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Abstract. In this paper, we developed a 3D viscoelastic analysis solver
with a data-driven method on GPUs for fast computation of highly
detailed 3D crustal structure models. Here, the initial solution is obtained
with high accuracy using a data-driven predictor based on previous time-
step results, which reduces the number of multi-grid solver iterations and
thus reduces the computation cost. To realize memory saving and high
performance on GPUs, the previous time step results are compressed
by multiplying a random matrix, and multiple Green’s functions are
solved simultaneously to improve the memory-bound matrix-vector prod-
uct kernel. The developed GPU-based solver attained an 8.6-fold speedup
from the state-of-art multi-grid solver when measured on compute nodes
of AI Bridging Cloud Infrastructure at National Institute of Advanced
Industrial Science and Technology. The fast analysis method enabled
calculating 372 viscoelastic Green’s functions for a large-scale 3D crustal
model of the Nankai Trough region with 4.2 × 109 degrees of freedom
within 333 s per time step using 160 A100 GPUs, and such results were
used to estimate coseismic slip distribution.

Keywords: unstructured finite-element method · data-driven
predictor · OpenACC · viscoelastic analysis

1 Introduction

Improvement in the estimation of interplate conditions such as plate sticking
and sliding is expected to play an important role in the advancement of source
scenarios for large earthquakes. In particular, the estimation of interplate con-
ditions considering viscoelastic deformation is useful for estimating an afterslip
and predicting continuous crustal deformation after a large earthquake. In recent
years, data required for the advancement of interplate state estimation have been
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accumulated due to the improvement of the seafloor crustal deformation obser-
vation directly above the seismogenic zone (e.g., [16]) and the acquisition of
crustal structure data with approximately 1 km resolution by advancement in
underground structure exploration. On the other hand, the theoretical solution
assuming the crustal structure as a multilayered semi-infinite medium [8] is often
used in obtaining the displacement responses at observation points to unit slips
(Green’s function), which are used in the inverse analysis of interplate condi-
tions. Although the calculation of Green’s functions based on a highly detailed
three-dimensional (3D) crustal structure model and its use for estimating the
interplate state is expected to improve the accuracy of interplate state estima-
tion, this calculation leads to the huge analysis cost comprising 100–1000 cases
of large-scale viscoelastic analysis.

Most of the computational cost in viscoelastic crustal deformation analysis
is spent on solving the large-scale simultaneous equations obtained by discretiz-
ing the crustal structure model. Since a method scalable on a parallel comput-
ing environment is essential for conducting large-scale calculations, and since
low-frequency components dominate in viscoelastic response, a multi-grid-based
solver is considered effective. In fact, multi-grid based conjugate gradient solvers,
which use geometric and algebraic multi-grid methods, have been developed and
applied to crustal deformation analysis [6,10]. In addition, viscoelastic analysis
using these multi-grid solvers has been accelerated using GPUs, enabling forward
analysis of viscoelastic response on highly detailed 3D models. On the other
hand, further reduction of computation cost is required to realize viscoelastic
Green’s function calculation, which corresponds to a computation cost of about
100–1000 cases of forward analysis.

In recent years, data-driven methods have been utilized to improve the per-
formance of equation-based methods (e.g., [11]), and their effectiveness in vis-
coelastic crustal deformation analysis has also been demonstrated [7]. The initial
solution to a large simultaneous equation is obtained with high accuracy using
a data-driven predictor based on past time-step results, which reduces the num-
ber of multi-grid solver iterations and thus reduces the computation cost. Both
the data-driven predictor and the multi-grid solver are designed to be scalable,
and have been shown to perform well on CPU-based massively parallel com-
puter Fugaku [4], and are expected to be effective on GPU-based systems. In
this study, a multi-grid solver with a data-driven predictor for GPU compu-
tation environment is developed for fast computation of Green’s functions of
viscoelastic crustal deformation. Since the data-driven predictor, which learns
and predicts solutions based on a large amount of data, hinders the performance
of GPUs with relatively small memory capacity, methods enabling a reduction
in memory footprint are combined with the data-driven predictor. While the
multi-grid solver is also effective on GPUs due to its high scalability, its perfor-
mance is limited by random access in the sparse matrix-vector computations; we
introduce simultaneous computation of multiple Green’s functions for a reduc-
tion in random access and a further performance improvement. Considering the
development cost, we develop the solver using directive-based OpenACC [3].
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As an application example, we calculated 372 viscoelastic Green’s functions at
333 s per time step for a large-scale 3D crustal model of the Nankai Trough
with 4.2× 109 degrees of freedom using 160 A100 GPUs, and performed inverse
estimation of coseismic slip distribution.

The following is the structure of this paper. In Sect. 2, the target viscoelas-
tic crustal deformation analysis is described. Section 3 describes the target
multi-grid solver with a data-driven predictor algorithm. Section 4 describes the
development of the multi-grid solver with the data-driven predictor on GPUs.
Section 5 describes the performance of the solver, and Sect. 6 describes an appli-
cation example of the proposed analysis method to the Nankai-Trough earth-
quake. Section 7 summarizes this study.

2 Target Problem

In this study, we model the Earth’s crust as a linear viscoelastic body based on
the Maxwell model and solve the equations

σij,j + fi = 0, (1)

with
σ̇ij = λε̇kkδij + 2με̇ij − μ

η
(σij − 1

3
σkkδij), (2)

εij =
1
2
(ui,j + uj,i). (3)

Here, σ and f are the stress tensor and external force, while (̇), δ, η, ε, and u are
the first derivative in time, Kronecker delta, viscosity coefficient, strain tensor,
and displacement, respectively. λ and μ are Lame’s coefficients. In this study, the
governing equations are discretized by the finite-element method, which analyt-
ically satisfies the traction-free boundary conditions. Herein, second-order tetra-
hedral elements are used for the accurate calculation of stress and strain for
crust deformation problems with complex geometry and heterogeneous mate-
rial properties. The time evolution of viscoelastic crustal deformation analysis is
computed based on [10] (Algorithm1). Here, the fault slip is evaluated based on
the split-node technique [15]. In general, it is difficult to generate high-quality
large-scale 3D finite-element models for complex crustal structure models. In this
paper, we construct a 3D finite-element model with unstructured second-order
tetrahedral elements by using an automated robust mesh generation method
[10]. In Algorithm1, almost all of the computation time is spent on solving
simultaneous equations:

Kvδu = f , (4)

where the degrees of freedom (DOF) of the unknown vector δu becomes large
(e.g., the DOF becomes 4.2 × 109 for the application problem shown in this
study). Thus, the goal becomes solving Eq. (4) with large DOF in a short time
on multi-GPU environments.
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Algorithm 1. Algorithm for solving linear viscoelastic response of crust. Here,
superscript ()i is the variable in the i-th time step. dt is the time increment.
B is the displacement-strain transformation matrix. A and D are matrices
indicating material property. K = Σe

∫
Ωe

BT DBdΩ. Kv = Σe

∫
Ωe

BT DvBdΩ.
βn = D−1Aσn. Dv = (D−1 + α dt β′)−1, where β′ is the Jacobian matrix of β
and α is the controlling parameter. Ω is the viscoelastic body.

Compute f by split − node technique
Solve Ku1 = f1

σ1 ⇐ DBu1

δu1 ⇐ 0
i ⇐ 2
while i ≤ Nt do

f i ⇐ Σe

∫
Ωe

BT (dtDvβi−1 − σi−1)dΩ + f1)

Solve Kvδui = f i with initial solution δui
init

ui ⇐ ui−1 + δui

σi ⇐ σi−1 +D(Bδui − dtβi)
i ⇐ i + 1

end while

3 Base Multi-grid Solver with Data-Driven Predictor

In this section, we outline the multi-grid solver with the data-driven predictor
[7] proposed as a fast solver for Eq. (4), which will be used as a base of the GPU
solver developed in this study. A solver algorithm with high single-node peak
performance with low computational cost, together with good load-balancing
and low communication cost, is required for fast computation of large-scale finite-
element models in a massively parallel computing environment. In this solver, a
scalable data-driven initial solution predictor is added to a multi-grid solver that
fulfills such requirements, leading to a reduction in the number of iterations in
the multi-grid solver and thus a reduction in the computation time. Below, we
outline the data-driven predictor and the multi-grid based iterative solver.

3.1 Data-Driven Predictor

By using the results of past time steps to accurately predict the initial solution
δui

init, the number of iterations and thus the computation time of the multi-grid
solver for solving Eq. (4) can be reduced. The idea of Dynamic Mode Decompo-
sition (DMD) [14] is applied to construct an initial solution predictor suitable
for massively parallel computers. Here, computed results up to the i − 1-th time
step are learned to predict the initial solution at the i-th time step. In DMD, an
operator that represents time evolution is estimated from time series data, and
this operator is used to predict the solution of the next step based on the solution
at the current step. Instead of predicting the solution of the entire target domain
at once, the target domain is divided into small domains, and the solutions in
each domain are predicted within each domain. This enables efficient prediction
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of the modes including the local time and space components in each domain by
only a small number of modes. However, even if a small region is targeted for
prediction, it includes trend due to non-stationary time evolution, which is dif-
ficult to predict. Therefore, the second-order Adams-Bashforth method is used
to predict the trend as

δui
adam ⇐ ui−3 − 3ui−1 + 2ui−1. (5)

We apply DMD to xi = δui−δui
adam excluding the trend component. This allows

δui to be predicted with sufficient accuracy from a small number of modes.
Specifically, we define a matrix as Xi−1 = [xi−1, · · · ,xi−s] using the data of
previous s+1 steps, the time evolution operator C which satisfies Xi−1 = CXi−2

is estimated from this matrix by the modified Gram-Schmidt method, and the
initial solution for the next step is estimated using operator C as

δui
init ⇐ δui

adam + C(δui−1 − δui
adam). (6)

The domain in each MPI process is divided into small non-overlapping domains
using METIS [2], and the displacement increments for the nodes in each domain
are estimated from the time-series data of nodes in the same domain. The algo-
rithm does not require communication between domains, making it scalable in
a massively parallel computing environment.

3.2 Multi-grid Solver with Data-Driven Predictor

The prediction results from the data-driven predictor are used for the initial
solution of an adaptive conjugate gradient solver with a three-level multi-grid
preconditioner. Algorithm 2 shows an overview of the method. In the precondi-
tioner of the adaptive conjugate gradient method, multi-grid models generated
by stepwise coarsening of the target finite-element model with second-order tetra-
hedral elements are used to solve the target model approximately. First, a coarse
grid consisting of first-order tetrahedral elements is obtained by removing the
edges nodes in second-order tetrahedral elements based on the geometric multi-
grid method, and then a further coarsened model is obtained by the algebraic
multi-grid method. Although various types of algebraic coarsening are proposed,
uniform coarsening is used for maintaining load balance. Using these coarsened
models, an approximate solution is obtained for preconditioning of the conjugate
gradient method. Hereafter, we refer to the iteration of the original conjugate
gradient loop as the outer loop and refer to the iteration of solving the pre-
conditioning equations with another conjugate gradient solver as the inner loop.
First, an approximate solution is obtained using the coarsest model (Algorithm2
line 9; inner loop 2), and using the obtained solution as the initial solution,
the approximate solution is updated using the tetrahedral linear element model
(Algorithm2, line 11; inner loop 1). Finally, the solution to the original mesh
is obtained (Algorithm2, line 13; inner loop 0). Inner loops reduce the cost per
iteration compared to the original model by reducing the number of unknowns
and the nonzero component of the sparse matrix K. In addition, the coarsened



428 S. Murakami et al.

Algorithm 2. The iterative solver to obtain solution δu. The input variables
are K, K̄i, P̄i, δu, f , ε, ε̄in

i , Ni and N . Here, K̄i and P̄i represent global stiffness
matrices and the mapping matrices between grids. N̄i and ε̄i are the threshold
values. The other variables are temporal. (̄ ) represents FP32 variables, while the
other variables are in FP64. All computation steps in this solver, except MPI
synchronization and scalar coefficient computation, are performed in GPUs.
(a) Outer loop
1: predict δu by the data-driven predictor
2: r ⇐ Kδu
3: r ⇐ f − r
4: β ⇐ 0
5: i ⇐ 1
6: while ||r||2/||f ||2 > ε do
7: ū0 ⇐ M̄−1r
8: r̄2 ⇐ P̄T

2 P̄
T
1 r

9: ū2 ⇐ P̄T
2 P̄

T
1 ū0

10: solve ū2 = K̄−1
2 r̄2 using (b) with ε̄in

2 and
N2 (* inner loop 2 *)

11: ū1 ⇐ P̄2ū2

12: solve ū1 = K̄−1
1 r̄1 using (b) with ε̄in

1 and
N1 (* inner loop 1 *)

13: ū ⇐ P̄1ū1

14: solve ū = K̄−1
0 r̄0 using (b) with ε̄in

0 and N0

(* inner loop 0 *)
15: z ⇐ ū0

16: if i > 1 then
17: γ ⇐ (z,q)
18: β ⇐ γ/ρ
19: end if
20: p ⇐ z+ βp
21: q ⇐ Kpe

22: ρ ⇐ (z, r)
23: γ ⇐ (p,q)
24: α ⇐ ρ/γ
25: r ⇐ r − αq
26: δu ⇐ δu+ αp
27: i ⇐ i + 1
28: end while

(b) Inner loop
1: ē ⇐ K̄ū
2: ē ⇐ r̄ − ē
3: β̄ ⇐ 0
4: i ⇐ 1
5: while ||ē1||2/||r̄||2 > ε̄ and

N > i do
6: z̄ ⇐ M̄−1ē
7: if i ≥ 1 then
8: β̄ ⇐ ρ̄a/ρ̄b

9: end if
10: p̄ ⇐ z̄+ β̄p̄
11: q̄ ⇐ K̄p̄
12: γ̄ ⇐ (p̄, q̄)
13: α ⇐ ρ̄a/γ̄
14: ρ̄b ⇐ ρ̄afaccou
15: ē ⇐ ē − ᾱq̄
16: ū ⇐ ū+ ᾱp̄
17: i ⇐ i + 1
18: end while

model allows long-range errors to be solved with fewer iterations. In each inner
loop solver, a 3 × 3 block-Jacobi preconditioned conjugate gradient solver (Algo-
rithm2,b) with good load-balance and robustness is used. While FP64 is used
in the outer loop to guarantee the computational accuracy of the final solution,
FP32 is used in inner loops, where only approximate solutions are required. This
halves the memory footprint, data transfer size, and communication size in the
inner loops, which account for most of the computation time, and is expected to
reduce time-to-solution.
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4 GPU-Based Multi-grid Solver with Data-Driven
Predictor

The multi-grid solver with data-driven predictor, which is designed to be efficient
and scalable on massively parallel environments, is also expected to perform well
on GPU-based environments. However, GPUs have relatively low memory capac-
ity and memory bandwidth in comparison with its floating point performance,
when compared to A64FX CPU-based Fugaku; thus, the data-driven predictor
that requires large amounts of memory and matrix-vector products that require
large amounts of memory accesses become bottlenecks in GPU performance.
Therefore, we developed a multi-grid solver with the data-driven predictor for
GPUs based on the previous CPU-based solver while improving the algorithm
by reducing the amount of memory usage, memory accesses, and random data
accesses.

Considering program development cost and portability, we use OpenACC
to port CPU code to the GPU. OpenACC, which enables computation on the
GPU by inserting compiler directives into CPU programs, allows porting pre-
developed CPU applications to the GPU environment incrementally with rela-
tively little effort. Although native programming models such as CUDA enable
detailed tuning of the code to maximize performance on GPUs, it has been
shown that by designing algorithms suitable for GPUs, the computation time
of an OpenACC implementation is comparable to that of a CUDA implementa-
tion (for example, see [20] as an example of crustal deformation analysis using
a multi-grid solver).

4.1 Data-Driven Predictor Enhanced by Memory Footprint
Reduction Method

In the method of [7], given a data set X,Yof sizes m× s (the number of degrees
of freedom in the domain × time steps), where X is the input and Y is the
corresponding output, the response y to another input x is computed as

y = YUPT x. (7)

Here, P = XU, where P is a matrix with orthogonal columns and U is an
upper triangular matrix. This orthogonalization P = XU is computed by the
modified Gram-Schmidt method, but it is not suitable for GPUs with small
memory capacity because it requires keeping matrices X,Y and another tempo-
rary matrix on memory during orthogonalization. In addition, since many times
of the inner product is required sequentially for vectors as long as the number of
degrees of freedom in the corresponding domain, a large memory access cost is
involved. Therefore, in this paper, a random matrix Q of size n×m (m � n), is
used to transform the input data set X into X′ ⇐ QX and the input value x into
x′ ⇐ Qx (e.g., a 25, 745 × 16 matrix X is replaced with a 96 × 16 matrix X′ in
the performance measurement problem), which reduces the computational cost
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and memory usage for modified Gram-Schmidt orthogonalization. Although pre-
dictions based on the transformed data set are an approximation of the original
algorithm’s predictions, it is known that by taking m sufficiently larger than the
number of time steps s used for the prediction, the singular values of QX and
X coincide with high probability [9]. Therefore, it is possible to estimate y with
almost no reduction in accuracy. In this study, y is computed as a = UPT x′

at first, and then as y = Ya. While additional computation for transform-
ing x′ ⇐ Qx is required, its cost is negligible compared to the Gram-Schmidt
method on the original problem, and the memory requirement of storing random
matrix Q is also negligible as a common random matrix Q can be reused for all
the small domains in which the data-driven predictor is applied.

4.2 Multi-grid Solver Enhanced by Multi-vector Computation

In the multi-grid solver, the sparse matrix-vector product (SpMV) kernel is the
most computationally expensive kernel of each inner loop (Algorithm 2b). In
general, the Generalized SpMV (GSpMV) kernel, which computes sparse-matrix
dense-matrix products, achieves higher throughput than the SpMV kernels as it
corresponds to computing multiple SpMVs by reading the target matrix once,
which reduces the amount of memory access. This also leads to a reduction in
random memory accesses by allocating the same components of multiple vectors
consecutively in the memory address space. This leads to high throughput on
GPUs that can access continuous data efficiently. Since the sparse matrix (e.g., K̄
in Algorithm 2b line 11) is constant at any source input in viscoelastic analysis,
we calculate four sets of Green’s functions simultaneously, thereby replacing the
SpMV with the GSpMV. The maximum values for the relative errors in the 4
residual vectors are used for judging the convergence of each loop.

For the outer loop and inner loop 0, the Element-by-Element (EBE) method
[17] is used to compute the GSpMV. In the parallel computation of matrix-vector
products based on the EBE method, it is necessary to avoid data inconsistency
when adding the local matrix-vector product results for each element to the
global vector. While coloring of elements can be used to avoid data recurrence
on multi-core CPUs, recent NVIDIA GPUs equip hardware-accelerated atomics
and have high throughput atomic operations capability. Utilizing this atomic
add functionality makes more efficient data access possible compared to the
coloring algorithm. In inner loop 1 and inner loop 2, sparse matrices are stored
in memory by Block Compressed Row Storage (BCRS) with block size 3 to
compute GSpMV.

5 Performance Measurement

5.1 Performance Measurement Settings

Since the performance of the data-driven predictor is highly dependent on the
problem characteristics, we evaluate solver performance on the example appli-
cation problem in Sect. 6. The finite-element model comprises 1.0 × 109 tetra-
hedral elements with 4.2 × 109 DOF. Setting the time increment as dt = 86400
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s, we measure the performance of crustal deformation between time step num-
ber 21 ≤ Nt ≤ 30, where the data-driven predictor can be applicable, as the
actual calculation of Green’s functions is computed for several to 100 years
(100 to 5000 time steps). We solve all problems with relative error tolerance
ε = 10−8. The tolerances and maximum iterations in the inner loops are set
to (ε0, ε1, ε2) = (0.5, 0.25, 0.15) and (N0, N1, N2) = (30, 80, 300), respectively.
In the data-driven predictor, the entire domain is divided into 163,840 subdo-
mains, and data of the previous s = 16 time steps are used for estimation. The
transformation is calculated using a random matrix with m = 96.

To demonstrate the effectiveness of the developed method, we compare per-
formance with a 3 × 3 block-Jacobi preconditioned solver (PCGE) and a multi-
grid based adaptive conjugate gradient solver (multi-grid solver), both using
second-order Adams-Bashforth method for predicting the initial solution1. Here,
PCGE corresponds to skipping lines 7–13 in Algorithm 2a, and the multi-grid
solver corresponds to switching the data-driven predictor in the proposed solver
with the Adams-Bashforth method. We also compare the performance of the
proposed solver with the multi-grid solver with data-driven predictor on CPU.

Performance was measured on GPU-based supercomputer AI Bridging Cloud
Infrastructure (ABCI) [1], which is operated by the National Institute of
Advanced Industrial Science and Technology. Each compute node (A) of ABCI
has eight NVIDIA Tesla A100 GPUs and two Intel Xeon Platinum 8360Y CPUs
(36 cores), and is interconnected with a full bisection bandwidth network (see
Table 1). The FP64 peak performance of the GPU is 14.0× (memory bandwidth
is 30.4×) of that of the CPU. 16 nodes (128 GPUs) with 1 MPI process per GPU
(128 total MPI processes) were used for GPU measurements, and the same num-
ber of nodes and processes were used with 9 OpenMP threads per MPI process
for CPU measurements.

5.2 GPU Kernel Performance

We measure the performance of the computation kernels which account for most
of the execution time of the entire application (Table 2).

As the Gram-Schmidt kernel is memory bandwidth bound, direct porting to
GPU led to 4020/248 = 16.2-fold speedup from the CPU. Attained by directly
porting it to (78.9% of memory bandwidth, 1.47% of FP64 peak performance).
Furthermore, the reduction in computation by the random matrix transforma-
tion led to a further reduction in the time of the Gram-Schmidt kernel. This
is due to the reduction of GPU device memory data transfer size from 302 GB
to 2.36 GB by use of the proposed method replacing a 25, 745 × 16 matrix X
with a 96×16 matrix X′. Although this method required computing the random
matrix-vector product Qx, it can be performed in 5.38 ms; leading to the overall
speedup of the data-driven predictor by 18.9-fold from the direct porting case.

1 Although sophisticated GPU-based methods specialized for viscoelastic crustal
deformation analysis and specific GPU architecture is proposed [19], we compare
with generally available solvers stated above for readability.
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Table 1. Configuration of ABCI Compute Node (A)

Hardware peak
per node

CPU Intel Xeon Platinum 8360Y 5.529 TFLOPS
(54 MB Cache, 2.4 GHz, 36 Cores, 72 Threads)×2

memory 512 GiB DDR4 3200 MHz RDIMM 408 GB/s
GPU NVIDIA A100 for NVLink 77.6 TFLOPS

40 GiB HBM2 ×8 12.4 TB/s
Interconnect InfiniBand HDR (200 Gbps) ×4 100 GB/s

Furthermore, the memory size required for the data-driven predictor was 16.3
GB per GPU for the developed method, which is significantly smaller than the
62.9 GB required for the direct porting method.

Next, we measure the performance of SpMV and GSpMV kernels. While the
FP32 peak performance of EBE-based SpMV of inner loop 0 was improved from
10.5% on the CPU to 16.3% on the GPU, due to the large number of registers on
GPUs, the use of GSpMV led to 44.3% of FP32 peak on GPU, leading to further
improvement in computational performance. While the BCRS-based SpMV in
inner loops 1 and 2 are memory-bandwidth bound kernels, conversion of the
kernel to GSpMV kernels with 4 vectors reduced the amount of memory access
per vector, (1.19GB to 0.253GB and 420MB to 105MB for inner loop 1 and 2,
respectively) resulting in 2.46- and 2.89-fold speedup, respectively, compared to
the GPU-based SpMV implementations.

As is seen, the introduction of suitable algorithms for GPUs led to high
efficiency on each kernel.

5.3 Solver Performance

We see the effectiveness of the data-driven predictor for a reduction in elapsed
time. By use of the data-driven predictor, the initial error ε of the second-order
Adams-Bashforth method (2.11 × 10−3) was improved to 2.46 × 10−5, indicat-
ing that prediction can be performed with high accuracy. As a result, the total
number of iterations of the multi-grid solver was reduced from 5237 iterations
to 1098 iterations. In particular, the number of iterations in inner loop 2 was
significantly reduced from 4473 to 936, suggesting that the data-driven predictor
has high prediction performance for the low-frequency components. In addition,
introducing GSpMV significantly reduces the computation time for the cost dom-
inant matrix-vector products, resulting in 2.01-, 2.12-, and 2.90-fold speedup per
iteration for inner loops 0, 1, and 2, respectively. As a result, the developed solver
attained an 8.6-fold speedup from a widely used state-of-the-art multi-grid solver
(Fig. 1). The multi-grid solver performs well due to its ability to efficiently solve
low-frequency errors with the use of fast inner loops (the multi-grid solver’s
inner loops were 1.59, 9.15, and 15.8-fold faster than the PCGE iterations for



Viscoelastic Solver with Data-Driven Method 433

Table 2. Performance of each kernel. Elapsed time is normalized per vector.

computation component Elapsed time (FLOPS efficiency, Memory Throughput Efficiency)

CPU GPU (direct porting) GPU (proposed)

BCRS K̄2ū2
∗ 13.2 ms (1.85%, 57.2%) 0.396ms (2.30%, 65.9%) 0.137ms (6.60%, 60.4%)

BCRS K̄1ū1
∗ 35.4 ms (1.96%, 57.5%) 0.782ms (2.52%, 76.2%) 0.318ms (6.19%, 70.8%)

2nd order EBE K̄0ū0
∗ 145 ms (10.5%, 27.6%) 4.90ms (16.3%, 64.3%) 1.81ms (44.3%, 69.0%)

2nd order EBE Ku∗∗ 184 ms (8.42%, 39.0%) 8.66ms (18.5%, 53.2%) 4.63ms (34.6%, 51.3%)

Gram-Schmidt∗∗ 4020 ms (1.04%, 28.5%) 248ms (1.47%, 78.9%) 2.3ms (10.9%, 73.2%)

random compression∗∗ – – 5.38ms (16.3%, 82.9%)
*ratio to FP32 peak. **ratio to FP64 peak.

the inner loop 0, 1, and 2, respectively), leading to a 191-fold speedup from the
standard PCGE solver requiring 10056 iterations and 170 s computation time.
Since scalability has been demonstrated for the original CPU-based solver with
data-driven predictor, it is expected that the proposed GPU-based solver will
also be scalable. The speedup using GPU was 72.5 times when compared with
the CPU-based implementation of SCALA22 (64.2 s), which is higher than peak
performance and memory bandwidth ratio between CPU and GPU of 14.0- and
30.4-fold, respectively, indicating that the development of algorithms suitable
for GPU led to large performance improvements. The introduction of the data-
driven predictor enhanced by memory footprint reduction and GSpMV reducing
computational cost is expected to be equally effective in CPU implementations.

6 Application Example

To demonstrate the effectiveness of the developed solver, we conducted an inver-
sion analysis on a highly detailed crustal structure model to estimate the coseis-
mic slip for the Nankai Trough earthquake. In this study, only elastic/viscoelastic
deformation due to coseismic slip is considered, and crustal deformation due to
afterslip and fault locking is not considered. Green’s function gi, which aggre-
gates the displacements at each time and observation point for the unit fault xi,
is calculated by viscoelastic crustal deformation analysis. The observation model
using these Green’s functions is expressed as

d = Ga + e, (8)

where d is the observed data (the observed amount of crustal deformation),
G = [g1, · · · , gn], a is a model parameter (the amount of slip in the unit fault
xi), and e is the error following a normal distribution with mean 0 and variance-
covariance matrix Σ. Here, the model parameter a is determined by minimizing
the objective function,

Φ(a) = (d − Ga)T Σ(d − Ga) + λaT La + μ|a|1, (9)

where aT La is a term used to constrain the smoothness of the slip distribution
[18]. Since the extent of slip cannot be predicted in advance, the basic function
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Fig. 1. Elapsed time and required iterations per time step for each solver

of the slip distribution is set wider than the range where slip actually occurs,
and the L1 regularization term |a|1 is used to estimate a sparse slip distribution.
The hyperparameters λ and μ are determined by k-fold cross-validation [5].

For the crustal structure data, we use the model based on [12,13]. Based
on crustal structure data, the 3D finite-element model of the Japanese island
is generated with a target area of 2496 km km × 2496 km km × 1100 km km
centered at 135◦E, 33.5◦N. The viscosity of the continental and oceanic mantle
is set to 2.0 × 1018 Pa s. Figure 2 shows the finite-element model generated
with the smallest element size ds = 500 m. As in the performance measurement
problem, dt = 86400 s and Nt = 30 are used. We introduce unit faults set up
in grid form in Hori et al. (only unit faults that are in the Eastern half of the
FE model are used). The number of unit faults is 186, and since we consider the
slip distribution responses of two components on the fault plane, we calculate
186 × 2 = 372 Green’s functions.

We set a hypothetical reference coseismic slip distribution shown in Fig. 3a).
The direction of the reference seismic slip is assumed to be uniform in the direc-
tion of azimuth 125 degrees. Surface displacement is assumed to be observed
by the Global Navigation Satellite System (GNSS), GNSS-Acoustic system, and
ocean bottom pressure sensors (Fig. 3). The observation noise is not considered,
and the displacement obtained from viscoelastic analysis using the reference
coseismic slip as input is used as observation data.

In the proposed method, four Green’s functions are calculated simultaneously
in one set of viscoelastic analyses; thus, 372 Green’s functions were calculated
in 96 sets of viscoelastic analyses. The overall computation time was 33800 s
on 160 GPUs. The computation time for the 21 ≤ Nt ≤ 30 steps measured
in the performance measurement was 3330 s s (8.96 s per step/function), which
was almost the same time in the performance measurement. Thus, we can see
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Fig. 2. Generated finite-element model used for the application example. a) Overview
and b) close-up view.

that the developed method was robustly effective for the many Green’s function
inputs.

The estimated coseismic slip distribution is shown in Fig. 3b). The estimated
moment magnitude is 8.13, which is almost the same as that of the reference
slip (8.11), indicating that the magnitude of the earthquake is almost accurately
captured.

Fig. 3. Coseismic slip distribution in a) reference model and b) estimated results. Black
points show observation points.

7 Conclusions

In this study, we developed a multi-grid solver with the data-driven predictor
on GPUs for fast computation of the viscoelastic response of a highly detailed
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3D crustal structure model for inverse analysis. While the original algorithm
resulted in large memory footprint for storing time-history data, suitable algo-
rithms were made to reduce GPU memory usage and elapsed time, and Green’s
functions were solved simultaneously for improving the performance of memory-
bound matrix-vector product kernels. As a result, the developed GPU solver
attained an 8.6-fold speedup from a state-of-art multi-grid solver on the ABCI
compute environment. As an application example, we calculated 372 viscoelastic
Green’s functions of a large-scale 3D crustal model with 4.2×109 degrees of free-
dom using 160 A100 GPUs. Calculation of viscoelastic Green’s functions using
highly detailed 3D crustal structure models enabled by this study is expected
to contribute to the improvement of slip estimation considering the 3D crustal
structure.
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