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Abstract. Conventionally, the back-propagation (BP), maximum likelihood
(ML) and Bayesian approaches have been applied to train Artificial Neural Net-
works (ANN). This study presents aGeneralizedMaximumEntropy (GME) learn-
ing algorithm for ANN, designed specifically to handle limited training data and
unknown error distribution. Maximizing only the entropy of parameters in the
ANN allows more effective generalization capability, less bias towards data dis-
tributions, and robustness to over-fitting compared to the conventional algorithm
learning. In the implementations, GME is compared with the conventional algo-
rithms in terms of their forecasting performances in both simulation and real
data studies. The findings demonstrate that GME outperforms other competing
estimatorswhen trainingdata is limited and thedistributionof the error is unknown.

Keywords: Artificial neural network · Comparison of estimators · Entropy

1 Introduction

Neural networks have received considerable attention in recent years, for being a self-
learning and self-adaptive model with the powerful abilities in handling the nonlinear
problem and complex issue (Chen et al. 2018;Ramos et al. 2021). Recently, the technique
has been utilized in many purposes like prediction and classification (Chen et al. 2018;
Ramos et al. 2021; Yamaka, Phadkantha, and Maneejuk 2021). In this study, I aim
at introducing an alternative algorithm, which is the generalized maximum entropy
estimation (GME) (Golan, Judge, and Miller 1996), to artificial neural networks (ANN)
to improve the prediction performance.

Estimation of the neural network parameters is quite challenging as it needs to adjust
the weights and biases to ensure that the output is close to the desired output (Lin et al.
2016). Many estimation techniques and concepts have been proposed and developed
to tune weight and bias parameters in the neural networks (Chon and Cohen 1997). It
should be noted that these parameters are both learnable parameters which are used to
link the input layer, the hidden layer and the output together. For example, if we have
a single layer network, the input data is multiplied with the weight parameter; then a
bias is added before passing the transformed input data to the next hidden layer. Next,
the output layer can be obtained by multiplying the transformed input data with another
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weight parameter followed by the inclusion of an additional bias to obtain the output.
Traditionally, parameters are estimated using the methods of back-propagation (BP)
(White 1989), maximum likelihood (ML) (Gish 2020) and Bayesian (Müller and Insua
1998).

From the computational point of view, the BP algorithmminimizes the cost function,
which is commonly assumed to be mean square error, in order to obtain the optimal
parameters. Many iterative learning steps are required in the learning process to obtain
a better learning performance. However, it is well known that given the cost function
as mean square error, it leads to the strong assumption that all the feature components
are equivalent (Wang, Du and Wang 2017). Thus, Gish (2020) proposed a probabilistic
view of neural networks to derive the maximum likelihood estimation. Specifically,
the cost function of the BP algorithm is replaced by the likelihood function. The basic
concept of the ML method is that the optimal parameters should be chosen such that
the probability of the observed sample data is maximized. This estimation has several
attractive properties including: consistency, asymptotic normality, and efficiency when
the sample size approaches infinity (Chen et al. 2013). Lin et al. (2016) argued that
although the learning process of these estimators are generalized correctly to the new
inputs after sufficient training, the learning speed is slow and is not incremental in nature
(old input should still be trained with the new input) (Fu, Hsu, Principe 1996). Also, if
we limit the training data to reduce the computational cost of the estimations and gain
a better control over the training data, we may face the overfitting problem (Chu et al.
2021). It should be noted that overfitting occurs when the network has memorized the
training input, but it has not learned to generalize to new inputs, leading to overconfident
predictions. In the Bayesian approach, these issues can be handled in a natural and
consistent way. The non-informative priors are used to handle the complexity of the
data and network; as a result, the model is weighted by the posterior probability given
the data sample. However, this estimation still suffers from some complicated problems
such as the training time, the efficient parameter estimation, the random walk in the
high-dimensional parameter cases (Kocadağlı 2015).

According to the above view about the estimationmethods, despite these estimations
generally performwell, they have inherent additional limitations (Kocadağlı and Aşıkgil
2014; Lin et al. 2016; and Yang, Baraldi, and Zio 2016). First of all, in the cases of ML
and Bayesian, determining the most suitable distribution (likelihood and posterior distri-
butions) requires an expert, otherwise it is possible to construct the incorrect functional
structure. Secondly, when the neural network model is being trained using the BP and
ML, a large training data is required. Thirdly, it has often been found that BP andML are
prone to overfitting (Dorling et al. 2003). Thus, we need to limit the complexity of the
network making it suitable to the learning problem defined by the data (Bishop 1995).

To overcome these limitations, GME is suggested to estimate the weight and bias
parameters of ANN. GME-ANN can be one of the popular neural networks models for
dealingwith prediction problem. This study aims at investigating the possibility of devel-
oping a ANN model based on the use of GME. Unlike ML and Bayesian, before ANNs
are being trained, the prior information regarding the likelihood and posterior distribu-
tions are not required. GME allows us to produce methods that are capable of learning
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complex behaviors without human intervention. It also has an ability to fit the data with-
out making specific assumptions; therefore, I hypothesized that estimation with GME
(GMS-ANN)would enable the resulting parameter estimates to bemore unbiased to data
distributions and robust to over-fitting issues compared to those ML, and Bayesian. In
addition, there are many pieces of evidence confirming the high estimation performance
of GME (Alibrandi and Mosalam 2018; Maneejuk, Yamaka, and Sriboonchitta 2020),
despite small sample size and limited training data. In this study, thus, the performance
of each estimation approach and their relative performance with a focus on small sample
sizes are investigated.

The rest of this paper is organized as follows. Section 2 describes the proposed
methodology. Section 3 presents the experiment studies. The real data example is
reported in Sect. 4. Finally, Sect. 5 provides the conclusion of this study.

2 Model Setup

The idea is to build an entropy function with a neural network constraint to replace
the loss function or probability function discussed in the previous section. In other
words, the GME is used as the estimator to adjust the weights and biases of the neural
network by maximizing the Shannon entropy with the ANN equation constraint. In
particular,weights andbiases inANNare reparametrized as the discrete randomvariables
on bounded supports. The sum of entropy distributions of the weights and biases is
maximized subject to model consistency constraints. The weights and biases of interest
are then calculated as the expectation of random variables on the prescribed supports
under the derived distributions of the entropy maximization.

2.1 ANN with Three Layers

In this section, I provide three layered ANN consisting of an input layer with I input
neurons, one hidden layer withH hidden neurons, and one output layer, as the example.
Mathematically, the hidden and input layers of ANN can be expressed as

yi =
H∑

h=1

{
ωO
h f

I

(
K∑

k=1

ωI
k,hxi,k + bIh

)
+ bOh

}
+ εi, (1)

where yi, for t = 1, ...,T , and xi,k , for k = 1, ...,K , are output and input variables,
respectively. ωI

k,h is the weight parameter of input xi,k that connects the input xi,k and

the hth neuron in the hidden layer, bIh is the bias for hth neuron in the hidden layer. f
I is

the activation function that provides the nonlinearity to the ANN structure, and scales
its received inputs to its output range. In this study, the logistic function is employed
as it is easy to calculate and its first derivative is simple (Kocadağlı and Aşıkgil 2014).
Likewise, I use ωO

h and bOh to denote weight and bias terms, respectively. εi is the error
term.
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Learning occurs through the adjustment of the path weights and node biases. Tradi-
tionally, all the weight and bias parameters are estimated by the BPmethod. The optimal
parameters are estimated byminimizing the squared difference between observed output
and estimated output. The loss function can be written as follows,

Loss = 1

N

N∑

i=1

{
yi −

H∑

h=1

{
ωO
h f

I

(
K∑

k=1

ωI
k,hxi,k + bIh

)
+ bOh

}}
, (2)

2.2 Maximum Entropy Learning for ANN Model

In this study, the maximum entropy (ME) of Jaynes (1982) is generalized to estimate
weights and biases in the ANN equation. As I mentioned before, all parameters are
calculated as the expectation of random variables on the prescribed supports under the
derived distributions of the entropy. More precisely, the random variables are treated as
the probabilities and the information entropy of these probabilities can be measured by
Shannon’s entropy (Shannon 1948)

H (p) = −
∑

d

pd log pd , (3)

where pd is the probability of the possible outcome d , such that
∑

d pd = 1. Under
this maximum entropy principle, the distribution is chosen for which the information is
just sufficient to determine the probability assignment. In addition, it seeks information
within the data without imposing arbitrary restrictions. In this study, I follow the idea of
Golan, Judge, and Miller (1996) and generalize the ME solution to the inverse problems
with error, expressed in the ANN framework.

To estimate the unknown parameters in Eq. (1), say ωO
h , ωI

k,h, b
O
h and bIh, for h =

1, ...,H and k = 1, ...,K , we reparameterize them as the expectation of weights on
the prescribed supports. The weight parameters. Each weight has a bounded support
space, zhk = [zhk,1, ..., zhk,M ], associated with the hth neuron and kth variable, which
is symmetrically built around zero and weighted by the vector phk = [phk,1, ..., phk,m].
Note that zhk,1 and zhk,M are, respectively, the lower and the upper bounds. In the ANN
structure, there are input and output weights, and hence the output and input probability
vectors (pOh = [pOh,1, ..., pOh,M ] and pIhk = [pIhk,1, ..., pIhk,M ]) associated with output and

input supports (zOh = [zOh,1, ..., zOh,M ] and zIhk = [zIhk,1, ..., zIhk,M ]) are introduced in this
reparameterization. Thus, I reparameterize ωO

h and ωI
k,h as

ωO
h =

M∑

m=1

zh,mp
O
h,m

ωI
hk =

M∑

m=1

zhk,mp
I
hk,m

(4)

where pOh,m and pIhk,m are output and input probability estimates specified on the supports

zh,m and zhk,m respectively. In terms of bOh and bIh, the reparameterization of these biases
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is also somehow analogous to the weight parameter representation in probability and
compact supports,

bOh =
M∑

m=1

rh,mq
O
h,m

bIh =
M∑

m=1

rh,mq
I
h,m

(5)

where qOh,m and qIh,m are, respectively, the output and input probability estimates specified
on the supports rh,m. Just like the estimated weights and biases, the error εi is also viewed
as the expected mean value of finite support vi. Again, we can view error as the expected
values of a random variable defined on a probability distribution. Thus, εi has a bounded
support space vi = [vi,1, ..., vi,M ], associated with i th observation, and weighted by the
vector wi = [wi,1, ...,wi,M ].

εi =
M∑

m=1

viwim, (6)

Pukelsheim (1994) suggested using the three-sigma rule for setting the support space
of the error, such that vi1 = −3σ and viM = 3σ , where σ is the standard deviation of y.
Now, the ANN model (Eq. 1) under the reparameterization becomes

yi =
H∑

h=1

⎧
⎨

⎩

⎛

⎝
M∑

m=1

zh,mp
O
h,m

⎞

⎠f I

⎛

⎝
K∑

k=1

M∑

m=1

zhk,mp
I
hk,mxi,k +

M∑

m=1

rh,mq
I
h,m

⎞

⎠ +
M∑

m=1

rh,mq
O
h,m

⎫
⎬

⎭ +
M∑

m=1

viwim, (7)

The entropy term is maximized subject to the requirements of the proper probability
distributions for pOh,m pIhk,m, q

O
h,m, q

I
h,m and wi,m and the N information-moment con-

straints of the ANNmodel. These unknown probabilities are assumed to be independent
and can be estimated jointly by solving the constrained optimization problem with an
objective function based on Shannon’s entropy and constrains.

H(pI , pO, qI ,qO,w) = argmax
pI , pO , qI ,qO ,w

{
−H(pI ) − H(pO) − H(qI ) − H(qO) − H(w)

}

= −
H∑

h=1

K∑

k=1

M∑

m=1

pIhk,m log pIhk,m −
H∑

h=1

K∑

k=1

M∑

m=1

pOhk,m log pOhk,m −
H∑

h=1

M∑

m=1

qIh,m log qIh,m

−
H∑

h=1

M∑

m=1

qOh,m log qOh,m −
N∑

i=1

M∑

m=1

wim logwim

(8)

subject to Eq. (7) and additional contrarians

M∑

m=1

zh,mp
O
h,m = 1, (9)

M∑

m=1

zhk,mp
I
hk,m = 1, (10)
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M∑

m=1

rh,mq
I
h,m = 1, (11)

M∑

m=1

rh,mq
O
h,m = 1, (12)

M∑

m=1

viwim = 1. (13)

Then, the Largrangian function is

L = − H(pI ) − H(pO) − H(qI ) − H(qO) − H(w)

+ λ′
⎡

⎣yi −
H∑

h=1

⎧
⎨

⎩

⎛

⎝
M∑

m=1

zh,mp
O
h,m

⎞

⎠f I

⎛

⎝
K∑

k=1

M∑

m=1

zhk,mp
I
hk,mxi,k +

M∑

m=1

rh,mq
I
h,m

⎞

⎠ +
M∑

m=1

rh,mq
O
h,m

⎫
⎬

⎭ −
M∑

m=1

viwim

⎤

⎦

+ ρ

⎡

⎣1 −
M∑

m=1

zh,mp
O
h,m

⎤

⎦ + �

⎡

⎣1 −
M∑

m=1

zhk,mp
I
hk,m

⎤

⎦ + φ

⎡

⎣1 −
M∑

m=1

rh,mq
I
h,m

⎤

⎦ + ϑ

⎡

⎣1 −
M∑

m=1

rh,mq
O
h,m

⎤

⎦

+ ϕ

⎡

⎣1 −
M∑

m=1

viwim

⎤

⎦ (14)

The GME estimator generates the optimal probability vectors
�
p
I
,

�
p
O
,

�
q
I
,

�
q
O
and

�
w that can be used to calculate point estimates of the unknown weights, biases and the
unknown random errors through the reparameterizations in Eqs. (4–5), respectively. As
noted by Golan et al. (1996), since the Largrangian function function (Eq. 14) is strictly
concave, I can rake the gradient of L to derive the first-order conditions. I would like to
note that the number of supportsM is less controversial; and usually used in the literature
is in the range between 3 and 7 points since there is likely no significant improvement
in the estimation with more points in the support.

3 Experiment Study

In this section, I present the Monte Carlo simulations to illustrate the performance of
ANN with GME estimation. More precisely, the suggested estimation is compared with
theML,Bayesian, andBPalgorithms. In the case ofGME, I set the number of support as 3
(M = 3), whereas zOk = zIhk = rh,m = [−5, 0, 5] and vi = [−3(sd(y)), 0, 3(sd(y))]. For
ML, the normal likelihood function is assumed, while the Gaussian approximation for
the joint posterior probability distribution of the network weights and biases is assumed
for Bayesian estimation. In the experiment, the output variable is simulated from

yi = 1 + 0.5(sin(0.5xi)) + εi, (15)

where sin(·) is the sinusoidal function. The simulated yi becomes nonlinear andfluctuates
overtime. Also, the precision of the estimations under different sample sizes and error
distributions is to be investigated. Thus, I generated the error term from the normal and
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non-normal distributions, consisting of N(0, 1), t(0, 1, 4), and Unif (−1, 1). Then, I
generated a new sample during each Monte Carlo iteration by using Eq. (15) with the
small sample sizes of 50 and 100 observations. The data are divided into training and
test sets in which 70% of the total observations is used as the training data (in-sample
data), while the rest is the test data (out-of-sample).

The simulation studies are carried out on a 12th Gen Intel(R) Core(TM) i7-12700H
2.30 GHz, RAM 16 GB DDR5 workstation. The root mean square error (RMSE) is
employed to report computation errors in all estimations. As there are several estimations
considered and compared in this study, I set the same structure ofANNfor all estimations.
To be more specific, I set the learning rate η = 0.001, and the maximal error threshold
0.05. In addition, the single layer with sigmoid activation function is assumed, and
the number of hidden neurons for those types of ANN models is set as 5. The above
simulation process is repeated 100 times in order to estimate themean value and standard
deviation of RMSE (Table 1).

Table 1. Results of RMSE (n = 50)

In-sample εi ∼ normal

GME BP Bayesian ML

Mean 0.814 0.668 0.670 0.660

SD 0.688 0.071 0.071 0.071

Out-of-Sample εi ∼ normal

GME BP Bayesian ML

Mean 1.307 0.904 0.903 0.921

SD 1.123 0.166 0.170 0.165

In-sample εi ∼ student − t

GME BP Bayesian ML

Mean 1.221 1.067 1.069 1.069

SD 1.273 0.115 0.116 0.115

Out-of-Sample εi ∼ student − t

GME BP Bayesian ML

Mean 2.083 1.802 1.993 1.881

SD 2.114 0.693 0.893 0.701

In-sample εi ∼ unif

GME BP Bayesian ML

Mean 2.117 2.652 2.745 2.784

SD 0.884 1.803 1.867 1.864

Out-of-Sample εi ∼ unif

GME BP Bayesian ML

Mean 3.124 3.983 4.093 4.394

SD 1.093 2.343 2.431 2.993

Note: (1) Themean value of RMSE across 100 replications is reported, with the standard deviation
in parentheses.
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Table 2. Results of RMSE (n = 100)

In-sample εi ∼ normal

GME BP Bayesian ML

Mean 0.743 0.535 0.573 0.544

SD 0.480 0.056 0.066 0.055

Out-of-Sample εi ∼ normal

GME BP Bayesian ML

Mean 1.100 0.809 0.811 0.802

SD 1.023 0.123 0.136 0.126

In-sample εi ∼ student − t

GME BP Bayesian ML

Mean 1.132 0.952 0.980 0.943

SD 1.341 0.327 0.207 0.321

Out-of-Sample εi ∼ student − t

GME BP Bayesian ML

Mean 1.902 1.801 1.811 1.850

SD 2.493 0.955 0.907 0.939

In-sample εi ∼ unif

GME BP Bayesian ML

Mean 2.334 5.685 5.693 5.383

SD 1.824 3.321 5.256 3.343

Out-of-Sample εi ∼ unif

GME BP Bayesian ML

Mean 4.930 9.224 10.039 9.383

SD 2.549 4.003 5.023 5.034

Note: (1) Themean value of RMSE across 100 replications is reported, with the standard deviation
in parentheses.

Reported in Tables 2, 3 are the mean and standard deviation of RMSE for in-sample
goodness-of-fit and out-of-sample predictive accuracy across two horizons with three
different error distributions. From these two tables, I can draw the following conclusions.
(1) RMSE from the BP estimator is lower than that of the GME, ML, and Bayesian
estimators, when the error of the ANN model is generated from normal and student-t
distributions. The possible reason is that the small sample sizes of 50 and 100 may lead
to a problem in the ML estimator as it relies on the asymptotic theory (Yamaka and
Sriboonchitta 2020). Although the Bayesian estimation does not carry the assumptions
of the asymptotic theory, whichmeans that large sample size is not necessary for drawing
valid statistical inferences, the conjugate prior for the weight parameter in this studymay
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not bewell-specified and thereby leading to the higher RMSE thanBP andML. (2)When
the error is assumed to be uniformly distributed, the GME estimator outperforms BP,
Bayesian, and ML, because the mean of RMSE of the former is smaller than the latter.
(3) With regard to the standard deviation, it is observed that the standard deviation from
GME is relatively high in all error distributions, except uniform. This indicates that the
variance of the GME is relatively high when the error distribution is known. However,
it is also interesting to see that the proposed GME is superior to other estimations both
in goodness-of-fit and predictive accuracy over all sample sizes, when the uniform error
distribution is given. Therefore, in the case that the distribution of the error is unknown,
the GME is considered a useful method as there is no need to assume the theoretical
probability distribution for the errors to make statistical inference.

Table 3. Computational time (second) with different sample sizes

Method Observations

50 100 500 1000

GME 19.139 35.993 104.335 904.024

BP 0.105 0.194 0.460 0.841

Bayesian 0.786 0.842 0.903 0.661

ML 0.203 0.225 0.509 0.798

Finally, it is interesting to assess the computational cost of each estimation for small
and large sample sizes {n = 50, 100, 500, 1000}. It can be observed in Table 3 that
GME spends 19.139s to 0. 904.024s CPU time along 50 to 1000 observations. When
comparing the computational performance between GME and other estimations, I found
that GME runs slower than the others. This indicates that GME performs very poorly
in the present simulations. This is not surprising due to the more parameters in the
GME estimation. In other words, as the weight and bias parameters of ANN are derived
from the expectation of probabilities on the prescribed supports, there will be a larger
number of unknown parameters in the GME estimation. Although the GME takes high
computational cost, it can provide more accurate prediction results particularly when
the data is non-normally distributed.
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4 Case Study

Boston Housing is a dataset obtained from the UCIMachine Learning Repository. There
are 506 observations for predicting the price of houses in Boston. The data contained 14
variables, consisting of 13 continuous variables (per capita crime rate by town, propor-
tion of non-retail business acres per town, proportion of residential land zoned for lots
over 25,000 sq.ft., nitrogen oxides pollutant concentration, average number of rooms,
proportion of owner-occupied units built prior to 1940, weighted distances to five Boston
employment centers, index of accessibility to radial highways, property-tax rate, pupil-
teacher ratio by town, the proportion of blacks, percent lower status of the population and
median house value) and one discontinuous variable (Charles river dummy variable).
In this study, I consider median house value as output, while the rest are inputs. In the
simulations, 354 training data and 152 testing data were randomly generated from the
Boston Housing database.

Table 4. Forecast performance on the Boston housing data set

Estimation RMSE

GME In-sample 1.909

Out-of-sample 2.839

BP In-sample 2.632

Out-of-sample 4.014

Bayesian In-sample 4.623

Out-of-sample 4.872

ML In-sample 3.834

Out-of-sample 3.993

The performance of each estimator is reported in Table 4. Note that the structure of
ANN is assumed to be the same for all cases.With this study’s focus on the improvement
of the ANN estimation, the ANN having three layers and three hidden neurons is used.
It can be seen that the GME has the lowest error out of the estimators compared in this
real data study. The performance of the GME evaluated over the out-of-sample dataset
is illustrated Fig. 1. It is clearly seen that the predicted values obtained from the GME
estimator are close to the out-of-sample data. This indicates the high performance of the
GME in estimating the ANN model.
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Fig. 1. Fitting to test data

5 Conclusion

In this study, the GME estimator is suggested to be applied to ANN for its having several
interesting and significant features different from the traditional estimators, namely BP,
Bayesian, and ML. The estimator is effective in terms of goodness-of-fit and predictive
ability by reparametrizing the weight and bias parameters as the expectation of random
variables on the prescribed supports under the derived distributions of the entropy max-
imization, which is confirmed by the Monte Carlo simulations and real data example
in this study. Moreover, using this estimator enables the production of a novel method
capable of learning complex behaviors without human intervention and the model can
be fitted without making specific assumptions. Therefore, I hypothesized that estima-
tion with GME (GMS-ANN) would enable the resulting parameter estimates to be more
unbiased to data distributions and robust to over-fitting issues compared to those of BP,
ML, and Bayesian.

In order to compare the performance of GME and other competing estimators, the
ANN structures are always assigned the same number of hidden neurons for both simu-
lation and empirical studies. The RMSE is used for performance comparison. The results
show that GME estimator produces the lowest RMSE estimates compared with BP, ML,
and Bayesian when the errors are generated from uniform distributions. In other words,
when the error distribution is unknown, these experiment results confirm an advantage
of the GME approach. However, considering the computational cost, GME performs
very poorly in the present simulations for all sample sizes due to the large number of
probability estimates. It should be noted that in order to obtain as good performance as
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possible for GME, long time effort is needed to find the appropriate probabilities for
weight, bias, and error terms.

As the activation function in this studywas assumed tobe sigmoid, the performanceof
GME should be investigated considering other activation functions, such as exponential,
ReLu and tanh. I leave this issue in the further study. Also, as the number of support and
the value of bound can affect the estimation results, I would suggest varying the number
and value of support bounds to validate the performance of GME in estimating ANN
models.
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Kocadağlı, O.: A novel hybrid learning algorithm for full Bayesian approach of artificial neural

networks. Appl. Soft Comput. 35, 52–65 (2015)
Lin, P., Fu, S.W., Wang, S.S., Lai, Y.H., Tsao, Y.: Maximum entropy learning with deep belief

networks. Entropy 18(7), 251 (2016)
Maneejuk, P., Yamaka, W., Sriboonchitta, S.: Entropy inference in smooth transition kink

regression. Commun. Stat.-Simul. Comput. 1–24 (2020)
Müller, P., Insua, D.R.: Issues in Bayesian analysis of neural network models. Neural Comput.

10(3), 749–770 (1998)
Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994)
Ramos, V., Yamaka, W., Alorda, B., Sriboonchitta, S.: High-frequency forecasting from mobile

devices’ bigdata: an application to tourism destinations’ crowdedness. Int. J. Contemp. Hosp.
Manag. (2021)

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423
(1948)



162 W. Yamaka

Wang, X., Du, J., Wang, Y.: Amaximum likelihood approach to deep neural network based speech
dereverberation. In: 2017 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pp. 155–158. IEEE (2017)

White, H.: Some asymptotic results for learning in single hidden-layer feedforward network
models. J. Am. Stat. Assoc. 84(408), 1003–1013 (1989)

Yamaka, W., Phadkantha, R., Maneejuk, P.: A convex combination approach for artificial neural
network of interval data. Appl. Sci. 11(9), 3997 (2021)

Yamaka, W., Sriboonchitta, S.: Forecasting using information and entropy based on belief
functions. Complexity 2020 (2020)

Yang, Z., Baraldi, P., Zio, E.: A comparison between extreme learning machine and artificial
neural network for remaining useful life prediction. In: 2016 Prognostics and System Health
Management Conference (PHM-Chengdu), pp. 1–7. IEEE (2016)


	Maximum Entropy Learning with Neural Networks
	1 Introduction
	2 Model Setup
	2.1 ANN with Three Layers
	2.2 Maximum Entropy Learning for ANN Model

	3 Experiment Study
	4 Case Study
	5 Conclusion
	References


