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Abstract. The rise of Intelligent Vehicles and next-generation networks
accelerates the advent of Internet-of-Vehicles (IoV), where each vehicle
acts as a node and interconnects with other nodes for data sharing and
processing. The primary challenges for evaluating Human-Vehicle Inter-
actions (HVI) designs in the context of IoV are (1) computation on lim-
ited on-vehicle hardware resources; and (2) varied network connectivity
in different settings. Moreover, existing emulators are highly customized
for specific scenarios, which can limit the comprehensiveness of evalua-
tions for IoV. To this end, we present a relatively general and portable
emulation platform, that is designed for evaluating a variety of novel HVI
designs under different IoV settings. Our emulation platform consists of
two key components: 1) an automatic extractor to extract workload pat-
terns in different IoV topologies and 2) configurable network settings to
examine different HVI designs in various network conditions. We then
characterize two IoV applications to examine the feasibility of our pro-
posed emulation platform.
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1 Background & Motivation

The rise of Intelligent Vehicles and next-generation networks accelerates the
advent of Internet-of-Vehicles (IoV), where each vehicle acts as a node and inter-
connects with other nodes for data sharing and processing. Given its distributed
nature and high costs to prototype, developers and researchers are prone to
evaluate novel Human-Vehicle Interactions (HVI) designs for IoV in emulators.

However, current platforms and software impose limitations on exploring and
analyzing IoV systems. To address this issue, several emulation platforms have
been proposed for assessing the feasibility of advanced designs in IoV settings.
For instance, OMNet++ [14] presents diverse protocols and wired/wireless net-
work simulation models that are useful for discrete event systems. Simulation of
Urban Mobility (SUMO) [8] concentrates on traffic simulations to examine traf-
fic management strategies, while Vehicles in Network Simulation (VEINS) [10]
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integrates both the network simulator OMNet++ and the road traffic simulator
to evaluate the performance of Inter-Vehicle Communication (IVC) protocols.
However, all these approaches focus on a particular application scenario and
are highly customized for specific contexts. Therefore, no current platforms offer
(A) the flexibility to adapt various application designs to the IoV context, and
(B) the flexibility to explore a broad range of scenarios, such as geo-distributed
scenarios.

To this end, we propose a relatively general and portable emulation platform
that enables the development and evaluation of novel HVI designs in the context
of IoV. Specifically, our platform has two main components that support HVI
application designs in various scenarios, which are: 1) an automatic extractor
to extract the key patterns of HVI workloads deployment on nodes within the
IoV and 2) configurable network connections that enable the evaluation of HVI
design in varied network conditions. Based on our emulation platform, we then
characterize its impacts on two HVI applications in the context of IoV, which
consist of a Deep-Neural-Network-based application and its Differentially-private
version. We discuss our key takeaways throughout these two characterizations
and discuss future works.

2 Design Overview

In this section, we first introduce our platform design in Sect. 2.1. Then, we brief
the prototype implementation in Sect. 2.2.

Fig. 1. Overview of workload distribution in the context of Internet-of-Vehicles

2.1 Study Design

Our platform design can be divided into two parts, which are automatic extractor
and configurable network connection supports. First, it includes an automatic
extractor that identifies and retrieves key patterns from real-world workloads.
Second, the platform offers a configurable networking connection that supports
the flexible enabling of different studies. Here is a brief explanation of these two
components:
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The automatic extractor is designed to identify and retrieve workload pat-
terns. It starts to perform a static full-program analysis by identifying key com-
ponents of data movements, specifically networking transfer/synchronization.
The extractor only considers networking movements as networking connections
have significantly higher delays than local data transfer. The extractor then
organizes all significant data movements into a data sheet, recording all major
behaviors and separating them into the server and edge workloads, with a par-
ticular focus on networking behaviors.

The configurable networking connection is supported by the platform in two
ways. Firstly, the platform receives the generated data sheet from the automatic
extractor and models the workloads in a server-client manner. Figure 1 illus-
trates the organization of the modeled workloads. Secondly, the platform offers
a wide range of configurable parameters to support different study purposes. For
instance, it can be configured with different numbers of connections (to examine
the effects of concurrent services) and different response latencies (to examine
the effects of geo-distributed scenarios).

2.2 Prototype Implementation

We build a prototype system using 2,000+ lines of C code, which we rigorously
tested on a Linux system. Our prototype supports highly-concurrent emulation
through the socket and connection pooling. To make the emulations more real-
istic and reduce the emulation latency, we leverage multiple parallelism-driven
techniques, such as multi-threading, to increase throughput. Additionally, we
provide customized support for porting high-level applications to the emulation,
such as MySQL and Epoll.

In our emulation platform, we assumed that the server is always ready to be
connected by edge vehicles for any type of request or query. It’s worth noting
that our emulation platform supports the interaction of multiple types of data,
ranging from plain text to complex images. We believe such a feature can best
reflect real-world scenarios where the communication between servers and clients
is based on various data types.

3 Evaluations

We experimentally evaluate two representative IoV applications (i.e., DNN
model inference and DNN model training with Differential-Private protection)
on our platform. For experimental details, we discuss the workload settings and
testing environment in Sect. 3.1, and then showcase our emulation results and
takeaways for these two applications in Sect. 3.2.

3.1 Experimental Setup

Workload 1: Face2Multi-Modal. We consider positioning the pipeline of
Face2Multi-modal in either (1) on-edge devices or (2) servers during services.
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Therefore, there are two configuration settings in our experiments: 1) models are
deployed on edge servers, which considers the scenarios that intelligent vehicles
process the data in a local region and then synchronize with the corresponding
server; 2) models are hosted on the servers, which considers a centralized server
to process all the tasks in the server side and send results back to waiting vehicles.
For each setting, it takes 20,000 images of 224× 224 pixels as input and takes
the heart rate and vehicle speed predicted by the model as output. And we
also conduct 2000,5000, and 10000 times of concurrent connections for these two
settings, to examine the impacts of the above strategies in the IoV context.

Workload 2: Differentially-Private Face2Multi-Modal Training. We
also test the privacy-protected DNN training process whose training samples
are obtained from the (1) centralized server or the (2) edge vehicles using
Differentially-Private (DP) protected queries. For the first case, we conduct
Global DP (GDP) queries on a centralized server to get the training data that
is protected by the server (i.e., adding random noises). For the second case, the
Local DP (LDP) method applies privacy protections locally before we train the
per-vehicle DNN model. As for detailed GDP and LDP settings during training,
we vary the ε value within the range [0.01, 1.2] to comprehensively character-
ize GDP and LDP for different privacy-protection levels. Face2Multi-modal uses
BROOK dataset [4,6,9] for training under Differential Privacy settings.

Hardware Support: Our emulation platform of IoV is deployed on a single
laptop, as the end goal of this work is to support the development and evaluation
of novel HVI design in the context of IoV using accessible hardware resources.
The detailed configurations of our selected laptop are listed as follows: The CPU
is Intel(R) Core(TM) i7-8750H and the GPU is NVIDIA GeForce 1060. Ideal, the
emulation platform has minimal requirements on the device and can be deployed
on any machine.

3.2 Characterization Results

We present the characterization results of afore-mentioned two workloads respec-
tively, and briefly summarize four important takeaways from the results.

Face2Multi-Modal on Edge or Server. Figure 2 reports our emulation
results for testing two deployment patterns of Face2Multi-Modal on IoV. From
the figure, we draw two key takeaways, which are presented as follows.

Key Takeaway 1: Latency-critical workload should be hosted on edge.
As shown in Fig. 2, when the Face2Multi-Modal is deployed on the edge side,
the average time consumption achieves the lowest level no matter how many
clients are served concurrently. At concurrent numbers 2,000/5,000/10,000, the
service time cost for the model deployed on edge is merely about 50%/63%/67%
of that for the model on the server. This is because, from the perspective of
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Fig. 2. Characterization results of Face2Multimodal in different client/server deploy-
ment settings on our emulation platform

time consumption, transferring data frequently between edge and server is less
efficient than computing the DNN inference directly on edge. Therefore, in the
context of IoV, it’s efficient for us to deploy workload on edge when the latency
is the users’ primary concern.

Key Takeaway 2: Server should take the throughput-critical work-
load. Figure 2 demonstrates that the latency of hosting services on the server
is less amenable to the increase in the number of concurrent connections. When
the number of concurrent connections grows from 2,000 to 5,000, the latency
of server-side services increases by approximately 22%, compared to that for
services on edge (about 55% increment). Similarly, when the concurrent num-
ber reaches 10,000, the time cost for server-side workload suffers a 22% increase
(compared to the latency with 5000 connections), while edge devices take about
30% more time to handle the workload. Hence, we should offload the throughput-
critical workload to a server in the context of IoV.

DP-Protected Face2Multi-Modal Training. Figure 3 reports the emulation
results of Face2Multi-Modal training in different Differential Privacy settings
(i.e., GDP and LDP). From the figure, we draw two key takeaways.

Key Takeaway 3: In comparison to GDP, LDP shows its overwhelming
advantages in the context of IoV. From Fig. 3, we can see a 1.7× validation
accuracy gain when comparing the result of LDP and GDP. This may be because
locally trained models fit better to the driver’s features, which leads to higher
accuracy. In light of this, we should employ LDP rather than GDP for privacy
protection on IoV.
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Fig. 3. Charaterization results of Differential-Privacy-enabled Face2Multimodal in dif-
ferent Differential Privacy protection settings on our emulation platform

Key Takeaway 4: An appropriate ε value of DP lies in the range [0.03,
0.5], which is expected to bring a reasonable tradeoff between privacy
protection and inference accuracy. It’s shown in Fig. 3 that the choice of ε
value from an extremely low margin (i.e., [0.01, 0.03)) will greatly degrade the
performance of Face2Multi-Modal. Improving the protection extent (ε) slightly
from 0.03 to 0.01 takes the large cost of about 8% accuracy degradation. In the
other margin (i.e., (0.5, 1.2]), the variance of ε brings about an inapparent effect
on model accuracy, which means that choosing a ε value larger than 0.5 will
not significantly benefit the accuracy, but compromises the privacy protection.
Hence, we empirically verify that a preferred ε value should be located between
0.03 and 0.5.

4 Discussion and Future Work

The characterization results showcase the capability of our emulation platform
to examine novel HVI applications in the context of IoV, by observing applica-
tion behaviors in different server/client settings and evaluating parameter scopes
for better tuning. The current takeaways we obtained are potentially applica-
ble to other DNN-based HVI applications (e.g., [1,17]). In the future, we aim
to add more functionalities to support the evaluation and characterization of
various HVI designs and provide fine-grained emulation controls and detailed
performance analysis to increase the usability of our platform. Some example
works that can be deployed on our emulation platform to understand its per-
formance in different IOV settings include 1) time-series-based analysis (e.g.,
driver style classifications [18], facial expressions distributions [15]) and 2) secu-
rity and privacy protection designs [2,3,7,13]. Also, our emulation platform can
be co-worked or integrated with existing IoV-related development toolkits (e.g.,
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[11,12,16]), to provide a fast and glueless transition from prototype development
to design emulation.

5 Conclusions

In this work, we present our emulation platform that is designed for develop-
ing and evaluating novel Human-Vehicle Interaction design in the context of
Internet-of-Vehicles. We present the design and implementation details of our
emulation platform and conduct two characterization studies to evaluate the
feasibility of our platform. We then extract several key takeaways from the char-
acterization studies. We also discuss potentials for future work of our platform.
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