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Abstract. If the overall amount of the company’s assets is smaller than its total
debts, then a fair solution is to give, to each creditor, the amount proportional to
the corresponding debt, e.g., 10 center for each dollar or 50 cents for each dollar.
But what if the debt amounts are not known exactly, and for some creditors,
we only know the lower and upper bounds on the actual debt amount? What
division will be fair in such a situation? In this paper, we show that the only fair
solution is to make payments proportional to an appropriate convex combination
of the bounds – which corresponds to Hurwicz optimism-pessimism criterion for
decision making under interval uncertainty.

1 Formulation of the Problem

What is a Bankruptcy Problem. A company goes bankrupt if the total amount of its
assets is smaller than the total amount of debts. Some of the debts have priority – e.g.,
according to the US labor law, salary needs to be paid in full, irrespective of debts to oth-
ers. Once these priority debts are paid, we face a problem of how to divide the remaining
assets A between the creditors to whom the company owes amounts d1, . . . ,dn.

How this Problem is Usually Solved. In this case, a usual solution is to make payments
proportional to debts, i.e., depending on the ratio between the assets and the debts, 10
cents per dollar, 50 cents per dollar, etc. In general, the amount gi given to the i-th
creditor is equal to

gi = di · A
n
∑
j=1

d j

. (1)

Need to Take Interval Uncertainty into Account. In some cases, the debt is purely
monetary, and its amount di is known exactly. In many practical situations, however,
the situation is more complicated, so for many creditors, we only know the bounds
di ≤ di ≤ di of the actual debt amount. How should we divide the assets in this situation?

Case of Interval Uncertainty: How is this Problem Solved Now. Several papers
describe how to solve the bankruptcy problem under interval uncertainty. For exam-
ple, the paper [2] suggests selecting a single value di within each interval, and then
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using these values di to divide the assets. For example, to select di, we can use Hurwicz
optimism-pessimism criterion [3,6,8]: namely, we agree on some value α ∈ [0,1] and
take di = α ·di+(1−α) ·di.

A more complex scheme was proposed in [7] – following a solution to a similar
problem in [15].

What We do in this Paper. In this paper, we show that a natural formalization of
fairness uniquely determines Hurwicz-based solutions – which are thus recommended
as the fair ones.

2 How to Describe Fairness

Fairness: First Requirement. Fairness means, first, that if the debt di to creditor i is
smaller than or equal to the debt d j to creditor j, then the payment gi to creditor i should
be smaller than or equal to the payment to creditor j.

Fairness: Second Requirement. Second, fairness means that two creditors should not
gain or lose by joining together. In other words:

• if for debts d1,d2,d2, . . . ,dn, we had payments g1,g2,g3, . . . ,gn,
• them for debts d1+d2,d2, . . . ,dn, we should have payments g1+g2,g3, . . . ,gn.

Continuity. It also makes sense to require that if in two situations, debts are close, then
payments should be close – i.e., that payments should be a continuous function of debts.

3 What if We Impose Fairness Requirements in Situations When
We Know the Exact Amount of Debts

Before we consider the case of interval uncertainty, let us analyze what will happen if
we impose fairness requirements in the situations when we know the exact amount of
debt.

Definition 1. Let A < D be two positive numbers.

• We will call A the amount of assets, and we will call D the amount of debt.
• By a solution to the bankruptcy problem (or simply solution, for short), we mean
a function S that maps every tuple 〈d1, . . . ,dn〉 of positive real numbers for which
d1+ . . .+dn = D into a tuple of non-negative real numbers 〈g1, . . . ,gn〉 for which

g1+ . . .+gn = A.

Definition 2. We say that the solution S is fair if it satisfies the following two require-
ments for each tuple 〈d1,d2,d3, . . . ,dn〉 and for S(〈d1, . . . ,dn〉) = 〈g1, . . . ,gn〉:
• if di ≤ d j, then gi ≤ g j;
• S(〈d1+d2,d3, . . . ,dn〉) = 〈g1+g2,g3, . . . ,gn〉.
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Definition 3. We say that the solution S is continuous, if for every n, if d(k)i → di for all

i, S(〈d(k)1 , . . . ,d(k)n 〉) = 〈g(k)1 , . . . ,g(k)n 〉, and g(k)i → gi for all i, then

S(〈d1, . . . ,dn,A〉) = 〈g1, . . . ,gn〉.

Proposition 1. For each solution S, the following two conditions are equivalent to each
other:

• the solution is fair and continuous,
• the solution has the form

gi = di · (A/D). (2)

Comment. So, the usual solution is the only one which is fair (and continuous).

Proof. It is easy to check that the above solution is fair and continuous. So, to complete
the proof, it is sufficient to prove that every fair continuous solution S has this form.

Indeed, let S be a fair and continuous solution. For every natural number N, we can
consider the tuple 〈d1, . . . ,dN〉 = 〈D/N, . . . ,D/N〉 consisting of N equal debt values.
By the first fairness requirement, since the debts di are all equal, the payments gi are
also all equal. Since g1+ . . .+gN = A, this means that N ·gi = A hence gi = A/N, and
the payments tuple has the form 〈g1, . . . ,gN〉 = 〈A/N, . . . ,A/N〉.

For any sequence of natural numbers k1, . . . ,kn for which k1+ . . .+kn =N, the tuple
〈k1 ·(D/N), . . . ,kn ·(D/N)〉 can be obtained from the tuple 〈1/N, . . . ,1/N〉 by adding up
the first k1 terms, then the next k2 terms, etc. So, due to the second fairness requirements,
the resulting payment tuple 〈g1, . . . ,gn〉 can be obtained from the tuple 〈A/N, . . . ,A/N〉
by adding the first k1 terms, then the next k2 terms, etc. Thus, the payment tuple has
the form 〈k1 · (A/N), . . . ,kn · (A/N)〉. In other words, for each debt di = ki · (D/N),
the payment is equal to gi = ki · (A/N). From di = ki · (D/N), we conclude that ki =
di · (N/D), hence gi = ki · (A/N) = di · (N/D) · (A/N) = di · (A/D), i.e., that indeed
gi = di · (A/D).

We have proved the desired equality (2) for all the cases when for all the debts di,
we have di = ki · (D/N) for some integer ki, i.e., when di/D = ki/N. Any real number
di/D can be approximated – with accuracy 1/N – by an appropriate fraction ki/N. As
N increases, the fraction tends to di/D. Thus, since the solution S is continuous, in the
limit, we will have (2) for all possible real values di.

The proposition is proven.

Comment. At first glance, it may sound reasonable to also require that if we combine
two bankruptcy problems together, then in the combined problem, each creditors should
receive the sum of what he/she would receive in each solutions. In other words:

• if we have S(〈d1, . . . ,dn〉) = 〈g1, . . . ,gn〉 and S(〈d′
1, . . . ,d

′
n〉) = 〈g′

1, . . . ,g
′
n〉,

• then we should have S(〈d1+d′
1, . . . ,dn+d′

n〉) = 〈g1+g′
1, . . . ,gn+g′

n〉.
This requirement is explicitly mentioned in [7]. Let us show, however, that the fair
solution does not have this property. Indeed:



Fair Bankruptcy Solutions Under Interval Uncertainty 181

• let us take d1 = 4, d2 = 1, and A= 2, then D= d1+d2 = 4+1= 5, so A/D= 2/5=
0.4, g1 = d1 · (A/D) = 4 ·0.4= 1.6, and g2 = d2 · (A/D) = 1 ·0.4= 0.4;

• let us also take d′
1 = d′

2 = 1 and A′ = 1, then D′ = d′
1+d′

2 = 1+1= 2, so A′/D′ =
1/2= 0.5, and g′

i = d′
i · (A′/D′) = 1 ·0.5= 0.5.

On the other hand, for d1+ d′
1 = 5, d2+ d′

2 = 2, and A+A′ = 3, we have D+D′ = 7,
so (A+A′)/(D+D′) = 3/7. Thus, for the first creditor, the payment is

(d1+d′
1) · ((A+A′)/(D+D′)) = 5 · (3/7) = 15/7= 2+1/7,

which is different from this creditor’s summary payment g1+ g′
1 = 1.6+ 0.5 = 2.1 in

two original situations.

4 Case of Interval Uncertainty

Interval Sum and Interval Order: Reminder. In the case of interval uncertainty, if
we only know that the debt d1 is in the interval [d1,d1] and that the debt d2 is in the
interval [d2,d2], then the only conclusion we can make about the summary debt d1+d2
to these two creditors is that this sum belongs to the interval

[d1+d2,d1+d2].

This interval is known as the sum [d1,d1] + [d2,d2] of the two intervals [d1,d1] and
[d2,d2]; see, e.g., [4,9,11].

A natural order is component-wise: we say that the debt [di,di] to creditor i is
smaller than or equal to the debt [d j,d j] to creditor j if di ≤ d j and di ≤ d j.

Definition 4. Let A be a positive real numbers and let [D,D] be an interval for which
0 < D and A < D.

• We will call A the amount of assets, and we will call [D,D] the amount of debt.
• By a solution to the bankruptcy problem (or simply solution, for short), we mean a
function S that maps every tuple 〈[d1,d1] . . . , [dn,dn]〉 of intervals for which 0 ≤ di,
numbers for which d1+ . . .+dn =D, and d1+ . . .+dn =D into the same-size tuple
of non-negative real numbers 〈g1, . . . ,gn〉 for which

g1+ . . .+gn = A.

Definition 5. We say that the solution S is fair if the following two requirements are
satisfied when S(〈[d1,d1], . . . , [dn,dn]〉) = 〈g1, . . . ,gn〉 :
• if di ≤ d j and di ≤ d j, then gi ≤ g j;

• S(〈[d1+d2,d1+d2], [d3,d3], . . . , [dn,dn]〉) = 〈g1+g2,g3 . . . ,gn〉.
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Definition 6. We say that the solution S is continuous, if for every n, if d(k)i → di and

d
(k)
i → di for all i, S(〈[d(k)1 ,d

(k)
1 ], . . . , [d(k)n ,d

(k)
n ]〉) = 〈g(k)1 , . . . ,g(k)n 〉, and g(k)i → gi for all

i, then
S(〈[d1,d1], . . . , [dn,dn]〉) = 〈g1, . . . ,gn〉.

Proposition 2. For each solution S, the following two conditions are equivalent to each
other:

• the solution is fair and continuous,
• for some α ∈ [0,1], the solution has the form gi = di · (A/D), where

di
def= α ·di+(1−α) ·di and D

def= α ·D+(1−α) ·D.

Comment. So, the solutions based on Hurwicz combinations di = α · di+(1− α) · di
are the only one which are fair (and continuous).

Proof. It is east to check that the solution based on Hurwicz combination is fair and
continuous. So, to complete the proof, it is sufficient to prove that every fair continuous
solution S has this form.

Indeed, let S be a fair and continuous solution. For every natural number N, we can
consider the tuple

〈[D/N,D/N], . . . , [D/N,D/N], [0,(D−D)/N], . . . , [0,(D−D)/N]〉 (3)

consisting of:

• N degenerate debt intervals [D/N,D/N] and
• N intervals [0,(D−D)/N].

By the first fairness requirement, since the debts di are the same for all first N creditors,
the payments gi should also be all equal g1 = . . . = gN . Similarly, the payments to the
last N creditors should be the same: gN+1 = . . . = g2N .

For any two sequences of natural numbers k1, . . . ,kn, �1, . . . , �n for which

k1+ . . .+ kn = �1+ . . .+ �n = N,

the tuple
〈[k1 · (D/N),k1 · (D/N)+ �1 · (D−D)/N], . . . ,

[kn · (D/N),kn · (D/N)+ �n · (D−D)/N]〉
can be obtained from the tuple (3) by adding up:

• the first k1 intervals from the first half and the first �1 intervals from the second half,
then

• the next k2 intervals from the first half and the next �2 intervals from the second half,
etc.
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So, due to the second fairness requirements, the resulting payment tuple 〈g1, . . . ,gn〉
can be obtained from the tuple 〈g1, . . . ,g1,gN+1, . . . ,gN+1〉 by adding the corresponding
payment terms. Thus, the payment tuple has the form

〈k1 ·g1+ �1 ·gN+1, . . . ,kn ·g1+ �n ·gN+1〉.

In other words, for each debt interval

[di,di] = [ki · (D/N),ki · (D/N)+ �i · (D−D)/N],

the payment is equal to
gi = ki ·g1+ �i ·gN+1. (4)

Here, di = ki · (D/N), so ki = di · (N/D). Similarly, di − di = �i · ((D−D)/N) so �i =
(di − di) · (N/(D−D)). Substituting these expressions for ki and �i into the formula

(3), we conclude that gi = a · di+ b · (di − di), where we denoted a
def= g1 · (N/D) and

b
def= gN+1 · (N/(D−D)). Thus, we have

gi = b ·di+(a−b) ·di. (5)

The first fairness requirement means that if di is larger then d j while di = d j, then gi
should be larger (or the same) than g j. This implies that a ≥ 0. Similarly, if di is larger
then d j while di = d j, then gi should be larger (or the same) than g j. This implies that
a−b ≥ 0.

Let us denote the ratio b/a by α . Then, b= a ·α and a−b= a · (1−α). Thus, the
formula (5) takes the form

gi = a · (α ·di+(1−α) ·di). (6)

The sum of all the payments is equal to A, so

g1+ . . .+gn = a · (α ·d1+(1−α) ·d1+ . . .+α ·dn+(1−α) ·dn) =

a · (α · (d1+ . . .+dn)+(1−α) · (d1+ . . .+dn)) = a · (α ·D+(1−α) ·D) = a ·D,

hence a= A/D and the formula (6) takes the desired form

gi = (α ·di+(1−α) ·di) · (A/D). (7)

We have proved the desired equality (7) for all the cases when for all the creditors
i, we have di = ki · (D/N) for some integer ki and di − di = �i · ((D−D)/N) for some
integer �i. Similarly to the proof of Proposition 1, any two real numbers can be thus
approximated, and the larger N, the more accurate the resulting approximation. Thus,
due to continuity, in the limit N → ∞, we have (7) for all possible values di and di.

The proposition is proven.

First Comment: What if We have Fuzzy Uncertainty? For each creditor, instead of a
single interval, we can have different intervals [di(α),di(α)] containing di with differ-
ent degrees of uncertainty α ∈ [0,1]. If we pick a narrower sub-interval, then we become
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less certain that di belongs to this sub-interval than that it belongs to the original inter-
val. Thus, the interval corresponding to a higher degree of uncertainty is a subset of the
interval corresponding to a lower degree of uncertainty. Such a sequence of embedded
intervals is, in effect, an equivalent representation of a so-called fuzzy number (see, e.g.,
[1,5,10,12,13,16]) for which the corresponding intervals are known as α-cuts.

In this case, to describe each creditor’s debt, instead of two values di and di, we need
to describe infinitely many values di(α) and di(α) corresponding to different α ∈ [0,1].
The overall debt corresponding to different α can be obtained by adding all n debts:
D(α) = d1(α)+ . . .+dn(α) and D(α) = d1(α)+ . . .+dn(α).

Arguments similar to the ones we used in the proof of Proposition 2 lead to a con-
clusion that a fair solution is proportional to the linear combination di of these values,
i.e., has the form gi = di/D, where

di
def=

∫
( f−(α) ·di(α)+ f+(α) ·di(α))dα

for some functions (maybe generalized functions) f±(α), and

D
def=

∫
( f−(α) ·D(α)+ f+(α) ·D(α))dα.

What if We have Probabilistic Uncertainty? What if for each di, we only know the
probability distribution? In this case, it makes sense to use the following additional
requirement on the bankruptcy solutions: that if we repeat the same division situation
several (N) times, the payments in the resulting overall situation should be N times
larger. In the overall situation, the debt amount Di is equal to the sum of N indepen-

dent equally distributed debt amounts: Di = d(1)i + . . .+ d(N)i . According to the Large
Numbers Theorem (see, e.g., [14]), for large N, the average

Di

N
=

d(1)i + . . .+d(N)i

N

tends to the mean E[di] as N increases. Thus, for large N, the sum is getting (relatively)
closer and closer to a single value – N times the mean. So, for large N, we have, in
effect, the division problem in which instead of the original random variables, we have
N times their means. The payments in the original problem should be N times smaller,
i.e., they should be simply equal to the division corresponding to the means.

Thus, in the probabilistic case, we should simply compute the mean values E[di] of
the debt amount, and distribute the assets proportionally to these mean values:

gi =
E[di]

E[d1]+ . . .+E[dn]
·A.
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