem guaranteeing
moment matching for the fully re-coupled system [16].

3.3 Schur Complement

The diagonality of Dαα and Kαα can be exploited to condense the internal states in
the equations of motion (42). The equations of motion in frequency domain

([

Kuu Kuα

Kαu Kαα

]

+ i�

[

Duu 0
0 Dαα

]

− �2

[

Muu 0
0 0

])[

U
A

]

=
[

F
0

]

(51)

consist of two blocks of rows. The second block can be transformed

(Kαα + i�Dαα)A = −KαuU ⇒ A = −(Kαα + i�Dαα)−1KauU (52)

such that the states A can be inserted into the first block. This results in

(Kuu + i�Duu − Kuα(Kαα + i�Dαα)−1Kαu
︸ ︷︷ ︸

Kschur(i�)

−�2Muu)U = F. (53)
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This procedure is a Schur complement of the dynamics stiffness matrix. It can be
computed very cheaply because (Kαα + i�Dαα) is diagonal and its inverse is very
cheap to evaluate. The same procedure can also be done in time domain if a certain
time integration scheme is applied butwe stick to the frequency domain for simplicity.

The Schur complement is an exact procedure, i.e. it produces no procedural error.
It reduces the number of degrees of freedom to the number of displacement degrees
of freedom. This can be a large reduction, especially if large regions of the model are
considered viscoelastic or if viscoelastic materials have many Maxwell elements.

3.3.1 Modal Reduction

TheSchur complement is a good starting point to reduce the degrees of freedomof the
equations ofmotion, but wewant to go further. One idea is to apply amodal reduction
after the application of the Schur complement. One can use the eigenvectors of the
eigenvalue problem

(Kuu − ω2
i Muu)φ

0
i = 0 (54)

and stack these modes into a reduction basis such that

V = [φ1, φ2, . . . , φn] (55)

The reduced system can then be expressed as

(VTKschur(i�)V
︸ ︷︷ ︸

Kred(i�)

−�2VTMuuV) · Q = VTF, U = VQ. (56)

However, we will see that these modes are not a good choice for the reduction. The
reason is that these modes are the modes of an elastic system where all dampers of
Maxwell elements are blocked (α = 0). This results in a system that is stiffer and
leads too high eigenfrequencies in the reduced system. A better approach is to use
the eigenmodes of the elastic system where no Maxwell element is active, i.e. only
the long-time elastic behavior is considered (α̇ = 0). These modes are computed by
solving the eigenproblem

(Kschur(i0) − ω2
i Muu)φ

∞
i = (Kuu − Kuα(Kαα)−1Kαu − ω2

i Muu)φ
∞
i = 0. (57)

An extension to this idea is the augmentation by the static response to loads that
are generated by the imaginary part of the stiffness matrix when the structure is
deformed according to a mode [17, 18]. The reduction basis then reads

V = [

φ∞
1 , φ∞

2 , . . . , φ∞
n ,K−1

∞ �(Kschur(iω
∞
1 ))φ∞

1 ,K−1
∞ �(Kschur(iω

∞
2 ))φ∞

2 . . .
]

(58)
with K∞ = Kschur(i0).
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3.4 Numerical Example: Plate with Acoustic Black Hole
and Visco-Elastic Constrained Layer Damping

The proposed methods are illustrated by a model of an aluminium plate that contains
a so called acoustic black hole (ABH). ABHs are regions where the plate thickness
is decreased with a special shape function. The theory claims that bending waves
traveling through the plate decrease their travel velocity when the plate thickness is
decreased. Therefore, the waves stay longer in regions with decreased thickness and
can damped more effectively in these regions.

The proposed model, that is taken from [19], is depicted in Fig. 5. It consists of
an aluminium plate with a circular ABH and a constrained layer damper treatment
placed in the ABH region. The constrained layer damper treatment consists of a
viscoelastic rubber-like layer and a constrained layer made of CFRP. The Finite
Element model has 14,769 displacement degrees of freedom u and 14,280 internal
states α.

Figure 6 shows a part of the frequency response function evaluated at a point on
the plate for different reduction methods.Whenmodes φ0 are used for reduction, one
can see that the solution is similar to a full solution where viscoelasticity is neglected,
i.e. the system {Muu,Duu,Kuu}. The reason is that the modes are computed for a
very stiff constrained layer damper (all dashpots of Maxwell elements are blocked)
and they do not activate the viscoelastic layer. Amodal reduction with the modes φ∞
gives better results. But modes computed with φ∞ and the augmentation according
to Eq. 58 gives best results. However, these perform worse in the higher frequency
domain if the dimension of the reduction basis is equal for all methods (this is not
illustrated in the Figure). Due to the augmentation only half of the modes φ∞ can
be used to keep the same dimension. The moment matching approach is not able
to approximate the frequency response fir a comparable reduced dimension of 50.
However, moment matching can approximate the FRF very well if a dimension of
about 300 is used which is also shown in [19].

Fig. 5 Free aluminium plate with acoustic black hole (ABH) and constrained layer damper treat-
ment (CLD). The CLD is placed on the backside in the ABH’s region. The plate is excited at the
marked point
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Fig. 6 Frequency response function computed with different reduced order models compared to
the full order model. The Schur complement gives exact results. Modal reduction with modes φ0

approximate a full solution where viscoelasticity is neglected. The reduced order model with φ∞
give good results while the augmentation according to Eq. (58) gives best accuracy for reduction
bases with dimension 50. The moment matching approach needs a higher number of basis vectors
to give a good accuracy

4 Conlusion and Outlook

Accurate simulation models to motivate design decisions in early product devel-
opment phases is a challenge. Especially models containing viscoelastic materials
or undergoing large deformations can lead to high computation times. It is desired
to reduced these times to accelerate simulations in the concept phase. A promising
method to achieve this goal is model reduction.

We have shown different methods to reduce Finite element models of mechanical
structures undergoing large deformations. The challenge here is to find reduction
bases that are able to capture nonlinear effects and parametric dependencies. Fur-
thermore a hyperreduction must be applied to accelerate evaluation of the nonlinear
restoring force term. A cantilever beam case study illustrates the potential of the
methods. Furthermore, we have introduced how viscoelasticity is modeled in Finite
Element models. The equations of motion contain many internal states that can be
considered as additional system states that can increase the system dimension drasti-
cally. Some reduction bases are proposed to reduce these models. A case study on a
plate with an acoustic black hole illustrates the performance of the reduction bases.
Further research is necessary to also apply the parametric methods from the geo-
metric nonlinear reduced order models to the viscoelastic systems. Hyperreduction
methods can also be a potential candidate to reduce the evaluation costs of internal
states in viscoelastic models.
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for Dissipative Mechanical Systems
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Paul Schwerdtner, Matthias Voigt, and Steffen W. R. Werner

1 Introduction

We consider model order reduction of dynamical systems arising from modeling of
mechanical systems, which have the property of dissipativity. That is, energy is only
consumed and not produced by the system. In the particular focus of this work are
linear second-order systems

Mq̈(t) + Dq̇(t) + Kq(t) = Buu(t),

y(t) = Cpq(t) + Cvq̇(t)
(1)
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with M, D, K ∈ R
n×n , Bu ∈ R

n×m , and Cp,Cv ∈ R
p×n . These occur naturally by

modeling mechanical systems via force balances, in which the second derivative
of the position vector q(t) at time t ∈ R occurs by Newton’s second law. Hereby,
the matrices M , D and K are respectively called mass matrix, damping matrix and
stiffness matrix. The function t �→ u(t) expresses the input to the system (external
forces), a function that can be chosen by the operator (or, alternatively called, the
“user”) of the system.Moreover, themodel contains an output t �→ y(t) that contains
some linear combinations of the state variables and its first derivative, which are of
particular interest. The typical situation is, especially for systems of high complexity,
that the position vector q(t) evolves in a high-dimensional space, that is, the number
n is large. In contrast to that, the input and output spaces are low-dimensional, i.e.,
m � n and p � n. Since the number n of position variables is a significant measure
for the difficulty of the numerical simulation of (1), there is a need for efficient and
reliable methods for model reduction, i.e., the approximation of such systems by
ones whose solutions can be computed with significantly less effort. In this context,
“reliable” means that the output of the reduced-order system is (mathematically
proven to be) close to the output of the original system for the same input signal,
whereas “efficient” means that the determination of the reduced-order system comes
with as little effort as possible. Another important demand on model order reduction
methods is that they preserve inherent properties such as stability and the second-
order structure of the system (to mention only a few). By the latter, we mean that the
reduced-order model is of the form

̂M ¨̂q(t) + ̂D ˙̂q(t) + ̂Kq̂(t) = ̂Buu(t),

ŷ(t) = ̂Cpq̂(t) + ̂Cv
˙̂q(t)

(2)

with ̂M, ̂D, ̂K ∈ R
r×r , ̂Bu ∈ R

r×m and ̂Cp, ̂Cv ∈ R
p×r , and with r � n. Moreover,

models of mechanical systems have the property that the mass and stiffness matri-
ces are symmetric positive definite, whereas the negative of the damping matrix is
dissipative, that is, D + DT is positive semi-definite. These properties are requested
to be preserved as well by the reduced-order system (2).
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Meanwhile, model order reduction is an established discipline within applied
mathematics and is subject of textbooks and collections, see [1–5]. In particular, for
first-order systems

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

there exists a rich theory for their approximation by reduced-order systems of low
state-space dimension; see [1] for an overview. These methods are indeed applicable
to first-order representations of second-order systems like

[

In 0
0 M

]

d

d t

[

q(t)
q̇(t)

]

=
[

0 In
−K −D

] [

q(t)
q̇(t)

]

+
[

0
Bu

]

u(t),

y(t) = [

Cp Cv
]

[

q(t)
q̇(t)

]

.

However, the problemwith this is that the reduced-order system is again of first order,
and, in general, it does not have a physical interpretation as a mechanical system.
The structure-preserving model order reduction problem of second-order systems is
therefor a problem on its own and new techniques have to be developed.

The model order reduction problem for linear time-invariant systems can also be
considered in the frequency domain. More precisely, the transfer function mapping
inputs to outputs in frequency domain can be considered, which for (1) is given by

H(s) = (Cp + sCv)(s
2M + sD + K )−1Bu = [

Cp Cv
]

[

s In −In
K sM + D

]−1 [

0
Bu

]

.

Plancherel’s theorem [1, Prop. 5.1] provides a link between the time and frequency
domain in a way that—very roughly speaking—“the better the transfer function of
the reduced-order system approximates that of the original system, the better the out-
puts of original and reduced-order systems coincide”. Two important measures for
the distance between transfer functions are theH∞-norm, which for asymptotically
stable systems expresses the supremal distance between the transfer functions on the
imaginary axis; and the so-called gap metric [6], which applies to arbitrary, possibly
unstable, systems and can be expressed by the H∞-norm of certain stable factor-
izations of transfer functions. Whereas in the time domain, theH∞-norm expresses
the L2-norm differences of the outputs of the original and reduced-order system, the
gap metric can be seen as a quantitative measure for the distance of the dynamics of
systems.

Besides considering arbitrary linear outputs y(t) = Cpq(t) + Cvq̇(t), in our con-
siderations special emphasis is put on co-located velocity outputs y(t) = BT

u q̇(t),
which corresponds tomeasurements of velocities directly at the force actuators form-
ing the input. This special input-output configuration has the additional property that
it provides an energy balance, namely
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∀t ≥ 0 : 1
2

(

q̇(t)TMq̇(t) + q(t)TKq(t)
) − 1

2

(

q̇(0)TMq̇(0) + q(0)TKq(0)
)

=
t

∫

0

y(τ )Tu(τ ) d τ −
t

∫

0

q̇(τ )TDq̇(τ ) d τ.

The expressions 1
2 q̇(t)TMq̇(t) and 1

2q(t)TKq(t) respectively stand for the kinetic and
potential energies of the systemat time t , whereas

∫ t
0 q̇(τ )TDq̇(τ ) d τ is the dissipated

energy, and
∫ t
0 y(t)Tu(t) d t is the energy put into the system at the actuators within

the time interval [0, t]. In particular, since D is dissipative and the mass and stiffness
matrices are positive definite, in the case where the system is in a standstill at t = 0,
i.e., q̇(0) = q(0) = 0, this energy balance reduces to

∀t ≥ 0 : 0 ≤
t

∫

0

y(τ )Tu(τ ) d τ.

Systems with this property are called passive, a property which is further desired to
be preserved by the reduced-order model. Note that the frequency domain pendant
of passivity is positive realness, i.e., the transfer function H(s) has no poles in the
open right complex half plane and, additionally, −H(s) is dissipative in the open
right complex half plane.

For linear time-invariant systems, there are (among others) three “prominent”
techniques for model order reduction, namely modal-based, balancing-based, and
interpolation-based approaches. The modal-based methods consider eigenvalue
problems associated with the potential poles of the transfer function to retain chosen
poles from the original in the reduced-order model. Balancing-based methods use
energy considerations to figure out parts of the state only contributing marginally
to the input-output behavior, which are truncated to obtain a reduced-order system
of a priori known quality by providing error bounds, e.g., in the H∞-norm or gap
metric. The main cost in the determination of reduced-order models by balanced
truncation is the numerical solution of matrix equations of Lyapunov or Riccati type.
Interpolation-basedmethods use certain projections of the state space, which guaran-
tee exactness of the transfer function of the reduced-order system at some prescribed
frequencies.

For second-order systems, the general ideas of balancing-based model order
reduction are subject to various contributions [7–11]; see also [12] for an overview.
Some progress has been made in preservation of certain physical properties like
passivity in model order reduction of second-order systems with co-located inputs
and outputs [10–12], but none of these methods are provided with an error bound.
Besides these, there exist interpolatory methods, which succeed either in preserving
the second-order structure [13–16] or deliver a posteriori H∞ error bounds [17].
However, all the approaches mentioned lack a combination of the two.

In the project “Structure-Preserving Model Reduction for Dissipative Mechani-
cal Systems” of the German Research Foundation (DFG) Priority Program “Calm,
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Smooth, and Smart—Novel Approaches for Influencing Vibrations by Means of
Deliberately Introduced Dissipation” (SPP1897), several new approaches for model
order reduction of second-order systems have been developed.An extract of thiswork
can be found in [18], as well as in the dissertations ofWerner [19] and Dorschky [20].

The structure of this report is as follows. In Sect. 2, we present our results on a
dominant pole algorithm formodally dampedmechanical systems. In Sect. 3, a novel
balancing-based approach for second-order systems is presented, which considers
the dominant behavior of the system on some prescribed time and frequency inter-
vals. In Sect. 4, we consider an alternative balancing-based method for second-order
systems with co-located inputs and outputs. We prove that an error bound in the
gap metric holds and that, under some additional assumptions, a special state-space
transformation leads to a second-order system realization. Section 5 is devoted to an
interpolation-based model order reduction method for second-order systems, based
on an optimization-based technique, which generates a sequence of reduced-order
models of descending error in theH∞-norm. The report is concluded in Sect. 6.

2 A Dominant Pole Algorithm for Modally Damped
Mechanical Systems

One of the oldest model order reduction approaches, which also directly translates
into a structure-preserving setting for second-order systems (1), is the modal trun-
cation method [21]. Thereby, the projection basis for the reduced-order model only
consists of the left and right eigenvectors corresponding to the desired eigenvalues.
In case of second-order systems like (1), the corresponding quadratic eigenvalue
problem

(

λ2
i M + λi D + K

)

xi = 0, yHi
(

λ2
i M + λi D + K

) = 0

has to be considered for the left and right eigenvectors yi , xi ∈ C
n \ {0} correspond-

ing to the eigenvalue λi ∈ C. Hereby, yH stands for the conjugate transpose of y.
For this model order reduction method, the choice of the eigenvalues that remain

in the reduced-order system is critical. Classical choices are, e.g., taking the rightmost
eigenvalues in the complex plane or the eigenvalues with smallest absolute values. A
significant drawback of those simple choices is the neglection of the input and output
matrices, which have a significant influence on the actual input-to-output behavior
of the system. The extension of the classical modal truncation method to a more
sophisticated choice of eigenvalues is the dominant pole algorithm [22]. Here, the
eigenvalues with the strongest influence on the system behavior are computed and
then chosen for constructing the reduced-order model. Adaptations of the dominant
pole algorithm to the case of general second-order systems have been suggested
in [23] for single-input single-output systems and in [24] formulti-inputmulti-output
systems.
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Amodeling approach used very often for mechanical structures results in modally
damped second-order systems. Hereby, for the second-order system (1) it is assumed
that Cv = 0, M, D, K are symmetric positive definite and, additionally, it holds
that DM−1K = KM−1D, i.e., the system can be rewritten into modal coordinates
and completely decouples into independent mechanical systems of order 1; see,
e.g., [25]. Classical damping approaches, like Rayleigh and critical damping, fall
into this category. For this type of mechanical systems, the idea of the dominant pole
algorithm can be reformulated. As shown in [25], choosing X as a scaled eigenvector
basis gives

XTMX = �−1 and XTK X = � (3)

with � = diag(ω1, . . . , ωn) ∈ R
n×n and X = [x1, . . . , xn] ∈ R

n×n . By the modal
damping assumption, we further get

XTDX = 2� (4)

with � = diag(ξ1, . . . , ξn) ∈ R
n×n . Combining (3) and (4), the transfer function

of (1) can be written in a structured pole-residue form

H(s) = Cp(s
2M + sD + K )−1Bu

= CpX (s2�−1 + 2s� + �)−1XTBu

=
n

∑

k=1

ωk
(

Cpxk
) (

xTk Bu
)

(s − λ+
k )(s − λ−

k )
, (5)

where the eigenvalue pairs λ+
k , λ−

k are given by

λ±
k = −ωkξk ± ωk

√

ξ 2
k − 1.

The pole-residue formulation (5) is nowused to derive a newdominant pole algorithm
for modally damped second-order systems. With (5), an appropriate extension of
classical dominant poles as in [24] to pole pairs reads as: The pole pair (λ+

k , λ−
k ) is

called dominant if it satisfies

‖ωk(Cpxk)(xTk Bu)‖2
|Re(λ+

k )(Im(λ+
k )i − λ−

k )| >
‖ω j (Cpx j )(xTj Bu)‖2

|Re(λ+
j )(Im(λ+

j )i − λ−
j )|

for all j �= k. (6)

Note the difference to the dominance measure in [26], for which the two poles of
a pair are considered as independent quantities. The corresponding dominant pole
algorithm then computes the r most dominant pole pairs (6) and the corresponding
eigenvectors, such that the reduced-order model’s transfer function is given by
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̂H(s) =
r

∑

k=1

ωk
(

Cpxk
) (

xTk Bu
)

(s − λ+
k )(s − λ−

k )
≈ H(s),

with an appropriate ordering of the terms in (5) with respect to (6). The projection
basis is then given by the r eigenvectors corresponding to the chosen pole pairs. The
basic ideas of the resulting algorithm are published in [19, 26]. Additionally, we
published an implementation of this new algorithm for large-scale sparse systems as
MATLAB and GNU Octave toolbox [27].

Remark 1 A big advantage of this new approach, compared to the methods in
[23, 24], is the restriction to one-sided projections. This preserves the system and
eigenvalue structure in each single step such that the resulting eigenvector basis will
be real and no additional unrelated Ritz values, which usually disturb the resulting
approximation, are introduced in the reduced-order model.

As an illustrative example, we consider the butterfly gyroscope benchmark
from [28] with n = 17 361, m = 1 and p = 12. The used Rayleigh damping for
the D (= 10−6 · K ) matrix belongs to the class of modal damping. We are using the
implementation from [27] to compute a reduced-order model with the first 10 dom-
inant pole pairs by the criterion (6). By construction, the resulting reduced-order
model has order 10. Figure 1 shows the results in the frequency domain with the
frequency response behavior of the original and the reduced-order model and the
pointwise relative error of the approximation. Up to a frequency of about 106 rad/s,
the behavior of the original system is well reproduced, while later, the two lines begin
to diverge slightly. Additionally, Fig. 2 shows the position of the computed dominant
poles as projection onto the imaginary axis and the corresponding transfer function
behavior.

Comparisons to other model reduction methods and further examples using this
new dominant pole algorithm can be found in [19].

3 Second-Order Frequency- and Time-Limited Balanced
Truncation

A global approximation of the system behavior in frequency or time domain is often
not required in practice. The second-order limited balanced truncation approaches
are a suitable tool for model order reduction restricted to certain frequency and
time ranges. Thereby, the ideas from the first-order frequency- and time-limited
balanced truncationmethods [29] are combinedwith different second-order balanced
truncation approaches [7, 8, 12]. A first version of thesemethods can be found in [18,
26, 30, 31] and the complete theory with applications to large-scale sparse systems
is contained in [19, 32].

The idea of the method is based on the first companion form realization of (1),
which is given by
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Fig. 1 Modally damped dominant pole algorithm results for the butterfly gyroscope example

Fig. 2 Projection of the computed dominant poles on the frequency axis compared with the transfer
functions for the butterfly gyroscope example
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[

In 0
0 M

]

︸ ︷︷ ︸

=:E

ẋ(t) =
[

0 In
−K −D

]

︸ ︷︷ ︸

=:A

x(t) +
[

0
Bu

]

︸ ︷︷ ︸

=:B

u(t),

y(t) = [

Cp Cv
]

︸ ︷︷ ︸

=:C

x(t).

(7)

For (7), the classical controllability and observability Gramians are defined and can
be limited as in [29]. Therefore, the frequency-limited Gramians P� and Q� of (7)
are the unique symmetric positive semi-definite solutions of the potentially indefinite
Lyapunov equations

AP�ET + EP�AT + B�BT + BBT
� = 0,

ATQ�E + ETQ�A + CT
�C + CTC� = 0,

for a specified frequency range� = [ω1, ω2] ∪ [−ω2,−ω1]; see [29, 33]. The right-
hand side matrices contain matrix functions, which are given by

B� = Re

(

i

π
ln

(

(A + ω2iE)(A + ω1iE)−1
)

)

B,

C� = CRe
(

i

π
ln

(

(A + ω1iE)−1(A + ω2iE)
)

)

.

Analogously, the time-limited Gramians P	 and Q	 of (7) are given as the unique
symmetric positive semi-definite solutions of the (potentially) indefinite Lyapunov
equations

AP	ET + EP	AT + Bt0BT
t0 − BtfBT

tf = 0,

ATQ	E + ETQ	A + CT
t0Ct0 − CT

tfCtf = 0,

where the time-dependent right-hand sides are defined as

Bt0 = eAE−1t0B, Btf = eAE−1tfB, Ct0 = CeE−1At0 , Ctf = CeE−1Atf

on the time interval	 = [t0, tf ]; see [29, 34]. Using those Gramians for the different
second-order balanced truncation approaches [7, 8, 12] leads to the second-order
limited balanced truncation methods as described in [19, 32]. The dense version of
the resultingmethods is contained in the current version of theMORLAB toolbox [35,
36], and an implementation for large-scale sparse systems as MATLAB and GNU
Octave toolbox can be found in [37].

As numerical example for the frequency-limited approach, we consider the triple
chain oscillator example as in [18]. We reduce the original model (n = 1 201)
by the second-order frequency-limited balanced truncation method in the interval
[5 · 10−3, 5 · 10−2] rad/s using the eight different second-order balancing formulas
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Fig. 3 Frequency-limited balanced truncation results for the triple chain oscillator example

from [32] to the order r = 34. The computations are done using the dense implemen-
tation of the second-order frequency-limited balanced truncation method from the
latest version of theMORLAB toolbox [35, 36]. The results can be seen in Fig. 3with
the transfer functions and the relative approximation errors. The computed reduced-
order models are denoted according to the used balancing formulas from [32]. We
clearly see the good approximation behavior in the frequency range of interest. Only
the system computed by the fv formula is stable, while all others become unstable.
The preservation of stability by the fv formula follows directly from the preserva-
tion of the symmetric positive definiteness of the system matrices via the underlying
one-sided projection. However, note that in general for any balancing formula in the
classical second-order balanced truncation method, there are counter-examples for
the stability preservation [12].

To illustrate the time-limited balanced truncation method, we use the single chain
oscillator example as described in [32]. Here, we use the implementation for large-
scale sparsemechanical systems from [37] to reduce the original system (n = 12 000)
to order r = 3 in the time interval [0, 20] s. The results for the second output entry
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Fig. 4 Time-limited balanced truncation results for the single chain oscillator example

can be seen in Fig. 4, where in the time region of interest, the original system is
nicely approximated by the reduced-order models. For all balancing formulas, the
resulting systems are stable.

More detailed comparisons of the different balancing formulas and further exam-
ples can be found in [19, 32].

4 Positive Real Balanced Truncation for Second-Order
Systems

In this section, we consider second-order systems of the form (1), where M, K > 0,
D ≥ 0, and either we exclusively measure positions, i.e., Cv = 0, or velocities, i.e.,
Cp = 0. We start with the second case and additionally assume co-located inputs
and outputs, which means Bu = CT

v . This case is treated in [38]. Using the Cholesky
factorizations K = GGT and M = NNT, the system can be rewritten in first-order
form as
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ẋ(t) =
[

0 GTN−T
−N−1G −N−1DN−T

]

︸ ︷︷ ︸

=:A

x(t) +
[

0
N−1Bu

]

︸ ︷︷ ︸

=:B

u(t),

y(t) = [

0 BT
u N

−T]
︸ ︷︷ ︸

=:C

x(t).

(8)

Besides passivity, the most important feature of this system is that it has an internal
symmetry structureASn = SnAT andC = BT = BTSn ,whereSn := diag(−In, In).
In particular, its transfer function H(s) = C(s I2n − A)−1B is symmetric, i.e., it ful-
fills H(s)T = H(s). We will make heavy use of this symmetry structure.

The model reduction technique consists of two steps:
Step 1:We apply positive real balanced truncation [39] to the first-order system (8).

Here, the computational bottleneck is determining the numerical solution of the Lur’e
equations

ATP + PA = −KT
c Kc, AQ + QAT = −KT

o Ko,

PB − CT = 0, QCT − B = 0,

for stabilizing solutions P, Q ∈ R
2n×2n ; see [40]. The internal symmetry structure

of (8) yields Q = Sn PSn , hence only the Lur’e equation ATP + PA = −KT
c Kc,

PB − CT = 0 has to be solved for the matrices P and Kc. We can use the method
from [41] to obtain a low-rank approximate solution P ≈ LTL . The sign symmetry
of the first-order system (8) yields that its positive real characteristic values (which
are defined to be the positive square roots of the eigenvalues of PQ) can in a certain
sense be allocated to the symmetry structure of the system (8). More precisely,
the positive real characteristic values are the absolute values of the eigenvalues of
the symmetric matrix LSn LT. By truncating equally many states corresponding to
positive and negative eigenvalues of LSn LT, it is shown that the resulting first-order
model is—without any further computational effort – of the form

˙̂x(t) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 A16

0 0 0 0 A25 A26

0 0 A33 A34 0 A36

0 0 −AT
34 A44 0 A46

0 −AT
25 0 0 0 0

−AT
16 −AT

26 −AT
36 AT

46 0 A66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x̂(t) +

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
0
0
0
0
B6

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

u(t),

ŷ(t) = [

0 0 0 0 0 BT
6

]

x̂(t),

(9)

where the block sizes from left to right and from top to bottom are m, 
, p, p, 
,m,
with r = p + m + 
. Note that, if A33 is zero, then—by merging some of the
blocks—(9) has the form
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˙̂x(t) =
[

0 ̂GT

−̂G −̂D

]

x̂(t) +
[

0
̂Bu

]

u(t),

ŷ(t) = [

0 ̂BT
u

]

x̂(t),

(10)

which results in a reduced-order model in second-order form (2) with ̂M = Ir , ̂K =
̂ĜGT, ̂Cp = 0, and ̂Cv = ̂BT

u . This is regrettably not the case in general, which is why
we apply the following step.

Step 2: We apply a state-space transformation to (9) such that the matrix A33

vanishes. More precisely, we first intend to find some invertible T ∈ R
2p×2p that

preserves the symmetry structure, i.e., it fulfills TTSpT = Sp and

T−1

[ A33 A34

−AT
34 A44

]

T =
[

0 ̂A34

−̂AT
34

̂A44

]

.

Then, a state-space transformation with V = diag(Im+
, T, I
+m) leads to a system,
which is indeed of the form (10) and can then be rewritten as a second-order system.
Such a transformation is based on techniques from indefinite linear algebra [42],
and can be computed without any remarkable computational effort. The existence of

such a transformation is linked to the 2k real eigenvalues of

[ A33 A34

−AT
34 A44

]

. Under the

assumption of semi-simplicity, these eigenvalues can be assigned a certain signature
structure according to the sign of −vTi Skvi , where vi is the eigenvector of the i-th
eigenvalue. In particular, we have k eigenvalues μ−

1 ≤ . . . ≤ μ−
k of negative type

and k eigenvalues μ+
1 ≤ . . . ≤ μ+

k of positive type. It is then shown that such a
transformation is possible, if μ−

i < μ+
i for all i = 1, . . . , k. A sufficient criterion on

the original system for the existence of such a transformation is that it is overdamped,
that is

(

vTDv
)2

> 4
(

vTMv
)(

vTKv
)

for all v ∈ R
n .

The resulting second-order system in particular fulfills ̂M, ̂K > 0, and it is fur-
ther shown that ̂D = ̂DT has at mostm negative eigenvalues. If the original system is
overdamped, then even ̂D > 0. Moreover, the gap metric distance between the trans-
fer functions H(s) of the original and ̂H(s) of the reduced-order system is shown to
be bounded from above by twice the sum of the truncated positive real characteristic
values.

Considering a system dilation, we are able to extend the previously presented
reduction to second-order systems with velocity measurements, which are not nec-
essarily co-located to the input. This can be done by considering the extended system

Mq̈(t) + Dq̇(t) + Kq(t) = [

Bu CT
v

]

[

u1(t)
u2(t)

]

,

[

y1(t)
y2(t)

]

=
[

BT
u

Cv

]

q̇(t).

This system is again positive real and from the algorithm above we thus obtain a
reduced-order system for the extended system as
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̂M ¨̂q(t) + ̂D ˙̂q(t) + ̂Kq̂(t) = [

̂Bu ̂CT
v

]

[

u1(t)
u2(t)

]

,

[

ŷ1(t)
ŷ2(t)

]

=
[

̂BT
u

̂Cv

]

˙̂q(t),

(11)

where ̂Bu ∈ R
r×m and ̂Cv ∈ R

p×r . From thatweobtain a reduced-order system for (1)
as

̂M ¨̂q(t) + ̂D ˙̂q(t) + ̂Kq̂(t) = ̂Buu1(t),

ŷ2(t) = ̂CT
v
˙̂q(t).

(12)

As the transfer function of (12) is a submatrix of the transfer function of the sys-
tem (11), and the same holds for the original system, the reduction error in the gap
metric is bounded by the one of the extended system.

We illustrate the performance of the reduction method above with an example of
three coupled mass-spring-damper chains; see [43, Ex. 2]. The triple chain consists
of three rows that are coupled via a mass m0, which is connected to the fixed base
with a spring with stiffness k0. Each row contains g masses, g + 1 springs and one
damper, which is attached to a wall; see Fig. 5. One can write the free system as

Mq̈(t) + Dq̇(t) + Kq(t) = 0,

where M, D, and K are defined as M = diag(m1, . . . ,m1,m2, . . . ,m2, m3, . . . ,

m3), D = αM + βK + ν1e1eT1 + νg+1eg+1eTg+1 + ν2g+1e2g+1eT2g+1 and

K =

⎡

⎢

⎢

⎣

K11 −κ1
K22 −κ2

K33 −κ3
−κT1 −κT2 −κT3 k1 + k2 + k3 + k0

⎤

⎥

⎥

⎦

, Kii = ki

⎡

⎢

⎢

⎢

⎢

⎢

⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Fig. 5 (3g + 1)-mass (triple chain) oscillator with three dampers [43]
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with κi = [

0 . . . 0 ki
]T ∈ R

1×g and Kii ∈ R
g×g for i = 1, 2, 3. We choose the input

Bu = [

1 . . . 1
]T

and equally measure the velocities such that Cv = BT
u . The second-

order control system reads

Mq̈(t) + Dq̇(t) + Kq(t) = Buu(t), y(t) = BT
u q̇(t).

We consider the triple chain with g = 500, thus the number of differential equations
is n = 3g + 1 = 1 501. The stiffness and mass parameters are set as

k0 = 50, k1 = 10, k2 = 20, k3 = 1,

m0 = 1, m1 = 1, m2 = 2, m3 = 3,

and the damping parameters α = β = 0.002 and ν1 = νg+1 = ν2g+1 = 5.
Following the previously presented theory, we first compute a reduced-order

model in first-order form of order 2r = 200 and then recover the structure of a
second-order model of order r = 100. The latter has again the form

̂M ¨̂q(t) + ̂D ˙̂q(t) + ̂Kq̂(t) = ̂Buu(t), ŷ(t) = ̂BT
u q̂(t),

with symmetric ̂M, ̂D, ̂K ∈ R
r×r and ̂Bu ∈ R

r×m , where ̂M = Ir , ̂K > 0 and ̂D =
̂DT. The plot of the absolute value of the original and reduced-order transfer func-
tions can be found in Fig. 6a, whereas Fig. 6b displays the relative error of the
transfer function on the imaginary axis, respectively. With a maximum relative error
of approximately 3.1 · 10−2 we obtain a good match between the original and the
reduced-order system.

5 H∞-Optimal Rational Approximation

In this section,webrieflydescribe an interpolatoryH∞ model order reduction scheme
for systems with symmetric mass, damping, and stiffness matrices and co-located
inputs and position outputs, i.e., we haveM, D, K > 0, Bu = CT

p andCv = 0 in order
to be able to preserve symmetry and asymptotic stability by an appropriate choice
of the projection spaces. More precisely, we construct a sequence of reduced-order
transfer functions of the form

̂Hj (s) := BT
uVj

(

s2VT
j MVj + sVT

j DVj + VT
j K Vj

)−1
VT
j Bu, j = 1, 2, . . .

for appropriately chosen projection matrices Vj . Our method aims to iteratively
reduce the H∞-norm of the error transfer function E j (s) := H(s) − ̂Hj (s).
To do so, we compute

∥

∥E j

∥

∥

H∞
:= maxω∈R∪{∞}

∥

∥E j (ωi)
∥

∥

2. The point where
∥

∥E j

∥

∥

H∞
is attained is denoted by ω j i. We then choose Vj+1 :=
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Fig. 6 Positive real balanced truncation results for the triple chain oscillator

[

Vj (−ω2
j M + ω j iD + K )−1Bu

]

. For numerical reasons, Vj+1 (and all other pro-
jection matrices appearing in this section) are orthogonalized. This choice guaran-
tees Hermite interpolation properties between the original and reduced-order transfer
functions H(s) and ̂Hj (s) at the interpolation points ω1i, ω2i, . . ., ω j i, such that the
error near these points becomes small. This procedure is repeated until a specified
error tolerance is met.

The main computational cost of this algorithm is the repeated computation of the
H∞-norm of the error transfer function, which is expensive to evaluate since the
error system is of large dimension. However, these computations have been made
possible by the methods presented in [44, 45], which we use here and which work
as follows.

Assume that a transfer function is given by H(s) = C(sE − A)−1B with the reg-
ular matrix pencil sE − A ∈ R[s]n×n , B ∈ R

n×m , and C ∈ R
p×n with n � m, p.

Then, the algorithm determines a sequence of reduced-order transfer functions of
the form Hj (s) = CVj (sWH

j EVj − WH
j AVj )

−1WH
j B, where Vj ,Wj ∈ C

n×k j and
k j � n for j = 1, 2, . . . , and where

∥

∥Hj

∥

∥

L∞
:= maxω∈R∪{∞}

∥

∥Hj (ωi)
∥

∥

2 converges
to ‖H‖H∞ . Since the matrices defining the reduced-order transfer functions Hj (s),
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are of small dimensions,
∥

∥Hj

∥

∥

L∞
can be efficiently computed using well-established

methods such as [46, 47]. Assume first that m = p. Further suppose that j interpo-
lation points ω1i, . . . , ω j i ∈ iR are already given. In this case, we choose

Vj = [

(ω1iE − A)−1B . . . (ω j iE − A)−1B
]

,

Wj = [

(ω1iE − A)−HCH . . . (ω j iE − A)−HCH
]

,

which amounts to the Hermite interpolation conditions

H(ωk i) = Hj (ωk i), H ′(ωk i) = H ′
j (ωk i), k = 1, . . . , j,

that carry over directly to the functions σ(s) := ‖H(s)‖2 and σ j (s) := ∥

∥Hj (s)
∥

∥

2.
These Hermite interpolation conditions are then used to prove a superlinear rate of
convergence to a local maximum of σ(i·) provided that the algorithm converges.
The situation is more difficult if m �= p since then, Vj and Wj would have different
dimensions and the pencil sWH

j EVj − WH
j AVj would be singular. This situation

also occurs if Vj or Wj do not have full column rank. Thus, an alternative choice for
Vj and Wj , which is outlined in [44], and QR factorizations can be used to obtain
the matrices Vj ,Wj such that the pencil sWH

j EVj − WH
j AVj is regular.

In Fig. 7, we illustrate the effectiveness of our algorithm using the triple chain
oscillator benchmark example [43] (see Fig. 5) of order n = 1 000 and anH∞-error
bound of 10−6. Compared with the second-order balanced truncation (SOBT, vp
version) approach described in [12, Alg. 3.2], the greedy interpolation approach
has a slightly larger maximal error for the same reduced order r = 29. However, in
contrast to SOBT, we obtain full information on the current error and may terminate
whenever the reduced-order model satisfies a prescribed error bound. Moreover,
the method also allows for an easy adaptation to frequency-limited reduction. We
currently investigate post-processing strategies to improve the performance of the
greedy interpolation such as an additional optimization of the interpolation points.

Fig. 7 Comparison of absolute errors of different methods for second-order model reduction. The
interpolation points of our greedy approach are plotted as red crosses
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Furthermore, our approach may be combined with the subspaces obtained from
(SO)BT to initialize the first projection space.

The previously described algorithm leads to an error function E j (s), which is
zero at the interpolation points in exact arithmetics. This results in the spiky shape
of the error maximum singular value function that can be observed in Fig. 7. Such
a behavior is generally unwanted, since this indicates that our reduced-order model
approximates the given model at a few frequencies much better than at others. In
this way, accuracy is “wasted” in a few regions that could be used to improve the
overall accuracy of the reduced-order model. This is an inherent problem of a greedy
approximation strategy with interpolation on the imaginary axis.

To smoothen the errormaximumsingular value function and reach a better approx-
imation with respect to theH∞-norm, we use direct numerical optimization. In par-
ticular, after a new interpolation point has been chosen according to the previously
described greedy algorithm, we vary the interpolation points such that theH∞-error
is locally minimized. This requires the solution of a nonsmooth, nonconvex and non-
linear optimization problem. We use the method described in [48], implemented in
the software package GRANSO.1 This iterative optimization requires the repeated
evaluation of theH∞-norm of the error system, which is high-dimensional. For that,
we again apply the method described in [44], which is well-suited for this task.

It is important to note that the gradient of ‖E j‖H∞ with respect to the interpolation
points can be computed analytically. Furthermore, the direct optimization strategy
is not limited to just the interpolation points. On top of that, we can optimize tan-
gential directions of the interpolation as well. In case of tangential interpolation, the
projection matrix can be chosen as

Vj = [

(s21M + s1D + K )−1Bub1 . . . (s2j M + s j D + K )−1Bub j
]

,

where bk ∈ C
m and sk ∈ C for k = 1, . . . , j are not in the spectrum of s2M + sD +

K . In this way, the interpolation condition is relaxed such that we now only have
tangential Hermite interpolation between H(s) and ̂Hj (s), that is

H(sk)bk = ̂Hj (sk)bk, bHk H(sk) = bHk ̂Hj (sk), bHk H
′(sk)bk = bHk ̂H ′

j (sk)bk,

for k = 1, . . . , j . This results in an optimization that can exploit more degrees of
freedom, while the size of the projection matrix and hence the size of the reduced-
order model is further reduced.

In Fig. 8, we show a comparison of the errors between this new method and (the
faster) SOBT on the triple chain oscillator example with n = 301. The new method
leads to an error function that is more steady and even outperforms the SOBTmethod
for the smaller reduced-order model. However, for the slightly larger model order
that is required to meet the given error bound of 10−6, the optimization got stuck
in a local optimum and the error is less steady. Nevertheless, the accuracy is still
comparable with the accuracy obtained by SOBT.

1 Available at http://www.timmitchell.com/software/GRANSO.

http://www.timmitchell.com/software/GRANSO
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Fig. 8 Comparison of the (absolute) errors of SOBT (vp) with the new, optimization-based method

In order to improve the behavior of the error and make it globally more steady
we have also recently developed a new optimization framework. There, we do not
optimize the H∞-error itself but rather parametrize the reduced-order model and
then minimize the sum of squares of the error evaluated at certain sampling points
on the imaginary axis [49].

6 Conclusions

We have presented an overview of recently developed structure-preserving model
order reduction methods for second-order systems. We have started with an adapta-
tion of the dominant pole algorithm for modally damped mechanical systems and,
afterwards, have introduced extensions of the frequency- and time-limited balanced
truncation methods for second-order systems in various ways. We have presented
an approach for structure recovery of second-order systems based on positive real
balanced truncation, which also yields an a priori error bound in the gap metric, and
concluded with anH∞ greedy interpolation approach yielding anH∞-error optimal
approximation. Numerical examples for all the presented approaches have illustrated
their effectiveness.

Additionally to the approaches for linear systems summarized here, we were able
to develop model order reduction techniques for (parametric) mechanical systems
with special nonlinearities, namely bilinear control systems and quadratic-bilinear
systems. These techniques are described in [19, 50, 51].
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Numerical and Experimental Assessment
of Acoustic Radiation Damping

Suhaib Koji Baydoun and Steffen Marburg

1 Introduction

In the light of the current environmental crisis, lightweight design becomes an
increasingly important aspect in various engineering disciplines. Appropriate appli-
cation of lightweightmaterials and structures can significantly reduce the energy con-
sumption during manufacturing, operation and recycling of a product. Lightweight
structures are characterized by a high stiffness relative to their mass, which how-
ever makes them prone to noise, vibration and harshness. In the current engineering
practice, vibration mitigation is usually achieved by adding damping treatments in a
late stage of the design process or even after manufacturing. The resulting increase
in mass and volume can be significant and deteriorates the ecological footprint of
the product. Recent approaches for a deliberate introduction of energy dissipation
includes materials with high inherent damping [1] and the use of special devices such
as particle dampers [2], electrorheological valves [3] and acoustic black holes [4].

This contribution deals with another, often neglected damping phenomenon, com-
monly denoted as acoustic radiation damping. That is the energy dissipation in
vibrating structures by virtue of far-field sound radiation, accounting for a significant
share in the overall damping of lightweight structures. Although radiation damping is
not to be understood as a deliberately introduced dampingmechanism, it nevertheless
requires accurate quantification. In fact, deliberately introduced treatments require
that the extent of added damping is at least within the same order of magnitude as
radiation damping in order to be effective [5]. Furthermore, including the effect of
radiation damping facilitates more reliable vibroacoustic simulations.

Early attempts to estimate radiation damping are based on the principles of power
flow and assume a sufficiently high modal density [6, 7]. While these expressions
are accurate approximations in the high frequency range above coincidence [8],
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they are rather deficient at low frequencies due to well-separated modes. The latter
implies that radiation damping is strongly dependent on the actual excitation and
mounting condition of the structure at hand. The applicability of the abovementioned
theoretical expressions to complex geometries and to inhomogeneous materials is
also difficult to judge. Alternatively, experimental assessment of radiation damping
is possible based on sound power measurements inside reverberation chambers and
anechoic rooms [9]. This allows to consider geometries that are more complex and
also to accurately reflectmaterial properties. If themeasurements are conducted in the
actual mounting condition, even the effect of the boundary conditions is realistically
included. However, in the low frequency range, reliable acoustic measurements are
hardly possible due to the modal behavior of the rooms [10].

This contribution presents a framework for a low frequency assessment of radi-
ation damping by acoustic simulations based on the boundary element method
(BEM) [11]. The use of BEM yields clear advantages compared to other approaches
for evaluating sound radiation and associated damping. Where domain-based dis-
cretization methods such as the finite element method (FEM) [12] necessitate spe-
cial treatments for truncating the far-field sound radiation [13], modeling in BEM is
restricted to the radiating surface of the structure. Moreover, compared to the above
mentioned experimental approaches, which require special facilities with limited
scope of application, the applicability of BEM is more versatile allowing to cover
a large range of frequencies and geometrical configurations. This contribution com-
bines BEM with both a structural simulation model [8] and with an experimental
characterization of structural mobility [14, 15]. Excitation-dependent radiation loss
factors as well as modal loss factors that are associated with certain structural modes
are derived.

The remainder of the contribution is organized as follows. Section2 presents the
methodological tools for evaluating radiation damping, including BEM, FEM and
structural mobilitymeasurements. Section3 presents an application of thesemethods
to a honeycomb sandwich panel. Finally, themain content and results are summarized
in Sect. 4.

2 Methods

This section describes the framework for a numerical and an experimental-numerical
assessment of radiation damping. In the upcoming derivations, a harmonic time
dependency of e−iωt is assumed, where i = √−1, the angular frequency is ω = 2π f
and t denotes the time.
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2.1 Boundary Element Method for the Evaluation of Sound
Radiation

In this work, the propagation of acoustic waves in the fluid surrounding the structure
is modeled by the inhomogeneous Helmholtz equation [16]

�p(x) + ω2

c2
p(x) = −q, (1)

in which c is the speed of sound and q refers to the source. The sound pressure field
p(x) is the sum of the scattered field ps and the incident field pi. The same applies
to the fluid particle velocity vf , i.e.

p(x) = ps(x) + pi(x) (2)

vf(x) = vs
f (x) + vi

f(x). (3)

Reformulation of Eq. (1) by the Kirchoff integral theorem and collocation discretiza-
tion using boundary elements yields the linear system of equations [16]

H(ω)p = G(ω)
(
vf − vif

) + H(ω)pi (4)

for the description of the acoustic field. Therein, p is the unknown vector contai-
ning the sound pressure solution at the nodes. The frequency dependent coefficient
matrices H(ω) and G(ω) relate the fluid particle velocity vf to the sound pressure.
Acoustically rigid baffles can be taken into account by evaluating H(ω) and G(ω)

using a half-space formulation with a modified Green’s function [17]. The incident
sound pressure field is denoted by pi and the corresponding incident particle velocity
is vif .

After solving Eq. (4), the time-averaged radiated sound power can be obtained
from

P = 1

2
Re

(
pT�v∗

f

)
, (5)

where (·)∗ denotes the conjugate complex, (·)T is the transpose, and� is the boundary
mass matrix, which is obtained by integration of the boundary element interpolation
functions. Note that only the real part Re (·) of the complex sound power is associated
with radiation damping. The imaginary part of the sound power corresponds to near-
field sound radiation, which has a mass-like effect on the structure and hence, does
not dissipate energy.
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2.2 Numerical Assessment of Radiation Damping Using
Finite and Boundary Elements

The fluid particle velocity vf in Eqs. (4) and (5) is determined by the oscillations of
the solid structure that is submerged by the fluid. The underlying equations of linear
time-harmonic elasticity are discretized by finite elements, which yields [18]

(
K − iωD − ω2M

)
u = fs + ff . (6)

The vector u contains the unknown displacement degrees of freedom (DOFs). The
matricesK,D,M are related to the stiffness, damping and mass of the structure. The
excitation is a combination of structural forces fs and fluid forces ff . The latter acts by
virtue of the surrounding acoustic field. This coupling condition and the continuity
condition can be expressed as

ff = Csfp, and vf = −iωCfsu, (7)

inwhich thematricesCsf andCfs establish the coupling between the structural and the
acoustic subdomains [19]. Combining Eqs. (4), (6) and (7) yields the fully coupled
structural acoustic system

[
K − iωD − ω2M −Csf

iωG(ω)Cfs H(ω)

] [
u
p

]
=

[
fs

−G(ω)vif + H(ω)pi

]
. (8)

Forming the Schur complement of H(ω) with respect to the block system matrix in
Eq. (8) and thereby eliminating the pressure DOFs from Eq. (8) yields

[
K − iωD − ω2M + iωCsfH−1(ω)G(ω)Cfs

]
u = fs + Csf

(
pi − H−1(ω)G(ω)vif

)

︸ ︷︷ ︸
ft

,

(9)
which can be interpreted as a structural equation with an additional term correspon-
ding to the mass and damping contributions of the fluid. The total force vector ft in
Eq. (9) comprises both, structural loading fs and acoustic loading due to the incident
acoustic field characterized by pi and vif . Efficient strategies for solving equations of
form (9) are discussed in e.g. [20–22].

2.2.1 Harmonic Radiation Loss Factors

Harmonic radiation loss factors are a result of a frequency-wise response analysis
and thus depend on the type of the excitation. They are obtained by relating the
time-averaged radiated sound power P obtained by Eq. (5) to the time-averaged total
energy Etot of the vibration [23], i.e.
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ηr = P

|ωEtot| . (10)

In harmonic problems, the time-averaged total vibrational energy in Eq. (10) is equiv-
alent to twice the time-averaged potential energy. This assumption gives [18]

Etot = 1

2
uTKu∗ − 1

2
fHt u. (11)

The first term in Eq. (11) is the potential energy due to the elastic straining and
the second term corresponds to the work done by external forces. The superscript
(·)H indicates the conjugate transpose of a matrix. In view of the balance of forces
in Eq. (9), the time-averaged total vibrational energy can alternatively be expressed
as twice the sum of time-averaged kinetic and dissipated energies of the structural
acoustic system, i.e.

Etot = 1

2
uT

(
ω2M + iωD − iωCsfH−1(ω)G(ω)Cfs

)
u∗. (12)

Besides the inertial and damping terms corresponding to the finite element matrices
M andD, Eq. (12) also includes energy contributions of the acoustic field. The imag-
inary part of H−1(ω)G(ω) is associated with the additional mass effect of the fluid,
and its real part corresponds to radiation damping.

Since the energy expressions in Eqs. (11) and (12) are fully equivalent to each
other, either of them can be employed to evaluate radiation damping by Eq. (10) in
the context of a coupled FEM-BEM analysis. In practice, the expression based on
the potential energy in Eq. (11) is more efficient to evaluate since it only comprises
sparse coefficient matrices.

2.2.2 Modal Radiation Loss Factors

While the harmonic loss factor given by Eq. (10) depends on the type of the excita-
tion, an alternative measure for radiation damping can be derived based on a modal
analysis of the structural acoustic system. Modal analyses of closed acoustic cavities
can be solved using FEM [24] or frequency independent BEM formulations [25].
These techniques yield linear eigenvalue problems (EVPs) forwhichwell-established
algorithms are available [26]. The situation is different in the context of exterior
acoustic domains, which are the relevant case for the analysis of radiation damping.
When using the coupled FEM-BEM formulation as described in this contribution,
the underlying EVP is obtained by setting the right-hand side of Eq. (9) to zero, i.e.

[
K − iω̃D − ω̃2M + iω̃CsfH−1(ω̃)G(ω̃)Cfs

]

︸ ︷︷ ︸
A(ω̃)

� = 0, (13)
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in which the vector � denotes a fluid-loaded displacement mode. Equation (13) is
a nonlinear EVP, since the coefficient matrices H(ω̃) and G(ω̃) implicitly depend
on the eigenvalue parameter ω̃. Recent approaches for solving nonlinear EVPs of
the form (13) are based on contour integration [27, 28] and on rational approxima-
tions [29]. In this contribution, the block SS contour integral method [8] is employed,
which essentially transforms the nonlinear EVP (13) into a generalized EVP

H1ψ = λH2ψ, (14)

with the eigenvector ψ and eigenvalue λ. The latter is identical to the complex
eigenfrequency ω̃ of the structural acoustic system in Eq. (13). The block matrices
H1,H2 ∈ C

K L×K L are defined as

H1 =

⎡

⎢⎢⎢
⎢
⎣

M0 M1 · · · MK−1

M1
...

... M2K−3

MK−1 · · · M2K−3 M2K−2

⎤

⎥⎥⎥
⎥
⎦

, H2 =

⎡

⎢⎢⎢
⎢
⎣

M1 M2 · · · MK

M2
...

... M2K−2

MK · · · M2K−2 M2K−1

⎤

⎥⎥⎥
⎥
⎦

, (15)

where K and L are positive integers and need to be set by the user. The product K L
determines the subspace dimension. The moments Ml ∈ C

L×L are obtained from

Ml = 1

2π i

∮

C
zlUHA−1(z)V dz, l = 0,...,2K − 1, (16)

where the matricesU andV contain random source vectors as columns. The original
system A is evaluated at the complex-valued shifts z. The latter is defined along an
elliptic contour C that has its major axis aligned with the real axis of the complex
plane. The two vertices on the real axis correspond to the lower and upper frequency
bounds ( fmin, fmax) respectively. A suitable definition of an ellipse can be given as

z(θ) = γ + ρ (cos θ + iζ sin θ) , θ ∈ [0, 2π) , (17)

where γ = ( fmax + fmin) /2 andρ = ( fmax − fmin) /2.After solving the generalized
EVP (14), the fluid-loaded structuralmodes are obtained from� = Sψ .With the def-
inition in Eq. (17) at hand, approximations of the matricesMl and S = [

S0,...,SK−1
]

can be computed using the N -point trapezoidal rule, i.e.

Ŝl = 1

iN

N∑

j=1

(
z(θ j ) − γ

ρ

)l

z′(θ j )A−1z(θ j )V, M̂l = UHŜl , (18)

where N denotes the number of integration points on the contour and θ j = 2π( j −
1)/N , j = 1,...,N . The block matrices are assembled according to Eq. (15) using
the approximated moments M̂l . Finally, the generalized EVP Ĥ1ψ̂ j = λ̂ j Ĥ2ψ̂ j can
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be solved and the eigenfrequencies ω̃ j as well as the fluid-loaded modes � j , j =
1,...,K L can be obtained by

ω̃ j = γ + ρλ̂ j , � j = Ŝψ̂ j . (19)

The modal loss factor corresponding to a structural mode� j is determined by [5]

η j = −2
Im

(
ω̃ j

)

Re
(
ω̃ j

) . (20)

Note that Im
(
ω̃ j

)
is negative since the harmonic time dependency is defined as

e−iωt . Assuming D = 0, the modal loss factor in Eq. (20) quantifies the extent of
radiation damping for the corresponding fluid-loaded structural mode, since the ener-
gy dissipation due to sound radiation is the only damping contribution. In that case,
the modal loss factor in Eq. (20) is equivalent to the harmonic loss factor given
by Eq. (10) at the respective eigenfrequency f j = Re

(
ω̃ j

)
/2π , assuming that the

respective mode is excited in the response analysis.

2.3 Hybrid Experimental-Numerical Assessment
of Radiation Damping

While the above described coupled FEM-BEM approach facilitates an accurate rep-
resentation of the acoustic conditions and associated effects such as scattering and
short-circuiting in the low frequency range, it suffers from two disadvantages when
compared to an experimental evaluation of sound radiation. First, finite elementmod-
els usually introduce vast simplifications of boundary conditions such as clamped
or simply supported, which can yield large errors in acoustic quantities when sound
radiation is mainly induced by edge and corner motions [23]. Second, vibroacoustic
behavior is largely determined by the elastic material properties of the structure at
hand. It is clear that accurate predictions of radiation damping therefore demand pre-
cisematerialmodels. Ironically, radiation damping is particularly relevant in complex
material configurations that are designed to achieve a high ratio of bending stiffness
to mass. These issues can be addressed by a hybrid experimental-numerical method
developed in [15]. It is briefly reproduced below.

The structural finite element model is omitted and instead, the structure is cha-
racterized by

vr = Y(ω)
[
fe + Cef

(
pi − H−1(ω)G(ω)vif

)]
, (21)

in which Y(ω) is a mobility matrix containing experimentally determined transfer
functions that relate the force excitation to the surface velocity. The vector vr contains
the surface velocities at the nodes of the response grid. The excitation vector in square
brackets on the right-hand side of Eq. (21) comprises structural excitation fe as well
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as excitation by an incident acoustic field. The excitation vector is defined on a
(possibly different) excitation grid. The force associated with the incident acoustic
field is computed by BEM resulting in a similar expression for the force vector as on
the right-hand side of Eq. (9). Having evaluated vr for a given excitation, the particle
velocities on the nodes of the boundary element model are computed by

vf = Cfrvr, (22)

and the pressure field and sound radiation can be obtained by Eqs. (4) and (5). The
couplingmatrixCef inEq. (21) relates the acoustic quantities on the boundary element
mesh to the excitation grid, and similarly, Cfr in Eq. (22) establishes the coupling
between the response grid and the boundary element nodes.

In order to assess radiation damping via Eq. (10), the time-averaged total vibra-
tional energy is evaluated by

Etot = 1

2
vTr

(
Mr − i

ω
CrfH−1(ω)G(ω)Cfr

)
v∗
r , (23)

which is similar to the expression in Eq. (12). The mass matrix Mr of the structure
under test is assembled by the structural mass contributions of each element on the
response grid. In this work, the transfer functions contained in Y(ω) are obtained
by scanning laser Doppler vibrometry (LDV) and excitation by an automated modal
hammer. In many situations, it is not necessary to have the whole matrix Y(ω), e.g.
when only a local excitation is of interest. Moreover, symmetry of the structure and
boundary conditions can be exploited to reduce the measurement effort. Details on
this hybrid experimental-numerical approach are given in [15]. The experimental
procedure for determining the mobility matrix Y(ω) is reported in Sect. 3.2.

3 Application

This section studies the acoustic radiation damping of a honeycomb sandwich panel
using the described numerical as well the hybrid experimental-numerical method.
Modal and harmonic loss factors for different types of excitations and acoustic bound-
ary conditions are computed.

The panel consists of two aluminum face sheets enclosing an aluminum honey-
comb core. The dimension and the material properties are listed in Table 1. Two
different load cases are considered. A point force is located at (x = 0.062m, y =
0.188m) and amonopole sound source is located at (x = 1.376m, y = 1.25m, z =
0.3m). The origin of the corresponding coordinate system coincides with the center
of the panel.
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Table 1 Geometry and material properties of the aluminum honeycomb sandwich panel provided
by the manufacturer. Assumed values are marked with a star∗

Aluminum face sheets

Thickness t 0.5mm

Density ρf 2690 kg/m3

Young’s modulus E 70GPa

Poisson’s ratio νa 0.3

Aluminum honeycomb core

Thickness h 4.5mm

Density ρc 135 kg/m3

Young’s modulus Ex , Ey 10MPa∗

Young’s modulus Ez 360MPa

Shear modulus Gxy 1MPa∗

Shear modulus Gyz 280MPa

Shear modulus Gxz 140MPa

Poisson’s ratio νc 0.01∗

Dimensions lx × ly 0.748 × 0.5m2

3.1 Results Obtained by Coupled Finite and Boundary
Element Analyses

In this section, radiation damping of the sandwich panel is studied using the coup-
led FEM-BEM framework described in Sect. 2.1. The panel itself is modeled using
twenty-noded hexahedral solid finite elements for the representation of the core and
eight-noded quadrilateral shell finite elements based on the Reissner-Mindlin theory
for the two face sheets. A uniform mesh of 36 × 24 elements along the in-plane
directions ensures that at least six elements capture one bending wave length in the
considered frequency range. A single solid element is used to discretize the core in
the out-of-plane direction. Simply supported boundary conditions are applied to the
two short edges of the panel. The long edges are unconstrained. Structural damping
is neglected in the following. Figure1 shows the finite element mesh of the panel
with the position of the point force excitation.

Fig. 1 Finite element model
of the sandwich panel

0.5
m

z y

x

Point force

0.748m
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Fig. 2 Radiation loss factor by harmonic response of the honeycomb sandwich panel subject to
excitation by a point force. Comparison between baffled and unbaffled acoustic boundary conditions

The structural finite element mesh is coupled to a boundary element model for
the representation of the surrounding acoustic field. The boundary elements coincide
with the finite elements. Two different acoustic conditions are studied: First, the panel
is confined in an infinitely extended baffle, which prohibits acoustic flow between
the two sides of the panel. Second, the panel is situated in a free acoustic field, which
will be referred to as unbaffled.

Figure2 shows radiation loss factors obtained by harmonic response analyses of
the panel subject to excitation by a point force. The frequency range up to 625Hz
is considered. The baffled and the unbaffled cases are compared with each other.
The acoustic short circuiting occurring in the unbaffled panel decreases radiation
efficiency and thus radiation damping at low frequencies. The two curves converge
to each other towards higher frequencies. The apparent dips in the loss factors cor-
respond to structural modes of the panel associated with sound pressure cancellation
among neighboring half-cells. This cancellation effect disappears at higher frequen-
cies.

Besides harmonic analyses, modal analyses of the air-loaded panel are performed
using the algorithm described in Sect. 2.2.2. Thirteen eigenfrequencies occur in the
considered frequency range. The resulting modal radiation loss factors are obtained
by Eq. (20) and plotted in Figs. 3 and 4 for the baffled and unbaffled case, respec-
tively. In addition, harmonic radiation loss factors for both point force excitation and
excitation by a monopole source are shown. The latter yields significantly higher
loss factors at frequencies between resonances due the spatially uniform loading. At
the eigenfrequencies, however, the harmonic loss factors of the two load cases con-
sistently agree with each other. They coincide with the modal radiation loss factors,
which are inherent properties of the structural acoustic system and independent of
the excitation.
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Fig. 3 Radiation loss factor of the honeycomb sandwich panel confined in an acoustically rigid
baffle. Comparison between point force excitation and excitation by a monopole source. Additio-
nally, the modal radiation loss factors are plotted at their respective eigenfrequencies
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Fig. 4 Radiation loss factor of the unbaffled honeycomb sandwich panel. Comparison between
point force excitation and excitation by a monopole source. Additionally, the modal radiation loss
factors are plotted at their respective eigenfrequencies

Table 2 lists the eigenfrequencies of the panel in vacuo as well as the eigenfre-
quencies resulting from a modal analysis including air loading for the baffled and the
unbaffled case. Eigenfrequency shifts of up to 5% for the baffled and the unbaffled
panel clearly illustrate the effect of additional mass and damping due to the acoustic
field.
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Table 2 Eigenfrequencies of the honeycomb sandwich panel in vacuo and in air considering baffled
and unbaffled acoustic boundary conditions

No. In Vacuo Baffled (%) Unbaffled (%)

1 32.7Hz 30.7Hz (−5.9) 31.0Hz (−5.0)

2 70.7Hz 69.9Hz (−2.6) 69.9Hz (−2.5)

3 130Hz 126Hz (−3.2) 126Hz (−3.5)

4 181Hz 177Hz (−2.1) 177Hz (−2.2)

5 218Hz 214Hz (−1.8) 213Hz (−2.3)

6 287Hz 281Hz (−2.2) 279Hz (−2.7)

7 336Hz 330Hz (−1.7) 329Hz (−2.1)

8 340Hz 334Hz (−1.8) 333Hz (−2.0)

9 498Hz 487Hz (−1.7) 484Hz (−2.3)

10 501Hz 493Hz (−1.6) 490Hz (−2.1)

11 503Hz 495Hz (−1.6) 493Hz (−2.0)

12 547Hz 540Hz (−1.6) 537Hz (−1.8)

13 610Hz 539Hz (−1.6) 598Hz (−2.0)

Fig. 5 Set-up of the
honeycomb sandwich panel
for mobility measurements

Screws

Measurement points

3.2 Results Obtained by the Hybrid Procedure

Thefinite elementmodel of the sandwich panel is now replaced bymeasuredmobility
data of the panel in order to apply the hybrid procedure described in Sect. 2.3 for the
assessment of radiation damping. The sandwich panel is mounted onto a concrete
foundation by gluing the short edges of the panel into aluminum F-profiles and fixing
them with screws. The set-up is shown in Fig. 5. The excitation is carried out on a
uniform grid with 6 × 4 patches by means of an automated modal hammer (NV Tech
SAM1). The force transmitted at the hammer tip is measured in order to derive the
respective transfer functions.

On the opposite side of the panel, scanning LDV (Polytec PSV 500) is performed
on a uniform response grid of 8 × 6 patches in order tomeasure the surface vibrations
of the panel. The signal to noise ratio is increased by applying reflective tape at the
laser positions. The resulting transfer function matrix Y(ω) is of size 48 × 24.
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Fig. 6 Radiation loss factor of the baffled honeycomb sandwich panel subject to excitation by a
monopole sound source. Comparison between the results obtained by the FEM-BEM approach and
the hybrid approach

The transfer functions are obtained by relating the Fourier transforms of the veloc-
ity signal to the force signal. The measurement time is long enough so that all signals
die out. No window functions are required. Complex frequency domain averaging
mitigates the noise that is not phase correlated.

Figures6 and 7 show the radiation loss factors of the panel in the baffled and
unbaffled condition, respectively. An excitation by a monopole sound source is con-
sidered. In the hybrid approach, the incident sound field is created using the boundary
element model and the resulting force vector is obtained by coupling the bounda-
ry element mesh to the experimental excitation grid. The velocity response is then
computed by multiplication with the measured matrix of mobilities, c.f. Eq. (21).
Finally, the radiated sound field is again computed by BEM.

Figures6 and 7 and indicate an excellent agreement between the numerical and the
hybrid experimental-numerical approach. The numerically predicted eigenfrequen-
cies match the experimental results well, which suggests that the simply supported
boundary conditions in the finite element model are a reasonable approximation
of the actual mounting condition in the experiment. The material modeling in the
structural finite element model also accurately reflects the properties of the sandwich
panel. In other cases inwhich themounting condition andmaterial properties are sub-
ject to uncertainties or prestress occurs during manufacturing, the hybrid approach
facilitates an accurate low frequency assessment of radiation damping [15].
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Fig. 7 Radiation loss factor of the unbaffled honeycomb sandwich panel subject to excitation by
a monopole sound source. Comparison between the results obtained by the FEM-BEM approach
and the hybrid approach

4 Summary and Conclusion

This contribution has reviewed two recent approaches for assessing acoustic radiation
damping in the low frequency range. The methodological basis for both approaches
is the acoustic BEM, which allows to predict the radiated sound power of structures
exhibiting complex geometrical configurations and acoustic boundary conditions.

The first approach is purely numerical and employs a finite element model to char-
acterize the vibrational behavior of the submerged solid structure. Harmonic radia-
tion loss factors are derived based on the forced response of the coupled structural
acoustic system. In addition, excitation-independent modal radiation loss factors are
obtained by solving the underlying nonlinear structural acoustic eigenvalue problem
by a contour integral method.

The second approach is based on an experimentally obtained matrix of mobilities.
The mobility matrix, which contains rtransfer functions relating the surface velocity
to the force excitation, is coupled to a numerical model of the surrounding acoustic
field based on BEM. This approach allows consideration of the actual mechanical
boundary conditions and elastic material properties without the need of acoustic
measurement facilities.

The two approaches were used to analyze the radiation damping of a honeycomb
sandwich panel. The results illustrate the pronounced influence of the type of exci-
tation and acoustic boundary conditions on radiation damping in the low frequency
range. At the structural resonance frequencies, however, the harmonic radiation loss
factors consistently agree with the excitation-independent modal loss factors. The
hybrid experimental-numerical method has achieved excellent agreement with the
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numerically predicted results. The results in [15, 29] indicate that the methods pre-
sented here are also applicable to more complex geometries.

Ongoing and future work includes application of the presented method in the
design process of damping treatments and exploitation of radiation damping for
deliberate energy dissipation.
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Suppressing Brake Vibrations by
Deliberately Introduced Damping

Dominik Schmid, Nils Gräbner, Utz von Wagner, and Volker Mehrmann

1 Introduction

Brake vibrations are a typical example of Noise, Vibration, Harshness (NVH) prob-
lems in the automotive industry, dominating the development costs in several fields
like brakes. The high-frequency brake vibration phenomena investigated here are
caused by self-excitation based on the friction forces between pad and disk or drum,
see e.g. [50]. Particularly brake squeal represents this kind of noise phenomenon in
the audible frequency range between 1 and 15 kHz, see e.g. [23]. Results regarding
the influence of damping on high frequency brake vibrations have already been pub-
lished in [16]. In general, models for brake squeal are nonlinear. For describing this
phenomenon these models have to contain the self-excitation mechanism caused by
the non-conservative friction forces and nonlinearities for restricting the vibrations
to a limit cycle. The experimentally observed stationary vibration often possesses a
dominant frequency during squeal, e.g. [17].

In practice, it is still state of the art to use linearized models around a stationary
solution for describing the potential for brake squeal. Thereby the instability of the
desired quiet solution is interpreted as squeal. If brake squeal models are linearized
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with respect to stationary operation states, the resulting equations of motion can be
written as

Mÿ + (D + G)ẏ + (K + N)y = 0, (1)

with a symmetric and positive definite mass matrixM, symmetric and positive semi-
definite damping matrix D and stiffness matrix K as well as a skew-symmetric
gyroscopicmatrixG and a circulatorymatrixN, while y is the vector of displacement
or rotation angles which can either result from FE models oder models with a low
number of degrees of freedom, e.g. Multibody systems (e.g. [17]).

Fundamental properties of self-excited systems like stability and bifurcation
behavior are strongly influenced by dissipationwhich therefore in general might have
a decisive influence on noise and vibrations. More precisely, damping is capable to
suppress vibrations but also to excite vibrations in self-excited systems, see e.g. [19].
The general influence of damping on brake models is investigated in [16]. Despite its
general importance, damping mechanisms are often omitted or only very fundamen-
tally considered in state of the art simulations both in industry and academia. A quan-
titativemodeling is difficult due to scattering or a lack of parameters. The objective of
the current investigations is to optimize the vibration behavior of brakes—following
directly the title of the priority program—with respect of being calm and smooth
by using deliberately introduced damping. This contribution shows results achieved
in both phases of the project. In the first period the focus was on the investigation
of damping influence of shims in disk brakes while the second period investigates
more general the influence of related damping devices on drum brakes. Results
regarding disk brake investigations are taken from the corresponding doctoral thesis
[37]. Essential analytical, numerical as well as experimental outcome is shown sub-
sequently, see more detailed results in the corresponding Sects. 4, 5 and 6 in [37].
Furthermore, results for a model of a duplex drum brake have already been presented
in [45]. A modified FE model of a simplex drum brake, where one brake shoe acts as
leading and the other as trailing shoe is shown below describing the experimentally
investigated drum design in a more realistic manner.

The paper is organized as follows. First, shims, thin composite structures con-
sisting of elastic and viscoelastic layers applied on brake pad back plates, are mod-
eled and investigated experimentally. These investigations especially consider meth-
ods for Finite Element (FE) models regarding a homogenization process for multi-
layer shim compounds. Furthermore, different shim set-ups are tested for achieving
maximum damping and studying the influence on the investigated brake system.
In next steps, shims are applied to back plates as well as modified disks to assess
the squealing behavior using a dynamometer test rig. The second part deals with
the investigation of possibilities to include damping mechanisms in drum brakes.
The focus is on damping devices capable to be fixed on the free surfaces of shoes
(inner surface) and drum (outer surface). Especially the drumwith its large free outer
surface offers new possibilities compared to disk brakes. Experimental modal analy-
ses of drum brake components are carried out. Furthermore, a Finite-Element drum
brake model with respect to squeal is built up focusing on essential brake parts and
damping measures.
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2 Shims: Principle, Application and Modeling

In disk brakes thin shim structures are often applied on pad back plates as shown
in Fig. 1a in order to avoid brake noise. Their layer thicknesses usually are in the
range of a few tenths of a millimeter and they are intended for increasing damping
or changing other dynamic properties. Figure1b depicts the shim configuration used
for the entire investigations. Here, a steel core is wrapped with two elastomer layers.

Currently in industrial applications, selecting appropriate shims requires a variety
of tests. In the present investigations, the influence of essential factors like geomet-
rical dimensions and rheological properties is considered systematically based on
corresponding shim models. In FE-systems the modeling of thin shim composites
in general is not easy. Often a multi-layer approach is used considering each layer
individually [29]. This approach can cause large element distortions and reduce the
quality of results in simulations strongly. Furthermore, modeling of damping—the
key feature of shims—is often neglected completely leading to inaccurate computa-
tions. Besides sufficient damping often low weight and high static stiffness charac-
teristics are required as well [20]. So, the aim of the actual investigations is to get a
manageable modeling of the shims including all relevant effects for the considered
brake vibrations.

In general shims possess a multi-layer structure. The damping increase of brake
pads using shims is mainly based on the properties of the thin elastomer layers.
A deformation of the pad compound due to bending shown in Fig. 2 results in a
shearing behavior of the soft viscoelastic core. This shear deformation contributes
to a much greater dissipation of brake pads. The principle applied here is called
Constrained-layer-damping (CLD), where a thin damping core, often an elastomer,
is placed between a stiff constraining layer and a thick carrier structure (beam).

Usually the beam possesses a much larger thickness than all additional layers
affecting the stiffness of the entire CLD structure. Note that the main effect of shims
may not consist in providing additional damping but rather pursues the increase of
the pad stiffness [15]. Additional elastomer top (constraining) layers of shims can be
described by the Free-layer-damping (FLD) concept [32]. FLD is a simple measure
for damping of flexural vibrations. Therefore, a damping layer is applied to the
structural surface to bedamped. Similar to the justmentionedCLDcompound, energy
is dissipated by cyclic deformation of the structure, but in this context primarily by

(a) (b)

Fig. 1 a Typical brake pad composition [36] and b shim structure used for the investigations
according to [37, 52][Fig. 2.2]
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(a) (b)

Fig. 2 a Shear deformation of viscoelastic core [43] according to [41, Fig. 5], [25, pp. 31] and b
CLD mechanism according to [35],[pp. 62], see [37],[Fig. 4.8]

elongation and contraction of the viscoelastic damping material [3, 22], not by shear.
This damping principle has shown to be less effective on component level since there
only has been a limited increase of damping. These elastomer top layers are intended
primarily for affecting the contact between pad and piston respectively carrier during
braking and contribute to an improved noise behavior.

Subsequently, analytical approaches are presented allowing the consideration of
damping in CLD structures. A homogenization approach is used combining essential
layers of the shim and providing equivalent system properties. The homogenized
shim structure is implemented into an existing FE model of the overall brake system
and validated using measurement data. The objective is to achieve equivalent system
properties of the multi-layer CLD structure by just using one layer in the FE model.

In the following a homogenization method for a CLD assembly is presented based
on the approaches from Nashif et al. [31] and Ross et al. [35]. Using the theory
from Ross the result is a homogenized stiffness parameter used for subsequent FE-
simulations. The theory was originally developed for a rectangular cross-sectional
composite while in general brake pad shims do not have a rectangular shape. Results
of the present investigations for rectangular plates as well as brake pad back plates
bonded with shims have already been published in [42] containing also experimental
investigations. Due to a more complex geometry of pad back plates more iterations
are needed to achieve a comparable match with experimental results as for rectangu-
lar plates. An additional analytical approach based on [24, 34] is used for considering
essential parameters like shim length and layer thickness particularly affecting damp-
ing of shim composites. This theory describes lateral vibrations of a three layer CLD
structure. Natural frequencies and loss factors [10, 48] of each bending mode can
be determined for the compound, see results in [39]. The damping results from the
shearing of the viscoelastic core is mapped by the elastomer loss factor. Results
based on the presented theories for variations of the shim coverage are shown in
Fig. 3 comparing a symmetrical application in (a) and an edge application starting at
x = 0 in (b).

It is clearly visible that there is a dependency of the loss factor maximum on
the bending mode as well as the degree of coverage. Considering a symmetrical
application the first mode shape shows the highest loss factor at approximately 50%
coverage whereas the maximum at higher modes moves more and more towards a
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(a) (b)

Fig. 3 Influence of shim length considering a rectangular CLD structure (180x50x5 mm3) on a
symmetrical application [37][Fig. 4.16a] and b application at x = 0 [37],[Fig. 4.17a]

fully covered carrier structure. Considering the configuration in (b) a much higher
coverage tends to be needed for achieving an equivalent damping potential.

Summarizing, the following aspects can be noted. First of all, it is of relevance to
have knowledge about what mode shape shall be damped preferably because there
is a strong dependency on system properties.

• Amaximum loss factor of the shim is not always the primary design goal. Stiffness
and mass distribution often play a decisive role, see mode decoupling scenarios
[27].

• The selection of the dampingmaterial is essential. Good dissipation properties over
a wide temperature and frequency range are desirable, see dynamic-mechanical
analysis and modal analysis carried out in [38, 40].

• Increasing the stiffness and thickness of the constraining layer as well as using
elastomers with a high loss factor have proven to be effective [13, 22]. Partial
coverage can lead to higher as well as lower loss factors and should be taken into
account when selecting shims. Therefore it can not be assumed that an increase of
the shim length contributes to larger loss factors.

• An additional fixation of shims with the back plate by riveting should be avoided
to achieve the highest possible damping.

Experimental tests on component level considering temperature influence as well
as coverage variation and delamination scenarios have been carried out in [37, 38,
40]. Support has been provided by student workers [4, 7, 11, 12, 26, 47] and [9]
on specific modeling and experimental aspects during the project, see [37]. Further-
more, the homogenization approach used has been validated in [42]. The results
showed a very good agreement with experimentally determined natural frequencies
by simultaneously maintaining all mode shape as well as the order of appearance.
The reference to damping is considered later in Sect. 4.
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(a) (b)

Fig. 4 a Investigated floating caliper brake and b positioning of triaxial accelerometers and ther-
mocouple [37],[Fig. 5.17]

3 Brake Set-up

The industrial floating caliper brake shown in Fig. 4 is used for the entire experimental
investigations. To measure time series during squealing two triaxial accelerometers
are applied, placed on the caliper and shim as well as an external thermocouple for
recording temperature. All test campaigns were carried out on a LINK dynamometer
test rig D 1500 at Chair of Mechatronics and Machine Dynamics at Technische
Universität Berlin.

To determine the influence of shims on brake noise, identical test campaigns were
carried out for brake pads with shims and after removing shims. One test cycle
included 180 brakings considering different pressure and speed levels. Test bench
trials were repeated ten times to achieve a better quality of squeal information.
Figure5 shows the squealing frequencies determined from the time data.

Comparing both test scenarios it is obvious that applying shims contributes to a
more silent brake system. Figure5 clarifies that a lower number of squealing events,
lower acceleration amplitude levels correlated with the volume of the perceived
squealing noise and a lower number of squeal frequencies occurred using shims.
However, there has been no complete elimination of squealing. It is noticeable that
even a new squeal frequencywith a dominating y-direction at 1.4kHz appears, which
was not present before. A damping increase due to shearing of the elastomer core
requires an appreciable deformation of the pad. A reduction of noise by using shims
is therefore often only noticeable for higher squealing frequencies.

The question therefore is, if damping devices can be applied more efficiently with
respect to the avoidance of squeal. This has led to tests of further measures. We
hereby focused on the damping of the gray cast brake disk. The intention by these
investigations was not primarily to find a countermeasure directly applicable in real
brakes, but to get basic insights into the effectiveness of damping of components
on the behavior of the overall system. In Wehner et al. [51] it has been proved
theoretically using a FE model, that damping of the disk is very effective (and much
more effective than damping pads)with respect to the avoidance of squeal. According
to [8], the friction rings of the disk (i.e. the part in contact with the pad) account for the
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(a)

(b)

Fig. 5 Maximum accceleration amax measured during squealing: brake pads a without shims and
b using shims [37],[Fig. 5.21]

largest part of noise radiation, approximately about 70%. Unfortunately modifying
disks is often a demanding task for thermal and safety reasons. In our tests the outer
cooling fins were removed as depicted in Fig. 6 and shims were positioned inside the
groove and along the circumferential surface. As already mentioned these measures
are not directly applicable to series and have exclusively been used for our academic
trial purposes.

On component level experimental modal analysis were carried out for both test
set-ups, brake disk with and without shims. All measurement objects were placed
on soft foam to realize a free-free equivalent support. For excitation an automatic
impulse hammer and for measuring the output signal a laser vibrometer have been
applied. The frequency response functions are shown in Fig. 6.

The shims used ensure that there is a reduction of peak amplitudes particularly
in the frequency range above 3kHz. Table 1 provides information about the first
eigen shapes considering the response behavior. Comparing damping ratios deter-
mined from transfer functions of the modified disk and shims used by default on
back plates show that there is a lower damping characteristic for the modified disk.
However, a closer look clarifies a significant increase in damping compared to con-
ventional grey cast iron brake disks possessing damping ratios in the order of 0.001
and below. Additionally as argued before, a larger influence of disk damping on the
noise problems is expected, especially in the lower frequency range.

In fact, dynamometer testing emphasizes how effective the measure is, as shown
in Fig. 7. The detected squeal distribution is compared subsequently. Each marker
correlates with a squealing event measured. Shims placed on disk brakes increase
the damping capacity significantly and show a clear benefit on the noise behavior.



254 D. Schmid et al.

(a)

(b)

Fig. 6 Modifications of brake disk in order to investigate measures to increase damping. Cor-
responding mobility (free-free support): a disk with removed outer cooling fins and b disk with
removed outer cooling fins and added shims in groove and along circumference [37],[Fig. 5.14]

Table 1 Influence of shims on systemproperties of brake components: free-free supportedmodified
brake disk and back plate applied with shims [37],[Table 12], [37][Table 18]

f1 ϑ1 f2 ϑ2 f3 ϑ3 f4 ϑ4 f5 ϑ5

Hz – Hz – Hz – Hz – Hz –

Disk 518 0.005 1130 0.001 1231 0.005 1497 0.002 2078 0.008

Back
plate

2475 0.009 3548 0.008 5817 0.007 7622 0.006 9755 0.005

f—natural frequency, ϑ—damping ratio

(a) (b)

Fig. 7 Spectrogram of acceleration signals and overview of occurring squealing frequencies: a
squeal events detected for brake disk without shims and b no squeal events occured for brake disk
using shims [37],[Fig. 5.27]
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The squeal affinity could be reduced entirely by the tested measures. As a result,
additional damping measures should focus on increasing the damping of the disk
which is not an easy task to realize in serial mass produced specimen.

4 Finite-Element Modeling

Shims are inevitably a problem when modeling via Finite-Element programs due to
very thin layers. A finer meshing and thus an increase of degrees of freedom is not
desired for complex brakemodels and contributes to significantly longer computation
times. Experimental modal analyses of identical brake pads have shown that there is
a non-negligible variation especially in damping characteristics [37]. Therefore, the
mapping of damping has to be considered within suitable tolerances in simulations.
While implementing damping, the choice of Rayleigh-damping [5] seems to be the
most appropriate one. This kind of damping gives a sufficiently precise characteriza-
tion of the dissipation behavior in the squeal relevant range considering the variation
captured in test set-ups. FE computations at component level of homogenized shim
structures in [42] showed a very good agreement with experimental tests. The damp-
ing therein has been mapped realistically as well as the natural frequencies. The shim
homogenization process has shown to obtain equivalent results and has been used
subsequently for implementation in an already existing industrial FE brake model of
the experimentally examined brake.

The state of the art in squeal simulations in industry is to perform the so-called
Complex Eigenvalue Analysis (CEA). For CEA the eigenvalues of the brake system
are computed. Due to the friction forces between pad and disk asymmetries in the
displacement proportional terms, i.e. a stiffness matrix and a circulatory matrix,
and additionally gyroscopic terms, eigenvalues with positive real parts Re(λ) are
possible, see e.g. [17, 33]. This means that the trivial solution of the (with respect
to an equilibrium position linearized) equations of motion becomes unstable and the
corresponding vibration mode and frequency are considered to belong to potential
corresponding squeal. A comparison is made between a conventional multi-layer
shim approach in (b) and a homogenized shim compound in (c), see Fig. 8. For
validating the simulation results squeal events measured have been considered in (a).

Comparing the two approaches in (b) and (c) a clear difference can be seen. The
conventional multi-layer approach in (b) shows a poorer agreement with the exper-
imentally determined squealing events in the frequency range up to 10kHz, while
also (c) only determines some of the experimentally found squealing frequencies.
When examining the deformation behavior of mode shapes in (b) large element dis-
tortions occurred locally due to the thin element thicknesses, see results in [37].
These (unphysical) distortions [30] may lead to (also unphysical) positive real parts
and therefore worsen the quality of the results. However, the homogenized shim
approach in (c) constitutes a significant improvement in modeling [37]. As a result,
realistic mode shapes can be observed as well as squeal frequencies are mapped in
a much better way especially at 4kHz and 6kHz.
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(a)

(b)

(c)

Fig. 8 Validation of squeal events: a dynamometer tests and results of CEA: b multi-layer and c
homogenized shim approach [37],[Fig. 6.8]

To reduce computation time in multi-parameter simulations and complex eigen-
value analysis, model reduction methods for the associated FE models have been
developed and implemented as Python and Matlab codes in the first project phase
[18]. These methods were employed in [6] to develop homotopy methods. By first
reformulating the second order system (1) as a first order perturbed dissipativeHamil-
tonian system Eż = (J − RD)z − RN z, with

J :=
[ −G −(K + 1

2N )

(K + 1
2N

T ) 0

]
, (2)

E :=
[
M 0
0 K

]
, R := RD + RN =

[
D 0
0 0

]
+

[
0 − 1

2N− 1
2N

T 0

]
, (3)

one sees that the circulatory term N associated with the FE nodes on the contact
surface is solely responsible for the eigenvalues with positive real part, since the
system with N = 0 always is Lyapunov stable, i.e. it has a spectrum in the closed
left half plane [28] with all eigenvalues on the imaginary axis being semisimple.

Using a full scale industrial FE model and bringing in the perturbation term RN Q
via a homotopy Eż = (J − RD)z − αRN z,α ∈ [0, 1]. it was observed that forα = 0
the maximum real part is −5.0462e − 06 and for α = .1 it is already 2.0336e − 05,
see Fig. 9, where the largest real part of an eigenvalue is plotted vs. the parameter
α, i.e. the unperturbed problem is already close to instability under unstructured
perturbations.
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Fig. 9 Eigenvalue plot for α ∈ [0, 1] [6] [Fig. 4.1]

In order to decide already in a design phase whether the norm of the matrix N is
tolerable to preserve the asymptotic stability in [2] a new efficient method was devel-
oped to determine the structured distance to instability for large scale problems and to
determine the imaginary part of the eigenvalue, where the eigenvalue is crossing the
imaginary axis. The method combines nonlinear eigenvalue optimization methods
with the described model reduction methods.

5 Investigations on Drum Brakes

Drum brakes have largely disappeared in passenger cars in the last years. However,
this type of friction brake is returning in terms of the emergence of electrically
powered vehicles and particle emissions. When used, drum brakes are often applied
within the rear-axels in cars [1] and in buses or trailers [21]. Generally, electric
vehicles are in wide operational states decelerated using the regenerative brake of the
electric motor additionally to friction brakes. The consequence is that conventional
brake systems are no longer permanently exposed to wear. For this reason, drum
brakes are being used more and more frequently at least for rear-axles. Lower costs
in general [14] and the reduction of abrasion emissions due to the encapsulated design
[49] are two main advantages compared to disk brake systems. Nevertheless, noise
in the audible frequency range remains during braking, particularly before standstill.

Usually, industrial drums consist of cast material possessing a high damping
potential among other suitable mechanical properties [14]. These industrial brakes
are often optimized in such way that there are almost no squealing events occuring
in academic test series. To investigate the influence of damping a steel drum, man-
ufactured at the Chair of Mechatronics and Machine Dynamics, instead of gray cast
iron is used for all further investigations presented here. This steel drum possesses a
much lower material damping than cast materials. The simpler structure neglecting
cooling fins also simplifies the Finite-Element modeling. A steel drum with an outer
diameter of 214mm has been turned from a hollow steel cylinder and has been used
entirely for research purposes.
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Fig. 10 Modal analysis set-up of non-industrial steel drum considering 34 collocation points [44]
and [45] [Fig. 3]

Table 2 Damping ratios of non-industrial steel drum, [45, Table 2]

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8 ϑ9

% % % % % % % % %

No
shim

0.057 0.070 0.079 0.061 0.030 0.210 0.019 0.232 0.135

Shim 0.252 0.424 0.703 0.632 0.351 0.841 – 0.831 0.568

Increase 342 506 790 936 1070 300 – 258 320

ϑ—damping ratio

Results showing CEA of a modified duplex drum brake have already been
described in [45]. The modeling and outcome presented herein correspond to the
real simplex drum brake also experimentally investigated at the Chair of Mecha-
tronics and Machine Dynamics. For increasing the dissipation of the drum, four
rectangular shim plates (width length 53 mm, length 139 mm) are applied along the
circumference equidistantly. For determining system properties like natural frequen-
cies and damping ratios of brake components the modal analysis set-up shown in
Fig. 10 is used.

Damping ratios ϑ for both drum set-ups—with and without shims - are shown
subsequently in Table 2. Adding shims results in an increase in damping caused by
the CLD mechanism as described priorly. Damping ratios are about 3 to 10 times
larger than in the turned steel drum. Missing values in Table 2 and 3 could not be
determined in the applied evaluation procedure.
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Fig. 11 Industrial brake shoe attached with shims investigated in [9]

Table 3 Damping ratios of industrial brake shoes, data from [9, Table 4.4]

ϑ1 ϑ2 ϑ3 ϑ4 ϑ5 ϑ6 ϑ7 ϑ8

% % % % % % % %

No shim – 0.6 0.6 0.6 0.4 – 0.6 0.8

4 shims 0.9 1.4 1.6 2.1 1.4 – – 1.5

ϑ—damping ratio

Besides the drum surface passive damping structures like shims can be attached
to brake shoes as well which has been investigated in the student thesis [9]. One
version tested therein is visible in Fig. 11.

The damping ratios of the variant that have shown in [9, Table 4.4] the biggest
impact on damping is summarized in Table 3. Damping ratios of the measure are
compared with the industrial brake shoe. The lining itself contributes to a relatively
high damping potential of approximately 0.6%.Adding shims increases the damping
of the brake shoes once again significantly, especially in the tested partial coverage
execution.

The tests yield that these two placements (drum and shoes) show a considerable
potential for increasing damping. Future tasks might deal with e.g. how to apply
them in vehicles.

The FE modeling of the drum brake in Fig. 12 concentrates on fundamental com-
ponents like drum and brake shoes including lining. All components are modeled
with a simplified geometry. The focus is rather how damping can influence the noise
behavior of drum brakes in general. Hexahedral solid elements with a quadratical
approach (C3D20) are used for meshing all brake parts. Reference points positioned
near the brake shoes and the center of the drum allow the application of concentrated
forces and bearings (pinned-pinned) as well as pivot of the brake parts. The results
presented below relate to the simplex drum brake configuration in Fig. 12, where one
brake shoe acts as leading shoe and the other as trailing shoe. The contact between
lining and drum is based on a surface to surface formulation. Steel components like
drum and back plate are modeled using isotropic properties. For modeling shims
a homogenization approach is used. The lining consisting of several components
[46] shows a nonlinear and transversal isotropic material behavior [53]. Direction-
dependent parameters for the friction material are implemented using engineering
constants.

The approach is rather to show where damping is particularly effective. For these
positions, damping is implemented in a realistical manner using Rayleigh parameters
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Fig. 12 FE drum brake model

Fig. 13 Shims applied to: a drum surface and b brake shoes

determined from experimental damping ratios, see Table 3. A discussion on a higher
term approach like using aCaughey series has been investigated in [45]. TheRayleigh
parameters are implemented in all shim components as well as the drum and brake
shoes. A shim ring with a width of 40mm and a thickness of 1mm is attached to the
outer surface of the drum via tie-constraint. Each brake shoe is equipped with two
shims filling the given space. A detailed view of the brake components including
shims is shown in Fig. 13.

The results of CEAare summarized in Fig. 14. The eigenvalues show that damping
the outer surface drum contributes to an improvement in noise behavior. Much fewer
eigenvalues show a positive real part in the investigated frequency range. Shims
applied on brake shoes show a high effectiveness in the frequency range above 5kHz.
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(a)

(b)

Fig. 14 Results of CEA considering damping in: a brake shoes (mode shape at 4616Hz) and b
drum (mode shape at 6121Hz)

All positive real parts have been shifted successfully in the negative half-plane in
this frequency range.

Nevertheless, there are still three positive real parts in the lower frequency range
remaining. Therefore, it can be stated that damping the drum and brake shoes are one
of the key aspects for reducing or even preventing squeal in the future. A combination
of both measures should be aimed to achieve silent drum brakes. Note that additional
masses and the overall stiffness influence the entire brake system.

A comparison with dynamometer tests considering the academic steel drum are
intended to be focused in near future in a separate paper.

6 Conclusions

Within the actual DFG priority program “Calm, Smooth and Smart” countermea-
sures against high frequency brake vibrations were investigated. These vibrations
are caused by self-excited vibrations, and this problem is a typical example of NVH
issues in automotive industry. Countermeasures for disk as well as drum brakes were
investigated in detail focusing on damping. Damping is well-known to be a powerful
countermeasure against self-excited vibrations, if applied appropriately. In the first
project period thin composite structures, called shims, were examined. As a result
an improved approach for the FE-modeling of shims based on homogenization was
developed. Further key aspects that have emerged can be summarized as follows:
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• A dynamic characterization of shims is important to obtain damping properties
and to classify the vibration behavior in the squeal relevant frequency range. This
includes both the determination of the damping potential of viscoelastic elastomers
within the essential temperature and frequency range as well as modal properties.
Furthermore, the shim length and positioning plays a decisive role for achieving
a maximum damping effect for the considered configuration. The investigations
showed that increasing the shim length does not necessarily contribute to greater
damping ratios.

• The FE modeling of shims as homogenized equivalent single-layer structure pro-
vides adequate aspect ratios of the elements, prevents strong elemental distortions
and therefore shows a realistic deformation behavior. Besides these central aspects
this type of modeling provides a reduction of degrees of freedom and leads to more
efficient computation times. In Complex Eigenvalue Analysis the homogenized
shim structure showed a better agreement with dynamometer tests carried out than
the conventional used multi-layer approach.

• For eliminating low-frequency squealing the increase of brake disk damping has
shown to be essential. The friction ring surfaces of the disk are usually responsible
for a large part of sound radiation. In test set-ups a completely silent disk brake
has been achieved by positioning shims instead of the outer cooling fin ring and
towards the circumferential direction.

• Damping the drum as well as the brake shoes is one of the key measures for
achieving silent drum brakes. Experimental modal analysis showed a significant
increase in damping when applying shims on both surfaces. The Complex Eigen-
valueAnalysis for the developed drum brakemodel considering the essential brake
parts confirmed this.
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Vibration Reduction by Energy Transfer
Using Shape Adaption

Alexander Nowak, Kai Willner, and Alexander Hasse

1 General Approach

The approach is illustrated in Fig. 1 with an exemplary structure. The slender, beam-
like structure consists of specially designed compliant ribswith selective compliance,
interconnected by a hull structure. By actuating the compliant ribs, the structure can
be modified from the configuration with shape I to shape II. This shape adaption
of the cross-sections – which in turn modifies the beam’s second moment of area –
enables a dynamic adaption of the beam’s bending stiffness.

In the bottom part of Fig. 1, a possible time law for the two stiffness states is
shown. The stiffness change is determined by the vibration mode – which is typically
a critical, low-frequency bending mode (see Fig. 1, black curve). At zero-crossings
of this mode’s amplitude, the stiffness is increased by adapting the cross-sections to
shape II and returned to the original stiffness with shape I at the extremal points (see
Fig. 1, gray curve).

The reduction of vibrations is – besides the present damping – based on twomech-
anisms. In the quarter cycles between zero points and maxima of the vibration mode,
the higher stiffness causes a certain amplitude reduction. This effect – not directly
visible in Fig. 1 – can be understood as a counterforce and is called active effect in the
following. The second effect is a transfer of part of the kinetic energy subtracted from
the critical vibration mode into a specifically designed, higher frequency absorber
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Fig. 1 Approach for vibration reduction by stiffness variation using shape adaption

mode. This effect, called semi-active effect in the following, is illustrated by the
blue curve. The high frequency of the absorber mode enables a faster amplitude
decay through structural damping, which can potentially be enhanced by dampers
particularly designed for this range.

In Sect. 2, a proof-of-concept is presented by an experiment with a shape-adaptive
structure. The influence of shape adaption on the structural stiffness and the dynamics
of the system is shown. In Sect. 3, the analysis of the two effects introduced above
(active and semi-active) is discussed in detail. In Sect. 4, a method is presented for
determining a spatially reasonable distribution of stiffness changes by actuation of
the ribs and to perform parameter studies with respect to different types of cross-
sectional modifications and absorber modes.

2 Experimental Study with a Shape-Adaptive Structure

In contrast to active methods, where actuators act directly on the degrees of free-
dom of the vibrating system, and passive methods, in which the system’s inherent
damping is supplemented by additional dissipative elements without further energy
requirements, semi-active approaches are defined as methods that influence the sys-
tem parameters [12].
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The literature offers numerous semi-active approaches for vibration reduction.
Many of these relate to adaptive dampers, e.g. for wind and earthquake protection of
buildings [26] or for car suspension systems [30]. Variable stiffness is often employed
in tunable absorbers, e.g. with the use of shape memory alloys [28], piezo actuators
[18], magnetostrictive [10] or magnetorheological materials [8]. Cyclical variations
in stiffness are found less frequently. In most of the contributions, as for instance
in [21] and [27], discrete spring-mass systems are considered. With shape adaption
– a research field that is driven primarily by the aerospace sector [1] – there are
some obvious benefits, such as the suitability for stiffness adjustment of continuous
structures and the possibility of intermediate values in the stiffness change. Cyclical
stiffness variations for vibration reduction based on shape adaption have, however,
hardly been investigated. For this reason, the experimental setup [22] presented below
was developed at the beginning of the project to evaluate the general feasibility of
this approach.

2.1 Experimental Setup

The test object is shown in Fig. 2. It is a cantilever steel plate with elongating piezo
patch actuators attached to it. When actuated, the piezo patches cause the plate’s
cross-section to bend (see Fig. 2, bottom right) and thus the second moment of area
with respect to the x-axis is changed.

Between the fixation and the first piezo patch, a shaker can be attached for forced
vibrations in y-direction. The response of the structure is measured with a laser
Doppler vibrometer capturing displacement and velocity at the end of the plate.

The fixation is designed in a way that the curvature of the plate is free to change.
Under the subsequent assumption of a constant cross-sectional curvature along the
beam, the second moment of area Ix of the deformed configuration can be calculated
with the outer and inner radius (r1, r2) and the angle of curvature ϑ by

Ix =
ϑ/2∫

−ϑ/2

r2∫

r1

(r · cosϑ − s)2 · r dr dϑ (1)

The stiffening factorμ(ϑ), i.e. the ratio between Ix of the initial and the deformed
geometry, is given by

μ(ϑ) = 12

wh3

(
A(ϑ)w3h + B(ϑ)

wh3

12

)

A(ϑ) = 1

ϑ2

(
1

2
(1 + sin ϑ

ϑ
) − 4

sin2(ϑ/2)
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2
(1 + sin ϑ
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) − 8
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Fig. 2 Setup with a shape-adaptive structure

At maximum measured curvature, a value of approx. 2 is obtained for μ. The
experimental bending measurements also yield a doubling of the bending stiffness
at small deflection. As already mentioned above, it is naturally possible to realize
intermediate values for μ depending on the voltage on the piezos.

2.2 Wavelet-based Analysis

The stiffness variation obviously implies a non-linear, time-variant system. A clas-
sical frequency response function offers only limited suitability for the analysis of
such systems.

To reveal the time-variant dynamics of the structure, continuouswavelet transform
is therefore applied. The wavelet-based spectra of the input excitation E and output
response R are given by

E(a, b) = 1√
a

∞∫

−∞
e(t)ψ∗

(
t − b

a

)
dt, R(a, b) = 1√

a

∞∫

−∞
r(t)ψ∗

(
t − b

a

)
dt

(3)
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with b and a as operators for locality in time and frequency, respectively, and ψ(t)
as the analyzing wavelet function. The time-variant frequency response, defined as
the H1 estimator is

H1(a, b) = GRE (a, b)

GEE (a, b)
(4)

with the wavelet-based cross-power spectra GRE and auto-power spectra GEE :

GRE (a, b) = R(a, b)E∗(a, b)

GEE (a, b) = E(a, b)E∗(a, b)
(5)

Equation4 is a two-dimensional function representing a set of frequency response
functions for all specific values of time. For a more detailed consideration of this
topic and an extension to wavelet-based coherence, please refer to [9].

With the presented method, the time variant characteristics of the structure shown
in Fig. 2 were investigated. The structure was excited with band-limited white noise
and simultaneously, the piezo patches were actuated with square and sine signals. For
clarification, it should be mentioned here that the piezos were actuated very slowly
to achieve a good resolution of the results. This investigation here is therefore not to
be confused with a stiffness variation time law based on a modal amplitude as shown
in Fig. 1.

The wavelet-based input-output analysis is shown in Fig. 3. The results clearly
show the varying natural frequency of the system.The stiffness variation provides two
limits at the natural frequency, specified in Fig. 3 with deformed conf. at maximum
voltage and initial conf. with switched off piezos. It can also be seen that a square-
wave signal allows a relatively sharp transition between those frequencies, while the
sinusoidal actuation leads to a continuous adaption of the natural frequencies with
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all intermediate values. This offers a considerable advantage over variable systems
as in [21, 27], which, as mentioned above, allow only two stiffness states.

2.3 Vibration Reduction Analysis

The analysis carried out in the previous section demonstrates that a time-variant
structural behavior with a defined change in stiffness is possible via shape adaption.
This section describes the application to vibration reduction.

First, this requires the definition of a suitable time law for the stiffness variation.
Preliminary studies on simplified systems (see also Sect. 3) have revealed that a
cyclic stiffness increase at the zero-crossing and recovery of the original stiffness
value at the maximum of the modal amplitude (see Fig. 1, gray curve) is best suited.
In the experiment, this time law is realized by a feedback control based on the
y-displacement at the beam end. Thereby, several signal shapes are conceivable.
Figure4 shows three of these variants, which all have their starting point at the zero-
crossing and end point at themaximum, butwith increasingly smoother shapes (in the
following called square, rounded square and sine actuation). For the square signal,
the voltage V on the piezos can be stated in simplified form as

V =
{
max, if |uk | > |uk−1|
off, else

(6)

with uk as themeasured displacement at a timestep k. This requires an ideal (damped)
sinusoidal displacement curve like the blue one in Fig. 4.However, superpositionwith
higher-frequency components occurs due to the (desired) internal energy transfer
(see Fig. 1 blue curve), resulting in additional zero-crossings and maxima in the
displacement curve.With application of (6), this leads to frequent and abrupt stiffness
increases mostly not related to the modal amplitude of the vibration mode, which
turned out to be highly counterproductive in the experiment and in the numerical
calculations. Filter techniques have also proven to be unsuitable, as the resulting
time delay severely impairs the results.

The following procedure was eventually implemented: the high-frequency com-
ponents are filtered out of the measured displacement and velocity, but not for direct
control of the piezo voltage according to a time law like (6). Instead, these data
sets serve for an estimation of the next quarter period based on previous cycles. If a
displacement zero-crossing is detected together with an exceedance of an adaptive
velocity threshold, the actuation with one of the signal shapes in Fig. 4 is triggered.
The actuation is then no longer influenced by the currentmeasurement but is executed
until the end of the estimated quarter period.
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Fig. 4 Possible time laws for actuation of the piezos

Alternatively, the possibility for multiple sensors and real-time transformation
into the relevant modal amplitudes as a basis for the actuation signals should be
mentioned, which is planned for upcoming experimental studies.

The presented method to modify the stiffness was applied in different test scenar-
ios, including free vibration after initial deflection, sweep over the range of the first
natural frequency andwith random excitation forces. For comparison, the structure in
the initial configuration (low stiffness) and with permanently activated piezos (high
stiffness) was considered. Additional damping elements were not employed.

A first interesting result was observed in the comparison of the three investigated
signal shapes of Fig. 4. The best results are achieved with sinusoidal actuation, fol-
lowed by rounded square and square. Particularly in contrast to stiffness switching
with a square signal, the sinusoidal adaption of the structure does not act as an
impulse on the structure and thus excitation by the actuators is reduced. Besides, a
long dwell time on the maximum stiffness is not that significant, but rather the differ-
ence between maximum and minimum stiffness – which is identical for all shapes.
This observation, however, is very dependent on the structure, type and position of
the actuators and should therefore not be understood in a generalized way.

In all tested cases and also for all signal types, improved performancewas achieved
by applying the variable stiffness concept compared to the time-invariant structure.
Figure5 shows two exemplary results. For free vibration (see Fig. 5a, comparing
constant low stiffness kl to stiffness variation with a sine signal ks), the amplitude
decay is considerably faster. For harmonic loads (see Fig. 5b, comparing kl , ks and
constant high stiffness kh under swept sine excitation), the resonance of ks is clearly
less intense and it is evident that there is no typical resonance peak. The response
curve is rather flat, which is due to the fact that the energy is transferred to higher-
frequency modes.

3 Energetic Considerations

An important aspect in the evaluation of the presentedmethod are energetic consider-
ations. On the one hand, the internal energy transfer to a higher mode (see Fig. 1, blue
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Fig. 5 Experimental results for a free vibration and b sweep excitation

curve) needs to be investigated. On the other hand, efficiency must be evaluated. In
the approach discussed here, actuators are involved and, as already mentioned, there
is definitely an active component which is generally associated with high energy
requirements.

The realization of the stiffness variation evidently has a significant influence on
this consideration. Several approaches can be found in the literature on vibration
reduction by cyclicallymodified stiffness, including piezoceramic actuators switched
from open-circuit to short-circuit state [4], controllable magnetorheological dampers
[17], tension-controlled strings [25], connection of the main structure with an elastic
brace whose stiffness is controlled by a control valve [29, 31] or employment of
a Voigt element with an adaptive damper [16]. Adaption of spring stiffness values
is also frequently found, e.g. by manipulating the effective length of a spring [27],
connecting and detaching a secondary system [15, 21] or changing the shape in
which the springs are arranged [20].

In all mentioned publications, the respective approaches are considered semi-
active. A decisive advantage of semi-active methods often emphasized is their low
energy consumption compared to activemethods [16, 17, 21, 29, 31].However, justi-
fications based on energetic calculations or quantitative comparisonswith othermeth-
ods are not provided. Almost all approaches are either based on adaptive dampers
or include devices that dissipate energy through e.g. friction or electrical resistance.
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Fig. 6 Spring-mass oscillator with variable stiffness

While this is certainly reasonable in terms of vibration reduction, it makes it more
difficult to separate the different effects.

The experiment presented in the last section could also hardly be considered for
such energetic observations. Although the excitation of higher modes can be shown
in a numerical simulation, a separation of active and semi-active components is
practically impossible. In addition, the actuators cover almost the entire free area
and cannot be controlled individually. A parameter variation and determination of
the origin of the internal energy transfer is therefore not feasible.

For this reason, discretized systems similar to [21, 27] were chosen for funda-
mental energetic considerations. A detailed study in this regard is given in [24]. The
following section will provide a brief overview of this topic.

3.1 Single-Degree-of-Freedom System with Variable Stiffness

The system considered in this section is inspired by [27]. In this contribution, the
stiffness of a spring can be increased by a motor-controlled arm blocking some of
the spring coils. Equivalent to the time law based on a modal amplitude shown in
Sect. 1, the time law in [27] is defined as increase of stiffness between zero points
and maxima and vice versa – in this case related to the measured displacement of the
mass. In the above-mentioned publication, the system is treated as a single spring-
mass oscillator, which is also considered in this section. For the sake of explanation,
the system is further assumed to be undamped.
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The corresponding single-degree-of-freedom system is given in Fig. 6, together
with an exemplary displacement curve of a free oscillation. The stiffening device is
realized by scaling the basic stiffness k0 with a factor γ , ranging between 1 and the
quotient of high to low stiffness given in [27]. Thus, no energy expenses due to e.g.
deformation of the structure are considered at this point.

Under these assumptions, the potential energy change at the points of the stiffness
switches results in

�U = 1

2
�ku2 (7)

Considering Eq.7, two facts stand out: the potential energy remains constant
when increasing the stiffness, as the displacement u is zero. As a consequence, the
amplitude decreases after the stiffness switch; however – considering the undamped
system – no energy has been lost so far. Switching back to k0 at the next zero point
would thus result in virtually no variation of the system’s dynamics afterwards.

The second point concerns the stiffness decrease at the maximum of the displace-
ment. In this case, there is a drop of energy, defined by the stiffness difference of the
two states�k = k0(1 − γ ). The energy is extracted from the system by the stiffening
device performing negative work on the system. By definition, it is still a semi-active
procedure, since a system parameter is varied. A corresponding actuator, however,
has to perform the same work as given in (7), which de facto does not distinguish it
from active vibration reduction. In such cases where an amplitude reduction is based
on negative work instead of damping – as shown in Fig. 6 – the corresponding energy
loss is called active component here and in the following.

3.2 Serial System with Variable Stiffness

The preliminary study of the last section is now extended by considering damping
and dividing the spring into two sections. As mentioned, the system’s spring in [27]
can be separated by an arm, which is represented here by two springs with basis
stiffness values k01 and k02. The (comparatively small) mass of the physical spring
is represented by m1.

The corresponding system is illustrated in Fig. 7. As displayed, both springs can
now be scaled with a factor γ1 or γ2, respectively. Thus the high stiffness of the total
system corresponds to

kh = γ1γ2k01k02
γ1k01 + γ2k02

(8)

First, the case of [27] is considered in which an increase in stiffness is performed
by completely blocking the left spring. Therefore, the corresponding scaling factor
γ1 tends towards infinity. With Eq.8 and γ1 → ∞, the high stiffness is consequently
equal to k02. Alternatively, both springs can be scaled with the same factor γ1 =
γ2 = γ = kh/kl , which is in accordance with the single-degree-of-freedom system
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Fig. 7 Serial system with variable stiffness

in Sect. 3.1. The case of scaling one of the spring stiffness values is called local case
here; scaling the whole system is called global case.

The curves in Fig. 7 show a free oscillation with the local case. After releasing
the blocked spring, a noticeable high-frequency oscillation of u1 can be observed,
which already resembles the modal amplitude of the absorber mode in Fig. 1. In this
quarter cycle, the proportionality of u1 to u2

u1 = k2
k1 + k2

u2 (9)

which otherwise results from the low inertia of m1, can obviously no longer apply.
However, Eq. 9 is valid for any high stiffness quarter cycle and the equation of
motion derived for the second degree of freedom is identical in the local and global
case before and after the stiffness increase:

m2ü2 + k1k2
k1 + k2

u2 = 0 (10)

Consequently, the loss of vibration energy (without damping) over two extremal
points t1 and t2 is for both cases
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�E(t1, t2) = 1

2
kh(u

2
2(t

−
2 ) − u22(t

−
1 )) (11)

The generalized energy balance independent of the half-cycle can be formulated
for the global case as

�Ea(t1, t2)

E(t1)
= kl − kh

kh
(12)

The same relative value of energy is periodically extracted from the second degree
of freedom, reflecting the active component introduced in the last section. In the
local case, the relative energy extraction is exactly the same, but is transferred to
the first degree of freedom. This energy transfer is stated here as the semi-active
component �Es . If damping is now included (Ep) and hence – in the best case – the
high-frequency oscillation of u1 is damped out until the next stiffness increase, the
relative energy loss in each half cycle and thus the total energy level at the end of the
observation will be the same in both cases:

�Elocal(t1, t2)

E(t1)
= �Es(t1, t2)

E(t1)
+ �Ep(t1, t2)

E(t1)
=

�Eglobal(t1, t2)

E(t1)
= �Ea(t1, t2)

E(t1)
+ �Ep(t1, t2)

E(t1)

(13)

The specific situation of a completely blocked degree of freedom is of course
not the general case. Hence, the example of modifying the second spring with finite
values for γ2 is discussed below. Due to this adjustment, it is no longer possible to
reduce the vibration without an active component. The stiffness change now implies
negative work and the energy loss is determined by all three components �Ea , �Ep

and �Es . To compare the two variants – local and global stiffness variation – Fig. 8
shows the energy lost through damping for three pairs with increasing intensity of
the stiffness variation. Each pair of same color results in the same total energy at
the end of the observation, with the dotted lines representing the global case and the
solid lines representing the corresponding local case.

With increasing value for γ2, the damped energy also increases significantly in the
local case. In the global case, the dissipated energy even decreases with increasing γ .
This phenomenon can be best explained by considering the system in modal space.
With the matrix of eigenvectors � of the generalized eigenvalue problem with the
stiffness matrix K and the mass matrix M

K� = M�� (14)

applied for modal transformation

K̃ = �TK� = � (15)
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Fig. 8 Energy loss by damping, compared for global (dashed curves) and local (solid curves) case

it is evident that globally scaling each spring stiffness with γ leads to exactly the
same set of eigenvectors:

γK� = M��̄ (16)

The eigenvalues λi as the diagonal entries of � are all scaled according to γ

λ̄i = γ λi (17)

and thus also the total modal stiffness matrix K̃ is scaled with the same factor as
the physical one. The modal basis � however remains constant and likewise the
relation of the entries in K̃. The mutual relationship of the modal amplitudes is
not affected and the modal oscillators do not show any additional response. Without
further external excitation, the first modal amplitude remains dominant in the present
case and again, the system can be considered as a single-degree-of-freedom system.
The active component can be expressed with the modal amplitudes ũ at a point t of
stiffness decrease

�Ea = 1

2
(1 − γ )ũT (t)K̃ũ(t) (18)

which basically corresponds to Eq.7.
This consideration no longer applies in the case presented here, nor in general,

when performing local changes in stiffness. The entries in the stiffness matrix are
changed individually and consequently, there are two modal bases (and possibly
corresponding intermediate states). When switching from high to low stiffness, the
vector of the modal amplitudes ũh must be transformed into the new space
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ũl = �l
−1�hũh (19)

which can contribute to the transfer of energy to higher modes.
With this observation, the damping shown in Fig. 8 shall be discussed once more.

The second mode is not or hardly excited in the global case. Accordingly, there is no
damping with respect to the second mode and the dissipated energy shown in Fig. 8
takes place exclusively in mode 1. Since more energy is extracted with increasing
factor γ , the energy dissipated by damping over the observed period even decreases,
as mentioned above.

In the local case, the same energy is extracted from the first mode as in the
corresponding global case. However, only a part of it can be attributed to the active
component, which is associated with negative work by the actuator. Most of the
energy is transferred to the second mode, making use of the available dissipation
capacity. Since the energy stored in the firstmodal oscillator is identical for each color
pair, the damping in this mode is also identical. The difference between a dashed
curve and a solid curve thus corresponds to the semi-active component, which is
achieved by local stiffness variation.

Finally, two points remain to be named for continuous structures with stiffness
changes performed by shape adaption. On the one hand, the actuator must be explic-
itly considered in the calculation of the active component. The extracted energy is
not directly reflected in the system energy, but via the force and stroke applied by
the actuator. On the other hand, it should be noted that shape adaption always leads
to a change of the modal basis. Accordingly, there will always be an internal energy
transfer and thus a semi-active component. This also applies to the test structure pre-
sented in Sect. 2.With the observations outlined in this section – and those of the next
section – this transfer can be enhanced allowing for a more efficient implementation.

4 Synthesis of Shape-Adaptive Beams

In the last two sections, the focus was on the analysis of the dynamics associated
with variable stiffness. For practical relevance, a method is presented in this section
to design structures for the required stiffness change.

As described in the introduction section, beam-like structures are considered in
the context of this project with the stiffness change being achieved by shape adaption.
Shape adaption is generally associated with compliant mechanisms [6]. Thereby, the
deformability of the structure is exploited in order to achieve predefined kinematics
without requiring sliding or rolling components of conventional mechanisms. The
design of such mechanisms is typically approached by structural optimization proce-
dures [7]. Most of those approaches to synthesize compliant mechanisms for shape
adaption are however limited to planar structures and do not take into account their
dynamic behavior.

A versatile approach for shape adaption of three-dimensional structures is the belt-
rib concept presented in [3] and extended by a synthesis method in [2]. Compliant
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inner rib structures are employed here to deform the surrounding outer envelope.
Related concepts are still being developed to this day, mostly in the field of wing
structures for e.g. the modification of aerodynamic characteristics [19]. As it is well
suited for the adaption of beam-like exterior structures, a design method based on
compliant ribs was also developed within this project with special emphasis on
structural dynamics and realization of stiffness variations.

4.1 Surrogate Model

The energetic considerations in Sect. 3.2 have demonstrated that a homogeneous
increase in the stiffness of a structure is not optimal or efficient. For three-dimensional,
continuous structures, the dynamic behavior is much more complex and difficult to
predict. The initial focus of the design is therefore not on maximizing stiffness
changes, but on the pre-definition of an efficient model that can represent the dynam-
ics of the 3D structure under stiffness variations and allows for parameter studies.
This surrogate model [23] is presented in the following.

An exemplary target structure is shown in Fig. 9. It consists of the outer hull
structure, the ribs to be defined and possibly additional stiffening elements. The
corresponding surrogate model of the ribs, on which the design of a stiffness matrix
is based, is shown on the right-hand side. The surrogate model is a reduced order
model defined at master nodes that are connected to the hull structure. The structural
target behavior is realized by an inverse modal transformation performed on the
reduced model. The general objective is to modify the critical bending mode and,
if necessary, to embed a particular absorber mode. The model should also provide

Hull structure      
(illustrated transparently)

Stiffening elements

Compliant rib

Master DoFs

Surrogate model 
of compliant rib

Hull structure      
(illustrated transparently)

Fig. 9 Shape-adaptive beam with surrogate model
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the possibility to parameterize the cross-sectional deformation, absorber mode and
placement of the ribs in an efficient way.

The first step is the definition of the master (m) and slave (s) degrees of free-
dom (DoFs). All DoFs at which loads are applied and the coupling points with the
ribs are placed in the set of the m-DoFs, the others in the set of the s-DoFs. The
global stiffness matrix is rearranged on basis of these two sets and a transformation
matrix T is calculated

K =
[
Kmm Kms

Ksm Kss

]
, T =

[
I

−Kss
−1Ksm

]
(20)

which is the basis of the well-known Guyan reduction [13]. Since the dynamic
behavior is relevant, T can be extended by eigenvectors derived from the generalized
eigenvalue problem of the slave stiffness and mass matrix [5].

The following calculation only takes place on the partition Kmm and is therefore
independent of the expensive inversion K−1

ss in the transformation matrix T.
The criterion here is not the specification of a desired displacement, but themanip-

ulation of a certain eigenvalue of the stiffness matrix. Thus, it is a matter of finding
a stiffness matrix for each rib i which is essentially ruled by the corresponding
desired deformation mode ϕd . This desired mode (or modes, if the absorber mode is
included) has to be specified andmay be considered as several linear combinations of
the cross-sectional modes in the parameter study. The matrix of eigenvectors � and
eigenvalues � of a rib’s master DoF subspace ki are then determined and compared
with the desired mode:

a = �−1(�Tkiϕd) (21)

Via a, the least influence on the matrix due to a modal adjustment can be deter-
mined. In the corresponding column of �, the eigenvector is replaced by ϕd . Since
the orthogonality of� is lost through the mode replacement, this condition must first
be restored, which is performed by a cholesky decomposition and qr-factorization,
yielding the new modal basis �

ki = CC∗, CT� = QR, � = (CT )−1Q (22)

After normalization of �, the modified modal stiffness values are obtained

�̄ = �Tki� (23)

By scaling the modal stiffness value of the desired mode (and absorber mode), the
adaption of the structure is eventually specified. Finally, the current adapted subspace
k̄i of the stiffness matrix is recalculated with the modified eigenvalues and modal
basis

k̄i = ��̄�T (24)

and is returned to Kmm .
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4.2 Application of the Surrogate Model

As stated in the last section, the presented calculation is independent of the pre-solved
part in (20). As only the master DoFs change, the transformation matrix T remains
valid and does not have to be recalculated. Thus, parameter studies can be carried
out with little expense by the reduced matrices

K̃ = TTKT, M̃ = TTMT (25)

The main parameters to be considered are the form of the actuation, the form of
the absorber mode and the number and placement of the ribs. A detailed parameter
study would be too extensive at this point, but referring to the considerations in
Sects. 2 and 3, one example shall be discussed here. Figure10 shows three results
for a free oscillation case. In the three instances, all parameters such as the form of
actuation were identical, except for the distribution of 5 possible ribs along the beam.
The fastest amplitude reduction can be observed in the configuration with maximum
number of ribs (blue curve). However, it is outperformed by the black configuration
– only having two ribs – after a little over half of the observation time.

Fig. 10 Parameter assessment based on the surrogate model

Both parameter settings reveal a performance decline after an initially strong
amplitude reduction, which reminds of the experimental observations in Sect. 2.3.
The impulse excitation by the stiffness variation has a negative effect and should
therefore be terminated below a certain velocity limit.

With reference to Sect. 3.2, the following can further be deduced: with only two
ribs (black) as opposed to five (blue), less actuators and thus significantly less energy
is required for a comparable result. The ribs in the blue case are distributed over the
entire length of the beam, providing an almost global increase in stiffness. In the
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black case, the ribs are locally positioned at two points, leaving space for vibrations
within the structure and enhancing the highlighted semi-active component by internal
energy transfer. However, considering the gray curve with also two ribs, it is evident
that a local application of few ribs is no assurance of good performance, which
justifies the employment of such preliminary investigations.

Subsequently to such a study and the identification of suitable parameters, these
serve as a basis for the design of the rib structures, which will not be covered here.
The relevant literature offers a variety of approaches, and the interested reader is
referred to e.g. [14] or [11].

5 Conclusions and Outlook

This report has summarized the subjects that were addressed within an approach
for vibration reduction by stiffness variation. Shape adaption was employed to vary
the structures’ stiffness, which proved to be a powerful approach since it allows to
modify the stiffness of continuous beam structures and there is no limitation to pure
on-off switches, as there is with classical stiffness switching concepts. The stiffness
is varied cyclically, with an increase in stiffness between zero points and maxima of
the modal amplitude to be reduced. Twomechanisms are involved in the reduction of
vibrations – on the one hand an active component through negative work of the actu-
ator and on the other hand a semi-active one by energy transfer into higher frequency
modes. Experimental investigations revealed the desired, time-variant behavior of
the structure due to shape adaption and provided a general feasibility assessment
of the proposed approach. Analytical studies of structures with few degrees of free-
dom examined the energetic aspects, whereby a correlation between the efficient,
semi-active component and local stiffness variations was identified. For the design
of shape-adaptive structures, a numerical model based on an inverse modal transfor-
mation was presented with which computationally efficient parameter studies can be
performed.

Upcoming studies mainly refer to the distribution of stiffness variation in spatial
and temporal sense. The importance of a local stiffness variation has already been
shown in Sects. 3 and 4, but the development of a general strategy or optimization
approaches for the spatial distribution of stiffness changes over a structure is still
pending. Temporal optimization of the stiffness variations has not yet been operated
at all (except for signal shapes). When several areas for stiffness modification are
available, as is the case with the belt-rib concept, they can be actuated independently
of each other, which is particularly promising for the reduction of modes other than
the first one.
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A Combined Numerical-Experimental
Approach for the Damping Evaluation
of Non-Linear Dissipative Vibration
Systems

Gleb Kleyman, Martin Jahn, Sebastian Tatzko, and Lars Panning-von Scheidt

1 Introduction

Almost all establishedmethods for experimentalmodal analysis rely on linear system
theory [5], that is a linear relationship between deformation and restoring force. If
that is not the case, for example due to geometric properties of the structure, sliding
joints between single parts of the assembly, or deliberately introduced nonlineari-
ties, the obtainedmodal parameters will most likely be erroneous [30]. The nonlinear
behavior can further cause bifurcations which imply the splitting of solution curves
and may lead to multiple stable and unstable oscillation states at the same harmonic
excitation. Conventional experimental methods fail to excite those unstable states,
which is often observed as the so-called jump phenomenon in frequency sweeps
[16]. Within the first phase of SPP1897 the focus of our project was set to numer-
ical methods for solving nonlinear systems of any size by harmonic balance and
continuation [10]. Therein, nonlinear normal modes have been investigated, where
resonance frequencies and damping ratios depend on the vibration amplitudes. How-
ever, to date there are only few experimental methods that can account for this fact.
One promising approach is experimental continuation. Experimental continuation
exploits numerical methods to trace solution curves (frequency response, resonance
frequency and damping, or S-curves) of real physical systems. Therefore, experi-
mental continuation enables accurate measures of resonance frequency and damping
ratio even for strongly nonlinear systems. The experiences regarding continuation in
the first phase of SPP1897 provide the foundation for the present study. This is how
a comprehensive tool for experimental continuation of almost arbitrary nonlinear
systems was developed.

Experimental continuation was originally introduced to overcome limitations
of the time-delayed feedback control, a method known from chaos control [25].
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Later it was found that experimental continuation is also perfectly suited for the
non-parametric identification of nonlinear systems [26]. Different work-groups have
applied themethod in its original formulation, exploiting a quasi-Newtonmethod [3],
as well as a simplified form [21]. Also, different approaches have been published, that
address stability analysis [2], acceleration of measurement time [1] and increased
robustness against noise [23]. Recently, the authors of the present study have suc-
cessfully applied a simplified form of experimental continuation for estimation of
forced response, resonance frequency, and damping curves of two nonlinear systems
[12]. These results lead to an extensive framework for experimental continuation.
In the current implementation, as presented in this paper, a pseudo-arclength con-
tinuation algorithm based on Newton’s method is exploited. The core is a real-time
processor with integrated AD/DA board, which allows communication between sen-
sors resp. actuators and the continuation algorithm. This approach is demonstrated
by the example of a geometrically nonlinear beamwith additional strongly nonlinear
damping.

2 Methodology of Experimental Continuation

Experimental continuation is inspired by its numerical counter part [24]. In numerical
studies, continuation methods have been applied to nonlinear problems for several
decades, not specifically addressing vibration problems. In recent years, the con-
tinuation principal along with harmonic balance and shooting methods has become
a powerful tool for steady state vibration analysis in nonlinear dynamics. This is
because it enables to efficiently calculate frequency response curves [6] and nonlin-
ear normal modes of large-scale nonlinear conservative [17] and non conservative
systems [13]. Themain idea of continuation is to iteratively find solutions of a param-
eter dependent nonlinear problem. Starting from one solution point, an initial guess
for a neighboring solution point is generated. A root finding algorithm is then applied
to minimize an error measure, the so called residual function, in the vicinity of the
initial guess. Of course, for physical structures there is no explicit expression for the
equation of motion available, this is why input and output data of the system under
test is used instead, as illustrated in Fig. 1.

In experimental continuation frequency domain data is processed. First, time
domain data is collected in a buffer and transferred to the frequency domain by
Fourier-transform. Next, the Fourier coefficients are processed by the continuation
algorithm and a new excitation signal ue is calculated. The excitation signal is trans-
formed back into the time domain. As there may exist unstable oscillation states,
which can not be excited in open-loop, an additional feedback control is applied.
The feedback control works in a sample-by-sample manner. That means at each
cycle of the AD-converter the system output x is compared to a reference signal xR
and a control signal uc is calculated from their difference. If parts of the solution
curve are unstable, the continuation algorithm fails, therefore proper stabilization is
essential. But, the feedback control may introduce higher harmonic distortion to the
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Actuator SystemController

fast time scale 

Continuation algorithm

inverse Fourier-transform

slow time scale 

Fourier-transform

+++-

physical system

experimental continuation algorithm

Fig. 1 Schematic representation of experimental continuation

control signal. These higher harmonic components have to be dealt with actively by
elimination. Therefore, the entire experimental continuation process can be divided
into three basic steps: stability analysis and stabilization (Sect. 2.1), elimination of
harmonic distortion (Sect. 2.2) and the continuation algorithm (Sect. 2.3).

2.1 Stability Analysis and Stabilization

As already stated, nonlinear systems can exhibit unstable steady states. While in a
purely numerical problem it is still possible to calculate those states and analyze their
stability regarding small perturbations [14], in experiments unstable steady states
may become problematic. Here, an analytical example shall explain why unstable
steady states exist and how they can be dealt with. As an illustrative example we
consider a nonlinear, harmonically excited single degree of freedom system with
linear damping and nonlinear stiffness:

mẍ + cẋ + kx + knlx
3 = f (1)

An analytical approximate solution for this system can be found by harmonic
linearization [8], where the excitation f (t) and the response x(t) are considered
harmonic:

x(t) ≈ x̃(t) = x̂ sin(�t)

f (t) = f̂sin sin(�t) + f̂cos cos(�t).
(2)
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Fig. 2 S-curve of a duffing
oscillator with m = 1kg,
k = 1N/m, c = 0.5Ns/m,
knl = 10N/m3 and
� = π 1/s

The nonlinear part x̃3 can be expressed in terms of its Fourier series. If only the
fundamental harmonic is considered and its amplitude f̂ is calculated from the sine

and cosine components f̂ =
√

f̂ 2sin + f̂ 2cos, the linearization leads to:

f̂ = x̂

√
c2�2 +

(
−m�2 + k + knl

3

4
x̂2

)2

. (3)

Equation 3 describes a so called S-curve. In the simplified experimental continu-
ation, as for example described in [1], the S-curves play a major role. They can be
exploited to characterize the dynamics of nonlinear systems near a resonance fre-
quency. This is because from several S-curves, all measured at different frequencies,
the frequency response curves can be reconstructed, as Fig. 9 shows. Compared to
the simplified version, the original approach followed in this work enables the direct
estimation of nonlinear frequency response curves, the implementation is however
more complex. The derivation of S-curves is still useful to analytically assess stability
of periodic solutions, though. For a Duffing system a S-curve is shown in Fig. 2.

As it can be seen, the S-curve is multivariate with respect to the excitation ampli-
tude f̂ . The solutions where the gradient dx̂

d f̂
becomes negative are unstable. A neg-

ative value for dx̂
d f̂

means that inevitable stochastic disturbances cause the system
immediately to drop out of this periodic motion and settle at a stable solution with
dx̂
d f̂

> 0 instead. Stabilization of those unstable states can be achieved by closed-
loop feedback control. If control parameters are adjusted properly, the control loop
can impose a periodic motion, even if it is originally unstable. In control theory, a
state is unstable if it can not be maintained stationary, when a harmonic input signal
ue(t) = ûsin sin(�t) + ûcos cos(�t) is applied. For an experimental setup, where the
force acting between vibration exciter and structure is proportional to the actuators
input voltage, applying a differential controller with gain cc and reference signal
xR = 0 the vibrating system is described by:
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Fig. 3 Input-output function
of a feedback controlled
duffing oscillator with
m = 1kg, k = 1N/m,
c = 0.5Ns/m, knl = 10N/m3

and � = π 1/s

mẍ + cẋ + kx + knlx
3 = γ (ue − cc ẋ). (4)

Following the Ansatz from Eq.2 the solution reads:

ûe = x̂

γ

√
(c + γ cc)2�2 +

(
−m�2 + k + knl

3

4
x̂2

)2

. (5)

Equation 5 describes the input-output relationship of the closed-loop system. For
the trivial case, where cc = 0Vs/m and γ = 1N/V this curve equals the S-curve in
Fig. 2. For the non-trivial case, three curves for different values of the feedback gain
are shown in Fig. 3.Note that these curves represent displacement versus voltage now.
It can be seen, that by feedback control the input-output function is unfold to the point
where the curve becomes unique (yellow curve). That means, compared to the lowest
gain setting (blue curve), there is only one response state for each harmonic excitation
with amplitude ûe.With respect to the stability of the closed-loop system, this implies
that all states are stable. It is essential to point out that although the input-output
function is altered by the feedback loop, the S-curve remains the same for arbitrary
values of cc and γ . In other words, the feedback loop serves to stabilize without
changing the dynamics of the system regarding the force-displacement relationship.
This proof can be performed in the same way for a proportional or proportional-
differential controller.

The given example includes a simplified model of a vibration exciter with an ideal
transfer function (proportionality factor γ ). Often, vibration exciters havemore com-
plex transfer functions, which additionally may affect the stability of the closed-loop
system. Therefore, in real life experiments, the feedback gain has to be determined
experimentally. Best practice is to start with frequency sweeps in order to provoke
the jumping phenomenon if present. This will reveal if the system behaves hardening
or softening near a certain mode. Next a constant excitation frequency is set, which
lies well above or below the linearized resonance frequency of the investigatedmode.
At this specific frequency an amplitude up-and down-sweep is performed and the
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input-output function corresponding to Fig. 3 is measured. Finally, the feedback gain
is introduced and varied until the input-output curve becomes unique. This procedure
can be repeated for different frequencies in order to find settings that reliably stabilize
the system throughout the whole frequency range of interest while preserving the
dynamics of the underlying nonlinear system.

2.2 Harmonic Distortion and Elimination of Higher
Harmonics

In the previous section it was analyzed, that a closed-loop feedback control is capa-
ble of stabilizing steady states of strongly nonlinear systems. However, only the
fundamental harmonic of oscillation was considered. In a real life scenario when a
nonlinear system is excited by a perfectly harmonic input, it may still respond non-
harmonic. As the system response is fed back to the input those higher harmonic
components become part of the excitation signal. These frequency components in
turn excite higher harmonics, leading to an excitation force which has a significantly
high harmonic distortion. Furthermore, it has been shown that even in linear struc-
tures without feedback, significant harmonic distortion can occur at high deflection
amplitudes due to the nonlinear behavior of the vibration exciter itself [28]. This
occurs particularly strongly in lightly damped structures near resonance. Typically,
modal testing is intended to investigate the response of a structure to harmonic exci-
tation. Thus, experimental continuation attempts to keep the excitation signal as
harmonic as possible. For this purpose, higher harmonics are added to the input sig-
nal and adjusted so that all frequency components except the fundamental component
vanish:

ue(t) =
N∑

n=1

usin,n sin(n�t) + ucos,n cos(n�t). (6)

Here N is the number of controlled harmonics. The corresponding Fourier coef-
ficients usin,N and ucos,N are iteratively found by Newton’s algorithm as described in
the following section.

2.3 Continuation Algorithm

Assume y is the solution vector of a nonlinear problem and λ is a free parameter (e.g.
the excitation frequency). In the particular case of experimental continuation, where
a harmonic excitation signal is desired, y is expressed by:

y = [
usin,1, ucos,1, . . . , usin,N , ucos,N

]�
. (7)
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Fig. 4 Generalized
pseudo-arclength
continuation procedure

A parametrization of λ describes a solution curve in a hyper dimensional space
(2N+1 dimensions). Single points of the curve can be approximated by solutions
Yk, compare Fig. 4:

Yk =
[
y
λ

]
. (8)

Given an adequate initial guess each solution point can be estimated by a root
finding algorithm, like the Newton’s method:

Yk, j+1 = Yk, j − J−1R(Yk, j ). (9)

Here, R is the residual vector and J its Jacobian matrix. The Newton algorithm
iteratively approaches the solution curve until a user defined threshold value of the
residual function is reached. Thereby the Jacobian defines the direction of the new
guess in each iteration step. The residual vector can be divided into two parts, a
vector g(Y), which is the vector of function values corresponding to a guess Y and
rpar, which describes an additional constraint:

R =
[
g(Y)

rpar

]
!= 0. (10)

The search region is constrained by rpar. That means only solutions are accepted
that satisfy the condition. A common approach, the so called pseudo-arclength
parametrization, is visualized in Fig. 4. As it can be seen, an orthogonality between
the solution point (as measured from the initial guess Yp) and the secant vector
Yp − Yk−1 is imposed:

rpar = (Yp − Yk−1)
�(Yp − Yk). (11)
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This enables the algorithm to trace solution curves even through folds, where
multiple solutions at the same value of the parameter λ emerge. Each initial guess
Yp is calculated from the most recent solution Yk−1, the tangent vector tk−1 in Yk−1

(which can be approximated by the secant as well) and an arclength parameter ds:

Yp = Yk−1 + dstk−1. (12)

Depending onwhether nonlinear frequency response (NLFR) curves or resonance
frequency and damping curves (also referred to as backbone-curves) are to be mea-
sured, the first part of the residual vector is composed in different ways. In the case
of frequency response curves, 2N Fourier coefficients of the excitation force are
included in the residual vector:

gNLFR(Y) = [
fsin,1 − f0, fcos,1, . . . , fsin,N , fcos,N

]�
(13)

Thus, the last N − 1 harmonics will be eliminated and only the fundamental
harmonic remains, which then equals the desired amplitude f0.
If a backbone-curve (BBC) measurement is performed, the first two entries of the
residual vector are replaced by the phase angle ϕ f,ẋ between excitation force and
velocity at the driving point and ẋcos,1:

gBBC(Y) = [
ϕ f,ẋ , ẋcos,1, . . . , fsin,N , fcos,N

]�
(14)

The first term constrains phase resonance of the fundamental harmonic compo-
nents, which is similar to phase resonance testing by Phase-Locked-Loop experi-
ments [22]. The goal of this force appropriation is to compensate the natural dissi-
pation of the structure, which enables investigation of the underlying conservative
system. Although single-point excitation with the fundamental harmonic is only an
approximation of real phase resonance, several publications have shown that it is
accurate enough to extract nonlinear modal parameters [20, 22]. The second entry
(ẋcos,1) is necessary to establish a phase relationship between the control and the feed-
back signal. As the phase resonance is defined by excitation frequency and amplitude,
different combinations of usin,1 and ucos,1 lead to ϕ f,ẋ = 0. Hence, with ẋcos,1 = 0 a
certain starting point on the solution curve is arbitrarily chosen.

3 Experimental Setup

In the present study a slender clamped-clamped beam is investigated. An additional
nonlinear damping element is later attached to the beam. Such academic systems
are often used as basis structures for the development of novel damping concepts.
However, evenwithout deliberately introduced nonlinearity, they can exhibit severely
nonlinear behavior at moderately large deformation amplitudes in the range of their
thickness [4]. This is due to geometric nonlinear effects where bending and stretching
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Schematic view:

LDV + Displacement 
Sensor

Shaker

Accelerometers

Stinger + Force cell

Fig. 5 Experimental setup of a double-clamped beam (left) and schematic representation (right)

of the beam are coupled. For the examined clamped-clamped beam, the equation of
motion can be derived analytically, exploiting the nonlinear Bernoulli beam theory
considering midplane stretching [27]. An approximate solution considering only
the lowest mode of vibration reveals that its dynamics are described by a Duffing
oscillator with stiffening character.

A picture of the experimental setup is shown in Fig. 5. The steel beam has dimen-
sions of 370x40x1.5mm. Both ends are clamped between massive aluminum blocks,
which are fixed to a vibration isolation table. The beam is excited by a TIRA S50018
modal shaker driven by a BEAKBAA 120 power amplifier. A Dytran 1053V1 piezo-
electric force cell is used to measure the applied force. The beam is excited 251.6mm
apart from one end, which corresponds to 68% of the overall beam length. This driv-
ing point position is selected to allow for the excitation of at least the first five bending
modes. The velocity of the driving point is measured by a Polytec OFV-552 fiber
optic laser-doppler-vibrometer. Additionally, an Allsens AM401 laser displacement
sensor is used as a backup option. Five PCB M353B17 accelerometers are posi-
tioned equidistantly along the longitudinal axis of the beam. Instead of recording
time data, which would require excessive disk storage, all signals were directly
stored as Fourier-coefficients up to the 7th harmonic.

The continuation algorithm was implemented exploiting a dSpace MicroLab-
Box (MLB). The MLB is a hardware device that allows to conveniently implement
user-specific code on a real-time processor. The MLB is programmable via Mat-
lab/Simulink and features multiple analog inputs and outputs to control the exper-
iment. In all experiments the cycle time of the MLB was set to 1/8000 s, which
means the signals were sampled at 8kHz. To avoid aliasing effects the input signals
are filtered by analog first order low-pass filterswith a cut-off frequency of 4kHz. The
block length for the Fourier-transformwas set to 4000 samples. To reduce the impact
of random disturbances, the results were averaged over 3 blocks. An additional block
was added to allow transients to die out after parameter variations. Therefore, for a
continuation problem with 7 parameters (3 harmonics + excitation frequency) the
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determination of the full Jacobian took about 18 seconds. In order to reduce the
overall measurement time the Jacobian was calculated only every 3rd Newton step.
Between those steps a rank-1 update of the Jacobian, known as Broyden’s method,
was performed. As the Jacobian is estimated by a finite difference (FD) procedure,
the FD-step size parameter h is a crucial factor. If the step size is to small, the change
of the residual vector might be in the order or even below measurement noise, which
gives a poor conditioned Jacobian. If the step size is to big, the assumption of finite
differences is violated and the algorithm might predict values far away from the
actual solution. For that reason the FD-step size was declared as an adaptive vector.
That means the FD-step size h follows always the difference between the last two
solutions:

h = |Yk−1 − Yk−2|/2. (15)

Minimum and maximum values were assigned to h to prevent it from becoming
zero or excessively large. Since the individual entries of the solution vector typi-
cally have different orders of magnitude, the solution vector was scaled by so-called
preconditioning [14]. A scaling of the Fourier coefficients by a factor of 10−2 has
proven to be optimal in the conducted experiment. In general, the preconditioning
factor depends on the structure, the vibration exciter and its amplifier. The decision
for the acceptance of a point as a solution point was set as follows: if the maximum
value of the residual vector is less than 1% of the desired force amplitudeOR only the
first entry of the residual vector is less then 1% AND the mean value over all entries is
less than 1%, the point will be accepted. Same condition applies to the measurement
of backbone-curves, with 1◦ phase difference instead of amplitude deviation. If after
15 Newton iterations no solution has been found, these values were increased by a
factor of five, but the corresponding solution was discarded in the post processing.
If this happened three times in a row, the algorithm stopped. The arclength parame-
ter ds was set to values between 0.5 and 3, depending on the type of measurement
and excitation amplitude. Same as the scaling factor, an optimal arclength parameter
must be found by the user in preliminary tests, because as described in [23] a tradi-
tional step size control fails in experimental continuation. The controller gain was
set to cc = 1.5Vs/m. A differential controller was used and the reference signal was
set to zero. For details about stabilization and a heuristic method for estimation of
controller gains see Sect. 2.1.

4 Experimental Results

Various experiments were conducted to investigate the potential of experimental
continuation. The clamped beam was studied additionally with a particle damper
in the form of a locally attached container partially filled with ceramic granular
material. First, experiments are discussed in detail for the beam without attachment.
The results of the particle damped system are presented below.
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Fig. 6 Frequency response (H1-estimate) of the double-clamped beam at driving point position
excited with a random signal at different levels. First five modes (left) and detailed view of the first
mode (right)

4.1 Double-Clamped Beam

Results from Linear Analysis
First, a conventional (linear) experimental modal analysis (EMA) was performed.
EMA is useful to obtain an overview of the essential characteristics of the system,
such as natural frequencies and mode shapes. Furthermore, the EMA has revealed
that the identified parameters were not accurate at high excitation levels.

Figure6 shows the frequency response function (FRF) at the driving point position
(DP) estimated from a random excitation at different levels. For each level the linear
average of 30 blocks was taken, where each block had 32768 samples, while the
sampling frequency was set to 16.834kHz. A Hanning window and a H1-estimator
were used to calculate the FRFs. At a first glance the results show that the FRFs have
only minor differences between the excitation levels. However, the closer view near
the first natural frequency at about 70 Hz (right graph) reveals that the resonance
peak becomes more and more distorted with increasing excitation level. Note that
the distortion is not caused by poor measurement quality as might be assumed, but
is a typical behavior of nonlinear systems in experiments [11]. Consistent with this
observation the EMA method predicted wrongly damping ratios that increase with
the excitation level, compare Fig. 7. The colors correspond to the excitation levels in
Fig. 6. Although linear damping was expected from the theory, the estimated values
for thefirstmode span from0.3 tomore than 3%,which is an increase by factor 10. For
EMAthe polyreference timedomain (PTD)method (also knownas p-LSCE) from the
commercial DAQ-software m+p Analyzer was used. Compared to the deviations in
damping ratio the differences in resonance frequency andmode shapes are negligible
and are therefore not recalled in detail. The first five mode shapes are plotted in Fig. 7
on the left hand side. All mode shapes are mass normalized, which is important for
the nonlinear damping estimation in the following.

Continuation of S-Curves and NLFRs
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Fig. 7 First five mass normalized mode shapes estimated from linear modal analysis at lowest
excitation level (left) and corresponding damping factors (right)

Comparedwith theory, the linear analysis yields contradictory results. A large shift of
resonance frequency but a rather small change of damping was expected prior to the
experiment. For that reason we decided to investigate the structure by experimental
continuation. After an adequate feedback gain was found, several S-curves of the
system were measured in the vicinity of the first linear natural frequency. Figure8
shows two S-curves at 74Hz in comparison. In the red curve the second and third
harmonicwere removed from the excitation force, as described inSect. 2.2. In the blue
curve the same harmonics have been removed from the superimposed driving signal
u = ue + uc (compare Fig. 1). The elimination of higher harmonics from the driving
signal is what usually is performed in the simplified experimental continuation, as
described in an earlier publication [12].Both curves show themaximumdisplacement
per oscillation period over the fundamental harmonic of excitation force. As the
Fourier decomposition of the signal and the time domain data on the right side of
the figure reveal, the harmonic distortion of the blue curve is significantly higher.
That means even if the higher harmonics are eliminated from the driving signal, the
excitation force has still a high contribution of 2nd and 3rd harmonic. Note that those
graphs refer to the measuring point marked by a red circle near the fold. Surprisingly,
the harmonic distortion has hardly any influence on the S-curve in this case. This is
due to the fact that there is no other resonance frequency near the 2nd or 3rd harmonic
(2nd and 3rd natural frequency are around 167 and 313Hz, respectively). In other
systems higher harmonics may lead to a coupling of modes, however.

Next, the S-curves were investigated in comparison to the nonlinear frequency
response curves. Figure9 shows NLFRs at different excitation amplitudes between
0.02 and 0.28N in blue and S-curves in red. All curves were measured at the driving
point position and the 2nd and 3rd harmonic of the force signalwere eliminated. It can
be seen, that NLFRs and S-curve span the same three dimensional manifold between
force, excitation frequency and displacement. While frequency response curves are
two dimensional projections along constant force amplitudes, the S-curves are pro-
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Fig. 8 Comparison between the elimination of higher harmonic components in the control signal
(blue) versus in the excitation force (red) at 74 Hz

Fig. 9 Comparison between S-curves (red) and nonlinear frequency response curves (blue). Force
levels: 0.02, 0.04, 0.1, 0.12, 0.2 and 0.28N

jections along constant excitation frequencies. Therefore, NLFRs can be calculated
from multiple S-curves by interpolation and vice versa. Although, the results clearly
indicate that both approaches are equivalent (provided the higher harmonics of force
are eliminated in both cases), the present study has been focusing on direct contin-
uation of nonlinear frequency response curves. This is mainly for two reasons: First
of all, a NLFR measurement is faster in terms of measurement time, especially if the
major interest lies only in a few excitation levels. Second, the NLRF, as it is a direct
extension of linear frequency response curves, provides an intuitive characterization
of the system’s dynamics.
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Fig. 10 Forced response of the geometric nonlinear double-clamped beam (left) and corresponding
solution curves (right) at f̂ = 0.2N

As described in Eq.7, the actual solution space consists of the Fourier coefficients
of the driving signal and the angular frequency. Nonlinear frequency response curves
are obtained by plotting themaximum displacement for a single solution point versus
the corresponding excitation frequency. The hyper-dimensional solution curve itself
can only be represented by sub-spaces. In Fig. 10 on the right side, a solution curve
is divided into four sub-spaces. Each graph gives the Fourier coefficients (in sine and
cosine components) versus the angular frequency. For this measurement, the first
four harmonics were controlled. As it can be seen, for the 4th harmonic the curve
is unsteady. This is because the content of the 4th harmonic in the force signal is
already very low so noise has a larger impact. However, all other curves show the
typical helix shape.

Estimation of Damping
The estimation of a modal damping ratio using the results of a Phase-Locked-Loop
based phase resonance method, is well described in [18]. This method can be applied
in exactly the same manner for results from experimental continuation of backbone-
curves. Let Φr (z0) be the mass normalized mode shape vector of the r th mode at
the driving point position and x̂r (z0) the displacement amplitude of the fundamental
harmonic at the same sensor location. The mode shape follows from an experimen-
tal modal analysis, as described at the beginning of the section. The displacement
is simply measured during experimental continuation. If the mode shape does not
change much with increasing oscillation amplitude, which can be easily checked by
EMA at different excitation levels, a modal amplitude q̂r can be calculated:

q̂r = �r (z0)x̂r (z0). (16)
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Fig. 11 Forced response
curves at different force
levels (blue) and nonlinear
mode (BBC) of the
geometric nonlinear
double-clamped beam
excited near first resonance
frequency (Force levels:
0.02, 0.04, 0.1, 0.12, 0.2 and
0.28N)

The modal damping follows from a power balance method. Here, it is assumed
that for one oscillation period the active power of excitation equals the dissipative
power, if the structure oscillates at a resonance angular frequency ω0,r . The power of
excitation can be calculated from the excitation force and displacement at the driving
point:

Pexc,1 = 0.5 f̂1 x̂1ω0,r sin (ϕ f,x ). (17)

The phase angle between force and displacement is described by ϕ f,x . Neglecting
higher harmonics, Eq.17 describes the active power of excitation [19]. Therefore,
the nonlinear modal damping ratio is a function of the active power of excitation, the
modal amplitude and the natural angular frequency:

Dnl(q̂r ) = Pexc,1
q̂2
r ω

3
0,r

. (18)

The backbone-curve along with some nonlinear frequency response curves is
shown in Fig. 11. Here, the damping follows the color-bar on the right side of the
figure. It can be seen, that the BBC almost perfectly matches the peaks of the NLFRs.
Indeed, the damping increases with the oscillation level. However, in the measured
interval the damping ratio reaches a maximum of only 0.3%which is ten times lower
than predicted by EMA. Also, there is a significant shift of resonance frequency
(almost 5% at 0.28N), which was not predicted by EMA. This is because EMA
methods are based on linear theory and are thus generally inappropriate for nonlinear
systems.

Concluding, it can be stated, that for the investigated system the experimental
continuation method gives accurate results in terms of nonlinear frequency response
and backbone-curves. The estimated nonlinear damping ratio converges to the results
from EMA at low level excitation. Also, the overhanging frequency curves, which
indicate a stiffening behavior, match the nonlinear theory.
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4.2 Nonlinearly Damped Double-Clamped Beam

In a next step a particle damperwas attached to the beam, see Fig. 12. Particle dampers
are widely investigated, also within the Priority Programme SPP1897, as they are
known for their outstanding performance in vibration mitigation [7, 15]. However,
particle filled dampers behave strongly nonlinear and modelling is a challenging task
that is still the subject of research. Thus the question that motivated this experiment
is: can the experimental continuation method deal with a strongly nonlinear local
attachment mounted on an already nonlinear structure? The particle damper, that
has been used for this study, consists of a plastic box filled with ceramic granular
material. The single particles have a diameter between 0.1 - 1mm and the box is
filled to 50%. The mounting position is at the maximum displacement of the first
mode.

Analog to the previous experiment an EMA was performed first, because the
mode shapes are needed to calculate the nonlinear damping ratio as explained above.
However, the results are not discussed here in detail, as they are close to the case
without particle damper. Next an experimental continuation of the BBC was per-
formed. The very first initial guess was adjusted by manual tuning. Again, 2nd and
3rd harmonic were controlled. Almost all settings, such as sampling frequency, feed-
back gain, etc. retained from the previous experiment. Only the maximum residual
error had to be increased from 1% to 2.5%, as the algorithm sometimes had trouble
finding solutions at high oscillation amplitudes. Figure13 shows the backbone-curve
obtained from the experiment. It can clearly be seen, that the resonance frequency
increases over the entire interval. However, two sections can be distinguished. From
0.02-0.1mm

√
kg the resonance frequency increases strongly and almost linearly.

At around 0.1mm
√
kg the slope decreases and the shape of the curve becomes very

similar to the beamwithout particle damper. The damping ratio is strongly nonlinear.
It first increases to a maximum value about 4.2% at 0.07mm

√
kg and then decreases

asymptotically. Observing the behavior of the particles inside the transparent box one
can assign a physical meaning to the curves. Apparently, the resonance frequency is
lower at low excitation levels, compared to high excitation levels, as the particles do
not move relatively to the beam. With increasing oscillation amplitude the particles
begin to move inside the box. On one hand this increases the dissipation of kinetic

Fig. 12 Box filled with ceramic granular material attached to the beam
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Fig. 13 Resonance
frequency and modal
damping factor of the first
mode of particle damped
beam

Fig. 14 Forced response
curves (blue) and nonlinear
mode of the particle damped
geometric nonlinear beam
excited near first resonance
frequency. (Force levels:
0.2, 0.4, 0.5, 0.6, 0.7 and
1.2N)

energy due to friction and impacts, on the other hand the effective mass is getting
reduced, leading to the shift in resonance frequency. When reaching 0.1mm

√
kg it

indicated a transition. The effectivemass becomesminimal and the geometric nonlin-
earity begins to dominate the dynamics. At the same time the dissipation decreases.
It is remarkable that the maximum damping ratio can be determined quite well. Due
to the narrow interval, a linear analysis performed at different excitation levels would
probably not be able to determine accurate values.

Finally, NLFRs at different excitation levels have been directly measured.
Figure14 shows the NLFRs along with the resonance frequency and damping ratio
in the familiar representation. Again the BBC follows the peaks of the NLFRs. How-
ever, it is to mention that the high level frequency response curve (1.2N) had to
be divided into three single measurements, as the algorithm has stopped. This is
due to a strong distortion of the force signal presumably caused by chaotic particle
motion. Those random impacts introduce high frequency components that would not
be eliminated but lead to erroneous Fourier-transform. Filtering and averaging the
signals over longer periods couldminimize such errors, but has not been testedwithin
this study. Instead, the continuation was resumed starting with the last solution. It is
however encouraging to see that the individually measured curves fit well together
underlining the reproducibility of experimental continuation.
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5 Conclusion

In this paper, a method for the experimental identification of nonlinear frequency
response-and backbone-curves, was presented. The method is based on a pseudo-
arclength continuation algorithm. To this end, a Newton algorithm is used to find
stationary solutions, which minimize a residual vector. Since nonlinear systems can
have unstable steady states, an additional feedback-controller was introduced. It was
explained how stabilization is achieved and a method for empirical determination
of suitable controller gains was presented. As feedback introduces undesired higher
harmonics to the excitation force, those harmonics were eliminated iteratively with
the Newton’s algorithm. The number of controlled harmonics can be easily adjusted
with thismethod. Further, it allows to eliminate any undesired frequency components
not only from the excitation force but any other signal as well. The experimental con-
tinuation method was applied to a geometrically nonlinear beam clamped on both
sides with and without an additional local nonlinearity in the form of a particle
damper. For both cases, the method provided comprehensible and plausible results
which converge to linear behavior for low vibration levels. Prior knowledge of the
nonlinear behavior as well as modeling was not necessary. The experimental con-
tinuation has proven to be a versatile tool for the experimental characterization of
arbitrary nonlinear systems.
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Field-Responsive Fluid Based
Multi-degree-of-Freedom Dampers for
Independently Adjustable Dissipation

Aditya Suryadi Tan and Thomas Sattel

1 Introduction

Damping is a decisive factor that influences the dissipation of energy in a vibrating
system. On one hand, lack of damping in a vibrating system could lead to excessive
resonance or transients with a low decay rate. In such cases, adaptive damping can
potentially calm vibrations in the fastest time possible or allow a smooth transition to
other states. Such options are wanted e.g. to suppress earthquake excitation effects on
buildings or to improve ride comfort in passenger cars. Since the vibration excitation
could vary in form and magnitude, it is preferable to have a smart damper, whereby
the damping can be adjusted based on the requirements in different conditions.

Since the 19th century, field responsive fluids, namely the electrorheological (ER)
and magnetorheological (MR) fluids, attract the researchers’ interest due to their
unique property that serves the aforementioned requirement [11, 18]. By utilizing
these fluids in damper technology, the damper becomes a smart system, whereby
the resulted damping can be adjusted in real-time by controlling the strength of the
applied field. Up to this point, more and more ER and MR-based damper concepts
with various structure designs and mechanical implementations have been inves-
tigated [19]. They find successful study applications in different vibration control
systems, such as vehicle suspension systems, landing gear systems [2], seismic pro-
tection for buildings [7], cable-stayed bridges [17] and advanced prosthetic systems
[3]. As commercial products, MR fluid dampers have been implemented in various
cars. These pure damper elements do operate only in one direction of motion and
require mechanical isolation from torques and transverse forces.
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In most of the aforementioned applications, there exist a movement in more than
one spatial Degree-of-Freedom (DOF). In some cases, the spatial movement and
therefore the vibration could happen even in all of the six existing spatial DOFs of a
rigid body, such as at the driver seat of a truck/bus [8]. For such cases, the damping
is required not only in one direction but also in all of the movement directions,
yet adjustable. Most commonly, several one-directional MR/ER dampers will be
implemented in the vibratory system. In the worst case, at least one element in each
operating DOF’s axis is required [10]. By doing so, the damping can be provided
and controlled in each DOF independently. Another way is to integrate several one-
directional MR/ER damper elements in one damper system, so that the one damper
system can operate in several spatial DOFs. Such a damper system have been applied
as haptic systems, where dissipation in a form of feedback force for the user is
required in more than one direction. The number of DOFs could vary from two-
DOF [1], three-DOFs [9] or even four-DOFs [12], depending on the requirements.
However, using this method, the higher the number of the DOF’s operating axes, the
bigger the total construction volume of the damper system.

In this work, ideas for new possibilities in expanding the functionality of ER/MR
dampers by going beyond the conventional design are explored. The goal of this work
is to find a new design of ER/MR damper to have a compact design yet higher DOFs.
Appropriate design concepts are constructed and their damping performance is inves-
tigated. So far, three general possibilities are explored and investigated, namely the
extension (1) by integrating several damper elements, (2) by combining known oper-
atingmodes, and (3) by adding extra control elements. The damper systems including
the investigation results are presented. The advantages and disadvantages for each
extension method are compared, discussed, and presented as the main contribution
of this work.

2 Electrorheological and Magnetorheological Fluids

ER fluids are composed of smaller micrometer-sized electrically polarizable par-
ticles suspended in an electrically insulating liquid, whereas MR fluids consist of
larger micrometer-sized suspended multi-domain, magnetically soft particles [6].
Figure 1a—OFF state shows how the particles are spread in the fluid.

These particles will form a chain-like formation when a field (either in a form of
electric field strength E or magnetic field strength H ) is applied, in parallel to the
direction of the applied field. This is illustrated in Fig. 1a—ON state, for an applied
field (symbolized by the red arrows) in the vertical direction. Due to this chain-like
formation, these fluids possess yield stress τ0(E/H), which manifests itself in the
shear stress τ -shear rate γ̇ characteristic shown in Fig. 1b. As it can be seen in the
figure, the yield stress value varies in dependence of the applied field (E/H). The
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(a) (b)

Fig. 1 a Principle work of field-responsive fluid and b its shear stress-shear rate characteristic line

Fig. 2 Configuration of known operating modes of ER- and MR fluids

dynamic viscosity of the fluid ηb defines the gradient of the characteristic line. Due
to the nature of these effects, the field-responsive material properties are restricted to
the first and third quadrant of the shear stress-shear rate characteristic. The Bingham
model

τ =
{

ηbγ̇ + τ0(E/H) sgn(γ̇ ) if |τ | ≥ τ0

Gγ if |τ | < τ0
(1)

is sufficient as the first approach to describe the qualitative behavior of the field-
responsive fluid. However, there is a wide variety of existing models which allow a
more precise description of these fluids, based on its operating mode [16].

The control energywhich is required to operate such fluids is solely used to change
theirmaterial behavior but never transferred into a transducer system. For that reason,
the classification as semi-active materials is made.

Irrespective of which fluid type is employed, one of the four different working
modes from Fig. 2 can be utilized. The operating and applied field direction is sym-
bolized by the black and red arrows respectively. Depending on the operating mode,
the damper will have a different design and behavior.
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3 Multi Degrees-of-Freedom Field-Responsive-Fluid Based
Dampers

The objective of this work is to explore the possibility of utilizing the ER/MR fluid to
have a new design of a Multi DOFs (M-DOF) damper. A M-DOF damper comprises
M spatial DOF in one damper element. In this work, the M-DOFs damper is realized
by expanding the known conventional design of the ER/MR dampers. The extension
was done by integrating several damper elements, by combining known operating
modes, and by adding extra control elements, whose results are elaborated in this
section.

3.1 Two DOFs ER Damper—Extension by Integrating Two
Damper Elements

The simplest realization of a M-DOFs damper is by integrating several damper ele-
ments in one system. The basic idea is similar to the aforementioned systems, where
several stand-alone dampers are integrated and connected into one moving body.

3.1.1 Damper Concept

For this concept, two damper elements utilizing shear operating mode are stacked
together in one damper construction [13]. Figure 3a shows the operating concept of
the damper.

As can be seen in this figure, the damper is a stack of two pairs of electrodes that
are mounted between three parallel plates. Between each pair of the electrode plate,
electrorheological fluid is contained. The bottom plate is rigidly fixed to the base and
the top plate is the mounting point for a vibrating system. The electrodes are serially

(a) (b)

Fig. 3 a Principle sketch and b photo of the 2-DOF ER damper, uitlizing the shear mode



Field-Responsive Fluid Based Multi-degree-of-Freedom Dampers … 309

interconnected through two pairs of linear guides. These pairs of guides are mounted
perpendicularly to each other and each pair corresponds to one pair of electrodes.
Through such a mechanism, the relative motion will only occur between the two
plates in which the movement direction is not constrained, which are illustrated in
Fig. 3a. This concept results in a planar damper with two DOFs, whose construction
is shown in Fig. 3b.

3.1.2 Operating Mode

The relative motion between two electrodes will shear the ER fluid that is placed
between them, resulting in shear stress between these two plates. When this happens,
the damper operates in shear mode, where the total output force of the damper can
be derived from the Bingham material model in Eq. (1) together with the kinetic and
kinematic relations for shear stress τ and shear rate γ̇

τ = F

Ap
and γ̇ = ẋi

h
. (2)

Here, Ap is the area of the shearing plate, ẋi is the relative velocity of two moving
plates in x- or y-axis and h is the gap between two plates. Inserting those relations
in Eq. (1) will result in the ER-damper element model in shearing mode:

Fd,i = di ẋi + F0,i (Ei ) sgn(ẋi ) , i = 1, 2 , (3)

with di = ηb
Ap,i

hi
, F0,i = τ0,i (Ei ) Ap,i . (4)

where Fd is the total damping force, d is the damping coefficients and F0(E) is the
blocking forces, that are independently adjustable in each directions by variations in
the electric field strengths in each stage.

In most cases, there exist a parasitic friction force that comes from both the
mechanical guide and the sealing of the fluid chamber. It could be also a combination
of both. These two forces will be generalized as the system friction force FR , which
can be added directly to the Eq.3, which results in:

Fd,i = di ẋi + (
F0,i (Ei ) + FR,i

)
sgn(ẋi ) for |Fd, i | ≥ F0,i (5)

As it can be seen in the equation, the parasitic friction force is not dependent on the
applied field but possesses the same nature as the yield force of the damper. For the
case, where |Fd, i | < F0,i , there exist no velocity (the damper is assumed to have no
movement).
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3.1.3 Experimental Setup and Measurement Results

In this work, the ER fluid RheOil 4.0 from Fludicon is used as the damper medium.
The tested damper is shown in Fig. 3b. It has a total dimension of 200 mm× 200 mm
× 60mmwith an operating electrode area of 42mm× 60mm in each direction and a
total in-plane operating range of 30 mm × 30 mm. The lower electrode pair (defined
as stage 1) allows a movement along the x-axis, meanwhile the upper electrode pair
(defined as stage 2) allows a movement along the y-axis. The first stage and the
second stage have an electrode gap of 0.5 mm and 0.35 mm respectively. A voltage
will be given at each electrode pair to vary the generated damping force.

Figure 4 shows the plots of the damping force Fd over the damper’s velocity for
each direction of the damper axis.

The straight line represents the force from the mathematical model in Eq. (5).
The markers are the measured force obtained in the experiments. The same color is
used in each plot to represent the same electric field strength. It can be seen in the
plots, that the measurement results are in agreement with the mathematical model
in Eq. (5). The plots show that the Bingham behavior occurs in each stage, where
there exists an increase of force generated by the damper as the applied electrical
field is increased. The force that exists when there is no applied electrical field (E =
0 kV/mm), is the parasitic friction force FR that is comprised of the friction of the
fluid sealing and the linear guides. It can also be seen in the plots that this friction
FR is higher for the upper stage when compared to the lower stage, which is caused
by mechanical parts of the damper itself. The applied field can be increased further
up to its dielectric breakdown Edb, that lies at Edb = 10 kV/mm for this fluid.

Fig. 5 displays the measurement results when the coupling of the forces between
the two stages is investigated. In this experiment, the electrical field E1 was given to
the lower stage while the upper stage was moved in a prescribed manner y(t). With
the force F1 in the lower stage acting orthogonally, there is no change in the upper
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Fig. 4 Comparison between the measured (markers) and calculated (continuous lines) shear force
from a stage 1 and b stage 2 for the different applied current
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Fig. 5 Measurement result to investigate the force coupling between the stages

stage’s force behavior F2 over time. This experiment was conducted for the other
stage and a similar result was obtained. The result of these experiments proved that
the damping forces are independently adjustable in each orthogonal damping axis
(x and y).

In conclusion, in this work, a new concept of planar electrorheological damper
is introduced. This new concept of a planar electrorheological damper offers the
possibility to provide two independently adjustable damping forces in two directions
ofmovement through one integrated damping element.Moreover, the performance of
such a damper was investigated and verified through experiments. The performance
of the damper is shown through simulation in [13] to be promising. The difference
in forces between the first and the second stage occurs due to machining tolerance.
The mechanical design can be further optimized to have a larger operating range and
its dimensions can be up- or downscaled easily, depending on the required damping
force in the system. The main difference to the existing M-DOFs field responsive
fluid-based damper is that the integration of the damper elements is done structurally,
where the damper can be connected to the vibratory system at one point using one
connection. Meanwhile, for the existing one, each damper element is connected to
the mass individually.

The shear operating mode field responsive fluid-based damper has been proven to
be useful as a tuned mass damper [14]. In comparison to a pure frictional damper, ER
damper has the flexibility in adapting its yield force, resulting in a better performance.
Additionally to that, due to its simple construction, where only a pair of the electrode
is required to be the field source in its operation, the field can be segmented to provide
another force-velocity characteristic of the damper, as proven experimentally in [15].
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The main drawback of using ER fluid in comparison to the MR fluid is the low yield
stress. However, the research of the giant ER fluid [5] has a prospect in covering this
weakness.

3.2 Two DOFs MR Damper—Extension by Combining
Operating Modes

The second extension category is combining two or more operating modes. The
idea for this method is to use the operating modes that have the same mechanical
configuration, yet operates in another DOF’s axis.

3.2.1 Damper Concept

Possible operating modes for this method are the shear and squeeze mode of the
field-responsive fluid. As it can be seen in Fig. 2, the shear and the squeeze mode
have the same mechanical configuration. In both operating modes, it requires the
fluid to be contained between two surfaces that have a relative motion to each other.
In both modes, the field is also applied in normal direction of both surfaces. The only
difference is in the axis of the relative motion. In shear mode, the relative motion is
in the parallel direction to the surface, meanwhile, a relative motion in the normal
direction to the surface is required in squeeze mode. Based on these points, both
operating modes can be utilized by allowing the damper plate to have movement in
both directions.

In order to allow the shear mode and the squeeze mode to be utilized simultane-
ously, the damper need to be constructed differently than common uniaxial dampers.
The concept of the setup is depicted in Fig. 6a.

The idea is to have a construction, where a circular plate can be rotated in θ -
direction to shear the MR-Fluid within the chamber. Thus, to allow the squeeze
mode to be utilized, this rotating plate should be able to be translated in z-direction
as well. This is realized by mounting the shafts using a ball bushing on each side.
The circular plate is then inserted in the fluid chamber and held using two shafts,
one on each side. Both the fluid chamber and the shaft are made of a non-magnetic
material, presented using the yellow color in the Fig. 6. Using this configuration
allows the fluid in the chamber to be sheared when the plate is rotated and to be
squeezed when the plate is translated. The magnetic field is generated using the
electromagnet, surrounding the fluid chamber (as shown in Fig. 6a). The surface of
the iron core has the same size as the circular plate. This arrangement allows the
magnetic field to be generated perpendicularly over the whole surface of the circular
plate. This concept results in a two-DOFsMR damper with one fluid chamber, whose
construction is shown in Fig. 6b.
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Fig. 6 a Principle sketch and b photo of the constructed 2-DOF MR damper, utilizing the shear
and the squeeze mode

Fig. 7 a Cut section and b the surface of the 2-DOFMR damper, utilizing the shear and the squeeze
mode

3.2.2 Operating Mode

The two operating modes that are utilized in this MR damper, namely the shear and
the squeeze operatingmode, will be derived separately in this section. Figure 7 shows
the details of the damper construction.

It can be seen from this figure that the MR fluid is present on both sides of the
damper’s plate. Based on this reason, the shear torque and the squeeze force need to
be considered from both of the damper’s sides.

Shear Mode

Different from the shearmode used in the previous two-DOFs damper, in this damper,
the shearmode is causedby a rotationalmovement. In this case, the tangential velocity
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varies along the radial axis r of the plate. Therefore, the torque Md will be the total
of all infinitesimal torques dMd from shear stress that acts on a small area with an
infinitesimal width of dr . The infinitesimal torque dMd can be derived using Eq. (1)
together with the kinematic relations of the tangential velocity

vr = r ω and γ̇ = vr
h

, (6)

that results in:

dMd = r dF(r) = r τ(r) dA(r)
(1)= η

ωr

h
+ τ0(H)sgn(ω))(2πrdr)r

= 2π

(
ηr3

h
ω + τ0(H)r2sgn(ω)

)
dr (7)

The shear torque on one side of the damper is the integral of the infinitesimal
torque over the operating radius:

Md,i =
∫ Rp

Rs

dMd = πη

2hi
(R4

p − R4
s )ω + 2π

3
(R3

p − R3
s )τ0i (Hi )sgn(ω) for i ∈ {1, 2}.

(8)
Since the damper plate can be translated along the z-axis, the height on both sides is
not necessarily equal. The relation between the displacement z and the gap’s height
is:

h1 = h0 − z and h2 = h0 + z, with z = zp − zh (9)

with h0 as the initial gap size when the plate is exactly in the middle of the fluid
chamber and zp and zh as the displacement of the damper’s plate and the housing
respectively. The total shearing torque

Md =
(

1

h1
+ 1

h2

)
πη(R4

p − R4
s )ω +

(
4π

3
(R3

p − R3
s )τ0(H) + MR

)
sgn(ω).

(10)
is the sum of the torque from both sides of the plate added by the parasitic torque MR

due to friction from sealing and guides. It is to be noted that even though the plate
is moving along the z-axis, the total magnetic resistance of the magnetic circuit and
therefore the magnetic field strength stay unchanged (H = H1 = H2).

Squeeze Mode

The derivation of the squeeze mode follows the derivation done in [4], where the
squeeze force consists of the force due to the viscosity and the rheological effect.
As done in the shear mode, the squeeze force needs to be obtained by integrating
the infinitesimal force over the operating radius, which comes from multiplying the
pressure differences
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pη(r) = 3ηr2

h3
ż, (11)

pτ0(r) = 2τ0r

h
sgn(ż), (12)

where pη(r) and pτ0(r) are the pressure differences due to the viscous and rheo-
logical effect respectively, with the infinitesimal area dA = 2πrdr . Therefore, the
infinitesimal forces from each part are:

dFη(r) = 6πηr3

h3
żdr, (13)

dFτ0(r) = 4πτ0r2

h
sgn(ż)dr. (14)

The total squeeze force on one side of the damper, Fd,i = Fη,i + Fτ0,i ,

Fd,i = 3

2

πη(R4
p − R4

s )

h3i
ż + 4π(R3

p − R3
s )τ0(H)

3hi
sgn(ż) for i ∈ {1, 2} (15)

is the total of the integrated infinitesimal forces in Eqs. (13) and (14) over the oper-
ating radius. Considering the forces on both sides of the damper’s plate, the total
squeeze force

Fd = 3

2
πη(R4

p − R4
s )

(
1

h31
+ 1

h32

)
ż ...

... +
(
4

3
π(R3

p − R3
s )τ0(H)

(
1

h1
+ 1

h2

)
+ FR

)
sgn(ż)

(16)

is the addition of the squeeze force on both sides of the damper added with the
parasitic friction force FR from the sealing and guides.

3.2.3 Experimental Setup and Measurement Results

The damper plate and the shaft have a radius of 45 mm and 6 mm respectively. The
fluid chamber has a height of 10 mm and the damper plate has a thickness of 5 mm
respectively. This way, the damper plate will have a distance to the chamber wall of
2.5 mm when it stays in the middle of the chamber. The MR fluid utilized in this
damper is the AMT-DAMPRO+ from Arus MR Tech.

For themeasurement of the squeeze force Fd, the rotation of the damper is blocked.
This is done by fixing the shaft and moving the housing instead. The whole damper
is actuated by a linear stepper motor and guided by linear guides. This way, the
movement is guaranteed to be perpendicular to the damper’s plate. During the move-
ment of the damper housing, the magnetic field is varied and the force is measured.
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Fig. 8 Comparison between the measurement (markers) and mathematical model (continuous
lines) for a a squeeze and b shear mode of the 2-DOFs MR damper

Figure 8a shows the comparison between the measured squeeze force Fd and the
calculated squeeze force from Eq. (16), plotted over the displacement of the damper
on the z-axis.

For the measurement of the shear torque Md, the housing is fixed, and the shaft is
rotated by a DC motor. The damper plate is initialized to be in the center of the fluid
chamber so that the distance to both walls is equal (h1 = h2). Both speed rotation and
themagnetic field are varied resulting in the plot in Fig. 8b,where themeasured torque
is compared to the one from the mathematical model in Eq. (10). For both operating
modes, the measured force and torque agree with the ones from the mathematical
model. In the squeeze mode, the force is increasing as the magnetic field is increased
and as the damper gets close to one of the fluid’s chamber walls. Thus, the plastic
Bingham model in Eq. (1) only able to qualitatively model the squeeze behavior and
can not perfectly represent the forces due to the dynamic effect that exists in the
second and fourth quadrant of the plot. In the shear mode, the torque is increased
as the magnetic field and the rotation speed is increased. In both operating modes,
either from the measurement or from the mathematical model, the behavior of the
Bingham fluid has been shown.

In comparison to the two-DOFs damper in Sect. 3.1, both operating modes are
not completely decoupled from one another. This is the consequence of using the
same fluid chamber for multiple operating modes. Therefore, the behavior of theMR
damper when the damper is operated using both modes simultaneously is investi-
gated. The investigation is done by rotating the shaft and moving the damper housing
along the z-axis together. The rotational speed, the translational speed, and the mag-
netic field are varied during thewhole process. The investigation results are presented
in Fig. 9
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Fig. 9 Measurement results on the coupling between the operating modes

Figure 9a shows the investigation results on how the squeeze force is changed
when the damper plate rotates. For that, a reference force is taken for the squeeze
force when the damper’s plate is at the middle position (z = 0). The force ratio

Fratio = Fd,z=0(ω)

Fd,z=0(ω = 0)
(17)

is defined to be the ratio between the squeeze force when the damper plate is rotated
and when the damper’s plate is not rotated at position z = 0. As it can be seen
in the plot, the squeeze force is decreased when a rotation exists. The faster the
rotational speed the bigger is the squeeze force decreased. However, the decrement
is also dependent on the squeezing speed, where the decrement is larger when the
squeezing movement is slower. The same happens to the shearing torque in Fig. 9b.
The shearing torque Md is smaller when the damper plate is translated along the
z-axis at the same time. For the shearing torque, the faster the squeezing speed, the
bigger is the reduction of the torque.

It can be concluded, that the two-DOFs damper using this extension approach
could result in a compact setup, where the same damper arrangement can be used
for more DOFs. The only thing required for this improvement is the ball bushing,
a mounting that allows the movement of the damper’s plate exist in two directions.
The damping can be adjusted in both DOFs axes. However, there exists a coupling
between both operating modes, and the application of a magnetic field will affect
both operating modes at the same time.
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3.3 Three DOFs MR Damper—Extension by Adding Control
Elements

The last extension category of this work is the extension by adding several control
elements. In conventional ER/MR dampers, one control element is used as the field
source. Since this single control element is designed to generate a field in only one
direction at one certain spot, the conventional ER/MR dampers will only operate in
one direction. By adding several control elements in more than one spot, the field
and therefore the damping can be generated in more than one DOF axes, not only
individually but also collectively.

3.3.1 Damper Concept

The suggested damper concept is with MR-Fluids, with the electromagnet as its
control element. Figures 10 and 11 depict the principle sketches and the construction
proposed for a three-DOF MR damper.

As it can be seen in this figure, the damper has a shape of a box. At the damper
wall, four electromagnets are installed at the four sides of the damper, one electro-
magnet on each side, except the top and the bottom sides, see Fig. 11. A symbol of
an orange triangle with the rotation degree within is given to indicate that the electro-
magnet’s display is actually rotated in the principle sketch by 90◦ in comparison to
the constructed MR damper for understanding purpose, where only the orientation
of the electromagnet mounting is changed. The bottom side is used as the mount
of the damper and the top side is used as an access for the damper to be connected
with amoving system. Each electromagnet is driven by an independent power supply
so that the electromagnets can be activated and therefore the magnetic field can be
applied individually on the four sides of the box.

Fig. 10 a Principle sketch
and b photo of the compact
3-DOF MR damper
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Fig. 11 a 2D- and b 3D cut
section of the damper to
show the joint connection

The box itself is the fluid chamber, where the MR fluid is contained. Figure 11
shows the cut section of the box in the xy-plane.

The damper plunger in Fig. 11 can be moved in any direction on the xy-plane,
causing theMR fluid to be squeezed in different directions. The state of the squeezed
MR fluid in a specific region can be altered by activating the corresponding elec-
tromagnet, that is attached to each side of the fluid chamber. As an example, the
electromagnet 4 in Fig. 11 is activated, generating a magnetic field only on the left
side of the plunger. This solidifies the MR Fluid locally in the region where the
magnetic field exists and therefore increases both the flow resistance of the MR fluid
in this area and the movement resistance of the plunger in this direction. Additional
to that, the plunger is 3D-printed and made of a non-magnetic material. This elimi-
nates the attraction force from the magnet to the plunger. With this configuration, the
generated force is a pure damping force from the squeezed MR fluid in the respec-
tive movement direction. In Fig. 11b, there is another cut section that shows that
the plunger is connected to a rod via a universal joint. This joint allows the plunger
surface to be parallel to the wall of the fluid chamber when the plunger is moved by
the connecting rod.

3.3.2 Operating Mode

In the previous section, it is mentioned that the MR fluid will be squeezed by the
plunger. Therefore, the most suitable operating mode for this damper will be the
squeeze operatingmode.However, the one used in this damper is not the conventional
squeeze operating mode. Figure 12 depicts the configuration comparison between
the conventional squeeze mode and the one used in this work.

For this comparison, the fluid is squeezed in the vertical direction (z-axis). As
it is shown in Fig. 12a, conventional squeeze mode has a magnetic field applied
perpendicular to the flow direction of the fluid and to the squeezing surface. In this
work, the field is not always perpendicular to the flow direction of the fluid and
to the squeezing surface. As it is shown in Fig. 12b and has been proven by FEM
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Fig. 12 Configuration comparison between a the conventional squeeze mode and b the one used
for the proposed damper in this work, including c the FEM-analysis using COMSOLMultiphysics
to investigate the magnetic field range

analysis in Fig. 12c, the magnetic field has a form of an arc. Therefore, for a different
location in the fluid chamber, the magnetic field has a different vector. The difference
in the magnetic field lines of both configurations made the chain-like structure of
the MR fluid to have a different orientation. As it is depicted in the Fig. 12a and b,
the conventional one has a chain-like structure in the form of a pillar. Meanwhile,
the one with an arc magnetic field will have a chain-like structure in the form of a
bridge. Based on that reason, the squeeze mode equation in the literature can not be
directly implemented for this setup. This made mathematical modeling difficult and
a numerical model is recommended.

However, to give an insight on how is the squeeze force in this configuration, the
squeeze force will be compared to the conventional squeeze operating mode. The
comparison was done by assuming that the squeezing surface in the conventional
one has a radius of

lm = ls
(1 + √

2)

4
. (18)

where ls is the side length of the quadratic surface of the plate and lm is the average
length between the shortest and the longest distance from the middle point to the
surface edges, which are ls,short = ls

2 and ls,long = ls
2

√
2 respectively. Using the same

derivation steps, as done in Sect. 3.2.2, the squeeze force

Fd =
∫ lm

0

(
6πηr3

h3
ẋ + 4πτ0r2

h
sgn(ẋ)

)
dr (19)

Fd = 3

2

πηl4m
h3

ẋ + 4πl3mτ0

3h
sgn(ẋ) (20)

is the integration of the infinitesimal force dFd, with lm as the boundary. The calcu-
lated conventional squeeze force is then compared with the measured squeeze force
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Fig. 13 a comparison between the calculated force for conventional squeeze mode (dashed lines)
and measured force for the new squeeze mode (straight lines). b the measured torque for various
applied field

from the new configuration (Fig. 12b), whose comparison will be presented in the
next sub-section.

3.3.3 Experimental Setup and Measurement Results

The fluid chamber has a quadratic surface in this plane with a dimension of 78 mm
× 78 mm. In the middle of the fluid chamber, a damper plunger with a 56 mm ×
56 mm quadratic surface in xy-plane is inserted. This means that each side of the
plunger has an equal distance to the wall of 11 mm. The height of the fluid chamber
and the plunger can be any length, as long as it is enough to contain the fluid in the
chamber during its operation. The fluid chamber is filled with magnetorheological
fluid AMT-SMARTEC+ from Arus MR Tech.

For the first investigation, the damper behavior will be analyzed in each DOF.
Figure 13 presents the results of the experiments.

Figure 13a presents the measured squeeze force when the plunger is pushed along
the x or y-axis. For this investigation, only one control element is activated; the one
on the side of the squeezed fluid. For the same displacement, the applied field is
varied. As it can be seen in the result, the force is increased as the magnetic field is
increased and as the distance between the plunger and the wall is decreased. This
reflects the behavior of the squeeze mode. As a comparison, the squeeze force from
Eq. (20) is presented in the same plot using dashed lines. Even though they have
similar behavior, the new configuration of the squeeze mode in this works results
in a smaller squeezing force. This is due to the different orientation of the field and
therefore the chain-like structure of the fluid particles that causes less flow resistance
in the squeezed spot. In Fig. 13b, the measured torque about the z axis is plotted
over its rotational angle. For varied applied fields, the bigger the magnetic field,
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Fig. 14 Measured vibration of the damper’s plunger plotted on the xy-plane

the bigger is the measured torque. Using this box configuration, the torque is not
evenly distributed about the angle of rotation θ . As it can be seen in the results,
the torque reach its maximum when the plunger is rotated by 45◦ and multiples
(θ = π

4 + n π
2 for θ ∈ [0, 2π ] with n = 0, . . . , 3). The minimum torque is reached

when the plunger is rotated by 90◦ and multiples. This is the position where the
plunger’s wall is parallel to the chamber’s wall. These investigations have proven,
that the damping can be generated and adjusted in all three DOFs of the MR damper.

As discussed in Sect. 3.2, the usage of one fluid chamber to generate damping
in more than one direction has coupled the damping from one DOF to the other
DOF. However, in comparison to the previous setup, this MR damper has more than
one control element that is installed in different spots of the damper. It opens the
possibility to adjust the damping in each DOF separately. Figure 14 is a measurement
result for investigating this aspect.

A motor with an imbalance mass is attached to the damper’s connecting rod,
Fig. 10, resulting in vibrations in the xy-plane. This vibrations are represented by
the circular movement of the plunger in this plane in both plots. Figure 14a shows
the changes of the plunger movement amplitude, when all four electromagnets are
activated. As the field is increased, the damping is increased in all sides of the damper
and therefore the vibration amplitude is decreased evenly in all directions. That is
the reason why the radius of the circle is smaller for a higher applied current. In
Fig. 14b, only one pair of the electromagnet is activated, namely the electromagnets
that are installed in the y-axis. This caused the reduction of the vibration amplitude
only in y-axis, where the circle becomes an oval. As the field is increased, the oval
is smaller. It is also investigated that the reduction of the vibration amplitude exists
in the x-axis, yet much less in comparison to the reduction on the y-axis. This shows
that using this extension approaches, the damping can be adjusted to be dominant
only in one DOF.
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4 Conclusion and Outlook

In summary, three extension approaches for MR/ER dampers have been proposed
in this work. They were done by integrating several damper elements, combining
existing operating modes, and adding control elements in one damper system. The
proposed dampers were built and their performance is tested via experiments. The
known operating modes are verified with the known mathematical model.

It can be concluded from the results, that M-DOFMR/ER damper can be realized
using these extension approaches. Using the proposed methods, there is a prospect of
making the damper system to bemore compact. Bydoing so, the damper requires only
one fixing point to the vibratingmass, which results in a simpler overall construction.
The proposed integration of several elements allows an independent adjustment,
whereas the proposed combination of operatingmodes and the addition of the control
elements cause a coupling exists between the damping in different DOFs. Therefore,
as the drawbacks of these extensions, the system becomes more complicated as the
operating modes are coupled and harder to be modeled mathematically. This might
demand a more complex control to regulate the damping in each DOF. Nevertheless,
the work has shown that there are still a lot of possibilities for exploring the MR/ER
damper design. In the future, a better way to model the damping behavior of new
operating modes and the coupling of the damping in the system is required.
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Granular Mixtures with Tailored
Effective Properties

Kianoosh Taghizadeh, Stefan Luding, and Holger Steeb

1 Introduction

In our daily life we are surrounded by granular materials like soil, sand, coffee, nuts,
food- or detergent-powders, pharmaceutical products like tablets, and many others.
Granularmaterials constitute over 75%of rawmaterials feedstock to industry, includ-
ing pharmaceutical, mining, agriculture, chemical, biotechnological, textile, etc. In
spite of their ubiquity and apparent simplicity, their behavior is far from being fully
understood. This leads to the loss of about 10% of the world’s energy consumption in
processing, storage and transport of granular materials, and to various risks related,
e.g. to avalanches or landslides due to instability of slopes or foundations.

Granularmaterials behave differently fromusual solids or fluids and showpeculiar
mechanical properties like dilatancy, history dependence, ratcheting and anisotropy.
The behavior of granular materials is highly non-linear and involves irreversibility
(plasticity), possibly already at very small strains, due to rearrangements of the
elementary particles [1–3]. Furthermore, complex soil behavior also originates from
the multi-phase nature of these materials that exhibits both elastic and plastic non-
linearities due to solid-fluid coupling.

Mixtures of different type/size particles have become a key research topic in
recent years due to their wide range of applications in engineering [4–9], e.g. sand-
rubbermixtures in asphalt. The reuse of waste rubber tires creates a win-win situation
whereby non-biodegradable tires are given a new lease of life. Understanding gran-
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ular mixtures poses still formidable challenges, in particular for complex mixtures
with more than one particle species and phase. However, such granular mixtures can
exhibit tailored mechanical properties—better than each of the ingredients—due to
the interplay of small-big, soft-stiff, and smooth-angular particles.

In analogy to “classical" solids, the behavior of granular materials depends on
the amount of deformation the sample is subjected to. Roughly speaking, we can
distinguish (i) an elastic regime at very small strain, (i i) a non-linear elasto-plastic
regime that holds from small to intermediate strain, and (i i i) a fully visco-elaso-
plastic regime at large strain and strain rates, where the material flows (solid to fluid
transition) at constant stress and volume—if sheared long and fast enough. A special
note on the elastic regime should be given: soil behavior is considered to be truly
elastic only in the range of extremely small strains (ε ≤ 10−4). For slightly higher
strain, soil may exhibit a non-linear stress-strain relationship, stiffness being almost
fully recoverable when unloading. For larger strain, the material deforms irreversibly
and deformations are permanent (plastic). In all cases, the elastic material stiffness
is defined only for small strain and can be found from measurements of the (shear)
wave velocity in situ and laboratory tests by probing, i.e. incremental stress-strain
tests.

Understanding the effective mechanical properties of closely packed, dense gran-
ular systems is of interest in many fields, such as soil mechanics, materials science
and physics. The main difficulty arises due to discreteness and disorder in granular
materials starting at the particle scale, which requires a multi-scale approach. The
concept of an initial purely elastic regime at small strains for granular assemblies is
an issue still under debate in the soil mechanics community. Approaches that neglect
the effect of elastic stored energy are as questionable as approaches that ignore the
dynamics.

For many geotechnical structures under working loads, the inherent deformations
are small. The regime of deformation where the behaviour can be considered lin-
ear elastic is infinitesimal, with nonlinear and irreversible effects present already at
small strains. Nevertheless, characterisation of the stiffness of soils is important, as it
provides an anchor on which to attach the subsequent stress-strain response [10, 11].
Features visible in experiments, like the propagation of acoustic waves, can hardly be
described without considering an elastic regime.Mechanical waves are perturbations
moving through space and time in a medium where the small deformations leads to
elastic restoring forces. This causes a transfer of momentum or energy through parti-
cle contacts without or with little mass transport. The propagation of the mechanical
wave through the medium can give valuable information on the state, the structure
and the mechanical properties. Through wave propagation with small amplitudes,
one can examine a packing without sample disturbance or destruction which makes
it possible to probe different situations.

In recent decades, the Discrete Element Method (DEM) has become increasingly
popular as a computational tool to model granular systems in both academia and
industry [12–14]. To date, due to an increase of computer power, considerable sci-
entific advances have been made in the development of particle simulation methods
resulting in an increasing use of DEM. It is a powerful tool to inspect the influence
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of the microscopic contact properties of the individual constituents on the effective
(bulk) behavior of granular assemblies.

The purpose of this contribution is to improve the understanding of basic mech-
anisms in particle systems and to guide further developments for new macroscopic
constitutive models. It is organised as follows: in Sect. 2, the classical relations
between wave velocity and elastic moduli in a solid are reviewed; Sect. 3 intro-
duces the wave propagation technique including the interpretation of experimental
results; Sect. 4 investigates the effects of inter-particle contact properties on the elastic
bulk and shear modulus by applying isotropic and deviatoric perturbations. Further
numerical results are compared with experiments. Finally in Sect. 5, we summarise
by mentioning the key points of the research and close with an outlook.

2 Waves and Elasticity

Awave is an elastic perturbation that propagates between twomaterial points through
a material body (bulk waves) or on the surface (surface waves) without plastic defor-
mation [15]. In the case of bulk waves the acoustic-elastic effect is related to the
change in the wave velocity of small amplitude waves due to the stress state of the
body.

In the present section, we will review the relations between the elastic characteris-
tics and the velocities of acoustic waves, in the longitudinal and transversal directions
[16]. Let us consider a three-dimensional body with density ρ. It is assumed that the
material body is homogenous, isotropic and linear-elastic. A volume element sub-
jected to a force Fi in direction i will undertake a displacement ∂ui in the same
direction. The stress change due to the propagation of the wave in the body is given
by the local form of the balance of momentum [17]:

∂σi j

∂x j
= ρüi , (1)

with theCauchy stress σi j and üi displacement (second time derivative) of the volume
element in directions i, j = 1, 2, 3. On the other hand, the constitutive relation for
the elastic body holds, that relates the stress tensor to the strain εi j via the 4th order
elasticity tensor Ci jkl

σi j = Ci jklεkl . (2)

In the isotropic case, Eq. (2) becomes Hook’s law of linear elasticity

σi j = λεkkδi j + 2Gεi j , (3)
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where summation convention is implied εkk =
3∑

i=1

εi i , with G and λ the shear mod-

ulus and Lamé coefficients respectively, and the linear strain tensor is given by

εi j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (4)

The bulk modulus is related to the previous quantities as K = λ + (2/3)G.
Using Eqs. (3)–(4) in Eq. (1), the equation of motion becomes

ρ
∂2ui

∂t2
= ∂

∂x j

(
λ

∂ui

∂xi

)
+ G

∂2ui

∂x2
j

+ G
∂

∂xi

(
∂ui

∂x j

)
. (5)

FromHelmholtz decomposition, the displacement vectoruuu can bewritten in terms
of a scalar potentialφ and a vector potentialψψψ :uuu = ∇∇∇φ + ∇∇∇ × ψψψ , where the tensorial
notation has been used for the sake of brevity. Thus Eq. (5) transforms to

∇∇∇
[
ρ

∂2φ

∂t2
−

(
λ + 4

3
G

)
∇2φ

]
+ ∇∇∇ ×

[
ρ

∂2ψψψ

∂t2
− G∇2ψψψ

]
= 000. (6)

Equation (6) is known as the wave equation and splits longitudinal and transversal
modes of propagation. The first term in Eq. (6) depends only on φ, related to prop-
agation of waves in the longitudinal direction, while the second term depends on
the vector potential ψψψ , associated with transversal waves. As both terms must be
separately zero to satisfy Eq. (6), we obtain the two wave modes for isotropic, homo-
geneous linear-elastic media. The longitudinal is always faster than the transversal
wave mode. Thus, it is also denoted as the P-wave (primary wave). The (slower)
transversal wave is known as the secondary wave or S-wave (shear wave).

Finally, if we introduce the longitudinal and shear components of the displacement
related to φ and ψψψ as uuu P = ∇∇∇φ and uuuS = ∇∇∇ × ψψψ . From Eq. (6) we can derive the
velocities of the longitudinal and transversal waves for the isotropic elastic body:

VP =
√

(λ + 4/3G)

ρ
& VS =

√
G

ρ
(7)

Note that local rotations do not occur in longitudinal waves at the material point,
while volume changes are not present in transversal waves.

The P-wave canmove through solids and fluids (as well as gases), like water or the
liquid layers of the earth. P-waves are also known as compressional waves, because
of the pushing and pulling responses they generate. Subjected to a P-wave, particles
move in the same direction as that of the wave moving (shaking the ground in the
direction they are propagating). The second type of body wave is the S-wave or sec-
ondary wave or shear wave, which is the second wave one can feel in an earthquake
(shaking the ground perpendicular to the direction in which they are propagating).
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S-waves are slower than P-waves and can only move through solids, not through
liquids medium, i.e. shear waves require a medium with shear stiffness to propagate,
G > 0; thus, they are filtered in fluids. It is this property of S-waves that led seis-
mologists to conclude that the Earth’s outer core is a liquid. When observing Eq.
(7), some aspects appear: (i) the propagation velocity increases with the stiffness
of the material and decreases with its mass density (inertia) these characteristics
being constants in a given solid body; (ii) the velocity of transversal waves is smaller
than the velocity of longitudinal waves, given the relative values of the moduli; iii)
wave velocities of isotropic, homogeneous, linear-elastic media are not a function of
frequency, i.e. the medium is non-dispersive.

3 Experimental Study of Small Strain Stiffness

Characterization of mechanical (elasto-plastic) properties has traditionally been
made in a triaxial apparatus using precise displacement transducers or in resonant
column devices. In recent years, several methods became commercially available to
determine the elasto-plastic response of geomaterials both in the laboratory and in
the field [18, 19].

The laboratory tests are classified as dynamic or static, as described in Table 1.
Dynamic testing is performed at a strain rate high enough to initialize an inertial effect
within the specimen, whereas static testing is conducted at a much lower repetition
rate at which inertial effects are negligible.

3.1 Wave Propagation Technique

Among experimental characterization techniques, ultrasound wave propagation is
widely accepted for their rapid, non-destructive, and low-cost evaluation. Through
transmission techniques for determining one-way travelling times, which includes
BE (BenderElements) andUT (UltrasonicTransducers) technology, has beengaining
popularity as an experimental method due to its relative ease of obtaining the modu-
lus of a material. The instrumentation consists of a pair of piezoelectric transducers,

Table 1 List of experiments classified as static or dynamic and their strain levels [20, 21]

Type of test Strain (%)

Static Triaxial (TX) >10−4

Dynamic Resonant column (RC) 10−5–10−2

Bender element (BE) <10−3

Ultrasonic transducer (UT) <10−4
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Fig. 1 Schematic drawing of an experimental setup of wave propagation testing [23, 24]

function generator, signal amplifier, voltage divider for the input signals and digital
oscilloscope, and signal amplifier/filter. Usually transducers are installed along the
axis of the cylindrical sample, i.e. at the top and bottom of a triaxial or oedometric
cell, to probe the stiffness of the soil along a given stress path [22]. Figure 1 shows a
schematic drawing of the setup and the peripheral electronics. The transmitting trans-
ducer transfers the high-voltage electrical signal to a mechanical excitation which
is finally propagating through the medium. The receiving piezoelectric transducer
receives the propagating mechanical excitation and transforms it back to low-voltage
electric signal which will be amplified and acquired with the storage oscilloscope.
From the speed-of-sound of the first arrivals and the geometry of the sample, the
resulting elastic wave velocities could be obtained. Finally by knowing the elastic
wave velocities as measured with the wave-based techniques and total mass density
of the media, the stiffness of the materials can be determined.

The signal-to-noise ratio is improvedby repetitive averaging of a sufficient number
of detected signals using the digital oscilloscope and a computer for further process-
ing. Concerning the travel time (t) and distance (L), necessary to calculate the wave
velocity (V = L/t), the determination of travel distance (between transducers) is
generally considered the less problematic of the two [25, 26].

The longitudinal velocity Vp and the transversal velocity Vs can be measured by
using P-wave or S-wave transducers respectively. The longitudinal, P-wave modulus
M is related to the P-wave velocity Vp in the medium by

M = ρV 2
p , (8)

where ρ is the bulk density of the sample, which is related to porosity φ and particle
density ρp as: ρ = (1 − φ)ρp. Note that p stands for rubber or glass, i.e. p = {r, g}.
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3.2 Procedure and Results

Uniform glass and rubber particles with similar size (diameter: dr = dg = 4 mm) are
used in this study to prepare cylindrical specimen with different volume fractions of
glass and rubber beads.

Glass-rubber samples were prepared with variable rubber content, ν = 0, 0.1,
0.2, ..., 0.9, 1.0, where ν = 0 is composed of glass particles only and ν = 1.0 of
rubber particles only [27, 28]. All specimen are tested in our custom-made triaxial
cell with sample diameter equal to D = 10 cm and two sample heights, H = 10 cm
and 7 cm. Granular samples are compressed in the axial direction via the top piston
in subsequent stress increments. At each step the radial stress is corrected to match
the axial stress. Water is used as confining fluid for the samples enclosed by a rubber
membrane. At each pressure level (from 50 to 350 kPa), a high voltage burst signal
is excited at top to measure the time of flight.

We limit our studies to the compressional P-waves, since the transducers are
mounted on the longitudinal direction. The mass density of samples at different
rubber content is ρ = (1 − ν)ρg + νρr , where ρg and ρr are true mass densities of
glass and rubber beads, respectively.

By means of Eq. (8), we can then calculate the P-wave modulus of the granular
mixtures tested in the triaxial cell. Figure 2a shows the evolution of the bulk stiff-
ness with the rubber content for all mixtures at different pressure levels. The figure
shows that the compressional modulus remains fairly constant by increasing the vol-
ume of the rubber content to ν = 0.3. Since the majority of particles are glass, the
wave velocity is controlled by glass medium. In the case of high pressure, adding
a small amount of soft particles surprisingly enhances the effective P-wave mod-
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log-log, see Ref. [33]



332 K. Taghizadeh et al.

ulus measured from longitudinal ultrasound investigations of the medium and the
highest modulus is observed at ν ≈ 0.2. Thus, granular mixtures can be manipulated
to obtain aggregates with even higher stiffness, but lighter and more dissipative,
thanks to rubber, when appropriate external conditions are matched (in this case the
pressure) [29]. Between ν = 0.3 and 0.6, there is a considerable drop in the wave
velocity which is the transition from glass- to rubber-controlledmedia. Increasing the
amount of rubber particles (i.e. the rubber content ν) reduces the effective stiffness.
The modulus is again relatively stable between ν = 0.6 to 1 which is linked to the
dominance of the rubber media.

In Fig. 2b, M-modulus is plotted against confining pressure pc (boundary value
problem in Fig. 1). The slopes of the M-lines with P are almost constant for ν ≤ 0.3
and it follows the expected scaling M ∝ P

1
3 [2, 30, 31]. While the behavior sud-

denly tends to change by increasing the rubber content (for ν = 0.4 and 0.5). For
these samples with intermediate rubber content, the scaling law of the M-modulus
with pressure P is M ∝ P

1
2 with a power higher than the typical scaling (P

1
3 ). Such

a change in the slope is due to the creation of new particle media by incorporating
rubber particles [32]. Further on, the modulus becomes almost independent of pres-
sure for higher rubber content. As already observed in Fig. 2a, samples with ν = 0.6
to 1 do not show significant dependence on pressure. The reason for this is related to
the softness of rubber particles which deform so high such that they lose the nature
of point-to-point contact, i.e. contacts between particles become surface contact.

3.3 Attenuation

When a mechanical wave propagates through a medium, a gradual decay of the wave
amplitude can be observed before the wave diminishes, partly for geometric reasons
because their energy is distributed on an expanding wave front, and partly because
their energy is absorbed or damped by the material they travel through. The energy
absorption depends on the material properties. Amplitude is directly related to the
acoustic energy or intensity of the travelling ultrasound wave. In certain materials,
sound pressure (amplitude) is only reduced by the spreading of the wave. The effect
produced is to weaken the sound. ‘Scattering’ is the reflection of the sound waves
in directions other than its original direction of propagation. ‘Absorption’ is the
conversion of the sound energy to other forms of energy. The combined effect of
scattering and absorption is called attenuation of seismic waves and is an important
characteristic, e.g. in seismology.

Attenuation is commonly characterized by the quality factor Q. It is most often
defined in terms of the maximum energy stored during a cycle, divided by the energy
lost during the cycle. Q reflects the energy attenuation of seismicwaves in subsurface
media as:

Q = Energy of seisemic wave

Energy dissipated per cycle of wave
= 2π |A( f )|2

|A( f )|2 , (9)
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where |A( f )|2 is the energy of the wave,|A( f )|2 is the change in energy per cycle.
Among various methods [34–40] of measuring attenuation from ultrasound data,

the spectral ratio method [41] is most common perhaps because it is easy to use and
most stable. Computation of the spectra of the wave and evaluation of the logarithmic
ratios for two receivers at depth L1 and L2 yields:

ln

∣∣∣∣
A1( f )

A2( f )

∣∣∣∣ = −π(t2 − t1)

Q
f + cte, (10)

where A1( f ) and A2( f ) are the amplitude spectra at different lengths, f is the
frequency, t1 and t2 are the travel time from source to receiver at length L1 and L2,
and cte is a fitting constant.

To employ the spectral-ratio method for our mixture samples, we perform tests
on samples with two different lengths, 7 and 10 cm. As we have found an interesting
mechanical response from the stiffness analysis (Fig. 2), we dedicate our attention
to samples with low rubber content.

Values of damping (loss factor) Q−1 are plotted against the rubber content in
Fig. 3a (up to ν = 0.3) for different pressure levels. It is observed that when the
amount of rubber increases, the quality factor parameter Q−1 decreases with confinig
pressure P and increases in a linear fashion, irrespective to the pressure level, i.e. the
system is more dissipative by increasing the amount of soft inclusions. Figure 3b
demonstrates the systems damping in another fashion where Q−1 is plotted versus
the confining pressure. As expected, there is a systematical increase of damping
by adding soft particle [42, 43]. Combining the observations in Figs. 2 and 3, we
summarize that adding roughly about 20% of soft inclusions strongly improves the
damping of the system (about 30%), and increases its stiffness (upto 15%) and
yet results in a lighter sample (about 15%). Such an effective acoustic behavior of
binary mixtures can obviously not be predicted by the application of simple mixture
interpolation rules [23].

4 Numerical Modelling—Discrete Element Method

Modelling granular materials can help us to understand their behaviour on the micro-
scopic scale, and to obtain macroscopic continuum relations by a micro- macro tran-
sition approach. TheDiscrete ElementMethod (DEM) allows to inspect the influence
of microscopic contact properties of its individual constituents on the macro bulk
behavior of granular assemblies. In this study we use DEM to explore the elastic
response of dry frictional granular materials.
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Fig. 3 aAttenuation factor Q−1 versus rubber content at different pressure levels and b attenuation
factor Q−1 versus confining pressure for different samples with central frequency of measurement
f ≈ 10 kHz

4.1 Discrete Element Method

If the total force fi acting on particle i , either due to other particles and boundaries
or from external forces, is known, then the problem is reduced to the integration of
Newton’s equations ofmotion for the translational and rotational degrees of freedom,

mi
∂2

∂t2
ri = fi + mi g, & Ii

d

dt
ωi = ti , (11)

with mi the mass of particle i , ri its position, fi = ∑
c f c

i the total force acting
on it due to contacts with other particles or with the walls, g the acceleration due to
volume forces like gravity, Ii the spherical particle’s moment of inertia,ωi its angular
velocity and ti = ∑

c

(
lc
i × f c

i + qc
i

)
the total torque, where qc

i are torques/couples
at contacts other than the torques due to the tangential force, e.g., due to rolling and
torsion, and lc

i the vector from the particle’s centre of mass to the contact point [14].
The equations of motion are thus a system ofD + D(D − 1)/2 coupled ordinary

differential equations to be solved inD dimensions. The solution of such equations is
straightforward, using numerical integration tools such as the ones nicely described
in textbooks [44, 45]. The typically short-ranged interactions in granularmedia allow
for further optimizations by using linked-cell spatial structures or alternativemethods
[44–46] in order to make the search for colliding particles more efficient. In the
case of long-range interactions, (e.g. charged particles with Coulomb interaction, or
objects in spacewith self-gravity) this is not possible anymore, so thatmore advanced
methods for optimization have to be applied. Herewe restrict ourselves to short-range
interactions [47].
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Specifically, two spherical particles i and j , with radii ai and a j , respectively,
interact only if they are in contact, that is, their overlap

δ = (ai + a j ) − (ri − r j ) · n (12)

is positive, δ > 0, with the unit vector n = ni j = (ri − r j )/|ri − r j | pointing from j
to i . The force on particle i , from particle j , at contact c, can be decomposed into a
normal and a tangential part as f c := f c

i j = f nn + f t t . In the following, we specify
f c
i j for some different models that take into account increasingly complicated grain

interactions.

4.2 Force Laws

4.2.1 Linear Normal Contact Model

Linear normal forces are the most simple contact laws between two particles [48,
49]. They are based upon a damped harmonic oscillator between two particles and
involve a linear repulsive and a linear dissipative force in normal direction:

f n = kδ + γ0vrel (13)

with a spring stiffness k, a viscous damping γ0, and the relative velocity vrel in the
normal direction vrel = −(vi − v j ) · n = δ̇. An advantage of the linear contact force
law is that the half-period of a oscillation around an equilibrium position resembles
the contact duration, tc = π/ω, and can be calculated analytically [50], via:

ω =
√

k

mi j
−

(
γ0

2mi j

)2

(14)

where mi j = mi m j

mi +m j
is the reduced mass and ω is the eigenfrequency of the contact.

From Eq. (14) it is possible to obtain the coefficient of restitution which quantifies
the ratio of relative velocities after (primed) and before (unprimed) the collision:

rc = −v′
rel

vrel
= e

− γ0 tc
2mi j (15)

For a deeper discussion of the coefficient of restitution and other, more realistic,
non-linear contact models, see e.g. [50–52].

The time-step size used in the simulations should be smaller than the contact
duration. Here, t = tc

50 is used for the simulations. Furthermore, notice that in the
extreme case of an overdamped spring, tc can become very large, and therefore the
use of neither too weak nor too strong dissipation is recommended.
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4.2.2 Hertzian (Non-linear) Contact Force

Instead of linear contact force law, Eq. (13), a non-linear contact force law can be
considered, which is based on the elastic contact theory:

f n = E∗√def f δ
3
2 , (16)

with def f = 4Ri R j

Ri +R j
as the effective diameter and the effective Young’s modulus for

two different material particles E∗ = 2Ei E j

Ei +E j
.

The linear dissipation used in the linear contact force law can also be applied in
the Hertzian contact:

f n = E∗√def f δ
3
2 + γ δ̇ (17)

Instead of the linear dissipation non-linear options are also available [50]. The
Hertzian contact can for example be extended by assuming the material to be non-
linierly viscoelastic:

f n = E∗√def f δ
3
2 + η

√
δδ̇, (18)

where η is the Hertzian viscosity parameter. This latter force contact law is used in
the simulation for the mixtures, as it is known that the linear model represents the
experimental dissipation qualitatively wrong as shown in Ref. [50].

4.2.3 Tangential Force Law

The sliding/sticking friction model is based upon Coulomb’s law [53]. This law
couples the tangential and normal force: For sticking one has static friction ft ≤
μs fn and for sliding one has dynamic friction, ft = μd fn . In the static situation a
restoring force account for the non-zero tangential force from the surface asperities.
To determine if the particle experiences static or dynamic friction a tangential test-
force is calculated in the same way as the normal force, which for the linear contact
force law gives:

ft = −kt s − γtvt,rel , (19)

and for the Hertzian normal contact the Mindlin tangential contact force is used:

ft = kt s
√

def f δ − γtvt,rel , (20)

where kt is the tangential spring stiffness and s is the relative shear displacement
between the two particle centres.

When test-force fulfils | ft | ≤ f C
s one has static friction.However,when | ft | > f C

s
is fulfilled, sliding friction becomes active. In Eq. (19) the tangential relative velocity
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is needed, defined by vt,rel = vi j − n(n · vi j ), where the total relative velocity of the
particle surfaces at the contact is given by:

vi j = vi − v j + a′
in × ωi + a′

jn × ω j (21)

with a′
i = ai − δ

2 is the corrected radius.

4.3 Macroscopic Parameters

4.3.1 Strain

For any deformation, the isotropic part of the infinitesimal strain tensor εv (in contrast
to the true strain εv) is defined as:

dεv = ε̇vdt = εxx + εyy + εzz

3
, (22)

where εαα = ε̇ααdt with αα = xx , yy and zz as the diagonal elements of the strain
tensor εi j in the Cartesian x , y, z reference system. The integral of 3dεv denoted by

εv = 3
∫ V

V0
dεv, is the true or logarithmic strain, i.e. the volume change of the system,

relative to the initial reference volume, V0 [54].

4.3.2 Stress

From the simulations, one can determine the stress tensor components (compressive
stress is positive as convention):

σi j = 1

V

⎛

⎝
∑

p∈V

m pv
p
i v

p
j −

∑

c∈V

f c
i lc

j

⎞

⎠ , (23)

with particle p, mass m p, velocity v p, neighbouring particles in contact c, force f c

and branch vector lc, while Greek letters represent components x , y, and z [55, 56].
The first sum is the kinetic stress (energy density) tensorwhile the second involves the
contact-force dyadic product with the branch vector. Averaging, smoothing or coarse
graining [57, 58] in the vicinity of the averaging volume, V , weighted according to
the vicinity is not applied in this study, since averages are taken over the total volume.
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4.3.3 Structural (Fabric) Anisotropy

Besides the stress of a static packing grains, an important microscopic quantity of
interest is the fabric/structure tensor. For disordered media, the concept of a fabric
tensor naturally occurs when the system consists of an elastic network or a packing
of discrete particles. A possible expression for the components of the fabric tensor
is provided in [55, 59]:

Fαβ = 〈F p〉 = 1

V

∑

p∈V

V p
N∑

c=1

nc
αnc

β , (24)

where V p is the particle volume of particle p which lies inside the averaging volume
V , and nc is the normal vector pointing from the center of particle p to contact c.
Fαβ are thus the components of a symmetric rank two 3 × 3 tensor.

4.4 DEM Simulation of Small-Strain Stiffness

In this section, we show how to use DEM simulations to study the elastic behav-
ior of granular materials. We use Discrete Element simulations to reproduce static
experiments for the characterization of the elastic stiffness of the granular packings.

Table 2 Summary and numerical values of particle parameters used in the DEM simulations

Property Symbol Value Units

Time unit tu 1 10−6 s

Length unit xu 1 10−3 m

Mass unit mu 1 10−9 kg

Particle diameter 〈d〉 2 xu

Polydispersity dmax/dmin 3

Number of particles N 4096

Particle density ρ 2000 mu/x3u
Simulation time step tM D 0.0037 tu
Normal stiffness kn 105 mu/t2u
Tangential stiffness kt/k2 0.2

Restitution coefficient e 0.804

Coefficient of friction μ [0–10]

Normal viscosity γ = γn 1000 mu/tu
Tangential viscosity γt/γ 0.2

Background viscosity γb/γ 0.1
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We start our simulations from a set of non-overlapping particles randomly gen-
erated in a periodical cubic box at an initial volume fraction ν = 0.3. The initial
configuration is compressed isotropically by constant compression strain-rate, ε̇ =
10−4 s−1, until a given volume fraction ν = 0.5. The system is then allowed to relax
at constant volume fraction until it reaches a stable state, which means that the par-
ticles dissipate kinetic energy and achieve a zero-pressure. This is followed by an
isotropic (slow) compression until the desired maximum volume fraction, ν = 0.82
[60]. The same protocol is used for all samples. For the sake of simplicity, the linear
contact model was employed as force law between grains. Parameters used in sim-
ulations are summarized in Table 2. In order to investigate the elastic response, we
perform so-called strain probing tests in several points along the isotropic preparation
(pre-strain) compression path above jamming point (a volume fraction where sample
is no longer in fluid-like behavior) [61–63].

Here we consider isotropic prepared samples for which only two independent
moduli are needed to characterize the bulk material. The elastic constants K (bulk
modulus) and G (shear modulus) are chosen here.

After applying the sufficient relaxation, incremental pure volumetric or pure devi-
atoric strain are applied to the samples, in order to obtain the bulk and shear moduli,
respectively. Isotropic compression of samples is such that samples are homoge-
neously compressed along all directions; during pure shear, samples are compressed
along the x-direction and decompressed along the y-direction, while the z-direction
is kept stationary. Shear deformations are applied in the form of a pure shear, i.e.,
by having a displacement in the y-direction imposed on all particles that cross the
x-boundary and a displacement in the x-direction on all particles that cross the y-
boundary. One can obtain the samples bulk (K ) and shear (G) moduli, by measuring
the incremental response to isotropic and shear deformation [60, 61, 64].

Since we apply infinitesimal strain perturbations, we do not expect slippage to
occur. However, the friction coefficient is set to infinity (μ = ∞) to prevent any
sliding at contacts during probing. For each calculation, we verify that the applied
strain is small enough tobe in the linear response regime, i.e., the coordinationnumber
does not vary during the applied incremental deformation and stress increments are
linear proportional to strain increments.

After probing the configurations, the effective elastic moduli of the granular
assembly are obtained as the ratio between the measured increment in stress and
the applied strain:

K ∗ = δP∗/3δεvol & G∗ = δ
(
σ ∗

xx − σ ∗
yy

)
/δ

(
εxx − εyy

)
(25)

where P∗ = Pd/kn and σ ∗ = σd/kn are the non-dimensional pressure and stress
quantities respectively. Hence, K ∗ and G∗ are dimensionless elastic moduli. The
advantage of dimensionless moduli is that one can compare samples with different
size and type of particles. Results reported later are dimensionless, and for the sake
of simplicity, star superscript symbol ∗ is neglected below.

We scan a wide range of inter-particle friction coefficients and volume fractions,
and apply small to very large deformations, in order to understand how the interplay of
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Fig. 4 Evolution of dimensionless a bulk modulus K and b shear modulus G with the respective
applied isotropic 3δεvol and shear δεxy strain amplitudes at different pressure P = 0.01, 0.03, 0.06
and 0.9, for samples with friction coefficient μ = 0.001. Corresponding dashed lines represent the
small strain elastic limit values of K and G

contact and system properties affects the microstructure and thus the elastic moduli.
The same procedure is applied for samples created with different values of friction,
μ = 0 − 10. As a result, packings at the same density achieve different pressure and
microstructure.

As an example, the variation of the bulk and shear moduli with applied strain
amplitude is shown in Fig. 4 for μ = 0.001. The elastic moduli stay practically con-
stant for small amplitudes (3δεvol and δεxy < 10−4 with very slow particles move-
ment rate ε̇i i ≈ 10−5) and this can be considered the elastic regime. By increasing the
amplitudes of the perturbation, K and G start to increase and decrease non-linearly
respectively, i.e. packings are no longer in the elastic regime. The elastic regime
becomes larger for higher volume fraction and higher friction (data not shown here)
[65].

In Fig. 5, the variations of the bulk K and shearG modulus are plottedwith volume
fraction for packings with different coefficients of frictionμ. As expected, the elastic
moduli always increases with increasing density. However, the increase of themoduli
is slower for packingswith high friction.Wecan relate this behavior to a lower average
number of contacts (i.e. lower volumetric fabric Fv) for samples preparedwith higher
friction at the same volume fraction. The value of the initial fabric is proportional to
the number of contacts, and influences the subsequent evolution of the moduli.

When the elastic moduli are plotted against the isotropic fabric Fv in Fig. 6, the
data for the bulk modulus approximately collapse in a unique linear scaling law,
implying a general relation between bulk stiffness and isotropic micro-structure:
K = K0(Fv − Fv0) with Fv0 ≈ 2.2 and K0 ≈ 0.1 for μ = 0 [60] for μ > 0 see [66].
On the other hand, a numerical scaling was not found for the shear modulus G, even
if they follow a similar trend with ν. Further investigations are needed. It is worth
mentioning that the coefficient of friction has no direct influence on the elasticmoduli
as sliding is not activated during probing,μprobing = ∞, but rather it effects K and
G indirectly through the preparation that leads to a different state variable Fv .
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4.5 Comparison Between DEM and Wave Experiments

In this sectionwe show the results of the numericalmoduli for different rubber content
ν and pressure states. Note that the applied pressure range in simulations is wider than
in experiments to gain more insight into the mechanical response of mixtures. Unlike
the results shown in the previous section (Sect. 4.4), here the frictional Hertzian
contact model was employed for normal contact interactions between two particles;
since it captures experimental results better than the linearmodel.Material properties
of glass and rubber are given in Table 3.

In Fig. 7, the P-wave modulus, M , versus pressure is plotted. It is found that the
modulus decreases monotonically with the rubber content from ν = 0.0 to ν = 1.0.
In this respect, simulations are not able to reproduce the macroscopic behavior
observed in Fig. 2, from the experiments with maximum M at ν = 0. We asso-
ciate the mismatch to the adopted contact model not appropriate to properly describe
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Fig. 7 P-wave modulus, M ,
versus applied stress P
obtained by DEM
simulations

 10

 100

 1000

 10000

 10  100  1000  10000

M
 [

M
P
a]

 (
lo
g-

sc
al

e)

P [kPa] (log-scale)

ν  =  0      
ν  =  0.1      
ν  =  0.2      
ν  =  0.3      
ν  =  0.4      
ν  =  0.5      
ν  =  0.6      
ν  =  0.7      
ν  =  0.8      
ν  =  0.9      
ν  =  1     

rubber-rubber and rubber-glass interactions. Finding a better contact model is sub-
ject to ongoing study. The simulations are not expected to exactly reproduce the
experimental observations. Rather, the simulations are valuable because they pro-
vide information that is not available in the laboratory tests. However, when exper-
iments and simulations are directly compared in Fig. 8, interesting information can
be inferred. For the sake of clarity, only three cases are shown, namely, ν = 0.05,
ν = 0.5 and ν = 1.0. Simulations with ν = 0.05 capture the experimental data quan-
titatively, noticeably without any calibration. On the other hand, when looking at the
the packing ν = 0.5, the qualitative trend is well captured by simulations even if
actual experimental values are higher than the simulated ones.

Finally, for the case ν = 1.0, where the experimental moduli are pressure inde-
pendent, simulations are far from experiments in qualitative trend.

By summarizing the previous observations, a three regime scenario shows up. In
the glass-dominated regime (G), waves do transmit via a glass beads network, where
simulations based on Hertzian interactions are able to reproduce the macroscopic
behavior. In the intermediate regime (I) waves still have a preferential path via glass

Table 3 Properties of glass
and rubber particles. Further
simulation information can be
found in Refs. [23, 33, 67]

Used material
properties

Glass Rubber

Diameter (mm) 4 4

Mass density
(kg/m3)

1540 860

Young’s modulus
(MPa)

65000 1.85

Poisson’s ratio 0.24 0.46

Friction coefficient 0.2 0.5
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Fig. 8 Experimental and
numerical P-wave modulus
plotted against pressure;
comparison of DEM and
experimental glass-rubber
mixtures for ν = 0.05, 0.5
and 1.0
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bead chains. Here two mechanisms concur to shape the bulk behavior: (i) the density
of glass beads in the sample reduceswith respect to caseG and the actual values of the
moduli get lower; (ii) the number of contacts increases with pressure faster than in the
G-regime due to easy rearrangement of the rubber particles, that is the slope M(P)

gets higher. Finally, in the third regime (R), the behavior of the mixture is dominated
by the rubber beads, and the present simple DEM pair contact model cannot offer an
accurate representation of the system, because additional high deformation effects
need to be considered [67].

5 Summary and Outlook

These days, it has been well understood that grain-scale properties control the bulk-
scale behavior of the granularmaterials. The aim of this contributionwas to study and
determine the micromechanical mechanisms that govern various phenomena in the
world of particles, leading to a better micro-based understanding of the macro-scale
response/mechanics of particulate systems.

At first, the elastic response of disordered granular soft-stiff mixtures was inves-
tigated experimentally by means of wave-propagation. We found that the behavior
is highly non-linear and also non-monotonic with increasing the fraction of soft
particles. The uni-axial P-wave modulus is deduced from the linear, uni-axial wave
speed and the bulk density of the sample where velocity is the ratio of (variable)
sample length and travel time, as measured by the transducers. While it is expected
that the stiffness (P-wave modulus) decreases when soft inclusions are replacing the
hard particles, interestingly, we observe a nonlinear behavior with a maximum in
stiffness at around 20% of soft content, before the stiffness drops and achieves the
same rubber-controlled stiffness above 60% soft content.
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In contrast to elastic properties, the enhanced dissipative and lightweight proper-
ties of the material (like soils, asphalt, etc.) behaves more as expected, when deliber-
ately adding dissipative, soft, light inclusions. This allows for a novel designmethod-
ology for calm, smooth, and smart materials that can be better in various aspects
than their separate components, e.g., higher stiffness and lightweight+damping, at
the same time, by adding softer, lighter components.

Numerical simulations using Discrete Element Method (DEM) on the parti-
cle scale have revealed the role of the microstructure in characterising the elastic
behaviour of granular materials. After preparation by isotropic compression of sam-
ples with different inter-particle contact friction, at various volume fraction, the
effective elastic moduli are determined from the incremental response by probing
isotropic and deviatoric deformations. DEMallows to understand the effects ofmate-
rial parameters, where friction between particles enhances the macroscopic stiffness,
while affecting other properties at the same time, such as contact network and coordi-
nation number. Thus, selecting/calibrating parameters is an essential task to achieve
reliable quantitative agreement with experiments and to allow for predictions for
improved materials/designs.

Finally, the P-wave modulus obtained experimentally was compared with the
numerical results. While the simulations quantitatively capture the experimental
observations for samples at low rubber fraction, the present DEM data show a sys-
tematic decrease of themodulus with increasing the rubber fraction unlike the experi-
ments. Futureworkwill focus on improving the contactmodels towardsmulti-contact
interactions and including the effects of the large deformations of the rubber particles
to understand if this improves agreement with experiments; another direction is the
extension of our small perturbation approach to elasto-plasticity and then predicting
the plastic, irreversible response of a granular assemblies under larger deformation
amplitudes.
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