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Abstract. Machine learning methods are being increasingly adopted
in economic forecasting. Many learners are available, and a practical
issue now presents itself: which one(s) to use? The answer we suggest
is ‘stacking regression’ (Wolpert, 1992), an ensemble method for com-
bining predictions of different learners. We show how to use stacking
regression in the time series setting. Macroeconomic and financial time
series data present their own challenges to forecasting (extreme values,
regime changes, etc.), and this presents challenges to stacking as well.
Our findings suggest that using absolute deviations for scoring the base
learners performs well compared to stacking on mean squared error. We
illustrate this with a Monte Carlo exercise and an empirical application:
forecasting US GDP growth around the Covid-19 pandemic.

Keywords: Stacking regression · machine learning · forecasting ·
robust statistics

1 Introduction

Machine learning methods are being imported in applied econometrics in a vari-
ety of settings. These methods provide powerful tools for prediction and fore-
casting. This poses a new problem for applied econometricians: too much choice.
There are many machine learning estimators available. Which learner should
they use? Model selection methods typically select a model and then conduct
inference based on the assumption that the model actually generated the data.
Their inference can only be trusted if the ‘best’ model selected happens to be a
close approximation to the true data generating process. In practice, however,
it is more likely that the best model captures some aspects of the truth, while
other models capture other aspects. By conditioning only on the best model,
model selection methods ignore all the evidence contained in the alternatives
and can lead to misleading results in the sense of being either systematically
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wrong or overfitting the data. Whenever quantities that are not model-specific
are of interest, therefore, it makes more sense to create a mixture of the different
models rather than select a ‘best’ model (Steel, 2020). To this end we consider
‘stacking regression’ (Wolpert, 1992), an ensemble method for combining predic-
tions of different learners, as a way to mix information contained in the different
models. Stacking regression is, in effect, a generalization of cross-validation.

The dependent data setting has its own peculiarities: financial and macroe-
conomic data are typically serially correlated, extreme values are an issue, etc.
Tuning methods have to avoid data leakage (letting information from the future
leak into the model training process). This applies to stacking regression on two
fronts: (1) the training of the different learners needs to avoid data leakage from
the future into the individual learners; (2) the stacking procedure that combines
the predictions of these learners has to avoid data leakage. We outline in this
paper how this is done in practice.

Lastly, this paper examines alternative scoring approaches, i.e., how in prac-
tice weights are assigned to the different learners to obtain the stacked fore-
cast. The most common scoring approach in both cross-validation and stack-
ing is mean-squared prediction error (MSPE). In the time-series setting, how-
ever, the mean absolute prediction error (MAPE) is an attractive alternative.
Macro and financial time series commonly present researchers with problems
such as extreme values and regime changes, and working with absolute rather
than squared deviations has been shown in other contexts to add robustness to
the analysis. Stacking on mean squared has been used in some empirical appli-
cations (Pavlyshenko, 2018; Ribeiro et al., 2019; Ribeiro and dos Santos Coelho,
2020; da Silva et al., 2020), but we are unaware of any systematic exploration of
stacking on median. We examine whether the robustness of the median extends
to stacking regression. Using Monte Carlo experiments and an empirical applica-
tion focused on US GDP around the COVID-19 pandemic, we find that stacking
on the regression has attractive features for practitioners.

The paper is organised as follows. We first briefly summarize how cross-
validation is done in the time-series setting, and then introduce stacking regres-
sion. In our applications we use 5 different ‘base learners’ that are combined to
obtain a stacking forecast, and the next section describes them in brief: lasso,
ridge, elastic net, support vector machine, and random forest. The next section
presents the results of a Monte Carlo exercise that shows that stacking regression
using MAPE for scoring compares favourably to stacking regression when MSPE
is used for evaluation. We then present the results of a practical application –
forecasting US GDP growth – and again show that stacking regression using
MAPE for scoring performs well. The final section concludes.

2 Time Series Cross-Validation

Cross-validation (CV) allows researchers to choose a model specification – typ-
ically, a tuning parameter (e.g., the penalization parameter for lasso) – based
on predictive performance, and it is often used to avoid modelling difficulties
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like overfitting and selection bias. As part of the process, the dataset is split
into two sections: the ‘training’ sample, which is used to fit the model, and the
‘validation’ or ‘holdout’ sample, which is used to assess predictive performance.
Mean squared prediction error, MSPE, is a common choice of metric for this.

This resampling technique iteratively trains and tests a model using different
portions of the data to tune the parameter of the base learner. The goal is to
find the model that has the best out-of-sample predictive performance and can
generalize to other samples from the same population. Since stacking can be
regarded as a logical extension of cross-validation, we briefly go through CV
before formally introducing the implementation of stacking.

In the case of independent data, ‘K-fold’ cross-validation is the most com-
monly used approach. In K-fold cross-validation, the data are randomly split
into K portions or ‘folds’. At each iteration, one fold is treated as the validation
set while the remaining K−1 folds are treated as the training set to fit the model
for some value of the tuning parameter. After each fold is used as the validation
set once (and only once), the predictive performance of the model is estimated
by averaging the MSPE over all the validation sets. Given a range of values
for the tuning parameters, the model with the best predictive performance is
selected as the final model (Fig. 1).

The iterative nature of cross-validation makes it computationally intensive:
the model needs to be repeatedly estimated and its performance checked across
different folds and across a grid of values for the tuning parameter.

Cross-validation with dependent data, i.e., in a time series setting, adds fur-
ther complications because of the need to ensure that the validation data are
independent of the training data. The key issue with K-fold cross-validation in
the context of time series prediction is data leakage. When data are dependent,
the information from the validation set can leak into the training set, leading to
overfitting and hence poor generalization.

With the exception of very specific cases where K-fold cross-validation may
be appropriate, researchers should typically use time series cross-validation, a
version of ‘non-dependent cross validation’ (Bergmeir et al., 2018) where cross-
validation is set up to account for the nature of the dependence that may see

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Validation

Validation

Validation

Validation

Validation

Training

Fig. 1. K-fold cross-validation for cross sectional data. (K = 5)
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dependent observations omitted from the validation sets. In simple terms, time
series cross-validation ensures that the training and validation take place with h-
step-ahead forecasts. For example, 1-step-ahead cross-validation (Hyndman and
Athanasopoulos, 2018) fits a model on t observations and assesses predictive
performance based on the forecast for time t + 1.

More generally, consider a series of validation sets, each of which includes
one observation at t + 1. The corresponding training set of each validation set
would then consist of observations through time t, all of which, by definition,
will have occurred before t + 1. After the predictions at current iteration are
made, the validation set moves forward by one and the current observation is
added to the training set to form the new training set for the next iteration. Thus,
future observations are never used to forecast previous ones; data never leaks into
the training process from the future. After going through all the predetermined
validation sets, the model with the best predictive performance is selected as the
final model. This one-step-ahead expanding window approach is demonstrated
in Fig. 2(a).

This process can be generalized for h-step-ahead CV and the training win-
dow can be fixed instead of expanding. A rolling window fixes the size of the
training set by deleting the most distant observation when a new observation is
added, while an expanding window simply adds the new observation to the cur-
rent training set. Therefore, the rolling window always has a fixed training size
predetermined by the researcher and the expanding window includes a growing
number of observations in the training set. The rolling window is useful when the
series is volatile or the forecasting depends largely on the most recent history,
while the expanding window is more appropriate when the series has a stable
trend or seasonal pattern.

Figure 2 and Fig. 3 show examples of one-step- and two-step-ahead forecasts
with expanding and fixed windows, e.g., Fig. 3(b) demonstrates 2-step-ahead CV
with a fixed window, where ‘T ’ and ‘V ’ refer to the training and validation sam-
ples, respectively. The first step is identical across Fig. 2 and Fig. 3: observations
1 to 3 constitute the training set and observation 4 is used for validation while
the remaining observations are unused as indicated by a dot (‘.’). In step 2, the
training set becomes larger in the expanding window setup such that it consists
of observations 1 through 4 (Fig. 2(a)) whereas the size of the training set is
fixed in Fig. 3(a) such that it consists of observations 2 through 5. Considering
the focus here is on macroeconomic data, and GDP in particular, we opt for an
expanding window approach for the base learners in this paper. For the Monte
Carlo experiments we will use 1-step ahead forecasts, while for the empirical
application we will use 1 and 4 step ahead forecasts.



Stacking Regression for Time-Series 135

Step

1 2 3 4 5

1 T T T T T

2 T T T T T

3 T T T T T

t 4 V T T T T

5 · V T T T

6 · · V T T

7 · · · V T

8 · · · · V

(a) h = 1, expanding window

Step

1 2 3 4 5

1 T T T T T

2 T T T T T

3 T T T T T

t 4 · T T T T

5 V · T T T

6 · V · T T

7 · · V · T

8 · · · V ·
9 · · · · V

(b) h = 2, expanding window

Fig. 2. Rolling h-step ahead cross-validation with expanding training window. ‘T ’ and
‘V ’ denote that the observation is included in the training and validation sample,
respectively. A dot (‘.’) indicates that an observation is excluded from both training
and validation data.

Step

1 2 3 4 5

1 T · · · ·
2 T T · · ·
3 T T T · ·

t 4 V T T T ·
5 · V T T T

6 · · V T T

7 · · · V T

8 · · · · V

(a) h = 1, fixed window

Step

1 2 3 4 5

1 T · · · ·
2 T T · · ·
3 T T T · ·

t 4 · T T T ·
5 V · T T T

6 · V · T T

7 · · V · T

8 · · · V ·
9 · · · · V

(b) h = 2, fixed window

Fig. 3. Rolling h-step ahead cross-validation with fixed training window.

3 Stacking

Machine learning methods have become popular in time series applications, too.
With ‘wide’ databases becoming available for different applications, there has
been an influx of applied papers utilising a plethora of different methods for fit
and variable selection (Goulet Coulombe et al., 2022; Kohns and Bhattacharjee,
2022; Massacci and Kapetanios, 2023). Given the breadth of choice, one question
to ask is which model to use. In some cases we have prior information which can
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help us make a decision, e.g., we believe the problem at hand is sparse and linear,
and so we prefer the lasso. But often we don’t have this information. Stacking
regression (Wolpert, 1992) provides a potential solution: rather than select a
‘best’ model, mix the different models in a principled manner. In essence, the
idea is that our models describe reality given some simplification. Not all models
simplify the problem at hand along the same ‘axis’ (i.e., the models have different
assumptions). In such cases, we can find an optimal convex mixture of the models
to give an overall better prediction. Importantly, since stacking is a generalization
of cross-validation, this convex combination of models is theoretically founded
(for a textbook treatment, see Hastie et al. (2009)).

With stacking regression, we combine predictions from multiple learners into
a meta model. The initial set of models consists of ‘base learners’ or ‘Level
0 models’. The stacking method combines the predictions of the base learners
into a ‘meta model’ or ‘Level 1 model’. Assume we have M base learners and
denote by f̂m(xi) the prediction for observation i of base learner m after tuning.
Formally, stacking can be represented as:

ŵ = arg min
w1,...,wM

n∑

i=1

(
yi −

M∑

m=1

wmf̂m(xi)

)2

s.t. wm ≥ 0,
∑

m

|wm| = 1

(1)

Note that this set of equations essentially describes a constrained least squares
problem, where we constrain the weights to be non-negative and their sum to be
unity. These constraints lead to better performance and facilitate the interpre-
tation of stacking as a weighted average of base learners (Hastie et al., 2009).

Stacking on mean squared is the most common approach here, just as it is
the most common choice of scoring method in standard cross-validation. How-
ever, time series applications are notorious for various breaks occurring in the
data. Extreme events are known to have a large influence on models focused
on the mean (Rousseeuw and Hubert, 2011). Importantly, from a forecasting
perspective, conditional mean models usually yield subpar forecasts right after
crisis episodes, which is exactly the moment policymakers and stakeholders need
accurate information. The median has a better breakdown point than the mean
(Huber and Ronchetti, 2009; Rousseeuw and Hubert, 2011), which makes it a
more attractive choice for modelling during uncertain times. Recasting the equa-
tion to stack on the median yields:

ŵ = arg min
w1,...,wM

n∑

i=1

∣∣∣∣∣yi −
M∑

m=1

wmf̂m(xi)

∣∣∣∣∣

s.t. wm ≥ 0,
∑

m

|wm| = 1

(2)
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Note how the only difference between Eq. (1) and (2) is that the objective func-
tion in the latter minimises absolute deviations. From an application standpoint
this can be solved using Koenker and Ng (2005) instead of a constrained least
squares. To avoid confusion with learners and scoring methods, we refer to stack-
ing on the median as “Stacking (L1)” and stacking on mean squared as “Stacking
(L2)” in the figures and tables.

4 Base Learners

In this section we briefly describe the base learners we use in the paper: lasso,
ridge, elastic net, support vector machine, and random forest.

4.1 Lasso

When dealing with high-dimensional data, researchers often have to circumvent
overfitting problem. Including too many irrelevant variables in the regression
model can result in poor out of sample generalization. Tibshirani (1996) intro-
duced the lasso (‘least absolute shrinkage and selection operator’) to improve the
prediction accuracy and interpretability of models in such case by performing
both regularization and variable selection. Consider a sample with n observa-
tions and p covariates. Let yi be the outcome and Xi be the vector of regressors
for the ith observation. The lasso solves the optimization problem:

β̂(λ) = argmin
β

{
1
n

n∑

i=1

(yi − X ′
iβ)2 + λ||β||1

}
, (3)

where β is the coefficient vector, and λ is the regularization parameter that
controls the overall penalty level. A higher λ means a stronger penalty on the
magnitude of all coefficients. At one extreme, lasso estimates approach those
of OLS as λ goes to zero. At the other end, all coefficients are shrunk to zero
when λ is large enough. In practice, λ is usually tuned through cross-validation,
while the search range needs to be predetermined by the researcher. Including
non-zero coefficients for covariates will increase the score of the loss function.
Consequently, all coefficients will shrink towards zero, while the coefficients of
those covariates who contribute little or nothing to the outcome will be shrunk
to exactly zero. The covariates are typically standardized so that the solution
does not depend on the measurement scale. The L1 norm ||β||1 makes lasso a
quadratic programming problem, hence there is no closed form solution and the
computation can be slow. Lasso is an appropriate choice for both prediction and
variable selection when the model is sparse.

4.2 Ridge

Ridge regression (Tikhonov, 1963; Hoerl and Kennard, 1970) was the most pop-
ular technique for improving predictive performance prior to lasso. It resembles
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lasso but has one key difference: the L2 norm is used for the penalization term.
In particular, ridge solves the problem:

β̂(λ) = argmin
β

{
1
n

n∑

i=1

(yi − X ′
iβ)2 + λ||β||22

}
(4)

Ridge also intends to reduce prediction error by shrinking all coefficients towards
zero, but no coefficients will be shrunk to exactly zero, which means that it does
not perform variable selection. Additionally, no requirement for the sparsity
assumption makes ridge attractive when the model is dense. Unlike the lasso,
ridge is also computationally efficient since it has a closed form solution:

β̂ = (X′X + λI)−1X′y,

where X is the n × p design matrix, I is a p × p identity matrix, and y is the
n × 1 vector of outcome. In general, the solution is still well defined when X′X
is rank deficient provided that λ is sufficiently large.

4.3 Elastic Net

Elastic net regularization (Zou and Hastie, 2005) is simply a linear combination
of L1 and L2 penalties of lasso and ridge. Specifically, it solves the problem:

β̂(λ) = argmin
β

{
1
n

n∑

i=1

(yi − X ′
iβ)2 + λ1||β||1 + λ2||β||22

}
(5)

Note that lasso has several limitations in practice. Firstly, for high-dimensional
data where the number of covariates p is larger than the number of observations
n, lasso selects at most n covariates before it saturates. Secondly, lasso tends to
select only one covariate from a group of highly correlated covariates and discards
the others even they all contribute to the outcome. Thirdly, the solutions of lasso
are not always unique and re-ordering the covariates may end up with different
estimates. The elastic net overcomes the limitations by adding a quadratic term
to the penalty while still preserving the advantages of lasso. The L2 penalty
makes the loss function above strongly convex and hence has a unique solution.
A common practice of reparameterization is to set:

λ1 = αλ

λ2 = (1 − α)λ
(6)

where λ controls the overall penalty level and α controls the balance between
lasso and ridge. A higher α indicates a higher weight on lasso and more coeffi-
cients will be shrunk to zero. The reparameterization is useful in the sense that
it allows us to fix α and selects a single parameter λ instead of tuning λ1 and
λ2 separately.
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4.4 Support Vector Machine

The linear Support Vector Machine (SVM) (Boser et al., 1992) solves a clas-
sification problem by finding a decision function, f(X), based on a set of n
observations Xi with labels yi ∈ {1,−1}, that divides all observations into two
classes. From the training set this algorithm estimates the parameters of the
decision function f(X) through a learning process. Then the classification of a
new observation is predicted according to the decision function. Each data point
Xi can be viewed as a p-dimensional vector. Consider a p−1 dimensional hyper-
plane defined by {X : f(X) = X ′β + β0 = 0}, linear SVM chooses the best
hyperplane that maximizes the distance (or margin) from it to the nearest data
point in each class. The hyperplane is a geometric representation of the decision
function f(X) with a p-dimensional norm vector, β, and a bias term, β0 ∈ R.
Linear SVM’s training outcome is a classification rule, G(X), depending on the
side of the hyperplane that an unclassified observation lands on. In particular,
G(X) = sign[f(X)] = sign[X ′β + β0].

If there exists two parallel hyperplanes that separate the two classes of train-
ing set, linear SVM maximises the margin, M = 2

||β || , between the planes by
solving the minimization problem:

minimize
β ,β0

||β||22
s.t. yi(X ′

iβ + β0) ≥ 1 ∀i ∈ {1, 2, ..., n}
(7)

However, data are sometimes not linearly separable. This can be incorporated
in the optimization function by including a hinge loss function ξi = max(0, 1 −
yi(X ′

iβ+β0)), which is proportional to the distance from the margin if the point
is misclassified and takes the value of zero if the point lies on the correct side.
We can now modify the optimization problem above as:

minimize
β ,β0,ξ

||β||22 + C

n∑

i

ξi

s.t. yi(X ′
iβ + β0) ≥1 − ξi, ξi ≥ 0 ∀i ∈ {1, 2, ..., n},

(8)

where C is the cost parameter that penalizes the amount of observations inside
the margin. A larger value of C will make the optimization choose a smaller
margin and hence increasing the overfitting. The Lagrange dual function can be
written as:

L(α1, α2, ..., αn) =
n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiyi(X ′
iXi)yjαj

s.t. αi ≥ 0,
n∑

i

αiyi = 0 ∀i ∈ {1, 2, ..., n}
(9)

where αi are Lagrange multipliers. The function can be efficiently solved by
quadratic programming algorithms, yielding β̂ =

∑n
i=1 α̂iyiXi. Notably, αi ≥ 0
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only if the point Xi lies on the boundary of the margin. such points are called
support vectors.

A regression version of SVM, support vector regression (SVR), was proposed
by Drucker et al. (1996). Training SVR means solving the problem:

mininize
β ,β0

1
2
||β||22

s.t. |yi − X ′
iβ − β0| ≤ ε ∀i ∈ {1, 2, ..., n},

(10)

where ε is a tuneable parameter that serves as a threshold. The distance between
any prediction and the true value should be within the range ε.

4.5 Random Forests

The random forests (Breiman, 2001) algorithm applies ‘bagging’ (bootstrap
aggregation) to decision tree learners. Although tree learners are invariant to
transformations of features and hence robust to inclusion of irrelevant features,
they tend to overfit the training sets and suffer from high variance. In principle,
tree-based algorithms split the training set into subsets based on thresholds of
selected features with the purpose to minimize the prediction error. The pro-
cess is recursively repeated on each derived subset until a subset (node) with
the minimum amount of observations is reached, which is usually set to five
for regression problem. However, the minimum size can be tuned to alleviate
overfitting.

Given a training set X = {X1,X2, ...,Xn} with outcomes y = {y1, y2, ..., yn},
random forests repeatedly draw a random sample of size n with replacement from
the set B times and fits trees to the samples. A tree learner Tb is trained on each
sample Zb = (yb, Xb). After training, the prediction for an observation with
features X can be made by averaging over all the individual trees:

T̂B(X) =
1
B

B∑

b=1

Tb(X) (11)

The bootstrapping procedure improves the model performance in the sense
that it reduces the variance without increasing the bias. The predictions of a
single tree could be sensitive to outliers, but the average of trees will be less
affected, as long as trees are uncorrelated. Although bootstrap sampling de-
correlates the trees by training them on different samples, they can still be
highly correlated if several strong features are mostly or always selected. Random
forests addresses this problem by including another type of bagging: a modified
tree learning algorithm that selects a random subset of the features at each split
is used. The process is called feature bagging. Typically, the number of randomly
selected features is set to m = p

3 for regression, where p is the total number of
features. Additionally, the optimal number of trees B can be tuned by finding
the one that minimizes the out-of-bag error (OOB), which is the mean prediction
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error on each observation Xi, using only the trees that do not include Xi in their
bootstrap sample.

In this paper, rather than explicitly tune the random forest specifications by
selecting the number of features or tree depth using cross-validation, we specify
a small number of different random forest specifications as base learners. In this
sense, the stacking algorithm tunes the random forest specification as part of
the overall stacking procedure when it assigns weights to the different random
forest learners.

5 Monte Carlo

We investigate the finite-sample performance of stacking using simulated data.
Stacking is compared with its components: lasso, ridge, elastic net, support
vector machine, and random forest. The Monte Carlo designs are explained in
Sect. 5.1, the normalization of data is presented in Sect. 5.2, and evaluation crite-
rion are discussed in Sect. 5.3. Finally, we compare the results of different learners
in Sect. 5.4.

5.1 Setup

The dependent variable yt is generated as:

yt = αyt−1 + βXt−1 + εt, for t = 1, 2, ..., n, (12)

where Xt−1 is the vector of all variables of length p and εt is the error term. Xt

follows multivariate normal distribution Np(0,Σ), where Σ is the p×p covariance
matrix with element Σij = 0.2|i−j|. Considering that the performances of learn-
ers such as lasso can be largely different based on whether the model is sparse
or dense, we set β = {1, 0.5, 0.2, 0, 0, 0, ...} to simulate the sparse model and
β = { 1√

1
, 1√

2
, 1√

3
, ...} to represent the dense model. The following three types of

data generating processes are used:

DGP I (Autoregressive distributed lag model): α is fixed to be 0.5. The
error term is distributed as εt ∼ N(0, 1).

DGP II (ARDL model with a fat tail): Since extreme events are likely to
happen in many applications, it is of interest to know how the performances
change with more outliers. Now the error term follows a t distribution with
degrees of freedom set to 3.

DGP III (Non-stationary model): The dependent variable yt is generated
as in DGP I, but now α is set to be 1 such that the model is non-stationary.

We run R = 100 simulations for each DGP with p = n = 200. Since a ‘bad’
starting point may over-sample points occurring with low probability before
it reaches the equilibrium distribution, we also include 50 burn-in periods at
the beginning of each DGP. 30% of the data (60 observations) are treated as
validation sets, on which stacking regression is done. For each simulation, the
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last observation is treated as the testing set, i.e. this observation is not used for
training the base learners, nor for the stacking regression. Instead, the test set
is used to evaluate the performance of the different estimators.

5.2 Data Normalization

Normalization is important for distance-based machine learning algorithms such
as SVM. A distance summarizes the relative difference between two vectors.
Numerical values may have different scales, which can greatly affect the calcu-
lation of distance measures. In particular, features with relatively larger scales
will have stronger impacts on the distance even they actually contribute less
to the dependent variable. To avoid this issue, all the features are normalized
to have mean zero and unit variance. Note that scaling the whole sample up
front will lead to data leakage when the data are dependent. Therefore, nor-
malization needs to be conducted for each training set individually within the
corresponding cross-validation split. Once the stacking regressors are trained,
we then normalize the whole training sample at once, and the corresponding
normalization factors are applied to normalize the hold-out sample. In essence,
we run all our base learners on the normalized data without causing any data
leakage issue.

5.3 Performance Measures

Root mean squared prediction error (RMSPE) is used to compare the finite-
sample performance of two types of stacking and its base learners. Specifically,

RMSPE =

√∑T
t=1(yt − ŷt)2

T
,

MAPE =
∑T

t=1 |yt − ŷt|
T

,

where T is the number of predictions, i.e. the size of the testing set. yt and ŷt

are the out-of-sample realized and predicted values respectively.1

5.4 Results

Table 1 shows the results from MC experiments. Overall, both fat tails and non-
stationarity will lead to higher RMSPE of all the learners. Lasso always performs
the best among all the base learners when the model is sparse. While ridge or
elastic net has the smallest mean RMSPE when the model is dense. As expected,
both stacking methods follow closely the best base learners in different situations,
and sometimes even outperform all the base learners. Even though the difference
1 Note that T = 1 in our MC setting, leading to RMSPE = MAPE. As such we will

only focus on RMSPE when discussing the MC results. We define both measures here
because in the empirical application, T equals to 30, leading to RMSPE �= MAPE.
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Table 1. mean RMSPE of Monte Carlo Experiments

Sparse Dense

DGP I DGP II DGP III DGP I DGP II DGP III

lasso 1.543 2.765 2.434 3.453 9.748 18.218

ridge 2.494 4.155 11.347 2.561 10.155 29.241

EN 1.550 2.778 2.575 3.435 9.700 18.197

svm 2.598 4.446 14.268 3.842 11.806 36.933

rf10 2.398 3.666 6.261 8.335 12.809 22.939

rf50 2.246 3.173 5.675 7.681 13.448 21.803

rf100 2.248 3.281 5.485 7.430 12.998 20.761

rf200 2.219 3.351 5.301 7.342 13.221 21.300

Stacking (L1) 1.611 2.686 2.487 2.808 10.078 17.064

Stacking (L2) 1.611 2.693 2.469 2.822 9.873 17.284

is small, stacking on median seems to perform slightly better than stacking on
mean in general. It is worth noting that stacking on median has a smaller mean
RMSPE than stacking on mean in DGP II where the model is sparse and has
a fat tail, since the median method is more robust to outliers. However, the
contrary is true when the model is dense, suggesting that the degree of sparsity
may also influence the relative performance of two stacking methods. A further
investigation is beyond the scope of the present paper.

6 Empirical Application

For this empirical application we use McCracken and Ng (2020), a database of US
macroeconomic variables at the quarterly frequency. Kohns and Szendrei (2020)
have shown that one can use the median as an adequate measure of fit on this
database. Here, we take the mantle forward with the performance of the models
when stacking on the median and compare the performance with stacking on the
mean square. Our application includes the Covid-19 period, which is notoriously
difficult to incorporate in forecasting models (Primiceri and Tambalotti, 2020;
Ioannidis et al., 2022). In this section, we use the same base learners described
in the Monte Carlo section above.

To ensure a rich selection of variables, we follow Kohns and Szendrei (2020)
and start our empirical exercise from 1970Q1, which means we have 228 variables.
We use the final 30 observations for testing purposes. Importantly, this means
that the Covid-19 period is included in the testing set as well as data from
‘normal’ times. We perform 1 quarter ahead and 1 year (4 quarters) ahead direct
forecasts.

The results for the static forecast exercises are presented in Fig. 4 for the
1-quarter-ahead, and Fig. 5 for the 1-year-ahead forecast horizon. The figures
show the root mean squared prediction error (RMSPE) and the mean absolute
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Fig. 4. Forecast results for 1 quarter ahead

Fig. 5. Forecast results for 1 year ahead

prediction error (MAPE) with a moving window of 2 years. Note that our eval-
uation window is always backwards looking. The figures reveal that the base
learners that work particularly well in ‘normal’ times (e.g., elastic net and ridge
regression), show worse performance during the Covid-19 period, while some
models perform better around periods of crisis (e.g., lasso). This highlights that
choosing a model that performs adequately across all time periods is difficult.

Looking at the stacked regression performance in the short forecast hori-
zon, we can see that during normal times stacking on the mean and median
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Fig. 6. Weights of the different stacking methods (1 quarter ahead)

Fig. 7. Weights of the different stacking methods (1 year ahead)

offers comparable performance. Nevertheless, during the crisis episode, the per-
formance of the two stacking methods deviates. During the Covid-19, stacking
on the median offers far better performance than stacking on the mean. This is
not surprising given the fact that the median is more robust to rank preserv-
ing shocks (Huber and Ronchetti, 2009). The results are similar for the longer
forecast horizon: stacking on the median performs admirably.
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Interestingly, the performance of stacking on the median is not impacted by
the choice of the horizon: RMSPE and MAPE are almost identical throughout
the time-frame. Looking at the weights in Figs. 6 and 7 reveals why this might
be the case. In essence, stacking on the median is more likely to mix information
from more base learners. Given that longer forecast horizons have more uncer-
tainty associated with it, a stacking method that is more likely to incorporate
information from a more diverse set of models is likely to fare better.

Comparing the weights across the forecast horizons also reveals how different
types of base learners are preferred at the different forecast horizons, with the
SVM being the only base learner that is included frequently for both horizons.
At the shorter forecast horizon, ridge regression is more dominant especially for
stacking on mean square, while for the longer forecast horizons random forests
are far more prevalent. Random forests being selected at the longer forecast
horizon is likely because although random forests overfit in-sample, this has little
to no consequences out-of-sample.2 Importantly, we can see from the weights that
although there are multiple random forests among the base learners, stacking
regression always assigned non-zero weights to other base learners as well. This
further highlights a key advantage of stacking: we are not limited to mixing only
one type of model. In this instance, information from the elastic net learner is
mixed into the stacking regression, which leads to better performance, especially
during the crisis episodes.

Our results point towards running both types of stacking methods at all times
and relying on stacking during crisis times due to its robustness. It is difficult to
know ex ante (and sometimes even in real time) whether one is in a crisis, which
makes it difficult to choose between the two stacking methods. Figures 8 and 9
show that the fitted values of the two stacking methods are very close during
normal times, but deviate from each other during crisis periods. The tendency
for the two sets of fitted values to deviate during crises episodes is not too
surprising given the robustness of the median to outliers (Huber and Ronchetti,
2009). As such, one can opt to favor stacking on the median, when the fitted
values deviated from each other. We leave for future research the question of at
what point deviations between the fitted values should be considered significant
from a policy maker perspective.

2 See Goulet Coulombe (2020) for further discussion and an explanation of why ran-
dom forests tend to perform relatively well in a forecasting setting.
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Fig. 8. Fitted values and GDP at the 1 quarter ahead horizon

Fig. 9. Fitted values and GDP at the 1 year ahead horizon

7 Conclusion

The key goal of stacking regression is to obtain an optimal mix of models that
can lead to better fit than one particular model. Stacking regression has been
popular for cross-section data and in this paper we outlined how to apply the
method to time-series data. We note that extreme observations are not infrequent
in time-series settings (e.g., macroeconometrics and finance), and this can have
detrimental effects on models focused on optimizing the squared residual. To
remedy this we propose ‘stacking on the median’, since the median is more
robust to outliers Rousseeuw and Hubert (2011).
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In the Monte Carlo exercise we find that stacking on the median performs
admirably, even beating stacking on the mean squared error. These results are
corroborated by the empirical application focused on US GDP forecasts around
the global pandemic. Rather than exclusively stacking on the median, we pro-
pose that policymakers consider running the two methods simultaneously, as the
fitted values deviate during uncertain times. This way the policymaker will have
information on not just what the forecasted value is, but also when an extreme
event has occurred.
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