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Abstract. Complex traffic areas and high cognitive workload while driving are
leading contributors to traffic crashes. Even though cognitive workload and stress
have been previously assessed through various neurophysiological responses, they
are rarely characterized simultaneously, limiting the triangulation of behavioral
metrics (like drivers’ visual attention and facial coding) with physiological mea-
sures to investigate their interplay. The aim of the present study was to system-
atically characterize stress and cognitive workload through a multimodal assess-
ment comprising eye-tracking, facial expressions, galvanic skin response (GSR),
electromyography (EMG), electrocardiography (ECG) and respiration in three
controlled driving simulations of varying complexity: 1. Baseline driving on an
open road (Baseline); 2. Navigating between traffic cones (Cones); and 3. Driving
in a neighborhood with multiple stressors (Traffic). The selected metrics were
eye tracking dwell time, the presence of facial brow furrow, GSR peaks/minute,
EMG activity of the upper trapezius muscle, heart rate and heart rate variability
(HRV) and respiration cycles/minute. Physiological responses showed significant
increases in GSR, heart rate and trapezius EMG activity with Cones and Traffic
compared to Baseline. Eye tracking metrics were shown to be indicative of driv-
ing behavior in different conditions. There were no significant differences in facial
expressions, HRV or respiration. These results are somewhat consistent with pre-
vious literature, suggesting that a multimodal approach to physiological signals
can characterize affective and cognitive states in driving scenarios.
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1 Introduction

The interaction between complex driving conditions and high cognitive workload while
driving is one of the leading contributing factors to traffic crashes. Recent studies have
employed several physiological and behavioral tools to help assess driver behavior in
controlled studies. These can include eye tracking, which can reveal information about a
driver’s visual processing of the road. Other promising biosensors include electromyo-
graphy (EMG), electrocardiography (ECG), and galvanic skin response (GSR) which
measure muscle contraction, heart rate and heart rate variability and eccrine gland activ-
ity, respectively [1–3]. EMG can be used to study motor strategies and ergonomics, and

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C. Stephanidis et al. (Eds.): HCII 2023, CCIS 1836, pp. 57–64, 2023.
https://doi.org/10.1007/978-3-031-36004-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-36004-6_9&domain=pdf
http://orcid.org/0000-0001-5400-9973
http://orcid.org/0000-0002-7125-9058
http://orcid.org/0000-0003-2966-0398
https://doi.org/10.1007/978-3-031-36004-6_9


58 M. Minen et al.

detect driver fatigue. Heart rate and heart rate variability (HRV), derived from the ECG
signal, is one of the most frequently used techniques for assessing driver workload and
has been shown to decrease significantly during periods of increased mental workload
and stress while driving [4–6]. GSR, by comparison, is a pure reflection of sympathetic
nervous system activity [7] and is thus increased in periods of high physiological arousal
[8]. Lastly, the use of camera-based facial expression analysis has been to predict unsafe
driving behaviors [9].

The combination of a comprehensive biometric assessment with realistic driving
simulators can help pinpoint specific instances where drivers may be distracted, over-
whelmed cognitively, or dealing with navigation-related issues that could compromise
their safety while operating a motor vehicle. The overall aim of the present study,
therefore, was to systematically characterize stress and cognitive workload through a
multimodal assessment comprising eye-tracking, facial expressions, GSR, EMG, ECG
and respiration in three randomized and controlled driving simulations to holistically
measure driver performance.

2 Methods

Ten healthy respondents (31.4± 7.1 years old; 5 female) were recruited and participated
in this evaluation. The inclusion criteria included individuals within an age range of 18–
40 years who have a drivers license and no previous experience driving a car simulator,
whereas the exclusion criteria included visual and motor disabilities, chronic or current
acute pain at the time of the experiment, and cardiorespiratory disorders.

2.1 Experimental Procedure

Respondents were instructed to drive a professional driving simulator (VI-GRADE,
Italy) in a 3-screen desktop set-up with dedicated steering wheel and pedals (Logitech
G29, Logitech, Switzerland). The simulation software usedwas “MCity Traffic” (World-
Sim, VI-GRADE, Italy). All signals were recorded and analyzed by a biometric software
(iMotions 9.3.3, iMotions A/S, Denmark).

The study protocol consisted of:

1. Low-workloadBaseline scenario (Baseline):Drive 3minon anopenhighway,without
traffic.

2. Medium-workload Cones scenario (Cones): Slalom the car between traffic cones and
perform a double lane change maneuver as fast as reasonably possible, followed by
1.5 min of straight driving recovery.

3. High-workload city traffic scenario (Traffic): Drive 5 min through a city with random
traffic conditions, traffic lights, other vehicles, and pedestrians.

The Baseline scenario was fixed at the start of the study protocol, while Traffic and
Cones scenarios were pseudorandomized.
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2.2 Data Collection

Eye-Tracking. Eye-tracking was performed with a multicam system of 3 infrared cam-
eras (n = 10, Smart Eye Pro, Smart Eye, Sweden), positioning one infrared camera per
simulator screen. Fixations were classified using a velocity-based I-VT filter (iMotions
9.3.3, iMotions A/S, Denmark) set at 30°/s. Dwell time (as a percentage of total task
time) and number of revisits were selected as primary variables to evaluate the visual
attention of the drivers.

Facial Expression Analysis. Drivers were recorded using a Logitech C920 webcam
(n = 10, 640 × 480 resolution, 30 fps) positioned on top of the middle screen of the
3-screen setup. Affectiva’s AFFDEX 2.0, embedded in the iMotions software (iMotions
9.3.3, iMotions A/S, Denmark) was used to detect and quantify facial movements. Brow
Furrow was selected as a metric because of its affiliation with negative valence as well
as workload.

Respiration. Respiration rate was recorded using a stretch belt connected to a respi-
ration amplifier (n = 5, RSP 100 and MP160, Biopac systems Inc, US). Respiration
rate (cycles/min) was determined based on the respiration count and the duration of the
signal.

EMG. EMG activity was recorded from the right upper trapezius muscle using bipolar
surface EMG electrodes connected to either a stationary EMG device (n = 5, Biopac
Systems EMG100C and MP160, USA) or a bluetooth wireless EMG device (n = 2,
Shimmer EXG, Shimmer Sensing, Ireland). The reference electrode was placed on the
right acromion. EMG signals were sampled at 512 Hz and bandpass filtered from 20–
500 Hz with a 4th order Butterworth filter, rectified, then smoothed using a zero-phase-
shift 4th-order Butterworth filter with a 10-Hz cut-off frequency. The area under the
curve (AUC) was calculated from the smoothed EMG signal.

GSR. GSR were registered by a portable device (n = 10, Shimmer3 GSR+, Shimmer
Sensing, Ireland), positioning the two electrodes on the volar side of the ring and middle
fingers of the non-dominant hand. A threshold of 0.01 uS and 0 uS was established to
detect the onset and offset of every GSR peak, respectively. After the labeling of GSR
peaks, a peaks/minute metric was computed.

ECG. ECG activity was obtained through a wireless strap (n = 8, Polar Belt H10,
Polar, Switzerland) applied on the chest. Heart rate and HRV was calculated from R-R
intervals; HRVwas expressed using the standard deviation of the N-N intervals (SDNN).

2.3 Statistics

All signal processingwas conducted using the iMotions R-Library (iMotions 9.3.3, iMo-
tions A/S, Denmark). Statistical analyses were performed in Matlab using the statistics
and machine learning toolbox v12.3 (Mathworks, Massachusetts, US). Threshold for
statistical significance was set as p < 0.05. All data was assessed for normality by the
Shapiro-Wilk test. Friedman tests were applied for all analyses across the three driving
conditions, with p-values adjusted by Bonferroni correction for multiple comparisons.
Results are reported as median (interquartile ranges) in both text and plots.
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3 Results

Driver physiology and behavior acrossmultiple biosensormodalities (eye tracking,GSR,
FEA, ECG, EMG and respiration) were compared across three driving conditions of
varying complexity (Baseline, Cones andTraffic).A summary of the descriptive statistics
is presented in Table 1.

Table 1. Descriptive statistics of multimodal metrics during three driving conditions (Baseline,
Cones and Traffic). Values are represented as median (interquartile range). † denotes a significant
main effect, p < 0.05. †† denotes a significant main effect, p < 0.01. a denotes significant differ-
ences compared to Baseline, p < 0.05. b denotes significant differences compared to Baseline, p
< 0.01. c denotes significant differences compared to Cones, p < 0.05.

Sensor Metric Condition

Baseline Cones Traffic

Eye Tracking Dwell Time
(speedometer)††

26.54
(15.29–35.56)

a22.41
(12.78–34.87)

b6.65
(4.00–8.61)

Eye Tracking Dwell Time (left
screen)†

0.21
(0.12–0.43)

0.12
(0.07–0.14)

c1.02
(0.57–2.40)

Eye Tracking Dwell Time (center
screen)

65.39
(55.4–73.5)

72.38
(69.07–75.61)

70.86
(68.65–75.75)

Eye Tracking Dwell Time (right
screen)†

0.25
(0.22–0.32)

0.15
(0.06–0.16)

c1.04
(0.57–1.99)

Facial Coding % Time Spent Brow
Furrow

0.90
(0.15–1.72)

0.0
(0.0–1.89)

1.12
(.12–5.18)

GSR Peaks/Minute†† 3.06
(1.77–4.25)

6.41
(4.64–7.79)

a6.05
(4.88–8.30)

EMG AUC Upper Trapezius
(mV*s)††

2.93 (2.35–3.94) 3.66
(2.34–4.61)

b, c5.92
(4.58–6.60)

ECG Heart Rate
(beats/minute)†

74.95
(66.67–81.67)

78.81
(71.07–81.99)

c74.88
(66.99–80.83)

ECG Heart Rate Variability
(SDNN)

42.33
(41.17–65.60)

55.29
(44.97–81.76)

47.28
(45.3–66.50)

Respiration Cycles/Minute 13.76
(12.79–14.59)

12.77
(9.76–13.35)

12.23
(11.89–12.34)

There was a significant effect of dwell time on the speedometer across tasks (F(2)
= 14.888, p < 0.001, N = 10). Post hoc analyses show higher dwell time % on the
speedometer in the Baseline scenario as compared to both the Cones (p < 0.05) and
Traffic (p < 0.001) scenarios. While dwell time on the center screen did not change
across conditions, there was a significantly higher dwell time on the left (F(2) = 8.857,
p = < 0.02, post hoc p = 0.01, N = 10) and right (F(2) = 6.400, p < 0.05, N = 10;
post hoc p < 0.05) screens in the Traffic scenario compared to the Cones scenario.
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Fig. 1. Box plots of the biometric responses in the Baseline (white), Cones (light gray) and Traffic
(dark gray) scenarios showing the mean (cross), the median (horizontal line), quartile ranges and
minimum and maximum values. A) Higher GSR peaks/min were observed in the Traffic scenario
compared to Baseline. B) Higher heart rate was observed in the Cones scenario compared to
Traffic. C) Higher muscle activation was observed in the Traffic scenario compared to Cones and
Baseline. D) Higher dwell time % over the speedometer occurred in the Baseline compared to
Cones and Traffic scenarios. E and F) Higher dwell time % over the left and right screens were
observed in the Traffic scenario, as compared to Cones and Baseline.

There was also a significant effect of task on GSR peaks/minute (F(2) = 9.750; p=
0.008, N = 10). Post hoc analysis showed that drivers exhibited higher GSR peaks/min
while driving in the Traffic scenario as compared to the Baseline scenario (adjusted p<
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0.01, Fig. 1A). A tendency of higher GSR peaks/min is observed while navigating Cones
as compared to the Baseline scenario, but this was not statistically significant (adjusted
p = 0.073).

Friedman analysis indicated a significant effect on heart rate (F(2)= 6.867, p< 0.05,
N = 8). Post hoc analysis revealed that HR was higher while navigating the Cones than
driving in the Traffic scenario (Fig. 1B - F(2) = 1.250, p < 0.05), but not compared to
the Baseline. HRV, however, did not show any significant differences across the different
scenarios (F(2) = 0.250, p = 0.882, N = 8).

Friedman tests on the AUC of smoothed EMG activity of the upper trapezius muscle
resulted in a significant effect (F(2) = 13.000; p = 0.002, N = 8) showing higher
activation while driving in the Traffic scenario compared to the Baseline (p = 0.001) as
well in the Traffic scenario compared to the Cones (p < 0.05, Fig. 1C).

4 Discussion

The present evaluation expands the evidence ofmodulated physiological responseswhile
navigating driving scenarios of varying complexity (Baseline, Cones and Traffic sce-
narios) by also including behavioral measures like eye tracking and facial expression
analysis with which we can more clearly establish context.

4.1 Differences in Eye Tracking Behavior Confirm Different Attentional
Strategies Between Tasks

Dwell time has been used before to represent attention allocation, especially in seeing
how long attention is allocated to important or competing stimuli like cell phones or sign-
posts [10]. In the Baseline task, there was an increase in dwell time on the speedometer,
indicative of an increased attention on the speedometer compared to the Cones or Traffic
scenarios. This could be because the Baseline task was the simplest, and the nature of the
Cones and Traffic scenarios required attentional resources to be devoted elsewhere. This
is supported by the increased dwell time on the left and right screens in the Traffic
condition compared to Cones. The Traffic scenario is the most complex of the three,
as it contains multiple competing elements like pedestrians, cars and intersections that
require different attentional strategies [11]. In short, we see differences in eye tracking
behavior across the scenarios due to the varying attentional requirements of the driver.

4.2 Modulation of GSR, EMG and HR in Complex Driving Scenarios

The overall hypothesis of the electrophysiological evaluation was that GSR peaks/min,
heart rate, muscle activity and respiration rate would be facilitated and heart rate vari-
ability would be diminished under the most demanding scenarios (Cones and Traffic).
We did find that GSR peaks/min and muscle activity were significantly facilitated in
the Traffic scenario as compared to Baseline, possibly in response to increased task
loads. This is only partially in agreement with Healey and Picard (2005), who did not
see EMG changes, but found that GSR and ECG together correlated the highest with
drivers’ perceived stress in real-life drives [12].
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Respiration and heart rate variability did not show significant differences across
tasks. A lack of significant change in HRV was surprising given previous literature but
HRV can also be influenced by a multitude of environmental, neurophysiological and
lifestyle factors [13]. Studies involving HRV as a variable might benefit most from a
multimodal approach.

We did not see a significant change in brow furrow across the tasks, although other
head and facial movements have been shown to correlate with driving behaviors [9].
As the technology continues to advance in this arena, it will be interesting to see what
combination of head and face movements can be most predictive of a driver’s internal
state.

5 Conclusion

The application of multiple biosensors in driver research has the potential to advance our
comprehension of driving behavior, guide the creation of fresh driver-training initiatives
and safety interventions, and eventually aid in lowering the rate of traffic accidents. The
results of the present study indicate higher muscle tension (EMG activity), modulated
arousal (heart rate and GSR peaks/min) and higher perceptual load (dwell time %) in
complex driving scenarios.Most, but not all our findings are consistentwithwhatwehave
seen in prior literature. The interaction between the driver’s cognitive and physiological
states and the environment inside and outside the vehicle produce a complex system
that can be difficult to model and predict. It is only through repeated studies, with the
triangulation of multiple physiological and behavioral measures, that we can gain deeper
insights that can be leveraged to protect the driver.
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