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Abstract. When autonomous vehicles (AVs) are commercialized, peo-
ple will be able to engage in various activities in the vehicle, such as
reading books and using mobile devices. However, 2/3 of passengers
suffer from carsickness when looking at still scene in a moving vehicle.
This carsickness is a problem that must be overcome, which eliminates
advantages of AV. Therefore, in this paper, a methodology to cancel
out the acceleration generated by the AV through the operation of the
motor-based power seat was proposed. In addition, a methodology for
determining the actuation signal of the power seat through reinforce-
ment learning (RL) was proposed. Then, the effectiveness of the method
was verified through a simulation. Consequently, it was confirmed that
the proposed method is effective in reducing carsickness. In the future,
performance improvement through RL optimization and actual effect
verification through human studies are planned.
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1 Introduction

According to a literacture, about 2/3 of passengers suffer from a carsickness [7].
Meanwhile, when autonomous vehicles (AVs) become commercially available,
everyone in the AVs becomes a passenger. Therefore, the probability that a
passenger suffering from carsickness is in the AV increases. By the way, this
carsickness makes passengers uncomfortable and it eliminates the benefits of
AVs. Therefore, carsickness is an important problem to be solved.

In previous studies, there was an attempt to install a webcam on a dashboard
of a vehicle and use the captured scene as the background of a mobile device
(e.g., smartphone or tablet) [5]. And there was an attempt to inform the rotation
direction of the vehicle by giving vibration to the haptic devices composed of 7
mini vibration motors installed in both of the passenger’s forearm [3]. Also, there
was an attempt to inform the vehicle’s rotation direction using 32 light-emitting
diodes (LEDs) installed around the visual display device [2]. Finally, after setting
the border of the smartphone as a visualization area, an attempt was made to
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present a moving bubble in this area according to the vehicle’s acceleration
direction and magnitude [4]. However, some of them had a limitation that an
additional device was necessary (e.g., webcam, haptic device, and LEDs) [2,3,5],
and some of them had a limitation that it was effective only when using a mobile
device [2,4]. Therefore, in this paper, a method of canceling out the acceleration
generated by AVs using a power seat is developed. This does not require an
additional device because it uses the power seat already present in the vehicle,
and it is applicable not only when using a mobile device but also when reading a
book. In the proposed system, depending on which signal is applied to the power
seat, carsickness increases or decreases. In this paper, therefore, the actuation
signal applied to the power seat was determined through reinforcement learning
(RL) that takes best choice by trial-and-error [8].

In order to validate the proposed method, a simulation was performed to
compare the otolith response in the following two cases: (i) when vehicle accel-
eration was not canceled out, (ii) when the vehicle acceleration was canceled out
by applying the actuation signal generated by RL to the power seat. As a result,
the feasibility of the RL-based power seat actuation for the mitigation of the
carsickness was verified.

This paper is organized as follows: Sect. 2 introduces RL and RL for power
seat actuation. The next Sect. 3 introduces the simulation condition, measure-
ments, learning environment and hyper parameters for RL, and simulation
results. Finally, Sect. 4 closes this paper by presenting the conclusions and future
works.

2 Reinforcement Learning

This section briefly introduces RL and the configuration for applying RL to
power seat actuation.

2.1 Reinforcement Learning

RL is one of the machine learning methods to achieve performance improvement
through trial and error. As shown in Fig. 1, RL consists of two components,
agent and environment, and three information of action, state, and reward is
transmitted between the two components. During a training, the agent performs
various actions in various states and generates various rewards, and as a result,
it is possible to know which action generates a higher reward in a given state.

2.2 Reinforcement Learning for Power Seat Actuation

The objective of this paper is to cancel out the acceleration generated by the AV
through an actuation of the power seat. In this system, the actuation signal of
the power seat is manipulated while observing the vehicle state, the passenger
state, and the power seat state. Therefore, the agent of RL is the power seat con-
troller that generates actuation signal, and the environments of RL are vehicle,
passenger, and power seat that are observation targets.
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Fig. 1. Structure of the reinforcement learning

Firstly, the agent performs an action that generates a power seat actuation
signal in a specific range (between −1 m/s2 and 1 m/s2). Next, the velocity of
the power seat was limited to -0.5 m/s and 0.5 m/s. Finally, the workspace of the
power seat was limited to 1 m because the AV has space limits.

Secondly, the power seat receiving the actuation signal changes the passen-
ger acceleration (vehicle acceleration minus power seat acceleration), otolith
response (perceived vestibular acceleration), and power seat position. Among
them, the otolith response can be obtained by a mathematical model [10].

Thirdly, states of vehicle acceleration, passenger acceleration, otolith
response of the passenger, and normalized power seat position are provided to
the agent.

Finally, the environment generates reward by using otolith response of the
passenger as follows:

r =

{
−|f̂i| + 2, if |f̂i| ≤ 2

−|f̂i| × 5, otherwise
. (1)

where r and f̂i are reward and currently perceived force, respectively. If the
passenger senses a greater vestibular acceleration, greater motion sickness occurs
[6]. Therefore, to make an agent that produces a smaller vestibular acceleration,
the reward was generated by multiplying the otolith response by (−1). In the
mean time, there is a special phenomenon obtained by the workspace limitation
of the power seat. If the power seat reaches the workspace limitation during
actuation, the power seat stops with impact (large acceleration). Therefore, the
reward must be computed by considering the power seat impact. If there is no
impact (|f̂i| is smaller than 2), an operation was performed to add 2 to maintain
the reward as a positive value. On the other hand, when there is an impact, the
perceived vestibular acceleration was multiplied by 5 to give a large penalty.

3 Simulation

This section presents the simulation condition, measurement, learning environ-
ment and hyper parameters of RL, simulation results, and discussions to find
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out whether the RL-based power seat actuation method reduces sensory conflict
of the AV passenger.

3.1 Simulation Conditions

There are values that must be selected to perform simulation. It includes otolith
response related values and acceleration/velocity/position ranges of AV. The
values are selected to match the simulation environment and the AV driving
environment similarly. Firstly, the vehicle acceleration provided by the environ-
ment to the agent is a value randomly selected between -3 m/s2 and 3 m/s2. The
simulation was performed in an environment in which the AV accelerates and
decelerates at random. Secondly, there is no restriction on the position of the
vehicle.

To check the feasibility of RL-based power seat actuation, the performance
of the general situation in which the power seat does not move and the proposed
situation in which the power seat is driven using the RL were compared. This
comparison was made on an AV driven for 60 s.

3.2 Measurements

As shown in Fig. 2, if the passenger reads a book or uses a smartphone in AV, the
passenger receives fixed visual feedback. That is, perceived visual acceleration
is zero. On the other hand, the remainder subtracting the power seat acceler-
ation from the vehicle acceleration is transmitted to the vestibular system. If
this remainder acceleration is not zero, the perceived vestibular acceleration of
the passenger becomes a non zero value. Carsickness arises from the difference
between these two perceived accelerations [6]. And it is intuitively predictable
that carsickness will increase as this difference increases [9]. In the meantime, it
is assumed that perceived visual acceleration is zero. Therefore, the larger the
perceived vestibular acceleration the greater the carsickness, so the magnitude of
the perceived vestibular acceleration was used as a measurement for performance
comparison.

Fig. 2. Carsickness caused by a sensory conflict
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Table 1. Hyper parameters

Hyper parameters Values

batch size 64

buffer size 12000

learning rate 0.003

hidden units 128

num layers 2

beta 0.001

epsilon 0.2

lambd 0.99

num epoch 3

3.3 Learning Environment and Hyper Parameters

The learning environment was configured using the UNITY ml-agents toolkit.
For training, a proximal policy optimization (PPO) algorithm [8] that performs
better than others and is the most commonly used [1] was used . Also, the hyper
parameters used for learning are shown in Table 1. As the learning of 4 million
steps progressed, the reward did not increase and the loss did not decrease. After
completing the learning, the actuation signal of the power seat was generated
using the learned model.

3.4 Simulation Results

Figure 3 shows the mean otolith response when RL based power seat actuation
is applied and when the power seat is stationary without motion. As seen in the
figure, after applying RL based power seat actuation, the mean otolith response
was reduced about 38.44%. A statistical analysis was performed to check whether
the difference in mean otolith response between the two conditions was statis-
tically significant. Consequently, there was a statistically significant difference
between the mean otolith responses of the two conditions (F(1, 98) = 481.039,
p < 0.001***).

Fig. 3. Mean otolith response for two conditions
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4 Conclusions and Futureworks

This paper proposed an RL based power seat actuation method to alleviate the
carsickness that AV passengers may experience. And simulation was performed
to verify the proposed methodology. As a result, it was confirmed that the otolith
response decreased by about 38% when the proposed method was applied. In the
future, the authors of this paper will conduct a study to find the optimal reward
that minimizes the otolith response, and will verify whether this methodology is
actually effective through human studies.

References

1. Andrychowicz, M., et al.: What matters in on-policy reinforcement learning? a
large-scale empirical study (2020). arXiv preprint arXiv:2006.05990

2. Karjanto, J., Yusof, N.M., Wang, C., Terken, J., Delbressine, F., Rauterberg, M.:
The effect of peripheral visual feedforward system in enhancing situation awareness
and mitigating motion sickness in fully automated driving. Transport. Res. F:
Traffic Psychol. Behav. 58, 678–692 (2018)

3. Md. Yusof, N., Karjanto, J., Kapoor, S., Terken, J., Delbressine, F., Rauterberg,
M.: Experimental setup of motion sickness and situation awareness in automated
vehicle riding experience. In: Proceedings of the 9th International Conference on
Automotive User Interfaces and Interactive Vehicular Applications Adjunct, pp.
104–109 (2017)

4. Meschtscherjakov, A., Strumegger, S., Trösterer, S.: Bubble margin: motion sick-
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