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Ingression of Heavy Metals in Urban 
Agroecosystems: Sources, Phytotoxicity 
and Consequences on Human Health

Siril Singh, Rajni Yadav, and Anand Narain Singh

1 � Introduction

Globalisation and industrialisation have gradually altered and posed challenges to 
the agricultural growth and crop production system in peri-urban areas (Liu and Li 
2017). Recent years have seen a lot of pressure placed on crop production systems 
due to shrinking peri-urban agroecosystems, climate change, unsustainable land 
use, human-driven ecological degradation and growing population to name a few 
(Kremen and Merenlender 2018; Fantini 2023). Due to these food security threat 
phenomena, global action plan and policy reforms are much needed to transform 
our food systems (Liebig et al. 2022; Woodhill et al. 2022). Structuring food sys-
tems efficient of provisioning urban clusters that guarantee food security as well as 
a healthy environment is crucial since the development of the agricultural-industrial 
paradigm has permitted the fast rise in urban population on a universal scale (Fantini 
2023). As the world gradually urbanises, many regions are losing biodiversity and 
local food sources. Moreover, there is more emphasis on economic gains and crop 
production maximisation rather than environmental and human health values 
(Usman et al. 2021). Urban agroecosystems have been thought of as a strategy to 
encourage and maintain urban residents’ access to food (Peroni et al. 2022). Urban 
farming is the practice of growing crops in or near a village, town, city or metropolis 
with at least some of their output intended for urban consumption (Mulier et al. 2022).
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Despite these advantages, urban agroecosystems may nonetheless confer a risk 
to human health because of the many anthropogenic activities that frequently result 
in high concentrations of risk components in urban soil (Malone 2022). Therefore, 
multiple potential drawbacks are associated with urban agriculture including human 
health risks and implications for the environment as well (Stewart et al. 2013). The 
skeleton and body of urban ecosystems depend upon energy use, import, transfor-
mation and export of materials (Bai 2016). Such energy and material transforma-
tions have beneficial implications on urban growth; however, in this process, certain 
xenobiotic compounds may pose potential negative impacts on ecosystem and 
human health (Stewart et  al. 2013). The usage of wastewater, for instance, may 
contaminate the crops with organic and inorganic xenobiotics, alter the soil proper-
ties and pollute the groundwater owing to leaching (Lyu et  al. 2022). Extensive 
application of pesticide and fertilisers may potentially endanger the environment 
and pose health hazards to urban residents.

Xenobiotics are the compounds, mainly the contaminants, that are not found in 
the natural environment and are generated or introduced as a consequence of human 
interventions (Stefanac et  al. 2021). These xenobiotics usually impart negative 
influences on human population and their environment by meddling with metabolic 
and ecological processes (Ortiz et al. 2022). Xenobiotics can have lethal, mutagenic 
or teratogenic impacts on people even in minute quantities, when exposed over an 
extended time period (Dhuldhaj et  al. 2023). In recent past, researchers become 
interested in the contamination of agroecosystems with xenobiotics since it has the 
propensity to contaminate the food chain, cause biomagnification in trophic levels 
and pose serious health risks to both humans and animals.

Xenobiotics may include inorganic contaminants, organic contaminants and 
biological contaminants (Atashgahi et  al. 2018). Inorganic contaminants include 
heavy metals that are transferred to urban agroecosystems owing to anthropogenic 
activities required to fulfil energy and economy demands of human population in 
urban ecosystem (Singh et  al. 2022). Organic wastes chiefly contain fertilisers, 
pesticides, pharmaceuticals, personal care products (PPCPs) and other emerging 
contaminants (ECs). These may be composed of polyaromatic hydrocarbons, 
chlorofluorocarbons and other highly toxic and hazardous contaminants (Gupta 
et al. 2022). In general, biological waste is discharged from labs, care establishments, 
nursing homes, mortuaries, autopsy centres and blood banks (Pepin et al. 2014). If 
not managed properly, this medical waste may further be a source of deadly 
microorganisms such as virus, bacteria or fungi and may pose severe health threats 
for human population (Ramteke and Sahu 2019).

It is vitally important to handle these wastes containing potentially harmful 
xenobiotics that could harm both human and ecological health (de Oliveira et al. 
2020). However, in third-world countries, xenobiotics may end up concentrating in 
the urban components such as agroecosystems, water bodies and air owing to lack 
of high-end waste management facilities and eventually distressing the human 
health (Kumar and Chopra 2020; Karthigadevi et al. 2021). Agroecosystems are the 
ecosystems that have been altered by human intervention for the crop cultivation 
(Khumairoh et  al. 2012). Due to the human interventions, agroecosystems have 
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recurrent presence of heavy metals and agrochemicals, including pesticides, fertilis-
ers and other anthropogenic contaminants (Alengebawy et al. 2021; Okereafor et al. 
2020). Soil is an integral part of the agroecosystem and a living media for plants, 
microbes and animals. The soil has always been important to human and their 
health, providing a resource that can be used for food crop production (Steffan et al. 
2018). It is also the foundation for various ecological processes; therefore, proper 
management is necessary to safeguard food safety and human health (Alengebawy 
et al. 2021).

With an atomic density greater than 5 g cm−3, a class of metals and metalloids are 
referred to as “heavy metals” (Hawkes 1997). Heavy metal contamination affects 
food crops, water resources and agroecosystems and can endanger the health and 
welfare of both man and animal (Briffa et al. 2020). An excessive build-up of heavy 
metals may contaminate the soil, lower crop quality and compromise food safety 
(Liu et  al. 2013). Several variables, including soil pH, organic matter, cation 
exchange capacity, crop growth phases, crop type, fertilisers, soil type, metal spe-
ciation, soil microorganisms present and other characteristics, affect the uptake, 
distribution and transport of heavy metals in the soil and crops (Liu et al. 2006). It 
is crucial to safeguard this resource and preserve its sustainability because heavy 
metal contamination in agroecosystems may cause soil dysfunction, interfere with 
crop growth and potentially harm human health through a polluted food chain 
(Singh et al. 2021).

Henceforth, this chapter provides a comprehensive and critical explanation of the 
distribution and sources of heavy metals in urban agroecosystems, as well as the 
factors that impact their ingression, accretion and migration within these systems 
and the consequences they have on crop plants and human health.

2 � Sources of Heavy Metals in the Urban Agroecosystems

2.1 � Wastewater Irrigation

Utilisation of wastewater for irrigation is a common practice in developing countries, 
particularly in arid and semi-arid regions (Minhas et al. 2022). Prolonged use of 
untreated municipal and industrial wastewater for irrigation leads to the heavy metal 
accretion in the soil, transferring it in the food crops, and causes numerous health 
disorders on contaminated crop consumption (Kumar and Chopra 2014; Pal et al. 
2023). Long-term wastewater irrigation has potential to change the soil’s physical 
and chemical properties and lead to heavy metal uptake by plants, mostly vegetables 
(Mahmood and Malik 2014). The high occurrence of Cd, Cr, Ni and Pb were 
reported in sewage water used to irrigate the urban agroecosystems of Faisalabad, 
Pakistan, by Jabeen et al. (2022). Wastewater irrigated vegetables had heavy metal 
concentrations higher than those allowed by the European Union and the World 
Health Organization (WHO). The hazard ratio for these heavy metals was larger 
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than 1, indicating a severe health risk upon consumption of these vegetables by the 
region’s urban residents. Wastewater irrigation practice over an extended period of 
time has been demonstrated to affect the crop growth by altering the physiology and 
biochemistry of crop plants and pose human health risks in India (Kumar et  al. 
2020). Thus, prolonged wastewater irrigation has been reported as a primary route 
to food chain contamination, leading to severe human health risks globally. Multiple 
sources of heavy metal contamination in agroecosystems have been shown in 
(Fig. 1).

2.2 � Fertilisers and Pesticides

Application of inorganic fertilisers, herbicides, insecticides, composts and manure, 
among other agricultural techniques, is thought to increase the concentration of 
heavy metals including As, Cr, Cu, Zn and Cd in agricultural soils (Zhang et al. 
2010). Because phosphorous is regarded as a vital mineral for agricultural plants’ 
growth and development, phosphate-based fertilisers are the most popular among 
the many fertiliser types (Gupta et  al. 2014). An Indian study reported that pro-
longed application of inorganic fertiliser acted as significant contributor to the Cd 
augmentation in top soil, further causing the Cd build-up in paddy (Rao et al. 2018). 
It was revealed that heavy metal concentrations were associated to fungicides and 
copper-based fertilisers (Schneider et al. 2019). Arsenic-based fungicides accounted 
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Fig. 1  Representation of natural and anthropogenic sources of heavy metal contamination in 
agroecosystems
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for 0.28 to 3.84 mg ha−1 of the yearly arsenic influx into paddy fields (Wang et al. 
2018). Since these agrochemicals have high shelf life and mostly are non-
biodegradable in nature, their uncontrolled and prolonged application has resulted 
in the contamination of agroecosystems around the world.

2.3 � Atmospheric Deposition

Heavy metals can be released into the atmosphere through both natural and human-
driven processes in the form of particles, vapours or primary oxides. The principal 
contributors to the atmospheric deposition of heavy metals include the burning of 
fossil fuels, vehicular emissions, mining activities, metal smelting and other indus-
trial processes. Particles containing heavy metals enter biological cycles and food 
chains by dry and moist deposition, depositing in topsoil and surface water layers 
(Guo et al. 2016). The atmospheric deposition of metal elements that fall as dust and 
are settled on the above-ground tissues of plants during mining activities may 
directly or indirectly absorb metal elements from the air. Prior research has shown 
that various heavy metals, viz. As, Cd, Cu, Hg and Pb, are released into the atmo-
sphere from coal combustion, Zn, emanates from vehicular emissions and mining 
and Cr, from smelting (Huang et al. 2014).

2.4 � Industrial Activities

Different industrial processes, which contribute to heavy metals contamination, 
discharge industrial effluent, solid waste and dry and wet deposition into the 
environmental components. Fly ash discharge, smoke, the dumping of untreated or 
inadequately treated effluent and the disposal of solid waste in that area all make the 
agroecosystems close to industrial areas susceptible to trace metal pollution. The 
soil contamination with Hg comes primarily from coal-fired power stations. 
According to a study, foods including lettuce, amaranth, water spinach, cowpea and 
cereals cultivated in soils with high levels of Hg are detrimental for human health if 
consumed over an extended period of time (Li et al. 2018). Industries, for instance, 
tannery, chrome plating, ammunition factories, steel and alloys, are the major 
sources of chromium into the environment (Nagarajappa et al. 2017), whereas the 
majority of the Pb is released from various smelting, mining and acid battery manu-
facturing (Cwieląg-Drabek et al. 2020). However, Zn is used for agrochemical man-
ufacturing such as herbicides (Zinc sulphate), while Ni is associated with 
petrochemical emissions. Mombo et al. (2016) reported foliar transfer and Pb accu-
mulation in lettuce (9.8 mg kg−1) in kitchen gardens situated near a lead recycling 
factory.

Ingression of Heavy Metals in Urban Agroecosystems: Sources, Phytotoxicity…



166

2.5 � Solid Waste Disposal

The massive production of municipal solid waste (MSW) worldwide as a result of 
expanding urbanisation and population growth is posing significant challenges for 
its management (Gui et al. 2019). Incineration, landfills and open dumps situated in 
urban areas are significant metal-release pathways into the soil. Incineration is the 
easiest way of disposing of the solid waste; however, large volume of fly ash, con-
taining organic and inorganic pollutants (heavy metals), is generated during incin-
eration (Singh et al. 2023). Hence, fly ash from the MSW incineration process has 
a potential to pose threats to human and environmental health and yet is frequently 
disposed of in landfills (Lo and Liao 2007). The frequently found heavy metals in 
fly ash include Pb, Hg, Ni, Cr, Cu, Cd and Zn (Tang et al. 2015). The leaching of 
heavy metals from landfills to the agroecosystems present in the vicinity may act as 
a potential route of heavy metal transfer to soil and the crops and subsequently into 
the food chain. Ma et al. (2018) found that the agroecosystems in an MSW incinera-
tor’s vicinity in North China were found severely contaminated by potentially toxic 
heavy metals (As, Hg, Pb, Cd) representing the incineration process as the chief 
cause of heavy metal contamination.

2.6 � Mining

Across the globe, there is a lot of concern about heavy metal contamination in 
mining areas where farming is also practised (Wu et al. 2023). Heavy metals are 
released into the environment as a result of mining operations, viz. ore concentration, 
and transportation processes, which can endanger human health, ecological integrity, 
habitat and food security. Significant soil pollution in villages close to artisanal gold 
mining operations was documented by Xiao et al. (2017). Hg and Cd were discov-
ered to have polluted surface soils significantly. In addition, it was discovered that 
the region’s vegetables and cereal grains had increased levels of Pb and Hg. 
Consumption of heavy metal-contaminated food crops grown in close proximity to 
an acidic mining drainage area was reported to be linked to serious health concerns 
for humans (Xiao et al. 2017).

3 � Factors Affecting Heavy Metal Transfer and Mobility 
in Urban Agroecosystems

3.1 � Soil Parameters

Soil pH and redox potential (Eh) play key role in heavy metal mobility in soil-plant 
system. Heavy metal solubility decreases at high pH levels and increases at low pH 
levels (Sheoran et al. 2016). This is a result of soil components with varied surface 
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charges and solute adsorption, such as silicate clays, organic compounds and Fe and 
Al oxides. The change in surface charge is what determines how pH affects adsorp-
tion (Bhargava et  al. 2012). Low pH soils are more likely to have heavy metals 
migrate from the solid soil components into the soil solution. In alkaline soils, there 
is less of a risk of heavy metal leaching (Mn, Cu and Zn) and their bioavailability to 
agricultural plants, according to research conducted by Huang et al. (2014). The soil 
solution’s propensity to receive or donate electrons is determined by the Eh of the 
soil (Sheoran et al. 2016). Dynamics of Eh conditions can directly or indirectly alter 
the dynamics of heavy metals, due to modifications in pH, dissolved organic carbon 
and the chemistry of Fe and Mn oxides (Husson 2013). Under anaerobic conditions, 
heavy metals associated with Fe/Mn oxides release because of the oxides’ reduction-
induced dissolution (Antoniadis et al. 2017). Change of Eh towards reducing condi-
tions is usually accompanied with pH increase due to the consumption of protons 
required to reduce Mn and Fe (Rinklebe and Shaheen 2014).

A crucial component of the soil that has a significant role in maintaining the soil 
fertility is soil organic matter (SOM). SOM has the ability to retain heavy metals by 
complexion and adsorption; however an inner sphere and ion exchange reaction 
may also be occasionally involved (Evans 1989). Soil temperature mostly impacts 
the rate of organic matter transformation, which in turn affects how bioavailable 
heavy metals are in the soil. Temperature was found to have a significant impact on 
the bioavailability of metals in a study by Antoniadis and Alloway (2001); soil 
extracts and plant samples treated at 25 °C had higher amounts of Cd, Ni and Zn 
than those treated at 15 °C. The quick decomposition of organic matter at a greater 
temperature was the root of this. The soil texture reflects the particle size distribu-
tion of the soil and the content of fine particles such as oxides and clay. The heavy 
metal retention is higher in fine-textured soils than coarse-textured soils due to the 
presence of more pore spaces (Sheoran et al. 2010). Heavy metals in soil are dynam-
ically mobilised and bioavailable due to cation exchange capacity (CEC). Compared 
to clay, which has stronger binding force, sand has a lower affinity for heavy metals 
and other cations, because clay has a large cation exchange capacity (Antoniadis 
et al. 2017). According to reports, clayey soils tend to have greater CEC values, 
which slow down the movement of cationic metals and reduce their availability in 
soils (Antoniadis and Golia 2015). While CEC only apprehends cations by descrip-
tion, anionic species are maintained at higher amounts in high-CEC soils than in 
low-CEC soils (Becquer et al. 2001). Additionally, it was observed that a rise in soil 
CEC could promote the precipitation and complexation of heavy metals in agricul-
tural soils (Vega et al. 2010).

3.2 � Interactions with Soil Microbiota

The release of organic acids, siderophores, enzymes, surfactants and other oxidation-
reduction activities as well as biosorption makes microbial communities a powerful 
influencer in the soil that considerably alters the heavy metal mobility in the 
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agroecosystems (Luo et al. 2011). Bacterial species such as Stenotrophomonas spp., 
Bacillus subtilis and Escherichia coli are fast growing and possess functional groups 
on their surface that can adsorb or precipitate heavy metals in the soil (Wang et al. 
2014). Bacillus spp. and Paenibacillus spp. are known to adsorb and precipitate the 
heavy metals in the rhizospheric zone owing to their surface functional groups 
(Radhakrishnan et al. 2017). The polysaccharide-rich surface in Paenibacillus helps 
in the immobilisation of heavy metals such as Pb, Cu, Co and Zn (Prado et al. 2005). 
The majority of bacteria and fungi found in plants makes siderophores, which are 
stable complexes of iron with metals such as Al, Cd, Cu, Ga, In, Pb and Zn (Schalk 
et al. 2011). Some researchers have reported that organic acids released by plant-
allied microbes aid in the uptake of heavy metals like Cu, Zn and Cd as well as Pb 
by plant roots (Sheng et al. 2008). Mycorrhizal fungi have a large surface area, their 
cell wall components and intracellular compounds that confer them a solid capacity 
to immobilise the metals in the interior of plant roots heavy metals from soil 
(Meharg 2003).

3.3 � Plant Parameters

Numerous plant characteristics affect the uptake of heavy metals, including crop 
type, leaf area, leaf inclination angle, branching pattern, smoothness of exposed 
sections, canopy type, stomata size, exposed surface area and rate of transpiration, 
to mention a few (Shahid et al. 2017). Due to their rapid development, increased 
translocation and increased transpiration rates, leafy greens acquire more heavy 
metals than other vegetables (Gupta et al. 2021). A plant with many thin roots has a 
higher capacity to accumulate heavy metals than one with thick roots because of the 
increased surface area that allows for improved precipitation and ion exchange pro-
cesses at the root surface (Page and Feller 2015). The rhizosphere’s ability to move 
heavy metals is also impacted by root exudates.

4 � Heavy Metal Toxicity on Crop Plants

Due to their universal occurrence and severe and long-lasting detrimental effects on 
crop plants, their growth and developmental processes, toxic heavy metal contami-
nation of urban agroecosystems has become a solemn environmental-ecological 
health concern. At the molecular level, heavy metals can result in membrane disin-
tegration, mutations of genetic material, breakage in DNA strands, molecular cross-
linkage, oxidative stress, damage from reactive oxygen species (ROS) and ultimately 
stunt the development of crops (Hossain et al. 2010).

The production of ROS enhances a series of effects of heavy metal toxicity in 
crop plants resulting in oxidative stress, leading to membrane disintegration, bio-
molecule deterioration, ion leakage, lipid peroxidation and, most important, DNA 
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Fig. 2  Heavy metal-induced toxicity in crop plants

strand cleavage (Shahid et al. 2014) (Fig. 2). Heavy metals pose detrimental physi-
ological impacts on several growth phases in crop plants, especially onset of germi-
nation and its frequency, seedling development and reproduction (Table 1). Ni in 
higher concentration is linked with seed germination inhibition and retardation in 
many crops owing to its toxic effects on biochemical activities affecting enzyme 
action. Additionally, it is reported that it interferes with the assimilation, uptake and 
mobilisation of food reserves (proteins, lipids and carbohydrates) in germinating 
seeds (Ashraf et al. 2011).

One of the key factors affecting photosynthesis that has a significant impact on 
CO2 fixation, electron transport, photophosphorylation and enzyme action is Cr 
stress. On the other hand, when there is a high concentration of Pb in the soil, a 
number of plant species display abnormal morphology. High Ni concentrations in 
plant tissues indicate nutritional imbalance impairment and lead to dysfunctional 
cell membrane functioning. Delayed germination, leaf necrosis and wilting are 
signs of As phytotoxicity. These are followed by root discolouration and slowed 
shoot growth (Joardar et al. 2019). The mechanism of action leading to As toxicity 
includes, alteration in signaling pathways involved in membrane degradation, elec-
trolyte leakage, and ROS generation (Smith et al. 2010).

Ingression of Heavy Metals in Urban Agroecosystems: Sources, Phytotoxicity…



170

Table 1  Heavy metal-induced phytotoxicity on morphological, physiological and reproductive 
traits of food crops

Heavy 
metals Crops Phytotoxic effects References

Arsenic Vigna 
radiata

Reduced shoot and root development; 
reduced biomass, total chlorophyll and 
carotenoid content; aberrant stomata 
caused by altered and delayed mitosis; 
cytoplasmic and microtubule assembly 
disintegration

Gupta and Bhatnagar 
(2015), Das and Sarkar 
(2018)

Oryza sativa Reduced growth and production, shorter 
roots and shoots, less dry biomass and 
elevated oxidative stress

Nath et al. (2014), 
Awasthi et al. (2017), 
Kalita et al. (2018)

Glycine max Reduced root absorption, metal uptake, 
stomatal conductance and osmotic 
potential in leaf, reduced chlorophyll 
content, cell death of root tips, structural 
damage to xylem and phloem tissues, 
lipid peroxidation, overall hampered 
growth, rise in ROS generation and DNA 
oxidation

Armendariz et al. 
(2017), Chandrakar et al. 
(2017), Vezza et al. 
(2018)

Allium 
sativum

Reduction in root, shoot and plant 
biomass

Torres et al. (2017)

Brassica 
juncea

Inhibition of root length, decrease in 
number of lateral roots, decreased root 
length ratio and root mass ratio, 
overproduction of ROS species

Pandey et al. (2016)

Pisum 
sativum

Reduced seed germination Yoon et al. (2015)

Brassica 
juncea

Reduced growth and generation of ROS 
species

Kanwar and Poonam 
(2015)

Vicia faba Reduced photosynthetic rate due to 
stomatal limitations

Austruy et al. (2013)

Helianthus 
annuus

Reduced plumule length, radicle length 
and seedling vigour index

Imran et al. (2013)

Zea mays Reduced fresh weight percentage and root 
length

Mallick et al. (2011)

Cadmium Zea mays Reduced plant growth, antioxidants and 
enzymatic activities, altered 
photosynthetic pigments

Akinyemi et al. (2017), 
Anjum et al. (2015)

Cucumis 
sativus

Decreased nutrient uptake and 
photosynthetic performance

Sun et al. (2017)

Solanum 
tuberosum

Reduced shoot and root length and dry 
weight of potato

Hassan et al. (2016)

Brassica 
oleracea

Reduced leaf area and dry weight of leaf 
stem and root

Jinadasa et al. (2016)

Capsicum 
annum

Reduced root length, shoot area and root 
tips

Huang et al. (2015)

(continued)
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Table 1  (continued)

Heavy 
metals Crops Phytotoxic effects References

Glycine max Decreased net photosynthetic rate, 
stomatal conductance and total 
chlorophyll content

Xue et al. (2014)

Beta 
vulgaris

Reduced number of PSII super 
complexes, increase in monomeric form 
of the light-harvesting complex II 
(LHCII) antennae

Basa et al. (2014)

Brassica 
napus

Cracked cell walls, undeveloped 
mitochondria, plasmolysis and the 
absence of endoplasmic reticulum in cells 
of root tips

Ali et al. (2013)

Tomato Decrease in Zn, Mn and K concentration 
in aerial parts of plant

Bertoli et al. (2012)

Solanum 
tuberosum

DNA damage in root cells of seedlings Gichner et al. (2008)

Chromium Eruca sativa Decrease in root growth Kamran et al. (2015)
Triticum 
aestivum

Reduction in plant biomass Ali et al. (2015)

Allium cepa Genotoxicity Kumari et al. (2016)
Pisum 
sativum

Reduction in chloroplast volume and auto 
fluorescence

Rodriguez et al. (2012)

Oryza sativa Reduction in uptake of N, P, K, Cu, Zn, 
Fe

Sundaramoorthy et al. 
(2010)

Copper Glycine max Alteration in chloroplast structure Sanchez-Pardo et al. 
(2014)

Zea mays Decrease in seedling biomass, reduction 
in plant height and leaf area

Barbosa et al. (2013), 
Dresler et al. (2014)

Triticum 
aestivum

Reduction in seed germination, alteration 
in DNA and RNA structure and content, 
decrease in shoot, root and leaf weight

Gang et al. (2013)
Kumar et al. (2012)

Brassica 
juncea

Decrease in photosynthetic pigments and 
leaf chlorosis

Feigl et al. (2015)

Cucumis 
sativus

DNA damage/alteration, reduction in leaf 
number and area

Zheng et al. (2010), Işeri 
et al. (2011)

Vigna 
radiata

Reduction in growth, dry matter and yield Manivasagaperumal 
et al. (2011)

Lead Medicago 
sativa

Lipid peroxidation leading to oxidative 
stress

Hattab et al. (2016)

Pisum 
sativum

Damage to oxygen-evolving centre 
(OEC), inhibition of photosystem I and II

Rodriguez et al. (2015)

Zea mays Chlorophyll reduction in leaves, reduction 
in root and shoot macro- and micro-
nutrient concentrations

Singh et al. (2015)

(continued)
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Table 1  (continued)

Heavy 
metals Crops Phytotoxic effects References

Sesbania 
grandiflora

Disruption of several metabolic 
processes, which leads to the decrease in 
biomass production

Malar et al. (2014)

Oryza sativa Morphological alteration in guard cells, 
stomatal dysfunction

Srivastava et al. (2014)

Allium cepa DNA damage in root cells Jiang et al. (2014)
Triticum 
aestivum

Biomass reduction Ramesar et al. (2014)

Luffa 
cylindrica

Decrease in fresh weights of cotyledons, 
hypocotyls and radicals

Jiang et al. (2010)

Mercury Helianthus 
tuberosus

Delayed seedling emergence; decrease in 
plant height, internode length and leaf 
area; enhanced lipid peroxidation; 
reduced chlorophyll content and plant 
biomass

Lv et al. (2018)

Jatropha 
curcas

Decreased growth Negrete et al. (2016)

Allium 
sativum

Inhibition of seedling growth, rotting of 
roots

Zhao et al. (2013)

Arachis 
hypogaea

Decrease in seed germination, 
chlorophyll content, protein content

Abraham and 
Damodharan (2012)

Oryza sativa Inhibition in germination percentage, 
shoot and root length, lower fresh and dry 
weight

Gautam et al. (2010)

Brassica 
oleracea

Inhibition of seed germination, reduced 
coleoptile growth and root elongation

Ling et al. (2010)

Nickel Hordeum 
vulgare L.

Reduced grain and straw yield; reduced 
plant height, number of ears and grain 
weight; altered micronutrient levels

Kumar et al. (2018)

Glycine max 
L.

Reduced dry and fresh weight of roots 
and shoots

Reis et al. (2017)

Triticum 
aestivum L.

Reduced plant height, shoot and root 
growth

Parlak (2016)

Coriandrum 
sativum

Reduced seed germination frequency and 
seedling growth

Poozesh and 
Tagharobian (2014)

Arachis 
hypogaea

Reduced root and shoot length, number 
of nodules, leaf area, dry weight of root 
and shoot and biochemical constituent 
pigments, sugars, starch, amino acids. 
protein and proline contents of leaves

Kaveriammal and 
Subramani (2015)

Brassica 
juncea

Reduced growth and yield Gopal and Nautiyal 
(2012)

S. Singh et al.



173

Heavy metals are translocated from roots of the plants to edible portions 
(Wijeyaratne and Kumari 2021). Therefore, the high concentration of heavy metals 
in the soil causes several adverse effects on the growth and productivity of crop 
plants (Table 1).

5 � Consequences on Human Health

Owing to consumption of contaminated crops and food items, heavy metals are 
transferred into the food chain (Fig. 3). Even at very low exposure levels, heavy 
metals have the potential to interfere with physiological processes after entering the 
human body and bonding with biomolecules like proteins and lipids. For instance, 
inorganic arsenic (iAs) has the potential to cause cancer (IARC 2012), and chronic 
exposure has been linked to diabetes, cardiovascular disease and skin lesions. 
Overexposure to Pb could have harmful consequences on the immunological, circu-
latory and nervous systems (Liu et al. 2018).

Complex relationships exist between methyl mercury and developmental and 
cognitive disorders (Liu et al. 2017). It has been recognised that Cd is a powerful 
endocrine disruptor that can cause cancers of the prostate and lung, as well as anae-
mia, renal tubular failure, pulmonary oedema and osteoporosis (Kabir et al. 2015). 
Acute and chronic toxic effects of heavy metals on human health have been sum-
marised in Table 2.

Human health risk in the soil-dust fall-plant system was evaluated by Wang et al. 
in 2018. It was discovered that the target hazard quotient (THQ) of the Cr in corn 
kernels and the Cr, Pb and Cd in rice grains and vegetables was more than 1, indicat-
ing that Cr via consumption of corn kernels and the Cr, Pb and Cd via consumption 

Fig. 3  Transfer of heavy metals in food chain and associated human health disorders
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Table 2  Acute and chronic toxicity of heavy metals on human health

Heavy 
metal

Target organ/organ 
system Clinical effects References

Arsenic Gastrointestinal, 
cardiovascular, 
pulmonary, renal, 
nervous, 
reproductive and
integumentary 
system

Nausea, vomiting, headache, delirium, 
encephalopathy, seizures, respiratory 
failure, pulmonary oedema, 
encephalopathy, spontaneous abortion, 
low birth weight, blackfoot disease, 
ischaemic heart disease, cerebrovascular 
diseases, hypertension, dermatitis, 
diabetes mellitus, chronic bronchitis, 
liver damage, Bowen’s disease

Chakraborti et al. 
(2016)

Cadmium Skeletal system, 
reproductive system, 
renal organs

Spontaneous abortion, stillbirth; kidney 
damage; pregnancy-induced hypertension 
syndrome'; proteinuria; bladder cancer, 
pancreatic cancer and lung cancer; 
osteoporosis; male infertility; prostate 
cancer; itai-itai disease

Hagino and 
Yoshioka (1961), 
Jaishankar et al. 
(2014)

Chromium Respiratory system, 
integumentary 
system, renal organs, 
reproductive system

Dermatitis and skin ulcers, bronchial 
carcinomas, bronchitis, dyslipidaemia, 
increased skin sensitivity and dermatitis, 
decrease in sperm count, cardiovascular 
collapse, facial erythema, renal 
dysfunction

Neghab et al. 
(2015), Buters 
and Biedermann 
(2017), Tsai 
et al. (2017)

Lead Nervous system, 
reproductive system, 
digestive system, 
respiratory system

Dementia, anaemia, premature birth, low 
birth weight, arthritis, allergies, autism, 
birth deformities, brain damage, dyslexia, 
paralysis, weight loss, Parkinson’s 
disease, loss of neurons, muscular 
tremors, reduced spermatogenesis, 
suppressed testosterone formation, 
abnormal sperm size

Eibensteiner 
et al. (2005), 
Pfadenhauer 
et al. (2014), 
Rodrigues et al. 
(2016)

Mercury Nervous system, 
digestive system, 
immune system, 
pulmonary and renal 
organs

Eye and skin corrosion; impaired 
memory; impairment of the kidneys, 
lungs, digestive, immune and nervous 
systems; asthma; dermatitis; 
autoimmunity diseases, central nervous 
system damage; Alzheimer’s disease

de Vos et al. 
(2007), WHO 
(2017), Aaseth 
et al. (2018), 
Kaur et al. 
(2018)

of rice grains and vegetables would pose a serious health risk to local residents in 
the Tongling mining area. Roy and McDonald (2015) used six species of house-
plants to analyse soil contaminated with a range of heavy metals, such as Pb, Zn, Cd 
and Cu. They then assessed the health risk for inhabitants of Spelter, USA, based on 
the concentration of heavy metals in the plant’s edible tissues. It was found that car-
rots accumulated Cd (40 mg kg−1) at concentrations that were 5, 8 and 12 times, 
respectively, higher than the maximum allowable limits for males, females and chil-
dren. They came to the conclusion that carrot and lettuce may increase the risk of 
Zn and Cd poisoning in adults, children and women.
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As per  an estimate, the global health risks, such as heavy metals, result in 
420–960 million cases of food-borne disease and 420,000 fatalities each year (WHO 
2021). To limit the presence of heavy metal residues in foods, governments and 
organisations have set severe norms and restrictions (OJEU 2006; SAMR 2017).

6 � Conclusion and Recommendations

Research information reported in this chapter allowed us to understand, expand our 
knowledge and establish the source distribution of heavy metals in the urban agro-
ecosystems, mechanisms and factors affecting their distribution and mobility in the 
agroecosystems and their phytotoxic effects on the crop plants along with the pos-
sible human health risks allied with consumption of heavy metal-contaminated 
crops over an extended period of time. Source distribution studies have revealed that 
prolonged application of fertilisers, pesticides, wastewater irrigation, vehicular 
emissions and industrial/urban activities in the vicinity of urban agroecosystems has 
resulted in the accretion of heavy metals in soils and food crops. The mobility and 
ingression of heavy metals in agroecosystems was shown to be influenced by fac-
tors, including pH, organic matter, temperature, texture, cation exchange capacity, 
type of microorganisms and other coexisting metals. Additionally, it was shown that 
the phytotoxic effects of heavy metals not only lower crop output but also contami-
nate the food chain, posing serious health risks when such contaminated products 
are consumed over an extended period of time.

Due to the transfer of heavy metals through the food chain, contamination of 
agroecosystems has resulted in a decline in the health and nutritional condition of 
soil and crops as well as posed threats to human health. The hazards to human 
health linked with heavy metal transfer to agroecosystems could be lessened through 
research and regulatory actions.

The following recommendations should be made in regard to the future control 
of the potential increase in heavy metal pollution of soil and food crops and their 
potential abatement:

•	 Avoiding cultivation of food/forage crops in urban and peri-urban areas with a 
high concentration of industries, traffic or mining activities that could seriously 
contaminate crops with heavy metals

•	 Monitoring of the urban/industrial effluents for the presence of heavy metals on 
a regular basis and provision of effluent treatment within the urban/industrial 
premises to prevent the release of untreated wastewater into the environment

•	 Providing kits for fast and easy detection and monitoring of soil/water/effluents 
at low cost

•	 Collaborations between governments; stakeholders, such as experts, professionals 
and politicians; and industry can catalyse innovation and create incentives for 
cleaner production and remediation technologies
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•	 Creating global governance standards with the goal of enhancing agroecosystem 
management and protection for long-term soil-food productivity

•	 Focus on exploration of emerging underlying links between heavy metal 
pollution and associated adverse health outcomes
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